

Plant spatial aggregation modulates the interplay between plant competition and pollinator attraction with contrasting outcomes of plant fitness

María Hurtado^{1,2}, Oscar Godoy¹ and Ignasi Bartomeus²

¹ Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz Puerto Real, E-11510, Spain

² Departamento de Ecología Integrativa, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, Seville E-41092, Spain

*Corresponding author: María Hurtado (maria.hurtado.m.r@gmail.com)

ABSTRACT

Ecosystem functions such as seed production are the result of a complex interplay between competitive plant-plant interactions and mutualistic pollinator-plant interactions. In this interplay, spatial plant aggregation could work in two different directions: it could increase intra- and interspecific competition, thus reducing seed production; but it could also attract pollinators increasing plant fitness. To shed light on how plant spatial arrangement modulates this balance, we conducted a field study in a Mediterranean annual grassland with three focal plant species with different phenology (*Chamaemelum fuscatum* (early phenology), *Leontodon maroccanus* (middle phenology) and *Pulicaria paludosa* (late phenology)) and a diverse guild of pollinators (flies, bees, beetles, and butterflies). All three species showed spatial aggregation of conspecific individuals. Additionally, we found that the two mechanisms were working simultaneously: crowded neighborhoods reduced individual seed production via plant-plant competition, but they also made individual plants more attractive for some pollinator guilds, increasing visitation rates and plant fitness. The balance between these two forces varied depending on the focal species and the spatial scale considered. Therefore, our results indicate that mutualistic interactions not always effectively compensate for competitive interactions in situations of spatial aggregation of flowering plants, at least in our study system. We highlight the importance of explicitly considering the spatial structure at

35 different spatial scales of multitrophic interactions to better understand individual plant
36 fitness and community dynamics.

37 **KEYWORDS**

38 Neighborhood effect, plant fitness, plant-pollinator interaction, spatial scales, structural
39 equation models

40 **1. INTRODUCTION**

41 Species fitness, measured as the ability of individuals to contribute with offspring to the
42 next generation, modulates several ecological processes at the community scale such
43 as changes in species relative abundances across years, ultimately defining the
44 maintenance of biodiversity (Hacker & Gaines, 1997; Schmidtke *et al.*, 2010). Plant
45 reproductive success is a complex process which is considered to be generally affected
46 by species interactions and environmental conditions. For flowering plants, two key types
47 of biotic interactions are considered. These are competitive interactions due to plant
48 competition for space, nutrients (Tilman, 1990; Craine & Dybzinski, 2013) and shared
49 natural enemies such as herbivores (Hulme, 1996) and mutualistic interactions with
50 pollinators which mediate flower's pollination (Ollerton *et al.*, 2011; Thompson, 2006).

51 Beyond these competitive and mutualistic interactions that affect plant fitness in opposite
52 directions, more subtle effects emerge when we consider explicitly the spatial
53 configuration of plant individuals and their pollinators. For example, the number of floral
54 visitors that a plant receives not only depends on the plant characteristics, but also on
55 the plant neighborhood densities (Ghazoul, 2006; Seifan *et al.*, 2014; Brunninga-Socolar
56 & Branam, 2022). Hence, the plant neighborhood can indirectly impact plant reproductive
57 success via pollinator attraction (Lázaro *et al.*, 2014; Albor *et al.*, 2019; Underwood *et*
58 *al.*, 2020; de Jager *et al.*, 2022). Although the outcome of this indirect interactions is hard
59 to predict as it depends on the characteristics of the plant neighborhood (Stoll & Patri,
60 2001; Underwood *et al.*, 2020), the floral preferences of the pollinators involved
61 (Ghazoul, 2006; Hegland & Totland, 2012; Seifan *et al.*, 2014; de Jager *et al.*, 2022), and
62 their behavior and foraging ranges (Sowig, 1989; Lázaro & Totland, 2010; Seifan *et al.*,
63 2014), we can foresee some contrasting processes.

64 One the one hand, some species in mixed species neighborhoods can benefit from the
65 effect that particular species, some of them considered magnet species (Thompson,
66 1978; Seifan *et al.*, 2014), have in attracting more pollinators (Carvalheiro *et al.*, 2014;
67 Mesgaran *et al.*, 2017; Bergamo *et al.*, 2020; Brunninga-Socolar & Branam, 2022).

68 However, these positive spillover effects can turn into competition for pollinators if
69 particular species are less attractive (Mesgaran *et al.*, 2017). Indeed, the balance
70 between such positive and negative net effects in mixed neighborhoods is a density
71 dependence process that involves both plant and pollinator abundances. Competition for
72 attracting pollinators can occur either because of high local densities of both conspecific
73 and heterospecific individuals (Ghazoul, 2006; Muñoz & Cavieres, 2008; Dauber *et al.*,
74 2010; Seifan *et al.*, 2014), or simply because pollinators are scarce (Lázaro *et al.*, 2014).

75 The characteristics that determine the spatial distribution of the organisms involved in
76 plant-pollinator interactions are multiple. The spatial distribution of plant that determine
77 their density and relative abundance (i.e. the relative abundance of intraspecific versus
78 interspecific neighborhoods) are known to be affected by microclimatic conditions, plant
79 competition and facilitation, dispersal capacity or historical events such as order of arrival
80 (Duflot *et al.*, 2014; Gámez-Virués *et al.*, 2015). However, pollinators are mobile
81 organisms which may be able to track resources and hence be less constrained in their
82 spatial location (Lander *et al.*, 2011; Reverté *et al.*, 2019). For example, hover flies are
83 wanderers, but spend more time in resource rich patches (Lander *et al.*, 2011), and
84 despite bees being central place foragers, they can track their preferred resource in the
85 landscape (Lázaro & Totland, 2010), sometimes along large distances (López-Uribe *et*
86 *al.*, 2016).

87 Although we can hypothesize that spatial aggregation of plant-pollinator systems can be
88 modulating plant fitness, a key open question is at which scale it operates (Albor *et al.*,
89 2019; Chase & Leibold, 2002; Underwood *et al.*, 2020). Answering whether different
90 processes act at different scales is important to understand how they combine their net
91 effect into plant fitness. For example, plant-plant competition in annual systems is
92 considered to act at small spatial scales (order of centimeters) (Levine &
93 HilleRisLambers, 2009; Lanuza *et al.*, 2018). However, plant population dynamics
94 including other processes such as dispersal act at larger scales (order of meters) (Pacala
95 & Silander, 1990; Underwood *et al.*, 2020). The scale at which plant community
96 composition modulates pollinator attraction and visitation rates is also multiple. Most
97 pollinators use visual and olfactory cues (Chittka & Thomson, 2001) to select their
98 foraging patches at larger scales, however pollinator functional groups perceive floral
99 resources differently across scales (Albor *et al.*, 2019). It has been shown that solitary
100 bees can exploit small flower patches and forage at smaller distances (up to 100 m²;
101 Zurbuchen *et al.*, 2010; Kendall *et al.*, 2022) than social bees (Kendall *et al.*, 2022).
102 Conversely, other functional groups such as hoverflies are not such scale dependent

103 (Blaauw & Isaaacs, 2014). In addition, behavior also modifies species foraging patterns
104 at local scales. For example, some pollinators such as bumblebees show floral
105 consistency, meaning that when they land on a specific plant species they visit mostly
106 that species in the patch (Chittka & Thomson, 2001; Lázaro & Totland, 2010) while other
107 groups like muscoid flies or hoverflies are less constant in their visits (Lázaro & Totland,
108 2010).

109 Here, we study the effect of spatial aggregation of plant-plant and plant-pollinator
110 interactions on plant fitness (measured as viable seed production) in three annual plant
111 species in a Mediterranean grassland in Doñana National Park (South Spain). Our
112 overall hypothesis is that plant-plant and plant-pollinator interactions change with plant
113 homo- and hetero-specific aggregation levels and affect on opposite ways to plant
114 fitness. While plant competitive effects decrease plant fitness, pollinators increase it. We
115 also hypothesize that the strength of both processes is similar, and therefore, floral
116 visitors can compensate for the negative effect of competition on fitness. Finally, we also
117 hypothesize that these opposing effects occur at different spatial scales. While plant
118 competition occurs at local scales, attraction to floral resources, and therefore an
119 increase in visitation rates occur at larger spatial scales, which is the scale at which most
120 effective pollinators take foraging decisions. These processes at contrasting scales may
121 decouple the positive and negative effects of plant competition and pollinator mutualistic
122 interactions.

123 2. MATERIAL AND METHODS

124 2.1 Study System

125 We conducted our observational study in Caracoles Estate (2680 ha). This natural
126 system is a salty grassland located within Doñana National Park, southwest of Spain
127 (37°04'01.0"N 6°19'16.2"W). The climate is Mediterranean with mild winters and average
128 50-year annual rainfall of 550–570 mm with high interannual oscillations. Soils are sodic
129 saline (electric conductivity > 4 dS/m and pH < 8.5) and annual vegetation dominates the
130 grassland with no perennial species present. The study site has a subtle micro
131 topographic gradient (slope 0.16%) enough to create vernal pools at lower parts from
132 winter (November–January) to spring (March–May) while upper parts do not get flooded
133 except in exceptionally wet years (Lanuza *et al.*, 2018). Along this gradient (1 km long x
134 800 m wide), we established in 2015 nine plots, three in the upper part, three in the
135 middle, and three in the lower part. Each plot has a size of 8.5 m x 8.5 m, which is further
136 subdivided in 36 subplots of 1 m² (1 m x 1 m). Average distance between these three

137 locations was 300 m and average distance between plots within each location was 40 m
138 (minimum distance 25 m).

139 We took advantage of this infrastructure to sample annual plant vegetation and their
140 associated pollinators during 2020. Across plots, we observed 23 co-occurring annual
141 plant species, which represent > 90% of cover. Detailed weekly surveys of pollinators
142 during the flowering season (see below) showed that the flowers of ten of these species
143 were visited by insects, but most of these visits belonging to four different pollinators
144 guilds (bees (14.74%) , flies (19.84%), beetles (63.66%), and butterflies (0.8%)) were
145 concentrated (95% of the total of visits) only in three Asteraceae species (*Chamaemelum*
146 *fuscatum*, *Leontodon maroccanus* and *Pulicaria paludosa*; Figure A1, APPENDIX A).
147 Therefore, these three species were those considered for further analyses (Table 1). For
148 the analysis butterflies were excluded due to the low visitation to flowers (we only
149 observe 13 visits across species) (Table1).

150

151 **Table 1.** Taxonomic list (and code) in Caracoles field site for those species we observed
152 pollinators visiting during 2020. Specifically, it is shown the number of visits of each
153 pollinator group to each plant species. Note that the abundances of each plant species
154 that we measured at the plot scale (last column) is correlated with their natural
155 abundances in the site study at larger scales. The table of the 23 plant species is in Table
156 A2, APPENDIX A.

Species	Family	Bee	Beetle	Butterfly	Fly	Total visits	Number of plant individuals sampled
<i>Beta macrocarpa</i> (BEMA)	Amaranthaceae	0	0	0	13	13	1747
<i>Centaurium tenuiflorum</i> (CETE)	Gentianaceae	13	0	0	10	26	1942
<i>Chamaemelum</i> <i>fuscatum</i> (CHFU)	Asteraceae	41	84	0	143	268	1204
<i>Chamaemelum mixtum</i> (CHMI)	Asteraceae	0	1	0	13	14	144
<i>Leontodon maroccanus</i>	Asteraceae	126	993	6	126	1251	8359

(LEMA)

<i>Melilotus sulcatus</i> (MESU)	Fabaceae	11	0	0	4	15	998
<i>Pulicaria paludosa</i> (PUPA)	Asteraceae	75	3	7	25	110	1415
<i>Scorzonera laciniata</i> (SCLA)	Asteraceae	2	4	0	1	7	776
<i>Sonchus asper</i> (SOAS)	Asteraceae	0	3	0	0	3	987
<i>Spergularia rubra</i> (SPRU)	Caryophyllaceae	1	0	0	1	2	2106

157

158 **2.2 Pollinator and neighbor composition sampling**

159 Following the spatial explicit design, our overall set of measurements collected involved
160 three main steps. First, we recorded for each observed individual plant, the number of
161 floral visits received by each pollinator guild. Second, we associated these visits with the
162 abundance of plants sampled at different plant scales (neighborhood scale (7.5 cm²),
163 subplot scale (1m²), and plot scale (3 and 6m²)). Finally, to know its reproduction success
164 we measured the number of fruits produced per individual and the viable seed production
165 per fruit.

166 For the first step, we sampled the number of floral visits and the identity of the guild that
167 each individual plant received. This sampling spanned from the 13th of February to the
168 18th of July of 2020, which corresponds from the emergence of the earliest flowers of *C.*
169 *fuscatum* to the latest flowers of *P. paludosa*. Specifically, once per week, we spent 30
170 minutes per plot, when insect activity is greatest (between 10:00 am and 15:00 am),
171 recording the number of interactions between insects and plants at the subplot level (1m
172 x 1m). To reduce any temporal bias in observations, we randomly select each week
173 which plot was initially sampled. A visit was only considered when an insect touched the
174 reproductive organs of the plants. All pollinators were either identified during the survey
175 or they were net-collected for their posterior identification at the lab. Later, they were
176 grouped into four distinct categories mentioned before: bees, beetles, butterflies and flies
177 (Table A1 in APPENDIX A). Voucher specimens were deposited at Estación Biológica
178 de Doñana (Seville, Spain). Overall, the methodology rendered 54 hours along 19 weeks
179 of sampling. With these field observations, we calculated the total number of visits per

180 pollinator guild in each subplot to each plant species; we assumed that if a pollinator was
181 present in a plot it has the potential to visit all flowering individuals.

182 For the second step, we measure the number and identity of each plant individual
183 following common procedures of plant competition experiments (Levine &
184 HilleRislambers, 2009; Lanuza *et al.* 2018). Specifically, at the peak of flowering of each
185 species (i.e. when approximately 50% of the flowers per individual were blooming (*C.*
186 *fuscatum*: early april, *L. maroccanus*: middle-end April and *P. paludosa* end of May), we
187 chose a focal individual in each subplot for measuring reproductive success, and we
188 used it as the center of a circle with a radius of 7.5 cm, in which the number of individuals
189 and its identity at the species level was recorded. For the three species of our study, we
190 surveyed the neighborhood of 605 individuals. We additionally counted the number of
191 individuals and their identity at the scale of the subplot (1 m²) for all species found, which
192 included insect and non-insect pollinated species. Because we measured abundances
193 for each 324 subplot (36 subplots x 9 plots), we were also able to relate to each targeted
194 individual the number of conspecific and heterospecific individuals at larger spatial scales
195 (3m² and 6m² (plot level)). For calculating the neighbors of each focal individual at
196 different scales, we did not consider the subplot edges in order that all focal individuals
197 have the same subplot surrounding them. In total we had the neighbor abundances for
198 each 144 subplots (16 subplots x 9 plots). The survey of abundances across subplots
199 yielded a total of 38220 plant individuals with individual subplots varying between 150
200 individuals to 1 individual as the minimum, the mean of the individuals that have been
201 counted per subplot is 14 individuals.

202 In the last step, we sampled for each individual identified at the center of the 7.5 cm² the
203 number of developed fruits and seeds. With this information we measured the
204 reproductive success in two different ways: number of viable seeds per fruit (for now on
205 seed set) and number of fruits per individual (i.e fruit set). The number of fruits per
206 individual was measured in the field as the number of flowers because the three species
207 were Asteraceae. The seed sets were counted at the lab once the fruits were ripped. To
208 account which proportion of the seed set were viable, we visually discarded those that
209 look undeveloped or void. However, measuring the seed set for all fruits of each
210 individual is not feasible for logistic reasons. Therefore, we decided to characterize the
211 species seed set by taking at least one fruit per individual per subplot across the
212 grassland. Such characterization aimed to sample individuals of the three species across
213 the range of floral visits and spatial arrangements observed. In the subplots in which we
214 do not have data for the field (~59% of the total), we assume that the number of the seed

215 set would be the mean of the seed set of the plot for each species. Note that we observe
216 marked differences in seed set across plots. In total, we sampled across the nine plots
217 113 fruits of *C. fuscatum*, 199 fruits of *L. maroccanus* and 150 fruits of *P. paludosa*.

218 **2.3 Plant pollinator dependance**

219

220 The net reproductive success of individual plants depends on the number and type of
221 pollinator visits. However, with these field observations, we cannot establish the baseline
222 of which is the reproductive success of our studied species in the absence of floral
223 visitors. Therefore, to assess the degree of self-pollination for each of the Asteraceae
224 species (*C. fuscatum*, *L. maroccanus* and *P. paludosa*), we conducted a parallel
225 experiment in which we randomly chose twenty floral buttons per species and we
226 excluded pollinators for ten of these covering them by a small cloth bag. For all three
227 plant species, we hypothesize that pollinators could increase their reproductive success,
228 although the rate of increase could vary among species due to selfing processes. The
229 viable and no viable seeds were counted at the lab once the fruits were ripped.

230

231 **2.4 Statistical analysis**

232

233 To describe the spatial arrangement of pollinators, plant species and their reproductive
234 success we determined the degree of auto spatial correlation by means of Moran's I test.
235 Briefly, Moran's I indicate whether the spatial distribution of a response variable across
236 distance is more similar (positive values) or less similar (negative values) than in a
237 random distribution. Moran's I ranges from -1 to 1, and their associated error (95%
238 confidence interval) is calculated by bootstrapping. Our unit of analysis in the Moran's I
239 test was the subplot level (all the subplots, 324), and therefore distance among subplots
240 were calculated in meters. For the case of the spatial distribution of plant abundances,
241 we considered the information obtained at 1m², which pooled the sum of counted plant
242 individuals across all 23 species. For individual plant reproductive success, we used the
243 average of the seed set per species across subplots. Finally, for pollinators, we used the
244 abundance of pollinators per guild across subplots (sum of the counts of each floral visitor
245 per subplot).

246

247 To evaluate the effect of the spatial arrangement of modulating the opposing effects of
248 plant-plant interaction and plant-pollinator interaction of plant reproductive success, we
249 used Structural Equation Models (SEMs) (Suárez-Mariño *et al.*, 2022) with a multigroup
250 analysis context. The multigroup context was used to further test the hypothesis that

251 different processes affect plant reproductive success at different spatial scales. Prior to
252 SEM analysis, we ran Pearson correlations among all predictors to make sure the
253 different analyzed variables were not highly correlated (i.e. $r > 0.8$). The only variables
254 that are highly correlated are the number of fruits with total viable seed production (0.82;
255 full correlation matrix in Figure A2.A, APPENDIX A). This was an expected result as total
256 viable seed production (i.e total seed set) is the product of the number of fruits multiplied
257 by seed per fruit. Despite this correlation, we kept both predictors because we expected
258 different ecological strategies to maximize reproductive success among species. While
259 some species invest more in flower production at the expense of inverting in individual
260 seeds, other species follow the converse strategy. We also checked the correlation
261 between the different scales at which plant abundance was measured (7.5 cm², 1 m², 3
262 m² and 6 m²), because larger scales have been calculated summarizing the 1 m² scale.
263 We found weak correlations for some neighbor aggregations (Figure A2.B, APPENDIX
264 A), which are important for interpreting the results. Prior to conducting the SEM analysis,
265 we rescaled all the variables to reduce influence of more spread variables.

266

267 The causal a priori SEM structure for all our species was the same and considered the
268 following direct and indirect links. First, all pollinator guilds can potentially affect seed
269 reproductive success although the sign can be positive, neutral or negative due to their
270 behavior, while some guilds are truly pollinators such as bees others may be floral and
271 pollen herbivores such as some beetles. Furthermore, we separated the effect of the
272 number of conspecific neighbors on the number of fruits produced (i.e. fruit set) from the
273 effect of overall density (total number of conspecific and heterospecific neighbors). While
274 the former neighborhood type could positively and negatively affect plant reproductive
275 success due to competition or facilitation, the latter neighborhood type would
276 predominantly affect the attraction of floral visitors and therefore the number of visits. We
277 added relations between some exogenous variables (e.g. correlation between different
278 pollinator guilds) as suggested by the model fit (see Eq. (1), Eq. (2) and Eq. (3),
279 APPENDIX A and paths depicted in Figures 2, 3 and 4) when ecologically sensible. In
280 the case of *C. fuscatum* we have added the relation between viable seeds per fruit and
281 heterospecific neighbors, and the correlation between the number of visits of beetles and
282 flies. For *L. maroccanus* we have added the relation between viable seeds with
283 conspecific neighbors, the visits of beetles with fruit set and the correlation between seed
284 set and the total seed set. Lastly, for *P. paludosa* we add the relations between fruit set
285 with fly and bee visits, and the correlations between seed set with the total seed set and
286 the fruit set, and the correlation with fly visits with bee and beetle visits. The addition of
287 these relationships was guided by using the modification index (mi). This index is the chi-

288 squared value, with 1 degree of freedom, by which model fit would improve if we added
289 a particular path or constraint freed. When a mi index is higher than 3.64 means that
290 there is a relation path missing (Whalley, 2019). We assess the goodness of statistical
291 fit for each individual species following by an ANOVA procedure and other relevant
292 indices: root mean squared error of approximation (RMSEA), comparative fix index (CFI),
293 standardized root mean square residual (SRMR) (Kline, 2015).

294

295 To test whether the importance of these direct and indirect paths are scale dependent
296 we constructed one model constrained (i.e. all paths are forced to get the same values
297 across scales) and another without constraints (i.e. each path can vary across scales).
298 The spatial scales considered were 7.5 cm², 1 m², 3 m² and 6 m². A constrained model
299 means the intercept of the observed variables and the regression coefficients are fixed
300 across the different scales (i.e. no variation). Within the unconstrained model such
301 variation could occur due to the variation in conspecific, and in the overall number of
302 neighbors across scales. To test which type of model (constrained versus unconstrained)
303 fit best the data, we performed ANOVA and AIC. For *C. fuscatum* (p.value = 0.880; DF=
304 48; CFI= 1.00; RMSEA= 0.00; SRMR= 0.042) and *L. maroccanus* (p.value= 0.869; DF=
305 44; CFI= 1.00; RMSEA= 0.00; SRMR= 0.037) the unconstrained model considering a
306 spatial scale effect was more supported ($\text{Pr}(>\text{Chisq}) < 0.001$, See Table A3 of the
307 APPENDIX A), while the constrained model better supported *P. paludosa* data (p.value=
308 0.253; DF= 95; CFI= 0.99; RMSEA= 0.038; SRMR= 0.095). All the p.values of the model
309 selected per each species are not significant (p.value > 0.05) and CFI close to 1, RMSEA
310 < 0.04 and SRMR < 0.1, indicating a good statistical fit (Table A3, APPENDIX A) .

311

312 Finally, to disentangle the direct effect of plant neighborhoods on total seed set from the
313 indirect effect of plant neighborhoods that is mediated by pollinators visits, we calculated
314 the total, direct and indirect effects by multiplying the coefficients involved in each path.
315 To do this comparison we selected the 7.5 cm scale, as we advance that is the scale at
316 which we observed stronger negative relationships likely due to plant-plant competition.
317 To calculate the direct competitive effects of neighbors we have considered the effect of
318 the intra and inter-neighbors on fruits multiplied by the effect of fruits in the total seed
319 set. To calculate the effect of competition mediated by floral visitors we have considered
320 the effect of the intraspecific and interspecific neighbors on pollinators multiplied by the
321 pollinators effect on seed set and the effect of the seed set on total seed set. In the case
322 where neighbors also affected seed production, these paths were included in the
323 calculation of the direct effects. To calculate the total effects, we have summed the path
324 of competitive effects and the path of the effect mediated by pollinators. Note that

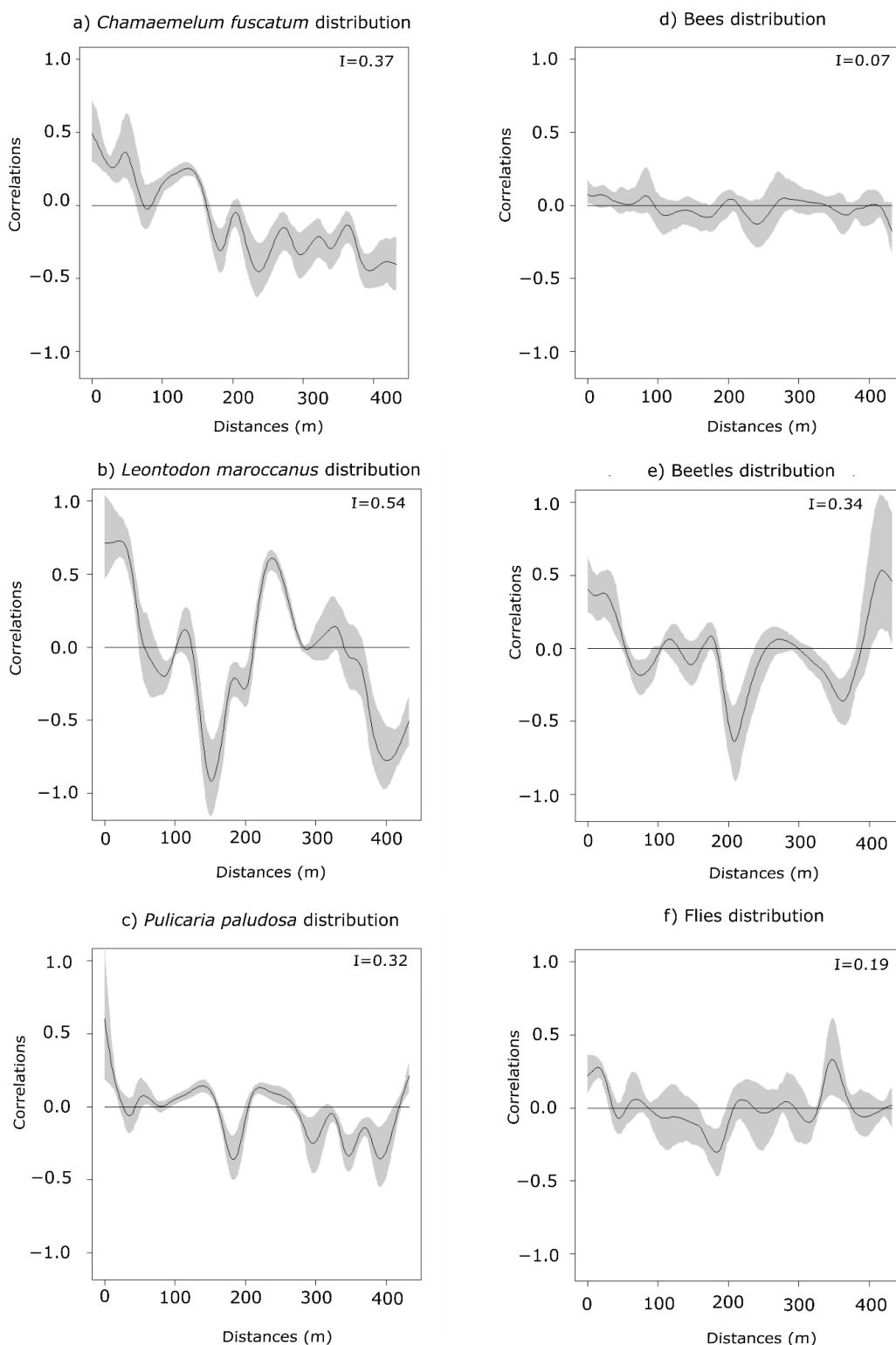
325 estimates in Figures 2, 3 and 4 are rounded, but we used all decimals to calculate direct
326 and indirect paths. The methodology used to calculate the direct and indirect effects are
327 the same used in Bollen (1987) and Grace (2006).

328

329 All statistical analyses were conducted with R (R version 4.0.3, 2020-10-10). Moran's I
330 tests were performed using the packages "spdep" (Bivand & Wong, 2018) and for plotting
331 the results we used the function "moran.plot" for the same package. To rescale the
332 variables we used the "scale" function of R base (Becker *et al.*, 1988). Lastly, the
333 structural equation models (SEM) and the multigroup were conducted using the package
334 "lavaan" (Rosseel, 2012) with the "sem" function.

335

336 3. RESULTS


337

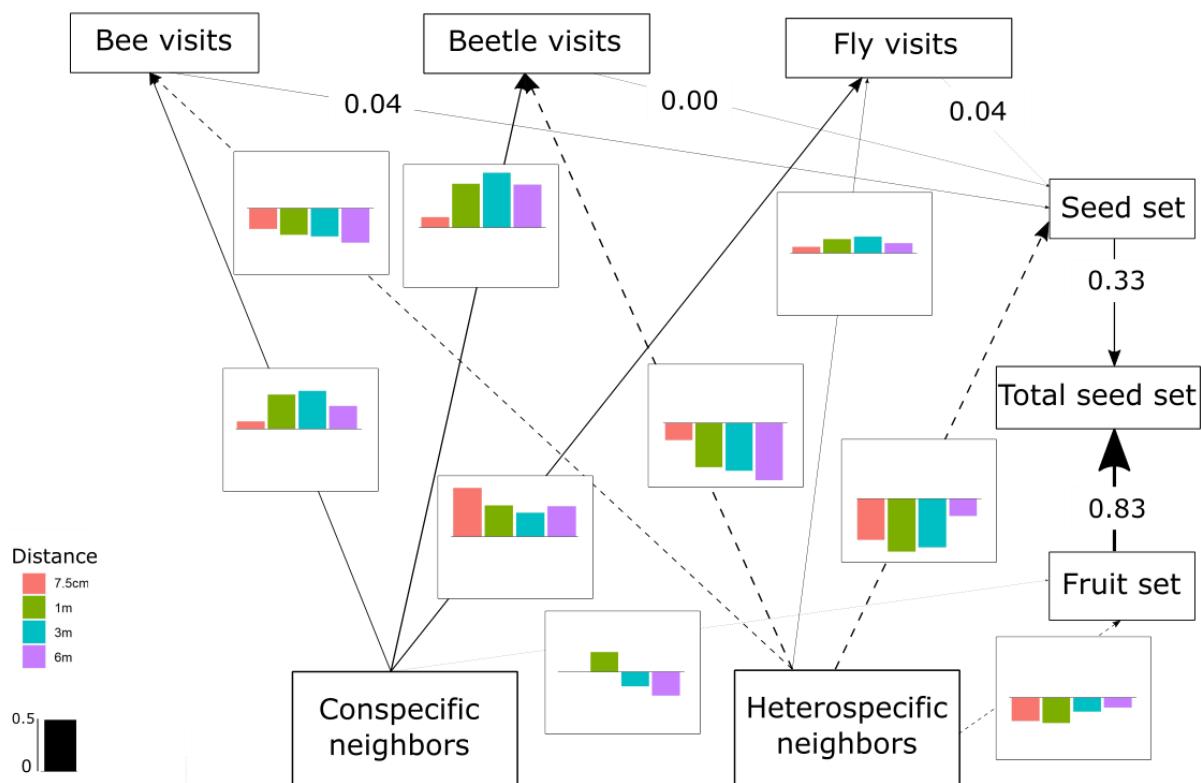
338 We observed strong differences and a clear hierarchy in pollinator dependence across
339 our three studied species. *C. fuscatum* was the species that depended most on
340 pollinators, followed by *P. paludosa*, which had a slight dependence and *L. maroccanus*
341 showed no dependence on pollinators. Specifically, the amount of seed set produced by
342 *C. fuscatum* increases by 64% under the open pollination treatment compared to the
343 bagged flowers (mean difference among treatments (Effect size) = -64.07; p-value <
344 0.002). *P. paludosa* showed not significant changes under open pollination (Effect size=
345 -3.24; p-value= 0.56) yet the number of total seeds is very low in both cases (without
346 pollinators= 49.88 ± 31.32 (mean \pm sd); with pollinators= 34.7 ± 14.29) comparing with
347 the other species (Figure A3, APPENDIX A), potentially indicating that pollination could
348 be insufficient in the study area, rather than selfing mechanisms. Finally, *L. maroccanus*
349 produces a large number of seeds in both the pollinator exclusion treatment and the open
350 pollination treatment (Effect size= -8.30; p.value= 0.63), indicating no pollinator
351 dependence (Figure A3, APPENDIX A).

352

353 The three species (Figure 1) showed a significant degree of spatial autocorrelation
354 (Moran's I = ~ 0.4; p.value= 0.01). Generally, they are fairly aggregated at small
355 distances, but this aggregation decays after the first 50 or 100 meters. Nonetheless, the
356 degree of spatial aggregation of floral visitors, despite significant, was much smaller than
357 that of the plant species (Moran's I < 0.35; p.value= 0.01; Figure 1), especially for mobile
358 organisms such as flies (Moran's I = 0.19) and bees (Moran's I = 0.07; p.value= 0.01;
359 Figure 1). The reproductive success of individual plants showed a similar spatial
360 autocorrelation for the three species than the plant individuals (Moran's I = ~ 0.3;

361 p.value= 0.01; Figure A4, APPENDIX A). This means that the reproductive success for
362 the plants is unequal in relation to their spatial distribution.

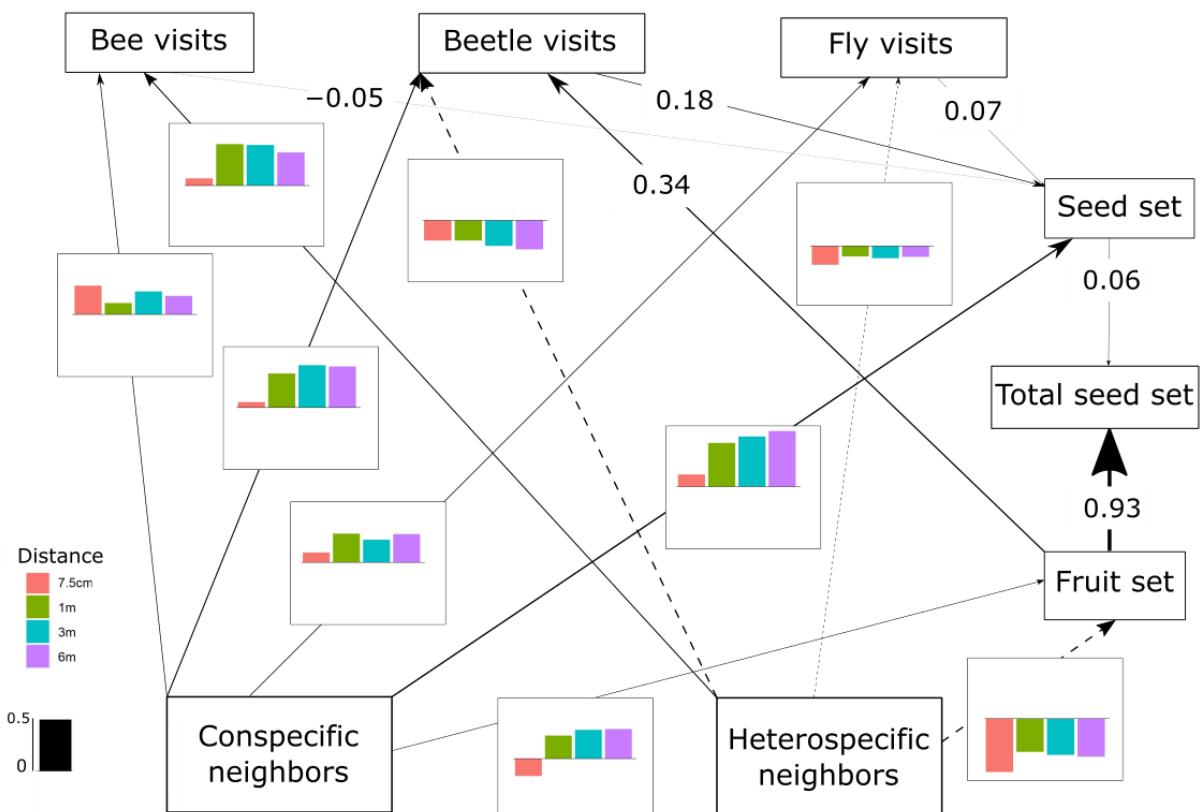
363
364 **Figure 1.** Spatial autocorrelation of plant abundances of the three main species (plots a,
365 b and c: *C. fuscatum*, *L. maroccanus* and *P. paludosa*, respectively), and the three main
366 pollinators (plots d, e and f: bees, beetles and flies, respectively) at increasing distances.
367 The black line is the spatial correlation value that a species has for each distance, the


368 grey shadow indicates the 95% of the confidence interval. The distribution of plant
369 species individuals is more heterogeneous than the pollinators distribution. The I values
370 are the result of the Moran's I statistic.

371

372 The most important findings when comparing results from the Structural Equation Models
373 (SEMs) is that the reproductive success of the three plant species depended on a
374 different combination of direct and indirect paths, which indicates that there is variability
375 in the biological strategies followed by each species. The best fitted structure of the path
376 diagram revealed that the total number of fruits have a larger influence on the total seed
377 production than the seed set, except in the case of *P. paludosa*. Comparing the direct
378 interactions between plant neighbors (conspecific and heterospecific) and total seed set
379 for *C. fuscum* and *L. maroccanus* we found a negative relation between the density of
380 conspecific neighbors and fruit production (Figures 2 and 3). Moreover, the effect of
381 conspecific neighbors on the fruit set produced per individual varies depending on the
382 scale. For both species, we can see that the effect of conspecific neighbors on fruits
383 switch across scales. While for *C. fuscum* is positive at small scales in *L. maroccanus*
384 switches from negative to positive at larger distances. Finally for *P. paludosa*, the effect
385 of conspecific neighbors on the fruit set is negative while the effect of heterospecific
386 neighbors is positive but weak (Figure 4). The neighbors (both conspecific and
387 heterospecific) effect in seed set (in most cases indirect effect through pollinators) and
388 in fruit set is variable depending on the species, in the case of *L. maroccanus* there is a
389 stronger effect of the conspecific neighbors on reproductive success due to its neighbors
390 also affects the seed set, and in the case of *C. fuscum* the stronger effect is due to the
391 heterospecific neighbors. The role of pollinators in these plant species is in general weak,
392 except in the case of *P. paludosa*, where bees have an important effect on plant
393 reproduction success. However, the number of fruits per plant in the case of *L.*
394 *maroccanus* and *P. pulicaria* have an effect also in the attraction of pollinators. More
395 fruits (i.e. more flowers per individual), attract more visits of certain pollinators.

396


397

398

399 **Figure 2.** The SEM of *C. fuscum* which includes the differences in the interactions
400 between scales. Seed refers to the seed set, fruit refers to the number of fruits and total
401 seeds is the total seed set. The lines (dashed and full lines) are proportional to the
402 magnitude of the relation (when different scales, we plot the mean of the standardized
403 total effects across scales) to exemplify the path. The dashed lines are the negative
404 relations. The numbers are the standardized total effects in those variables that remain
405 constant across scales. These barplots show all the standardized total effects of each
406 relation of the model across the different scales. If the value of the barplot is positive, it
407 means that it has a positive effect and if it is negative means that it is a negative effect.
408 It is important to mention that the correlations between the variables are not visualized
409 in the path, but in the SEM model they are included (Eq. (1), APPENDIX A) ($p.value =$
410 0.880 ; $DF = 48$; R^2 of total seed set = ~ 0.82).

411

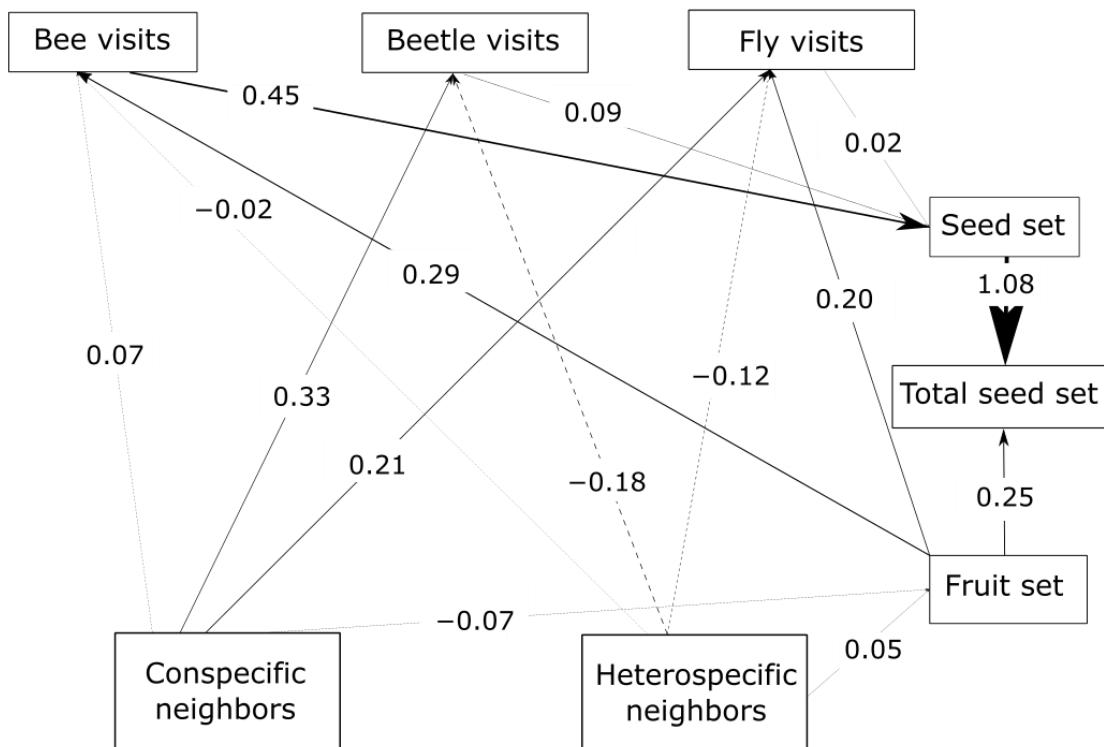


Figure 3. The SEM of *L. maroccanus* which includes the differences in the interactions between scales. The lines (dashed and full lines) are proportional to the magnitude of the relation (when different scales, we plot the mean of the standardized total effects across scales) to exemplify the path. The dashed lines are the negative relations. The numbers are the standardized total effects in those variables that remain constant across scales. These barplots show all the standardized total effects of each relation of the model across the different scales. If the value of the barplot is positive, it means that it has a positive effect and if it is negative means that it is a negative effect. It is important to mention that the correlations between the variables are not visualized in the path, but in the SEM model they are included (Eq. (2), APPENDIX A) ($p.value = 0.869$; $DF = 44$; R^2 of total seed set = ~ 0.91).

412
413

414
415
416
417
418
419
420
421
422
423
424

425

426
427 **Figure 4.** The SEM of *P. paludosa* which includes the differences in the interactions
428 between scales. The lines (dashed and full lines) are proportional to the magnitude of
429 the relation (we plot the standardized total effects) to exemplify the path. The dashed
430 lines are the negative relations. The numbers are the standardized total effects. It is
431 important to mention that the correlations between the variables are not visualized in the
432 path, but in the SEM model they are included (Eq. (3), APPENDIX A) (p.value= 0.253;
433 DF= 95; R² of total seed set= ~0.4).

434
435
436 We also found a clear effect of the number of both conspecific and heterospecific
437 neighbors on attracting pollinators. Generally, the conspecific neighbors benefit the focal
438 species by attracting more pollinators at medium and large scales, but the effect of
439 heterospecific neighbors is more variable. While heterospecific neighbors always affect
440 the beetle visits negatively, they positively affect the bees in *L. maroccanus* and flies in
441 *C. fuscum*, but in *P. paludosa* there is a negative effect on the three pollinator groups.
442 When we look at the mean effects of the competition and pollinator mediated paths
443 (Table 3; see effect decomposition across scales in Table A4 APPENDIX A for *C.*
444 *fuscum* and *L. maroccanus*) we observed that the positive effect of increased pollinator
445 attraction only compensates for the negative effect of plant competition in *P. paludosa*.
446

447 **Table 3.** The direct effects (standardized total effects) of plant competition and the
448 indirect effects mediated by pollinators into the plant reproductive success at the scale
449 of 7.5 cm² (See Table A4, APPENDIX A for the effects on each scale). We have chosen
450 this scale because it is the scale more representative for the path.

451

Species	Total effect	Competition effect	Pollinators effect
<i>C. fuscatum</i>	-0.217	-0.227	0.010
<i>L. maroccanus</i>	-0.588	-0.582	-0.006
<i>P. paludosa</i>	0.023	-0.003	0.027

452

453

454 4. DISCUSSION

455

456 Our most important finding is that the spatial context affects how plant-plant interactions
457 and plant-pollinators interactions contribute to plant reproductive success. Following our
458 main hypotheses, we observed that plants were more aggregated in space than its floral
459 visitors, and they affected in opposite ways plant reproduction success. While plant
460 neighborhoods have a negative effect on plant reproductive success, pollinators result
461 in a more variable, but overall positive effect. However, when comparing the net effect
462 of both sources of plant reproduction success, interestingly we found the positive effect
463 of pollinator visits mediated by the attraction of plant neighbors at larger scales did not
464 compensate for the direct negative effect at neighborhood scales of plant competition in
465 two out of the three studied plants.

466

467 Following prior theoretical and observational work, we observed that plant densities, and
468 particularly those of conspecific individuals, had the strongest negative effect on plant
469 reproductive success through a strong effect on fruit set. We interpret this negative effect
470 as competition for common resources such as water, nutrients, or light as well as shared
471 natural enemies (Underwood *et al.*, 2020), yet, we acknowledge that we did not explore
472 the ultimate sources of the observed competition. Another important finding is that the
473 scale at which competition acts was different from which the scale pollinators were
474 attracted. Namely, our results suggest that competition effects are stronger at lower
475 scales (Antonovics & Levin, 1980), and confirm that measuring neighborhoods at 7.5
476 cm² captures the strongest signal of competition (Levine & HilleRisLambers, 2009;
477 Mayfield & Stouffer, 2017; Lanuza *et al.*, 2018). However, distances at which pollinators
478 are attracted remains less understood. In our case, pollinator attraction and its further

479 positive contribution on plant reproductive success through pollination visits occur at
480 larger scales up to 3 m².

481 Indeed, the scale at which different ecological interactions are relevant might differ in
482 other systems. Our study shows that this is a complex interplay between the intrinsic
483 ability of plants to produce seeds in the absence of pollinators, to produce flowers, and
484 therefore to attract pollinators, and the pollinator behavior and their pollination efficacy.
485 In our study, this is exemplified by the contrasted strategies we observed among the
486 three studied species. For instance, *L. maroccanus* and *C. fuscatum* were not limited in
487 the contribution of pollinators to plant reproductive success because *L. maroccanus* is
488 highly self-compatible, and *C. fuscatum* showed no pollen limitation because relied on a
489 high number of visits by small flies which ensure a large seed set across the area. In
490 contrast, the pollination of *P. paludosa* was limited by the low number of bee visits that
491 contributed significantly to increase its reproductive success. This small number of visits
492 could be due to the fact that *P. paludosa* is a late flowering phenology species whose
493 phenology mismatches with the phenology of bees, the fact that *P. paludosa* is not a
494 strongly aggregated species that could attract bees by itself, or maybe it could be simply
495 because bees are scarce in our system. Regardless of these different possibilities, our
496 study shows that the effect of pollinators on plant reproductive success is a spatial explicit
497 process which in turn interacts with the plant and pollinator biology, and despite it might
498 contribute to plant reproductive success positively, it cannot be enough to compensate
499 the negative effects on plant competition in spatially structured environments.

500 For all species, both plants and pollinator guilds we observed a significant pattern of
501 spatial aggregation, although the magnitude greatly varied across species. Spatial
502 aggregation of plant species is considered to be mediated by a combination of local
503 dispersal and strong preferences for certain environmental conditions (e.g. water
504 availability) (Stoll & Patri, 2001). Many annual Asteraceae plant species such as *C.*
505 *fuscatum* and *P. paludosa* neither possess particular dispersal structures (e.g. pappu)
506 (Howe & Smallwood, 1982; Venable & Levin, 1983) nor are attractive and big enough to
507 be dispersed by seed disperses such as insects or ants (Handel & Beattie, 1990; Rogers
508 *et al.*, 2021), therefore they tend to fall in the ground close to their mothers (Venable &
509 Levin, 1983). Other species with pappus structures, such as *L. maroccanus* in this study,
510 can be wind or water dispersed over long distances across space, and their strong spatial
511 aggregation can be due to the selection of particular microenvironmental conditions (e.g.
512 substrate) that allow seed germination and establishment (Venable & Levin, 1983;
513 Nathan & Muller-Landau, 2000). For floral visitor guilds, wild bees are known to be central

514 place foragers, which forage close to their nest (Gathman & Tscharnte, 2002) while flies
515 instead seems to have an unspecialized pattern in which they forage distinct flowers
516 along long distances (Inouye *et al.*, 2015). Beetles tend to visit less flowers and to stay
517 more time per each flower than the other guilds, having a more clustered aggregation
518 (Primack & Silander, 1975). These arrays of mechanisms suggest that in general it is
519 more likely to find spatial aggregation in plants than in floral visitors. Yet, for any
520 procedure the spatial aggregation is broken, then the remaining question is whether the
521 hierarchy we observed of negative competition effects being stronger than positive
522 mutualistic effects still holds. Future research could manipulate the spatial aggregation
523 across scales to mechanistically test the relative importance of both plant-plant and
524 plant-pollinator interactions for plant reproductive success in spatial uncorrelated
525 environments.

526 Together, our study provides clear evidence that spatial aggregation across scales, from
527 very small neighborhoods to plot scales is key to determining the magnitude of
528 multitrophic interactions modulating plant reproductive success. Such correlation in
529 conspecific individuals across scales connects pollinator attraction and therefore the
530 mutualistic effect of floral visits (Ghazoul, 2006; Bruninga-Socolar & Branam, 2022; de
531 Jager *et al.*, 2022) with the negative competitive effect of dense local neighborhoods
532 (Albor *et al.*, 2019; Underwood *et al.*, 2020). This connection highlights the fact that the
533 fate on individual reproductive success and therefore the persistence of populations is
534 not only a matter of the degree of temporal autocorrelation (e.g. Lyberger *et al.*, 2021;
535 Martinović *et al.*, 2021) but also the degree of spatial autocorrelation. However, the
536 spatial effects here documented are rare, and therefore, we call for a need to better
537 integrate observational data with solid theory that connect plant-pollinator systems with
538 multiple trophic interactions in a more comprehensive framework of plant population
539 dynamics. Such integration is paramount because in our study we highlight that
540 predicting the net effect plant-plant and plant-pollinator interactions on plant reproductive
541 success in spatially structured environments is complex, as it results from the
542 combination of pollinators (Underwood *et al.*, 2020) and plant characteristics (de Jager
543 *et al.*, 2022). We conclude that a more realistic understanding of the direct and indirect
544 effects by which pollinators contribute to plant fitness need to explicitly consider the
545 spatial structure in which these interactions occur.

546

547

548

549

550 **DATA AVAILABILITY**

551

552 The data used to generate the results of this study is deposited at Zenodo
553 <https://zenodo.org/record/7216774#.Y07IC3bMK3A>

554

555 **AUTHOR CONTRIBUTION**

556

557 OG and IB design the study. MH, OG, IB conducted fieldwork. All authors analyzed the
558 results, and MH and IB wrote the manuscript with substantial contributions from OG.

559

560

561 **COMPETING INTEREST**

562

563 The authors declare that they have no conflict of interest.

564

565 **ACKNOWLEDGEMENTS**

566

567 M.H acknowledges financial support provided by the Spanish Ministry of Science and
568 Innovation through the FPI grant (PRE 2019-088280). O.G acknowledges financial
569 support provided by the Spanish Ministry of Science and Innovation through Ramón y
570 Cajal program (RYC 2017-23666) and Proyectos de generación de conocimiento
571 (PID2021-127607OB-100).

572

573 **BIBLIOGRAPHY**

574 Albor, C., García-Franco, J. G., Parra-Tabla, V., Díaz-Castelazo, C., & Arceo-
575 Gómez, G. (2019). Taxonomic and functional diversity of the co-flowering community
576 differentially affect *Cakile edentula* pollination at different spatial scales. *Journal of*
577 *Ecology*, 0–3. <https://doi.org/10.1111/1365-2745.13183>

578 Antonovics, J., & Levin, D. A. (1980). The ecological and genetic consequences
579 of density-dependent regulation in plants. *Annual Review of Ecology and Systematics*,
580 11(1), 411-452.

581 Becker, R. A., Chambers, J. M. & Wilks, A. R. (1988) The New S Language.
582 Wadsworth & Brooks/Cole.

583 Bergamo, P. J., Streher, N. S., Wolowski, M., & Sazima, M. (2020). Pollinator-
584 mediated facilitation is associated with floral abundance, trait similarity and enhanced
585 community-level fitness. *Journal of Ecology*, 108(4), 1334-1346.

586 Bivand, R. S. & Wong D. W. S. (2018). Comparing implementations of global and
587 local indicators of spatial association. *TEST*, 27(3), 716–748.

588 Blaauw, B. R., & Isaacs, R. (2014). Larger patches of diverse floral resources
589 increase insect pollinator density, diversity, and their pollination of native wildflowers.
590 *Basic and Applied Ecology*, 15(8), 701-711.

591 Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation
592 models. *Sociological methodology*, 37-69.

593 Bruninga-Socolar, B., & Branam, E. (2022). Co-Flowering Plant Densities Affect
594 Bee Visitation to a Focal Plant Species, but Bee Genera Differ in Their Response. *Natural
595 Areas Journal*, 42(1), 98-104.

596 Carvalheiro, L. G., Biesmeijer, J. C., Benadi, G., Fründ, J., Stang, M., Bartomeus,
597 I., Kaiser-Bunbury C.N., Baude, M., Gomes, S.I.F., Merckx, V., Baldock, K. C. R.,
598 Bennett, A. T. D., Boada, R., Bomarco, R., Cartar, R., Chacoff, N., Dänhardt, J., Dicks
599 L. V., Dormann, C. F., Ekoos, J., Henson, K. S. E., Holzschuh, A., Junker, R. R.,
600 Lopezaraiza-Mikel, M., Memmott, J., Montero-Castaño, A., Nelson, I. L., Petanidou, T.,
601 Power, E. F., Rundlöf, M., Smith, H. G., Stout., J. C., Temitope, K., Tscharntke, T.,
602 Tscheulin, T., Vilá, M., & Kunin, W. E. (2014). The potential for indirect effects between
603 co-flowering plants via shared pollinators depends on resource abundance, accessibility
604 and relatedness. *Ecology letters*, 17(11), 1389-1399.

605 Chase, J. M., & Leibold, M. A. (2002). Spatial scale dictates the productivity–
606 biodiversity relationship. *Nature*, 416(6879), 427-430.

607 Chittka, L., & Thomson, J. D. (Eds.). (2001). *Cognitive ecology of pollination: animal behaviour and floral evolution*. Cambridge University Press.

609 Craine, J. M., & Dybzinski, R. (2013). Mechanisms of plant competition for
610 nutrients, water and light. *Functional Ecology*, 27(4), 833-840.

611 Dauber, J., Biesmeijer, J. C., Gabriel, D., Kunin, W. E., Lamborn, E., Meyer,
612 B., Nielsen, A., Potts, S.G, Roberts, S.P.M., Söber, Settele, J., Steffan-Dewenter, I.,
613 Stout, J.C., Teder, T., Tscheulin, T., Vivarelli, D. & Petanidou, T. (2010). Effects of patch

614 size and density on flower visitation and seed set of wild plants: a pan-European
615 approach. *Journal of Ecology*, 98(1), 188-196.

616 de Jager, M. L., Ellis, A. G., & Anderson, B. (2022). Colour similarity to flowering
617 neighbours promotes pollinator visits, pollen receipt and maternal fitness. *South African*
618 *Journal of Botany*, 147, 568-575.

619 Duflot, R., Georges, R., Ernoult, A., Aviron, S., & Burel, F. (2014). Landscape
620 heterogeneity as an ecological filter of species traits. *Acta Oecologica*, 56, 19-26.

621 Gámez-Virués, S., Perović, D. J., Gossner, M. M., Börschig, C., Blüthgen, N., De
622 Jong, H., Simons, N. K., Klein, A., Krauss, J., Maier, G., Scherber, C., Steckel, J.,
623 Rothenwörer, C., Steffan-Dewenter, I., Weiner, C. N., Weisser, W., Werner, M.,
624 Tscharntke, T., & Westphal, C. (2015). Landscape simplification filters species traits and
625 drives biotic homogenization. *Nature communications*, 6(1), 1-8.

626 Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. *Journal*
627 *of animal ecology*, 71(5), 757-764.

628 Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. *Journal of*
629 *ecology*, 295-304.

630 Grace, J. B. (2006). *Structural equation modeling and natural systems*.
631 Cambridge University Press.

632 Hacker, S. D., & Gaines, S. D. (1997). Some implications of direct positive
633 interactions for community species diversity. *Ecology*, 78(7), 1990-2003.

634 Handel, S. N., & Beattie, A. J. (1990). Seed dispersal by ants. *Scientific American*,
635 263(2), 76-83B.

636 Hegland, S.J. & Totland, O. (2005). Relationships between species' floral traits
637 and pollinator visitation in temperate grassland. *Oecologia*, 145, 586–594

638 Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. *Annual review*
639 *of ecology and systematics*, 13, 201-228.

640 Hulme, P. E. (1996). Herbivory, plant regeneration, and species coexistence.
641 *Journal of Ecology*, 609-615.

642 Inouye, D. W., Larson, B. M., Ssymank, A., & Kevan, P. G. (2015). Flies and
643 flowers III: ecology of foraging and pollination. *Journal of Pollination Ecology*, 16, 115-
644 133.

645 Kendall, L. K., Mola, J. M., Portman, Z. M., Cariveau, D. P., Smith, H. G., &
646 Bartomeus, I. (2022). The potential and realized foraging movements of bees are
647 differentially determined by body size and sociality.

648 Kline, R. B. (2015). *Principles and practice of structural equation modeling*.
649 Guilford publications.

650 Lander, T. A., Bebber, D. P., Choy, C. T., Harris, S. A., & Boshier, D. H. (2011).
651 The Circe principle explains how resource-rich land can waylay pollinators in fragmented
652 landscapes. *Current Biology*, 21(15), 1302-1307.

653 Lanuza, J. B., Bartomeus, I., & Godoy, O. (2018). Opposing effects of floral
654 visitors and soil conditions on the determinants of competitive outcomes maintain
655 species diversity in heterogeneous landscapes. *Ecology Letters*, 21(6), 865-874.

656 Lázaro, A., & Totland, Ø. (2010). Local floral composition and the behaviour of
657 pollinators: attraction to and foraging within experimental patches. *Ecological
658 Entomology*, 35(5), 652-661.

659 Lázaro, A., Lundgren, R., & Totland, Ø. (2014). Experimental reduction of
660 pollinator visitation modifies plant-plant interactions for pollination. *Oikos*, 123(9), 1037-
661 1048.

662 Levine, J. M., & HilleRisLambers, J. (2009). The importance of niches for the
663 maintenance of species diversity. *Nature*, 461(7261), 254-257.

664 López-Uribe, M. M., Cane, J. H., Minckley, R. L., & Danforth, B. N. (2016). Crop
665 domestication facilitated rapid geographical expansion of a specialist pollinator, the
666 squash bee *Peponapis pruinosa*. *Proceedings of the Royal Society B: Biological
667 Sciences*, 283(1833), 20160443.

668 Lyberger, K., Schoener, T. W., & Schreiber, S. J. (2021). Effects of size selection
669 versus density dependence on life histories: A first experimental probe. *Ecology Letters*,
670 24(7), 1467-1473.

671 Martinović, T., Odriozola, I., Mašínová, T., Doreen Bahnmann, B., Kohout, P.,
672 Sedlák, P., Merunková, K., Větrovský, T., Tomšovský, M., Ovaskainen, O. & Baldrian, P.
673 (2021). Temporal turnover of the soil microbiome composition is guild-specific. *Ecology
674 Letters*, 24(12), 2726-2738.

675 Mayfield, M. M., & Stouffer, D. B. (2017). Higher-order interactions capture
676 unexplained complexity in diverse communities. *Nature ecology & evolution*, 1(3), 1-7.

677 Mesgaran, M. B., Bouhours, J., Lewis, M. A., & Cousens, R. D. (2017). How to
678 be a good neighbour: facilitation and competition between two co-flowering species.
679 *Journal of theoretical biology*, 422, 72-83.

680 Muñoz, A. A., & Cavieres, L. A. (2008). The presence of a showy invasive plant
681 disrupts pollinator service and reproductive output in native alpine species only at high
682 densities. *Journal of Ecology*, 96(3), 459-467.

683 Nathan, R., & Muller-Landau, H. C. (2000). Spatial patterns of seed dispersal,
684 their determinants and consequences for recruitment. *Trends in ecology & evolution*,
685 15(7), 278-285.

686 Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are
687 pollinated by animals?. *Oikos*, 120(3), 321-326.

688 Pacala, S. W., & Silander Jr, J. A. (1990). Field tests of neighborhood population
689 dynamic models of two annual weed species. *Ecological Monographs*, 60(1), 113-134.

690 Primack, R. B., & Silander, J. A. (1975). Measuring the relative importance of
691 different pollinators to plants. *Nature*, 255(5504), 143-144.

692 Reverté, S., Bosch, J., Arnan, X., Roslin, T., Stefanescu, C., Calleja, J. A.,
693 Molowny-Horas, R., Hernández-Castellano, C. & Rodrigo, A. (2019). Spatial variability
694 in a plant–pollinator community across a continuous habitat: high heterogeneity in the
695 face of apparent uniformity. *Ecography*, 42(9), 1558-1568.

696 Rogers, H. S., Donoso, I., Traveset, A., & Fricke, E. C. (2021). Cascading impacts
697 of seed disperser loss on plant communities and ecosystems. *Annual Review of Ecology,
698 Evolution, and Systematics*, 52, 641-666.

699 Rosseel, Y. (2012). lavaan: An R package for structural equation modeling.
700 *Journal of statistical software*, 48, 1-36.

701 Schmidke, A., Rottstock, T., Gaedke, U., & Fischer, M. (2010). Plant community
702 diversity and composition affect individual plant performance. *Oecologia*, 164(3), 665-
703 677.

704 Seifan, M., Hoch, E. M., Hanoteaux, S., & Tielbörger, K. (2014). The outcome of
705 shared pollination services is affected by the density and spatial pattern of an attractive
706 neighbour. *Journal of Ecology*, 102(4), 953-962.

707 Sowig, P. (1989). Effects of flowering plant's patch size on species composition
708 of pollinator communities, foraging strategies, and resource partitioning in bumblebees
709 (Hymenoptera: Apidae). *Oecologia*, 78(4), 550-558.

710 Stoll, P., & Prati, D. (2001). Intraspecific aggregation alters competitive
711 interactions in experimental plant communities. *Ecology*, 82(2), 319-327.

712 Suárez-Mariño, A., Arceo-Gómez, G., Albor, C., & Parra-Tabla, V. (2022)
713 Flowering overlap and floral trait similarity help explain the structure of pollination
714 network. *Journal of Ecology*.

715 Thompson, J. N. (2006). Mutualistic webs of species. *Science*, 312(5772), 372-
716 373. <https://doi.org/10.1126/science.1126904>

717 Thomson, J. D. (1978). Effects of stand composition on insect visitation in two-
718 species mixtures of Hieracium. *American Midland Naturalist*, 431-440.

719 Tilman, D. (1990). Mechanisms of plant competition for nutrients: the elements
720 of a predictive theory of competition. *Mechanisms of plant competition for nutrients: the*
721 *elements of a predictive theory of competition.*, 117-141.

722 Underwood, N., Hambäck, P. A., & Inouye, B. D. (2020). Pollinators, herbivores,
723 and plant neighborhood effects. *The Quarterly Review of Biology*, 95(1), 37-57.

724 Venable, D. L., & Levin, D. A. (1983). Morphological dispersal structures in
725 relation to growth habit in theCompositae. *Plant Systematics and Evolution*, 143(1), 1-
726 16.

727 Whalley, B. (2019). Just Enough R (for psychologists). (0.1.0). Zenodo.
728 <https://doi.org/10.5281/zenodo.3666150>.

729 Zurbuchen, A., Landert, L., Klaiber, J., Müller, A., Hein, S., & Dorn, S. (2010).
730 Maximum foraging ranges in solitary bees: only few individuals have the capability to
731 cover long foraging distances. *Biological Conservation*, 143(3), 669-676.
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

752

This is the APPENDIX A for

753 Plant spatial aggregation modulates the interplay between
754 plant competition and pollinator attraction with contrasting
755 outcomes of plant fitness

756

757 María Hurtado, Oscar Godoy, and Ignasi Bartomeus

758

759

760 **Table A1.** Floral visitor frequency. This is the list of the most accurate identification (ID)
761 of the floral visitors that we have made. Each ID has associated the number of visits in
762 total that we recorded in the field. We classified the ID in four groups of floral visitors:
763 Bee, Beetle, Butterfly and Fly.

764

765

766

Group	ID of the specimens	Number of total visits
Bee	<i>Andrena argentata</i>	4
Bee	<i>Andrena humilis</i>	76
Bee	<i>Andrena</i> sp	56
Bee	<i>Eucera</i> sp	4
Bee	<i>Lasioglossum immunitum</i>	2
Bee	<i>Lasioglossum malachurum</i>	104
Bee	<i>Lasioglossum</i> sp	9
Bee	<i>Osmia ligurica</i>	14
Beetle	Family Anthicidae	9
Beetle	<i>Brassicogethes</i> sp	701
Beetle	<i>Cassida</i> sp	1
Beetle	Family Cerambycidae	2
Beetle	<i>Cryptocephalus</i> sp	5
Beetle	Family Curculionidae	1
Beetle	Family Elateridae	10
Beetle	<i>Lagorina sericea</i>	3
Beetle	<i>Malachius bipustulatus</i>	9
Beetle	Melyridae	1
Beetle	Mordellidae	16
Beetle	Oedemeridae	12
Beetle	<i>Phaedon</i> sp	1
Beetle	<i>Psilothrix viridicoerulea</i>	317
Butterfly	<i>Euchloe crameri</i>	1
Butterfly	Geometridae	2
Butterfly	<i>Lasiocampa trifolii</i>	5
Butterfly	<i>Pieris brassicae</i>	3
Butterfly	<i>Vanessa cardui</i>	2
Fly	<i>Anastoechus</i> sp	44
Fly	<i>Bombylius major</i>	13
Fly	Family Calliphoridae	6
Fly	<i>Cylindromyia</i> sp	9

Fly	<i>Dilophus</i> sp	4
Fly	Genus Diptera	1
Fly	<i>Empis</i> sp	2
Fly	<i>Episyrphus balteatus</i>	14
Fly	<i>Eristalis</i> sp	3
Fly	<i>Eupeodes corollae</i>	1
Fly	<i>Lomatia</i> sp	9
Fly	<i>Musca</i> sp	44
Fly	<i>Nemotelus</i> sp	6
Fly	<i>Sarcophaga</i> sp	23
Fly	<i>Sphaerophoria scripta</i>	32
Fly	Family Syrphidae	3
Fly	Family Ulidiidae	122

767

768

769

770

771

772

773

774

775

776

777

778

779

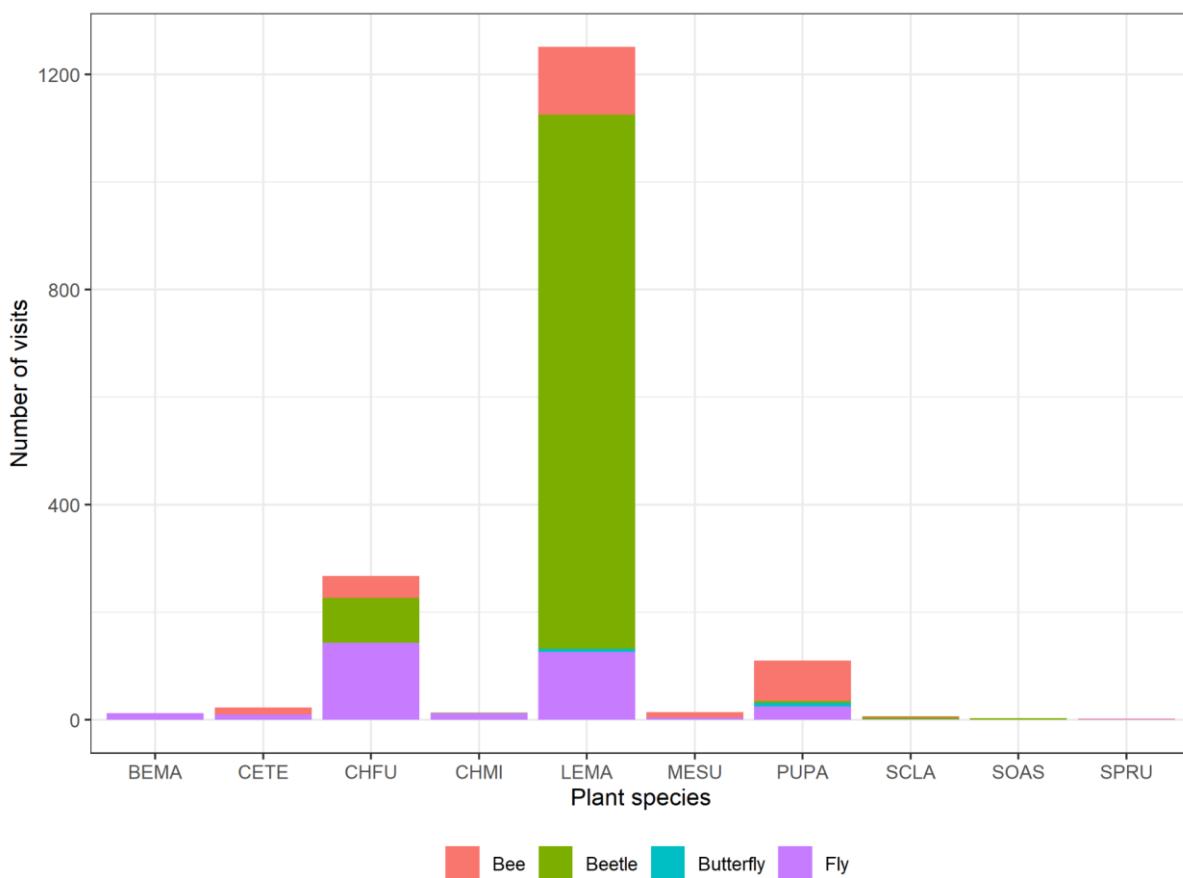
780

781

782

783

784


785

786

787

788

789

790

791 **Figure A1.** This boxplot shows how the floral visitors are distributed across the plant
792 species. We can observe that the most visited species are *C.fuscum*, *L.maroccanus*
793 and *P.paludosa*. *C.fuscum* is visited mostly by flies, *L.maroccanus* is visited mostly by
794 beetles and lastly, *P.paludosa* is visited mostly by bees.

795

796

797

798

799

800

801

802

803

804

805

806

807

808

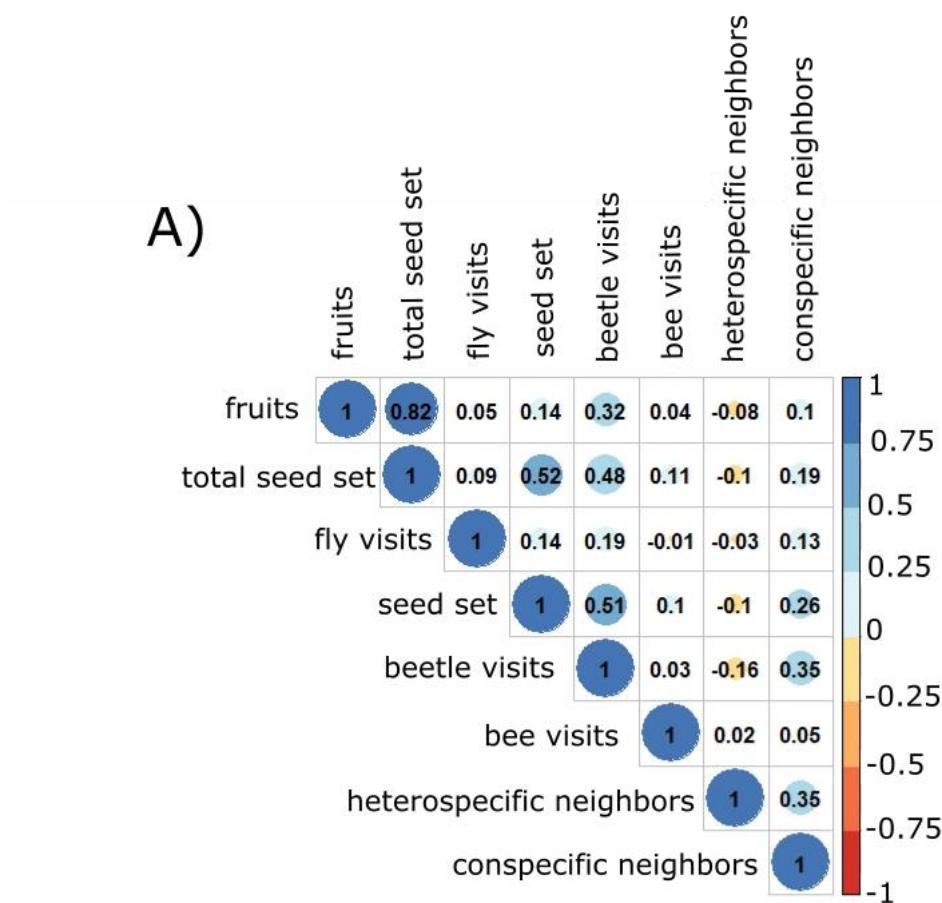
809

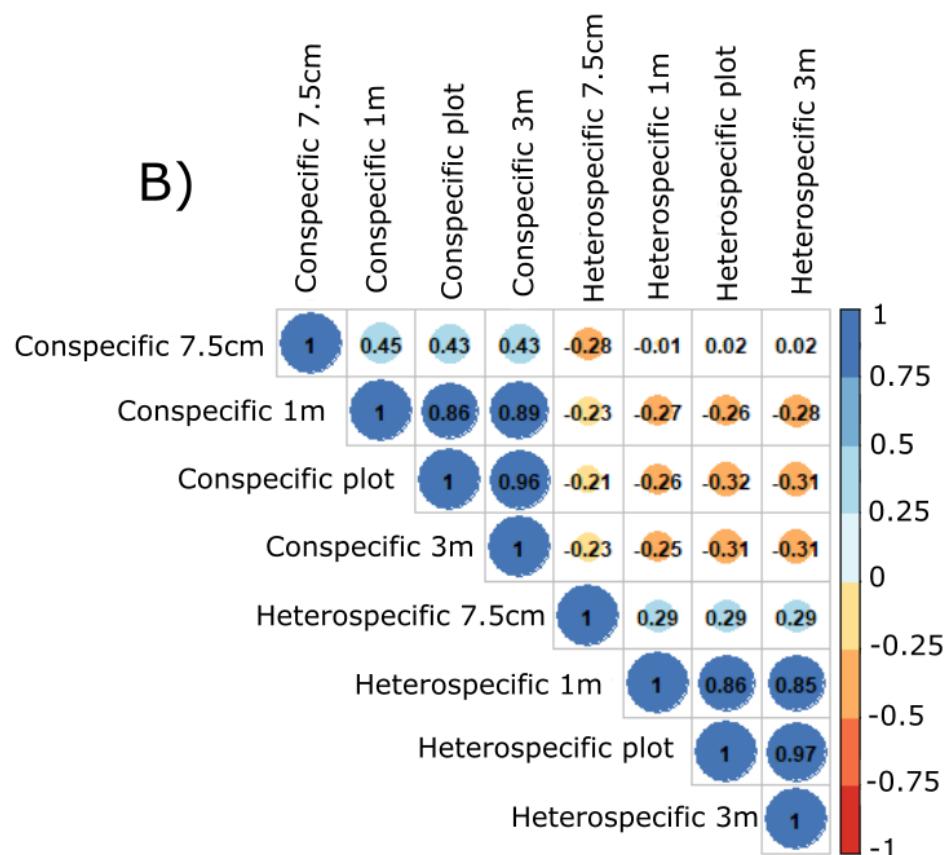
810

811

812 **Table A2.** List of species observed in Caracoles Estate in 2020. Code and taxonomic
813 information of the plant species is provided. Also, it is recorded the number of visits of
814 each floral visitor group that receives each plant species. Sample sizes represent the
815 abundances of each species that we measured in the field, and it is correlated with their
816 natural abundances in the site study. In this data the butterflies visits are included,
817 however, due to the low number of visits of that group (only 13 visits) we decided to
818 exclude this data for further analysis.

819

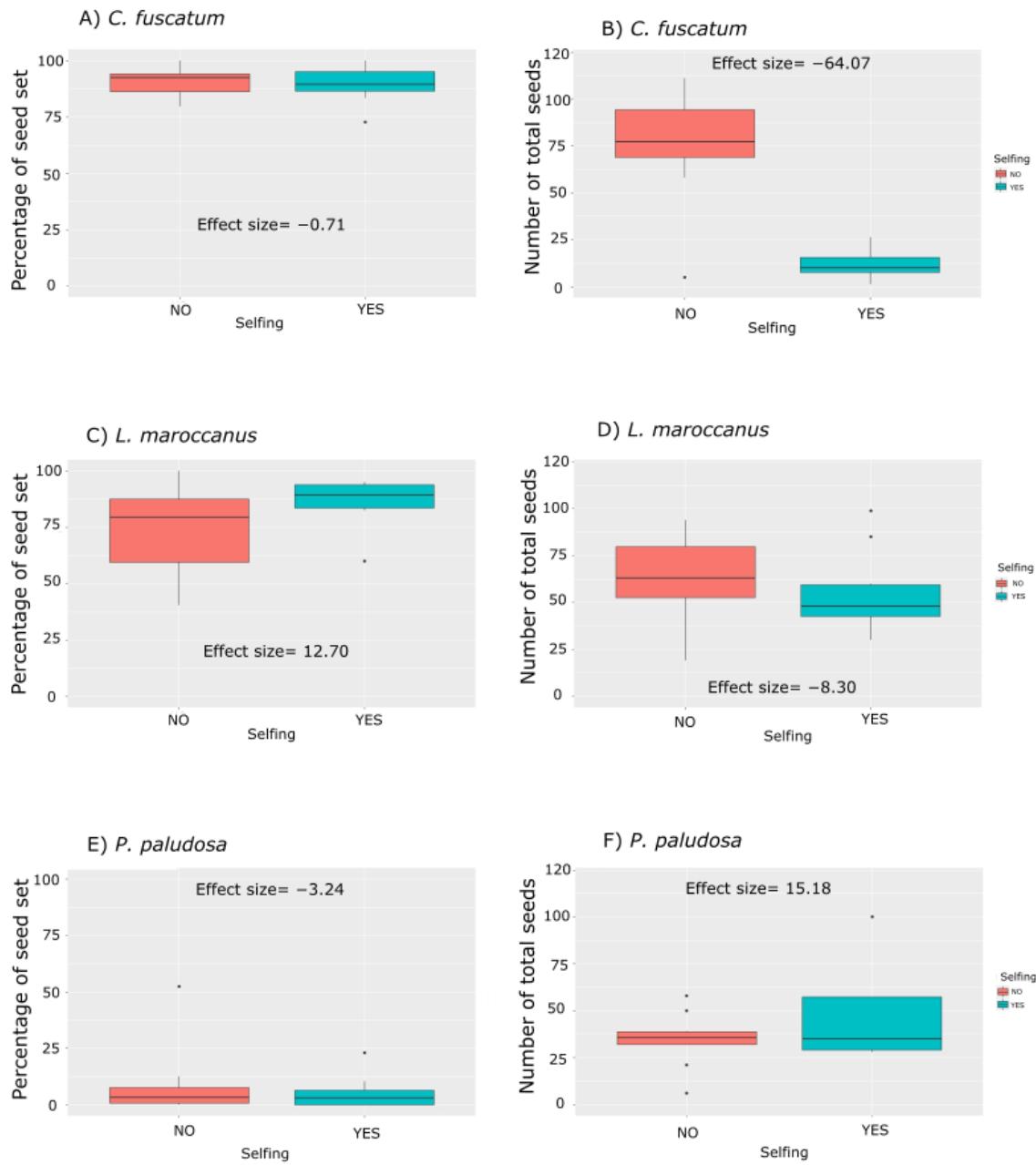

Species	Family	Flora visitors	Bee	Bee+	Butterfly	Fly	Total visits	Number of plant individuals sampled
<i>Beta macrocarpa</i> (BEMA)	Amaranthaceae	Yes	0	0	0	13	13	1747
<i>Centaurium tenuiflorum</i> (CETE)	Gentianaceae	Yes	13	0	0	10	26	1942
<i>Chamaemelum fuscatum</i> (CHFU)	Asteraceae	Yes	41	84	0	143	268	1204
<i>Chamaemelum mixtum</i> (CHMI)	Asteraceae	Yes	0	1	0	13	14	144
<i>Leontodon maroccanus</i> (LEMA)	Asteraceae	Yes	126	993	6	126	1251	8359
<i>Melilotus sulcatus</i> (MESU)	Fabaceae	Yes	11	0	0	4	15	998
<i>Pulicaria paludosa</i> (PUPA)	Asteraceae	Yes	75	3	7	25	110	1415
<i>Scorzonera laciniata</i> (SCLA)	Asteraceae	Yes	2	4	0	1	7	776
<i>Sonchus asper</i> (SOAS)	Asteraceae	Yes	0	3	0	0	3	987
<i>Spergularia rubra</i> (SPRU)	Caryophyllacea e	Yes	1	0	0	1	2	2106
<i>Hodeum marinus</i> (HOMA)	Poaceae	No	0	0	0	0	0	12403
<i>Plantago coronopus</i> (PLCO)	Plantaginaceae	No	0	0	0	0	0	844
<i>Polypogon monspeliensis</i> (POMO)	Poaceae	No	0	0	0	0	0	393
<i>Polypogon maritimus</i> (POMA)	Poaceae	No	0	0	0	0	0	2970
<i>Suaeda splendens</i> (SUSP)	Amaranthaceae	No	0	0	0	0	0	65
<i>Achicoria sp</i> (ACHI)	Asteraceae	No	0	0	0	0	0	38
<i>Lysimachia</i>	Primulaceae	No	0	0	0	0	0	35


arvensis (ANAR)

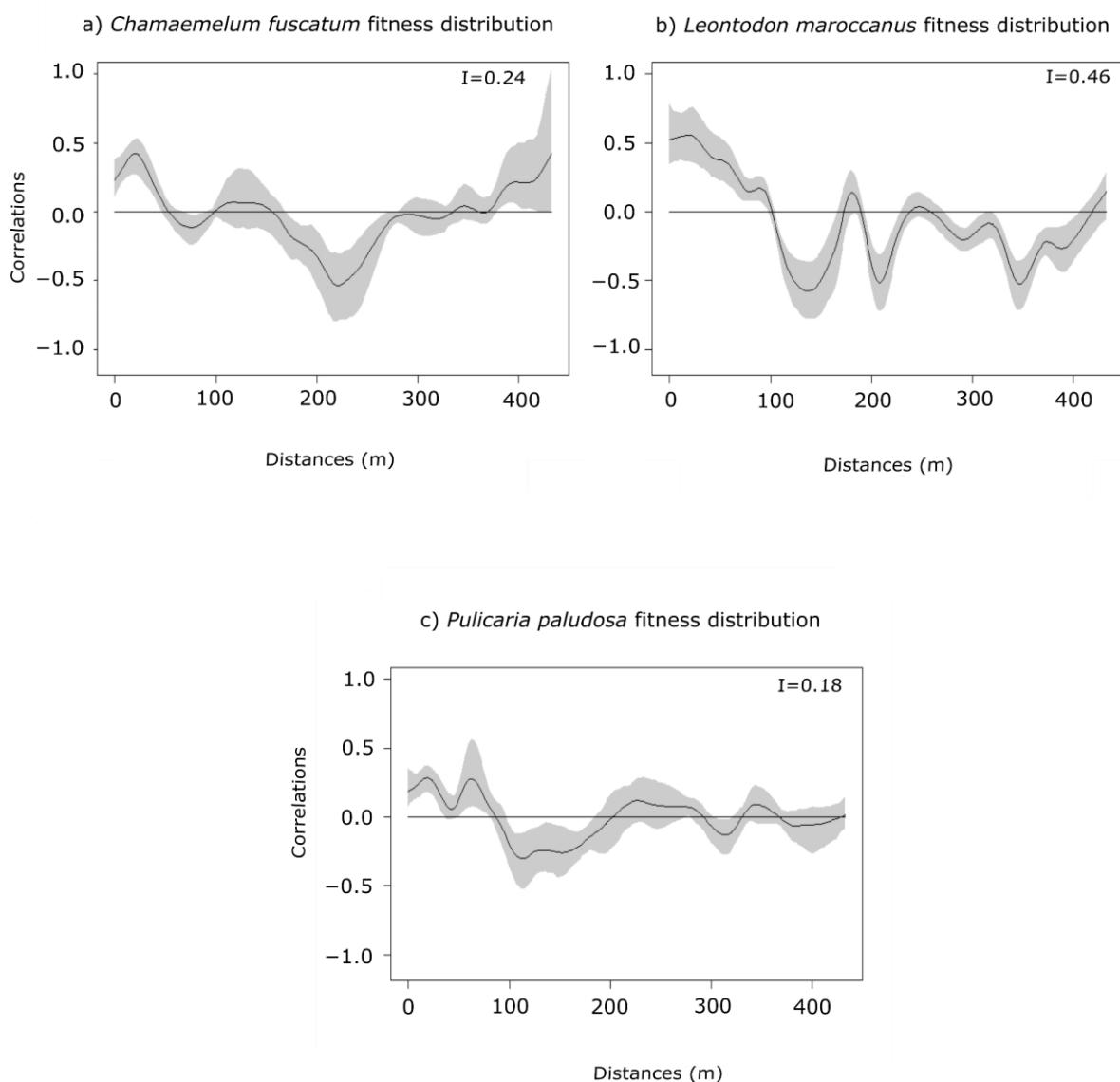
<i>Mellilotus elegans</i> (MEEL)	Fabaceae	No	0	0	0	0	0	1
<i>Medicago polymorpha</i> (MEPO)	Fabaceae	No	0	0	0	0	0	147
<i>Parapholis incurva</i> (PAIN)	Poaceae	No	0	0	0	0	0	801
<i>Ranunculus peltatus</i> (RAPE)	Ranunculaceae	No	0	0	0	0	0	36
<i>Salsola soda</i> (SASO)	Amaranthaceae	No	0	0	0	0	0	806
<i>Coronopus squamatus</i> (COSQ)	Brassicaceae	No	0	0	0	0	0	3

Total 269 1088 13 336 1709 38220

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839



841


842

843 **Figure A2.** These plots show the correlations between the different variables. In plot A
844 there are the correlations between all the variables included in the model per the three
845 species and in plot B there are the correlations between the different scales of neighbors
846 (7.5 cm², 1m², 3m² and 6m² (plot level)). The strong colors of the cells indicate that there
847 is a strong correlation, and the light colors mean the opposite, there is a slight correlation.
848

849
850

851 **Figure A3.** This figure shows the different boxplots for each plant species considering the
 852 seed set and the total seed set of the selfing experiment (with or without pollination). In
 853 the first column of the plots, we have the percentage of total seed set per species per
 854 treatment, and in the second column we have the number of total seeds (viable and no
 855 viable seeds) per species and per treatment. The numbers that appear inside the plot
 856 are the Effect sizes.

857
858

859 **Figure A4.** Spatial autocorrelation of fitness (reproductive success) distribution of plant
860 species. The black line is the spatial correlation value that a species has for each
861 distance, the grey shadow indicates the 95% of the confidence interval. The I values are
862 the result of the Moran's I statistic.

863

864

865

866

867

868

869

870

871

872

873

874 **Table A3.** This table shows the ANOVA result of each plant species with the constrained
875 and the multigroup model. The “*” means that the result is significant, meaning that both
876 models are not equal (if they are equal means that this species does not depend on the
877 scale). We want to check if the models depend on the spatial scale (multigroup models).
878 In the case of *C. fuscum* and *L. maroccanus* the models that are more parsimonious
879 (low AIC) are the multigroup and in the case of *P. paludosa* the most parsimonious model
880 is the constrained.

881

882

Chi-Squared Difference Test	DF	AIC	BIC	Pr(>Chisq)
<i>C. fuscum</i> multigroup	48	5011.2	5399.0	1.58e-06*
<i>C. fuscum</i> constrained	108	5047.5	5219.9	
<i>L. maroccanus</i> multigroup	44	5663.1	6117.7	< 2.2e-16*
<i>L. maroccanus</i> constrained	107	5790.8	5989.7	
<i>P. paludosa</i> multigroup	32	2849.6	3289.2	0.45
<i>P. paludosa</i> constrained	95	2787.2	3003.5	

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906 The following equations specified in R are the models that we use to create the SEM for
907 each species. Eq. (1), Eq. (2) and Eq. (3) are equal except for some particularities for
908 each species. The “~” sign means that there is a relation between the predictors, and the
909 double sign “~~” means that there is a correlation between the variables, there is a
910 covariation. It is important to remember that fruits in our study are the same as the
911 number of flowers.

912

913 **Equation (1).** This is the model for *C.fuscum*

914 model C.fuscum <- '

915

916 Plant_fitness =

917

918 seeds ~ Bee + Fly + Beetle

919 fruits ~ inter + intra

920 Bee ~ inter + intra

921 Fly ~ inter + intra

922 Beetle ~ inter + intra

923

924 seed.indv ~ seeds + fruits

925

926 #particularities for this species

927 seeds ~ inter

928 Beetle ~~ Fly

929

930 '

931

932

933

934 **Equation (2).** This is the model of *L. maroccanus*

935 model L.maroccanus <- '

936

937 Plant_fitness =

938

939 seeds ~ Fly + Beetle + Bee

940 fruits ~ inter + intra

941 Beetle ~ inter + intra

942 Fly ~ inter + intra

943 Bee ~ inter + intra

944

945 seed.indv ~ seeds + fruits

946

947 #particularities for this species

948 seeds ~ intra

949 Beetle ~ fruits

950 seeds ~~ seed.indv

951 '

952
953 **Equation (3).** This is the model for *P.paludosa*
954 model P.paludosa <- '
955
956 Plant_fitness =
957 seeds ~ Fly + Bee + Beetle
958 fruits ~ intra + inter
959 Fly ~ intra + inter
960 Bee ~ inter + intra
961 Beetle ~ inter + intra
962
963 seed.indv ~ seeds + fruits
964
965 #particularities for this species
966 seeds ~~ seed.indv
967 seeds ~~ fruits
968 Fly ~~ Bee
969 Fly ~~ Beetle
970 Fly ~ fruits
971 Bee ~ fruits
972 '
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000

1001 **Table A4.** Decomposition of the direct and indirect effects across the different scales in
1002 the species that are scale dependent (*C. fuscum* and *L. maroccanus*). In the table it is
1003 shown the standardized total effects.

1004

1005

Species	Scale	Total effect	Competition	Pollinators effect
<i>C. fuscum</i>	7.5 cm	-0.217	-0.227	0.010
<i>C. fuscum</i>	1 m	-0.144	-0.164	0.020
<i>C. fuscum</i>	3 m	-0.352	-0.370	0.018
<i>C. fuscum</i>	6 m	-0.378	-0.396	0.019
<i>L. maroccanus</i>	7.5 cm	-0.588	-0.582	-0.006
<i>L. maroccanus</i>	1 m	-0.070	-0.071	0.001
<i>L. maroccanus</i>	3 m	-0.036	-0.035	-0.001
<i>L. maroccanus</i>	6 m	-0.041	-0.040	-0.001

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019