

1 *Pre-print Manuscript*

2

3 **Bacterial aerobic methane cycling by the marine sponge-associated microbiome**

4 Gustavo A. Ramírez¹, Rinat Bar-Shalom¹, Andrea Furlan¹, Roberto Romeo², Michelle
5 Gavagnin¹, Gianluca Calabrese¹, Arkadiy I. Garber³, & Laura Steindler^{1*}

6

7 ¹Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of
8 Haifa, Israel.

9 ²Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy.

10 ³ Arizona State University, School of Life Science, Tempe, AZ, USA.

11

12

13

14

15

16

17

18

19

20 *Corresponding Author:

21 Laura Steindler

22 Department of Marine Biology

23 Leon H. Charney School of Marine Sciences

24 University of Haifa, 199 Aba Khoushy Ave.

25 Mount Carmel, Haifa, Israel

26 Email: lsteindler@univ.haifa.ac.il;

27 Tel. +9724-8288987; Fax +9724-8288267

28

29 **Conflict of interest:**

30 The authors declare no conflict of interest.

31

32 **Abstract**

33 **Background:** Methanotrophy by the sponge-hosted microbiome has been mainly reported in the
34 ecological context of deep-sea hydrocarbon seep niches where methane is either produced
35 geothermically or via anaerobic methanogenic archaea inhabiting the sulfate-depleted sediments.
36 However, methane oxidizing bacteria from the candidate phylum Binatota have recently been
37 described and shown to be present in oxic shallow-water marine sponges, where sources of
38 methane remain undescribed.

39 **Results:** Here, using an integrative *-omics* approach, we provide evidence for sponge-hosted
40 bacterial methanogenesis occurring in fully oxygenated shallow water habitats. Specifically, we
41 suggest methanogenesis occurs *via* at least two independent pathways involving methylamine
42 and methylphosphonate transformations that, concomitantly to aerobic methane production,
43 generate bioavailable nitrogen and phosphate, respectively. Methylphosphonate may be sourced
44 from seawater continuously filtered by the sponge host. Methylamines may also be externally
45 sourced or, alternatively, generated by a multi-step metabolic process where carnitine, derived
46 from sponge cell debris, is transformed to methylamine by different sponge-hosted microbial
47 lineages. Finally, methanotrophs specialized in pigment production, affiliated to the phylum
48 Binatota, may provide a photoprotective function, closing a previously undescribed C₁-metabolic
49 loop that involves both the sponge host and specific members of the associated microbial
50 community.

51 **Conclusion:** Given the global distribution of this ancient animal lineage and their remarkable
52 water filtration activity, sponge hosted methane cycling may affect methane supersaturation in
53 oxic coastal environments. Depending on the net balance between methanogenesis and
54 methanotrophy, sponges may serve as marine sources or sinks of this potent greenhouse gas.

55

56 **Keywords:** Methane, Porifera, Microbiome, Aerobic Methane Synthesis, Methylphosphonate,
57 Methylamine, Candidate Phylum Binatota, *Aplysina aerophoba*, *Petrosia ficiformis*.

58 **Background**

59 Sponges, globally dispersed sessile metazoans, host vastly diverse microbiomes [1] in a
60 complex association collectively recognized as the sponge “holobiont” [2]. The pre-Cambrian
61 fossil record [3, 4] and recent phylogenetic analyses [5] suggest that the sponge holobiont
62 represents the most ancient of extant metazoan-microbe interactions [6]. The high-volume filter
63 feeding of marine sponges [7] links benthic and pelagic biogeochemical processes and influences
64 major nutrient cycles in diverse ocean ecosystems [8-13]. High microbial abundance (HMA)
65 sponges may derive up to 35% of their mass from microbial symbionts [14, 15], accounting for a
66 1000-fold higher microbial load than the surrounding seawater [16]. The sponge microbiome is
67 also responsible for producing, largely unclassified, secondary metabolites of biotechnological
68 interest [17].

69

70 Intriguingly, sponge species seem to share a small core microbiome while hosting a large
71 species-specific community [1]. Eukaryote-like repeat proteins, CRISPR-Cas systems, and DNA
72 phosphorothioation are important mediators of symbiont-host recognition and defense against
73 non-symbionts and viruses [18-22]. Some Thaumarchaeota are keystone symbionts that oxidize
74 host-excreted ammonia [23-25], thereby, preventing toxic effects of this exudate on the sponge
75 host [26]. Physiological studies have addressed the cycling of carbon [8, 27] and nutrients
76 [nitrogen [24, 28, 29], phosphorus [30, 31], silicon [32]] by the sponge holobiont using both
77 indirect and direct [33, 34] techniques, resulting in a better understanding of the holobiont
78 functioning, its nutrient budgets and the related ecological impact [reviewed in [35, 36]]. Stable
79 isotope incubations combined with imaging techniques (Nano-SIMS) have revealed that not only
80 microbial symbionts but also host choanocyte sponge cells can directly take up DOM, and that it

81 is the latter host cells that first assimilate DOM from filtered seawater, likely via pinocytosis, and
82 then translocate the processed DOM to the symbionts inhabiting the sponge mesohyl [37, 38].
83 Recent efforts have characterized the community-level functional potential of sponge symbionts
84 [18, 39] and significantly increased the number of available sponge-associated microbial
85 genomes [40]. Genome-centered metatranscriptomic sponge surveys have explored host-microbe
86 interactions, energy and carbon metabolism [41, 42], nitrogen cycling [24, 43], and, recently, the
87 Tethybacterales: an uncultured clade within the Gammaproteobacteria [44]. Despite these
88 advances, few studies have linked sponge biogeochemical cycling activities to the corresponding
89 microbial lineages or described how these activities may influence, over geological time scales,
90 the biogeochemical state of the planet [45]. For example, the extent to which sponges are
91 involved in the cycling of short-chain alkanes is underexplored.

92
93 The co-detection of archaeal methanogens and sulfate reducing bacteria (SRBs) long ago
94 suggested the presence of anaerobic niches in demosponge tissue [46]. Later work showed that
95 sponge pumping dynamics [47] as well as distinct oxygen removal patterns not related to water
96 pumping activity [48] elicit anoxic microenvironments where active anaerobic microbial
97 activities such as sulfate reduction [49], denitrification, and fermentation [50] occur.
98 Hydrocarbon degradation by sponge symbionts in deep-sea seep environments has previously
99 been characterized and involves methylotrophic and short-chain alkane (methane, ethane,
100 butane) specialized symbioses [51-54]. This body of work indicates that canonical archaeal
101 methanogenesis, in anoxic tissue microniches, and short-chain alkane oxidation, in hydrocarbon
102 rich deep-sea hydrothermal vent and cold seep environments, are activities present in sponge-
103 associated microbiomes. Interestingly, methane oxidation activity is also predicted for sponge-

104 associated members of the proposed Candidate Phylum Binatota [55] (also annotated as
105 Desulfobacterota) hosted by *Petrosia ficiformis*, a sponge inhabiting fully-oxygenated shallow
106 seas where no known hydrothermal venting or hydrocarbon seepage exists [42]. The presence of
107 Binatota (described as Deltaproteobacteria bin18) was also reported in the shallow water
108 growing sponge species *Aplysina aerophoba* [39]. The source of methane for methanotrophs
109 hosted by these oxic shallow-water marine sponges remains unknown.

110

111 Here, activities of the *A. aerophoba*-hosted microbiome, residing in fully oxic seas where no
112 hydrocarbon seepage or hydrothermal venting is known, was explored using genome-centered
113 metatranscriptomics, gene-targeted sequencing, and metabolomics. We find no evidence for
114 canonical archaeal methanogenesis and show that aerobic bacterial methane synthesis may occur
115 via two recently described metabolisms: i) methylphosphonate (MPN) degradation, the proposed
116 solution to the ocean's methane paradox [56, 57], and ii) a recently described methylamine
117 (MeA) [58] transformation catalyzed by a 5' pyridoxal-phosphate-dependent aspartate
118 aminotransferase [59]. Further, we report that microbial community processing of cell-debris
119 generates carnitine. Carnitine may be subsequently metabolized to MeA and ultimately methane.
120 We highlight that a potential fate of this biogenic methane, produced endogenously through
121 either the MeA or MPN pathways, is oxidation by methylotrophic members of the Candidate
122 Phylum Binatota, a lineage specialized in the production of photoprotective pigments that may
123 benefit the host and, thereby, describe a novel methane-centered “metabolite processing loop” of
124 potential symbiotic importance.

125

126 **Methods**

127 *Sampling and sample preservation*

128 Mediterranean *Aplysina aerophoba* specimens were sampled from the Northern Adriatic in the
129 Gulf of Trieste (45°36.376, 13°43.1874), using SCUBA, within meters of each other. Four
130 individuals sponge specimens were separately sampled twice in a 24h period (at 12:00 noon day
131 1 and 12:00 noon day 2). Immediately upon collection all tissues were *in situ* preserved in RNA
132 Later solution using an underwater chamber as detailed elsewhere [60], and, once out of the
133 water, kept on ice for a few hours prior to freezing and transport to shore-based storage at -80°C.

134

135 *Preparation of libraries and metatranscriptomic sequencing*

136 RNA was extracted using Allprep DNA/RNA mini kit (Qiagen, Germany). Briefly, each
137 extraction was preformed using 30 mg of sponge sample placed in a Lysing Matrix E tube (MP
138 Biomedicals, Santa Ana, CA) to which RLT buffer containing Reagent DX (Qiagen, Hilden,
139 Germany) was added. Cells were disrupted using a TissueLyser II system (Qiagen, Germany) for
140 30 sec at 30 Hz followed by 10 min centrifugation at maximum speed. All subsequent RNA
141 extraction steps were performed according to the manufacturer's protocol. SUPERase In (Life
142 Technologies, USA) and TURBO DNA-free kit (Thermo Fisher Scientific, USA) were used for
143 RNase inhibition and DNase treatments, respectively. RNA cleanup and concentration were done
144 using RNeasy MiniElute kit (Qiagen, Germany). In order to achieve sufficient coverage of
145 informative nonribosomal transcripts, rRNA was removed with RiboMinus Eukaryote System
146 V2 kit (Ambion, Life Technologies, USA) with eukaryotic mouse-rat-human probes coupled
147 with prokaryotic probes. ERCC RNA Spike-In Control mixes (Life Technologies, USA) were
148 added to 5 µg of total RNA. RNA concentrations were measured using a Qubit 2.0 Fluorometer
149 and RNA reagents (Thermo Fisher Scientific, USA), before and after rRNA depletion. In

150 parallel, RNA integrity and purity were determined using a TapeStation 2200 system, applying
151 the High sensitivity RNA Screen Tape assay (Agilent Technologies, USA), before and after
152 rRNA depletion as well. Ultimately, 13ng of rRNA-depleted RNA were processed for cDNA
153 libraries preparations using the Collibri stranded RNA library prep kit (Thermo Fisher Scientific,
154 USA) according to the manufacturer's protocol with the sole exception being that, following
155 addition of the index codes, cDNA amplification was performed with 8 rather than the 9-11
156 recommended PCR cycles. The number of PCR cycles was optimized for our samples to reduce
157 PCR bias. The libraries were quantified using Invitrogen Collibri Library Quantification Kit
158 (Invitrogen, Thermo Fisher Scientific) according to the manufacturer's guide using Real-Time
159 qPCR. For pre-sequencing quality control (QC), 2 μ l aliquots of each provided library were
160 pooled. The resulting QC pool was size and concentration checked on an Agilent D1000
161 TapeStation system and a Qubit 2.0 fluorometer, respectively. The pool was adjusted to 1nM and
162 loaded on an Illumina MiniSeq Mid Output flow cell at 1.5pM. After demultiplexing the percent
163 of each library was used to calculate new volumes to use for constructing a normalized
164 sequencing pool. This pool was also size and concentration checked, as described above, and
165 subsequently normalized to 2nM. The normalized pool was run on an Illumina NextSeq High
166 Output flowcell at 2.2pM.

167

168 *Metatranscriptomic sequence processing*

169 Paired-end Illumina libraries were inspected for quality parameters and repetitive sequences
170 using the FastQC software package. Adapter trimming was performed using the trim adapters
171 bbdduk script from BBMaps (<https://sourceforge.net/projects/bbmap/>). Trimmed paired-end files
172 were interleaved for alignment against rRNA libraries using SortMeRNA [61]. Non-aligned

173 reads were subsequently split into paired forward and reverse files for downstream analyses. A
174 *de novo* co-assembly was performed using merged forward and reversed adapter trimmed and
175 non-rRNA aligned sequences with rnaSPAdes v.3.14.1 [62]. Sequence counts at each step for all
176 libraries, in addition to co-assembly summary statistics, are provided in Table S1.

177

178 *16S rRNA gene and transcript ASV analysis*

179 As detailed above, RNA and DNA were extracted in parallel and RNA was subsequently reverse
180 transcribed. DNA and cDNA extracts were used as templates for PCR-based amplification for
181 16S rRNA gene/transcript V4 amplicon generation using the following primers: 515F-
182 ACACTGACGACATGGTTCTACAGTGCCAGCMGCCGCGGTAA and 806R-
183 TACGGTAGCAGAGACTTGGTCTGGACTACNVGGGTWTCTAAT, and thermocycling
184 program: 94°C for 3 mins, followed for 32 x [94°C for 45s, 50°C for 60s, 72°C for 90s], 72°C
185 for 10 mins, and a 4°C hold. Amplicon sequencing was performed and an Illumina MiSeq
186 platform. Sequence analyses were performed using the DADA2 package [63] implemented in R.
187 Briefly, forward and reverse reads were trimmed with the filterAndTrim() command using the
188 following parameters: trimLeft = c(20,20), maxEE = c(2,2), phix = TRUE, multithread = TRUE,
189 minLen = 120, followed by error assessments and independent forward and reverse read de-
190 replication. Sequencing errors were removed using the dada() command and error-free forward
191 and reverse reads were merged using the mergePairs() command, specifying overhand trimming
192 and a minimum overlap of 120 base pairs. The resulting amplicon sequence variants (ASVs)
193 were assigned taxonomy by alignment against the SILVA 132 database[64]. ASV count tables
194 and taxonomy assignments were merged into an S4 object for diversity analysis and summary
195 visualization using vegan in a phyloseq[65].

196

197 *Pathway completion estimates*

198 Prodigal v2.6.1 [66] predicted protein products were annotated against the KEGG database [67]
199 via GhostKOALA [68] with the following parameters: taxonomy group, Prokaryotes; database,
200 genus_prokaryotes + family_eukaryotes; accessed February 2021. The output annotation file was
201 used for pathway completion assessment and visualization using KEGG-decoder.py [69].

202

203 *Read mapping*

204 To assess coverage as a proxy for transcript abundance, quality-trimmed non-rRNA short reads
205 were mapped to our *de novo* metatranscriptomic assembly and a public reference set of MAGs
206 binned from *A. aerophoba* in close geographical proximity to our study site [39] using Bowtie2
207 [58] and the following parameters: read counts were normalized to Transcripts per Million
208 (TPM) per library, as suggested elsewhere [70], and all data was concatenated into read count
209 tables for downstream statistical analyses.

210

211 *Phylogenomic tree*

212 A phylogenomic tree was generated for *A. aerophoba* derived MAGs using the GToTree
213 package [71]. Briefly, 37 publicly available MAGs [39] were used as the input and were ran
214 against a GToTree’s “Bacteria” HMM collection of single copy genes within this domain
215 resulting in a concatenated protein alignment constructed using Muscle [72] and trimmed with
216 TrimAl [73]. The tree was constructed in FastTree2 [74] and visualized using FigTree
217 (<https://github.com/rambaut/figtree>).

218

219 *ORF calling, annotation, and targeted gene analyses*

220 Open reading frame (ORF) identification and, subsequently, prokaryote predicted protein
221 product annotations were performed with Prodigal v2.6.1 [66] implemented in Prokka [75].
222 Selected ORFs were also aligned against the NCBI non-redundant (nr) database (accessed in
223 April 2021) using BLASTp for closest homologue taxonomy and functional annotation
224 supplementation. Targeted single gene homologue searches within our data were also performed
225 using BLASTp 2.2.30+ (*E*-value threshold = 1E-30, identity = 50%) against predicted protein
226 sequences inferred from i) metatranscriptomic assemblies, ii) unbinned metagenomic contigs,
227 and iii) MAGs.

228

229 *Metabolome analysis*

230 Four ~1.5g frozen tissue samples collected from specimens 25, 27, 28, and 29 each in 1:1 wt:wt
231 sample to EtOH ratio solutions were shipped on dry ice for biogenic amines panel metabolome
232 analyses by HILIC-QTOF MS/MS [76] at the UC Davis West Coast Metabolomic Center
233 (<http://metabolomics.ucdavis.edu/>). Raw output files were curated based on internal standard
234 removal, signal to noise ratio cutoff and a minimum peak threshold of 1000, and subsequently
235 parsed based on average ($n=4$) metabolite log fold increases relative to blanks, as suggested
236 elsewhere [77]. Only metabolites with non-redundant names and InChIKey identifiers and
237 average fold changes higher than 5 relative to blanks were retained for further analyses.

238

239 **Results and Discussion**

240 *Net relative activity of symbiont lineages*

241 A normalized activity survey based on metatranscriptomic read mapping against 37 Metagenome
242 Assembled Genomes (MAGs) [39] representative of the *A. aerophoba*-associated microbial
243 community (Figure S1) shows Gammaproteobacteria, Cyanobacteria, Deltaproteobacteria,
244 Acidobacteria, Chloroflexi, and Poribacteria as the most active lineages (Figure 1, Figure S2).
245 The Alphaproteobacteria appear to be an abundant and diverse lineage with relatively lower
246 levels of activity. Our observations corroborate previous work regarding sponge microbiome
247 activity [43] and highlight consistent transcriptional activity, *i.e.*, relative activity of each
248 community lineage is constant across time (24h) and different sponge specimens ($n = 4$, Figure
249 S2).

250

251 *Sponge microbiome predicted activities: C-, N-, and S-cycling, fermentations, and photosystems*
252 As a broad metatranscriptomic-predicted activity survey of the *A. aerophoba*-associated
253 microbiota, aerobic and anaerobic metabolic pathways [49] were explored (Fig 2 & S3). Carbon
254 fixation via oxygenic photoautotrophy (CBB cycle) predominates. The incomplete transcription
255 of other potential chemoautotrophic pathways [e.g.: 3-Hydroxypropionate (3HP) Bicycle, and 4-
256 Hydroxybutyrate/3-Hydroxypropionate (4HB/3HP)] is also observed. Previous transcriptomic
257 and metatranscriptomic surveys report the presence of CBB and rTCA cycles in Demosponge
258 associated symbionts [41, 78]. Here, we corroborate an active CBB cycle, but fail to detect
259 transcripts associated with the rTCA pathway suggesting that the rTCA cycle may not be a
260 ubiquitous feature across sponge microbiomes.

261

262 Active carbon degradation pathways include those of pectin, chitin, cellulose, (D-galacturonate
263 epimerase, D-galacturonate isomerase, oligogalacturonide lyase, chitinase, cellulase), and alpha-

264 amylase utilization. The catalysis of plant cell walls (pectin and cellulose) and continuously
265 regenerated sponge matrix components (chitin) posits heterotrophy as a functional motif for this
266 symbiosis, as previously suggested [79]. Interestingly, diacetylchitobiose deacetylase activity is a
267 chitin degradation pathway only found in Archaea [80] and shows the heterotrophic activities of
268 these community members (Figure S3).

269
270 An active sulfur cycle is predicted in our samples (Figure 2), adding to a growing body of
271 evidence showing that microbial sulfur cycling is an important sponge resource [81-83].
272 Continuous sulfur cycling, localized to anoxic niches within sponges, may benefit the host by the
273 removal of toxic metabolites such as hydrogen sulfide [49, 84]. Diversification of sulfur
274 metabolism in bacteria coincides with the emergence of metazoan life [85], suggesting a long co-
275 evolutionary history reflected in the reduced genomes, as reviewed elsewhere [86], and versatile
276 metabolisms of contemporary sulfur cycling sponge symbionts [82, 83].

277
278 Transcripts related to acetate and ethanol-based mixed acid fermentations are detected and
279 suggest activities with reactions obligatorily localized to anaerobic niches [49]. Complete
280 pathways for thiamin, riboflavin, and cobalamin synthesis (*vitamins B₁, B₂, and B₁₂*,
281 respectively) and for all 20 essential amino acids and B vitamins, important microbial products
282 with potential host benefits, are expressed across all biological replicates (Figure S3) and support
283 metabolite exchange [87] as one potential driver for this symbiosis.

284
285 Photoactivity is dominated by cyanobacterial Photosystem II transcripts and corroborates
286 previous reports [60, 88]. Photosynthate transport from symbiotic photoautotrophs to the sponge

287 host has been suggested as a common activity underpinning this symbiosis [60, 88, 89] but the
288 transfer of photosynthates to the sponge is host- and cyanobacteria-specific and cannot be
289 predicted by *-omics* data alone [42].

290

291 Nitrogen cycling activity was also expressed and is described and discussed later in relation to
292 the here suggested methane production pathways.

293

294 Interestingly, we detected a transcribed predicted pathway for methanogenesis via
295 trimethylamine (TMA) (Figure 2), a known activity of archaea in the human gastrointestinal tract
296 [90].

297

298 *Canonical anaerobic archaeal methanogenesis is absent in A. aerophoba*

299 Motivated by the presence of methanotrophs (Binatota) and by the unexpected KEGG-pathway
300 prediction for TMA-based methanogenesis (Figure 2), we used a combined *-omics* approach to
301 explore methane production avenues in *A. aerophoba*. We do not detect archaeal methanogenic
302 lineages canonically associated with this activity (Figure S1) nor genes or transcripts for
303 euryarchaeal methyl-coenzyme M reductase (*mcrA*). Additional scrutiny of transcripts encoding
304 TMA methyltransferase homologues (*mttB* within the COG5598 super family), revealed that
305 these genes lack pyrrolysine (Figure S4), a characteristic non-canonical amino acid residue
306 involved in methane cleavage from methylated amines [91]. Non-pyrrolysine *mttB* homologues
307 allow the strict anaerobe *Desulfitobacterium hafniense* to grow on glycine betaine with carbon
308 dioxide and dimethylglycine as by-products [92]. Accordingly, we hypothesize that these *mttB*
309 homologues may still play an important role in TMA cycling, however, the functional prediction

310 of TMA methylotrophic methanogenesis by Euryarchaeal *mttB* is likely not correct, and
311 alternative methane sources for Binatota methanotrophy in *A. aerophoba* were investigated.

312

313 *Sponge-hosted aerobic bacterial methane synthesis: marine methane paradox*

314 Studies of the oversaturation of methane in fully oxygenated aquatic environments, a
315 phenomenon dubbed the “marine methane paradox” [93] in the ocean, have revealed that aerobic
316 bacterial degradation of methylphosphonates [56] and methylamines [59] results in methane
317 production. These observations challenge the view of methanogenesis as a strictly anaerobic
318 process performed exclusively by archaea and show that i) bacteria play an important role in the
319 production of a potent greenhouse gas and that ii) this activity occurs in a broader range of redox
320 (e.g., aerobic, microaerophilic) and chemical (sulfidic) environments. We, thus, searched for the
321 presence and expression of marker genes for these aerobic methanogenesis pathways in sponge-
322 derived MAGs [39] and our metatranscriptomes.

323

324 *Methylphosphonate-based aerobic bacterial methane synthesis*

325 An alternative pathway for methane generation is the aerobic degradation of methylphosphonates
326 (MPNs) through the C-P lyase activity of PhnJ [56]. This pathway is enriched in free-living
327 marine pelagic bacteria from phosphate limited locations including the Sargasso and
328 Mediterranean Seas [94], the latter being the sampling site of our sponge specimens. Genes
329 encoding *phnJ* homologues are transcribed across all our metatranscriptomic libraries (Figure 3).
330 We also detect *phnJ* gene homologues in 3 Alphaproteobacterial MAGs, with active
331 transcription of this gene detected in at least one lineage (bin52, Figure 1). Phosphonate
332 metabolism was previously reported for the sponge *Xestospongia muta* [81] which, together with

333 our results, suggests that seawater derived phosphonates may be an important source of inorganic
334 phosphate for sponge-associated microbes. An additional mechanism for phosphate sequestration
335 in phosphate-limited conditions is the production of polyphosphates, which was previously
336 reported for sponge symbionts [13]. Overall, PhnJ activity suggests that sponge symbionts may
337 experience phosphate-limited conditions and that mechanisms to cope with this nutrient
338 limitation are important for symbiont survival. We highlight that these results also imply that
339 hydrocarbons, including methane, are potentially released as a result of phosphonate cleavage by
340 C-P lyase.

341

342 *Methylamine-based aerobic bacterial methane synthesis*

343 Recently, a new MeA-based aerobic methane synthesis metabolism, using 5' pyridoxal-
344 phosphate-dependent aspartate aminotransferase, was described in freshwater bacteria [59]. We
345 report the transcription in our metatranscriptomic libraries of closely related gene homologues to
346 the functionally confirmed proteobacterial *aat* (sequence: MK170382.1 recovered from
347 *Acidovorax* sp.), the single heritable unit required to confer methane generating activity to an *E.*
348 *coli* clone (Figure 4). The closest transcribed homologues to MK170382.1, classified as
349 Alphaproteobacterial predicted proteins, also maintain conserved key functional domains: a
350 catalytic Lys residue and nine pyridoxal 5'-phosphate bidding sites (Figure 4 and S5).
351 Additionally, *aat* gene homologues detected in MAGs allowed assignment of
352 Alphaproteobacteria, Actinobacteria, Nitrospinae, and SBR phylogenetic provenance. At least
353 one of these lineages (Alphaproteobacterial bin52) actively transcribes this gene (Figures 1 & 4).
354 Noting that AAT expressed in *E. coli* confers aerobic methane synthesis ability in the presence of
355 MeA [59], our genomic and metatranscriptomic findings suggest that demosponges may host

356 aerobic bacterial methane synthesis *via* AAT-mediated MeA metabolism. Methane generation
357 *via aat* expression is also linked to growth in *Acidovorax* and when heterologously expressed in
358 *E. coli*, suggesting that methanogenic activity may concomitantly allow anabolic nitrogen
359 uptake. *aat*-based methane release from MeA rather than the oxidation of the MeA-methyl
360 groups for energy may only be favored under high carbon and low nitrogen conditions. Whilst
361 sponge-secreted ammonia may result in bioavailable nitrogen to the associated microbiota,
362 conditions of nitrogen availability inside the sponge are variable. For example, the fluxes of
363 dissolved inorganic nitrogen differed across specimens of *X. muta*, with some specimens serving
364 as source and others as sinks of dissolved inorganic nitrogen [87, 95]. Furthermore, *A.*
365 *aerophoba*, was shown to serve as ammonium sink in spring and as ammonium source in the fall
366 [24]. Some sponge species are characterized by constitutive nitrogen fixation [96] which may
367 provide continuous availability of inorganic nitrogen to the microbial community, however, in
368 the case of *A. aerophoba*, we could not detect genes involved in nitrogen fixation based on our
369 metatranscriptomics predictions (Figure 2). Finally, whilst our metatranscriptomic analysis
370 predicts ammonia oxidation coupled with nitrite oxidation, as well as dissimilatory nitrate
371 reduction (i.e., nitrate ammonification), it also predicts denitrification, which results in loss of
372 bioavailable nitrogen sources to the microbiota (Figure 2). Denitrification was previously shown
373 to occur in the Mediterranean sponge species *Dysidea avara* and *Chondrosia reniformis* [97].
374 Denitrification can be favored over other nitrogen cycling pathways in anaerobic niches within
375 the sponge tissue, possibly resulting in nitrogen limited conditions to the microbiota. Under these
376 conditions MeA may serve as a nitrogen source to part of the microbial community and the
377 process would result in methane release. Future work involving functional characterization of

378 sponge-hosted *aat* homologues is needed to test our proposed involvement of *aat* in sponge-
379 associated aerobic methane synthesis.

380

381 *Methylphosphonate and methylamine sources in marine sponges*

382 The source of MPN and MeA may be exogenous, with the sponge concentrating these
383 compounds from DOM during its efficient water filtration. MPN and MeA have in fact
384 previously been reported as common compounds in seawater [56, 98-100]. Alternatively, these
385 substrates for methanogenesis may derive from endogenous metabolism. Based on our inability
386 to detect methylphosphonate synthase (*mpnS*) genes or transcripts in our data, encoding the
387 enzyme responsible for MPN synthesis [101], we propose that MPN is not produced
388 endogenously by the sponge-associated community and rather likely sourced from the
389 surrounding seawater. Conversely, the source of MeA may indeed be endogenous, deriving from
390 the metabolic processing of TMA [102]. TMA can be produced from choline [103], glycine
391 betaine [104] or carnitine [105]. Genes and transcripts related to TMA generation from glycine
392 (*grdH*) and choline (*cutC*) derived transformations were not detected in our genomes and
393 metatranscriptomes. We, however, report the presence of gene homologues to *cntAB*, involved in
394 carnitine-based TMA biosynthesis [105]. We performed metabolomic analysis which directly
395 detected the presence of carnitine in our *A. aerophoba* tissue samples (Supplemental File 1).
396 Carnitine (γ -trimethylamino- β -hydroxybutyric acid) is a ubiquitous quaternary amine produced
397 by all members of animalia, including Porifera [106] that is metabolized by prokaryotes under
398 aerobic conditions into TMA and malic acid or, under anaerobic conditions, to glycine betaine
399 and, subsequently, glycine [107]. Recent studies of *A. aerophoba* used metagenomics and single
400 cell sequencing to infer the presence of a symbiont guild specialized in carnitine utilization as: i)

401 a source of carbon and nitrogen anabolism [39] and/or ii) a substrate for energy-yielding
402 catabolism [18]. Further, the presence of 2-methylbutyryl-carnitine was reported for six sponge
403 species from the Great Barrier Reef, Australia [108], supporting the ubiquitous presence of
404 carnitine-related compounds in sponges and their potential not only as a source of food but also
405 as precursor to methanogenesis substrates for the associated microbiota. In fact, microbial-
406 mediated production of TMA from carnitine in our samples is predicted by the transcription of
407 the *cntAB* genes by lineages classified as Alphaproteobacteria and Actinobacteria (Figure 1).
408 Further, TMA oxidation to trimethylamine-N-oxide (TMAO) and “back-production” from
409 TMAO are predicted by the detection of FMO transcripts from Proteobacteria and Actinobacteria
410 and *torA* genes in Actinobacteria, encoding TMA oxidase [109] and TMO reductase [110],
411 respectively. The detection of genes homologous to *tdm* and at least one subunit of the *dmmABC*
412 complex in Alphaproteobacterial lineages, encoding TMAO demethylase [109] and DMA
413 monooxygenase [111], respectively, also suggests that TMAO may be further oxidized to
414 dimethylamine (DMA) and, finally, MeA (Figure 1). Taken together, we suggest that, while both
415 substrates for aerobic bacterial methanogenesis (MPN and MeA) may be seawater derived, MeA
416 may also be endogenously produced through the recycling of sponge cell debris (i.e., carnitine)
417 resulting from continuous replacement of choanocyte cells. A high turnover of choanocyte cells,
418 involving high proliferation followed by cell shedding, was shown to occur in *Halisarca*
419 *caerulea* and was suggested to enable the constant renewal of the sponge filter system required
420 for its efficient water filtration [112].

421

422 *Delta*proteobacteria (*Binatota*) methylotrophs as potential methane sinks

423 With two potential sources of biogenic aerobic methane in the sponge holobiont, the highly
424 active *A. aerophoba*-associated symbiont bin18, (Candidate phylum Binatota, or
425 Desulfobacterota, an unclassified Deltaproteobacteria lineage according to NCBI taxonomy) is
426 here identified as a likely methane sink (Figures 1 and S2). A previous detailed study of this
427 lineage described them as pigment production specialists with a predicted lifestyle that is heavily
428 reliant on aerobic methylotrophy and alkane degradation [113]. We show that bin18 actively
429 transcribes methane monooxygenase (*pmoA*) gene (Figure 5A). Similarly, a member of the same
430 phylum was recently reported to express *pmoA* in the sponge species *P. ficiformis* [42]
431 implicating this Deltaproteobacterial (Binatota) lineage in sponge methane oxidation.
432 Methylotrophy results in reducing equivalents through the formation of methanol as a key
433 intermediate [114], and can thus facilitate the production of carotenoid pigments. Further, we
434 detect the transcription of genes involved in all the intermediate steps necessary for 7, 8-dihydro
435 beta-carotene, chlorobactene, and isorenieratene pigment biosynthesis (Figure 5B). These
436 pigments can serve as photoprotectants for the host and its symbionts [115]. Together, our results
437 suggest that at least two independent methane production pathways, using host-derived MeA and
438 seawater-derived MPN, represent previously unrecognized syntrophies that, through methane as
439 an intermediate, contribute to the production of photoprotective pigments that may benefit the
440 sponge holobiont.

441

442 *Global distribution of sponge-associated methylotrophs*

443 To determine the global prevalence of sponge-associated methylotrophic pigment producers, we
444 searched the Sponge Microbiome Project (SMP) dataset for highly similar (>98% ID, >99%
445 subject length alignment) matches to the 16S rRNA gene sequence recovered from Binatota

446 (bin18). We identify numerous matches to our Binatota query sequence in at least 46 sponge
447 species (Figure S6) with significant (student t-test, $P_{\text{val}} < 0.05$) enrichment of this lineage in 15
448 sponge species relative to seawater metagenomes (Figure 6). The highest percent Binatota
449 abundances in the SMP dataset are observed in the following sponge species: *Pseudocorticium*
450 *jarrei*, *Ircinia variabilis*, *Cacospongia mollior*, *Ircinia oros*, and *Spongia agaricina*. We note
451 that Binatota phylotypes are significantly enriched in *A. aerophoba* and *Aplysina archeri*
452 specimens relative to seawater (Figure 6); however, this enrichment is not detected in six other
453 *Aplysina* species sampled (Figure S6). This suggests that microbial methane cycling potential
454 may be a species-specific activity in the genus *Aplysina*. Interestingly, *P. ficiformis*, another
455 Mediterranean sponge species with recently published metatranscriptomes, metagenomes, and
456 MAGs [42, 60], was also identified as hosting a significantly enriched Binatota community and
457 was, accordingly, used as a second model for assessing methane cycling potential in sponges.

458

459 *Methane cycling meta-analysis of Petrosia ficiformis*

460 To explore whether MPN- and MeA-based methane cycling activity is unique to *A. aerophoba*,
461 or rather a more widely distributed characteristics of sponge holobionts, we re-analyzed recently
462 published collections of MAGs and metatranscriptomes of the species *P. ficiformis* [42, 60].
463 Genes involved in carnitine breakdown to methylamines (*cntAB*, *tdm*, *dmmB*), MeA-based
464 methane generation (*aat*) [59], and methane oxidation (*pmoA*) were detected in *P. ficiformis*
465 MAGs (Figure S7). In both sponge species, MeA production potential is predicted predominantly
466 from Alphaproteobacterial community members. Additional predicted aerobic methanogenic
467 lineages in both sponge species include members of the Actinobacteria, while in *P. ficiformis*
468 *Bacteroides*, *Latescibacteria*, and *Chloroflexi* may also be involved in this activity. The gene

469 marker for MPN-based methanogenesis (*phnJ*), present and actively transcribed in *A. aerophoba*
470 symbionts (Figure 3), was not detected in *P. ficiformis* MAGs nor was it found expressed based
471 on its metatranscriptomes. These results indicate that bioavailability of phosphate to symbionts
472 may differ across demosponge species. Lastly, we note that *pmoA* gene homologues and
473 transcripts, indicative of methane oxidation, were also detected in a Deltaproteobacterial MAG,
474 classified as Candidate Phylum Binatota, from *P. ficiformis* [42]. These meta-analysis results
475 show that methane cycling may be widespread among Porifera. While the Binatota appear to
476 serve as a common methane sink in both *A. aerophoba* and *P. ficiformis*, the microbial phyla
477 responsible for methanogenesis and the pathways involved, appear to be species-specific
478 (Figures 1 & S7).

479

480 *Local and global ecological impact of methane cycling in marine sponges*

481 Symbionts enable their animal hosts to benefit from microbial metabolism and, ultimately,
482 impact ecosystem health and function [2]. We show one such case study involving the
483 biogeochemical cycling of C, N, and P, via two independent pathways for aerobic bacterial
484 methane synthesis, to produce photoprotectant pigments that directly benefit the sponge host:
485 host derived organic matter (carnitine) + environmentally filtered compounds (e.g., MPN) → *in*
486 *situ* aerobic bacterial methane production → generation of bioavailable N and P for symbionts +
487 photoprotective pigments for host (Figure 7).

488

489 Methane is a potent greenhouse gas capable of trapping 3.7 times more radiated heat than CO₂
490 [116] and a significant determinant, even in trace amounts, of the Earth's radiative atmospheric
491 balance [117]. The ocean is an important source of global methane emissions [118, 119].

492 Depending on the coupling of methanogenesis and methanotrophy in sponges, methane may be
493 internally cycled, consumed, or emitted to the surrounding seawater. If emitted, considering the
494 over half-billion-year-old history of sponge symbiosis [3, 4] and the remarkable water filtration
495 activity of marine sponges [7], it is possible that this previously unrecognized marine animal-
496 hosted methane cycle may have, over geological time, influenced methane concentrations of
497 marine environments and possibly fluxes of methane from supersaturated ocean waters to the
498 atmosphere.

499

500 **Conclusions**

501 The metabolic activities of the sponge microbiome are saliently diverse; interestingly, here we
502 also predict aerobic bacterial methane synthesis based on independent methylphosphonate and
503 methylamine metabolisms. Together with the presence of abundant and active methylotrophic
504 community members, this suggests the existence of a previously unrecognized aerobic bacterial
505 methane cycle in demosponges that may affect methane concentration in sponge dominated
506 marine habitats. Further studies including quantitative methane measurements in sponge
507 incurrent and excurrent seawater, in the presence of natural and amended methanogenic
508 substrates (MeA and MPN), and under different nutrient (N and P) conditions, will enhance our
509 understanding of the influence of sponge holobionts on present and future marine ecosystems.

510

511 **List of abbreviations**

512 3HP - 3-Hydroxypropionate

513 4HB/3HP - 4-Hydroxybutyrate/3-Hydroxypropionate

514 AAT – aspartate aminotransferase

515 CBB – Calvin Benson Bassham

516 DMA – Dimethylamine

517 HMA- High Microbial abundance

518 HMM- Hidden Markov Model

519 Lys – Lysine

520 MAGs - Metagenome assembled genomes

521 *mcrA* – methyl-coenzyme M reductase

522 MeA – Methylamine

523 MPN – Methylphosphonate

524 *mpnS* – methylphosphonate synthase

525 *mttB* – methyltransferase

526 QC – Quality control

527 rTCA – reductive Tricarboxylic Acid

528 SMP – Sponge microbiome project

529 SRBs – Sulfate reducing bacteria

530 TMA – Trimethylamine

531 TMAO- trimethylamine-N-oxide

532

533 **Availability of data and materials**

534 All metatranscriptomes used in this study are publicly available under the following NCBI Bio

535 project ID: XXXXX

536

537

538 **Figure Legends**

539

540 **Figure 1. Survey of methane cycling genes and transcripts.** Left - Relative global activity
541 survey for 37 dominant lineages, arranged based on phylogenomic relatedness and color-coded
542 at the Phylum-level of taxonomy, in the *A. aerophoba*-associated microbiome. Relative activity
543 is represented by circle size and depicts mean values per lineage from eight independent
544 metatranscriptomes: four sponge specimens sampled twice, at noon twenty-four hours apart (see
545 Figure S2 for individual results). Right - Methane relevant genes and gene transcripts detected in
546 MAGs and in the metatranscriptomes are depicted by black and red “X” symbols, respectively.

547

548 **Figure 2. Microbiome metatranscriptome-predicted activity.** Microbial activity survey based
549 on collection day and specimen source for selected microbial metabolisms: carbon fixation,
550 carbon degradation, nitrogen cycle, sulfur cycle, methanogenesis, fermentation, and
551 photosystems. Day 1 and Day 2 depictions represent biological replicates collected 24h apart at
552 noon. The color gradient depicts the fractional percentage of KEGG module pathway
553 completion.

554

555 **Figure 3. *phnJ* expression of a sponge-hosted Alphaproteobacteria.** *recA* normalized
556 transcriptional activity of the *phnJ* gene in four sponge specimens (samples 25, 27, 28, 29) and in
557 two time replicates (Noon 1 and Noon 2).

558

559 **Figure 4. Phylogeny of *aat* genes and transcripts.** (A) Phylogenetic tree of 100 COG0446
560 member sequences including *aat* gene (green leaves) and transcript (blue leaves) homologues

561 identified from *A. aerophoba* MAGs and metatranscriptomes, respectively. The closest sponge-
562 recovered gene and transcript sequences to MK170382.1 (red leaf), the *aat* gene confirmed to
563 confer the methanogenesis phenotype in *E. coli* by Wang and colleagues [59], are emphasized in
564 the orange cluster. (B) A focused depiction of the Wang and colleagues cluster highlighting the
565 phylogenetic provenance of all highly similar sequences to MK170382.1 and showing the closest
566 full-length genes recovered from MAGs and metatranscriptomic assemblies with gold and black
567 stars, respectively.

568

569 **Figure 5. Transcription of Deltaproteobacterial (bin18, Candidate Phylum Binatota) *pmoA***
570 **gene and pigment biosynthesis pathways.** (A) *recA* normalized transcriptional activity of *pmoA*
571 gene in four sponge specimens and two time points. (B) Transcribed genes related to pigment
572 biosynthesis pathways identified in the Deltaproteobacterial MAG are denoted by red circles
573 next to the gene names. Predicted pigment metabolites from this activity are highlighted in
574 yellow boxes.

575

576 **Figure 6. Global sponge associated Binatota survey.** Relative percent abundance of 16S rRNA
577 sequences with >98% sequence ID and 99% of query length to the *A. aerophoba* bin18
578 (Binatota) 16S rRNA gene sequence, summarized in quartile boxplots. Species shown had
579 significantly (student t-test, $P_{\text{val}} < 0.05$) higher relative abundances of bin18 16S rRNA gene
580 matches than marine pelagic metagenomes. Quartile box plots are arranged in descending
581 median values of all observations from top to bottom. *Aplysina aerophoba* and *Petrosia*
582 *ficiformis*, both sponges analyzed in this study, are highlighted in red and purple, respectively.

583

584 **Figure 7. Bacterial aerobic methane cycling model.** Conceptual diagram depicting a metabolic
585 cascade involved in major microbial transformations leading to methane production/oxidation.
586 Genes for key enzymes involved in each substrate transformation are denoted in italics. The
587 phylogenetic association of bins where they have been detected are shown as color-coded circles
588 next to reaction arrows. Circles with black frame also recruited transcript reads for the depicted
589 marker gene, meaning the function was active at the time of sampling.

590

591 **Acknowledgments**

592 Livio Steindler is warmly thanked for assisting us as captain and for providing his sailing boat
593 ‘Colpo de Fulmine II’ for the sponge sampling. We thank the ‘Area51 Diving School Trieste’ for
594 supporting all the dive equipment in this research and assisting with the scientific dives. Cláudia
595 Ferreira is acknowledged for the design of Figure 7. Dr. Stefan Green and Dr. Kevin J Kunstman
596 from the Sequencing Core at the University of Illinois at Chicago (UIC) for advice on library
597 preparation protocols and for sequencing. We thank Kelly Paglia and Christopher Brydges at the
598 UC Davis metabolomic center for technical support with our sponge tissue analyses.

599

600 **Funding**

601 This study was funded by the Gordon and Betty Moore Foundation, through Grant GBMF9352
602 and by the Israel Science Foundation [grant no. 1243/16] titled ‘Identification of molecular
603 mechanisms underlying sponge-microbiome symbiosis’. GAR was supported by a Zuckerman
604 Postdoctoral research fellowship.

605

606 **Ethics Declarations**

607 **Ethics approval and consent to participate**

608 Not applicable.

609 **Consent for publication**

610 Not applicable.

611 **Competing interests**

612 The authors declare that they have no competing interests.

613

614

615 **Author Contributions**

616 GAR: Project leadership, bioinformatic analyses, wrote the manuscript.

617 RBS: Laboratory work, data analysis.

618 AF: Experimental design of field work and sampling

619 RR: Experimental design of field work and sampling

620 MG: Experimental design of field work and sampling

621 GC: Experimental design of field work and sampling

622 AIG: Software development, data analysis.

623 LS: Project leadership, funding acquisition, analysis validation, field sampling, advised GAR,

624 wrote the manuscript.

625

626 **References**

- 627 1. Thomas, T., et al., *Diversity, structure and convergent evolution of the global sponge*
628 *microbiome*. *Nat Commun*, 2016. **7**: p. 11870.
- 629 2. Pita, L., et al., *The sponge holobiont in a changing ocean: from microbes to ecosystems*.
630 *Microbiome*, 2018. **6**(1): p. 46.
- 631 3. Brain, C.K.B., et al., *The first animals: ca. 760-million-year-old sponge-like fossils from*
632 *Namibia*. *South African Journal of Science*, 2012. **108**(1/2).

633 4. Li, C., Y. Chen, and T. Hua, *Precambrian sponges with cellular structures*. Science, 634 1998. **279**(5352): p. 879-882.

635 5. Feuda, R., et al., *Improved modeling of compositional heterogeneity supports sponges as* 636 *sister to all other animals*. Curr Biol, 2017. **27**(24): p. 3864-3870 e4.

637 6. Hentschel, U., et al., *Genomic insights into the marine sponge microbiome*. Nat Rev 638 Microbiol, 2012. **10**(9): p. 641-54.

639 7. Morganti, T.M., et al., *Size Is the major determinant of pumping rates in marine sponges*. 640 Front Physiol, 2019. **10**: p. 1474.

641 8. Yahel, G., et al., *In situ feeding and element removal in the symbiont-bearing sponge* 642 *Theonella swinhonis: Bulk DOC in the major source of carbon*. Limnol. Oceanogr., 2003. 643 **48**: p. 141-149.

644 9. Rooks, C., et al., *Deep-sea sponge grounds as nutrient sinks: denitrification is common in* 645 *boreo-Arctic sponges*. Biogeosciences, 2020. **17**(5): p. 1231-1245.

646 10. Rix, L., et al., *Coral mucus fuels the sponge loop in warm- and cold-water coral reef* 647 *ecosystems*. Sci Rep, 2016. **6**: p. 18715.

648 11. Goeij, J., et al., *Surviving in a marine desert: The sponge loop retains resources within* 649 *coral reefs*. Science, 2013. **432**.

650 12. Kahn, A.S., et al., *Benthic grazing and carbon sequestration by deep-water glass sponge* 651 *reefs*. Limnology and Oceanography, 2015. **60**(1): p. 78-88.

652 13. Zhang, F., et al., *Phosphorus sequestration in the form of polyphosphate by microbial* 653 *symbionts in marine sponges*. Proc Natl Acad Sci U S A, 2015. **112**(14): p. 4381-6.

654 14. Gloeckner, V., et al., *the HMA-LMA dichotomy revisited: an electron microscopical* 655 *survey of 56 sponge species*. Biol. Bull., 2014: p. 78-88.

656 15. Wilkinson, C., *Microbial Associations in Sponges. III. Ultrastructure of the in situ* 657 *associations in coral reef sponges*. Marine Biology, 1978. **49**: p. 177-185.

658 16. Hentschel, U., K.M. Usher, and M.W. Taylor, *Marine sponges as microbial fermenters*. 659 FEMS Microbiol Ecol, 2006. **55**(2): p. 167-77.

660 17. Lackner, G., et al., *Insights into the lifestyle of uncultured bacterial natural product* 661 *factories associated with marine sponges*. Proc Natl Acad Sci U S A, 2017. **114**(3): p. 662 E347-E356.

663 18. Bayer, K., et al., *Marine Sponges as Chloroflexi Hot Spots: Genomic insights and high-* 664 *resolution visualization of an abundant and diverse symbiotic clade*. mSystems, 2018. 665 **3**(6).

666 19. Horn, H., et al., *An enrichment of CRISPR and other defense-related features in marine* 667 *sponge-associated microbial metagenomes*. Front Microbiol, 2016. **7**: p. 1751.

668 20. Burgsdorf, I., et al., *Lifestyle evolution in cyanobacterial symbionts of sponges*. mBio, 669 2015. **6**(3): p. e00391-15.

670 21. Thomas, T., et al., *Functional genomic signatures of sponge bacteria reveal unique and* 671 *shared features of symbiosis*. ISME J, 2010. **4**(12): p. 1557-67.

672 22. Webster, N.S. and T. Thomas, *The sponge hologenome*. mBio, 2016. **7**(2): p. e00135-16.

673 23. Haber, M., et al., *Genomic Insights Into the Lifestyles of Thaumarchaeota Inside* 674 *Sponges*. Front Microbiol, 2020. **11**: p. 622824.

675 24. Bayer, K., S. Schmitt, and U. Hentschel, *Physiology, phylogeny and in situ evidence for* 676 *bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba*. Environ 677 Microbiol, 2008. **10**(11): p. 2942-2955.

678 25. Moeller, F.U., et al., *Characterization of a thaumarchaeal symbiont that drives*
679 *incomplete nitrification in the tropical sponge Ianthella basta*. Environ Microbiol, 2019.
680 **21**(10): p. 3831-3854.

681 26. Camargo, J.A. and A. Alonso, *Ecological and toxicological effects of inorganic nitrogen*
682 *pollution in aquatic ecosystems: A global assessment*. Environ Int, 2006. **32**(6): p. 831-
683 49.

684 27. de Goeij, J.M., et al., *Tracing 13C-enriched dissolved and particulate organic carbon in*
685 *the bacteria-containing coral reef sponge Halisarca caerulea: Evidence for DOM-*
686 *feeding*. Limnology and Oceanography, 2008. **53**(4): p. 1376-1386.

687 28. Jiménez, E. and M. Ribes, *Sponges as a source of dissolved inorganic nitrogen:*
688 *Nitrification mediated by temperate sponges*. Limnology and Oceanography, 2007. **52**(3):
689 p. 948-958.

690 29. Hoffmann, F., et al., *Complex nitrogen cycling in the sponge Geodia barretti*. Environ
691 Microbiol, 2009. **11**(9): p. 2228-2243.

692 30. Yahel, G., et al., *In situ feeding and metabolism of glass sponges (Hexactinellida,*
693 *Porifera) studied in a deep temperate fjord with a remotely operated submersible*.
694 Limnology and Oceanography, 2007. **52**(1): p. 428-440.

695 31. Ribes, M., et al., *Functional convergence of microbes associated with temperate marine*
696 *sponges*. Environ Microbiol, 2012. **14**(5): p. 1224-39.

697 32. Maldonado, M., et al., *Sponge skeletons as an important sink of silicon in the global*
698 *oceans*. Nature Geoscience, 2019. **12**(10): p. 815-822.

699 33. Morganti, T., et al., *VacuSIP, an imoproved InEx method for In Situ measurement of*
700 *particulate and dissolved compounds processed by active suspension feeders*. Journal of
701 Visualized Experiments, 2016. **114**(e54221).

702 34. Yahel, G., D. Marie, and A. Genin, *InEx-a direct in situ method to measure filtration*
703 *rates, nutrition, and metabolism of active suspension feeders*. Limnology and
704 Oceanography: Methods, 2005. **3**(2): p. 46-58.

705 35. Zhang, F., et al., *Microbially mediated nutrient cycles in marine sponges*. FEMS
706 Microbiol Ecol, 2019. **95**(11).

707 36. Maldonado, M., M. Ribes, and F.C. van Duyl, *Nutrient fluxes through sponges: biology,*
708 *budgets, and ecological implications*. Adv Mar Biol, 2012. **62**: p. 113-82.

709 37. Rix, L., et al., *Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon*
710 *and nitrogen assimilation in sponge-microbe symbioses*. ISME J, 2020. **14**(10): p. 2554-
711 2567.

712 38. Hudspith, M., et al., *Subcellular view of host-microbiome nutrient exchange in sponges:*
713 *insights into the ecological success of an early metazoan-microbe symbiosis*.
714 Microbiome, 2021. **9**(1): p. 44.

715 39. Slaby, B.M., et al., *Metagenomic binning of a marine sponge microbiome reveals unity in*
716 *defense but metabolic specialization*. ISME J, 2017. **11**(11): p. 2465-2478.

717 40. Robbins, S.J., et al., *A genomic view of the microbiome of coral reef demosponges*. ISME
718 J, 2021.

719 41. Moitinho-Silva, L., et al., *Integrated metabolism in sponge-microbe symbiosis revealed*
720 *by genome-centered metatranscriptomics*. ISME J, 2017. **11**(7): p. 1651-1666.

721 42. Burgsdorf, I., et al., *Lineage-specific energy and carbon metabolism of sponge symbionts*
722 *and contributions to the host carbon pool*. ISME J, 2022. **16**(4): p. 1163-1175.

723 43. Radax, R., et al., *Metatranscriptomics of the marine sponge *Geodia barretti*: tackling*

724 *phylogeny and function of its microbial community*. Environ Microbiol, 2012. **14**(5): p.

725 1308-24.

726 44. Taylor, J.A., et al., *Phylogeny resolved, metabolism revealed: functional radiation within*

727 *a widespread and divergent clade of sponge symbionts*. ISME J, 2021. **15**(2): p. 503-519.

728 45. Fan, L., et al., *Marine microbial symbiosis heats up: the phylogenetic and functional*

729 *response of a sponge holobiont to thermal stress*. ISME J, 2013. **7**(5): p. 991-1002.

730 46. Webster, N.S., et al., *Phylogenetic diversity of bacteria associated with the marine*

731 *sponge *Rhopaloeides odorabile**. Appl Environ Microbiol, 2001. **67**(1): p. 434-44.

732 47. Hoffmann, F., et al., *Oxygen dynamics and transport in the Mediterranean sponge*

733 *Aplysina aerophoba*. Mar Biol, 2008. **153**(6): p. 1257-1264.

734 48. Lavy, A., et al., *Intermittent Hypoxia and Prolonged Suboxia Measured In situ in a*

735 *Marine Sponge*. Frontiers in Marine Science, 2016. **3**.

736 49. Hoffmann, F., et al., *An Anaerobic World in Sponges*. Geomicrobiology Journal, 2005.

737 **22**(1-2): p. 1-10.

738 50. Said Hassane, C., et al., *Microorganisms Associated with the Marine Sponge Scopalina*

739 *hapolia: A Reservoir of Bioactive Molecules to Slow Down the Aging Process*. Microorganisms, 2020. **8**(9).

741 51. Rubin-Blum, M., et al., *Short-chain alkanes fuel mussel and sponge Cycloclasticus*

742 *symbionts from deep-sea gas and oil seeps*. Nat Microbiol, 2017. **2**: p. 17093.

743 52. Vacelet, J. and N. Boury-Esnault, *A new species of carnivorous deep-sea sponge*

744 *(Demospongiae: Cladorhizidae) associated with methanotrophic bacteria*. Cah. Biol.

745 Mar., 2002. **43**: p. 141-148.

746 53. Vacelet, J., et al., *A methanotrophic carnivorous sponge*. Nature, 1995. **377**: p. 296.

747 54. Rubin-Blum, M., et al., *Fueled by methane: deep-sea sponges from asphalt seeps gain*

748 *their nutrition from methane-oxidizing symbionts*. ISME J, 2019. **13**(5): p. 1209-1225.

749 55. Murphy, C., et al., *Genomic Analysis of the Yet-Uncultured *Binatota* Reveals Broad*

750 *Methylotrophic, Alkane-Degradtion, and Pigment Production Capacities*. mBio, 2021.

751 **12**:e00985-21.

752 56. Repeta, D.J., et al., *Marine methane paradox explained by bacterial degradation of*

753 *dissolved organic matter*. Nature Geoscience, 2016. **9**(12): p. 884-887.

754 57. Metcalf, W.W., et al., *Synthesis of methylphosphonic acid by marine microbes: a source*

755 *for methane in the aerobic ocean*. Science, 2012. **337**(6098): p. 1104-7.

756 58. Langmead, B. and S.L. Salzberg, *Fast gapped-read alignment with Bowtie 2*. Nat

757 Methods, 2012. **9**(4): p. 357-9.

758 59. Wang, Q., et al., *Aerobic bacterial methane synthesis*. Proc Natl Acad Sci U S A, 2021.

759 **118**(27).

760 60. Britstein, M., et al., *Sponge microbiome stability during environmental acquisition of*

761 *highly specific photosymbionts*. Environ Microbiol, 2020. **22**(8): p. 3593-3607.

762 61. Kopylova, E., L. Noe, and H. Touzet, *SortMeRNA: fast and accurate filtering of*

763 *ribosomal RNAs in metatranscriptomic data*. Bioinformatics, 2012. **28**(24): p. 3211-7.

764 62. Bushanova, E., et al., *rnaSPAdes: a de novo transcriptome assembler and its*

765 *application to RNA-Seq data*. Gigascience, 2019. **8**(9).

766 63. Callahan, B.J., et al., *DADA2: High-resolution sample inference from Illumina amplicon*

767 *data*. Nat Methods, 2016. **13**(7): p. 581-3.

768 64. Quast, C., et al., *The SILVA ribosomal RNA gene database project: improved data*
769 *processing and web-based tools*. Nucleic Acids Res, 2013. **41**(Database issue): p. D590-
770 6. 65. McMurdie, P.J. and S. Holmes, *phyloseq: an R package for reproducible interactive*
771 *analysis and graphics of microbiome census data*. PLoS One, 2013. **8**(4): p. e61217.
772 66. Hyatt, D., et al., *Prodigal: prokaryotic gene recognition and translation initiation site*
773 *identification*. BMC Bioinformatics, 2010. **11**(119).
774 67. Kanehisa, M., et al., *KEGG as a reference resource for gene and protein annotation*.
775 Nucleic Acids Res, 2016. **44**(D1): p. D457-62.
776 68. Kanehisa, M., Y. Sato, and K. Morishima, *BlastKOALA and GhostKOALA: KEGG tools*
777 *for functional characterization of genome and metagenome sequences*. J Mol Biol, 2016.
778 **428**(4): p. 726-731.
779 69. Graham, E.D., J.F. Heidelberg, and B.J. Tully, *Potential for primary productivity in a*
780 *globally-distributed bacterial phototroph*. ISME J, 2018. **12**(7): p. 1861-1866.
781 70. Abrams, Z.B., et al., *A protocol to evaluate RNA sequencing normalization methods*.
782 BMC Bioinformatics, 2019. **20**(Suppl 24): p. 679.
783 71. Lee, M.D., *GToTree: a user-friendly workflow for phylogenomics*. Bioinformatics, 2019.
784 **35**(20): p. 4162-4164.
785 72. Edgar, R.C., *MUSCLE: multiple sequence alignment with high accuracy and high*
786 *throughput*. Nucleic Acids Res, 2004. **32**(5): p. 1792-7.
787 73. Capella-Gutierrez, S., J.M. Silla-Martinez, and T. Gabaldon, *trimAl: a tool for automated*
788 *alignment trimming in large-scale phylogenetic analyses*. Bioinformatics, 2009. **25**(15):
789 p. 1972-3.
790 74. Price, M.N., P.S. Dehal, and A.P. Arkin, *FastTree 2--approximately maximum-likelihood*
791 *trees for large alignments*. PLoS One, 2010. **5**(3): p. e9490.
792 75. Seemann, T., *Prokka: rapid prokaryotic genome annotation*. Bioinformatics, 2014.
793 **30**(14): p. 2068-2069.
794 76. Kind, T. and O. Fiehn, *Advances in structure elucidation of small molecules using mass*
795 *spectrometry*. Bioanal Rev, 2010. **2**(1-4): p. 23-60.
796 77. Kind, T., et al., *FiehnLib: mass spectral and retention index libraries for metabolomics*
797 *based on quadrupole and time-of-flight gas chromatography/mass spectrometry*. Anal
798 Chem, 2009. **81**(24): p. 10038-48.
799 78. Feng, G., et al., *Analysis of functional gene transcripts suggests active CO₂ assimilation*
800 *and CO oxidation by diverse bacteria in marine sponges*. FEMS Microbiol Ecol, 2019.
801 **95**(7).
802 79. Kamke, J., et al., *Single-cell genomics reveals complex carbohydrate degradation*
803 *patterns in poribacterial symbionts of marine sponges*. ISME J, 2013. **7**(12): p. 2287-300.
804 80. Tanaka, T., et al., *Concerted action of diacetylchitobiose deacetylase and exo-beta-D-*
805 *glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon*
806 *Thermococcus kodakaraensis KOD1*. J Biol Chem, 2004. **279**(29): p. 30021-7.
807 81. Fiore, C.L., et al., *Trait-based comparison of coral and sponge microbiomes*. Sci Rep,
808 2020. **10**(2340).
809 82. Tian, R.M., et al., *Genome reduction and microbe-host interactions drive adaptation of a*
810 *sulfur-oxidizing bacterium associated with a cold seep sponge*. mSystems, 2017. **2**(2).

812 83. Tian, R.M., et al., *Genomic analysis reveals versatile heterotrophic capacity of a*
813 *potentially symbiotic sulfur-oxidizing bacterium in sponge*. Environ Microbiol, 2014.
814 **16**(11): p. 3548-61.

815 84. Jensen, S., et al., *The relative abundance and transcriptional activity of marine sponge-*
816 *associated microorganisms emphasizing groups involved in sulfur cycle*. Microb Ecol, 2017. **73**(3): p. 668-676.

818 85. Canfield, D.E. and A. Teske, *Late proterozoic rise in atmospheric oxygen concentration*
819 *inferred from phylogenetic and sulphur-isotope studies*. Nature, 1996. **382**: p. 127-132.

820 86. Moran, N.A., J.P. McCutcheon, and A. Nakabachi, *Genomics and evolution of heritable*
821 *bacterial symbionts*. Annu Rev Genet, 2008. **42**: p. 165-90.

822 87. Fiore, C.L., et al., *Transcriptional activity of the giant barrel sponge, Xestospongia muta*
823 *Holobiont: molecular evidence for metabolic interchange*. Front Microbiol, 2015. **6**: p.
824 364.

825 88. Usher, K., *The ecology and phylogeny of cyanobacterial symbionts in sponges*. Marine
826 Ecology, 2008. **29**(2): p. 178-192.

827 89. Freeman, C.J. and R.W. Thacker, *Complex interactions between marine sponges and*
828 *their symbiotic microbial communities*. Limnology and Oceanography, 2011. **56**(5): p.
829 1577-1586.

830 90. Brugere, J.F., et al., *Archaeobiotics: proposed therapeutic use of archaea to prevent*
831 *trimethylaminuria and cardiovascular disease*. Gut Microbes, 2014. **5**(1): p. 5-10.

832 91. Rother, M. and J.A. Krzycki, *Selenocysteine, pyrrolysine, and the unique energy*
833 *metabolism of methanogenic archaea*. Archaea, 2010. **2010**.

834 92. Ticak, T., et al., *A nonpyrrolysine member of the widely distributed trimethylamine*
835 *methyltransferase family is a glycine betaine methyltransferase*. Proc Natl Acad Sci U S
836 A, 2014. **111**(43): p. E4668-76.

837 93. Karl, D.M., et al., *Aerobic production of methane in the sea*. Nature Geoscience, 2008.
838 **1**(7): p. 473-478.

839 94. Sosa, O.A., et al., *Phosphate-limited ocean regions select for bacterial populations*
840 *enriched in the carbon-phosphorus lyase pathway for phosphonate degradation*. Environ
841 Microbiol, 2019. **21**(7): p. 2402-2414.

842 95. Fiore, C.L., D.M. Baker, and M.P. Lesser, *Nitrogen biogeochemistry in the Caribbean*
843 *sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen?* PLoS One, 2013. **8**(8): p. e72961.

845 96. Mohamed, N.M., et al., *Diversity and expression of nitrogen fixation genes in bacterial*
846 *symbionts of marine sponges*. Environ Microbiol, 2008. **10**(11): p. 2910-21.

847 97. Schlappy, M.L., et al., *Evidence of nitrification and denitrification in high and low*
848 *microbial abundance sponges*. Mar Biol, 2010. **157**(3): p. 593-602.

849 98. Clark, L., E. Ingall, and R. Benner, *Marine organic phosphorous cycling: novel insights*
850 *from nuclear magnetic resonance*. American Journal of Science, 1999. **299**: p. 724-733.

851 99. Cree, C.H.L., et al., *Measurement of methylamines in seawater using solid phase*
852 *microextraction and gas chromatography*. Limnology and Oceanography: Methods, 2018. **16**(7): p. 411-420.

854 100. Mausz, M.A. and Y. Chen, *Microbiology and Ecology of Methylated Amine Metabolism*
855 *in Marine Ecosystems*. Curr Issues Mol Biol, 2019. **33**: p. 133-148.

856 101. Born, D., et al., *Structural basis for methylphosphonate biosynthesis*. Science, 2017. **358**:
857 p. 1336-1339.

858 102. Loo, R.L., et al., *Balancing the Equation: A Natural History of Trimethylamine and*
859 *Trimethylamine-N-oxide*. *J Proteome Res*, 2022. **21**(3): p. 560-589.

860 103. Martinez-del Campo, A., et al., *Characterization and detection of a widely distributed*
861 *gene cluster that predicts anaerobic choline utilization by human gut bacteria*. *mBio*,
862 2015. **6**(2).

863 104. Li, L., et al., *Bacteria and Archaea Synergistically Convert Glycine Betaine to Biogenic*
864 *Methane in the Formosa Cold Seep of the South China Sea*. *mSystems*, 2021. **6**(5): p.
865 e0070321.

866 105. Zhu, Y., et al., *Carnitine metabolism to trimethylamine by an unusual Rieske-type*
867 *oxygenase from human microbiota*. *Proc Natl Acad Sci U S A*, 2014. **111**(11): p. 4268-
868 73.

869 106. Fraenkel, G., *The distribution of vitamin Bt (Carnitine) throughout the animal kingdom*.
870 *ARchives of Biochemistry and Biophysics*, 1954. **50**(2): p. 486-495.

871 107. Meadows, J.A. and M.J. Wargo, *Carnitine in bacterial physiology and metabolism*.
872 *Microbiology (Reading)*, 2015. **161**(6): p. 1161-74.

873 108. Zhang, S., et al., *Comparative metabolomic analysis reveals shared and unique chemical*
874 *interactions in sponge holobionts*. *Microbiome*, 2022. **10**(1): p. 22.

875 109. Chen, Y., et al., *Bacterial flavin-containing monooxygenase is trimethylamine*
876 *monooxygenase*. *Proc Natl Acad Sci U S A*, 2011. **108**(43): p. 17791-6.

877 110. Méjean, V., et al., *TMAO anaerobic respiration in Escherichia coli: involvement of the*
878 *tor operon*. *Molecular Microbiology*, 1994. **11**(6): p. 1169-1179.

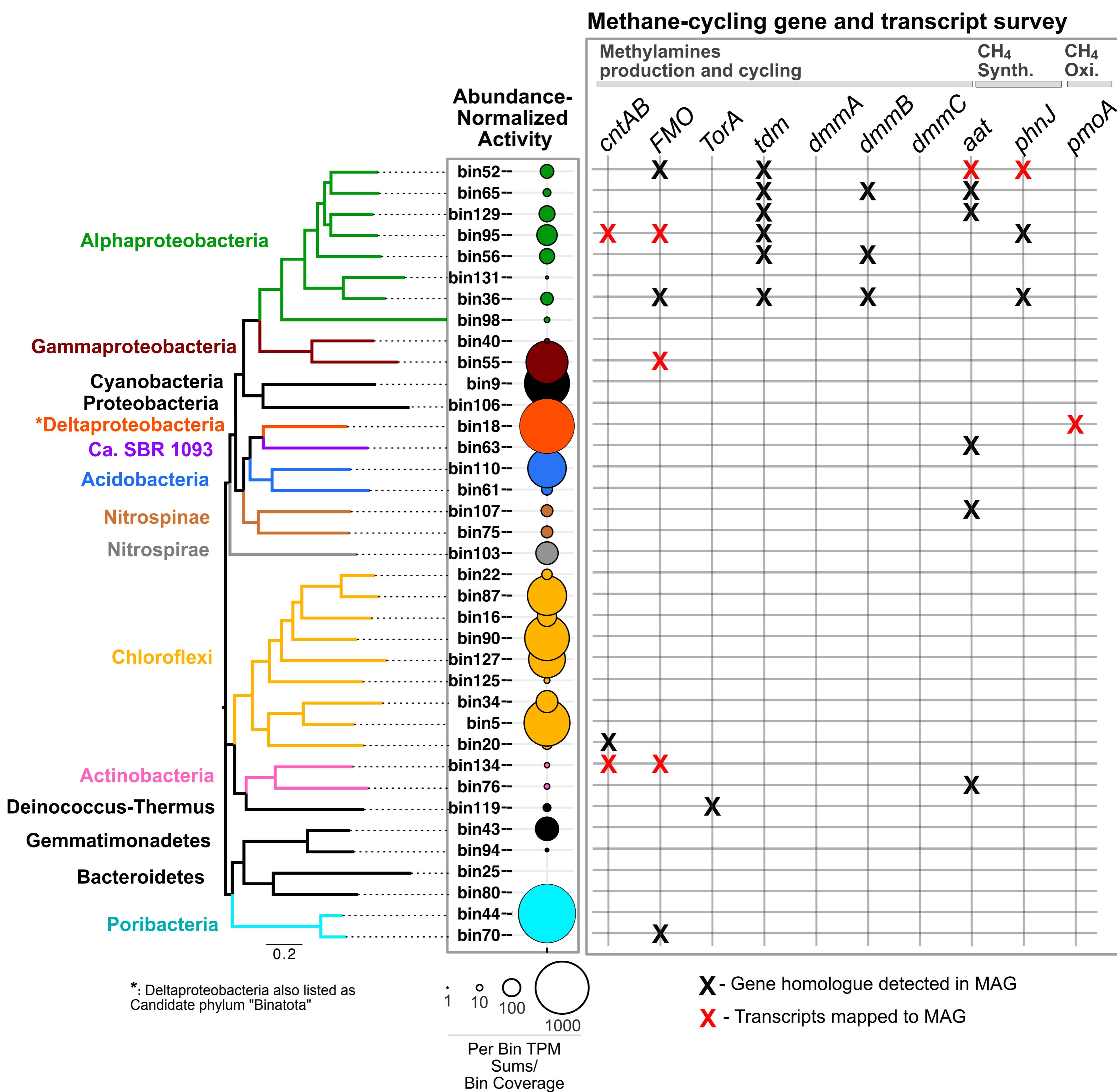
879 111. Lidbury, I., J.C. Murrell, and Y. Chen, *Trimethylamine N-oxide metabolism by abundant*
880 *marine heterotrophic bacteria*. *Proc Natl Acad Sci U S A*, 2014. **111**(7): p. 2710-5.

881 112. De Goeij, J.M., et al., *Cell kinetics of the marine sponge Halisarca caerulea reveal rapid*
882 *cell turnover and shedding*. *J Exp Biol*, 2009. **212**(Pt 23): p. 3892-900.

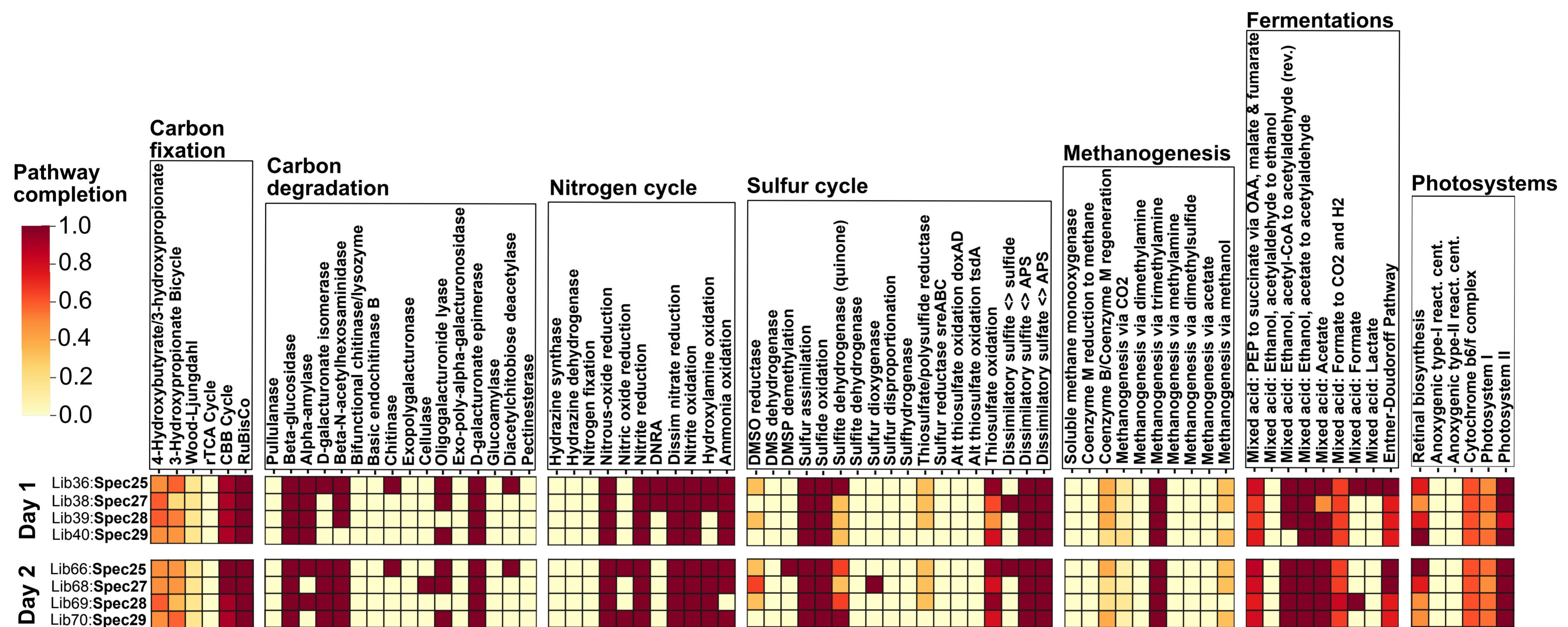
883 113. Murphy, C.L., et al., *Methylotrophy, alkane-degradation, and pigment production as*
884 *defining features of the globally distributed yet-uncultured phylum Binarota*. *bioRxiv*,
885 2021.

886 114. Chistoserdova, L., *Modularity of methylotrophy, revisited*. *Environ Microbiol*, 2011.
887 **13**(10): p. 2603-22.

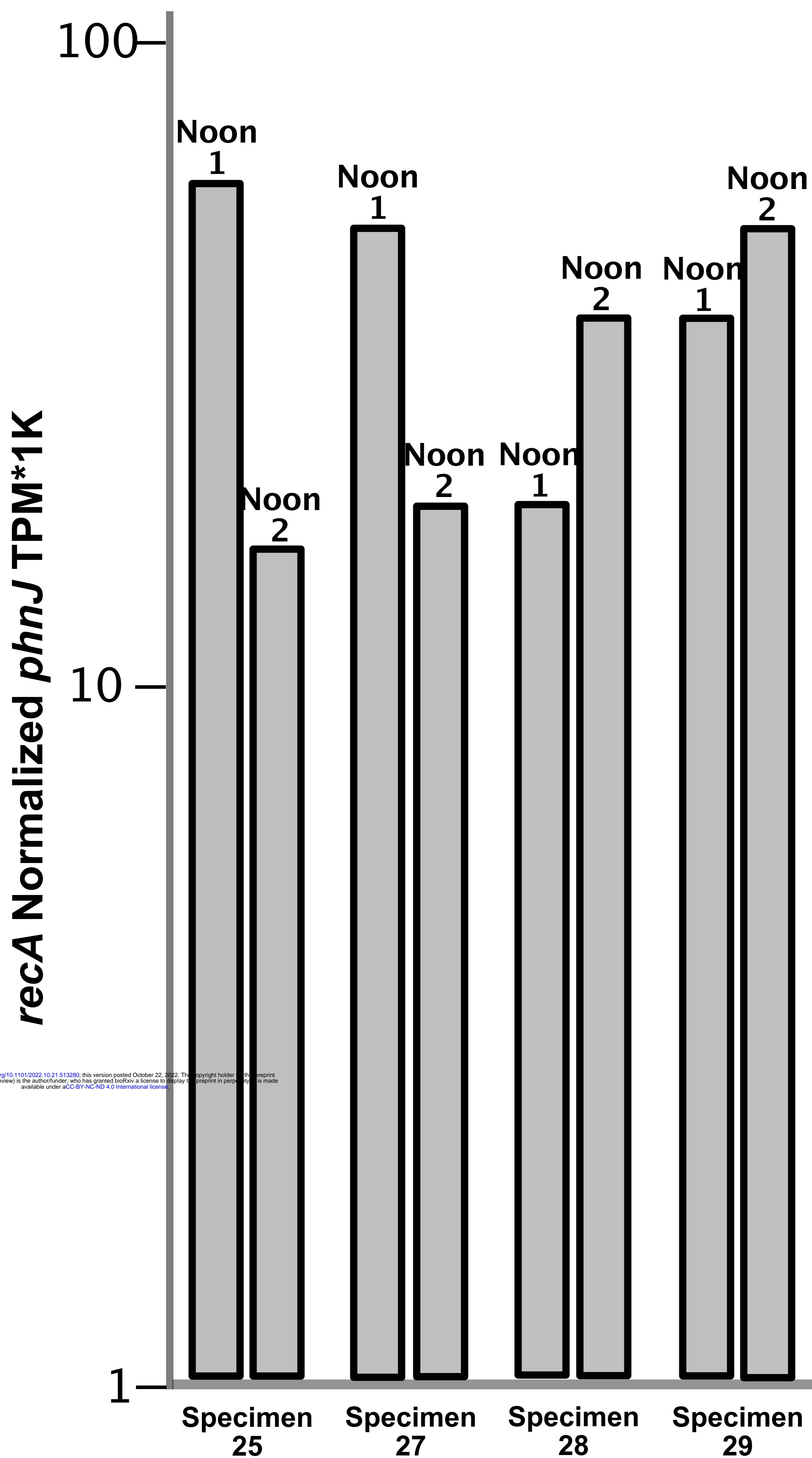
888 115. Galasso, C., C. Corinaldesi, and C. Sansone, *Carotenoids from Marine Organisms:*
889 *Biological Functions and Industrial Applications*. *Antioxidants (Basel)*, 2017. **6**(4).

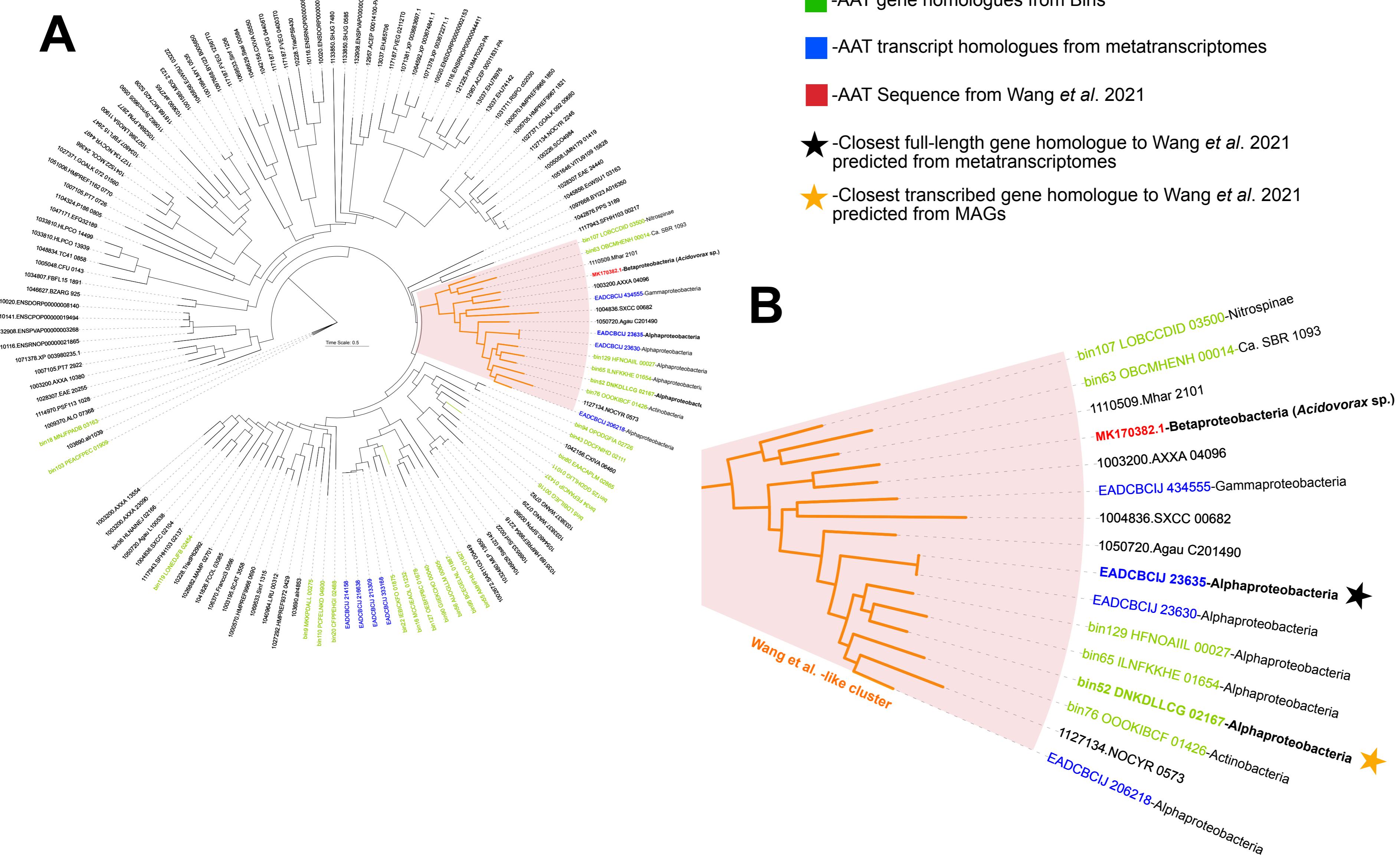

890 116. Lashof, D. and R. Dilip, *Relative contributions of greenhouse gas emissions to global*
891 *warming*. *Nature*, 1990. **344**: p. 529-531.

892 117. Collins, W.J., et al., *Increased importance of methane reduction for a 1.5 degree target*.
893 *Environmental Research Letters*, 2018. **13**(5).


894 118. Rosentreter, J.A., et al., *Half of global methane emissions come from highly variable*
895 *aquatic ecosystem sources*. *Nature Geoscience*, 2021. **14**(4): p. 225-230.

896 119. Holmes, M.E., et al., *Methane production, consumption, and air-sea exchange in the*
897 *open ocean: An evaluation based on carbon isotopic ratios*. *Global Biogeochemical*
898 *Cycles*, 2000. **14**(1): p. 1-10.


899


Figure 1
Ramírez, et al. 2022, BioRxiv

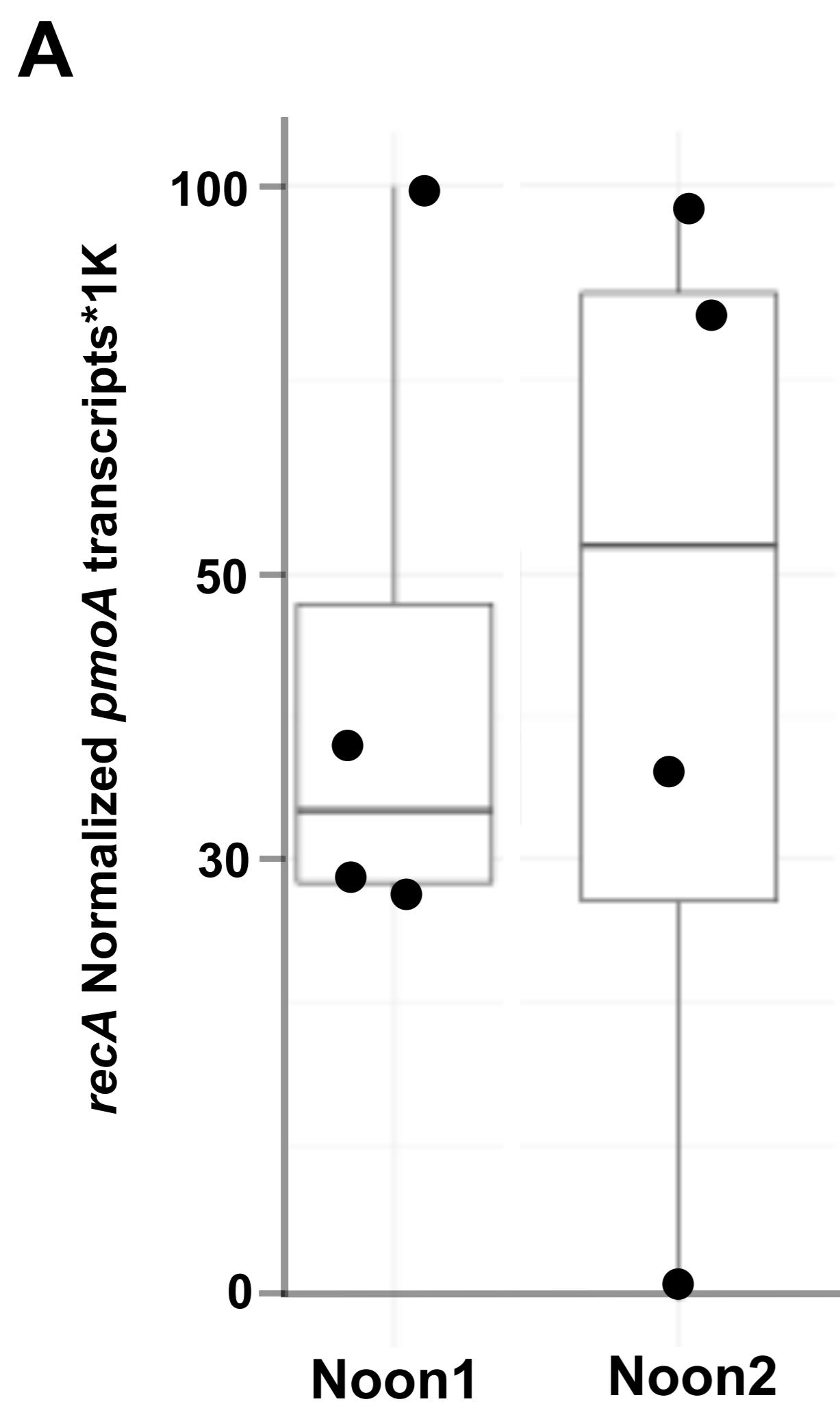

Figure 2
Ramírez, et al. 2022, BioRxiv

Figure 3
Ramírez, et al. 2022, BioRxiv

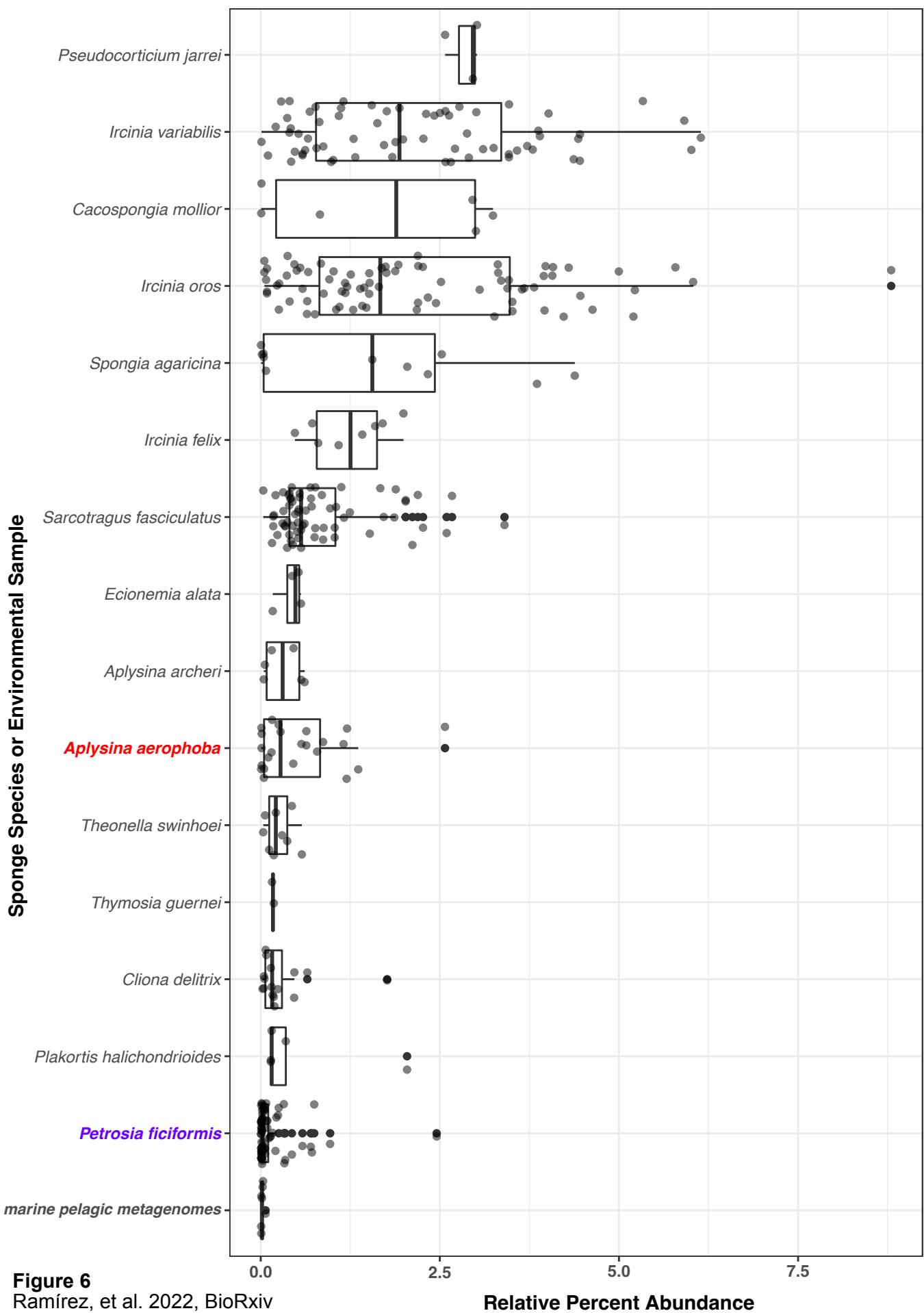


Figure 4
Ramírez, et al. 2022, BioRxiv

Figure 5
Ramírez, et al. 2022, BioRxiv

Sponge Species or Environmental Sample

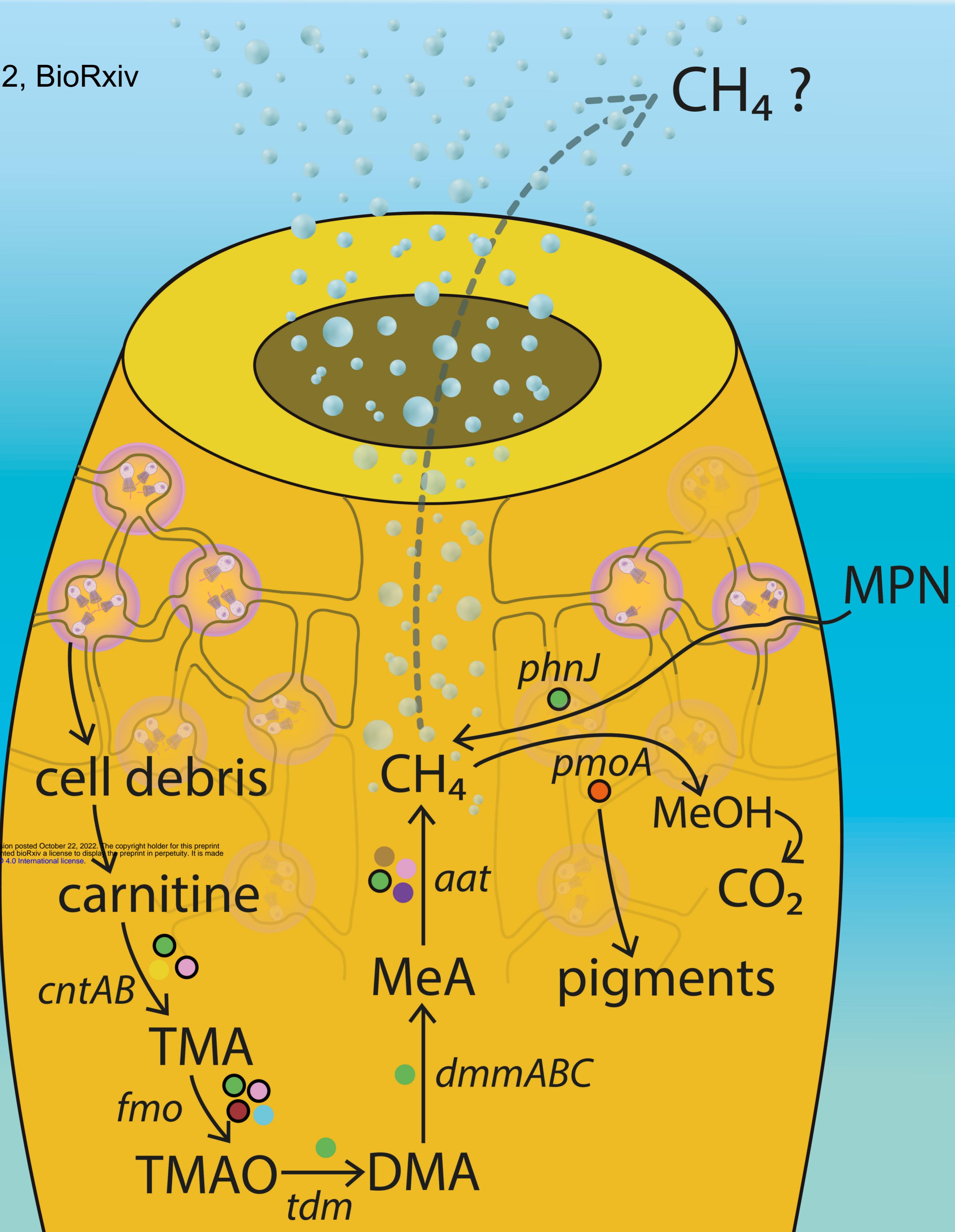


Figure 6

Ramírez, et al. 2022, BioRxiv

Figure 7

Ramírez, et al. 2022, BioRxiv

Legend:

- Alphaproteobacteria
- Gammaproteobacteria
- Deltaproteobacteria (Binatota)

- SBR1093
- Acidobacteria
- Nitrospinae
- Nitrospirae

- Chloroflexia
- Actinobacteria
- Poribacteria
- Metatranscriptomes