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Abstract 
Single nuclei RNA sequencing (snRNA-seq) remains a challenge for many human tissues, as 
incomplete removal of background signal masks cell-type-specific signals and interferes with 
downstream analyses. Here, we present QClus, a droplet-filtering algorithm targeted toward 
challenging samples, using cardiac tissue as an example. QClus uses specific metrics such as 
cell-type-specific marker gene expression to cluster nuclei and filter empty and highly 
contaminated droplets, providing reliable cleaning of samples with varying number of nuclei and 
contamination levels. In a benchmarking analysis against seven alternative methods across six 
datasets consisting of 252 samples and over 1.9 million nuclei, QClus achieved the highest 
quality in the greatest number of samples over all evaluated quality metrics and recorded no 
processing failures, while robustly retaining numbers of nuclei within the expected range. QClus 
combines high quality, automation, and robustness with flexibility and user-adjustability, catering 
to diverse experimental needs and datasets. 
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Introduction 
Single-cell RNA sequencing (scRNA-seq) is a powerful tool for understanding the complex 
transcriptomes of heterogeneous cell populations 1,2. Single-nuclei RNA sequencing (snRNA-
seq) uses the same principle but isolates nuclei instead of cells 1. Both methods are growing in 
use and popularity in biomedical research 3, however, snRNA-seq is particularly well suited for 
solid and frozen tissues, as well as trickier tissues, such as the human heart, where whole cells 
may be difficult to isolate and the use of single-cell approach essentially leads to biased cell 
yield due to the differences in cell sizes between the tissue cell populations (i.e., cardiomyocyte 
(CM) and non-cardiomyocyte (non-CM) populations in the heart) 4,5. 
 
Droplet-based snRNA-seq works by encapsulating single nuclei in droplets, where each droplet 
contains RNA from one nucleus. However, ambient RNA contamination, such as cytoplasmic or 
cell-free RNA from the input solution, can contaminate the droplets. This is a significant concern 
for solid tissues, leading to misidentification of cell types and states 6. For example, in the 
human heart, CMs, the contractile units of the heart, are tightly bound together to facilitate their 
function 7, big in size, with high mitochondrial count and they produce high amounts of 
transcripts due to their size and metabolic activity 9, leading to high amount of cell debris and 
cytosolic RNA in the nuclei suspensions (FIG 1A), which can contaminate the snRNA droplets 
8,9. This can result in mistaken interpretations of gene expression patterns 6, especially when 
CM transcripts are confused for genuine signals from other cell types. Such complications 
necessitate rigorous quality control in snRNA-seq workflows. In addition to heavily contaminated 
droplets, accurate exclusion of empty ones 10 is pivotal to avoid bias and ensure accuracy of 
subsequent analyses. 
 
Conventional methods for empty droplet removal in snRNA-seq often combine UMI distribution 
filtering (generally included in preprocessing programs, such as CellRanger) and mitochondrial 
fraction-based filtering 6,10–14. These techniques rely on clear distinction between empty and 
nuclei-containing droplets, which is typically true for samples with average contamination levels. 
However, in several tissue types, including the heart, elevated cytoplasmic contamination levels 
render standard removal methods inadequate 6. Recognizing this, recent years have seen the 
advent of bioinformatics tools aimed at identifying empty and highly contaminated droplets for 
removal or modeling contamination and correcting the expression count matrix data directly 
6,11,15–17. 
 
In this study, we focused on determining the most effective method for automatic droplet filtering 
in extensive datasets of challenging samples with minimal manual input, using human cardiac 
tissue data as an example. After reviewing current methods 6,8,11,15–18 and testing them on the 
heart snRNA-seq data, we opted for a new approach to improve data quality by contamination-
based nuclei filtering. Our primary objective was to develop a method that reliably and 
automatically works for larger datasets, even when such datasets demonstrate high inter-
sample variability. We sought to construct a method that needed minimal manual input and no 
sample-level parameter tuning. To this end, we developed Quality Clustering (QClus), an 
innovative nucleus filtering method that employs unsupervised clustering of general as well as 
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cell type-specific quality metrics. QClus, when compared to standard practices and prior 
algorithms, showed improved results in terms of quality metrics and robustness of nuclei 
retention across samples. QClus was specifically designed for nuclei calling instead of count 
decontamination, as our goal was to ensure the accurate identification of individual nuclei in the 
dataset, rather than attempting to cleanse or adjust the expression counts of detected 
transcripts. By focusing on the nuclei calling, we aimed to lay a foundation for subsequent 
analyses, ensuring that any interpretations or insights derived from the data would be based on 
correctly identified cellular components. By ensuring more dependable datasets, our 
methodology may help to offer deeper insights into human tissue biology. 
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Results 

Description of Datasets 
To understand how contamination is distributed in heart snRNA-seq data, we set out to explore 
the distribution of the known contamination metrics, such as mitochondrial fraction, as well as to 
develop novel metrics specific to the tissue type of interest (i.e., human heart tissue) that could 
be used during the quality control step of the workflow. 
 
To explore the distribution of contamination metrics in human heart snRNA-seq datasets and 
benchmark droplet filtering methods, we collected 6 datasets. They consisted of four published 
datasets and two datasets of our own. The Chaffin et al. 19 data comprises 95 samples from the 
left ventricles of 11 patients with dilated cardiomyopathy, 15 with hypertrophic cardiomyopathy, 
and 16 control hearts. The Hill et al. 20 data provides 30 samples from nine pediatric patients 
with congenital heart disease (CHD) and four control hearts. The Koenig et al. 21 data includes 
35 samples from the left ventricles of 17 patients with dilated cardiomyopathy and 28 control 
hearts. The Litviňuková et al. 5 data has 42 samples from six anatomical cardiac regions from 7 
healthy hearts. Our own two datasets originate from a previous study, Linna-Kuosmanen et al. 
22, including 50 right atrial appendage samples, from 15 patients with ischemic heart disease 
(IHD), 9 with myocardial infarction (MI), 11 with ischemic heart failure (IHF), 3 with non-ischemic 
heart failure, and 10 with valve disease. 
 

Description of Contamination Metrics  
Two well-established universal snRNA-seq contamination metrics are the unspliced and 
mitochondrial fractions (FIG 1B). As the names suggest, the unspliced fraction measures the 
fraction of unspliced reads observed in the droplet and the mitochondrial fraction measures the 
fraction of reads originating from mitochondrial genes. Given the higher number of unspliced 
transcripts in the nucleus compared to cytoplasm, the metric tied to it is anticipated to show an 
inverse correlation with contamination, whereas mitochondrial fraction is expected to positively 
correlate with contamination, as mitochondria are only present in the cell cytoplasm. Both 
metrics have been established and utilized in previous research to measure ambient RNA levels 
6,10,16,17. Expectedly, our findings in the heart data confirmed a strong negative correlation 
between the two metrics (FIG 1C), and the UMAP plots of the samples showed a central cluster 
exhibiting high levels of mitochondrial and low levels of unspliced fraction (FIG S1), 
corresponding to putative empty and highly contaminated droplets, thereby confirming the value 
of these metrics for measuring ambient RNA levels. 
 
The third previously established metric in our study is the nuclear fraction (FIG 1B), which 
represents a nuclear-enriched gene expression fraction 6,17. MALAT1 produces a transcript that 
localizes to nuclear speckles 23 and is believed to regulate the distribution and activity of splicing 
factors within these speckles. As nuclear-enriched genes possess a relative expression that 
should decrease in droplets with more cytoplasmic RNA, this fraction is expected to be inversely 
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correlated with ambient RNA contamination in snRNA-seq. Consistently, we observed positive 
correlation with unspliced fraction and negative correlation with mitochondrial fraction for the 
metric (FIG 1C).  
 

Cardiomyocytes as a source of contamination 
Cardiomyocytes, one of the most abundant cell types in cardiac tissue, possess a high RNA 
content in their cytoplasm due to their size and function. Accordingly, we observed CM-
expressed genes to account for an important amount of the ambient RNA contamination in the 
samples (FIG S2, FIG S3). Thus, we hypothesized that some of these genes could be used as 
contamination metrics, provided that such a metric accounted for CM-nuclei-containing droplets, 
and not be biased against them.  
 
To take this into account, we first needed a metric that would help us to distinguish CMs from 
non-CMs. Droplets that contain a single non-CM nucleus are expected to display high levels of 
gene expression corresponding to marker genes from one of the other major cell types. We thus 
defined a metric, non-CM-specific gene expression fraction (FIG 1B), for this purpose. It 
represents the fraction of reads aligning to the most highly expressed non-CM marker gene set 
(for details, including the definitions of gene sets, please see methods). After a closer look into 
the data, we observed that genes that were specific to other cell types than CMs, contributed to 
contamination at a much lower level than CMs (FIG S3). A droplet that was enriched in one of 
the gene sets constituted by cell type marker genes was very likely to contain a nucleus of that 
cell type, instead of being empty. It was also less likely to be highly contaminated, since that 
would drive down this percentage, which was confirmed by the correlations with unspliced 
fraction and mitochondrial fraction in FIG 1C. 
 
Droplets that contain a single CM nucleus are expected to display a high level of CM-specific 
gene expression. However, it can be difficult to distinguish true, high-quality CMs from 
contaminated droplets (either empty or containing a CM or non-CM nucleus) due to the high 
level of expression of CM-specific genes in the contamination. Interestingly, we observed CM-
specific genes diverging into two groups: those contributing heavily to contamination and those 
contributing less (FIG S4), putatively corresponding to cytoplasm- and nuclear-enriched genes, 
respectively. Derived from this observation, we then defined two additional metrics: cytoplasm-
enriched CM-specific gene expression fraction and nuclear-enriched CM-specific gene 
expression fraction (FIG 1B). Cytoplasm-enriched CM-specific gene expression fraction can 
serve as a metric of contamination, as demonstrated by a strong correlation for the metric with 
mitochondrial fraction and negative correlation with unspliced fraction (FIG 1C). Conversely, 
Nuclear-enriched CM-specific gene expression fraction helped to distinguish true CM-containing 
droplets with low contamination from empty or highly contaminated droplets that may still 
contain significant amounts of CM marker gene expression due to the high contribution of CM-
specific genes to ambient background RNA (FIG 1C).  
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Contamination metric values vary significantly within and between dataset 
before preprocessing  
After exploring and creating contamination metrics based on their specific distribution across 
droplets, we investigated their global distribution patterns across samples and datasets (FIG 
1D) to establish an automated, universal filtering method. We observed a wide range of values 
for the created metrics within and across datasets, demonstrating the need for a method that 
automatically applies a flexible approach dependent on the sample-specific expression patterns 
and contamination levels. Full results for the mean values of the above quality metrics in 
unfiltered samples across the 252 samples can be found in Table S1. 
 

QClus efficiently removes empty droplets and highly contaminated nuclei  
To answer the need for an automated method that can handle sample-specific expression 
patterns and contamination levels, we built QClus. QClus is centered on clustering droplets 
based on their defined quality metrics (FIG 1C). In addition, it uses CM-specific and non-CM-
specific gene expression patterns as well as nuclear and cytoplasmic gene expression fractions 
in the metrics to distinguish CM nuclei, non-CM nuclei, highly contaminated droplets, and empty 
droplets, further improving the clustering. The QClus pipeline is divided into 5 steps:  
 
Step 1: Input data.  The pipeline starts with data filtered by Cell Ranger (10X Genomics), which 
attempts to remove empty droplets using an algorithm based on the EmptyDrops 11 method 
(FIG 2A). Cell Ranger algorithm identifies low RNA content cells in samples with mixed cell 
populations. It initially uses a UMI count-based cutoff to detect high RNA content cells, followed 
by a detailed RNA profile analysis of remaining barcodes to separate actual cells from empty 
droplets. To illustrate this, we used a sample from the CAREBANK 22 dataset as an example. 
After Cell Ranger filtering, the nuclei were found in a star shape on the dimension reduction 
map (UMAP), where all cell types seemed to originate from a common cluster. We hypothesized 
that the star center was composed of empty droplets and highly contaminated nuclei, as the cell 
types in the adult human heart are differentiated and therefore expected to form independent 
clusters. This hypothesis was confirmed by the high level of mitochondrial fraction and low level 
of unspliced fraction in the center of the star (FIG S1). 
 
Step 2: Initial filtering. The second filtering step removes droplets based on the detected 
number of genes and mitochondrial fraction, using high thresholds. The gene-level filtering 
ensures that all nuclei have enough genes to be of significant biological interest in the 
downstream analyses, whereas a mitochondrial threshold is used to remove clear outliers (FIG 
2B). 
 
Step 3: K-means clustering. In this step, the method calculates the six contamination metrics 
defined earlier (FIG 1B; for details see methods). These values are then used as input for k-
means clustering to identify four clusters (FIG 2C): 1) non-CM nuclei with low levels of 
contamination, low CM-specific gene expression, both nuclear and cytoplasmic, and high non-
CM-specific gene expression (FIG S6); 2) CM nuclei with low levels of contamination, high CM-
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specific gene expression, both nuclear and cytoplasmic, and low non-CM-specific gene 
expression (FIG S7); and 3) highly contaminated nuclei (FIG S8), and 4) empty droplets (FIG 
S9, FIG S10), both of which have high contamination, high cytoplasmic CM-specific gene 
expression, low nuclear CM-specific gene expression, and low non-CM-specific gene 
expression. The default settings instruct QClus then to remove the empty droplets cluster only, 
but the user can choose to also remove the highly contaminated nuclei cluster, on a sample-by-
sample basis (FIG S10). In most samples this step will remove the highest number of droplets 
and show the most significant improvements in sample quality. 
 
Step 4: Outlier filtering. The fourth filtering step removes highly contaminated nuclei in a more 
adjustable manner by identifying outliers based on the unspliced and mitochondrial fraction 
distributions within the sample (FIG 2D). In this process, outliers are selected and filtered based 
on a threshold determined by quantiles of the distribution within the non-CM cluster, defined as 
the cluster showing the highest level of the non-CM marker gene expression metric. This stage 
identifies and excludes those nuclei that deviate substantially from the expected distribution of 
the two metrics. It allows for a finer control over the quality and number of retained nuclei.  
 
Step 5: Doublet filter. To finalize the filtering, our pipeline uses the Scrublet algorithm19, which 
removes doublets. However, in addition to removing doublets, the Scrublet algorithm also 
removes highly contaminated nuclei in the heart, as remaining highly contaminated nuclei can 
appear as doublets (FIG 2E). These pseudo-doublets are non-CMs that have high levels of 
contamination (FIG S11) and will appear to contain RNA from CM cytoplasm (FIG S12).  
 
After QClus preprocessing, the final UMAP showed a clear separation of the 11 major cell types 
observed in the illustrated sample (FIG 2E). No single metric alone predicted which nuclei were 
removed and which kept (FIG S13), suggesting that a multi-metric approach taken during the 
quality control maximizes the biological signal for downstream analyses. 
 

QClus outperforms other methods across multiple distinct quality metrics 
To test our hypothesis regarding the effectiveness and versatility of the QClus method, we 
performed a comparative analysis of its performance against seven alternative droplet filtering 
methods across the six datasets. QClus was performed without the doublet filtering step to 
provide a fair comparison against other methods which do not include doublet filtering. In 
addition, QClus was set to its default mode regarding step 3, removing only the empty droplet 
cluster in this step (FIG S6), allowing for fully automated execution. Utilizing the six datasets, we 
selected four distinct quality metrics for evaluation: unspliced fraction, mitochondrial percentage, 
total counts, and the number of genes expressed (for full results, see Table S2). For each 
sample-method combination, the metrics were normalized on a per-sample basis (for full scaled 
results, see Table S3). This normalization ensured the standardized comparison of the 
performance of each method, across all samples.  
 
Across all four QC metrics, QClus displayed the highest number of samples with the best result 
for that metric (FIG 3A), outperforming other methods in 138 out of 252 samples (54.76%) for 
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unspliced fraction, in 116 samples (46.03%) for mitochondrial percentage, 78 samples (30.95%) 
for total counts, and 96 samples (38.10%) for the mean number of genes expressed per nuclei. 
 
Another important metric in the assessment of droplet filtering methods is the resulting number 
of kept nuclei.  Due to the distribution of quality metrics across nuclei, a more stringent threshold 
decreases the number of nuclei and increases their quality. There is thus an inherent trade-off 
between the number of nuclei retained and the quality achieved.  While retaining more nuclei 
can potentially enhance the richness of the dataset, it might do so at the expense of lower 
quality, which could lead to noise or false conclusions. Conversely, being overly stringent might 
result in the omission of high-quality nuclei, thereby limiting the scope of insights that could be 
drawn. Investigation of this aspect across the datasets and methods revealed that QClus, 
although retaining fewer nuclei compared to some methods, such as EmptyNN 15, DropletQC 17, 
and SampleQC 16, remained within the expected range for nuclei retention across various 
datasets (FIG 3B). In addition, compared to other methods, the nuclei retention counts 
appeared more stable. Given the consistent nature of experimental procedures within each 
dataset, large fluctuations of nuclei retention could be indicative of a less reliable filtering.  
Unlike some of the methods, the adaptability of the QClus algorithm allows its parameters to be 
adjusted to fit specific research needs, whether the user wishes to retain more nuclei or take a 
more stringent approach. This offers a flexible balance between nuclei retention and quality, 
catering to various experimental and analysis requirements. 
 
To further benchmark and compare the eight preprocessing methods, we established criteria 
that, when fulfilled, would indicate a processing failure—i.e., an unacceptable result for the 
respective sample. The method-wise numbers on how many samples failed for each rule are 
shown in FIG 3C and Table S4. The first criteria considered, was a ‘low nuclei count’, which 
red-flagged cases where a considerably greater number of nuclei of comparable quality could 
have been retained, i.e., any method that retained fewer than 3,000 nuclei for a particular 
sample, while another method was able to retain over four times as many nuclei with an 
unspliced fraction within 10% for the same sample. Twenty sample-method cases fell into this 
category. These failures were spread across DIEM 6 (13 samples), EmptyNN 15 (6 samples), 
and SampleQC 16 (1 sample). An example from the Hill et al. 20 dataset is shown in FIG 3G, 
where SampleQC retained 147 nuclei, while QClus was able to retain 12,870 nuclei of good 
quality (another example is shown in FIG S14). 
 
The second criteria considered, was a ‘high nuclei count’, which flagged samples that retained 
more than 30,000 nuclei after preprocessing. Given the experimental design of the datasets, 
parameters of the preprocessing methods (such as the expected cells parameter of CellBender 
24) used in the publications, and observed ranges of retained nuclei in the original publications, 
samples were expected to contain between 3,000 and 10,000 nuclei.  Of the analyzed sample-
method combinations, 53 met this condition, signaling a failure in quality control. These failures 
were distributed across six methods: Modified DecontX 18 (4 samples), DIEM 6 (6 samples), 
DropletQC 17 (10 samples), EmptyNN 15 (15 samples), traditional preprocessing (4 samples), 
and SampleQC 16 (14 samples). An example from the Hill et al. 20 dataset is shown in FIG 3G, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2022.10.21.513315doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?EJqqIq
https://www.zotero.org/google-docs/?WScHYp
https://www.zotero.org/google-docs/?cfW76y
https://www.zotero.org/google-docs/?XzTnZ6
https://www.zotero.org/google-docs/?g0YiXR
https://www.zotero.org/google-docs/?nvQYmF
https://www.zotero.org/google-docs/?9nK1M9
https://www.zotero.org/google-docs/?R1Yv0k
https://www.zotero.org/google-docs/?WvRvkc
https://www.zotero.org/google-docs/?1Zwrgi
https://www.zotero.org/google-docs/?QCxG6I
https://www.zotero.org/google-docs/?srvt7L
https://www.zotero.org/google-docs/?2q1uUl
https://www.zotero.org/google-docs/?Gz2uck
https://doi.org/10.1101/2022.10.21.513315
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

where EmptyNN retained 78,639 nuclei, while QClus retained 11,341 nuclei (another example is 
shown in FIG S14). 
 
The third criteria used, was a ‘low quality’. A method was considered to have failed, when the 
median unspliced fraction for the retained nuclei of a method-sample combination was less than 
0.3, and another method retained a greater number of nuclei from the same sample with a 
median unspliced fraction of at least 0.2 higher. Thus, the same number of nuclei of significantly 
higher quality could be identified using an alternative method. Twenty-six sample-method 
combinations failed using this criteria, namely DIEM 6 (25 samples) and SampleQC 16 (1 
sample).  An example from the CAREBANK dataset is shown in Figure 3G, where DIEM 
retained 3,645 nuclei with a mean unspliced fraction of 0.22 and no clear cell type separation on 
the UMAP, while QClus retained 10,703 nuclei with an unspliced fraction of 0.64 and clear 
separation (another example is shown in FIG S14).  
 
Taken together, QClus outperformed other methods by displaying the highest number of 
samples with the best results in quality while remaining within the expected range for nuclei 
retention across various datasets, with more stable nuclear retention counts compared to other 
methods. Based on the criteria for processing failures, only two of the methods, QClus and 
CellBender 24, exhibited no failures across any of the six datasets. However, while CellBender 
processed samples passed the set failure criteria, there were several samples in which it did not 
perform a good quality filtering. These same samples were found to be processed better with 
QClus filtering. In an example shown in Figure 4A, CellBender filtering resulted in low cell type 
separation and distribution, whereas after QClus, cell types were found in higher abundance 
and balanced composition (FIG 4B). 
 

Discussion 
QClus is a droplet filtering method that is tailored to overcome challenges in snRNA-seq 
processing tissue-specifically. The benchmarking results advocate for specialized 
preprocessing, especially when grappling with samples that contain good-quality nuclei covered 
with substantial contamination. 
 
The strength of QClus lies in its ability to process heterogeneous datasets in an automated way 
while adapting to variations in-sample characteristics, such as nuclei number, overall quality, 
and contamination levels. The adaptability reduces the need for meticulous manual oversight 
required in other similar methods, and our benchmarking attests to the performance of QClus in 
unsupervised scenarios. As the method is designed to work tissue-specifically, we focused here 
on one specific tissue type known to be challenging, the human heart tissue and geared our 
approach to heart-specific features that our research corroborated. However, the method is 
adaptable to other tissue types by modifying the list of marker genes or the input metrics. The 
flexibility of the method allows the parameters of the algorithm to be tweaked globally or at the 
level of individual samples, providing researchers with the opportunity to balance between 
nuclei retention and contamination control, based on the specific biological questions at hand. 
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As QClus is specifically designed to function without supervision and tailored for high-
throughput datasets, where manual intervention is not feasible, it is plausible that some 
benchmarked methods would have shown enhanced performance had they been given more 
manual adjustments tailored to each sample. However, such a procedure would deviate from 
our primary objective, which was to identify a method that reliably and automatically works for 
extensive datasets with minimal manual input in a specific tissue context. With the advent of 
novel techniques, the decreasing cost of sequencing, and the generation of larger datasets, 
there is an unmistakable demand for fully automated methods that can efficiently handle large 
volumes of data while maintaining accuracy and reliability. 
 
QClus, though effective, has room for growth. Accounting for contamination distributed within 
cell type populations might improve accuracy, given that we observe varying levels even within 
non-CMs. Integrating QClus with a decontamination algorithm, such as CellBender 24 or 
DecontX 18, might further enhance its efficiency, establishing an integrated solution that both 
filters and cleans up the retained nuclei. Thus, the optimal strategy could involve a careful and 
balanced approach to both nuclei calling and decontamination. The specific choice and 
combination of methods and strategies might be guided by the tissue type, cellular complexity, 
and specific questions asked in a study.  
 
In conclusion, challenging tissues, exemplified by cardiac tissue in our study, highlight the need 
for tissue-specific preprocessing methodologies that can handle large datasets containing 
samples of varying qualities in an automated fashion. The idiosyncrasies of contamination 
across different tissues and even disorders demand tailored solutions. QClus emerges as a 
potent tool for such preprocessing – as shown in cardiac tissue, with promising avenues for 
adaptation to other tissue types – fostering an era of more precise, tailored snRNA-seq 
analyses. 
 

Methods 

Datasets and preprocessing 
For the 4 external dataset, the FASTQ files from each sample were downloaded from their 
respective repository. The Hill et al. 20 and Koenig et al. 21 data were obtained from GEO 
(respectively GSE203275 and GSE183852). The Litviňuková et al. 5 dataset was obtained from 
ENA (https://www.ebi.ac.uk/ena/browser/view/PRJEB39602). The Chaffin et al. 19 data was 
obtained from dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs001539.v1.p1) with proper authorizations.  
More information about the datasets, their experimental processing, the patient's conditions, can 
be found in their respective papers 5,19–21. 
All samples from each dataset were processed in parallel using a dedicated high-performance 
computing (HPC) cluster in our laboratory, managed via the SLURM workload manager. 
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Package versions were as followed: 
- CellBender 0.2.2 
- Velocyto 0.17.17 
- Scanpy 1.9.2 
- SampleQC 0.6.6 
- Diem 2.4.1 
- Celda 1.14.1 for the use of DecontX 
- DropletQC 0.0.0.9000 
- EmptyNN 1.0 

 
CellRanger v7 was run for all samples, with default parameters, and the GRCh38 reference file 
provided. Then, velocyto 25 was run using the run10x-command, providing as input, in addition 
to the CellRanger output, the genome annotation file from the CellRanger GRCh38 reference 
genome. In addition, as advised by the velocyto 25 tutorial, the repeat regions were masked and 
a repeat masker file was downloaded from UCSC genome browser, and provided as input. 
 
To benchmark the effectiveness of QClus against six previously published methods of nuclei 
filtering, in addition to an adapted implementation of a decontamination method, each method 
was run for all samples through a custom python pipeline, which outputted the list of barcodes 
to keep. All methods, including QClus, were executed with their default parameters whenever 
possible, following available tutorials in their respective documentation. Specific input was made 
only when required or to ensure consistency across comparisons. Details about specific  
parameter settings for each method are given below. As a base filtering, CellRanger default 
filtering (whenever a method did not specifically call for the unfiltered count matrix as input), in 
addition to conservative thresholds of commonly used QC metrics (total counts, total genes, and 
mitochondrial fraction), was applied. This ensures applicability of the benchmark results. Exact 
values for these thresholds are given in Table S5.  
 

QClus 

Initial filter  
To remove droplets with poor QC metrics, the lower bound of the number of detected genes is 
set at 500, the upper bound of the number of detected genes at 6000, and the initial cutoff for 
mitochondrial fraction to be 40%.  
 

Clustering features: Unspliced fraction 
After annotating reads as “spliced”, “ambiguous”, or “unspliced” using Velocyto 25, a 
“fraction_unspliced” metric is calculated for each droplet. It is the total number of unspliced 
reads over the total number of reads (spliced, unspliced and ambiguous) in each droplet.  
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Clustering features: Mitochondrial fraction 
This metric corresponds to the fraction of reads aligning to the mitochondrial genome (MT-ND1, 
MT-ND2, MT-CO1, MT-CO2, MT-ATP8, MT-ATP6, MT-CO3, MT-ND3, MT-ND4L, MT-ND4, MT-
ND5, MT-ND6, MT-CYB), for each droplet. The metric is calculated using the Scanpy 26 function 
calculate_qc_metrics() on raw counts. 

Clustering features: Nuclear fraction 
This metric corresponds to the fraction of reads aligning to the following genes: MALAT1, 
NEAT1, FTX, FOXP1, RBMS3, ZBTB20, LRMDA, PBX1, ITPR2, AUTS2, TTC28, BNC2, 
EXOC4, RORA, PRKG1, ARID1B, PARD3B, GPHN, N4BP2L2, PKHD1L1, EXOC6B, FBXL7, 
MED13L, TBC1D5, IMMP2L, SYNE1, RERE, MBD5, EXT1, WWOX. These were chosen as 
they exhibit high correlation with MALAT1, which is known to be highly expressed in the 
nucleus. The metric is calculated using the Scanpy function calculate_qc_metrics() on 
logarithmized counts. Logarithmization is performed using the Scanpy function log1p(). 
 

Clustering features: Nuclear CM marker genes 
A set of genes found to be specifically expressed in CMs, but absent from ambient RNA 
contamination were selected as highly expressed in CM nuclei: RBM20, TECRL, MLIP, 
CHRM2, TRDN, PALLD, SGCD, CMYA5, MYOM2, TBX5, ESRRG, LINC02248, KCNJ3, 
TACC2, CORIN, DPY19L2, WNK2, MITF, OBSCN, FHOD3, MYLK3, DAPK2, NEXN. Droplets 
with a high level of expression of these genes are expected to contain CM nuclei. The metric is 
calculated using the Scanpy function calculate_qc_metrics() on raw counts. 
 

Clustering features: Cytoplasmic CM marker genes 
A set of genes found to be specifically expressed in CMs, but present in high level from ambient 
RNA contamination were selected as highly expressed in CM cytoplasm: TTN, RYR2, PAM, 
TNNT2, RABGAP1L, PDLIM5, MYL7, MYH6. The metric is calculated using the Scanpy function 
calculate_qc_metrics() on raw counts. 
 

Clustering features: Cell type specific fractions 
For each of the eleven remaining cell types, a set of genes was selected as markers of these 
cell types from wilcoxon rank sum test differential expression analysis (Table S5). The fraction 
of reads aligning to those sets of genes was calculated for each droplet,using the Scanpy 
function calculate_qc_metrics() on raw counts. Next, for each droplet, the maximum value out of 
those 11 metrics was selected. 
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Clustering method 
Once the clustering features have been computed for the remaining nuclei, the features are 
scaled using the MinMaxScaler() function implemented in the scikit-learn 27 package. Next, the 
k-means algorithm was used, as implemented in the scikit-learn package, to partition the nuclei 
into four clusters, using all 6 clustering features. By default, the cluster demonstrating the lowest 
mean value of unspliced fraction is removed, as this cluster is predicted to contain empty 
droplets. However, the user can choose to remove any number of clusters. The default number 
of clusters is 4, but that number can be changed to adapt the software to different contamination 
profiles (FIG S10).  
 

Outlier filtering 
Filtering threshold values are calculated for the fraction of unspliced reads in addition to 
mitochondrial fraction, based on the distribution of these metrics in the r non-CM cluster, defined 
as the cluster with the highest mean value for the pct_counts_nonCM metric. The unspliced 
fraction threshold is chosen as the lower quartile minus 0.1. The mitochondrial fraction threshold 
is chosen as the upper quartile plus 0.05. These values can be adjusted by the user. Droplets 
are then filtered out if they go beyond these thresholds in both metrics (below the threshold for 
unspliced fraction and above for mitochondrial fraction). 
 

Doublet removal 
The scrublet algorithm is used in each sample, and droplets whose doublet score exceeds 0.1 
are removed. This filters out both doublets and highly contaminated droplets, whose distribution 
can resemble doublets in terms (FIG S12). 
 

Other Methods 

Traditional Threshold Filtering Based on QC Metrics Only 
As a baseline, we employed standard QC filtering (threshold filtering) that is routinely run in 
snRNA analysis, and often not accompanied by more filtering methods. . Metrics used were 
mitochondrial fraction, total counts, total genes. The exact threshold values utilized were set 
based on the details given in the respective studies and can be reviewed in Table S6. 
 

DIEM 
DIEM 6 is a droplet filtering method that is based on a model of RNA expression, taking into 
account contamination and cell type specific patterns, using a multinomial distribution. The 
initialization phase requires users to set a stringent count threshold based on a barcode rank 
plot, subsequently tagging nuclei below this threshold as debris, meaning they are expected to 
represent the profile of ambient RNA contamination. Using the expectation-maximization 
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algorithm, DIEM determines model parameters. Each droplet receives a score reflecting its 
expression of genes attributed to the debris set, enabling users to implement further filtration 
based on the debris score. The debris score was calculated using default settings and a debris 
score cut-off of 0.5, which is the default value, was set to filter out empty and highly 
contaminated droplets.  
 

Modified DecontX 
DecontX 18 employs a Bayesian framework to decipher the distribution of background 
contamination and ascertain contamination levels in each droplet. This model is then used to 
remove contamination from the gene expression matrix. In this study, we focus on droplet 
filtering and not decontamination per se. Thus, the contamination score derived from DecontX 
results was used to filter droplets.  Droplets that had a contamination score of more than 0.43 
were removed. The threshold was established to compare DecontX results to QClus results, as 
it resulted in the same number of droplets being filtered out in the PERIHEART 22 dataset.  
 

EmptyNN 
EmptyNN 15 is a cell-calling algorithm to differentiate between droplets that contain cells and 
those that are empty or cell-free. It utilizes a PU (Positive and Unlabeled) learning bagging 
strategy, based on the idea that barcodes with very low total counts are likely to represent 
genuine cell-free droplets. It has also been benchmarked with snRNA-seq data. 
 

SampleQC 
SampleQC 16 fits a Gaussian mixture model spanning multiple samples, subsequently filtering 
outlier nuclei. The metrics we used as inputs were counts, genes, mitochondrial fraction, and 
unspliced fraction. The ‘k_all’ argument was set to ‘k_all=2’, which was observed to fit the data 
well in most cases. The method suggests testing different values of that parameter between 
groups of samples. However, further optimization is outside of the scope of our study, as it 
renders benchmarking more subjective: we thus concentrated on fully unsupervised methods, 
and setting parameters to their default value.  
 

DropletQC 
DropletQC 17 utilizes both splicing fraction and total detected UMIs to discern among empty 
droplets, intact nuclei, and contaminated nuclei. Estimated thresholds are employed to identify 
nuclei positioned above or below these designated values. We executed the 
identify_empty_drops function of the package to identify and remove empty droplets. 
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CellBender 
CellBender 24  is a tool designed to decontaminate data by constructing a probabilistic model to 
differentiate between true biological counts and background noise in the observed feature count 
matrix, using a deep generative model. CellBender was run with the expected-cells parameter 
set to 5000, the total-droplets-included parameter set to 40000, the fpr parameter set to 0.01, 
and the epochs parameter set to 150. CellBender uses its modeling of contamination to identify 
empty and non-empty droplets, in addition to the decontamination itself. This droplet selection 
feature was used for the benchmarking. However, the contamination removal part of the output 
was not used, and the original count matrix is used to calculate quality metrics for 
benchmarking. 
 
 

Benchmarking 
After running each of the droplet filtering methods on all samples, for all datasets, quality 
metrics were calculated at the sample-level. Standard scaling was performed with  
StandardScaler from scikit-learn to standardize quality metrics for each unique sample. Each 
sample data was isolated and scaled independently.Embeddings for each sample-method 
combination were constructed using Scanpy, using standard dimension reduction and 
embedding procedures, as laid out in the Scanpy tutorial. The sc.pp.filter_genes function filtered 
genes in the AnnData object present in fewer than 10 nuclei. Subsequently, highly variable 
genes were identified using the sc.pp.highly_variable_genes function with parameters 
min_mean=0.005, max_mean=5, and min_disp=0.5. The dataset was then narrowed down to 
these highly variable genes.Data corrections for total counts and the percentage of 
mitochondrial counts were applied with sc.pp.regress_out. The sc.pp.scale function scaled the 
data to a maximum value of 10. 
 

Code availability 
Qclus is a ready-to-use python package, which is suited for integration with Scanpy processed 
single nuclei data, taking the AnnData object as input. Instructions to download and install the 
package in addition to its source code can be found on github: 
https://github.com/scHEARTGROUP/qclus. 
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Figure 1. Use of general as well as cell type-specific quality metrics to model ambient RNA contamination in human 
heart snRNA-seq data. a. Illustration of tightly connected cardiomyocytes in living human cardiac tissue. Illustration of 
nuclei post attempted isolation, including significant amounts of debris and contamination. b. Illustration of general as 
well as cell type-specific metrics to model contamination that is heavily contributed to by cardiomyocytes. c. Plotting the 
metrics against each other for a single sample, colored by density, reveals areas of greater density in the feature space. 
d. Plotting the metrics across six datasets and 252 samples reveals high inter-sample variability. 
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Figure 2. Overview of removal of empty droplets and highly contaminated droplets using QClus. a. The QClus 
algorithm begins with the pre-filtered count matrix that is output by Cell Ranger. b. A conservative initial filter is applied 
to remove tail ends of known quality metrics. c. General as well as cell type-specific quality metrics are calculated and 
clustered using k-means. The cluster displaying the lowest quality is removed by default. The user can choose to remove 
further clusters. d. An outlier filter based on the underlying distribution of mitochondrial percentage and unspliced 
fraction. e. Doublet filtering is applied to remove doublets as well as droplets exhibiting doublet-like expression due to 
the presence of a nonCM nucleus and CM derived ambient RNA. Created with BioRender. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2022.10.21.513315doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513315
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 3. Benchmarking QClus against alternative methods shows improved quality metrics and robust nuclei 
retention. a. Comparing achieved quality of six published methods as well as a control method of traditional quality 
metric threshold filtering demonstrates improved quality in most samples. b. QClus retains a comparable number of 
nuclei compared to some methods, while some others retain amounts of nuclei significantly outside the range of 
expectations. c. All methods outside of QClus and CellBender report failed sample processing for some samples. d. Three 
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examples of failed samples by alternative methods compared against the same samples processed with QClus. Examples 
from Hill et al. (Hi_WU198RV_rep1), Hill et al. (Hi_WU13235_rep1), and CAREBANK (CB-Q34), respectively. 
 
 

 
 
Figure 4. Comparison of CellBender and QClus. a. UMAPs and dotplot for CellBender processing of a sample of the 
PERIHEART dataset, representing samples where CellBender failed to achieve satisfactory quality. b. UMAPs and dotplot 
of QClus processing of the same sample, representing samples where significantly improved separation and composition 
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of cell types was seen with the QClus processing. c-d. Dot plot of top three genes per leiden group for CellBender (c) and 
QClus (d) processing of the same sample. 
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