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ABSTRACT 23 

Gut inflammation is thought to modify brain activity and behaviour via modulation of the gut-24 

brain axis. However, how relapsing and remitting exposure to peripheral inflammation over 25 

the natural history of inflammatory bowel disease (IBD) contributes to altered brain dynamics 26 

is poorly understood. Here, we used electroencephalography (EEG) to characterise changes 27 

in spontaneous spatiotemporal brain states in Crohn’s Disease (CD) (n = 40) and Ulcerative 28 

Colitis (UC) (n = 30), compared to healthy individuals (n = 28). We first provide evidence of a 29 

significantly perturbed and heterogeneous microbial profile in CD, consistent with previous 30 

work showing enduring and long-standing dysbiosis in clinical remission. Results from our 31 

brain state assessment show that CD and UC exhibit alterations in the temporal properties of 32 

states implicating default-mode network, parietal, and visual regions, reflecting a shift in the 33 

predominance from externally to internally-oriented attentional modes. We investigated these 34 

dynamics at a finer sub-network resolution, showing a CD-specific and highly selective 35 

enhancement of connectivity between the insula and mPFC, regions implicated in cognitive-36 

interoceptive appraisal mechanisms. Alongside overall higher anxiety scores in CD, we also 37 

provide preliminary support to suggest that the strength of chronic interoceptive hyper-38 

signalling in the brain co-occurs with disease duration. Together, our results demonstrate that 39 

a long-standing diagnosis of CD is, in itself, a key factor in determining the risk of developing 40 

altered brain network signatures.    41 
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INTRODUCTION 42 

Immune dysfunction and accompanying systemic inflammation is thought to play a key role  43 

in the development of mood and affective symptoms (1, 2). As part of this mechanism, the 44 

presence of pro-inflammatory cytokines is communicated to the central nervous system (CNS) 45 

via peripheral activation of receptors expressed on vagal afferents, or the production of 46 

molecular intermediates at the blood-brain interface (c.f., circumventricular organs and the 47 

choroid plexus) (3). The brain recognises inflammation as a molecular signal of sickness, 48 

inducing changes at the neurophysiological and neurotransmitter level within brainstem, limbic 49 

and prefrontal regions (3, 4). Together, these neural responses generate a repertoire of 50 

“sickness behaviours” that includes social avoidance, anhedonia, fatigue, and depressed 51 

mood (1, 5, 6). The brain-cytokine response has been demonstrated in healthy adults 52 

administered lipopolysaccharides (LPS) (7) or typhoid vaccination (3, 8), who show transient 53 

alterations to cognitive-affective regions (involving the thalamus, amygdala, insula, and 54 

anterior cingulate), and a symptom profile that includes anxiety, poor mood, and impaired 55 

memory. These effects, however, embody the response of the resilient and adaptive CNS to 56 

an acute perturbation. Recent work investigating repeated exposure to immunogenic 57 

substances over an extended timeframe suggests more pervasive and enduring brain network 58 

abnormalities in chronic inflammation (9, 10).   59 

 60 

Inflammatory bowel disease (IBD), a chronic, relapsing, and remitting intestinal disease, 61 

provides a unique and ecologically valid model to study the effects of inflammation chronicity 62 

on the brain (11). While IBD can occur at any age, disease incidence peaks in early adulthood 63 

(between 15 and 30 years) such that individuals experience a number of acute and recurrent 64 

inflammatory events that can endure for decades (12). As inflammation emerges within the 65 

gastrointestinal (GI) tract, the disease is well-placed to exert influence over the gut-brain axis 66 

(13). That is, the physical proximity of inflammation to the intestinal epithelium - a putative gut-67 

brain interface - allows neural-related changes to be conceptualised as dysfunctions to vagal, 68 

immune, microbial, or endocrine signalling pathways. Alongside the mechanisms by which 69 

inflammation reaches and impacts the brain, an important research endeavour is focused on 70 

identifying specific brain regions affected by chronic inflammation, and how this can manifest 71 

behaviourally.   72 

 73 

Neuroimaging work has provided initial insights into altered functional brain connectivity 74 

underpinning IBD pathophysiology, and suggests that a re-organisation of large-scale brain 75 

networks, rather than localised deficits, more clearly recapitulates disease-related changes 76 

(14-18). Specifically, there is a growing consensus that individuals with IBD exhibit alterations 77 
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to default-mode network (DMN) activity (15, 18). The DMN comprises a set of brain regions 78 

that exhibit coherent neural activity during rest, and deactivation during externally oriented 79 

cognitive tasks (19). Alongside its involvement in social, cognitive and affective processes, the 80 

network plays a critical role in endogenous thought, such as rumination, and self-referential 81 

processing (20, 21). Abnormal patterns of activation and deactivation within the DMN has 82 

been linked to the development of neuropsychiatric disorders, including depression (22) and 83 

anxiety (23). In IBD, functional connectivity changes have been reported between key regions 84 

of the DMN, including the posterior cingulate cortex, medial prefrontal cortex, and precuneus 85 

regions (15, 18). Aberrant connectivity between nodes of the salience network (SN) (14, 17), 86 

including the anterior cingulate and insula cortex, further supports the possibility that IBD 87 

individuals experience altered interoceptive processing of visceral sensations (e.g., 88 

nociceptive, inflammatory, or microbial-related stimuli) (24). Given the relationship between 89 

the DMN and SN in anxiety and depression, the reported alterations in patients with IBD may 90 

be of substantial clinical importance. Critically, these results are reported in quiescent IBD (15, 91 

16, 25-27), further supporting the argument that acute inflammation alone cannot account for 92 

the observed neural and behavioural impairments (9, 27, 28).  93 

 94 

Among the two main IBD diagnoses, brain and behavioural abnormalities have more 95 

consistently been reported in Crohn’s Disease (CD) as opposed to Ulcerative Colitis (UC) (14, 96 

15, 17, 18, 25, 26, 29). Despite overlapping symptoms, CD is thought to exhibit a more 97 

pervasive and severe disease expression attributed in part to the extent of affected anatomical 98 

sites, transmural involvement, and genetic and immune factors involved (30, 31). Moreover, 99 

while the microbiome in UC cannot be differentiated from controls following successful 100 

treatment, dysbiosis (imbalance) in CD persists long after remission and responds poorly to 101 

faecal microbiota transplantation (32-34). Despite well-defined heterogeneity between UC and 102 

CD - with the latter thought to express a more chronic and systemic disease profile – only a 103 

limited number of studies (35, 36) have directly compared IBD sub-groups in the context of 104 

whole-brain signatures. 105 

 106 

In this study, we investigated whether CD and UC were associated with alterations to 107 

spontaneous brain state dynamics. To do this, we fit a Hidden Markov Model (HMM) to resting-108 

state electroencephalography (EEG) data which describes brain dynamics as a sequence of 109 

transient and distinct patterns of power and phase-coupling within and between brain regions, 110 

respectively. We further explored these brain dynamics at a sub-network resolution, showing 111 

differential patterns of effective connectivity that are specific and selective to CD. Our results 112 

converge on the suggestion that long-term exposure to chronic gut inflammation confers a 113 
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higher risk of altered brain and behavioural signatures, with the extent of these effects related 114 

to disease duration.  115 

 116 

METHODS 117 

Participants 118 

The study was approved by the Human Research Ethics Committee of QIMR Berghofer 119 

Medical Research Institute (P3436). Written informed consent was obtained for all participants 120 

in accordance with the Declaration of Helsinki. Twenty-eight healthy controls (34 ± 11 years; 121 

16 female), 40 CD (43 ± 13 years; 20 female), and 30 UC (42 ± 11 years; 21 female) 122 

participants were recruited from the Brisbane (Australia) metropolitan area by 123 

gastroenterologist (GRS) and accredited practising dietitian (CVH) (Supplementary Table 1). 124 

Exclusion criteria are presented in Supplementary Note 1. Study requirements involved (I) 125 

general health and clinical questionnaires; (II) neurocognitive assessments; (III) a resting state 126 

EEG recording; and (IV) a stool sample collected at home.  127 

 128 

General health and clinical questionnaires  129 

The Brisbane Health Area Survey was administered to all participants and included questions 130 

about (I) current and previous medical history; (II) current and previous medical history of close 131 

family members; (III) medications taken in the previous 12 months; (IV) smoking, alcohol 132 

intake, and weight history; and (V) ancestry. The Traditional Mediterranean Diet (TMD) 133 

adherence questionnaire was administered by an APD (CVH). Prior to resting-state EEG 134 

recordings, blood pressure and heart rate were recorded. For individuals with CD and UC, an 135 

additional clinical questionnaire about IBD was administered, including detailed questions 136 

about (I) the nature and timing of symptoms experienced prior to a formal IBD diagnosis; (II) 137 

current and previous medications used to treat IBD; (III) current and previous history of 138 

procedures or surgeries performed in relation to their IBD; (IV) family history of IBD; and (V) 139 

comorbid health conditions associated with IBD, including extra-intestinal manifestations. 140 

Where available, the patient’s gastroenterologist provided clinical indicators of disease activity 141 

for CD (Harvey-Bradshaw Index, HBI) and UC (Simple Clinical Colitis Activity Index, SCCAI) 142 

patients, in a timeframe two weeks prior to, or two weeks post study participation.   143 

 144 

Neurocognitive assessments 145 

Neurocognitive assessments were performed by a clinical psychologist and accredited 146 

practicing dietitian, and were used to rule out previous or current history of a neurological or 147 

psychiatric illness (excluding anxiety-related disorders or depression). Assessments of anxiety 148 

and depression included the Hamilton and Montgomery Anxiety (HAM-A), Montgomery-149 
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Åsberg Depression Rating Scale (MADRS), Hospital Anxiety and Depression Scale (HADS), 150 

Depression Anxiety and Stress Scale (42-item) (DASS), and Generalized Anxiety Disorder (7-151 

item) (GAD-7).   152 

 153 

Sample collection and processing  154 

Participants were provided with a stool nucleic acid collection and preservation tube (Norgen 155 

Biotek Corp., Thorold, Ontario, Canada) and were instructed to collect the sample within a 156 

window of 48 hours before/after the study session. Each stool sample was labelled and stored 157 

in a -80oC freezer until sample processing. Tissue homogenization was performed using tubes 158 

containing 1.4mm ceramic beads (Precellys Lysing Kit). DNA was extracted from samples and 159 

quantitated using Nanodrop 2000 (Thermo Scientific). PCR amplification was performed on 160 

the V3-V4 hypervariable region of the 16S rRNA gene, and sequenced on a MiSeq sequencer 161 

(Australian Genome Research Facility, Melbourne).  162 

 163 

16S data processing and analysis 164 

Demultiplexed fastq files were processed using default settings within QIIME2 2020.2 165 

(https://qiime2.org) (37). Amplicon Sequence Variants (ASVs) were generated by denoising 166 

with DADA2 (38). For taxonomic structure analysis, taxonomy was assigned to ASVs using a 167 

pre-trained Naïve Bayes classifier and the q2-feature-classifier plugin against the Greengenes 168 

13_8 99% 16S rRNA gene sequencing database. Samples were rarefied to a read depth of 169 

2200 for diversity analyses. ANCOVA was used to test for group differences in Shannon 170 

diversity and Chao1 measures accounting for the effects of age, sex, and body mass index 171 

(BMI). Beta-diversity, assessed using unweighted UniFrac distance (39), was used to 172 

compare groups, controlling for age, sex, and BMI using qiime2 plugins PERMANOVA and 173 

adonis. The metagenomic functional contribution of each sample was predicted using the 174 

computational modelling approach, Phylogenetic Investigation of Communities by 175 

Reconstruction of Unobserved States 2.0 (PICRUSt2 v2.2.0-b) (40), using the MetaCyc 176 

Metabolic Pathway Database (41). The multivariate statistical framework, MaAsLin2 (42), 177 

implemented in R, was used to assess the relationship between group membership with (i) 178 

microbial abundance (collapsed at genus level) and (ii) functional pathway abundance. 179 

Covariates, including sex, age and BMI, were included as fixed effects. Features were 180 

included in if they had at least 10% non-zero values (across samples) and a minimum relative 181 

abundance threshold of 0.0001, both validated parameter settings in MaAsLin2. Significant 182 

features were corrected for multiple comparisons using the Benjamini-Hochberg FDR 183 

procedure, with corrected values of p < 0.05 and q < 0.25 considered statistically significant.  184 

 185 

Resting-state EEG recordings 186 
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Participants were fitted with a 64-channel EEG cap (Ant Neuro – EEGgo sports system), 187 

configured to the 10-20 international system. Signals were processed online using EEGgo 188 

with a sampling frequency of 2000 Hz. Scalp impedance was reduced to a maximum of 20 𝑘W 189 

in all electrodes with the application of conductive gel. EEG activity was processed online 190 

using eego software. All electrodes were referenced to the CPz electrode. Prior to recordings, 191 

participants were reminded to keep their eyes open and fixate on a white crosshair against a 192 

black background. Participants were encouraged to breathe and blink normally, and relax 193 

head and neck muscles to minimize signal artifacts. Resting-state signals were recorded 194 

continuously for 4 minutes.  195 

 196 

EEG pre-processing 197 

EEG data was pre-processed offline using EEGlab software (v2019.1) in MATLAB (vR2018b). 198 

The data were downsampled to 250 Hz. EEG signals were visually inspected, and excessively 199 

noisy channels were removed before signals were re-referenced to the common average 200 

reference (excluding EOG, M1 and M2 electrodes). Signals were band-pass filtered into a 201 

frequency band of 1-45 Hz, and epoched into 5-second segments. Epochs were manually 202 

inspected and removed if they contained large artefacts that would otherwise not be detected 203 

by independent components analysis (ICA) (e.g., strong muscle artifacts). Artifacts that were 204 

characteristic of cardiac, ocular or minor muscular movements were subsequently removed 205 

using ICA (InfoMax) (43). As the HMM is sensitive to noise, a fairly stringent approach was 206 

adopted to remove potential sources of signal artifact. This approach represents a necessary 207 

trade-off to ensure that the HMM is inferred on neurobiologically meaningful data and not 208 

spurious noise sources (44). As such, if more than 20 ICs were marked as artefactual, the 209 

original time series prior to ICA was re-inspected for additional sources of artefact. If more 210 

than 50% of epochs were removed, or more than 20 ICs were excluded after the second ICA 211 

run, recordings were excluded from the analysis. Recordings from 11 subjects (2 HC, 3 CD, 212 

and 6 UC) were not included in the HMM. Subsequent processing and analysis of EEG data 213 

were performed using toolboxes and software packages found within the Oxford Centre for 214 

Human Brain Activity (OHBA) Software Library (OSL) and SPM12. For source reconstruction, 215 

the forward model was generated using a symmetric boundary element method (BEM) and 216 

the inverse model was performed using a Linearly Constrained Minimum Variance (LCMV) 217 

vector beamformer. A 44-region weighted parcellation of the entire cortex was adapted from 218 

previous work (45-47). Thirty-eight parcels were constructed from an ICA of fMRI data from 219 

the Human Connectome Project, while the remaining six parcels corresponded to the anterior 220 

and posterior precuneus, bilateral intraparietal sulci, and bilateral insula cortex. The inclusion 221 

of the insula cortex - specific to our analyses - was based on previous work supporting the 222 

contribution of this region to interoceptive processing in chronic and inflammatory conditions, 223 
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including IBD (15, 16, 48-50). Time-courses were extracted by taking the first principal 224 

component, with voxel contributions weighted by the parcellation. Symmetric multivariate 225 

spatial leakage (volume conduction) correction was applied (46).  226 

 227 

Time-delay embedded (TDE)-HMM 228 

We adopted the TDE-HMM implemented within the HMM-MAR MATLAB toolbox 229 

(https://github.com/OHBA-analysis/HMM-MAR) (44, 45). We used stochastic variational 230 

Bayes (45) to infer the TDE-HMM parameterized with 6 states and 41 time lags (corresponding 231 

to a window length of 160ms) (Supplementary Fig. 1) using 500 training cycles and 232 

initialization parameters according to previously established procedures (45, 51-53). Prior to 233 

HMM inference, we concatenated time series across subjects from all three groups, producing 234 

a full dataset to obtain a common set of brain states across all participants. This approach 235 

facilitated a direct comparison of spatial and temporal statistics across groups (53, 54). 236 

Supplementary Note 2 provides a full description of the TDE-HMM and Supplementary Fig. 2 237 

provides an overview of the analysis pipeline.  238 

 239 

From the HMM we calculated the (subject-specific) temporal properties of each state using 240 

three parameters: (I) fractional occupancy, the proportion of total time spent in a state (K x 1); 241 

(II) interval time, the length of time between consecutive visits to the same state (K x 1); and 242 

(III) dwell time, the average length of time spent in a state before transitioning to another state 243 

(K x 1). We also computed subject-specific transition probability matrices representing the 244 

probabilities of transitioning from one state, to every other state (K x K). ANCOVA was used 245 

to test for significant differences in fractional occupancy, dwell times, and interval times 246 

between groups, controlling for the effects of age and sex. Permutation testing was used to 247 

reject the null hypothesis of equality between groups. As implemented in previous work (54), 248 

for each state we generated 5,000 permutations by shuffling group labels among participants. 249 

We then repeated ANCOVAs on the permuted values, therefore generating an empirical null 250 

distribution of F-statistics for each state and temporal measure (fractional occupancy, dwell 251 

times, and interval times). We ascribed statistical significance (p < 0.05) to the temporal values 252 

by assessing the proportion of null statistics that were greater than or equal to the value of the 253 

statistic computed for the non-permuted data. For significant ANCOVAs, Tukey’s HSD post-254 

hoc paired t-tests were used to identify where differences were expressed between groups. 255 

The Network-based Statistic (NBS) (55) was used to perform inference on the transition 256 

probability matrices between the three groups, again including age and sex as covariates. We 257 

used an F-test with the primary statistic threshold set to 3.0, and performed a total of 5,000 258 

permutations (family-wise error rate controlled at 5%).  259 

 260 
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Candidate Cortical Regions 261 

Using state-specific coherence values averaged across subjects, we calculated the 262 

eigenvector centrality (EC) measure for each region. EC calculates the centrality (degree) of 263 

each node and weights this according to the EC of the nodes that it connects to (56). EC was 264 

performed using the eigenvector_centrality_und function within the Brain Connectivity Toolbox 265 

(57). The top 10% of EC scores taken from a single hemisphere were used to inform regions 266 

for a DCM. 267 

 268 

Dynamic Causal Modelling 269 

We used dynamic causal modelling (DCM) for cross-spectral densities (CSD) to selectively 270 

isolate those differences observed in the networks above (58, 59). Specifically, we modelled 271 

the extrinsic (between-region) effective connectivity strengths between candidate regions. We 272 

adopted the convolution based local field potential (LFP) neural mass model which describes 273 

source activity as the result of interactions between populations of inhibitory interneurons, 274 

excitatory spiny stellate cells, and excitatory pyramidal cells (60). The data to which the DCM 275 

was fit comprised the processed time series. For each subject, we specified and estimated a 276 

single model with a fully-connected network of 7 regions. To obtain the most robust estimates, 277 

we then re-estimated the DCM using an updated prior parameter space using the posteriors 278 

from an exemplar subject (Supplementary Fig. 3). For each subject, we selected the iteration 279 

with the best fit (as assessed by free energy). One-way MANCOVA (Wilks’ Lambda) was used 280 

to assess group differences in the forward and backward connectivity parameters. Univariate 281 

tests were corrected for multiple comparisons (pFWE < 0.05, Bonferroni corrected). A multiple 282 

regression model was used to assess the contributions of behavioural (non-clinical) variables 283 

to effective connectivity strengths.  284 

 285 

RESULTS 286 

Resting-state EEG recordings and 16S rRNA profiles were analysed for 40 CD, 30 UC, and 287 

28 healthy participants. Demographic, behavioural, and clinical characteristics are presented 288 

in Supplementary Table 1. IBD and healthy control (HC) participants were matched in terms 289 

of general demographics with the exception of age, and the Hamilton and Montgomery Anxiety 290 

(HAM-A) scores (Supplementary Table 1).  291 

 292 

Establishing distinct microbiota signatures in CD and UC 293 

We first used 16S rRNA sequencing to compare microbiota profiles between the three groups. 294 

Our results show a significant difference in beta (unweighted UniFrac) and alpha (Shannon 295 

effective species and Chao1 index) diversity measures in CD, compared to HC and UC (Fig. 296 
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1A-B). While not reaching statistical significance, UC showed a trend towards lower alpha 297 

diversity and distinct beta diversity profiles compared to HC. Multivariate analyses also 298 

revealed a number of significant taxonomic and functional differences in CD and to a lesser 299 

extent, in UC (Fig. 1C-D, enlarged visualisation shown in Supplementary Fig. 4). The 300 

microbiota results converge in supporting the existence of a perturbed and heterogeneous 301 

microbial profile in CD (33). It is important to note that the small subset of CD participants 302 

exhibiting mild (n = 3) or moderate (n = 1, later excluded for poor quality EEG data) disease 303 

activity were not outliers in terms of their diversity scores (i.e., were distributed within the 304 

normal range for CD). Together, the clinical and microbiota results demonstrate clear 305 

distinctions between CD and UC sub-groups, providing a strong motivation to perform brain 306 

assessments in each group independently. Full statistical results for this assessment can be 307 

found in Supplementary Note 3.   308 

 309 

 310 
Figure 1. Comparison of microbiota results between Crohn’s Disease (CD), Ulcerative Colitis 311 
(UC), and healthy control individuals (HC). Results from (A) beta (unweighted Unifrac) and (B) alpha 312 
diversity (Shannon effective species and Chao1 index) measures show significant differences between 313 
CD and UC, and CD and HC, assessed using one-way ANCOVAs. Multivariate analyses performed 314 
using MaAslin2 revealed significant differences in (C) taxonomic abundance (genus resolution) and (D) 315 
functional pathways in CD and to a lesser extent, in UC, when compared to HC. Enlarged figures for 316 
(C) and (D) are presented in Supplementary Fig. 4. All microbiota assessments were controlled for the 317 
effects of age, sex, and BMI. * denotes p < 0.05; *** denotes p < 0.0005. 318 
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 319 

Brain states expressed during resting-state EEG 320 

We estimated brain states at rest using the TDE-HMM (61) (Supplementary Note 2). The HMM 321 

posits that a time series can be decomposed into a number of discrete and recurrent hidden 322 

brain states, comprising several regions that co-activate together, such that at each time point, 323 

only one state is active. Results showed that resting-state EEG data was best described by 324 

six short-lived and recurring brain states, each with unique spatial, spectral, and temporal 325 

profiles (Fig. 2A-F; Supplementary Fig. 5 and Supplementary Note 2). Our state selection is 326 

consistent with previous studies modelling M/EEG dynamics using the TDE-HMM, ranging 327 

between six and 16 states (44, 45, 62, 63). The spatial maps of power (i.e., the amount of 328 

activity) and coherence networks (i.e., the level of synchronisation or coupling between two 329 

regions) were averaged across a wideband frequency range (1-30 Hz). Power maps 330 

correspond to the mean power within each region and state (z-scored) and coherence 331 

networks show functional connections that are stronger (p < 0.01) compared to all other 332 

possible between-region connections for that state. Our spatial maps share characteristics 333 

with previous M/EEG HMM studies, including a bilateral pattern of activity for some, but not all 334 

states (44, 45), and strong increases in power often accompanying increases in coherence 335 

(45).  336 

 337 

Brain states correspond to resting-state association maps 338 

We quantified the functional overlap between the HMM states with established resting-state 339 

association networks from the meta-analysis database, Neurosynth (64). Specifically, we 340 

assessed the spatial overlap (voxel-wise correlation) between our power maps (z-scored, 341 

unthresholded) with canonical maps of prefrontal, parietal, sensorimotor, visual, DMN, and 342 

temporal fMRI association maps (Supplementary Fig. 6). For ease of interpretation, states 343 

were named according to the spatial patterns of activation to which they were most strongly 344 

correlated. States 1 (prefrontal) and 2 (integrated prefrontal) were defined by higher and lower 345 

power in prefrontal and visual regions respectively, with more extensive prefrontal coherence 346 

in State 2. States 3 (right sensorimotor-parietal) and 5 (left sensorimotor) were characterised 347 

by higher power in right and left sensorimotor regions, respectively, with coherence patterns 348 

closely following power in State 3. State 4 (visual) was characterised by high power and 349 

coherence in visual regions, while State 6 (DMN-parietal) reflected power and coherence in 350 

regions associated with DMN and parietal regions. Each state also exhibits frequency-specific 351 

differences in power and coherence, which can be visualized as an average across regions 352 

over the full spectrum (1-30 Hz) (Supplementary Fig. 5). There is a strong distinction between 353 

the DMN-parietal, characterised by power in the slower frequencies (delta/theta) and the visual 354 

state, characterised by stronger power in the alpha frequency. All states exhibit higher 355 
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coherence within the alpha frequency band, with the strongest occurring in right sensorimotor-356 

parietal, visual, and DMN-parietal states.  357 

 358 

 359 
Figure 2. Brain states identified using Hidden Markov Modelling represent networks of power 360 
and spectral coherence. (A) Left panel shows wideband (1-30 Hz) power maps (top) and coherence 361 
networks (bottom) displayed for each state. Power maps are relative to the state average (z-scored) 362 
where blue colours reflect power that is lower than the state average and red/yellow colours reflect 363 
power that is higher than the average within that state. Coherence networks show statistically significant 364 
(p < 0.01) connections that stand out from a background level of connectivity within that state. Nodes 365 
are coloured based on which fMRI association map/s they anatomically correspond to, and the size of 366 
each node reflects the centrality (degree) score. (A.I-III) Comparison of temporal statistics between 367 
healthy controls (HC), Crohn’s Disease (CD) and Ulcerative Colitis (UC) individuals for each state, after 368 
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adjusting for age and sex. Fractional occupancy (%) represents the proportion of overall time spent in 369 
a state; interval time (ms) represents the length of time between consecutive visits to the same state; 370 
and dwell time (ms) is the length of each state visit. Permutation tests were performed to assess the 371 
null hypothesis of equality in temporal measures between groups and Tukey’s HSD post-hoc tests were 372 
used to identify where significant pair-wise differences were expressed. * denotes pFWE < 0.05; ** 373 
denotes pFWE < 0.005. 374 
 375 

Temporal brain state dynamics are differentially expressed in IBD 376 

At each time point in the time series, the HMM estimates the probability that each brain state 377 

is active, referred to as the state time course. The state time courses estimated from the HMM 378 

were used to investigate between-group differences in three temporal statistics: (a) fractional 379 

occupancy, the proportion of overall time spent in a state; (b) dwell time, the length of each 380 

state visit; and (c) interval time, the length of time between consecutive visits to the same 381 

state. One-way ANCOVAs identified a significant main effect of group on fractional occupancy 382 

in the visual (F(2,82) = 4.31, p = 0.018) and DMN-parietal (F(2 ,82) = 7.40, p = 0.002) states, and 383 

a main effect of group on interval times in the DMN-parietal (F(2 ,82) = 4.41, p = 0.001) (Fig. 384 

2D&F). Relative to HC, individuals with CD resided for less time overall in the visual state 385 

(pFWE = 0.04) (Fig. 2D-I), but spent a longer time overall (pFWE = 0.002) and had shorter interval 386 

times between consecutive visits to the DMN-parietal state compared to UC (pFWE = 0.01) (Fig. 387 

2D-I-II).  While HC spent more time in the visual state compared to UC, and less time in the 388 

DMN-parietal state compared to CD, these effects did not survive Bonferroni correction (UC, 389 

pFWE = 0.08; CD, pFWE = 0.06).  390 

 391 

We next used the probabilities associated with the state time courses to identify significant 392 

between-group differences in the transitions between brain states (Network-based Statistic 393 

(55), pFWE < 0.05) (Fig. 3). Bold, coloured lines indicate transitions included in the significant 394 

NBS component while thin black lines show the top 20% most probable state transitions for 395 

each group (Fig. 3B, D & F). Firstly, individuals with UC were more likely to transition to the 396 

prefrontal state compared to HC and CD (Fig. 3E-F). Secondly, individuals with CD and UC 397 

were more likely to transition from the left sensorimotor to the integrated prefrontal state, while 398 

the inverse was true for HC. Finally, HC individuals were more likely to transition to the visual 399 

state, specifically from the DMN-parietal or right sensorimotor-parietal states.  400 

 401 

Taken together, our results suggest that: (a) CD and UC individuals spent less time in, and 402 

are less likely to transition to the visual state; (b) individuals with UC are more likely to 403 

transition to, and may spend more time in the prefrontal state (although not reaching 404 

significance); and (c) individuals with CD reside for longer in, and spent less time between 405 

consecutive visits to the DMN-parietal state.  406 

 407 
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 408 

Figure 3. Representation of the transition probabilities between the six brain states in the three 409 
groups. (A) We computed subject-specific transition probability matrices representing the likelihood of 410 
transitioning from one state, to every other state (K x K). Diagonal matrix elements represent self-411 
transitions (i.e., the probability of remaining in that state) and were set to zero to aid visualisation. (B) 412 
Directed transition diagram showing the top 20% most probable state transitions, where each arrow 413 
represents a transition. The thin black lines do not represent significant between-group differences, but 414 
represent transitions that were more probable on average for that group. Bold, coloured lines indicate 415 
a significantly higher probability of this transition in that group. The network-based statistics (NBS) was 416 
used to identify significant between-group differences in state transitions (pFWE < 0.05). (C-F) Same as 417 
(A) and (B) but for Crohn’s Disease and Ulcerative Colitis. Prefrontal (Pre), integrated prefrontal (IntPre), 418 
right sensorimotor-parietal (RSen-Par), visual (Vis), left sensorimotor (LSen), and DMN-parietal (DMN-419 
Par). 420 
 421 

Altered connectivity patterns between key brain regions differentiating groups  422 

To identify the key drivers of these differences, we performed a refined sub-network analysis 423 

on communication between specific nodes within the visual and DMN-parietal states. We 424 

identified seven candidate regions exhibiting higher influence within each state’s spatial profile 425 

(See Candidate Regions in Materials and Methods). The posterior precuneus (Pprec), medial 426 

prefrontal cortex (mPFC) and left inferior parietal lobule (IPL) were identified within the DMN-427 

parietal state, while the inferior occipital gyrus (IOG), mid occipital gyrus (MOG), and left insula 428 

(insula) were identified within the visual state (Fig. 4A; Supplementary Table 2). The posterior 429 

cingulate (PCC) had strong involvement within both states, supporting previous work 430 

recognising its “flexible” participation across a number of dynamic networks and associated 431 

cognitive processes (65, 66). Using the time series from each candidate region, we calculated 432 

the strength of directed (effective) connectivity, using dynamic causal modelling (DCM) (Fig. 433 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.22.513335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.22.513335
http://creativecommons.org/licenses/by-nc/4.0/


 
 

Brain signatures of chronic gut inflammation      Page 15 of 25 
 

4B) (See DCM in Methods and Supplementary Fig. 2 for details). Taking the expected values 434 

of the estimated connectivity parameters from all subjects, we identified a significant 435 

multivariate association between backward connectivity parameters and group membership 436 

(Wilks’ Lambda = 0.16, F(84, 82) = 1.52, pFWE = 0.03). Univariate F tests identified a significant 437 

difference between groups in the connectivity from the left insula to mPFC (F(2,84) = 8.57, pFWE 438 

= 0.017) (Fig. 4C-D). Specifically, individuals with CD showed significantly stronger 439 

connectivity from the left insula to mPFC compared to HC (p = 3.63 x 104) and UC (p = 0.03). 440 

There were no significant differences between UC and HC for any connections.  441 

 442 

Insula to mPFC connectivity linked to disease duration in CD 443 

Our results demonstrated a highly selective enhancement of connectivity between the left 444 

insula to mPFC in the CD group. With the exception of three individuals with mild disease 445 

activity, all CD individuals were in clinical remission. Thus, these findings provide support to 446 

our hypothesis that between-group connectivity differences may be driven by chronic, rather 447 

than acute inflammation. Our final aim was to specifically test whether inter-individual 448 

variability in the strength of insula to mPFC connectivity in CD was linked to long-standing 449 

disease features, thus testing for a more pronounced relationship of how CD chronicity 450 

(disease duration) links to depression, anxiety, and stress scores (DASS-42). The DASS-42 451 

is based on a dimensional, rather than categorical, assessment of psychological symptoms, 452 

and provides higher inter-subject variability in sub-clinical populations. While the HAM-A and 453 

MADRS, and HADS-A and HADS-D, tend to produce anxiety and depression scores that are 454 

highly correlated, the DASS-42 is able to more clearly distinguish between anxiety and 455 

depression (67). Critical to our study, the anxiety scale assesses key components of 456 

interoceptive processing, including autonomic arousal, situational anxiety, and the subjective 457 

experience of anxious affect. While results did not show an overall multivariate relationship, 458 

we did find a significant independent regression coefficient linking longer CD duration 459 

(adjusted for participant age) with stronger insula to mPFC connectivity (β = 0.01, t(34) = 2.19, 460 

p = 0.036) (Fig. 4E).  461 
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 462 
Figure 4.  Targeted analyses of effective brain connectivity (Dynamic Causal Modelling, DCM). 463 
(A) Candidate regions were selected from the HMM brain states for a DCM analysis. (B) The Local 464 
Field Potential (LFP) convolution-based neural mass model was selected, modelling three 465 
subpopulations with five intrinsic connections. Extrinsic afferents are conceptualised as (a) forward 466 
connections arriving at the input spiny stellate population; (b) backward connections arriving at both the 467 
output pyramidal and interneuron populations. (c) Extrinsic (between-region) efferents project from the 468 
output pyramidal population to distant targets. (C-D) Results from MANCOVA post-hoc tests, showing 469 
significantly stronger effective connectivity from the left insula to the mPFC in CD individuals. (E) 470 
Multiple regression in CD group testing whether disease duration and behavioural symptoms predict 471 
the strength of left insula to mPFC connectivity. * denotes p < 0.05; *** denotes p < 0.0005. 472 
 473 

DISCUSSION 474 

In this study we assessed whether IBD - a model of chronic, relapsing, and remitting systemic 475 

inflammation - is associated with alterations in the spatiotemporal dynamics of spontaneous 476 

brain states. In particular, we directly compared CD and UC to delineate whether known 477 

distinctions in clinical, microbiome, and physical manifestations of gut inflammation also 478 

extends to variability in brain dynamics. Our findings extend upon previous work by showing 479 

a CD-specific brain signature implicating regions involved in cognitive-interoceptive appraisal 480 

mechanisms. The HMM assessment converges with these findings at a broader scale, 481 

demonstrating that IBD individuals exhibit alterations in the temporal properties of brain states 482 

supporting computations linking internal and external milieus. Together, our study supports a 483 
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description of IBD as a dysfunction of the gut-brain axis, moving away from clinical definitions 484 

that compartmentalise effects in the gut from the CNS.  485 

 486 

Our sub-network DCM dissected the relevant properties of the global brain state assessment. 487 

Specifically, this analysis provided a refined interpretation of global neuronal dynamics 488 

grounded in physiological and biophysical properties of the brain. These results showed a 489 

highly selective enhancement of connectivity from the insula to the mPFC in CD individuals 490 

(Fig. 4C). The insula is a key interoceptive hub, thought to be responsible for integrating 491 

information from the internal and external milieu to generate an awareness of the current 492 

emotional and internal state (68-70). During rest, information about the internal milieu likely 493 

emerges from gastrointestinal and cardiorespiratory stimuli before converging in the NTS and 494 

higher cortical regions, including the insula (24). Anatomically, the insula shares afferent and 495 

efferent connections with the mPFC (71) which together provide a contextual evaluation of 496 

emotional and affective states (72). The finding that CD individuals exhibit stronger bottom-up 497 

signalling from the insula to mPFC converges with a model describing altered interoceptive 498 

processing. As a function of persistent worry and rumination over anticipated visceral 499 

discomfort, many patients with GI disorders develop strong and rigid beliefs (i.e., hyperprecise 500 

priors) about the state of the body (73, 74). While the perception of abdominal pain in a healthy 501 

individual may not be considered alarming, the same signal may elicit hypervigilance in IBD. 502 

The perceived hypervigilance to visceral sensations has previously been cast within a 503 

predictive coding framework (75, 76). That is, the persistent inability to accurately detect 504 

afferent viscerosensory signals may produce a mismatch between top-down predicted states 505 

and the actual interoceptive input reaching the insula and prefrontal regions. This hypothesis 506 

is in line with a recent fMRI study showing altered interoceptive processing in CD to uncertainty 507 

about anticipated visceral discomfort, compared to controls (26). The tendency of an individual 508 

to overestimate the likelihood of a future aversive bodily state provides a conceptual bridge 509 

between altered interoception, and the development of clinical anxiety and depression (75, 510 

77). While a confluence of factors are likely to contribute to the high prevalence of anxiety and 511 

depression in IBD, models describing the persistence and reinforcement of negative biases 512 

towards self-relevant information is thought to be a key contributor. As such, psychological 513 

interventions such as mindfulness and meditation have been put forth as adjuvant treatment 514 

approaches in IBD to modulate the brain’s response to future aversive interoceptive stimuli 515 

(78, 79).  516 

 517 

Recent work has demonstrated that long-term exposure to recurrent systemic inflammation 518 

impacts brain and behavioural responses in a more permanent and pervasive way as opposed 519 

to a single inflammatory event (9, 10). Both CD and UC participants were either in clinical 520 
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remission or had a mild disease course, with no difference in cardiovascular risk compared to 521 

healthy participants. Our results strongly suggest that brain dynamic alterations do not 522 

represent the effects of acute inflammation or vascular events, but suggests a more 523 

permanent network reconfiguration. In our study, we showed that insula to mPFC hyper-524 

connectivity strengthens with disease duration in CD (Fig. 4E). The persistent and chronic 525 

effects from repeated exposure to inflammation are likely to result in a confluence of 526 

behavioural, biological, and neurophysiological changes, including alterations to interoceptive 527 

processing (e.g., heightened sensitivity to visceral inflammatory or nociceptive signals) (16, 528 

26), hyper-activation of the hypothalamic-pituitary-adrenal axis (80), functional changes to the 529 

gut-brain interface, or altered serotonergic and glutamatergic neurotransmission (1, 81). In 530 

this study, we did not observe a relationship between effective connectivity and behavioural 531 

symptoms. However, it is possible that altered insula-mPFC hyper-connectivity represents a 532 

vulnerability towards developing psychological symptoms. Our results provide a strong 533 

motivation to pursue longitudinal assessments - monitoring fluctuations in inflammatory 534 

activity, medication use, symptoms, surgical procedures, and behaviour – to identify the causal 535 

mechanisms contributing to altered network signatures in long-standing CD. 536 

 537 

Our results suggest that a diagnosis of CD is, in itself, a key factor in determining the risk of 538 

developing altered brain network signatures. Previous work suggests that UC and CD exhibit 539 

distinct disease processes (30, 31, 33). UC is described as a mucosal disease with an acute 540 

onset, while CD is considered a chronic and systemic disease with a long premorbid phase 541 

and transmural involvement (82). Systemic involvement in CD may also be reflected in the 542 

higher prevalence of extra-intestinal manifestations (83), with one study attributing low bone 543 

density to chronic and long-standing exposure to cytokines selectively in CD, but not in UC 544 

(82). Moreover, emerging work suggests that neurological effects related to IBD follows a 545 

differential pattern of involvement between sub-groups (84). That is, UC appears to exhibit 546 

extra-intestinal manifestations mostly in the peripheral nervous system, while CD is more 547 

closely associated with effects in the CNS (84). These observations are in line with a previous 548 

structural MRI (sMRI) and resting-state fMRI study comparing CD and UC sub-groups, 549 

showing that neural changes in CD may be more pronounced in patients exhibiting extra-550 

intestinal manifestations (36). However in contrast to our results, this study, as well as another 551 

using near infrared spectroscopy (35), found that UC exhibited more pronounced neural 552 

changes overall compared to CD. Longitudinal and adequately powered studies will be critical 553 

to disentangle the nuanced alterations between CD and UC reported in this current study, and 554 

in previous work. Our results also showed that diversity, taxonomic, and functional microbiota 555 

profiles in CD are significantly different from UC and HC, despite the absence of major 556 

inflammatory activity (Fig. 1). The failure to restore eubiosis in CD may indirectly serve as a 557 
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marker of chronicity, representing an epiphenomenon caused by repeated inflammation and 558 

extensive bowel damage, as well as a risk factor for recurrent relapse (32-34). Our 559 

observations underscore the broader significance of early diagnosis, and both rapid and 560 

effective control of gut and systemic inflammation in IBD patients. 561 

 562 

A number of caveats need to be considered when interpreting the results from this study. The 563 

cross-sectional design and modest sample size are recognised as limitations. For example, 564 

our microbiota assessments of alpha and beta diversity did not detect significant differences 565 

between UC and HC. While these results are consistent with results from previous longitudinal 566 

16S rRNA studies showing only diversity differences in CD compared to HC, but not in UC 567 

(33, 85), our relatively modest sample size may have resulted in a type II error (i.e., the non-568 

detection of smaller effects in UC individuals). Secondly, our cross-sectional design does not 569 

allow us to disentangle the relative contribution of long-standing GI symptoms versus chronic 570 

inflammation to observed brain-related effects. However, recent works comparing UC to a 571 

control group with irritable bowel syndrome (GI symptoms without underlying inflammation) 572 

provides further support that these changes are more specifically driven by chronic gut 573 

inflammation, rather than long-term GI symptoms (50, 86). IBD is a heterogeneous disease, 574 

and even within CD and UC there is large variability in terms of surgical procedures, 575 

medication use, genetics, and inflammatory history. However, the main focus of this study was 576 

to characterise the large-scale brain effects from chronic, recurrent and relapsing gut 577 

inflammation within an ecologically valid and naturalistic setting. For example, a key source of 578 

heterogeneity was medication use in IBD. Specifically, there was a higher proportion of UC 579 

individuals taking aminosalcylates, analgesics, and corticosteroid medication (Supplementary 580 

Table 1). However, the fact that the CD group appear to be less reliant on medications overall 581 

– specifically analgesics – highlights that they have well-controlled symptoms. Taken together, 582 

this further strengthens the interpretation of our CD results, supporting the idea that hyper-583 

connectivity from the insula to mPFC is more closely linked to disease chronicity, rather than 584 

acute inflammation or symptom flare-ups. Our study provides the initial impetus to pursue 585 

future targeted work, including a focus towards creating larger, longitudinal databases 586 

including multimodal neuroimaging, clinical, behavioural, and metagenomics data. While most 587 

IBD participants were in clinical remission, a number of participants were taking biologic 588 

agents, anti-inflammatory, or immunomodulatory medication. This suggests that some 589 

participants had experienced an acute inflammatory event at some point prior to the study. As 590 

we do not have longitudinal data about previous disease activity, we cannot directly assess 591 

their contribution to observed brain alterations. Unlike DCM, the TDE-HMM is a statistical 592 

method that is not grounded on biophysical models of neural activity. When inferring the HMM 593 

we recognize, like previous authors (45), that there is no biological ‘ground truth’ with regards 594 
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to the number of brain states selected. Instead, varying the number of states simply offers 595 

different resolutions (spatiotemporal detail) to study brain dynamics. Selecting six states 596 

represented a necessary trade-off, allowing us to examine brain states that overlap with 597 

established fMRI resting state maps but in the process, limiting our ability to detect more subtle 598 

dynamics. Our HMM brain states were inferred from resting-state data. Future investigations 599 

could extend this work by assessing how external task-related demands modulate 600 

spatiotemporal dynamics in DMN and visual networks in CD and UC.  601 

 602 

There is converging evidence showing the effects of acute inflammation on brain activity and 603 

behaviour (3, 7, 8). However, there remains a large gap in understanding how chronic and 604 

repeated exposure to systemic inflammation engenders change in spontaneous whole-brain 605 

dynamics. Using an ecologically valid model of peripheral inflammation, we demonstrate that 606 

CD individuals exhibit alterations in brain states and patterns of effective connectivity 607 

supporting computations within internal, interoceptive mental states. Our results provide 608 

motivation to pursue longitudinal assessments evaluating the impact of mood and affective 609 

disorders on the natural history of IBD, and vice versa. Understanding the extent and nature 610 

of gut-brain dysfunctions in IBD will help to optimise the monitoring and management of 611 

behavioural symptoms and critically, to prevent a gut disease from progressing to a comorbid 612 

psychiatric or neurodegenerative illness.  613 
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