

1 **Blood and site of disease inflammatory profiles differ in HIV-1-infected pericardial
2 tuberculosis patients**

3

4 Hygon Mutavhatsindi^{a,i*}, Elsa Du Bruyn^a, Sheena Ruzive^a, Patrick Howlett^a, Alan Sher^b,
5 Katrin D. Mayer-Barber^c, Daniel L. Barber^d, Mpiko Ntsekhe^{a,e,f}, Robert J. Wilkinson^{a,e,g,h} and
6 Catherine Riou^{a,i}

7

8 ^a Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease
9 and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa.

10 ^b Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and
11 Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

12 ^c Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and
13 Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of
14 Health, Bethesda, MD, USA.

15 ^d T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of
16 Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

17 ^e Department of Medicine, University of Cape Town, Observatory, 7925, South Africa.

18 ^f Division of Cardiology, Department of Medicine, University of Cape Town, Observatory,
19 7925, South Africa.

20 ^g Imperial College London, SW7 2AZ, UK.

21 ^h The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.

22 ⁱ Division of Medical Virology, Department of Pathology, University of Cape Town,
23 Observatory, 7925, South Africa.

24

25 ***Corresponding Author:** Hygon Mutavhatsindi, CIDRI-Africa, IDM, University of Cape
26 Town, 1 Anzio Road, Observatory, 7925, Cape Town, South Africa. Email:
27 Hygon.mutavhatsindi@uct.ac.za / h.mutavhatsindi@gmail.com

28

29 **Abstract**

30 **Objectives.** To better understand the pathogenesis of pericardial tuberculosis (PCTB), we
31 sought to characterize the systemic inflammatory profile in HIV-1-infected participants with
32 latent TB infection (LTBI), pulmonary TB (PTB) and PCTB.

33 **Methods.** Using Luminex, we measured 39 analytes in pericardial fluid (PCF) and paired
34 plasma from 18 PCTB participants, and plasma from 16 LTBI and 20 PTB. Follow-up
35 plasma samples were also obtained from PTB and PCTB participants. HLA-DR expression
36 on Mtb-specific CD4 T cells was measured in baseline samples using flow cytometry.

37 **Results.** Assessment of the overall systemic inflammatory profile by principal component
38 analysis showed that the inflammatory profile of active TB participants was distinct from the
39 LTBI group, while PTB patients could not be distinguished from those with PCTB. In the
40 LTBI group, 12 analytes showed a positive association with plasma HIV-1 viral load, and
41 most of these associations were lost in the diseased groups. When comparing the
42 inflammatory profile between PCF and paired blood, we found that the concentrations of
43 most analytes (24/39) were elevated at site of disease. However, the inflammatory profile in
44 PCF partially mirrored inflammatory events in the blood. After TB treatment completion, the
45 overall plasma inflammatory profile reverted to those observed in the LTBI group. Lastly,
46 HLA-DR expression showed the best performance for TB diagnosis compared to previously
47 described biosignatures built from soluble markers.

48 **Conclusion.** Our results describe the inflammatory profile associated with PTB and PCTB
49 and emphasize the potential role of HLA-DR as a promising biomarker for TB diagnosis.

50

51 **Key words:** Pericardial tuberculosis, Inflammatory profile, site of disease, diagnosis,
52 treatment response

53 **1. Introduction**

54 Tuberculosis (TB) is the leading cause of death amongst human immunodeficiency virus
55 (HIV-1)-infected individuals [1]. Moreover, 15 to 20% of all TB cases in developing
56 countries are accounted for by extrapulmonary TB (EPTB) [2,3] which disproportionately
57 affects immunocompromised patients [4,5]. Pericardial TB (PCTB), a severe form of EPTB,
58 is the most common cause of pericarditis in TB endemic countries in Africa and Asia [6–8].
59 PCTB related morbidity is significant, with mortality (which generally occurs early in the
60 onset of the disease), as high as 26% and increasing to approximately 40% in cohorts of
61 predominantly HIV-infected persons [9,10].

62 HIV impairs both innate and adaptive immune responses, with the most obvious immune
63 defect being a progressive reduction in absolute CD4+ T cell numbers and systemic hyper
64 activation [11]. HIV-1 has also been shown to alter the balance of *Mtb*-specific T helper
65 subsets, through the reduction of Th17 cells and T regulatory (Treg) cells [12–14], suggesting
66 that HIV shifts *Mtb*-specific responses toward a more pathogenic/inflammatory profile [12].
67 Pulmonary TB-induced systemic inflammation has been studied extensively showing high
68 concentrations of acute phase proteins and pro-inflammatory cytokines including C-reactive
69 protein (CRP), serum amyloid P component (SAP), interferon gamma (IFN- γ), interferon
70 gamma-induced protein 10 (IP-10), chemokine (C-C motif) ligand 1 (CCL1) and tumor
71 necrosis factor alpha (TNF- α) in serum/plasma of active TB participants in comparison to
72 other respiratory diseases, LTBI or healthy controls [15–18]. Furthermore, in patients with
73 pulmonary TB admitted to intensive care units, serum levels of inflammatory factors such as
74 interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 are upregulated compared to healthy controls
75 [19]. Based on these results several host inflammatory marker signatures have been proposed
76 as biomarkers for TB diagnosis and the monitoring of treatment response, with superior
77 performance compared to smear microscopy [15,16,20,21].

78 However, the influence of HIV-1 co-infection on the immune response to *Mtb* in the context
79 of pulmonary and extrapulmonary TB remains poorly understood. Moreover, studies
80 assessing immune responses at site of disease are scarce [22–24]. These studies reported
81 higher levels of cytokines/chemokines at the site of disease in comparison to paired
82 peripheral blood with exception of a few analytes, such as interferon gamma (IFN- γ), IL-1 β
83 and IL-8 which were reported to be significantly higher in peripheral blood instead [22–24].
84 Thus, in the current study, we measured 39 soluble markers in blood and at site of disease
85 (pericardial fluid) to 1) compare the systemic cytokine environment between pulmonary and
86 pericardial TB (PCTB) patients coinfecte with HIV-1, 2) define the relationship between

87 HIV viral load and the inflammatory profiles, 3) define whether peripheral inflammation
88 signatures mirrors those at site of infection, 4) assess the impact of TB treatment on systemic
89 inflammation and 5) evaluate the performance of previously described blood-based
90 biomarkers to discriminate latent from active TB.

91 **2. Materials and methods**

92 **2.1. Study population**

93 Participants included in this study (n = 54) were recruited from the Ubuntu Clinic, Site B,
94 Khayelitsha or the Groote Schuur Hospital Cardiology Unit (Cape Town, South Africa)
95 between June 2017 and April 2019. Participants were divided in three groups according to
96 their TB status: i) Pericardial tuberculosis (PCTB, n=18), ii) Pulmonary tuberculosis (PTB,
97 n=20) and iii) Latent tuberculosis infection (LTBI, n=16).

98 The PCTB group (n = 18) included patients with either definite (Mtb culture positive in
99 pericardial fluid (PCF), n = 9) or probable PCTB (n = 9). Probable PCTB was defined based
100 on evidence of pericarditis with microbiologic confirmation of Mtb-infection elsewhere in the
101 body and/or an exudative, lymphocyte predominant pericardial effusion with elevated
102 adenosine deaminase (≥ 35 U/L), according to Mayosi et al [25]. Only three PCTB patients
103 were HIV negative. Paired PCF and Blood were collected at the same time for PCTB
104 patients. Patients from the PTB group (n = 20) were all HIV positive, tested sputum Xpert
105 MTB/RIF (Xpert, Cepheid, Sunnyvale, CA) positive and had clinical symptoms and/or
106 radiographic evidence of tuberculosis. All were infected by drug sensitive isolates of Mtb and
107 had received no more than one dose of anti-tubercular treatment (ATT) at the time of baseline
108 blood sampling. The LTBI group (n = 16) were all asymptomatic, had a positive IFN- γ
109 release assay (IGRA, QuantiFERON-TB Gold In-Tube, Qiagen, Hilden, Germany), tested
110 sputum Xpert MTB/RIF negative and exhibited no clinical evidence of active TB. All LTBI
111 participants were HIV positive. Clinical characteristics of the study participants are shown in
112 **Table 1.** Sputum and PCF Mtb culture, CD4 count, and HIV VL were performed by the
113 South African National Health Laboratory Services. Active TB patients (PTB or PCTB) were
114 followed up over the duration of their ATT and additional blood draws were performed at
115 week 6 for PCTB, week 8 for PTB and week 24 for both diseased groups. All participants
116 were adults (age ≥ 18 years) and provided written informed consent. The study was approved
117 by the University of Cape Town Human Research Ethics Committee (050/2015 and
118 271/2019).

119

120 **2.2. Pericardial fluid, blood collection and whole blood assay**

121 Pericardial fluid was obtained at the time of pericardiocentesis, placed in sterile Falcon tubes
122 and transported to the laboratory at 4°C. Blood was collected in sodium heparin tubes and
123 processed within 3 hours of collection. The whole blood or whole PCF assay were adapted
124 from the protocol described by Hanekom et al [26]. Briefly, 0.5 mL of whole blood or 1 mL

125 of whole PCF were stimulated with a pool of 300 Mtb-derived peptides (Mtb300, 2 μ g mL⁻¹)
126 [27] at 37°C for 5 hours in the presence of the co-stimulatory antibodies, anti-CD28 and anti-
127 CD49d (1 μ g mL⁻¹ each; BD Biosciences, San Jose, CA, USA) and Brefeldin-A (10 μ g mL⁻¹;
128 Sigma-Aldrich, St Louis, MO, USA). Unstimulated cells were incubated with co-stimulatory
129 antibodies and Brefeldin-A only. Red blood cells were then lysed in a 150 mM NH₄Cl, 10
130 mM KHCO₃ and 1 mM Na₂EDTA solution. Cells were stained with a Live/Dead near-
131 infrared dye (Invitrogen, Carlsbad, CA, USA) and then fixed using a transcription factor
132 fixation buffer (eBioscience, San Diego, CA, USA), cryopreserved in freezing media (50%
133 fetal calf serum, 40% RPMI and 10% dimethyl sulfoxide) and stored in liquid nitrogen until
134 use.

135

136 **2.3. Cell staining and flow cytometry**

137 Cryopreserved cells were thawed, washed and permeabilized with a transcription factor
138 perm/wash buffer (eBioscience). Cells were then stained at room temperature for 45 min with
139 the following antibodies: CD3 BV650 (OKT3; BioLegend, San Diego, CA, USA), CD4
140 BV785 (OKT4; BioLegend), CD8 BV510 (RPA-T8; BioLegend), HLA-DR BV605 (L243;
141 BioLegend), IFN- γ BV711 (4S.B3; BioLegend), TNF- α PE-Cy7 (Mab11; BioLegend
142 eBioscience) and IL-2 PE/Dazzle (MQ1-17H12; BioLegend). Samples were acquired on a
143 BD LSR-II and analysed using FlowJo (v10.8.1, FlowJo LCC, Ashland, OR, USA). A
144 positive cytokine response was defined as at least twice the background of unstimulated cells.
145 To define the phenotype of Mtb300-specific CD4 T cells, a cut-off of 30 events was used.

146

147 **2.4. Luminex® Multiplex Immunoassay**

148 Using Luminex® technology, we measured the levels of 39 analytes using antibodies
149 supplied by Merck Millipore (Billerica, Massachusetts, USA) and R&D Systems
150 (Minneapolis, MN, USA). The analytes measured included: Granzyme B (GrB), interleukin 2
151 (IL-2), interleukin 8 (IL-8), interleukin 12p40 (IL-12p40), macrophage colony-stimulating
152 factor (M-CSF), tumor necrosis factor alpha (TNF- α), transforming growth factor beta (TGF-
153 β), complement component 3 (C3), complement component 4 (C4), C-reactive protein (CRP),
154 serum amyloid P (SAP), interleukin 22 (IL-22), Galectin-3 (Gal-3), intercellular adhesion
155 molecule 1 (ICAM-1), neural cell adhesion molecule 1 (NCAM-1), granulocyte colony-
156 stimulating factor (G-CSF), interferon gamma (IFN- γ), interleukin 6 (IL-6), interleukin 10
157 (IL-10), interleukin 27 (IL-27) and vascular endothelial growth factor (VEGF), monokine
158 induced by gamma (MIG), monocyte chemoattractant protein 2 (MCP-2), granulocyte

159 chemoattractant protein 2 (GCP-2), chemokine (C-X-C motif) ligand 11 (CXCL11),
160 macrophage inflammatory protein 1 beta (MIP-1 β), chemokine (C-C motif) ligand 1 (CCL1)
161 and interferon gamma-induced protein 10 (IP-10), cluster of differentiation 163 (CD163),
162 interleukin 6 receptor alpha (IL-6R α), cluster of differentiation 30 (CD30), interleukin 2
163 receptor alpha (IL-2R α), apolipoprotein A-I (ApoA-I), apolipoprotein C-III (Apo-CIII),
164 oncostatin M (OSM), interleukin 33 receptor (IL-33R), osteopontin (OPN), platelet derived
165 growth factor BB (PDGF-BB) and thrombomodulin (TM). All samples were evaluated
166 undiluted or diluted according to the manufacturer's recommendations. Samples were
167 randomized to assay plates with the experimenter blinded to sample data. All assays were
168 performed and read at UCT on the Bio-Plex platform (Bio-Rad), with the Bio-Plex Manager
169 Software (v6.1) used for bead acquisition and analysis.

170

171 **2.5. Statistical Analyses**

172 Statistical tests were performed in Prism (v9.1.3, GraphPad Software Inc, San Diego, CA,
173 USA). Non-parametric tests were used for all comparisons. The Kruskal-Wallis test with
174 Dunn's multiple comparison test was used for multiple comparisons, the Spearman rank test
175 for correlation and the Mann-Whitney and Wilcoxon matched pairs test for unmatched and
176 paired samples, respectively. When the measured analyte was below the limit of detection in
177 more than 20% of the samples (i.e., M-CSF and IL-10), the analyte was not included in the
178 correlation with plasma HIV VL and HLA-DR expression on Mtb-specific CD4 T cells.
179 Unsupervised hierarchical clustering analysis (HCA, Ward method), principal component
180 analyses (PCA) were carried out in JMP (v16.0.0; SAS Institute, Cary, NC, USA). For HCA
181 and PCA, the min-max normalization method (i.e., feature scaling, analyte value - min / max
182 - min) was used to scale data in the 0 to 1 range. The predictive abilities of combinations of
183 analytes were investigated by general discriminant analysis (GDA) in JMP. The diagnostic
184 ability of HLA-DR expression on Mtb-specific CD4 T cells were assessed by receiver
185 operator characteristics (ROC) curve analysis. Optimal cut off values and associated
186 sensitivity and specificity were determined based on the Youden's Index [28]. Analyte
187 network analysis was performed using Gephi (v0.9.2, University of Technology of
188 Compiègne, Compiègne, France). The Bonferroni method [29] was used to adjust for
189 multiple comparisons. A p-value of <0.05 was considered statistically significant.

190 **3. Results**

191 **3.1 Study population**

192 The clinical characteristics of participants are presented in **Table 1**. Participants (n = 54)
193 were classified into three groups according to their TB status: PCTB (n = 18), PTB (n = 20)
194 and LTBI (n = 16). Median age was comparable between the three groups. All participants
195 were HIV-infected except for three PCTB patients. LTBI participants had a lower plasma
196 HIV-1 viral load (VL) and higher absolute CD4 count compared to the PCTB and PTB
197 groups (median Log₁₀ VL: 3.28 vs 4.68 and 4.79 copies mL⁻¹, respectively and median CD4:
198 409 vs 141 and 176 cells mm⁻³, respectively, **Table 1**).

199

200 **3.2 Comparison of the systemic inflammatory profile between LTBI, PTB and
201 PCTB.**

202 Plasma levels of 39 analytes, including cytokines, chemokines, apolipoproteins, chemokine,
203 protein receptors, and fibrosis-related analytes, were measured in all participants (the
204 complete list of measured analytes is presented in the material and methods section).
205 Assessing the overall systemic inflammatory profile using unsupervised hierarchical
206 clustering (**Fig. 1a**) and principal component analysis (**Fig. 1b**) we showed an evident
207 separation between LTBI and active TB participants (PCTB and PTB), driven by elevated
208 levels of most of the measured inflammatory markers. However, there was no noticeable
209 separation between the PCTB and PTB groups, suggesting comparable systemic
210 inflammation in these groups. Individual analysis of measured analytes showed that 15
211 markers were significantly higher in both PTB and PCTB compared to the LTBI group,
212 including innate-related inflammation markers (such as IL-6, TNF- α , and IL-8), acute phase
213 protein (CRP) and chemokines (CCL1, MIG, IP-10 and CXCL11). VEGF also showed a
214 similar profile, with the p-value between LTBI and PTB being borderline significant (p =
215 0.0503) (**Supplementary fig. 1 and Supplementary table 1**). IL-6R α and G-CSF were the
216 only markers that were observed to be differentially expressed between PTB and PCTB
217 (**Supplementary fig. 1 and Supplementary table 1**), highlighting similarities between the
218 different clinical forms of TB. Only one marker, OPN showed increased expression levels
219 only in the PCTB group compared to LTBI (p = 0.0063) while no significant difference was
220 observed for the PTB group (p = 0.374) (**Supplementary fig. 1 and Supplementary table
221 1**). Elevated OPN levels have been associated with severe tuberculosis [30]. Next, we defined
222 the interplay between markers, using network analysis (Fruchterman-Reingold algorithm,

223 **Fig. 1c).** In LTBI participants, TNF- α and MIP-1 β were the most central nodes, showing the
224 most connections (positive associations) with other analytes. In active TB patients (both PTB
225 and PCTB), the network structure was substantially altered; and while MIP-1 β remained a
226 predominant node, TGF- β emerged as a new influential node, with multiple negative
227 associations with analytes such as IL-12p40, ApoA-I or G-CSF (**Fig. 1c**). Overall, these
228 results illustrate that active TB disease significantly increases systemic inflammation and
229 PCTB and PTB participants share similar inflammatory signatures.

230

231 **3.3 Relationship between inflammatory profile and HIV viral load**

232 To examine the interplay between HIV viral load (VL) and cytokine profile, we defined the
233 associations between cytokine concentrations and HIV VL in plasma. Of the 39 measured
234 analytes, 12 markers positively associated with HIV VL in the LTBI group (**Fig. 2a**). Several
235 of those have been previously reported as HIV-associated systemic inflammation markers,
236 including IL-2R α [31], CXCL11 [32], IL-6 [33], IFN- γ [34], IP-10 [35], TNF- α [35], and
237 CD30 [36]. In both the PTB and PCTB groups, most of these correlations were disrupted
238 with six analytes correlating with HIV VL in the PTB group and only one in the PCTB group
239 (**Fig. 2a**). The only cytokine which maintained significant correlation with HIV VL in all
240 groups was IL-12p40, albeit the correlation strength was weaker in the diseased groups ($r =$
241 0.83, $p = 0.0002$ vs $r = 0.49, p = 0.028$ in the PTB group and $r = 0.63, p = 0.012$ in the PCTB
242 group) (**Fig. 2b**). IP-10 concentration only showed a significantly positive correlation with
243 HIV VL in the LTBI group ($r = 0.82, p = 0.0002$), and was largely disrupted in both the PTB
244 and PCTB groups ($r = 0.29, p = 0.26$ and $r = 0.25, p = 0.37$, respectively) (**Fig. 2b**). No
245 negative associations were observed in the LTBI and PTB groups, however, TGF- β showed a
246 strong negative association with HIV VL in the PCTB group ($r = -0.65, p = 0.0133$) (**Fig. 2a**).
247 These findings suggest that active TB disease disrupts HIV-associated systemic
248 inflammation.

249

250 **3.4 Profile of soluble markers in plasma compared to pericardial fluid**

251 To better understand compartmentalization, we compared the profiles of expression of the 39
252 measured analytes in plasma and PCF from PCTB participants, using hierarchical clustering
253 analysis and PCA (**Fig. 3a and b**). There was a clear separation between sample types, where
254 PC1 accounted for 42% and PC2 11.2% of the variance (**Fig. 3b**). Furthermore, visualizing
255 sample clustering using a constellation plot, we observed that cluster 2 (comprised of PCF
256 samples) was divided into 2 distinct sub-clusters, where cluster 2b was enriched in

257 participants who were PCF culture positive (5/7, 72%) compared to patients included in
258 cluster 2a (4/12, 33%) (**Fig. 3c**). However, looking at individual analytes, we did not find
259 significant difference between PCF culture negative and PCF culture positive samples (data
260 not shown).

261 Univariate analysis of analytes showed that the concentrations of 25 out of the 39 measured
262 analytes were significantly higher in PCF in comparison to paired plasma samples, only 9/39
263 were significantly higher in plasma compared to PCF, and 5/39 showed no significant
264 difference in expression between the two sample types after correction of the p-values for
265 multiple testing (**Supplementary fig. 2 and Supplementary table 2**).

266 To better understand the relationship between peripheral and site of disease inflammation,
267 pairwise comparisons (plasma vs PCF) were assessed. Significant positive correlations were
268 observed for 18 out of the 39 analytes (with r and p ranging from 0.98 - 0.47 and <0.0001 -
269 0.048, respectively), the highest Spearman's rank r values for significant positive correlations
270 were observed for ICAM-1, SAP, and ApoA-I (**Fig. 3d**). A summarized representation of the
271 associations between plasma and PCF for each analyte is shown in **fig. 3d** and individual
272 correlation plots of all the significant associations are presented in **supplementary fig. 3**. We
273 then defined the interplay between markers in PCF, using network analysis (Fruchterman-
274 Reingold algorithm, **Fig. 3e**). OSM, MCP-2 and ApoA-I were the most central nodes, with
275 OSM and MCP-2 showing positive associations with other analytes. While ApoA-I showing
276 mostly negative associations with analytes such as TGF- β , IP-10 and Apo-CIII (**Fig. 3e**).
277 Overall, these results show that inflammatory response at site of disease was greater than in
278 blood. However, inflammatory profile in PCF partially mirrored inflammatory events in
279 blood.

280

281 **3.5 Associations between systemic inflammation and the activation of Mtb- 282 specific CD4+ T cells in blood and at site of disease.**

283 HLA-DR expression on peripheral Mtb-specific CD4+ T cells has been shown to
284 discriminate latent from active TB infection [37–39]. To better understand the relationship
285 between inflammation and T cell activation, we measured the expression of HLA-DR on
286 Mtb-specific CD4+ T cells in blood from LTBI, PTB, PCTB and PCF from PCTB
287 participants. As expected, HLA-DR expression on peripheral Mtb-specific CD4+ T cells was
288 significantly higher in the aTB groups (PTB and PCTB) compared to LTBI (medians:
289 62.30% and 70.85% vs 17.20%, respectively, p >0.0001). Moreover, HLA-DR expression on
290 Mtb-specific CD4+ T cells in PCF was significantly higher compared to blood in the PCTB

291 group (medians: 78.30% vs 69.90%, respectively, $p = 0.0341$) (**Fig. 4a and b**). We then
292 assessed the association of HLA-DR expression on Mtb-specific CD4 T cells and the
293 concentrations of each measured analyte at the site of disease (PCF) and in blood from PCTB
294 participants as well as blood from PTB participants (**Fig. 4c**). At disease site, we observed
295 positive associations between HLA-DR expression on Mtb-specific CD4 T cells and 10
296 analytes, including CCL1, G-CSF, OSM, IL-8, IL-2 and IL-2R α (with r value $>$ than 0.6).
297 Negative associations were observed with C4 ($r = -0.71$, $p = 0.002$) and IL-6R α ($r = -0.54$, p
298 = 0.017) (**Fig. 4d**). None of these associations were observed in peripheral blood (**Fig. 4c**). In
299 PTB participants, HLA-DR expression on peripheral Mtb-specific CD4+ T cells associated
300 with only 2 analytes, namely IP-10 ($r = 0.57$, $p = 0.0102$) and IL-6R α ($r = -0.54$, $p = 0.0174$)
301 (**Fig. 4c**). These data suggest a coordinated and compartmentalized immune response at the
302 disease site.

303

304 **3.6 Impact of TB treatment on the inflammatory profile in plasma**

305 Monitoring of TB treatment response is challenging mainly due to the lack of specific and
306 sensitive blood-based tools. In the current study, we examined the effect of TB treatment on
307 the expression of inflammation markers. First, we compared the overall systemic
308 inflammatory profile in participants with LTBI and in aTB patients (PTB and PCTB) 24
309 weeks after TB treatment initiation using unsupervised hierarchical clustering (**Fig. 5a**) and
310 principal component analysis (**Fig. 5b**). No specific clustering was observed between the
311 groups, showing a global normalization of the inflammation signature at treatment
312 completion. Furthermore, we performed univariate analysis comparing the level of
313 expression of each analyte at baseline (before TB treatment initiation), week 6 or 8 and week
314 24 post treatment initiation (**Supplementary fig. 4 and Supplementary table 3**). Of the 39
315 measured analytes, 13 showed significant reduction between baseline, week 6/8 and/or week
316 24 in both the PTB and PCTB groups (**Supplementary fig. 4a and Supplementary table 3**).
317 An additional eight analytes showed reduction between the three time points in the PTB
318 group only (**Supplementary fig. 4b and Supplementary table 3**).

319 Representative plots of analytes including, CXCL11, MIG, IL-6 and CRP depict the
320 significant reduction of expression of analytes with TB treatment from baseline, week 6/8 to
321 end of treatment (week 24) in both PTB and PCTB groups (**Fig. 5c**). These data suggest that
322 the overall inflammatory profile normalized upon TB treatment completion in both PTB and
323 PCTB.

324

325 **3.7 Comparison of HLA-DR expression and biosignatures derived from soluble**
326 **analytes in discriminating LTBI from active TB**

327 Previous studies have shown the potential of blood-based markers to distinguish LTBI from
328 aTB, including biosignatures derived from soluble markers and HLA-DR expression on
329 MTB-specific T cells [15,16,20,21,37,38]. Although this study was not designed as a
330 diagnostic study, we explored this aspect, wherein we assessed the ability of HLA-DR
331 expression to distinguish LTBI from PTB, PCTB or any aTB (PTB + PCTB) and compared it
332 with previously described biosignatures that included analytes measured in this study. We
333 generated receiver operating characteristic (ROC) curves from data obtained in Mtb-specific
334 CD4 T cells. Consistent with previous reports, HLA-DR expression on Mtb-specific CD4 T
335 cells showed a great capability to distinguish LTBI from PTB ($p < 0.0001$, area-under-the-
336 curve (AUC) = 0.97, 95% CI: 0.92 – 1.00, sensitivity: 97.75%, specificity: 100%, at an
337 optimal cut-off of 48.5%) (**Supplementary fig. 5a and b**). Moreover, HLA-DR expression
338 also discriminated LTBI from PCTB ($p < 0.0001$, AUC = 0.94, 95% CI: 0.82 – 1.00,
339 sensitivity: 93.75%, specificity: 100%, at an optimal cut-off of 46.9%) and LTBI from any
340 aTB ($p < 0.0001$, AUC = 0.96, 95% CI: 0.90 – 1.00, sensitivity: 94.29%, specificity: 100%, at
341 an optimal cut-off of 46.9%) (**Supplementary fig. 5a and b**).

342 We assessed the performance of previously described soluble biosignatures our data set to
343 and compared soluble biosignature performance to HLA-DR expression. We identified six
344 different published biosignatures which include analytes measured in this study: [IL-12p40 +
345 IL-10] [21], [IFN- γ + IL-10 + IL-12p40] [21], [TNF- α + IL-12p40] [21], [CCL1 + CRP] [15],
346 [CCL1 + TNF- α] [16], and [IL-6R α + IL-2R α] [20].

347 These biosignatures discriminated LTBI from PTB with AUCs ranging from 0.72-0.9 and
348 corresponding sensitivity and specificity ranging from 55% - 85% and 75% - 100%,
349 respectively. They also discriminated LTBI from PCTB with AUCs ranging from 0.64 - 1.00
350 and corresponding sensitivity and specificity ranging from 61.11% - 83.33% and 62.5% -
351 93.75%, respectively, while they discriminated LTBI from any aTB (PTB + PCTB) with
352 AUCs ranging from 0.69 - 0.98 and corresponding sensitivity and specificity ranging from
353 52.63% - 76.32% and 62.50% - 100%, respectively (**Supplementary table 4**). Detailed
354 performances of these signatures in comparison to HLA-DR expression are shown in
355 **supplementary table A.4**.

356 None of these biosignatures out-performed HLA-DR expression in discriminating LTBI from
357 the diseased groups (**Supplementary table 4**). These findings suggest that HLA-DR is a
358 better biomarker than soluble markers for discriminating between the different TB groups.

359 **4. Discussion**

360 EPTB represents a small but significant proportion of all TB cases globally, particularly in
361 HIV-infected patients and is frequently difficult to diagnose. However, immune and
362 inflammatory responses at the site of disease remains understudied. In this study, we
363 compared the TB-associated inflammatory response in HIV-infected participants between
364 latent, pulmonary, and pericardial TB infection. We also compared the inflammatory
365 signature in blood and at site of disease (i.e., PCF) in PCTB patients. Moreover, we measured
366 HLA-DR expression on Mtb-specific CD4 T cells from whole blood and compared its
367 diagnostic potential to previously described biosignatures derived from different
368 combinations of soluble markers.

369 We show that PTB in HIV-infected patients is characterized by increased systemic
370 inflammation compared to LTBI persons. This is in accordance with previous reports
371 showing elevated inflammatory markers (such as CRP, IP-10, IFN- γ , CCL1, and VEGF) in
372 unstimulated plasma or serum in aTB compared to LTBI or other respiratory diseases
373 regardless of HIV status [15,16,18]. In HIV negative individuals, distinct inflammatory
374 profiles in PTB versus extra pulmonary TB have been reported, which were speculated to be
375 the consequence of differences between disseminated versus more localized infection [40].
376 However, here, we observed a similar inflammatory profile in HIV-infected PTB individuals
377 and HIV-infected PCTB individuals. These differences may be explained by the different
378 analytes measured in the Vinhaes et al [40] study and the current study, with only seven
379 analytes overlapping between the two studies (namely, IL-2, IL-6, IL-8, IL-10, IL-27, TNF- α ,
380 and IFN- γ). Moreover, the Vinhaes et al [40] study included patients with different types of
381 EPTB (including Pleural TB, TB lymphadenitis and Miliary TB) while our study focused
382 exclusively on PCTB patients.

383 To improve our understanding of immunological mechanisms at the disease site, we
384 compared inflammatory profile at disease site and in plasma. A study by Matthews et al [22],
385 assessing the inflammatory response at the disease site, showed compartmentalization of
386 inflammatory proteins (including IL-6, IL-8 and IFN- γ) in PCF compared to blood. Our
387 results are in accordance with this study, showing that inflammation was greater at the site of
388 disease compared to the periphery and further demonstrate that there was a partial mirroring
389 of the innate-associated inflammatory response (such as CCL1, IL-12p40, TGF- β and IL-8)
390 between blood and disease site. Interestingly, Th1 cytokines levels (IFN- γ and IL-2) in PCF
391 did not correlate with plasma levels. We previously reported that there was no correlation

392 between the frequency of Mtb-specific CD4 T cells in blood and PCF [41] and recent data
393 from murine model suggests that the rate of migration of T cell to the disease site is mostly
394 regulated by the pattern of chemokine receptors they expressed [42].
395 TB diagnosis is challenging due to the lack of rapid, accurate, blood-based diagnostic tests.
396 HLA-DR expression on Mtb-specific CD4 T cells has been shown to be a robust marker in
397 discriminating latent TB from aTB [37–39] and EPTB [43]. In this study, we observed HLA-
398 DR to be significantly highly expressed in blood of aTB compared to LTBI, it was also
399 highly expressed, at the site of disease (PCF) in PCTB participants compared to blood of the
400 same participants. Our findings are in agreement with previously published studies [37–
401 39,43] and further suggest that the extent of activation of infiltrating CD4 T cells associate
402 with the inflammatory profile at the disease site.
403 Several biosignatures consisting of host soluble inflammatory markers have been described
404 as promising tools for TB diagnosis [15,16,20,21]. Here, we used our cohort as a validation
405 cohort to compare their performance in discriminating LTBI from aTB, and several
406 previously identified biosignatures continued to show promise in our cohort. However, none
407 of these biosignatures showed better performance compared to the measure of HLA-DR
408 expression on Mtb-specific CD4 T cells, which met the WHO target product profile (TPP)
409 recommendations for a point of care non-sputum-based triage test [44]. These data further
410 emphasize the role of HLA-DR as a promising biomarker for TB diagnosis.
411 Sputum culture conversion at two months post treatment initiation remains the most widely
412 used tool for the evaluation of TB treatment response [45,46]. However, in individuals with
413 PCTB who are sputum smear or culture negative for Mtb, monitoring of treatment response is
414 solely assessed clinically as there are no validated blood biomarkers to assist in this regard.
415 Changes in blood biomarker levels during antitubercular treatment in either PTB or EPTB
416 cases has been previously reported in a number of prospective studies [18,47–58], showing
417 the normalization of several inflammatory markers (such as CRP, IP-10, CCL1, IFN- γ and
418 TNF- α) after successful TB treatment. Our findings are in accordance with these results and
419 add to the current knowledge, showing that the concentrations of several of the biomarkers
420 tested (21 out of 39 and 13 out of 39) decreased at treatment completion to levels observed in
421 LTBI participants in both the PTB and PCTB groups, respectively. The discrepancy in the
422 normalization of inflammatory profile after treatment between PTB and PCTB could be
423 related to disease severity, where disseminated disease has been shown to present with
424 elevated systemic bacterial burden and higher mortality [59] and limited drug penetration at

425 the site of disease. Thus, our study confirms that measuring blood biomarkers may have
426 utility to monitor treatment response in both pulmonary and extra-pulmonary TB.
427 Our study has several limitations. First, most of the participants were HIV infected, we were
428 thus unable to define the impact of HIV infection on TB-induced inflammatory profiles.
429 Second, we did not have long-term follow-up clinical data to identify potential TB relapse, so
430 long-term outcome could not be related to inflammatory profiles. Third, the current study was
431 not designed to identify novel diagnostic markers, thus we confined our analysis to
432 previously described blood-based biomarkers. However, further assessments of HLA-DR
433 expression on Mtb-specific CD4 T cells are required in well-designed diagnostic studies.
434 Finally, further experiments including patients with non-tuberculous pericardial effusion will
435 be necessary to define whether the observed inflammatory signatures in plasma and at site of
436 disease are TB specific. Regardless of the limitations, our results show that in a largely HIV-
437 infected cohort with advanced immunosuppression, PCTB and PTB share similar
438 inflammatory signature and aTB disrupts the relationship between HIV VL and soluble
439 analytes. These results also reveal that profiles of markers at the site of disease are distinct
440 from peripheral blood though some markers strongly correlate. Furthermore, upon
441 completion of TB treatment, levels of soluble analytes normalized and lastly, we showed that
442 in HIV-infected patients, assessing the expression of HLA-DR on Mtb-specific CD4 T cells
443 had a better potential to discriminate PCTB and PTB from LTBI compared to biosignatures
444 derived from soluble markers.

445 **Acknowledgments**

446 The authors thank the study participants, the clinical staff at the Khayelitsha Site B
447 Community Health Centre in Cape Town and the laboratory staff at the Wellcome Centre for
448 Infectious Disease Research in Africa at the University of Cape Town.

449

450 **Funding**

451 This work was supported by the European and Developing Countries Clinical Trials
452 Partnership EDCTP2 programme; the European Union (EU)'s Horizon 2020 programme
453 (Training and Mobility Action TMA2017SF-1951-TB-SPEC to CR), the NIH (R21AI148027
454 to CR) and the South African Medical Research Council (MRC-UFSP-1-IMPI-2 to MN).
455 RJW is supported by the Francis Crick Institute, which receives funds from Cancer Research
456 UK(FC00110218), Wellcome (FC00110218) and the UK Medical Research Council
457 (FC00110218). RJW is also supported by Wellcome (203135), and NIH (U01/115940;
458 U01/152103). HM is supported by National Research Foundation of South Africa, (Grant
459 number: 129614), CIDRI-Africa Fellowship and in part by the Fogarty International Center
460 of the National Institutes of Health (D43TW010559). DLB, KDMB, and AS are supported by
461 the National Institute of Allergy and Infectious Diseases, National Institutes of Health,
462 Division of Intramural Research.

463 **Competing interests**

464 The authors declare that they have no competing interests associated with this publication.

465 **REFERENCES**

466 [1] Global HIV & AIDS statistics — Fact sheet, (n.d.).
467 <https://www.unaids.org/en/resources/fact-sheet> (accessed January 31, 2022).

468 [2] S.K. Sharma, A. Mohan, Extrapulmonary tuberculosis., Indian J. Med. Res. 120 (2004)
469 316–353.

470 [3] A.A. Cagatay, Y. Caliskan, S. Aksoz, L. Gulec, S. Kucukoglu, Y. Cagatay, H. Berk, H.
471 Ozsut, H. Eraksoy, S. Calangu, Extrapulmonary tuberculosis in immunocompetent
472 adults, Scand. J. Infect. Dis. 36 (2004) 799–806.
473 <https://doi.org/10.1080/00365540410025339>.

474 [4] R.W. Shafer, D.S. Kim, J.P. Weiss, J.M. Quale, Extrapulmonary tuberculosis in patients
475 with human immunodeficiency virus infection, Medicine (Baltimore). 70 (1991) 384–
476 397. <https://doi.org/10.1097/00005792-199111000-00004>.

477 [5] H.L. Rieder, D.E. Snider, G.M. Cauthen, Extrapulmonary tuberculosis in the United
478 States, Am. Rev. Respir. Dis. 141 (1990) 347–351.
479 <https://doi.org/10.1164/ajrccm/141.2.347>.

480 [6] J.J. Noubiap, V.N. Agbor, A.L. Ndoadoumgue, J.R. Nkeck, A. Kamguia, U.F. Nyaga, M.
481 Ntsekhe, Epidemiology of pericardial diseases in Africa: a systematic scoping review,
482 Heart. 105 (2019) 180–188. <https://doi.org/10.1136/heartjnl-2018-313922>.

483 [7] P. Howlett, E. Du Bruyn, H. Morrison, I.C. Godsent, K.A. Wilkinson, M. Ntsekhe, R.J.
484 Wilkinson, The immunopathogenesis of tuberculous pericarditis, Microbes Infect. 22
485 (2020) 172–181. <https://doi.org/10.1016/j.micinf.2020.02.001>.

486 [8] H. Reuter, L.J. Burgess, A.F. Doubell, Epidemiology of pericardial effusions at a large
487 academic hospital in South Africa, Epidemiol. Infect. 133 (2005) 393–399.
488 <https://doi.org/10.1017/S0950268804003577>.

489 [9] B.M. Mayosi, M. Ntsekhe, J. Bosch, S. Pandie, H. Jung, F. Gumedze, J. Pogue, L.
490 Thabane, M. Smieja, V. Francis, L. Joldersma, K.M. Thomas, B. Thomas, A.A.
491 Awotedu, N.P. Magula, D.P. Naidoo, A. Damasceno, A. Chitsa Banda, B. Brown, P.
492 Manga, B. Kirenga, C. Mondo, P. Mntla, J.M. Tsitsi, F. Peters, M.R. Essop, J.B.W.
493 Russell, J. Hakim, J. Matenga, A.F. Barasa, M.U. Sani, T. Olunuga, O. Ogah, V. Ansa,
494 A. Aje, S. Danbauchi, D. Ojji, S. Yusuf, Prednisolone and *Mycobacterium indicus*
495 *pranii* in Tuberculous Pericarditis, N. Engl. J. Med. 371 (2014) 1121–1130.
496 <https://doi.org/10.1056/NEJMoa1407380>.

497 [10] B.M. Mayosi, C.S. Wiysonge, M. Ntsekhe, F. Gumedze, J.A. Volmink, G. Maartens, A.
498 Aje, B.M. Thomas, K.M. Thomas, A.A. Awotedu, B. Thembela, P. Mntla, F. Maritz,
499 K.N. Blackett, D.C. Nkouonlack, V.C. Burch, K. Rebe, A. Parrish, K. Sliwa, B.Z. Vezi,
500 N. Alam, B.G. Brown, T. Gould, T. Visser, N.P. Magula, P.J. Commerford, Mortality in
501 patients treated for tuberculous pericarditis in sub-Saharan Africa : original article, S.
502 Afr. Med. J. 98 (2008) 36–40. <https://doi.org/10.10520/EJC69118>.

503 [11] C. Geldmacher, A. Zumla, M. Hoelscher, Interaction between HIV and *Mycobacterium*
504 *tuberculosis*: HIV-1-induced CD4 T-cell depletion and the development of active
505 tuberculosis, Curr. Opin. HIV Aids. 7 (2012) 268–275.
506 <https://doi.org/10.1097/coh.0b013e3283524e32>.

507 [12] C. Riou, N. Strickland, A.P. Soares, B. Corleis, D.S. Kwon, E.J. Wherry, R.J.
508 Wilkinson, W.A. Burgers, HIV Skews the Lineage-Defining Transcriptional Profile of
509 *Mycobacterium tuberculosis*-Specific CD4+ T Cells, J. Immunol. 196 (2016) 3006–
510 3018. <https://doi.org/10.4049/jimmunol.1502094>.

511 [13] J.M. Brenchley, M. Paiardini, K.S. Knox, A.I. Asher, B. Cervasi, T.E. Asher, P.
512 Scheinberg, D.A. Price, C.A. Hage, L.M. Kholi, A. Khoruts, I. Frank, J. Else, T.
513 Schacker, G. Silvestri, D.C. Douek, Differential Th17 CD4 T-cell depletion in

514 pathogenic and nonpathogenic lentiviral infections, *Blood*. 112 (2008) 2826–2835.
515 <https://doi.org/10.1182/blood-2008-05-159301>.

516 [14] S. Clark, E. Page, T. Ford, R. Metcalf, A. Pozniak, M. Nelson, D.C. Henderson, D.
517 Asboe, F. Gotch, B.G. Gazzard, P. Kelleher, Reduced T(H)1/T(H)17 CD4 T-cell
518 numbers are associated with impaired purified protein derivative-specific cytokine
519 responses in patients with HIV-1 infection, *J. Allergy Clin. Immunol.* 128 (2011) 838–
520 846.e5. <https://doi.org/10.1016/j.jaci.2011.05.025>.

521 [15] H. Mutavhatsindi, G.D. Van Der Spuy, S. Malherbe, J.S. Sutherland, A. Geluk, H.
522 Mayanja Kizza, A.C. Crampin, D. Kassa, R. Howe, A. Mihret, J.A. Sheehama, E.
523 Nepolo, G. Günther, H.M. Dockrell, P.L. Lam Corstjens, K. Stanley, G. Walzl, N.N.
524 Chegou, Validation and optimisation of host immunological bio-signatures for a point-
525 of-care test for TB disease, *Front. Immunol.* 12 (2021).
526 <https://doi.org/10.3389/fimmu.2021.607827>.

527 [16] B.H. Chendi, H. Tveiten, C.I. Snyders, K. Tonby, S. Jenum, S.D. Nielsen, M. Hove-
528 Skovsgaard, G. Walzl, N.N. Chegou, A.M. Dyrhol-Riise, CCL1 and IL-2Ra
529 differentiate Tuberculosis disease from latent infection Irrespective of HIV infection in
530 low TB burden countries, *J. Infect.* 83 (2021) 433–443.
531 <https://doi.org/10.1016/j.jinf.2021.07.036>.

532 [17] N.N. Chegou, J.S. Sutherland, S. Malherbe, A.C. Crampin, P.L.A.M. Corstjens, A.
533 Geluk, H. Mayanja-Kizza, A.G. Loxton, G. van der Spuy, K. Stanley, L.A. Kotzé, M.
534 van der Vyver, I. Rosenkrands, M. Kidd, P.D. van Helden, H.M. Dockrell, T.H.M.
535 Ottenhoff, S.H.E. Kaufmann, G. Walzl, Diagnostic performance of a seven-marker
536 serum protein biosignature for the diagnosis of active TB disease in African primary
537 healthcare clinic attendees with signs and symptoms suggestive of TB, *Thorax*. 71
538 (2016) 785–794. <https://doi.org/10.1136/thoraxjnl-2015-207999>.

539 [18] R. Jacobs, S. Malherbe, A.G. Loxton, K. Stanley, G. van der Spuy, G. Walzl, N.N.
540 Chegou, Identification of novel host biomarkers in plasma as candidates for the
541 immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment
542 response, *Oncotarget*. 7 (2016). <https://doi.org/10.18632/oncotarget.11420>.

543 [19] Q.-Y. Liu, F. Han, L.-P. Pan, H.-Y. Jia, Q. Li, Z.-D. Zhang, Inflammation responses in
544 patients with pulmonary tuberculosis in an intensive care unit, *Exp. Ther. Med.* 15
545 (2018) 2719–2726. <https://doi.org/10.3892/etm.2018.5775>.

546 [20] O.A. Eribo, M.S. Leqheka, S.T. Malherbe, S. McAnda, K. Stanley, G.D. van der Spuy,
547 G. Walzl, N.N. Chegou, Host urine immunological biomarkers as potential candidates
548 for the diagnosis of tuberculosis, *Int. J. Infect. Dis.* 99 (2020) 473–481.
549 <https://doi.org/10.1016/j.ijid.2020.08.019>.

550 [21] J.S. Sutherland, B.C. de Jong, D.J. Jeffries, I.M. Adetifa, M.O.C. Ota, Production of
551 TNF- α , IL-12(p40) and IL-17 Can Discriminate between Active TB Disease and Latent
552 Infection in a West African Cohort, *PLOS ONE*. 5 (2010) e12365.
553 <https://doi.org/10.1371/journal.pone.0012365>.

554 [22] K. Matthews, A. Deffur, M. Ntsekhe, F. Syed, J.B.W. Russell, K. Tibazarwa, J. Wolske,
555 J. Brink, B.M. Mayosi, R.J. Wilkinson, K.A. Wilkinson, A Compartmentalized
556 Profibrotic Immune Response Characterizes Pericardial Tuberculosis, Irrespective of
557 HIV-1 Infection, *Am. J. Respir. Crit. Care Med.* 192 (2015) 1518–1521.
558 <https://doi.org/10.1164/rccm.201504-0683LE>.

559 [23] H. Reuter, L.J. Burgess, M.E. Carstens, A.F. Doubell, Characterization of the
560 immunological features of tuberculous pericardial effusions in HIV positive and HIV
561 negative patients in contrast with non-tuberculous effusions, *Tuberculosis*. 86 (2006)
562 125–133. <https://doi.org/10.1016/j.tube.2005.08.018>.

563 [24] Q. Yang, Y. Cai, W. Zhao, F. Wu, M. Zhang, K. Luo, Y. Zhang, H. Liu, B. Zhou, H.
564 Kornfeld, X. Chen, IP-10 and MIG Are Compartmentalized at the Site of Disease
565 during Pleural and Meningeal Tuberculosis and Are Decreased after Antituberculosis
566 Treatment, *Clin. Vaccine Immunol.* 21 (2014) 1635–1644.
567 <https://doi.org/10.1128/CVI.00499-14>.

568 [25] B.M. Mayosi, L.J. Burgess, A.F. Doubell, Tuberculous Pericarditis, *Circulation* 112
569 (2005) 3608–3616. <https://doi.org/10.1161/CIRCULATIONAHA.105.543066>.

570 [26] W.A. Hanekom, J. Hughes, M. Mavinkurve, M. Mendillo, M. Watkins, H. Gamieldien,
571 S.J. Gelderbloem, M. Sidibana, N. Mansoor, V. Davids, R.A. Murray, A. Hawkridge,
572 P.A.J. Haslett, S. Ress, G.D. Hussey, G. Kaplan, Novel application of a whole blood
573 intracellular cytokine detection assay to quantitate specific T-cell frequency in field
574 studies, *J. Immunol. Methods*. 291 (2004) 185–195.
575 <https://doi.org/10.1016/j.jim.2004.06.010>.

576 [27] C.S.L. Arlehamn, D.M. McKinney, C. Carpenter, S. Paul, V. Rozot, E. Makgotlho, Y.
577 Gregg, M. van Rooyen, J.D. Ernst, M. Hatherill, W.A. Hanekom, B. Peters, T.J. Scriba,
578 A. Sette, A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T
579 Cell Responses in Healthy *M. tuberculosis* Infected South Africans, *PLOS Pathog.* 12
580 (2016) e1005760. <https://doi.org/10.1371/journal.ppat.1005760>.

581 [28] R. Fluss, D. Faraggi, B. Reiser, Estimation of the Youden Index and its Associated
582 Cutoff Point, *Biom. J.* 47 (2005) 458–472. <https://doi.org/10.1002/bimj.200410135>.

583 [29] J.M. Bland, D.G. Altman, Multiple significance tests: the Bonferroni method, *BMJ*. 310
584 (1995) 170. <https://doi.org/10.1136/bmj.310.6973.170>.

585 [30] D. Wang, X. Tong, L. Wang, S. Zhang, J. Huang, L. Zhang, H. Fan, The association
586 between osteopontin and tuberculosis: A systematic review and meta-analysis, *PLOS
587 ONE*. 15 (2020) e0242702. <https://doi.org/10.1371/journal.pone.0242702>.

588 [31] D.M. Muema, N.A. Akilimali, O.C. Ndumnege, S.S. Rasehlo, R. Durgiah, D.B.A.
589 Ojwach, N. Ismail, M. Dong, A. Moodley, K.L. Dong, Z.M. Ndhlovu, J.M. Mabuka,
590 B.D. Walker, J.K. Mann, T. Ndung'u, Association between the cytokine storm, immune
591 cell dynamics, and viral replicative capacity in hyperacute HIV infection, *BMC Med.* 18
592 (2020) 81. <https://doi.org/10.1186/s12916-020-01529-6>.

593 [32] J.E. Teigler, L. Leyre, N. Chomont, B. Slike, N. Jian, M.A. Eller, N. Phanuphak, E.
594 Kroon, S. Pinyakorn, L.A. Eller, M.L. Robb, J. Ananworanich, N.L. Michael, H.
595 Streeck, S.J. Krebs, Distinct biomarker signatures in HIV acute infection associate with
596 viral dynamics and reservoir size, *JCI Insight*. 3 (n.d.) e98420.
597 <https://doi.org/10.1172/jci.insight.98420>.

598 [33] Á.H. Borges, J.L. O'Connor, A.N. Phillips, F.F. Rönsholt, S. Pett, M.J. Vjecha, M.A.
599 French, J.D. Lundgren, Factors Associated With Plasma IL-6 Levels During HIV
600 Infection, *J. Infect. Dis.* 212 (2015) 585–595. <https://doi.org/10.1093/infdis/jiv123>.

601 [34] L. ROBERTS, J.-A.S. PASSMORE, C. WILLIAMSON, F. LITTLE, L.M. BEBELL, K.
602 MLISANA, W.A. BURGERS, F. VAN LOGGERENBERG, G. WALZL, J.F. DJOBA
603 SIAWAYA, Q. ABDOOL KARIM, S.S. ABDOOL KARIM, Plasma cytokine levels
604 during acute HIV-1 infection predict HIV disease progression, *AIDS Lond. Engl.* 24
605 (2010) 819–831. <https://doi.org/10.1097/QAD.0b013e3283367836>.

606 [35] R. Bunjun, A.P. Soares, N. Thawer, T.L. Müller, A. Kiravu, Z. Ginbot, B. Corleis, B.D.
607 Murugan, D.S. Kwon, F. von Groote-Bidlingmaier, C. Riou, R.J. Wilkinson, G. Walzl,
608 W.A. Burgers, Dysregulation of the Immune Environment in the Airways During HIV
609 Infection, *Front. Immunol.* 12 (2021).
610 <https://www.frontiersin.org/article/10.3389/fimmu.2021.707355> (accessed April 12,
611 2022).

612 [36] G.P. Rizzardi, W. Barcellini, G. Tambussi, F. Lillo, M. Malnati, L. Perrin, A. Lazzarin,
613 Plasma levels of soluble CD30, tumour necrosis factor (TNF)-alpha and TNF receptors
614 during primary HIV-1 infection: correlation with HIV-1 RNA and the clinical outcome,
615 AIDS Lond. Engl. 10 (1996) F45-50. <https://doi.org/10.1097/00002030-199611000-00001>.

616 [37] T. Adekambi, C.C. Ibegbu, S. Cagle, A.S. Kalokhe, Y.F. Wang, Y. Hu, C.L. Day, S.M.
617 Ray, J. Rengarajan, Biomarkers on patient T cells diagnose active tuberculosis and
618 monitor treatment response, J. Clin. Invest. 125 (2015) 1827–1838.
619 <https://doi.org/10.1172/JCI77990>.

620 [38] C. Riou, N. Berkowitz, R. Goliath, W.A. Burgers, R.J. Wilkinson, Analysis of the
621 Phenotype of *Mycobacterium tuberculosis*-Specific CD4+ T Cells to Discriminate
622 Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals,
623 Front. Immunol. 8 (2017).
624 <https://www.frontiersin.org/article/10.3389/fimmu.2017.00968> (accessed April 13,
625 2022).

626 [39] C. Riou, E. Du Bruyn, S. Ruzive, R.T. Goliath, C.S. Lindestam Arlehamn, A. Sette, A.
627 Sher, D.L. Barber, R.J. Wilkinson, Disease extent and anti-tubercular treatment
628 response correlates with *Mycobacterium tuberculosis*-specific CD4 T-cell phenotype
629 regardless of HIV-1 status, Clin. Transl. Immunol. 9 (2020) e1176.
630 <https://doi.org/10.1002/cti2.1176>.

631 [40] C.L. Vinhaes, D. Oliveira-de-Souza, P.S. Silveira-Mattos, B. Nogueira, R. Shi, W. Wei,
632 X. Yuan, G. Zhang, Y. Cai, C.E. Barry, L.E. Via, K.F. Fukutani, B.B. Andrade, K.D.
633 Mayer-Barber, Changes in Inflammatory Protein and Lipid Mediator Profiles Persist
634 After Antitubercular Treatment of Pulmonary and Extrapulmonary Tuberculosis: A
635 Prospective Cohort Study, Cytokine. 123 (2019) 154759.
636 <https://doi.org/10.1016/j.cyto.2019.154759>.

637 [41] E. Du Bruyn, S. Ruzive, P. Howlett, A.J. Jacobs, C.S. Lindestam Arlehamn, A. Sette, A.
638 Sher, K.D. Mayer-Barber, D.L. Barber, B. Mayosi, M. Ntsekhe, R.J. Wilkinson, C.
639 Riou, Profile of *Mycobacterium tuberculosis*-specific CD4 T cells at the site of disease
640 and blood in pericardial tuberculosis, BioRxiv. (2022) 2022.05.12.491749.
641 <https://doi.org/10.1101/2022.05.12.491749>.

642 [42] S.G. Hoft, M.A. Sallin, K.D. Kauffman, S. Sakai, V.V. Ganusov, D.L. Barber, The Rate
643 of CD4 T Cell Entry into the Lungs during *Mycobacterium tuberculosis* Infection Is
644 Determined by Partial and Opposing Effects of Multiple Chemokine Receptors, Infect.
645 Immun. 87 (2019) e00841-18. <https://doi.org/10.1128/IAI.00841-18>.

646 [43] P.S. Silveira-Mattos, B. Barreto-Duarte, B. Vasconcelos, K.F. Fukutani, C.L. Vinhaes,
647 D. Oliveira-De-Souza, C.C. Ibegbu, M.C. Figueiredo, T.R. Sterling, J. Rengarajan, B.B.
648 Andrade, Differential Expression of Activation Markers by *Mycobacterium*
649 *tuberculosis*-specific CD4+ T Cell Distinguishes Extrapulmonary From Pulmonary
650 Tuberculosis and Latent Infection, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 71
651 (2020) 1905–1911. <https://doi.org/10.1093/cid/ciz1070>.

652 [44] World Health Organization, High priority target product profiles for new tuberculosis
653 diagnostics: report of a consensus meeting, 28-29 April 2014, Geneva, Switzerland,
654 World Health Organization, 2014. <https://apps.who.int/iris/handle/10665/135617>
655 (accessed June 3, 2022).

656 [45] D.A. Mitchison, Assessment of New Sterilizing Drugs for Treating Pulmonary
657 Tuberculosis by Culture at 2 Months, Am. Rev. Respir. Dis. 147 (1993) 1062–1063.
658 <https://doi.org/10.1164/ajrccm/147.4.1062>.

659 [46] R.S. Wallis, M. Pai, D. Menzies, T.M. Doherty, G. Walzl, M.D. Perkins, A. Zumla,
660 Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into

661

662 practice, *The Lancet*. 375 (2010) 1920–1937. [https://doi.org/10.1016/S0140-6736\(10\)60359-5](https://doi.org/10.1016/S0140-6736(10)60359-5).

663 [47] C. Riou, B.P. Peixoto, L. Roberts, K. Ronacher, G. Walzl, C. Manca, R. Rustomjee, T. Mthiyane, D. Fallows, C.M. Gray, G. Kaplan, Effect of Standard Tuberculosis Treatment on Plasma Cytokine Levels in Patients with Active Pulmonary Tuberculosis, *PLOS ONE*. 7 (2012) e36886. <https://doi.org/10.1371/journal.pone.0036886>.

664 [48] J.Y. Hong, H.J. Lee, S.Y. Kim, K.S. Chung, E.Y. Kim, J.Y. Jung, M.S. Park, Y.S. Kim, S.K. Kim, J. Chang, S.-N. Cho, Y.A. Kang, Efficacy of IP-10 as a biomarker for monitoring tuberculosis treatment, *J. Infect.* 68 (2014) 252–258. <https://doi.org/10.1016/j.jinf.2013.09.033>.

665 [49] C. Martins, A.C. de C. Gama, D. Valcarenghi, A.P. de B. Batschauer, C. Martins, A.C. de C. Gama, D. Valcarenghi, A.P. de B. Batschauer, Markers of acute-phase response in the treatment of pulmonary tuberculosis, *J. Bras. Patol. E Med. Lab.* 50 (2014) 428–433. <https://doi.org/10.5935/1676-2444.20140052>.

666 [50] B.H. Chendi, C.I. Snyders, K. Tonby, S. Jenum, M. Kidd, G. Walzl, N.N. Chegou, A.M. Dyrhol-Riise, A Plasma 5-Marker Host Biosignature Identifies Tuberculosis in High and Low Endemic Countries, *Front. Immunol.* 12 (2021). <https://www.frontiersin.org/article/10.3389/fimmu.2021.608846> (accessed June 3, 2022).

667 [51] L. Liang, R. Shi, X. Liu, X. Yuan, S. Zheng, G. Zhang, W. Wang, J. Wang, K. England, L.E. Via, Y. Cai, L.C. Goldfeder, L.E. Dodd, C.E. Barry, R.Y. Chen, Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis, *Int. J. Tuberc. Lung Dis.* 21 (2017) 1145–1149. <https://doi.org/10.5588/ijtld.16.0880>.

668 [52] N. Rockwood, D.L. Costa, E.P. Amaral, E. Du Bruyn, A. Kubler, L. Gil-Santana, K.F. Fukutani, C.A. Scanga, J.L. Flynn, S.H. Jackson, K.A. Wilkinson, W.R. Bishai, A. Sher, R.J. Wilkinson, B.B. Andrade, *Mycobacterium tuberculosis* induction of heme oxygenase-1 expression is dependent on oxidative stress and reflects treatment outcomes, *Front. Immunol.* 8 (2017). <https://doi.org/10.3389/fimmu.2017.00542>.

669 [53] R.S. Wallis, P. Kim, S. Cole, D. Hanna, B.B. Andrade, M. Maeurer, M. Schito, A. Zumla, Tuberculosis biomarkers discovery: developments, needs, and challenges, *Lancet Infect. Dis.* 13 (2013) 362–372. [https://doi.org/10.1016/S1473-3099\(13\)70034-3](https://doi.org/10.1016/S1473-3099(13)70034-3).

670 [54] X. Bai, H. Li, Y. Yang, J. Zhang, Y. Liang, X. Wu, Cytokine and soluble adhesion molecule profiles and biomarkers for treatment monitoring in Re-treated smear-positive patients with pulmonary tuberculosis, *Cytokine*. 108 (2018) 9–16. <https://doi.org/10.1016/j.cyto.2018.03.009>.

671 [55] P. Miranda, L. Gil-Santana, M.G. Oliveira, E.D.D. Mesquita, E. Silva, A. Rauwerdink, F. Cobelens, M.M. Oliveira, B.B. Andrade, A. Kritski, Sustained elevated levels of C-reactive protein and ferritin in pulmonary tuberculosis patients remaining culture positive upon treatment initiation, *PLOS ONE*. 12 (2017) e0175278. <https://doi.org/10.1371/journal.pone.0175278>.

672 [56] G.B. Sigal, M.R. Segal, A. Mathew, L. Jarlsberg, M. Wang, S. Barbero, N. Small, K. Haynesworth, J.L. Davis, M. Weiner, W.C. Whitworth, J. Jacobs, J. Schorey, D.M. Lewinsohn, P. Nahid, Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial, *EBioMedicine*. 25 (2017) 112–121. <https://doi.org/10.1016/j.ebiom.2017.10.018>.

673 [57] A. Singanayagam, K. Manalan, D.W. Connell, J.D. Chalmers, S. Sridhar, A.I. Ritchie, A. Lalvani, M. Wickremasinghe, O.M. Kon, Evaluation of serum inflammatory biomarkers as predictors of treatment outcome in pulmonary tuberculosis, *Int. J. Tuberc. Lung Dis.* 20 (2016) 1653–1660. <https://doi.org/10.5588/ijtld.16.0159>.

711 [58] J. Nouhin, P. Pean, Y. Madec, M.F. Chevalier, C. Didier, L. Borand, F.-X. Blanc, D.
712 Scott-Algara, D. Laureillard, L. Weiss, Interleukin-1 receptor antagonist, a biomarker of
713 response to anti-TB treatment in HIV/TB co-infected patients, *J. Infect.* 74 (2017) 456–
714 465. <https://doi.org/10.1016/j.jinf.2017.01.016>.

715 [59] C. Schutz, D. Barr, B.B. Andrade, M. Shey, A. Ward, S. Janssen, R. Burton, K.A.
716 Wilkinson, B. Sossen, K.F. Fukutani, M. Nicol, G. Maartens, R.J. Wilkinson, G.
717 Meintjes, Clinical, microbiologic, and immunologic determinants of mortality in
718 hospitalized patients with HIV-associated tuberculosis: A prospective cohort study,
719 *PLoS Med.* 16 (2019) e1002840. <https://doi.org/10.1371/journal.pmed.1002840>.

720

721 **Table 1.** Clinical characteristics of study participants.

722

	PCTB	PTB	LTBI
N	18	20	16
Age (years) †	36 [29 – 44]	39 [32 – 45]	37 [32 – 41]
Gender (F/M)	8/10	8/12	16/0
HIV status (Neg/Pos)	3/15	0/20	0/16
CD4 count (cells/mm ³) †	141 [61 – 195.3]	176 [107 – 246]	409 [264 – 524]
Log ₁₀ VL (mRNA copies/mL) †	4.68 [2.903 – 5.278]	4.79 [4.23 – 5.11]	3.28 [1.44 – 4.18]
Mtb Culture positive (n, %)	9/16 (56.2%) in PCF‡	19 (95%) in sputum	0 (0%) in sputum

723
724 LTBI = Latent TB infection, PCTB = Pericardial TB, PTB = Pulmonary TB, F = Female, M
725 = Male, VL = HIV viral load, NA = not applicable

726 †Median and interquartile range.

727 ‡Mtb culture data were not available for two PCTB patients.

728

729 **Figure legends:**

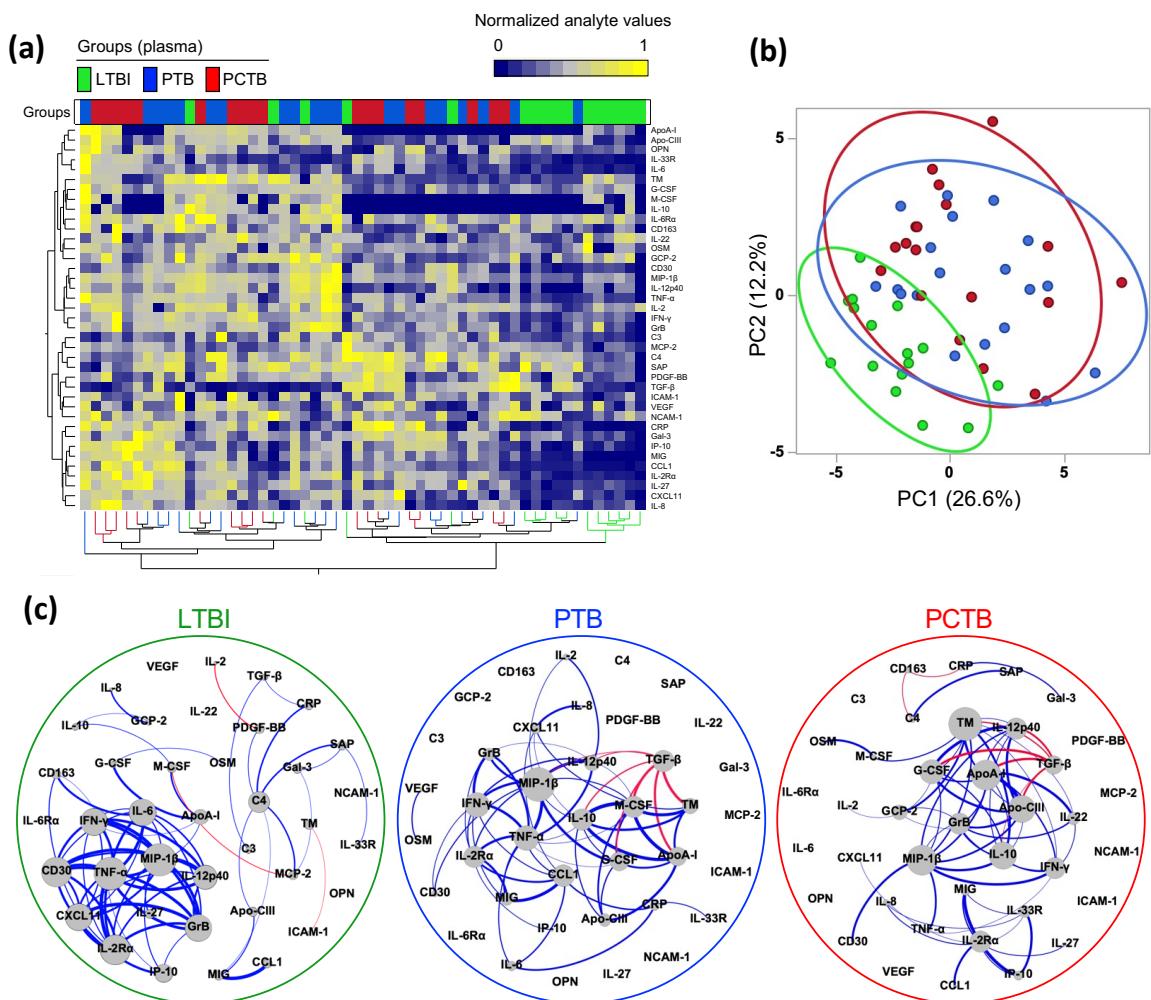
730 **Figure 1. Analyte profiles in the different TB groups at baseline.** (a) A non-supervised
731 two-way hierarchical cluster analysis (HCA, Ward method) was employed to evaluate the TB
732 groups using the 39 measured analytes. TB status (PCTB in red, PTB in blue and LTBI in
733 green) of each patient is indicated at the top of the dendrogram. Data are depicted as a
734 heatmap colored from minimum to maximum normalized values for each marker. (b)
735 Principal component analysis (PCA) on correlations based on the 39 analytes was used to
736 explain the variance of the data distribution in the cohort. Each dot represents a participant.
737 The two axes represent principal components 1 (PC1) and 2 (PC2). Their contribution to the
738 total data variance is shown as a percentage. (c) Analyte network analysis (Fruchterman-
739 Reingold algorithm) in plasma of LTBI, PTB and PCTB participants. Size of nodes indicate
740 the number of connections. Size of edges indicate the spearman r value (only $r > 0.6$ were
741 included). Blue lines: positive correlation. Red lines: negative correlation.

742

743 **Figure 2. Univariate associations between HIV VL and analyte concentrations in the**
744 **different TB groups.** (a) Spearman's rank values of the univariate correlation between each
745 analyte and the HIV VL in LTBI participants, PTB participants, and PCTB participants
746 plasma samples. Red bars indicate positive correlations, Black bars indicate negative
747 correlations, and grey bars indicate non-significant correlations. (b) Depicts the examples of
748 IL-12p40 (maintained relationship between the TB groups) and IP-10 (disrupted relationship
749 between the TB groups). The line indicates linear regression for statistically significant
750 correlations.

751 **Figure 3. Analyte profiles in peripheral blood (Plasma) and site of disease (Pericardial**
752 **fluid) in PCTB participants.** (a) A non-supervised two-way hierarchical cluster analysis
753 (HCA, Ward method) was employed to evaluate the two sites using the 39 analytes. The
754 sample type and Mtb culture results (PCF in purple, Plasma in red; Mtb culture negative in
755 white and positive in black) of each patient is indicated at the top of the dendrogram. Data are
756 depicted as a heatmap colored from minimum to maximum normalized values detected for
757 each marker. (b) Principal component analysis (PCA) on correlations based on the 39
758 analytes was used to explain the variance of the data distribution in the subgroup. Each dot
759 represents a participant. The two axes represent principal components 1 (PC1) and 2 (PC2).
760 Their contribution to the total data variance is shown as a percentage. (c) Constellation Plot-
761 cluster analysis based on all measured analytes. Each dot represents a participant and is color-

762 coded according to sample type. Each cluster obtained for the HCA is identified by a number.
763 **(d)** Pairwise correlation of the 39 analytes. Red bars indicate a positive correlation, Black
764 bars indicate a negative correlation, and grey bars indicate a non-significant correlation. **(e)**
765 Analyte network analysis in PCF of PCTB participants. Size of nodes indicate the number of
766 connections. Size of edges indicate the spearman r (only $r > 0.6$ were included). Blue lines:
767 positive correlation. Red lines: negative correlation.


768

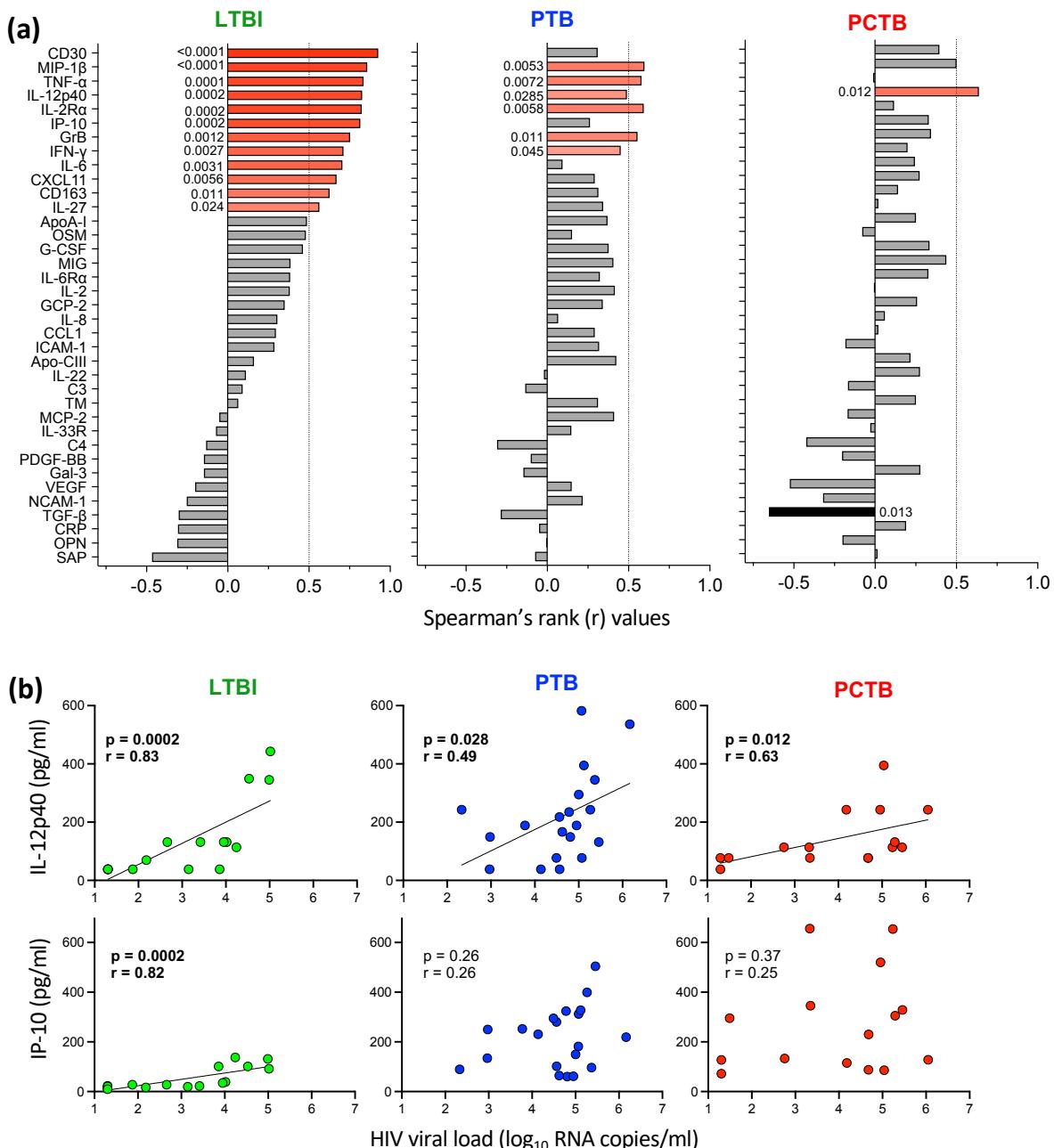
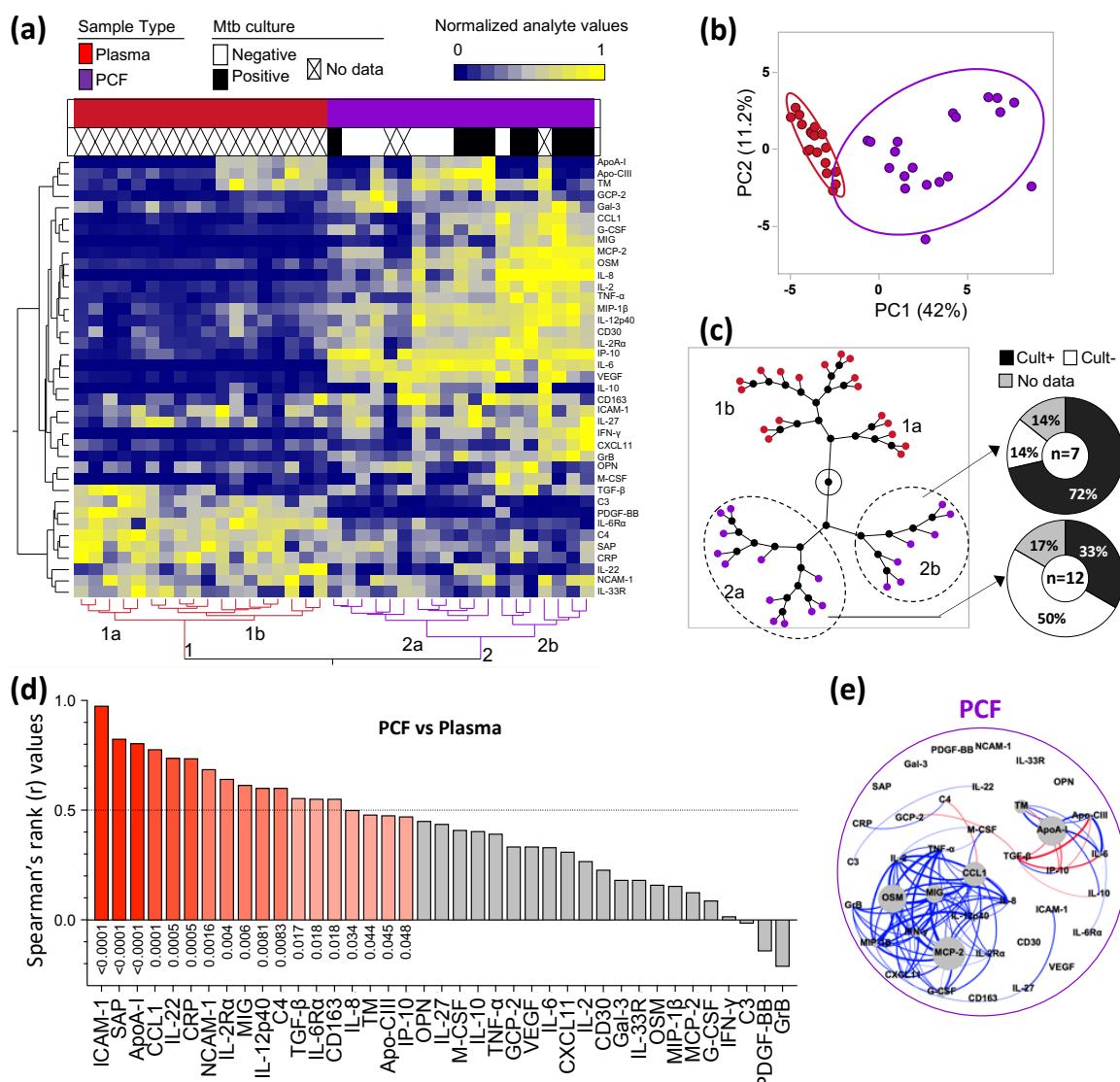
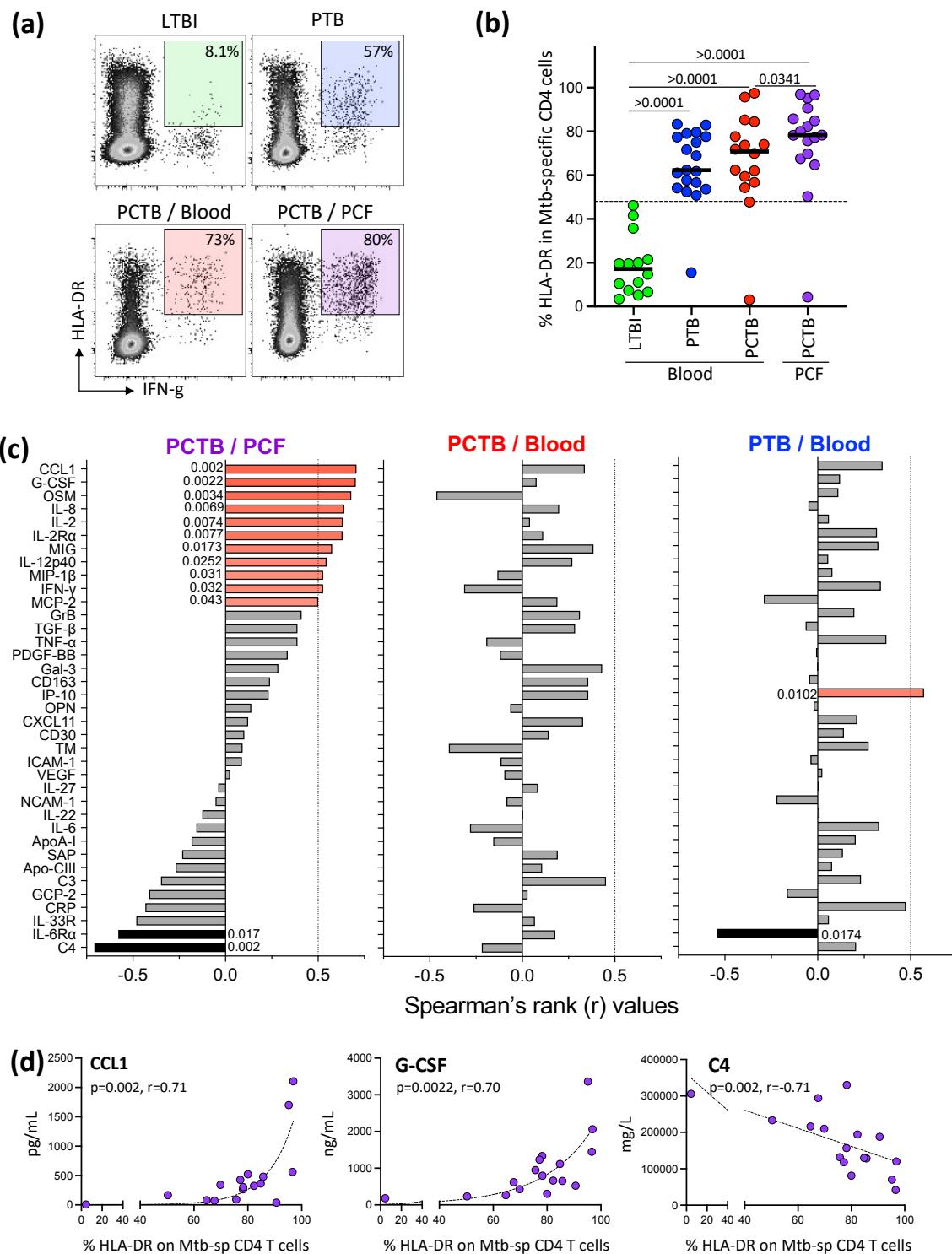
769 **Figure 4. Univariate associations between HLA-DR and analyte concentrations in the**
770 **different TB groups. (a)** Representative flow cytometry plots of the expression of HLA-DR.
771 **(b)** Expression of HLA-DR on Mtb-specific CD4 T cells in response to Mtb300. **(c)**
772 Spearman's rank values of the univariate correlation between each analyte and between Mtb-
773 specific CD4 T cell activation (HLA-DR) level at the site of disease (PCF) in PCTB
774 participants, in blood of PCTB and PTB participants, respectively. Red bars indicate a
775 positive correlation, Black bars indicate a negative correlation, and the grey bars indicate
776 non-significant correlation. **(d)** Representative graphs showing the positive (CCL1 and G-
777 CSF) and negative (C4) correlation to HLA-DR frequency at the site of disease (PCF).
778 Statistical comparisons were performed using a Kruskal-Wallis test, adjusted for multiple
779 comparisons (Dunn's test) for blood LTBI vs PTB vs PCTB, Wilcoxon test for blood PCTB
780 vs PCF PCTB and the Mann-Whitney test to compare blood LTBI and PCF PCTB.

781 **Figure 5. Analyte profiles in the different TB groups before, during and post TB**
782 **treatment. (a)** A non-supervised two-way hierarchical cluster analysis (HCA, Ward method)
783 was employed to grade the TB groups using the 39 analytes. TB status (PCTB in red, PTB in
784 blue and LTBI in green) of each patient is indicated at the top of the dendrogram. Data are
785 depicted as a heatmap colored from minimum to maximum normalized values detected for
786 each marker. **(b)** Principal component analysis (PCA) on correlations based on the 39
787 analytes was used to explain the variance of the data distribution in the cohort. Each dot
788 represents a participant. The two axes represent principal components 1 (PC1) and 2 (PC2).
789 Their contribution to the total data variance is shown as a percentage. **(c)** Representative
790 graphs showing the change of concentrations of CXCL11, MIG, IL-6 and CRP with
791 treatment and no statistical difference between week 24 post-treatment initiation and LTBI in
792 both PTB and PCTB groups, respectively. Statistical comparisons were performed using a
793 Friedman test, adjusted for multiple comparisons (Dunn's test) for BL v W6/W8, BL v W24

794 and W6/W8 v W24 and the Mann-Whitney test to compare LTBI with W24, p-values were
795 adjusted using the Bonferroni method.

Fig. 1

Fig. 2

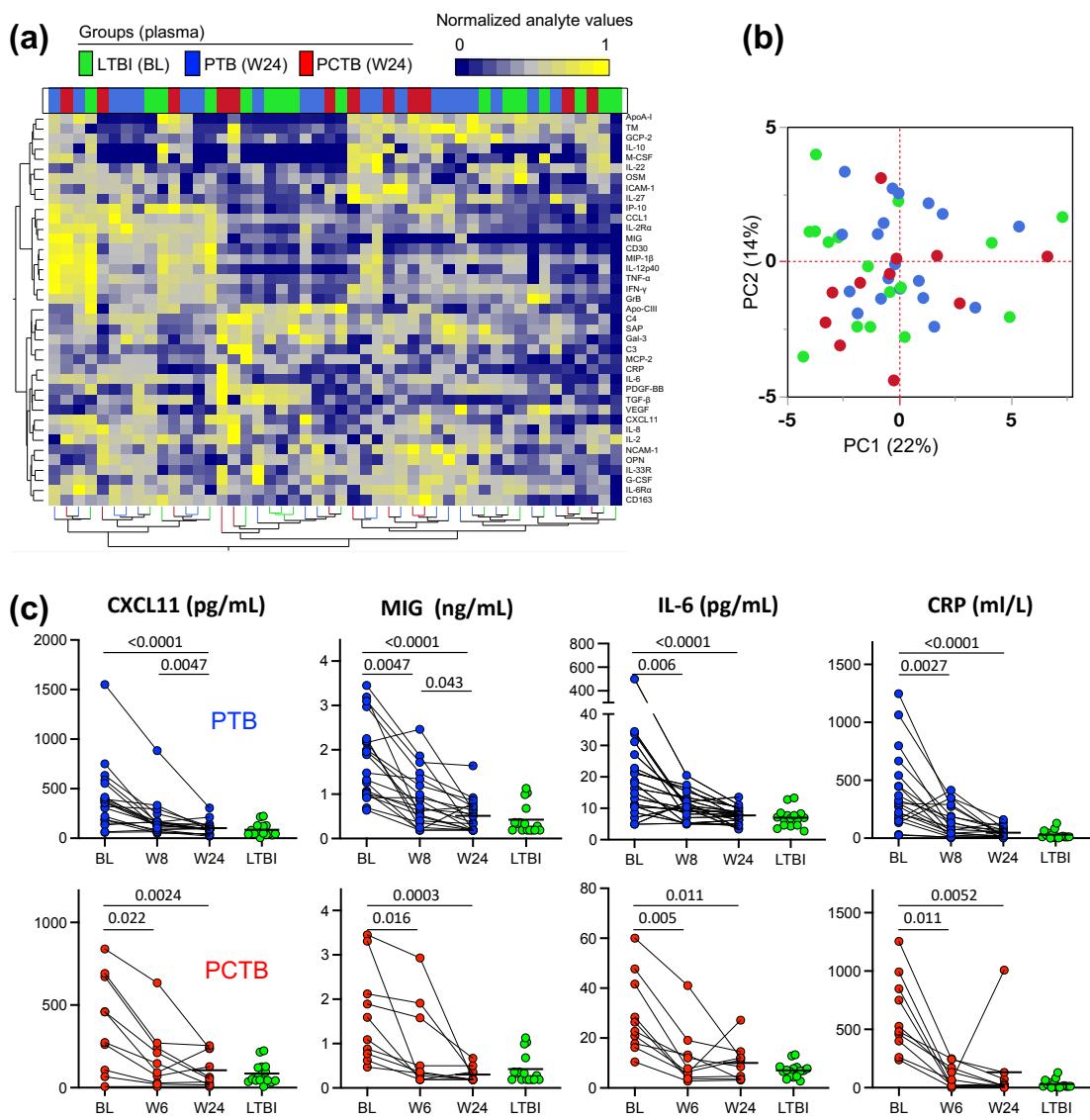

Fig. 3

Fig. 4

Fig. 5

