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ABSTRACT

Gut inflammation is thought to modify brain activity and behaviour via modulation of the gut-
brain axis. However, how relapsing and remitting exposure to peripheral inflammation over
the natural history of inflammatory bowel disease (IBD) contributes to altered brain dynamics
is poorly understood. Here, we used electroencephalography (EEG) to characterise changes
in spontaneous spatiotemporal brain states in Crohn’s Disease (CD) (n = 40) and Ulcerative
Colitis (UC) (n = 30), compared to healthy individuals (n = 28). We first provide evidence of a
significantly perturbed and heterogeneous microbial profile in CD, consistent with previous
work showing enduring and long-standing dysbiosis in clinical remission. Results from our
brain state assessment show that CD and UC exhibit alterations in the temporal properties of
states implicating default-mode network, parietal, and visual regions, reflecting a shift in the
predominance from externally to internally-oriented attentional modes. We investigated these
dynamics at a finer sub-network resolution, showing a CD-specific and highly selective
enhancement of connectivity between the insula and mPFC, regions implicated in cognitive-
interoceptive appraisal mechanisms. Alongside overall higher anxiety scores in CD, we also
provide preliminary support to suggest that the strength of chronic interoceptive hyper-
signalling in the brain co-occurs with disease duration. Together, our results demonstrate that
a long-standing diagnosis of CD is, in itself, a key factor in determining the risk of developing

altered brain network signatures.
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INTRODUCTION

Immune dysfunction and accompanying systemic inflammation is thought to play a key role
in the development of mood and affective symptoms (1, 2). As part of this mechanism, the
presence of pro-inflammatory cytokines is communicated to the central nervous system (CNS)
via peripheral activation of receptors expressed on vagal afferents, or the production of
molecular intermediates at the blood-brain interface (c.f., circumventricular organs and the
choroid plexus) (3). The brain recognises inflammation as a molecular signal of sickness,
inducing changes at the neurophysiological and neurotransmitter level within brainstem, limbic
and prefrontal regions (3, 4). Together, these neural responses generate a repertoire of
“sickness behaviours” that includes social avoidance, anhedonia, fatigue, and depressed
mood (1, 5, 6). The brain-cytokine response has been demonstrated in healthy adults
administered lipopolysaccharides (LPS) (7) or typhoid vaccination (3, 8), who show transient
alterations to cognitive-affective regions (involving the thalamus, amygdala, insula, and
anterior cingulate), and a symptom profile that includes anxiety, poor mood, and impaired
memory. These effects, however, embody the response of the resilient and adaptive CNS to
an acute perturbation. Recent work investigating repeated exposure to immunogenic
substances over an extended timeframe suggests more pervasive and enduring brain network

abnormalities in chronic inflammation (9, 10).

Inflammatory bowel disease (IBD), a chronic, relapsing, and remitting intestinal disease,
provides a unique and ecologically valid model to study the effects of inflammation chronicity
on the brain (11). While IBD can occur at any age, disease incidence peaks in early adulthood
(between 15 and 30 years) such that individuals experience a number of acute and recurrent
inflammatory events that can endure for decades (12). As inflammation emerges within the
gastrointestinal (Gl) tract, the disease is well-placed to exert influence over the gut-brain axis
(13). That is, the physical proximity of inflammation to the intestinal epithelium - a putative gut-
brain interface - allows neural-related changes to be conceptualised as dysfunctions to vagal,
immune, microbial, or endocrine signalling pathways. Alongside the mechanisms by which
inflammation reaches and impacts the brain, an important research endeavour is focused on
identifying specific brain regions affected by chronic inflammation, and how this can manifest

behaviourally.

Neuroimaging work has provided initial insights into altered functional brain connectivity
underpinning IBD pathophysiology, and suggests that a re-organisation of large-scale brain
networks, rather than localised deficits, more clearly recapitulates disease-related changes

(14-18). Specifically, there is a growing consensus that individuals with IBD exhibit alterations
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78  to default-mode network (DMN) activity (15, 18). The DMN comprises a set of brain regions
79  that exhibit coherent neural activity during rest, and deactivation during externally oriented
80  cognitive tasks (19). Alongside its involvement in social, cognitive and affective processes, the
81 network plays a critical role in endogenous thought, such as rumination, and self-referential
82  processing (20, 21). Abnormal patterns of activation and deactivation within the DMN has
83  been linked to the development of neuropsychiatric disorders, including depression (22) and
84  anxiety (23). In IBD, functional connectivity changes have been reported between key regions
85 of the DMN, including the posterior cingulate cortex, medial prefrontal cortex, and precuneus
86 regions (15, 18). Aberrant connectivity between nodes of the salience network (SN) (14, 17),
87 including the anterior cingulate and insula cortex, further supports the possibility that IBD
88 individuals experience altered interoceptive processing of visceral sensations (e.g.,
89  nociceptive, inflammatory, or microbial-related stimuli) (24). Given the relationship between
90 the DMN and SN in anxiety and depression, the reported alterations in patients with IBD may
91 be of substantial clinical importance. Critically, these results are reported in quiescent IBD (15,
92 16, 25-27), further supporting the argument that acute inflammation alone cannot account for
93 the observed neural and behavioural impairments (9, 27, 28).
94
95 Among the two main IBD diagnoses, brain and behavioural abnormalities have more
96 consistently been reported in Crohn’s Disease (CD) as opposed to Ulcerative Colitis (UC) (14,
97 15, 17, 18, 25, 26, 29). Despite overlapping symptoms, CD is thought to exhibit a more
98 pervasive and severe disease expression attributed in part to the extent of affected anatomical
99 sites, transmural involvement, and genetic and immune factors involved (30, 31). Moreover,
100 while the microbiome in UC cannot be differentiated from controls following successful
101  treatment, dysbiosis (imbalance) in CD persists long after remission and responds poorly to
102  faecal microbiota transplantation (32-34). Despite well-defined heterogeneity between UC and
103  CD - with the latter thought to express a more chronic and systemic disease profile — only a
104  limited number of studies (35, 36) have directly compared IBD sub-groups in the context of
105  whole-brain signatures.
106
107 In this study, we investigated whether CD and UC were associated with alterations to
108  spontaneous brain state dynamics. To do this, we fit a Hidden Markov Model (HMM) to resting-
109  state electroencephalography (EEG) data which describes brain dynamics as a sequence of
110 transient and distinct patterns of power and phase-coupling within and between brain regions,
111 respectively. We further explored these brain dynamics at a sub-network resolution, showing
112 differential patterns of effective connectivity that are specific and selective to CD. Our results

113  converge on the suggestion that long-term exposure to chronic gut inflammation confers a

Brain signatures of chronic gut inflammation Page 4 of 25


https://doi.org/10.1101/2022.10.22.513335
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.22.513335; this version posted October 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

114  higher risk of altered brain and behavioural signatures, with the extent of these effects related
115  to disease duration.

116

117 METHODS

118  Participants

119 The study was approved by the Human Research Ethics Committee of QIMR Berghofer
120  Medical Research Institute (P3436). Written informed consent was obtained for all participants
121  in accordance with the Declaration of Helsinki. Twenty-eight healthy controls (34 + 11 years;
122 16 female), 40 CD (43 + 13 years; 20 female), and 30 UC (42 + 11 years; 21 female)
123 participants were recruited from the Brisbane (Australia) metropolitan area by
124  gastroenterologist (GRS) and accredited practising dietitian (CVH) (Supplementary Table 1).
125  Exclusion criteria are presented in Supplementary Note 1. Study requirements involved (1)
126  general health and clinical questionnaires; (II) neurocognitive assessments; (Ill) a resting state
127  EEG recording; and (IV) a stool sample collected at home.

128

129  General health and clinical questionnaires

130 The Brisbane Health Area Survey was administered to all participants and included questions
131  about (l) current and previous medical history; (II) current and previous medical history of close
132 family members; (lll) medications taken in the previous 12 months; (IV) smoking, alcohol
133  intake, and weight history; and (V) ancestry. The Traditional Mediterranean Diet (TMD)
134  adherence questionnaire was administered by an APD (CVH). Prior to resting-state EEG
135  recordings, blood pressure and heart rate were recorded. For individuals with CD and UC, an
136  additional clinical questionnaire about IBD was administered, including detailed questions
137  about (I) the nature and timing of symptoms experienced prior to a formal IBD diagnosis; (II)
138  current and previous medications used to treat IBD; (lll) current and previous history of
139  procedures or surgeries performed in relation to their IBD; (V) family history of IBD; and (V)
140 comorbid health conditions associated with IBD, including extra-intestinal manifestations.
141  Where available, the patient’s gastroenterologist provided clinical indicators of disease activity
142 for CD (Harvey-Bradshaw Index, HBI) and UC (Simple Clinical Colitis Activity Index, SCCAI)
143  patients, in a timeframe two weeks prior to, or two weeks post study participation.

144

145  Neurocognitive assessments

146  Neurocognitive assessments were performed by a clinical psychologist and accredited
147  practicing dietitian, and were used to rule out previous or current history of a neurological or
148  psychiatricillness (excluding anxiety-related disorders or depression). Assessments of anxiety

149 and depression included the Hamilton and Montgomery Anxiety (HAM-A), Montgomery-
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150  Asberg Depression Rating Scale (MADRS), Hospital Anxiety and Depression Scale (HADS),
151  Depression Anxiety and Stress Scale (42-item) (DASS), and Generalized Anxiety Disorder (7-
152 item) (GAD-7).

153

154  Sample collection and processing

155  Participants were provided with a stool nucleic acid collection and preservation tube (Norgen
156  Biotek Corp., Thorold, Ontario, Canada) and were instructed to collect the sample within a
157  window of 48 hours before/after the study session. Each stool sample was labelled and stored
158 in a-80°C freezer until sample processing. Tissue homogenization was performed using tubes
159  containing 1.4mm ceramic beads (Precellys Lysing Kit). DNA was extracted from samples and
160  quantitated using Nanodrop 2000 (Thermo Scientific). PCR amplification was performed on
161  the V3-V4 hypervariable region of the 16S rRNA gene, and sequenced on a MiSeq sequencer
162  (Australian Genome Research Facility, Melbourne).

163

164  16S data processing and analysis

165 Demultiplexed fastq files were processed using default settings within QIIME2 2020.2
166  (https://qiime2.org) (37). Amplicon Sequence Variants (ASVs) were generated by denoising
167  with DADAZ2 (38). For taxonomic structure analysis, taxonomy was assigned to ASVs using a
168  pre-trained Naive Bayes classifier and the q2-feature-classifier plugin against the Greengenes
169 13_8 99% 16S rRNA gene sequencing database. Samples were rarefied to a read depth of
170 2200 for diversity analyses. ANCOVA was used to test for group differences in Shannon
171  diversity and Chao1 measures accounting for the effects of age, sex, and body mass index
172 (BMI). Beta-diversity, assessed using unweighted UniFrac distance (39), was used to
173  compare groups, controlling for age, sex, and BMI using giime2 plugins PERMANOVA and
174  adonis. The metagenomic functional contribution of each sample was predicted using the
175 computational modelling approach, Phylogenetic Investigation of Communities by
176  Reconstruction of Unobserved States 2.0 (PICRUSt2 v2.2.0-b) (40), using the MetaCyc
177  Metabolic Pathway Database (41). The multivariate statistical framework, MaAsLin2 (42),
178 implemented in R, was used to assess the relationship between group membership with (i)
179  microbial abundance (collapsed at genus level) and (ii) functional pathway abundance.
180  Covariates, including sex, age and BMI, were included as fixed effects. Features were
181 included in if they had at least 10% non-zero values (across samples) and a minimum relative
182  abundance threshold of 0.0001, both validated parameter settings in MaAsLin2. Significant
183  features were corrected for multiple comparisons using the Benjamini-Hochberg FDR
184  procedure, with corrected values of p < 0.05 and g < 0.25 considered statistically significant.
185

186  Resting-state EEG recordings
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187  Participants were fitted with a 64-channel EEG cap (Ant Neuro — EEGgo sports system),
188  configured to the 10-20 international system. Signals were processed online using EEGgo
189  with a sampling frequency of 2000 Hz. Scalp impedance was reduced to a maximum of 20 kQ
190 in all electrodes with the application of conductive gel. EEG activity was processed online
191  using eego software. All electrodes were referenced to the CPz electrode. Prior to recordings,
192  participants were reminded to keep their eyes open and fixate on a white crosshair against a
193  black background. Participants were encouraged to breathe and blink normally, and relax
194 head and neck muscles to minimize signal artifacts. Resting-state signals were recorded
195  continuously for 4 minutes.

196

197 EEG pre-processing

198  EEG data was pre-processed offline using EEGlab software (v2019.1) in MATLAB (vR2018b).
199  The data were downsampled to 250 Hz. EEG signals were visually inspected, and excessively
200 noisy channels were removed before signals were re-referenced to the common average
201  reference (excluding EOG, M1 and M2 electrodes). Signals were band-pass filtered into a
202  frequency band of 1-45 Hz, and epoched into 5-second segments. Epochs were manually
203 inspected and removed if they contained large artefacts that would otherwise not be detected
204 by independent components analysis (ICA) (e.g., strong muscle artifacts). Artifacts that were
205 characteristic of cardiac, ocular or minor muscular movements were subsequently removed
206  using ICA (InfoMax) (43). As the HMM is sensitive to noise, a fairly stringent approach was
207  adopted to remove potential sources of signal artifact. This approach represents a necessary
208 trade-off to ensure that the HMM is inferred on neurobiologically meaningful data and not
209  spurious noise sources (44). As such, if more than 20 ICs were marked as artefactual, the
210 original time series prior to ICA was re-inspected for additional sources of artefact. If more
211 than 50% of epochs were removed, or more than 20 ICs were excluded after the second ICA
212 run, recordings were excluded from the analysis. Recordings from 11 subjects (2 HC, 3 CD,
213 and 6 UC) were not included in the HMM. Subsequent processing and analysis of EEG data
214  were performed using toolboxes and software packages found within the Oxford Centre for
215  Human Brain Activity (OHBA) Software Library (OSL) and SPM12. For source reconstruction,
216  the forward model was generated using a symmetric boundary element method (BEM) and
217  the inverse model was performed using a Linearly Constrained Minimum Variance (LCMV)
218  vector beamformer. A 44-region weighted parcellation of the entire cortex was adapted from
219  previous work (45-47). Thirty-eight parcels were constructed from an ICA of fMRI data from
220 the Human Connectome Project, while the remaining six parcels corresponded to the anterior
221  and posterior precuneus, bilateral intraparietal sulci, and bilateral insula cortex. The inclusion
222 of the insula cortex - specific to our analyses - was based on previous work supporting the

223 contribution of this region to interoceptive processing in chronic and inflammatory conditions,
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224  including IBD (15, 16, 48-50). Time-courses were extracted by taking the first principal
225 component, with voxel contributions weighted by the parcellation. Symmetric multivariate
226  spatial leakage (volume conduction) correction was applied (46).

227

228 Time-delay embedded (TDE)-HMM

229 We adopted the TDE-HMM implemented within the HMM-MAR MATLAB toolbox
230  (https://github.com/OHBA-analysissfHMM-MAR) (44, 45). We used stochastic variational
231  Bayes (45) to infer the TDE-HMM parameterized with 6 states and 41 time lags (corresponding
232 to a window length of 160ms) (Supplementary Fig. 1) using 500 training cycles and
233 initialization parameters according to previously established procedures (45, 51-53). Prior to
234  HMM inference, we concatenated time series across subjects from all three groups, producing
235 a full dataset to obtain a common set of brain states across all participants. This approach
236  facilitated a direct comparison of spatial and temporal statistics across groups (53, 54).
237  Supplementary Note 2 provides a full description of the TDE-HMM and Supplementary Fig. 2
238  provides an overview of the analysis pipeline.

239

240  From the HMM we calculated the (subject-specific) temporal properties of each state using
241  three parameters: (I) fractional occupancy, the proportion of total time spent in a state (K x 1);
242 (ll) interval time, the length of time between consecutive visits to the same state (K x 1); and
243 (Ill) dwell time, the average length of time spent in a state before transitioning to another state
244 (K x 1). We also computed subject-specific transition probability matrices representing the
245  probabilities of transitioning from one state, to every other state (K x K). ANCOVA was used
246  to test for significant differences in fractional occupancy, dwell times, and interval times
247  between groups, controlling for the effects of age and sex. Permutation testing was used to
248  reject the null hypothesis of equality between groups. As implemented in previous work (54),
249  for each state we generated 5,000 permutations by shuffling group labels among participants.
250  We then repeated ANCOVAs on the permuted values, therefore generating an empirical null
251  distribution of F-statistics for each state and temporal measure (fractional occupancy, dwell
252  times, and interval times). We ascribed statistical significance (p < 0.05) to the temporal values
253 by assessing the proportion of null statistics that were greater than or equal to the value of the
254  statistic computed for the non-permuted data. For significant ANCOVAs, Tukey’s HSD post-
255  hoc paired t-tests were used to identify where differences were expressed between groups.
256  The Network-based Statistic (NBS) (55) was used to perform inference on the transition
257  probability matrices between the three groups, again including age and sex as covariates. We
258 used an F-test with the primary statistic threshold set to 3.0, and performed a total of 5,000
259  permutations (family-wise error rate controlled at 5%).

260
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261 Candidate Cortical Regions

262 Using state-specific coherence values averaged across subjects, we calculated the
263  eigenvector centrality (EC) measure for each region. EC calculates the centrality (degree) of
264  each node and weights this according to the EC of the nodes that it connects to (56). EC was
265  performed using the eigenvector_centrality _und function within the Brain Connectivity Toolbox
266  (57). The top 10% of EC scores taken from a single hemisphere were used to inform regions
267  fora DCM.

268

269 Dynamic Causal Modelling

270  We used dynamic causal modelling (DCM) for cross-spectral densities (CSD) to selectively
271  isolate those differences observed in the networks above (58, 59). Specifically, we modelled
272 the extrinsic (between-region) effective connectivity strengths between candidate regions. We
273  adopted the convolution based local field potential (LFP) neural mass model which describes
274  source activity as the result of interactions between populations of inhibitory interneurons,
275  excitatory spiny stellate cells, and excitatory pyramidal cells (60). The data to which the DCM
276  was fit comprised the processed time series. For each subject, we specified and estimated a
277  single model with a fully-connected network of 7 regions. To obtain the most robust estimates,
278  we then re-estimated the DCM using an updated prior parameter space using the posteriors
279  from an exemplar subject (Supplementary Fig. 3). For each subject, we selected the iteration
280  with the best fit (as assessed by free energy). One-way MANCOVA (Wilks’ Lambda) was used
281  to assess group differences in the forward and backward connectivity parameters. Univariate
282  tests were corrected for multiple comparisons (prwe < 0.05, Bonferroni corrected). A multiple
283  regression model was used to assess the contributions of behavioural (non-clinical) variables
284  to effective connectivity strengths.

285

286 RESULTS

287  Resting-state EEG recordings and 16S rRNA profiles were analysed for 40 CD, 30 UC, and
288 28 healthy participants. Demographic, behavioural, and clinical characteristics are presented
289  in Supplementary Table 1. IBD and healthy control (HC) participants were matched in terms
290 of general demographics with the exception of age, and the Hamilton and Montgomery Anxiety
291  (HAM-A) scores (Supplementary Table 1).

292

293  Establishing distinct microbiota signatures in CD and UC

294  We first used 16S rRNA sequencing to compare microbiota profiles between the three groups.
295  Our results show a significant difference in beta (unweighted UniFrac) and alpha (Shannon

296  effective species and Chao1 index) diversity measures in CD, compared to HC and UC (Fig.
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297  1A-B). While not reaching statistical significance, UC showed a trend towards lower alpha
298  diversity and distinct beta diversity profiles compared to HC. Multivariate analyses also
299 revealed a number of significant taxonomic and functional differences in CD and to a lesser
300 extent, in UC (Fig. 1C-D, enlarged visualisation shown in Supplementary Fig. 4). The
301 microbiota results converge in supporting the existence of a perturbed and heterogeneous
302  microbial profile in CD (33). It is important to note that the small subset of CD participants
303  exhibiting mild (n = 3) or moderate (n = 1, later excluded for poor quality EEG data) disease
304 activity were not outliers in terms of their diversity scores (i.e., were distributed within the
305 normal range for CD). Together, the clinical and microbiota results demonstrate clear
306 distinctions between CD and UC sub-groups, providing a strong motivation to perform brain
307 assessments in each group independently. Full statistical results for this assessment can be

308 found in Supplementary Note 3.
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311  Figure 1. Comparison of microbiota results between Crohn’s Disease (CD), Ulcerative Colitis
312 (UC), and healthy control individuals (HC). Results from (A) beta (unweighted Unifrac) and (B) alpha
313  diversity (Shannon effective species and Chao1 index) measures show significant differences between
314 CD and UC, and CD and HC, assessed using one-way ANCOVAs. Multivariate analyses performed
315  using MaAslin2 revealed significant differences in (C) taxonomic abundance (genus resolution) and (D)
316 functional pathways in CD and to a lesser extent, in UC, when compared to HC. Enlarged figures for
317 (C) and (D) are presented in Supplementary Fig. 4. All microbiota assessments were controlled for the
318 effects of age, sex, and BMI. * denotes p < 0.05; *** denotes p < 0.0005.
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319

320 Brain states expressed during resting-state EEG

321  We estimated brain states at rest using the TDE-HMM (61) (Supplementary Note 2). The HMM
322  posits that a time series can be decomposed into a number of discrete and recurrent hidden
323  brain states, comprising several regions that co-activate together, such that at each time point,
324  only one state is active. Results showed that resting-state EEG data was best described by
325  six short-lived and recurring brain states, each with unique spatial, spectral, and temporal
326  profiles (Fig. 2A-F; Supplementary Fig. 5 and Supplementary Note 2). Our state selection is
327  consistent with previous studies modelling M/EEG dynamics using the TDE-HMM, ranging
328  between six and 16 states (44, 45, 62, 63). The spatial maps of power (i.e., the amount of
329  activity) and coherence networks (i.e., the level of synchronisation or coupling between two
330 regions) were averaged across a wideband frequency range (1-30 Hz). Power maps
331 correspond to the mean power within each region and state (z-scored) and coherence
332  networks show functional connections that are stronger (p < 0.01) compared to all other
333  possible between-region connections for that state. Our spatial maps share characteristics
334  with previous M/EEG HMM studies, including a bilateral pattern of activity for some, but not all
335 states (44, 45), and strong increases in power often accompanying increases in coherence
336 (45).

337

338 Brain states correspond to resting-state association maps

339  We quantified the functional overlap between the HMM states with established resting-state
340 association networks from the meta-analysis database, Neurosynth (64). Specifically, we
341 assessed the spatial overlap (voxel-wise correlation) between our power maps (z-scored,
342  unthresholded) with canonical maps of prefrontal, parietal, sensorimotor, visual, DMN, and
343 temporal fMRI association maps (Supplementary Fig. 6). For ease of interpretation, states
344  were named according to the spatial patterns of activation to which they were most strongly
345  correlated. States 1 (prefrontal) and 2 (integrated prefrontal) were defined by higher and lower
346 power in prefrontal and visual regions respectively, with more extensive prefrontal coherence
347 in State 2. States 3 (right sensorimotor-parietal) and 5 (left sensorimotor) were characterised
348 by higher power in right and left sensorimotor regions, respectively, with coherence patterns
349  closely following power in State 3. State 4 (visual) was characterised by high power and
350 coherence in visual regions, while State 6 (DMN-parietal) reflected power and coherence in
351 regions associated with DMN and parietal regions. Each state also exhibits frequency-specific
352  differences in power and coherence, which can be visualized as an average across regions
353  over the full spectrum (1-30 Hz) (Supplementary Fig. 5). There is a strong distinction between
354  the DMN-parietal, characterised by power in the slower frequencies (delta/theta) and the visual

355 state, characterised by stronger power in the alpha frequency. All states exhibit higher
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356  coherence within the alpha frequency band, with the strongest occurring in right sensorimotor-

357  parietal, visual, and DMN-parietal states.

358
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360 Figure 2. Brain states identified using Hidden Markov Modelling represent networks of power
361 and spectral coherence. (A) Left panel shows wideband (1-30 Hz) power maps (top) and coherence
362 networks (bottom) displayed for each state. Power maps are relative to the state average (z-scored)
363  where blue colours reflect power that is lower than the state average and red/yellow colours reflect
364 power that is higher than the average within that state. Coherence networks show statistically significant
365 (p<0.01) connections that stand out from a background level of connectivity within that state. Nodes
366  are coloured based on which fMRI association map/s they anatomically correspond to, and the size of
367 each node reflects the centrality (degree) score. (A.I-lll) Comparison of temporal statistics between
368  healthy controls (HC), Crohn’s Disease (CD) and Ulcerative Colitis (UC) individuals for each state, after
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369 adjusting for age and sex. Fractional occupancy (%) represents the proportion of overall time spent in
370 a state; interval time (ms) represents the length of time between consecutive visits to the same state;
371  and dwell time (ms) is the length of each state visit. Permutation tests were performed to assess the
372 null hypothesis of equality in temporal measures between groups and Tukey’s HSD post-hoc tests were
373 used to identify where significant pair-wise differences were expressed. * denotes prwe < 0.05; **
374 denotes prwe < 0.005.

375

376  Temporal brain state dynamics are differentially expressed in IBD

377 At each time point in the time series, the HMM estimates the probability that each brain state
378 s active, referred to as the state time course. The state time courses estimated from the HMM
379  were used to investigate between-group differences in three temporal statistics: (a) fractional
380 occupancy, the proportion of overall time spent in a state; (b) dwell time, the length of each
381 state visit; and (c) interval time, the length of time between consecutive visits to the same
382  state. One-way ANCOVAs identified a significant main effect of group on fractional occupancy
383  inthe visual (Fps2) = 4.31, p = 0.018) and DMN-parietal (F2 s2) = 7.40, p = 0.002) states, and
384 a main effect of group on interval times in the DMN-parietal (F s2) = 4.41, p = 0.001) (Fig.
385 2D&F). Relative to HC, individuals with CD resided for less time overall in the visual state
386  (prwe=0.04) (Fig. 2D-l), but spent a longer time overall (prwe = 0.002) and had shorter interval
387 times between consecutive visits to the DMN-parietal state compared to UC (prwe = 0.01) (Fig.
388  2D-I-ll). While HC spent more time in the visual state compared to UC, and less time in the
389  DMN-parietal state compared to CD, these effects did not survive Bonferroni correction (UC,
390  prwe = 0.08; CD, prwe = 0.06).

391

392  We next used the probabilities associated with the state time courses to identify significant
393  between-group differences in the transitions between brain states (Network-based Statistic
394  (55), prwe < 0.05) (Fig. 3). Bold, coloured lines indicate transitions included in the significant
395 NBS component while thin black lines show the top 20% most probable state transitions for
396  each group (Fig. 3B, D & F). Firstly, individuals with UC were more likely to transition to the
397  prefrontal state compared to HC and CD (Fig. 3E-F). Secondly, individuals with CD and UC
398  were more likely to transition from the left sensorimotor to the integrated prefrontal state, while
399 theinverse was true for HC. Finally, HC individuals were more likely to transition to the visual
400  state, specifically from the DMN-parietal or right sensorimotor-parietal states.

401

402  Taken together, our results suggest that: (a) CD and UC individuals spent less time in, and
403 are less likely to transition to the visual state; (b) individuals with UC are more likely to
404  transition to, and may spend more time in the prefrontal state (although not reaching
405  significance); and (c) individuals with CD reside for longer in, and spent less time between
406  consecutive visits to the DMN-parietal state.

407
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409  Figure 3. Representation of the transition probabilities between the six brain states in the three
410 groups. (A) We computed subject-specific transition probability matrices representing the likelihood of
411 transitioning from one state, to every other state (K x K). Diagonal matrix elements represent self-
412  transitions (i.e., the probability of remaining in that state) and were set to zero to aid visualisation. (B)
413  Directed transition diagram showing the top 20% most probable state transitions, where each arrow
414 represents a transition. The thin black lines do not represent significant between-group differences, but
415 represent transitions that were more probable on average for that group. Bold, coloured lines indicate
416  asignificantly higher probability of this transition in that group. The network-based statistics (NBS) was
417  used to identify significant between-group differences in state transitions (prwe < 0.05). (C-F) Same as
418 (A) and (B) but for Crohn’s Disease and Ulcerative Colitis. Prefrontal (Pre), integrated prefrontal (IntPre),
419  right sensorimotor-parietal (RSen-Par), visual (Vis), left sensorimotor (LSen), and DMN-parietal (DMN-
420  Par).

421

422  Altered connectivity patterns between key brain regions differentiating groups

423  To identify the key drivers of these differences, we performed a refined sub-network analysis
424  on communication between specific nodes within the visual and DMN-parietal states. We
425 identified seven candidate regions exhibiting higher influence within each state’s spatial profile
426  (See Candidate Regions in Materials and Methods). The posterior precuneus (Pprec), medial
427  prefrontal cortex (mPFC) and left inferior parietal lobule (IPL) were identified within the DMN-
428  parietal state, while the inferior occipital gyrus (IOG), mid occipital gyrus (MOG), and left insula
429  (insula) were identified within the visual state (Fig. 4A; Supplementary Table 2). The posterior
430 cingulate (PCC) had strong involvement within both states, supporting previous work
431  recognising its “flexible” participation across a number of dynamic networks and associated
432  cognitive processes (65, 66). Using the time series from each candidate region, we calculated

433  the strength of directed (effective) connectivity, using dynamic causal modelling (DCM) (Fig.
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434  4B) (See DCM in Methods and Supplementary Fig. 2 for details). Taking the expected values
435 of the estimated connectivity parameters from all subjects, we identified a significant
436  multivariate association between backward connectivity parameters and group membership
437  (Wilks’ Lambda = 0.16, Fs4,s2) = 1.52, prwe = 0.03). Univariate F tests identified a significant
438  difference between groups in the connectivity from the left insula to mPFC (F284) = 8.57, pruwe
439 = 0.017) (Fig. 4C-D). Specifically, individuals with CD showed significantly stronger
440  connectivity from the left insula to mPFC compared to HC (p = 3.63 x 10*) and UC (p = 0.03).
441  There were no significant differences between UC and HC for any connections.

442

443  Insula to mPFC connectivity linked to disease duration in CD

444  Our results demonstrated a highly selective enhancement of connectivity between the left
445  insula to mPFC in the CD group. With the exception of three individuals with mild disease
446  activity, all CD individuals were in clinical remission. Thus, these findings provide support to
447  our hypothesis that between-group connectivity differences may be driven by chronic, rather
448  than acute inflammation. Our final aim was to specifically test whether inter-individual
449  variability in the strength of insula to mPFC connectivity in CD was linked to long-standing
450 disease features, thus testing for a more pronounced relationship of how CD chronicity
451  (disease duration) links to depression, anxiety, and stress scores (DASS-42). The DASS-42
452 is based on a dimensional, rather than categorical, assessment of psychological symptoms,
453  and provides higher inter-subject variability in sub-clinical populations. While the HAM-A and
454  MADRS, and HADS-A and HADS-D, tend to produce anxiety and depression scores that are
455  highly correlated, the DASS-42 is able to more clearly distinguish between anxiety and
456  depression (67). Critical to our study, the anxiety scale assesses key components of
457  interoceptive processing, including autonomic arousal, situational anxiety, and the subjective
458 experience of anxious affect. While results did not show an overall multivariate relationship,
459 we did find a significant independent regression coefficient linking longer CD duration
460  (adjusted for participant age) with stronger insula to mPFC connectivity (8 = 0.01, f34) = 2.19,
461 p =0.036) (Fig. 4E).
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463  Figure 4. Targeted analyses of effective brain connectivity (Dynamic Causal Modelling, DCM).
464  (A) Candidate regions were selected from the HMM brain states for a DCM analysis. (B) The Local
465  Field Potential (LFP) convolution-based neural mass model was selected, modelling three
466  subpopulations with five intrinsic connections. Extrinsic afferents are conceptualised as (a) forward
467 connections arriving at the input spiny stellate population; (b) backward connections arriving at both the
468  output pyramidal and interneuron populations. (c) Extrinsic (between-region) efferents project from the
469  output pyramidal population to distant targets. (C-D) Results from MANCOVA post-hoc tests, showing
470  significantly stronger effective connectivity from the left insula to the mPFC in CD individuals. (E)
471  Multiple regression in CD group testing whether disease duration and behavioural symptoms predict
472  the strength of left insula to mPFC connectivity. * denotes p < 0.05; *** denotes p < 0.0005.

473

474  DISCUSSION

475  In this study we assessed whether IBD - a model of chronic, relapsing, and remitting systemic
476  inflammation - is associated with alterations in the spatiotemporal dynamics of spontaneous
477  brain states. In particular, we directly compared CD and UC to delineate whether known
478  distinctions in clinical, microbiome, and physical manifestations of gut inflammation also
479  extends to variability in brain dynamics. Our findings extend upon previous work by showing
480 a CD-specific brain signature implicating regions involved in cognitive-interoceptive appraisal
481 mechanisms. The HMM assessment converges with these findings at a broader scale,
482  demonstrating that IBD individuals exhibit alterations in the temporal properties of brain states

483  supporting computations linking internal and external milieus. Together, our study supports a
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484  description of IBD as a dysfunction of the gut-brain axis, moving away from clinical definitions
485  that compartmentalise effects in the gut from the CNS.

486

487  Our sub-network DCM dissected the relevant properties of the global brain state assessment.
488  Specifically, this analysis provided a refined interpretation of global neuronal dynamics
489  grounded in physiological and biophysical properties of the brain. These results showed a
490  highly selective enhancement of connectivity from the insula to the mPFC in CD individuals
491  (Fig. 4C). The insula is a key interoceptive hub, thought to be responsible for integrating
492  information from the internal and external milieu to generate an awareness of the current
493  emotional and internal state (68-70). During rest, information about the internal milieu likely
494  emerges from gastrointestinal and cardiorespiratory stimuli before converging in the NTS and
495  higher cortical regions, including the insula (24). Anatomically, the insula shares afferent and
496  efferent connections with the mPFC (71) which together provide a contextual evaluation of
497  emotional and affective states (72). The finding that CD individuals exhibit stronger bottom-up
498  signalling from the insula to mPFC converges with a model describing altered interoceptive
499  processing. As a function of persistent worry and rumination over anticipated visceral
500 discomfort, many patients with Gl disorders develop strong and rigid beliefs (i.e., hyperprecise
501 priors) about the state of the body (73, 74). While the perception of abdominal pain in a healthy
502 individual may not be considered alarming, the same signal may elicit hypervigilance in IBD.
503 The perceived hypervigilance to visceral sensations has previously been cast within a
504 predictive coding framework (75, 76). That is, the persistent inability to accurately detect
505  afferent viscerosensory signals may produce a mismatch between top-down predicted states
506  and the actual interoceptive input reaching the insula and prefrontal regions. This hypothesis
507 isinline with a recent fMRI study showing altered interoceptive processing in CD to uncertainty
508 about anticipated visceral discomfort, compared to controls (26). The tendency of an individual
509 to overestimate the likelihood of a future aversive bodily state provides a conceptual bridge
510 between altered interoception, and the development of clinical anxiety and depression (75,
511  77). While a confluence of factors are likely to contribute to the high prevalence of anxiety and
512  depression in IBD, models describing the persistence and reinforcement of negative biases
513 towards self-relevant information is thought to be a key contributor. As such, psychological
514 interventions such as mindfulness and meditation have been put forth as adjuvant treatment
515 approaches in IBD to modulate the brain’s response to future aversive interoceptive stimuli
516 (78, 79).

517

518 Recent work has demonstrated that long-term exposure to recurrent systemic inflammation
519 impacts brain and behavioural responses in a more permanent and pervasive way as opposed

520 to a single inflammatory event (9, 10). Both CD and UC participants were either in clinical
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521 remission or had a mild disease course, with no difference in cardiovascular risk compared to
522  healthy participants. Our results strongly suggest that brain dynamic alterations do not
523 represent the effects of acute inflammation or vascular events, but suggests a more
524  permanent network reconfiguration. In our study, we showed that insula to mPFC hyper-
525  connectivity strengthens with disease duration in CD (Fig. 4E). The persistent and chronic
526  effects from repeated exposure to inflammation are likely to result in a confluence of
527  behavioural, biological, and neurophysiological changes, including alterations to interoceptive
528  processing (e.g., heightened sensitivity to visceral inflammatory or nociceptive signals) (16,
529  26), hyper-activation of the hypothalamic-pituitary-adrenal axis (80), functional changes to the
530 gut-brain interface, or altered serotonergic and glutamatergic neurotransmission (1, 81). In
531 this study, we did not observe a relationship between effective connectivity and behavioural
532  symptoms. However, it is possible that altered insula-mPFC hyper-connectivity represents a
533  vulnerability towards developing psychological symptoms. Our results provide a strong
534  motivation to pursue longitudinal assessments - monitoring fluctuations in inflammatory
535 activity, medication use, symptoms, surgical procedures, and behaviour — to identify the causal
536  mechanisms contributing to altered network signatures in long-standing CD.

537

538  Our results suggest that a diagnosis of CD is, in itself, a key factor in determining the risk of
539  developing altered brain network signatures. Previous work suggests that UC and CD exhibit
540 distinct disease processes (30, 31, 33). UC is described as a mucosal disease with an acute
541  onset, while CD is considered a chronic and systemic disease with a long premorbid phase
542  and transmural involvement (82). Systemic involvement in CD may also be reflected in the
543  higher prevalence of extra-intestinal manifestations (83), with one study attributing low bone
544  density to chronic and long-standing exposure to cytokines selectively in CD, but not in UC
545  (82). Moreover, emerging work suggests that neurological effects related to IBD follows a
546  differential pattern of involvement between sub-groups (84). That is, UC appears to exhibit
547  extra-intestinal manifestations mostly in the peripheral nervous system, while CD is more
548  closely associated with effects in the CNS (84). These observations are in line with a previous
549  structural MRI (sMRI) and resting-state fMRI study comparing CD and UC sub-groups,
550 showing that neural changes in CD may be more pronounced in patients exhibiting extra-
551 intestinal manifestations (36). However in contrast to our results, this study, as well as another
552  using near infrared spectroscopy (35), found that UC exhibited more pronounced neural
553  changes overall compared to CD. Longitudinal and adequately powered studies will be critical
554  todisentangle the nuanced alterations between CD and UC reported in this current study, and
555 in previous work. Our results also showed that diversity, taxonomic, and functional microbiota
556  profiles in CD are significantly different from UC and HC, despite the absence of major

557 inflammatory activity (Fig. 1). The failure to restore eubiosis in CD may indirectly serve as a
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558  marker of chronicity, representing an epiphenomenon caused by repeated inflammation and
559  extensive bowel damage, as well as a risk factor for recurrent relapse (32-34). Our
560 observations underscore the broader significance of early diagnosis, and both rapid and
561 effective control of gut and systemic inflammation in IBD patients.

562

563 A number of caveats need to be considered when interpreting the results from this study. The
564  cross-sectional design and modest sample size are recognised as limitations. For example,
565  our microbiota assessments of alpha and beta diversity did not detect significant differences
566  between UC and HC. While these results are consistent with results from previous longitudinal
567  16S rRNA studies showing only diversity differences in CD compared to HC, but not in UC
568 (33, 85), our relatively modest sample size may have resulted in a type Il error (i.e., the non-
569  detection of smaller effects in UC individuals). Secondly, our cross-sectional design does not
570 allow us to disentangle the relative contribution of long-standing Gl symptoms versus chronic
571 inflammation to observed brain-related effects. However, recent works comparing UC to a
572  control group with irritable bowel syndrome (Gl symptoms without underlying inflammation)
573  provides further support that these changes are more specifically driven by chronic gut
574  inflammation, rather than long-term Gl symptoms (50, 86). IBD is a heterogeneous disease,
575 and even within CD and UC there is large variability in terms of surgical procedures,
576  medication use, genetics, and inflammatory history. However, the main focus of this study was
577 to characterise the large-scale brain effects from chronic, recurrent and relapsing gut
578 inflammation within an ecologically valid and naturalistic setting. For example, a key source of
579  heterogeneity was medication use in IBD. Specifically, there was a higher proportion of UC
580 individuals taking aminosalcylates, analgesics, and corticosteroid medication (Supplementary
581  Table 1). However, the fact that the CD group appear to be less reliant on medications overall
582  —specifically analgesics — highlights that they have well-controlled symptoms. Taken together,
583 this further strengthens the interpretation of our CD results, supporting the idea that hyper-
584  connectivity from the insula to mPFC is more closely linked to disease chronicity, rather than
585 acute inflammation or symptom flare-ups. Our study provides the initial impetus to pursue
586  future targeted work, including a focus towards creating larger, longitudinal databases
587 including multimodal neuroimaging, clinical, behavioural, and metagenomics data. While most
588 IBD participants were in clinical remission, a number of participants were taking biologic
589 agents, anti-inflammatory, or immunomodulatory medication. This suggests that some
590 participants had experienced an acute inflammatory event at some point prior to the study. As
591 we do not have longitudinal data about previous disease activity, we cannot directly assess
592  their contribution to observed brain alterations. Unlike DCM, the TDE-HMM is a statistical
593  method that is not grounded on biophysical models of neural activity. When inferring the HMM

594  we recognize, like previous authors (45), that there is no biological ‘ground truth’ with regards
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595 to the number of brain states selected. Instead, varying the number of states simply offers
596 different resolutions (spatiotemporal detail) to study brain dynamics. Selecting six states
597 represented a necessary trade-off, allowing us to examine brain states that overlap with
598 established fMRI resting state maps but in the process, limiting our ability to detect more subtle
599  dynamics. Our HMM brain states were inferred from resting-state data. Future investigations
600 could extend this work by assessing how external task-related demands modulate
601  spatiotemporal dynamics in DMN and visual networks in CD and UC.

602

603  There is converging evidence showing the effects of acute inflammation on brain activity and
604  behaviour (3, 7, 8). However, there remains a large gap in understanding how chronic and
605 repeated exposure to systemic inflammation engenders change in spontaneous whole-brain
606  dynamics. Using an ecologically valid model of peripheral inflammation, we demonstrate that
607 CD individuals exhibit alterations in brain states and patterns of effective connectivity
608  supporting computations within internal, interoceptive mental states. Our results provide
609  motivation to pursue longitudinal assessments evaluating the impact of mood and affective
610 disorders on the natural history of IBD, and vice versa. Understanding the extent and nature
611  of gut-brain dysfunctions in IBD will help to optimise the monitoring and management of
612  behavioural symptoms and critically, to prevent a gut disease from progressing to a comorbid
613  psychiatric or neurodegenerative illness.

614
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616  Data supporting the findings of this study is available from the corresponding authors on
617 reasonable request.
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