

1 Structural and molecular biology of *Acheta domesticus*
2 segmented densovirus, the first parvovirus to harbor a bipartite
3 genome

4 *†Judit J. Penzes^{1,2}, Hanh T. Pham¹, Paul Chipman², *Emmanuel W. Smith³, Robert McKenna², Peter Tijssen¹

5

6 ¹Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
7 H7V 1B7, Canada;

8 ²The McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;

9 ³Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA

10

11 *Correspondence: judycash08@gmail.com

12 [†]Current address: Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey,
13 Piscataway, NJ 08854, USA

14 ^{*}Current address: JEOL USA Inc., Peabody, MA 01960, USA

15

16

17

18

19

20

21

22

23 **Abstract**

24 Parvoviruses (family *Parvoviridae*) are defined by their linear monopartite ssDNA genome, T=1 icosahedral
25 capsid, and distinct structural (VP) and non-structural (NS) protein expression cassettes within their
26 genome. Here, we report the first parvovirus with a segmented genome, *Acheta domesticus* segmented
27 densovirus (AdSDV), a house cricket (*Acheta domesticus*) pathogen. The AdSDV harbors its NS and VP
28 cassettes on two separate segmented genomes. Its VP segment acquired a phospholipase A2-encoding
29 gene via inter-subfamily recombination, which is absent from its capsid. The AdSDV evolved a
30 transcription profile in response to its multipartite replication strategy that has diverged from its
31 *Brevihamaparvovirus* ancestors. Furthermore, AdSDV assembles three capsid populations, which package
32 one genome segment per particle. The cryoEM structures of these three capsids (2.3 to 3.3 Å resolution)
33 reveal a genome packaging mechanism, which differs from other parvoviruses. This study provides a new
34 perspective on ssDNA genome segmentation and on the plasticity of parvovirus biology.

35

36 **Introduction**

37 Parvoviruses (PVs) are small, non-enveloped icosahedral viruses, which infect vertebrate animals
38 as well as protostome and deuterostome invertebrates [1]. Densoviruses (DVs) are autonomously
39 replicating, invertebrate-infecting members of the *Parvoviridae* family, classified into two subfamilies [2].
40 Members of subfamily *Densovirinae* infect a wide array of terrestrial and aquatic invertebrates, in which
41 they are pathogenic [3-20]. The PVs of subfamily *Hamaparvovirinae* infect either vertebrates or
42 invertebrates, with hamaparvoviral DVs classified into three genera. Members of genera
43 *Penstylhamaparvovirus* and *Hepanhamaparvovirus* infect penaeid shrimps, in which they are highly
44 pathogenic [21-24]. Members of the genus *Brevihamaparvovirus* infect exclusively mosquitos and are
45 closely related to penstylhamaparvoviruses, suggested by their genome organization, protein homology
46 and transcription strategy [25-29].

47 Members of the *Parvoviridae* have linear, monopartite ssDNA genomes of 3.6 to 6.2 kb [12, 30-
48 32], flanked by partially double-stranded, hairpin-like DNA secondary structures, which can form ~~of~~
49 inverted terminal repeats (ITRs) [32, 33]. The termini are essential for replication and genome packaging
50 [32, 33]. The parvovirus genome includes two expression cassettes, one of which encodes a varied number
51 of non-structural proteins (NS). At least one of these proteins, conventionally designated NS1,
52 encompasses a superfamily 3 (SF3) helicase domain, which is the only highly conserved protein sequence
53 motif throughout the entire family [32, 34]. The other expression cassette, designated *cap*, encodes one
54 to four structural proteins (VPs). These are usually N-terminal extensions of one another, sharing an
55 overlapping C-terminal segment, responsible for comprising the capsid shell [32, 35]. In case of subfamilies
56 *Parvovirinae* and *Densovirinae*, the unique N-terminal extension of minor capsid protein 1 (VP1u), the
57 largest of the VPs, typically encodes highly conserved phospholipase A2 (PLA2) domain, essential for
58 endosomal egress [36, 37]. Following receptor-mediated endocytosis, in order to reach the nucleus to
59 replicate, PVs have been found to traffic through the endo-lysosomal system of the host cell, exposing the
60 viral particle to increasing acidity from pH 7.4 to 4.0 [37-42].

61 To date, there have been more than one hundred parvoviral capsid structures resolved at or near
62 atomic resolution, the majority belonging to the *Parvovirinae*, as opposed to only five derived from DVs.
63 Three of these capsid structures belong to members of the *Densovirinae*, including *Galleria mellonella*
64 densovirus (GmDV) at 3.7 Å resolution (PDB ID: 1DNV) [43] of genus *Protoambidensovirus*, *Acheta*
65 *domesticus* densovirus (AdDV) at 3.5 Å resolution (PDB ID: 4MGU) of genus *Scindoambidensovirus* [44]
66 and *Bombyx mori* densovirus (BmDV) at 3.1 Å resolution (PDB ID: 3POS) of genus *Iteradensovirus* [45]. The
67 capsid structure of *Penaeus stylirostris* densovirus (PstDV) at 2.5 Å resolution (PDB ID: 3N7X) of genus
68 *Penstylihamaparvovirus* [46] is the only high-resolution structure of the *Hamaparvovirinae* to date. The
69 fifth structure belongs to the divergent *Penaeus monodon* metalldensovirus (PmMDV) at 3 Å resolution
70 (PDB ID: 6WH3), lacking a subfamily affiliation [42]. All PV structures possess T=1 icosahedral symmetry,

71 comprised by 60 VP subunits. Each subunit displays an eight-stranded (β B to β I) jellyroll fold [47], in which
72 variable loops link the β -strands together to compose the variable capsid surface morphology [35]. With
73 the exemption of PmMDV, the luminal (BIDG) jellyroll sheet is complemented by an additional N-terminal
74 β -strand, canonically designated β A [35, 42]. The fivefold symmetry axis of the PV capsid characteristically
75 includes a pore-like opening that continues in a channel, a portal to aid genome packaging and uncoating,
76 as well as for PLA2 domain externalization [48-50].

77 The common house cricket (*Acheta domesticus*) is a host to 2 DVs of subfamily *Densovirinae*. AdDV
78 is highly pathogenic, causing mass mortality at cricket rearing facilities worldwide [8, 51]. The AdDV
79 harbors an ambisense genome, which includes a “split” VP gene, a *Scindoambidensovirus* characteristic.
80 Consequently, its VP1 is encoded by a spliced transcript, in which the PLA2-containing VP1u is expressed
81 by a separate ORF (cap1) upstream from cap2, the latter ultimately giving rise to VPs 2 to 4 via leaky
82 scanning [8]. *Acheta domesticus* mini ambidensovirus (AdMDV), of genus *Miniambindensovirus*, also
83 harbors an ambisense expression strategy, but only includes one cap, encoding a PLA2-encompassing VP1
84 [17].

85 Here, we report the discovery, complete genome sequence, transcription strategy and near-
86 atomic 3D structure of a novel DV infecting the common house cricket, designated *Acheta domesticus*
87 segmented densovirus (AdSDV). The AdSDV is the first, hitherto, PV to harbor a bipartite genome, a result
88 of recombination between subfamilies *Densovirinae* and *Hamaparvoviriane*. We show that each segment
89 is packaged into a separate viral particle, to maintain particle size and integrity of its *Brevihamaparvovirus*
90 ancestors. The AdSDV has a complex transcription strategy, which is distinct from other members of its
91 genus *Brevihamaparvovirus*, a potential adaptation to the multipartite replication strategy. Furthermore,
92 AdSDV relies on a novel DNA-packaging model, which involves the threefold and twofold axes and results
93 in increased thermostability of the full virions, by reinforcing the twofold axis via direct stacking

94 interactions between the lumen wall and the ssDNA genome. This study of AdSDV provides a new
95 perspective on parvoviral genome and transcription evolution as well as on capsid architecture.

96

97 **Results**

98 *Virus discovery and pathogenesis*

99 Common house crickets at an insect rearing facility in Ontario, Canada, exhibited clinical signs
100 consistent with a viral infection i.e., erratic, uncontrolled movement, followed by complete paralysis and
101 eventual death. Icosahedral viral particles, ~220 Å in diameter, could be visualized in homogenized fat
102 bodies of affected specimen by negative staining electron microscopy (Fig 1A). The presence of DVs or
103 known CRESS DNA viruses so far known of similar size and morphology were excluded by PCR testing.
104 Following CsCl density gradient purification, the particles were introduced per os via contaminated food
105 to healthy house cricket nymphs. These developed identical signs in 14 to 20 days, whereas injection of
106 the purified particles directly into the abdominal fat body accelerated the progression of the disease by
107 about 7 days. The experiments were repeated involving two more commercially reared cricket species
108 i.e., *Gryllus bimaculatus* and *Grylloides sigillatus*, neither of which displayed signs of infection or harbored
109 viral particles in homogenized fat bodies. Isolated DNA could not be amplified by rolling circle
110 amplification, which suggested a linear genome. Consequently, the extracted DNA was blunt-ended,
111 cloned and sequenced.

112

113 *Complete genome characterization and phylogeny inference of a new densovirus with a segmented*
114 *genome*

115 Sequencing identified two cloned populations, both approx. 3.3 kb in size. To verify whether both
116 were present in the extracted viral DNA, native, blunted DNA was subjected to restriction endonuclease
117 (RE) digestion by enzymes with recognition sites only in one (HindIII, SpeI) or in both (XbaI) obtained

118 sequences (Fig. 1B). The resulting restriction profiles supported the presence of a heterogenous, bipartite
119 DNA isolate. Both segments were flanked by T-shaped hairpin-like secondary structures, which did not
120 form ITRs but were identical at the corresponding termini of both sequences, implying a common genome
121 origin (Fig 1C). The first segment (3316 nt in length) harbored three complete and two partial ORFs (Table
122 S1, Fig 1D). The derived amino acid (aa) sequence of two of these, at the length of 796 and 379 aa,
123 respectively, displayed significant similarity with the NS1 and NS2 of various mosquito-infecting
124 brevihamaparvoviruses according to a BLASTP (basic local alignment search tool protein) search (NS1: 41%
125 identity at 69% coverage, *Haemagogus equinus* DV; NS2: 41% identity at 97% coverage, *Aedes albopictus*
126 DV 2), hence designating it the NS segment. The longer ORF, now referred to as NS1, harbored an SF3
127 helicase domain. The second segment (3332 nt) included three ORFs (Table S1, Fig 1D). ORF1 is capable
128 of encoding a 378-aa-long protein, a homologue of a *Brevihamaparvovirus* VP from *Aedes albopictus* DV
129 2 (40% identity at 83% coverage). The putative 104-aa-long product of the small central ORF, ORF2,
130 displayed weak similarity to bacterial SF1 DNA and RNA helicases (*Beacteroides uniformis*, 63% identity
131 on 25% coverage). The 347-aa-long putative product of ORF3 was identified as a homologue of the VP1u-
132 encoding *cap1* of AdDV (45% identity at 67% coverage). Consequently, ORF3 also harbors a PLA2 domain,
133 similarly to the *Scindoambidensovirus* VP1u. Segment 2 was designated the VP segment. Due to the
134 bipartite genome, the new DV was named *Acheta domesticus* segmented densovirus (AdSDV) and both
135 segments were deposited to the NCBI GenBank, under accession numbers OP436269 and OP436270,
136 respectively.

137 Based on the phylogeny inference of the family-wide conserved SF3 helicase domain, AdSDV clustered to
138 genus *Brevihamaparvovirus* of subfamily *Hamaparvovirinae*, becoming its first non-mosquito infecting
139 member and the first one to harbor a PLA2 domain (Fig 2).

140

141 *Transcription Strategy*

142 To characterize the transcriptome of the bipartite genome, total RNA was isolated from infected house
143 crickets, three days following direct fat body inoculation. Both segments harbored two promoters and
144 two polyadenylation signals, respectively (Fig 1D and E). The upstream NS segment promoter at map unit
145 12 (P12) yielded two transcripts and both are polyadenylated at the proximal polyadenylation signal
146 (positioned at 2551 nt, tail is added at 2612 nt). Transcript 1 is capable of expressing the complete NS2 in
147 its entire length and did not undergo splicing. The spliced transcript 2 utilized the upstream donor site
148 (D1, ATC|CA), uniting it with the proximal acceptor site (A1, TTATCAA|AA), removing NS intron 1 (Table
149 S2, Fig S3). This results in an ORF, NS1-N1, which can express the N-terminal region of NS1, terminating
150 the frame directly upstream of the SF3 domain, by receiving a 7-aa-long tail from a small ORF without an
151 ATG start codon. There are four NS transcripts transcribed from the downstream promoter, P21,
152 terminating at the distal polyA signal (positioned at 2865 nt, polyA tail is added at 2880 nt). The unspliced
153 transcript 3 is capable of expressing an N-terminally truncated NS1 ORF, translated from the second ATG
154 of the original frame, located in a strong Kozak context (CCGCCAT**GG**). With a predicted molecular weight
155 of 74 kDa, this is the only NS segment-derived protein, which includes the complete SF3 helicase domain.
156 Either from this transcript, or from a putative transcript 4, an N-terminally truncated NS2 product (NS2-
157 C), could also be expressed, using the second ATG codon of the NS2 frame, located in a weaker Kozak
158 context (ACACAT**GA**). The spliced transcript 5 utilized a distinct set of donor and acceptor sites from those
159 of transcript 2, namely D2 (GCA|AG) and A2 (GGGAGCA|GAG) (Table S2, Fig S3). The removal of NS-intron
160 2 puts in frame a small auxiliary ORF, ORF3, with the C-terminal portion of the NS1 ORF, potentially
161 encoding the 20-kDa-sized NS1-C. Similarly to transcript 4, the existence of transcript 6 as a separate
162 mRNA population is debatable. The removal of the same intron results in the union of the NS1 ORF with
163 a 25-aa-long tail from another ATG-lacking small ORF, giving rise to NS1-N2. Based on the transcription
164 profile, the AdSDV NS segment has a coding capacity for six putative NS proteins.

165 The VP segment also encoded two promoters (P12, P42) and two polyadenylation signals, resulting in the
166 separation of the *Brevihamaparvovirus*-like ORF1 and the *Scindoambidensovirus*-like ORF3, together with
167 auxiliary ORF2, into two separate expression units. The expression of VP ORF1, from unspliced transcript
168 1 is under the control of the upstream P12 and is polyadenylated at the PolyA1 site, directly upstream
169 from the ORF3 ATG start codon (at position 1844 nt, polyA tail added at pos. 1852 nt). Transcript 2, the
170 only unspliced transcript of the downstream P42, is potentially capable of expressing the PLA2-encoding
171 ORF3. The spliced transcripts 3 and 4 shared the same donor site (GAA|GA) but used separate acceptor
172 sites, A1 (TATTATA|AAC) and A2 (CAAAAAA|GAC), respectively (Fig S3). While transcript 3 unites ORF2
173 with an almost complete ORF3, the removal of the longer intron from transcript 4 only preserves the C-
174 terminal portion of this ORF, removing the PLA2-encoding region.

175

176 *Structural Proteins*

177 Using the Bac-to-Bac baculovirus expression system, Sf9 cultures were transfected by three
178 recombinant bacmid constructs, namely AdSDV-Bac-VP-ORF1 and AdSDV-Bac-VP-ORF3, with a polyhedrin
179 promoter-linked VP ORF1 or ORF3, respectively, as well as AdSDV-VP-P42, containing the entire P42-
180 associated expression unit in a polyhedrin promoter knock-out construct. Virus-like particle (VLP)
181 formation was only observed in the AdSDV-Bac-VP-ORF1-transfected culture. The VLPs were purified
182 utilizing a sucrose step gradient, with particle accumulation in the 20% fraction (Fig 3A). The particles from
183 AdSDV-infected house crickets showing advanced signs were next purified. The gradient had two distinct
184 particle bands in the aforementioned 20% fraction (high buoyancy – HB – capsids) as well as in the 25%
185 fraction (low buoyancy – LB – capsids) (Fig 3A). As the true sedimentation value of these capsid
186 populations remains undetermined, naming them only mirrors their buoyancy properties in the sucrose
187 step gradient. When subjected to isopycnic centrifugation in a continuous CsCl gradient, two HB bands
188 could be observed, with a buoyant density of 1.132 g/cm³ (HB1) and 1.191 g/cm³ (HB2), respectively, yet

189 maintaining a single, well-defined LB band with a buoyant density of 1.459 g/cm³ (Fig 3B, typical for full
190 PV particles).

191 Analysis by SDS-PAGE revealed a variance in the presence, absence, and incorporation ratio of
192 protein bands at sizes of approx. 55, 50, 43, 40 and 38 kDa (Fig 3C). The bands were excised and analyzed
193 by Nano-liquid chromatography tandem mass spectrometry (Nano-LC/MS/MS), and the protein
194 sequences were searched against the NCBI non-redundant protein database as well as against the AdSDV
195 genome, revealing that all bands comprised solely products of VP-ORF1 (Table S4). To furthermore
196 investigate the absence of the PLA2-including ORF3 products, a colorimetric PLA2 assay was performed
197 involving each capsid population and it was shown that none of these displayed PLA2 activity, in
198 concordance with the VP-ORF3 absence suggested by the Nano-LC/MS/MS (Fig S4). The 43-kDa-sized
199 SDS-PAGE band corresponded with the predicted weight of VP-ORF1 and was the only one with coverage
200 throughout the complete ORF (Fig 3D). Consequently, this protein was designated VP1, the major
201 component of the HB, HB1 and HB2 capsids and comprises about 50% of the LB population. All other
202 bands displayed the same coverage profile, being N-terminally truncated versions of VP1. We designated
203 the 38-kDa-sized protein VP2, representing a minority fraction of the HB, HB1 and HB2 capsids, yet
204 accounting for half of the VPs comprising the LB particles. VP2 was also the component of the 55 and 50
205 kDa minor bands, the size of which exceeds the coding capacity of the AdSDV genome.

206 The HB and LB fractions varied significantly in genome content, yet each contained a similar ratio of NS
207 and VP segments (Fig 3E). Cryoelectron microscopy (cryoEM) micrographs revealed that the consistently
208 high genome count (range of 10¹⁶ to 10¹⁷ genome particles of each segment) of the LB capsids is due to
209 the presence of almost exclusively full, genome-packaging particles (Fig 3F). This number was approx. 4-
210 logs lower in case of the HB capsids, which displayed an overwhelmingly large proportion of empty
211 capsids. The CsCl-purified HB1 and HB2 bands were composed of exclusively empty particles (Fig 3F).

212

213 *Structural Studies*

214 The AdSDV capsid populations and VLPs were subjected to data collection by cryoEM followed by single-
215 single particle image reconstruction [52] (summarized by Table S6), obtaining capsid structures at a near
216 atomic resolution for the ORF1-VLPs at 3.3 Å (PDB ID: 8EU7), for the HB (PDB ID: 8ERK), HB1 (PDB ID:
217 8EU6) and HB2 (PDB ID: 8EU5) capsids at 2.5 Å, 3 Å and 3.1 Å, respectively, as well as for the LB capsids
218 at 2.3 Å (PDB ID: 8ER8) (Fig 4A). Each population possessed a T=1 icosahedral symmetry and a small
219 particle size of 20 to 25 nm, with the smallest *Parvoviridae* lumen volume to date (Fig S7). AdSDV displays
220 an overall smooth capsid surface with the only protruding area surrounding the fivefold symmetry axis.
221 The lumen of the HB1 and HB2 capsids was devoid of density, apart from a small amount of dust in the
222 proximity of the threefold axis. The same location was occupied by a larger amount of disordered density
223 in the ORF1-VLPs. The lumen of the LB capsids was filled with density attributed to the ssDNA genome.
224 The slight amount of genome-like density of HB capsid lumen confirmed the genome quantification and
225 EM results, namely that this population is heterogenous and is composed of HB1, HB2 and LB capsids
226 (detailed by Fig S8).

227 The VP-ORF1 sequence could be modelled into the LB density map from Thr47 to Leu377, the final
228 C-terminal residue (Fig 4A). The AdSDV VP subunit displayed the canonical eight-stranded jellyroll fold,
229 complemented by an N-terminal βA, located on an elongated N-terminal region. The arrangement and
230 approximate size of each loop from AB to HI corresponded to that of PstDV the most, supported by a DALI
231 Z-score of 16.8 [35]. The HB, HB1, HB2 and the ORF1-VLPs monomer lacked two N-terminally ordered
232 residues as well as the unusually elongated C-terminal tail of the LB capsids, making Gln366 the last
233 ordered residue (Fig 4C). When superimposing the monomer VP model of all capsid populations, the only
234 region showing conformational difference was the DE loop, which comprises the fivefold channel and wall
235 (Fig 4C). The VP capsid models built into the HB1 and HB2 density, respectively, were essentially identical
236 (Fig S9).

237 Although AdSDV displays a distinct morphology within the *Parvoviridae*, the overall impression of
238 its surface resembled that of the PstDV capsid (Fig 4D). With a root-mean square deviation (RMSD) of 2.8
239 Å for the C_α coordinates for 340 residues, the two structures are superimposable (Fig 4E). The AdSDV
240 surface morphology is significantly different from that of AdDV, with only their jellyroll cores
241 superimposable (Fig 4E).

242

243 *Multimer interactions*

244 The AdSDV fivefold channel displayed two distinct conformation states i.e., either basically empty
245 for the HB capsids and the ORF1-VLPs, or filled with “column-like” density, as observed in the LB capsids
246 (Fig 5A). Via the two additional ordered residues, the density column displayed clear connection to the LB
247 capsid shell, inferring it to be part of the disordered 46-aa-long N-terminal region. While the channel of
248 the ORF1-VLPs is covered by a hydrophobic plug, small portions of disordered density occupy the channel
249 in the HB1 and 2 capsids. In a ~10 Å resolution map, the HB2 channel is revealed to be significantly
250 narrower than its HB1 counterpart (Fig S9). To accommodate the density column, the peak of the LB DE
251 loop bends away from the channel, which is occupied by large aromatic and hydrophobic sidechains, such
252 as Tyr159 and Ile152 (Fig 5B). In contrast, both HB capsids displayed DE loops bending inwards, narrowing
253 the pore from 16.0 Å (LB) to 10.1 Å, with Tyr159 and Ile152 retracted underneath the DE loop peak. The
254 ORF1-VLPs possess an identical conformation to that of the LB capsids (Fig 5B).

255 The AdSDV capsid harbors another opening at its threefold axis, which is created by three
256 interwoven β-strands, forming a β-annulus (Fig 5C), lined by large, hydrophobic sidechains, covering a ring
257 of three histidines (His232). This opening is 10.8 Å wide.

258 The long N-terminal segment of the AdSDV capsids is located in a domain-swapping conformation
259 at the twofold symmetry axis, with its outstretched βA interacting with the βG of its twofold-neighboring
260 subunit, comprising the luminal surface of five-stranded β-sheets in a BIDGA order (Fig 5D).

261

262 *Capsid-genome interactions*

263 The elongated C-terminal portion of the AdSDV-LB enters the capsid lumen from the threefold symmetry
264 axis, connecting to the inner surface throughout the twofold interface. Each subunit interacts with the C-
265 terminal tail of the fivefold neighbor to their twofold neighboring subunit (Fig 6A). This interaction is
266 absent from all the other capsid populations, resulting in the last ordered C-terminal residue to enter the
267 lumen directly below the threefold symmetry axis, where the free-hanging C-terminus manifests as
268 various amounts of disordered density (Fig 6B, Fig 4A). The ordered density of six nucleotides per each LB
269 subunit occupies the luminal twofold axis. Five of these are interlinked and interact directly with the
270 capsid surface via π -stacking interactions (Fig 4C). The first stack (stack 1) also incorporates the sixth free-
271 standing purine nucleotide. The ordered ssDNA displays the sequence of purine-purine-pyrimidine-
272 purine-purine, a GC-rich motif, which is especially abundant in the AdSDV termini as well as at various
273 intervals throughout the entire sequence of both segments (85 times for the NS segment, 75 times for the
274 VP segment). The genome density displayed an increasing amount of order when it is located closer to
275 the lumen surface, as the result of the C-terminal tails “grabbing” and “sticking” the genome to the inner
276 twofold axis, by establishing π -stacks via the GC-rich pentanuclear motifs (Fig 6D).

277 Genome packaging also altered the thermostability of the AdSDV capsid, characterized by
278 differential scanning fluorometry (DSF) (Fig 6E, melt curve profiles shown by Fig S10). At neutral pH the
279 LB capsids already possessed a 2-4°C higher unfolding temperature compared to the other populations.
280 This increases to 5-6°C at pH 6.0, simulating the environment of the early endosome, and to 6-8°C at pH
281 5.5, modeling the environment of the late endosome. At the lysosomal pH of 4.0, the difference is still 3-
282 4°C. Regardless of genome content, each AdSDV capsid population displayed peak stability at pH 5.5,
283 which declined radically at pH 4.0 of the mature lysosomes.

284

285 **Discussion**

286 To date, all *Parvoviridae* members have been identified as containing a ssDNA monopartite genome,
287 which is one of the key characteristics of the family [32]. However, despite of its identified bipartite
288 genome, AdSDV is still a PV, as it displays a (i) linear ssDNA genome, flanked by hairpin-like DNA secondary
289 structures, (ii) assembles a T=1 icosahedral, non-enveloped capsid, (iii) encodes an SF3 helicase domain in
290 its NS1 protein, and (iv) possesses distinct NS and VP expression cassettes, which are uniquely located on
291 two separate genome segments. Furthermore, phylogeny inference and NS homology show that AdSDV
292 is a member of a well-established *Hamaparvovirinae* genus, *Brevihamaparvovirus*. Unlike other
293 hamaparvoviruses, yet similarly to the other two *A. domestica*-infecting parvoviral lineages of the
294 *Densovirinae*, AdSDV harbors a PLA2-including VP ORF of *Scindoambidensovirus* origin. Acquiring VP-ORF3
295 could have extended its original dipteran host spectrum to orthopterans, especially when considering the
296 narrow host spectrum of AdSDV. While AdDV causes subclinical infection in other commonly reared
297 orthopteran species [53], AdSDV is host-specific to *A. domesticus*.

298 All hitherto parvoviral PLA2 domains are either located within structural protein-encoding genes,
299 or obtain the common C-terminal VP region via alternative splicing, so that they can be assembled into
300 the capsid shell [8, 35, 54]. In both instances the PLA2 domain is located upstream of the major VP-
301 encoding region. VP-ORF3 is not only placed downstream of the major VP-ORF1, but is also included in a
302 completely separate transcription unit, with its own promoter and polyadenylation signal. Consequently,
303 AdSDV might be a unique parvovirus to express a nonstructural PLA2. Homology search results indicate
304 that VP-ORF2, a small auxiliary ORF of the VP segment, might have a role in the AdSDV or host cell DNA-
305 or RNA metabolism. As this ORF is spliced to VP-ORF3, a non-structural role of VP-ORF3 expressed proteins
306 is even more likely.

307 Genome segmentation is scarce among DNA viruses [55] especially in animal hosts, unlike
308 multipartite DNA viruses of fungi and plants, which package each DNA segment into a separate viral

309 particle [56]. The AdSDV capsid volume is basically half of that of GmDV, the PV with the largest genome
310 (6 kb) for which the capsid structure has been resolved [43]. As the united length of its two segments
311 would only be slightly larger, it is reasonable to assume that AdSDV is also a multipartite-
312 multicompartiment virus. The ssRNA-packaging foot- and mouth disease virus (*Picornaviridae*), which
313 possesses both a monopartite and multipartite variant, has been found to package shorter segments not
314 only to maintain its particle stability, but also for the viral genome to reach an energetically favorable
315 density [57]. Members of genera *Brevi-* and *Penstylhamaparvovirus* harbor the smallest genomes within
316 the *Parvoviridae*, which, in case of PstDV, are packaged into similarly small particles [46]. Another
317 arthropod-infecting linear ssDNA virus family, the *Bidnaviridae*, also harbors a bipartite, recombination-
318 heavy genome, with genes derived from four distinct viral lineages [58]. The AdSDV genome is the first to
319 display inter-subfamily recombination within the *Parvoviridae*, by incorporating the *Densovirinae*-
320 originated VP-ORF3 into its ancestral hamaparvoviral genome. Acquiring distant ORFs, which may increase
321 viral fitness by occupying new niches via extending viral host spectrum, may lead to eventual genome
322 segmentation and a multipartite replication strategy in linear ssDNA viruses to maintain particle stability
323 and optimal genome density.

324 Parvoviral transcription strategies vary significantly even within each subfamily, with vertebrate-
325 infecting PVs and ambisense DVs of the *Densovirinae* relying heavily on alternative splicing [6, 32, 33, 59].
326 Brevihamaparvoviruses, however, display a simpler transcription profile, relying exclusively on leaky
327 scanning [60]. AdSDV, in contrast, harbors a complex transcription strategy, which employs alternative
328 splicing and could potentially express six NS proteins as opposed to the only two brevihamaparvoviral
329 ones. Interestingly, ambisense members of the *Densovirinae* also possess a higher number of NS proteins,
330 sometimes as many as four [4, 6-8, 30, 54]. Ambisense and multipartite genomes both may overcome the
331 limitations of the typical parvoviral temporal monosense promoter expression order by potentially
332 allowing the transcription machinery simultaneous access to the VP and NS expression cassettes. The large

333 number of AdSDV NS proteins hence might be an adaptation to the multipartite replication strategy, which
334 suggests extreme flexibility in parvoviral expression evolution, maximizing the coding capacity of the small
335 genome.

336 The surface morphology and size of the AdSDV capsid, unlike its transcription profile, remained
337 reminiscent of PstDV. This similarity, however, is limited only to the basic fold of each subunit as the
338 AdSDV capsid displays multimer interactions unlike other PVs. The N-termini of invertebrate-infecting PVs
339 VPs are arranged in a domain-swapped conformation, where the β A interacts with the β B of the twofold-
340 neighboring subunit and not with its β B, as in case of the *Parvovirinae* [43-46]. In both instances, however,
341 the capsid lumen surface is composed of the five-stranded ABIDG sheets [35], with the exception of
342 PmMDV, where only BIDG sheets exist [42]. The AdSDV dimer represents yet a third type of lumen
343 architecture, which also relies on five-stranded β -sheets, but of BIDGA conformation instead. Its N-
344 terminus still utilizes the fivefold channel comprised by its twofold-neighboring subunit for N-terminus
345 externalization, similarly to all DVs thus far, regardless of subfamily affiliation [42-46].

346 The DV threefold axis is covered by the β -annulus, which creates an opening on the capsid surface
347 of various size, similarly to the T=3 ssRNA virus family, *Tombusviridae* [61] rather than the *Parvovirinae*,
348 where this area is covered by spikes and protrusions [35]. This opening was previously suggested to be
349 the location of DV genome packaging, because of its size and flexibility in the GmDV capsid [43]. The
350 AdSDV annulus is also lined by large hydrophobic sidechains as well as bulky, positively charged residues,
351 as opposed to the abundant negative charge of the fivefold pore entrance, the canonical location of DNA
352 entry and uncoating [32, 33, 49, 62]. Moreover, the elongated 12-aa-long portion of the C-termini are also
353 located here, in the absence of a packaged genome. This region is not involved in comprising the AdSDV
354 shell, yet forms stacking interactions with the genome to “pin” it to the luminal surface at the twofold
355 axis. These characteristics might point toward a threefold axis-related genome-packaging model, instead
356 of a fivefold-involving one.

357 Little is known about how the genome interacts with the PV lumen. Protoparvoviruses harbor
358 large portions of icosahedral-ordered ssDNA, arranged in π -stacks, while adeno-associated viruses and
359 AdDV display only a couple of ordered nucleotides, enclosed in a small pocket near the threefold axis [39,
360 44, 63-67]. Interactions between the lumen and these nucleotides, however, are scarce and limited to
361 potential hydrogen bonds. The AdSDV LB capsid structure displayed the highest number of ordered
362 nucleotides thus far, which directly interact with the luminal capsid surface. This lumen-genome
363 interaction, which involves four subunits along with two separate regions of the ssDNA genome, provides
364 additional stability to the otherwise weak twofold axis, observed in the absence of a packaged genome.
365 This mechanism may be responsible for the increased thermostability of the LB capsids. Regardless of
366 genome content, the AdSDV capsids display an identical pH-linked thermostability profile to PLA2-
367 including members of the *Parvovirinae*, which suggested a similar endo-lysosomal trafficking pathway,
368 even in the absence of a capsid-bound PLA2 domain [39, 48, 50, 68].

369 The electron density occupying the parvoviral fivefold channel has been consistently associated
370 with N-terminal externalization, following either exposure to low endosomal pH or as the result of
371 genome packaging [48, 63, 69]. The tightly closed channel of the HB capsids only contains traces of
372 electron density, as opposed to the completely filled fivefold channel of the LB capsids. The AdSDV is the
373 first parvovirus, where the “density column” harbors a direct connection to the ordered N-terminus,
374 confirming that N-terminal externalization is an evolutionary conserved mechanism and independent
375 from the presence of a functional PLA2.

376 The genome-packaging LB particles, in contrast with the HB populations, comprised a VP1-to-VP2
377 ratio of 1:1. It is possible that some of the externalized VP N-termini undergo proteolytic cleavage, which
378 would explain the VP incorporation ratio shift. This mechanism, provided it exists, might have evolved to
379 ensure that only matured virions reach the eventual replication site, as several virus families require
380 cellular proprotein convertases to mature [70]. Unlike mature capsids of the LB population, the HB capsids

381 segregated into two populations of buoyant density. As the structure of the HB1 and HB2 capsids only
382 differ in the conformation of the fivefold channel, these populations might differ in stages of particle
383 maturation. Alternatively, the HB2 capsids might chelate ions, which could not be averaged icosahedrally,
384 similarly to the GmDV capsid [43]. Although the ORF1-VLPs lack a packaged genome, their fivefold pore
385 displays the open conformation of the LB particles. This suggests that the conformation changes leading
386 up to opening the fivefold pore might happen even prior to packaging-induced N-terminus externalization,
387 the mechanism of which remains enigmatic.

388 Taken together, AdSDV provides the first evidence of a multipartite replication strategy within
389 the *Parvoviridae*, as the consequence of maintaining a *Brevihamaparvovirus*-like capsid size and
390 morphology yet harnessing the fitness gain from a recombinant ORF from another subfamily. Adaptations
391 imposed by the multipartite replication strategy of AdSDV may manifest in its expression profile, requiring
392 a higher number of NS proteins, which could have led to the incorporation of alternative splicing. AdSDV
393 also demonstrates a unique DNA-packaging mechanism, which might involve the threefold annulus for
394 genome entry, after which the genome is attached to the luminal twofold axis by the VP C-termini. When
395 packaging is complete, the VP N-termini undergo externalization through a possibly already open fivefold
396 channel, which subjects them to proteolytic cleavage at some point of their life cycle. These findings alter
397 the perspective of parvoviral traits previously deemed conservative, including a monopartite genome, a
398 capsid-associated PLA2 domain, parvoviral capsid-DNA interactions and DV lumen architecture.

399

400 **Methods**

401 *Virus Detection, Infection, DNA isolation and Cloning*

402 Deceased common house crickets from the rearing facility were mechanically homogenized in 1x
403 phosphate buffered saline (PBS). The homogenate was cleared up by low-speed centrifugation and PBS-
404 diluted supernatant was applied on a glow-discharged carbon-covered Cu grid (Electron Microscopy

405 Sciences) and stained with 2% uranyl acetate. The dried grids were visualized at an acceleration voltage
406 of 120 kV.

407 From this sample, virus particles were purified by cesium chloride gradient ultracentrifugation to
408 obtain viral DNA for cloning. By chloroform/butanol (1:1 volume) extraction, followed by low-speed
409 centrifugation, a clear supernatant containing viral particles was obtained. Virus stock was concentrated
410 from the supernatant by ultracentrifugation at 40,000 rpm in a type 60Ti rotor for 2 h at 4 °C. Pellets were
411 resuspended in small volume of PBS and was again checked by negative staining EM to verify particle
412 presence. This virus stock was applied to dried cricket feed in a 0.1 mg/ml protein concentration. Using a
413 1 ml insulin syringe and a delicate needle, approx. 5 µl was injected into ~10-mm-long house crickets,
414 targeting the fat bodies inside the abdomen but avoiding the puncture of abdominal organs.

415 Viral DNA was extracted by the High Pure Viral Nucleic Acid Kit (Roche) and eluted in 40 µM (µL)
416 of distilled water. The extracted DNA was subjected to amplification by Phi29 DNA polymerase (New
417 England Biolabs). The isolated DNA was blunt-ended utilizing T4 DNA polymerase and Large Klenow
418 fragment of DNA polymerase I (New England Biolabs) in the presence of 33 µM of each dNTP and cloned
419 into the EcoRV restriction site of a pBluescript KS+ vector and sequenced by primer walking. The complete
420 sequence of both segments was cloned, but without intact termini. To obtain the sequences of the
421 termini, single-stranded adaptors (5'- Phos – ATCCACAAACAATCTCCTCCTC – 3') were linked to the AdSDV
422 genome segments using T4 RNA ligase I (New England Biolabs). Using the reverse adaptor primer paired
423 with another primer, targeting the AdSDV genome in proximity of the termini, PCR amplification was
424 performed. The 25 µL amplification reaction utilized Phusion® high-fidelity polymerase (New England
425 Biolabs), supplemented by 10% dimethyl sulfoxide and 3 µL 2 mM EDTA. The obtained amplicons were
426 blunt-cloned into an EcoRV-digested pBluscript KS+ plasmid and transformed into the Sure Escherichia
427 coli strain (Stratagene), cultured at 30 °C.

428 To construct recombinant bacmid DNA, the VP regions to express were PCR-amplified, using
429 Phusion® high-fidelity polymerase (New England Biolabs). The primers included the sequences of the RE
430 sites to utilize of the pFastBac1 multiple cloning site. We obtained a polyhedrin and P10 knock-out
431 pFastBac Dual vector by subjecting it to restriction digestion at the Xhol and BamHI sites, which flank the
432 two promoters. The obtained pFastBac1 or Dual knock-out clones were verified by Sanger sequencing and
433 the insert was transferred into DH10Bac competent bacteria via transposition. The recombinant
434 baculovirus genome i.e., bacmid, was isolated from the obtained colonies and the presence of the insert
435 was verified by PCR.

436

437 *Cell Lines, Transfection, VLP Expression and Culturing Conditions*

438 Sf9 (ATCC CRL-1711) cultures were maintained in SF900 II medium (Gibco) in a serum-free system
439 at 28 °C. Cellfectin II Reagent (Invitrogen) was used for DNA transfection at a cell density of 8×10^5 per
440 well. The culturing medium was aspired and replaced by seeding medium of Grace's complete insect
441 medium supplemented with 5% FBS (Gibco) and Grace's unsupplemented insect medium, mixed at a
442 ratio of 1:6, respectively. After adding the transfection reagent–DNA mixture to the wells, cells were
443 incubated for 5 h. The aspirated transfection medium was replaced with SF900 II medium. Cells were
444 checked daily for signs of cytopathic effects (CPE) and the whole culture was collected when 70% of the
445 cells detached from the dish or showed granulation. This was followed by three cycles of freeze–thaws on
446 dry ice and 200 µL of this passage 1 (P1) stock was transferred to 25 mL of fresh Sf9 suspended cell culture
447 in polycarbonate Erlenmeyer flasks (Corning) at the density of 2.5×10^6 cells/mL, to create the P2 stock.

448

449 *Transcription Studies*

450 Purified AdSDV-injected house crickets were collected three days post inoculation and total RNA
451 was extracted using the Direct-zol RNA MiniPrep Kit (Zymo Research), where the denaturation step was

452 executed by adding TRIzol Reagent (Thermo Fisher Scientific). RNA was treated by digestion with the
453 TURBO DNA-free Kit (Ambion) to get rid of residual DNA contamination, as well as subjected to a control
454 PCR for the remaining DNA fragments. Reverse transcription was performed only on entirely DNA-
455 negative preparations using the SuperScript IV or the SuperScript III enzymes (Thermo Fisher Scientific),
456 supplemented with random nonamers (Sigma-Aldrich). To avoid false detection of splicing, the isolated
457 RNA was subjected to dephosphorylation by adding Antarctic phosphatase (New England Biolabs) and
458 incubated for 30 min at 37 °C. Primers were designed at the following nt positions of the AdSDV NS
459 segment: 594 (forward), 750 (reverse), 941 (reverse), 1269 (forward), 1358 (reverse), 2202 (forward and
460 reverse), 2313 (forward), 2538 (reverse). Primers targeting mRNA of the VP segment were positioned at
461 the following nt locations: 614 (reverse), 560 (forward), 1249 (forward), 1614 (forward and reverse), 1800
462 (forward and reverse), 1971 (reverse), 2611 (forward and reverse).

463 Anchored oligo(dT) primers were used with the 2202 and 2313 forward primers for the NS
464 segment, and the 1249 and 2611 forward primers in case of the VP segment for 3' RACE (rapid
465 amplification of cDNA ends). To perform 5' RACE to map transcription start sites, we designed adaptors
466 with the sequence of 5' – Phos-GCUGAUGGCGAUGAACACACUGCGUUUGCUGGCCUUUGAUGAAA – 3'. RNA
467 was subjected to dephosphorylation by alkaline calf intestinal phosphatase (New England Biolabs),
468 followed by phenol-chloroform extraction of the dephosphorylated RNA. We utilized tobacco acid
469 pyrophosphatase (Ambion) to remove 5' RNA caps. After the ligation of adaptors using T4 RNA ligase 1
470 (New England Biolabs), reverse transcription was executed. PCR was performed with the re-adaptor
471 primers together with oligos 750 and 941 reverse in case of the NS segment and 614, 1614 and 1971
472 reverse for the VP segment. To find out which polyadenylation signal belongs to which promoter, the
473 same re-adaptor primer was used with 20-nt-long oligos, of which 15 nucleotides corresponded with
474 those located directly upstream the polyA tail, also including a 5 nt-long polyT sequence. All PCRs were
475 performed using Phusion Hot Start Flex DNA Polymerase (New England Biolabs) in a 25 µL final reaction

476 volume, including 2 μ L of purified cDNA target, 0.5 μ L of both primers in 50 pmol concentration, 0.5 μ L
477 dNTP mix with 8 μ mol of each nucleotide, 0.75 μ L of 50 mM MgCl₂ solution, and 0.25 μ L of enzyme. PCR
478 reactions were executed under a program of 5 min denaturation at 95°C followed by 35 cycles of 30 s
479 denaturation at 95°C, 30 s annealing at 48°C, and 1 or 2 min of elongation at 72°C. The final elongation
480 step was 8 min long at 72°C. In case of the 5'RACE reactions, 0.5 μ L of enzyme was used and the number
481 of cycles was reduced to 25. For the 3'RACE, the reaction was supplemented with 1 μ L of 50 mM MgCl₂
482 and the annealing step was left out.

483 Total mRNA was also purified from Sf9 cell cultures transfected by the AdSDV-Bac-VP-ORF1,
484 AdSDV-Bac-VP-ORF3 and AdSDV-VP-P42 bacmid constructs, respectively. Purified mRNA was reverse-
485 transcribed and subjected to PCR amplification, so that mRNA expression of these constructs could be
486 verified, even in the absence of VLPs.

487

488 *Protein Expression and Purification of VLPs and Infectious Virus*

489 The AdSDV-Bac-VP-ORF1 P2 baculovirus stocks were incubated for at least five days and
490 monitored for CPE every day. When at least 70% of the cells showed signs of CPE, the culture was
491 collected, centrifuged at 3,000 \times g, and the pelleted cells disrupted by three cycles of freeze–thaws on dry
492 ice. This lysed cell pellet was then resuspended in 1 mL of 1 \times TNTM pH8 (50 mM Tris pH8, 100 mM NaCl,
493 0.2% Triton X-100, 2 mM MgCl₂) and centrifuged again. Supernatant was mixed back with the cell culture
494 supernatant and was subjected to treatment with 250 units of Benzonase Nuclease (Sigma-Aldrich) per
495 every 10 mL. The liquid was mixed with 1 \times TNET pH8 (50 mM Tris pH8, 100 mM NaCl, 0.2% Triton X-100,
496 1 mM EDTA) in a 1:1 ratio and concentrated on a cushion of 20% sucrose in TNET, using a type 60 Ti rotor
497 for 3 h at 4 °C at 45,000 rpm on a Beckman Coulter S class ultracentrifuge. The pellet was resuspended in
498 1 mL of 1 \times TNTM pH8 and after overnight incubation purified on a 5 to 40% sucrose step gradient for 3 h
499 at 4°C at 35,000 rpm on the same instrument in an SW 41 Ti swinging bucket preparative ultracentrifuge

500 rotor. The visible single band was then collected by needle puncture and a 10 mL volume syringe. For
501 purifying infectious virus, AdSDV-inoculated crickets were mechanically homogenized in 1x PBS then
502 subjected to the same freeze-thaw cycles and lysate clearing steps. Following Benzonase treatment the
503 cleared lysate was subjected to the very same purification steps, detailed above. To establish the buoyant
504 density of the AdSDV capsids, the 1xTNTM-suspended pellet of the sucrose cushion step was mixed into
505 a 1xTNTM solution, in which CsCl was previously dissolved at a concentration of 419.5 mg/ml. The CsCl
506 suspension was then centrifuged for 24 h in an SW 41 Ti swinging bucket preparative ultracentrifuge rotor
507 at 10°C at 35000 rpm. The buoyant density of the obtained fractions was established using a
508 refractometer. The aspirated fractions were dialyzed into 1x PBS at pH 7.4 to remove the sucrose or the
509 cesium chloride.

510

511 *Genome Particle Quantification*

512 Quantification of the VP and NS segments was carried out by real-time PCR amplification (qPCR), using a
513 Bio-Rad CFX96 instrument. A 300-bp-long target sequence was amplified of both segments (nt positions
514 885 to 1188 for NS and 738 to 1035 for VP). For dsDNA quantification the Bio-Rad SsoAdvanced Universal
515 SYBR Green Supermix was used, with an amplification program of 5-min denaturation at 95 °C followed
516 by 45 cycles of 30 s denaturation at 95°C, 15 s annealing at 55°C, and 30 s of elongation at 72°C. Results
517 were analyzed by the CFX Maestro Software (Bio-Rad).

518

519 *Differential Scanning Fluorometry (DSF) and PLA2 Assay*

520 Capsid populations at 0.1 mg/mL concentration were dialyzed into 1x universal buffer (20 mM
521 Hepes, 20 mM MES, 20 mM sodium acetate, 0.15 M NaCl, 3.7 mM CaCl₂) at pHs 7.4, 6.0, 5.5 and 4.0. 22.5
522 μL capsid suspension was supplemented with 2.5 μL 1% SYPRO orange dye (Invitrogen) and subjected to
523 DSF in a Bio-Rad CFX96 qPCR instrument. From 30°C to 99°C, the specimen was screened at a ramp rate

524 of 1°C/min in steps of 0.5°C. Fluorescence was measured as the function of temperature, plotted as -
525 dRFU/dT vs. temperature, which was multiplied by -1 and normalized to the highest RFU value. Each run
526 was performed in triplicates.

527 For the PLA2 assay, the same capsid concentration was used in 1x universal buffer, using VLPs of
528 parvovirus B19 as the positive control, a generous gift from Renuk Lakshmanan (University of Florida). As
529 heating the AdDV capsid to 65°C drastically increases PLA2 activity [44], each AdSDV capsid population
530 was subjected to this treatment for 10 min. We performed the assay using Cayman's PLA2 Colorimetric
531 Assay Kit. The assay was run in triplicates at 28°C for 1 hour and the absorbance was measured at 414 nm.

532

533 *Protein Identification by Nano-LC/MS/MS*

534 Excised gel bands were digested with sequencing grade trypsin (Promega) and were dehydrated
535 with 1:1 v/v acetonitrile: 50 mM ammonium bicarbonate, followed by rehydration with dithiothreitol
536 (DTT) solution (25 mM in 100 mM ammonium bicarbonate) and the addition of 55 mM iodoacetamide in
537 100 mM ammonium bicarbonate solution. The protease was driven into the gel pieces by rehydrating
538 them in 12 ng/mL trypsin in 0.01% ProteaseMAX Surfactant for 5 minutes. The bands were then overlaid
539 with 40 µL of 0.01% ProteaseMAX surfactant:50 mM ammonium bicarbonate and gently mixed on a
540 shaker for 1 hour. The digestion was stopped with addition of 0.5% TFA.

541 Nano-LC/MS/MS was performed on a Thermo Scientific Q Exactive HF Orbitrap mass
542 spectrometer equipped with EASY Spray nanospray source (Thermo Scientific) operated in positive ion
543 mode. The LC system was an UltiMate™ 3000 RSLCnano system from Thermo Scientific. The mobile phase
544 A was water containing 0.1% formic acid and the mobile phase B was acetonitrile with 0.1 % formic acid.
545 The mobile phase A for the loading pump was water containing 0.1 % trifluoracetic acid. Five microliters
546 of the sample was injected on to a PharmaFluidics µPAC C18 trapping column at 10 µL/ml flow rate. This
547 was held for 3 minutes and washed with 1% B to desalt and concentrate the peptides. PharmaFluidics 50

548 cm μ PAC was used for chromatographic separations with the column temperature at 40°C. A flow rate of
549 750 nl/min was used for the first 15 minutes and then the flow was reduced to 300 nl/min. Peptides were
550 eluted directly off the column into the Q Exactive system using a gradient of 1 to 20% B over 100 minutes
551 and then to 45% B in 20 minutes for a total run time of 150 minutes. The scan sequence of the mass
552 spectrometer was based on the original TopTen™ method; the analysis was programmed for a full scan
553 recorded between 375–1575 Da at 60,000 resolution, and an MS/MS scan at resolution 15,000 to
554 generate product ion spectra to determine amino acid sequence in consecutive instrument scans of the
555 fifteen most abundant peaks in the spectrum. Singly charged ions were excluded from MS2. A siloxane
556 background peak at 445.12003 was used as the internal lock mass. All MS/MS samples were analyzed
557 using Proteome Discoverer 2.4 (Thermo Fisher Scientific).

558

559 *In Silico Analyses*

560 The complete sequence of both AdSDV segments was assembled using Staden package v4.11.2
561 [71]. The assembled genome was annotated, as well as the transcripts assembled and investigated in
562 Artemis Genome Browser by the Sanger Institute [72]. To determine sequential similarity, the Blast
563 algorithms were applied [73]. To investigate conserved domains with known homologues in the derived
564 aa sequences the SMART web application was used [74]. Structural similarity of the resolved capsid
565 structures with those available in the RCSB Protein Data Bank (PDB) was investigated using the DALI server
566 [75].

567 For phylogeny inference, alignments, incorporating the outputs of pairwise, multiple, and structural
568 aligners, were constructed using the Expresso algorithm of T-Coffee, ran in PDB mode [76]. The
569 constructed alignment was edited using Unipro Ugene [77]. Model selection was executed by ProtTest
570 v2.4, suggesting the LG + I + G + F substitution model based on both the Bayesian and Akaike information
571 criteria [78]. Bayesian inference was executed by the BEAST v1.10.4 package, using a log-normal relaxed

572 clock with a Yule speciation prior, throughout 50,000,000 generations [79]. Convergence diagnostics were
573 carried out using Tracer v1.7.1 of the same package, which indicated the Markov-chain Monte Carlo runs
574 to have converged. Phylogenograms were edited and displayed in the FigTree 1.4.1 program of the Beast
575 package.

576

577 *Structural Studies*

578 Three-microliter aliquots of all AdSDV capsid populations (~ 1 mg/mL) were applied to glow-discharged
579 Quantifoil holey carbon grids with a thin layer of carbon (Quantifoil Micro Tools GmbH) and vitrified
580 using a Vitrobot Mark IV (FEI) at 95% humidity and 4°C. The quality and suitability of the grids for cryo-
581 EM data collection were determined by screening with a 16-megapixel charge-coupled device camera
582 (Gatan) in a Tecnai G2 F20-TWIN transmission electron microscope operated at 200 kV in low-dose
583 mode (~ 20 e $^-$ / \AA^2) prior to data collection. For collecting the low-resolution HB1 and 2 datasets, the
584 same microscope was used at 50 frames per 10 s with a K2 Direct Electron Detector (DED) at the
585 University of Florida Interdisciplinary Center for Biotechnology Research electron microscopy core
586 (RRID:SCR_019146).

587 High-resolution data collection was carried out at two locations: the Florida State University (FSU) for the
588 ORF1-VLPs, HB1 and HB2 populations, and the University of California, Los Angeles (UCLA) for the HB and
589 LB capsids. In both cases a Titan Krios electron microscope (FEI) was used, operating at 300 kV, equipped
590 with a Gatan K3 DED at FSU and Gatan K2 DED at UCLA. At UCLA, the scope also contained a Gatan
591 postcolumn imaging filter and a free-path slit width of 20 eV. Movie frames were recorded using the
592 Leginon semiautomated applications at both sites [80]. At FSU, the frame rate was 50 per 10 s with ~ 60
593 e $^-$ / \AA^2 electron dosage. At UCLA, images were collected at 50 frames per 10 s with a ~ 75 e $^-$ / \AA^2 electron
594 dosage. All movie frames were aligned using the MotionCor2 application with dose weighting [81].

595 Single-particle image reconstruction was carried out by cisTEM v1.0. [82]. Micrograph quality was
596 assessed by CTF estimation using a box size of 512. A subset of micrographs with the best CTF fit values
597 was included in further processing. Boxing particles was performed by the particle selection subroutine,
598 at a threshold value of 2.0 to 4.0. Boxed particles were curated by 2D classification, imposing icosahedral
599 symmetry at 50 classes. Particle classes, which failed to display a clear 2D-average were eliminated from
600 the reconstruction. *Ab initio* model generation was carried out in 40 iterations under icosahedral
601 symmetry constraints. The obtained startup volume was subjected to automatic refinement with imposed
602 icosahedral symmetry and underwent iterations until reaching a stable resolution. The final maps were
603 achieved by sharpening at a post cutoff B-factor of 10 to 20. The resolution of the obtained maps was
604 calculated based on a Fourier shell correlation (FSC) of 0.143. Each map was resized to the voxel size
605 determined in Chimera (by maximizing correlation coefficient) using the e2proc3D.py subroutine in
606 EMAN2 and then converted to the CCP4 format using the program MAPMAN [83]. The atomic model of
607 the ORF1-VLPs map was built directly into the density, without an initial docked model, using Coot [84].
608 This atomic model was used to build the density of the other four reconstructions. Lastly, each model was
609 refined against the map utilizing the rigid body, real space, and B-factor refinement subroutines in Phenix
610 [85].

611

612 **Acknowledgements**

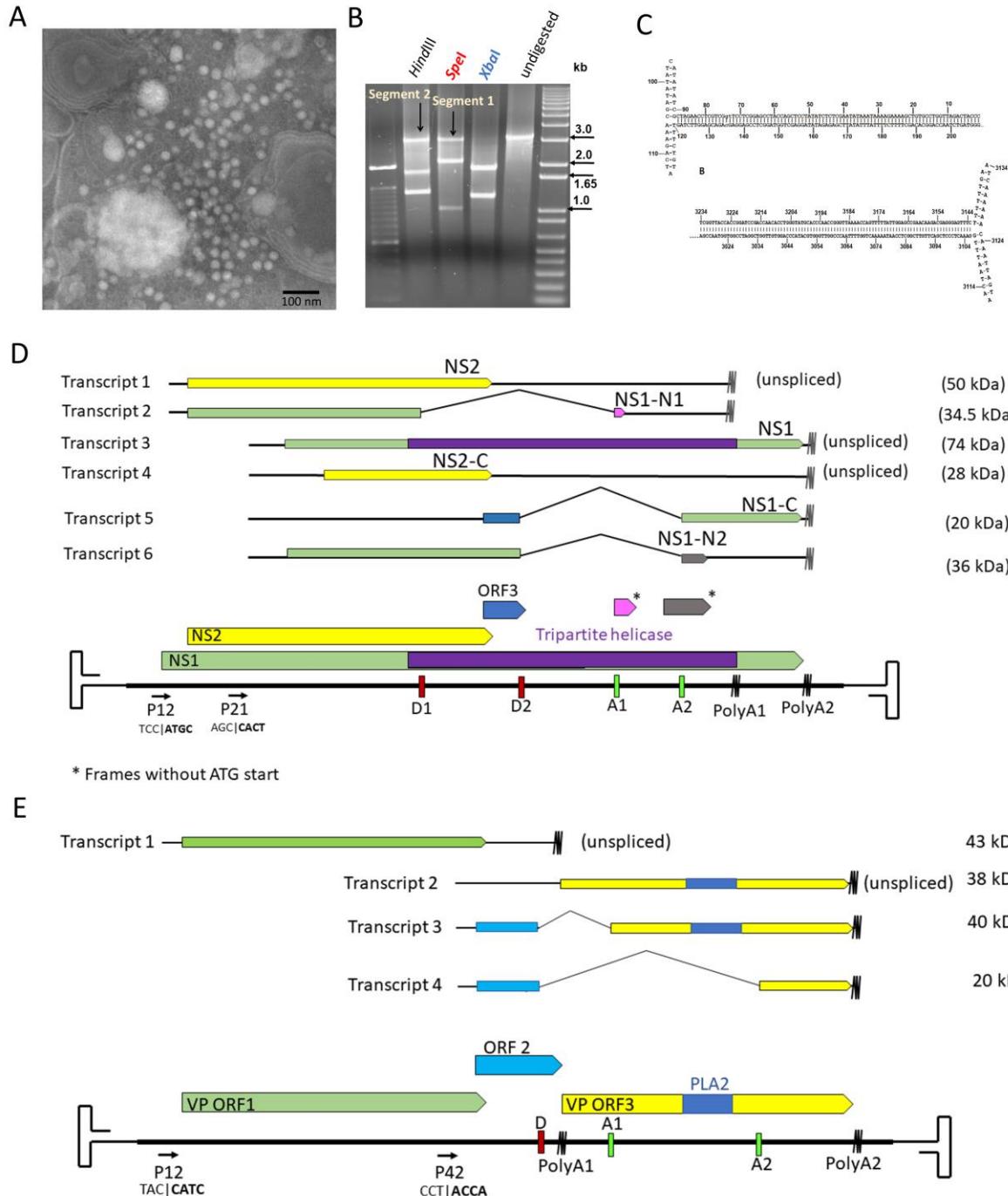
613 The authors would like to thank the late Dr. Mavis Agbandje-McKenna for her pioneering studies of
614 parvovirus capsid structures. The study was funded by the Natural Sciences and Engineering Research
615 Council of Canada Discovery grant (to P.T.) and an NIH grant R01 NIH GM082946 (to RM). The authors
616 thank Micheline Letarte at INRS IAF microscopy and the UF-ICBR Electron microscopy core for access to
617 electron microscopes utilized for negative stain electron microscopy and cryo-electron micrograph
618 screening. The Spirit and TF20 cryo-electron microscopes were provided by the UF College Of Medicine

619 (COM) and Division of Sponsored Programs (DSP). We thank Dr. Hong Zhou (University of California Los
620 Angeles) and the NIH “West/Midwest Consortium for High-Resolution Cryo Electron Microscopy” project
621 for access to the Electron Imaging Center for Nanomachines’s Titan Krios and K2 DED utilized for high-
622 resolution data collection. Data collection at Florida State University was made possible by NIH grants S10
623 RR025080-01 (PI Taylor), and U24 GM116788 The Southeastern Consortium for Microscopy of
624 MacroMolecular Machines (PI Taylor). The authors also thank Kari Basso at the University of Florida Mass
625 Spectrometry Research and Education Center for the mass spectrometry work, funded from NIH S10
626 OD021758-01A1. We thank for the insect rearing help provided by Martin Holm.

627

628 **Author contributions**

629 Conceived & designed by: PT, JJP, RM

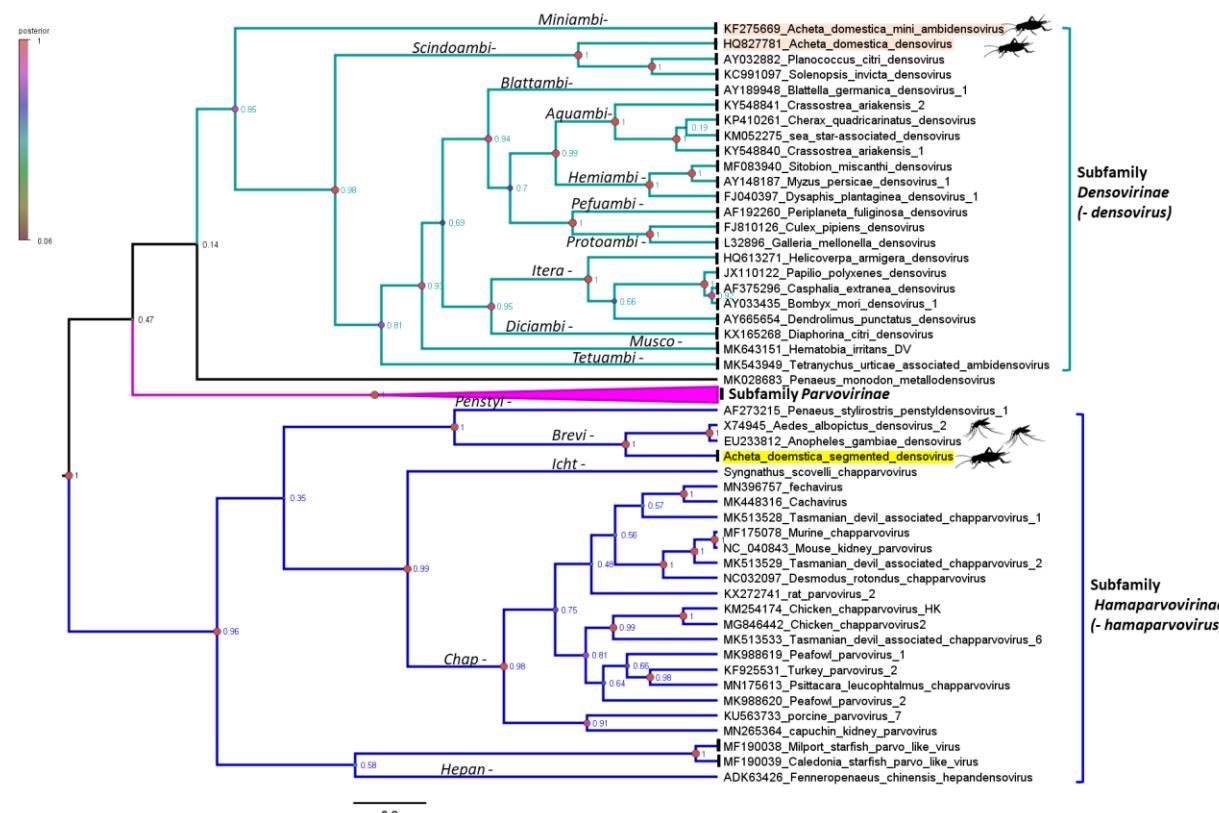

630 Data was collected by: JJP, HTP, PC, EWS

631 Analysis was performed by: JJP, HTP, PT, RM

632 Manuscript was written by: JJP, RM, PT

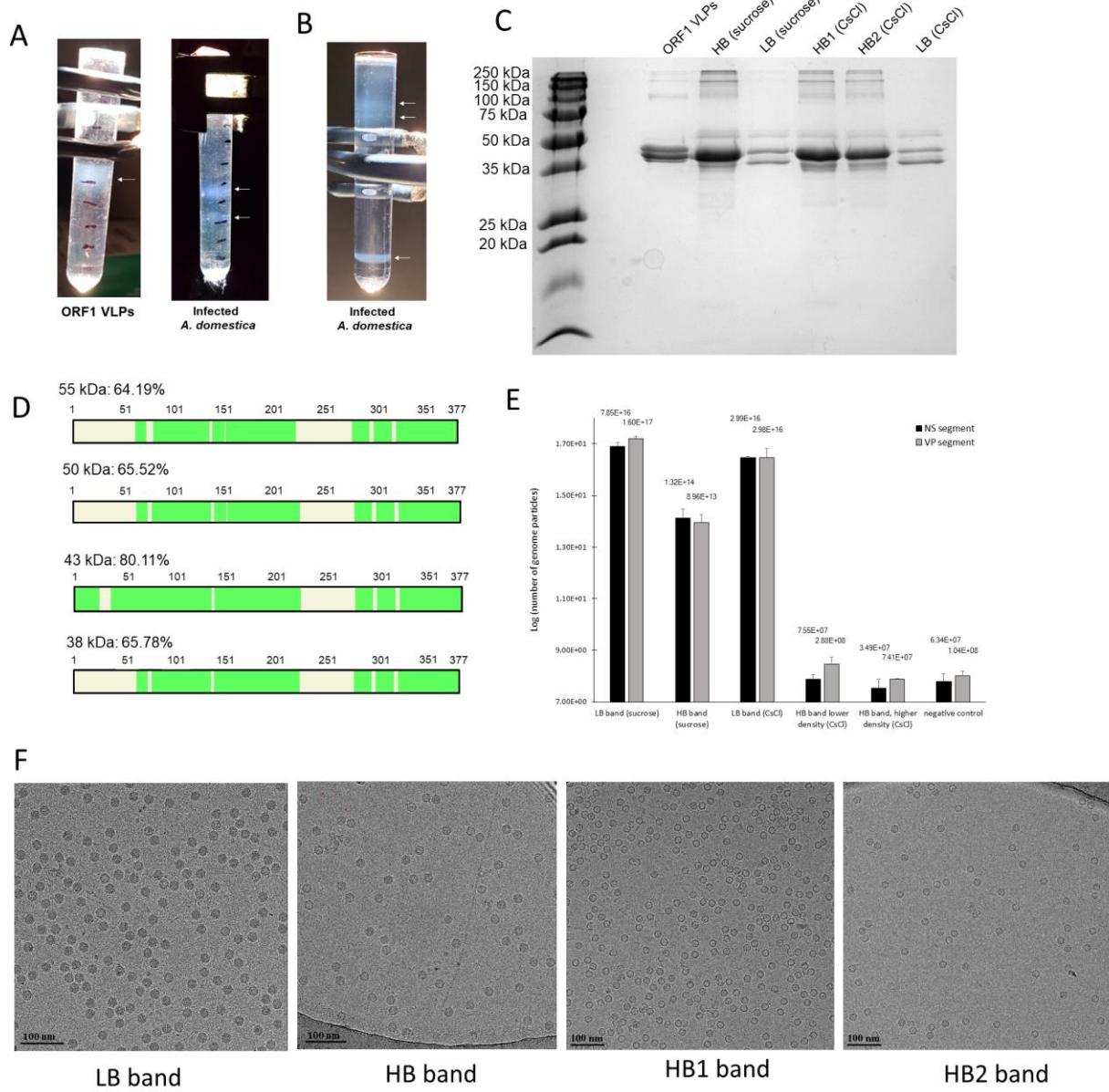
633

634 **Figure Captions**



635

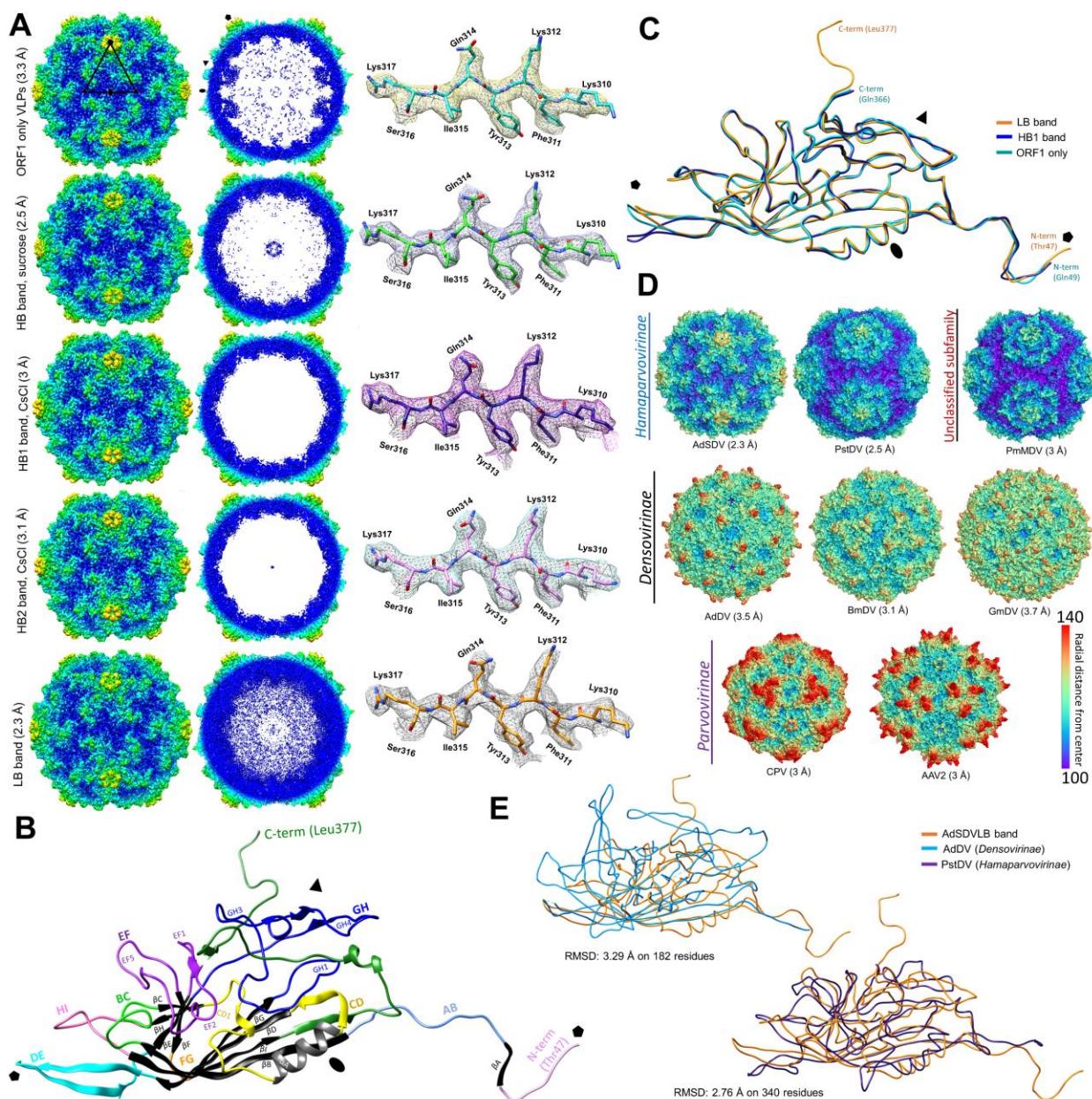
636 **Figure 1** Discovery, genome organization and transcription strategy of *Acheta domesticus* segmented
 637 densovirus (AdSDV). (A) Icosahedral virus particles visualized in the homogenized fat bodies of infected
 638 common house crickets (*Acheta domesticus*) by negative staining transmission electron microscopy. (B)


639 Ethidium bromide-stained agarose gel image displaying the results of digestion by restriction
640 endonucleases cutting only the NS-, VP segment, or both. (C) DNA secondary structure predictions of the
641 T-shaped genome termini, flanking both the NS and VP segment. (D) Genome organization and
642 transcription strategy of the NS segment. Open reading frames (ORFs) are marked by the colored arrows
643 and boxes, mRNA is stylized by the black lines. The wavy lines mark polyadenylation signals. Promoters
644 are labeled as “P,” donor- and acceptor sites as “D” and “A” respectively. Below the promoters the
645 sequence of the transcription start site is shown, with the actual mRNA 5’ end presented in bold behind
646 the vertical line. The estimated molecular weights of the protein products to be expressed by each
647 transcript are shown to the right. (E) Genome organization and transcription strategy of the VP segment,
648 using the same display and labeling scheme as in panel D.

649

650

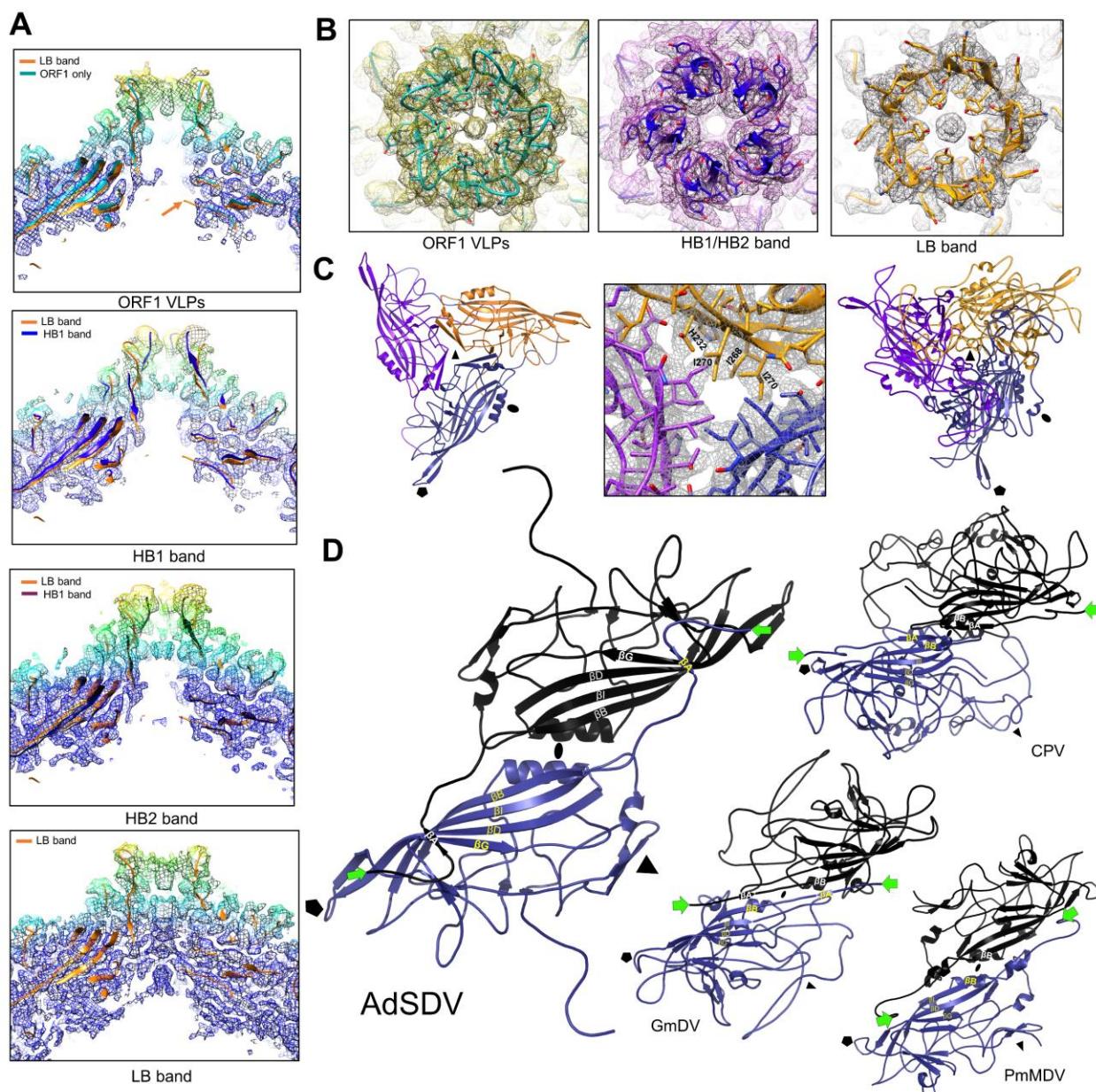
651 **Figure 2** Bayesian phylogeny inference based on a 162-aa-long region of the NS1 protein, corresponding
652 with the superfamily 3 helicase domain, the only protein sequence conserved throughout the *Parvoviridae*
653 family. Each sequence represents one species, while the *Parvovirinae* subfamily is collapsed for
654 visualization. Genera names are shown on the branches and the posterior probability values to evaluate
655 the reliability of the topology are shown as node labels. A color coding of the node shapes is also displayed,
656 according to the posterior probability values. House cricket infecting densoviruses are highlighted in
657 apricot and labeled with the silhouette of the animal. *Acheta domesticus* segmented densovirus clusters
658 within the mosquito-infecting genus *Brevihamaparvovirus* and is highlighted in yellow.
659



660

661 **Figure 3** Purification and protein analyses of the *Acheta domesticus* segmented densovirus (AdSDV)
 662 capsids. (A) Sucrose step gradients visualized under fluorescent light, following ultracentrifugation.
 663 Fractions occupied by purified AdSDV virus-like particles (left) or capsids (right) are marked by the small
 664 white arrows. (B) Purification of AdSDV capsids directly from the deceased house crickets by a continuous
 665 CsCl gradient, which was also used to assess the buoyant density of each capsid population. The small
 666 arrows mark the AdSDV capsid fractions. (C) SDS-PAGE in 15% polyacrylamide of the obtained sucrose-

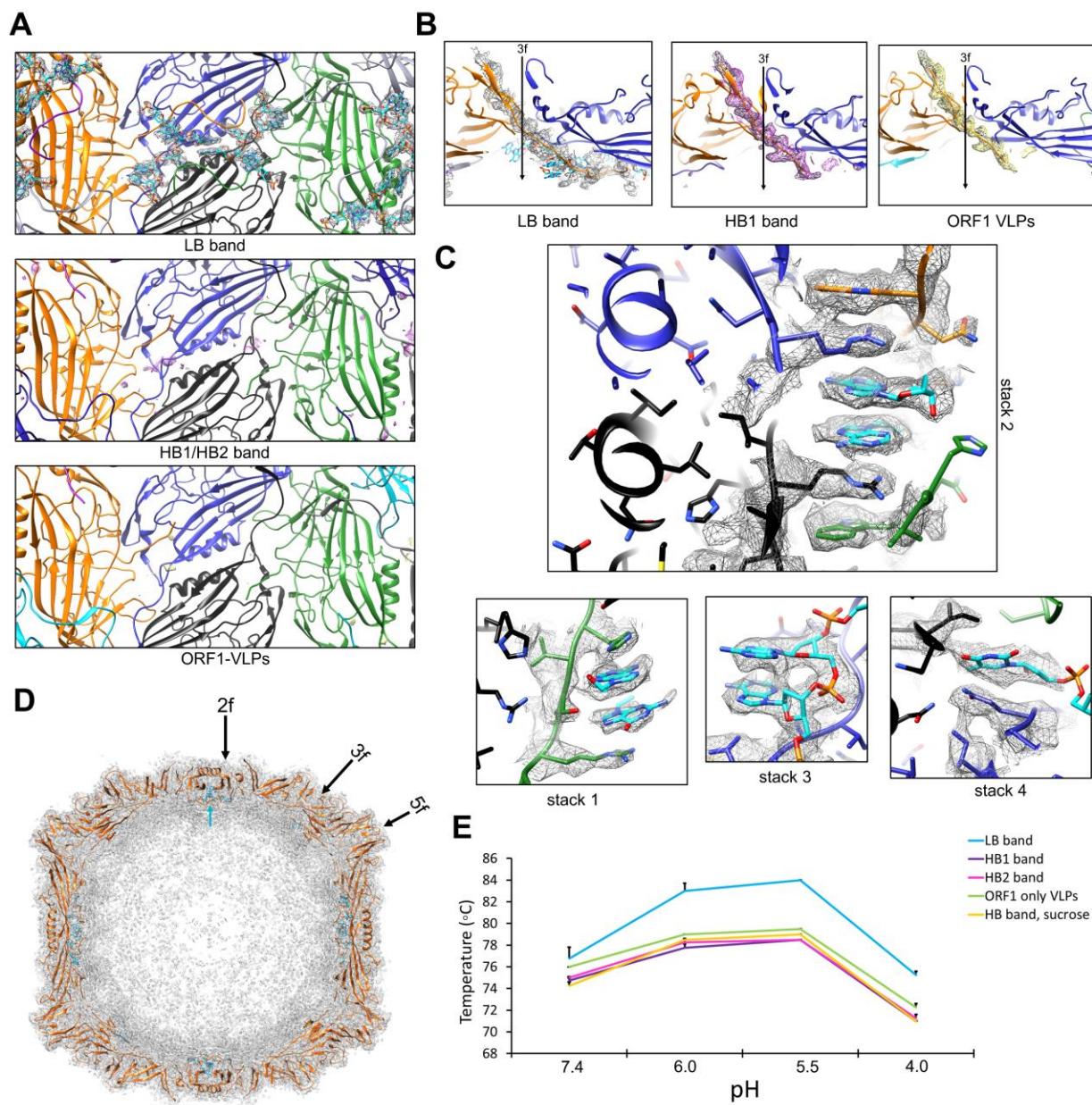
667 and CsCl gradient-purified fractions. HB stands for “high-buoyancy” capsids, LB marks “low-buoyancy” (re-
668 visit?) capsids, ORF1 VLPs were expressed recombinantly from the VP-ORF1 structural protein gene. (D)
669 Coverage map of the protein sequencing reads, obtained by Nano-liquid chromatography tandem mass
670 spectrometry (Nano-LC/MS/MS) and previously excised from the polyacrylamide gel in panel C. Regions
671 that were represented among the MS reads are colored green. (E) Quantification of AdSDV viral DNA in
672 each purified capsid fraction, using real time PCR (qPCR). The histogram shows the natural logarithm of
673 the actual quantification results, with the exact unaltered values shown on top of each column. (F)
674 Electron micrographs of each AdSDV capsid fraction.


675

676
677 **Figure 4** CryoEM single particle structural studies of the *Acheta domesticus* segmented densovirus
678 (AdSDV) capsids and VP-ORF1 virus-like particles (VLPs). (A) surface (left) and cross section (right) views
679 of the obtained AdSDV capsid and VP-ORF1 VLPs electron density maps, rendered at $\sigma=1$, with the
680 example density and atomic model shown next to each map at $\sigma=4$. The maps are colored radially,
681 orientated in the I1 icosahedral convention (twofold axis in z plane). The five- three- and twofold
682 symmetry axes are marked by a pentagon, triangle and ellipse, respectively. (B) Ribbon diagram showing

683 the atomic model of a single subunit from the AdSDV low-buoyancy (LB) capsid. Structurally conserved
684 elements are shown in black and grey, the loops connecting these are highlighted in their respective
685 colors. Symmetry axes are labeled the same as in panel A, to indicate orientation. (C) Superimposition of
686 the subunit atomic model ribbon diagrams, obtained from the genome-filled infectious capsid population
687 (LB capsids), from the empty capsid fraction with the highest-buoyancy (HB1) and the VP-ORF1,
688 recombinantly expressed VLPs. (D) Capsid surface comparison of the AdSDV LB capsid with those of other
689 members of the *Parvoviridae* family i.e., invertebrate-infecting *Penaeus stylirostris* densovirus (PstDV),
690 *Penaeus monodon* metallogenodenvirus (PmMDV), *Acheta domesticus* densovirus (AdDV), *Bombyx mori*
691 densovirus (BmDV) and *Galleria mellonella* densovirus (GmDV) as well as vertebrate-infecting canine
692 parvovirus (CPV) and adeno-associated virus 2 (AAV2). Each surface model map is orientated the same
693 way as in panel A and is radially-colored. (E) Ribbon diagram superimposition of the AdSDV LB capsid
694 subunit atomic model with those of another house cricket infecting densovirus from the *Densovirinae*
695 subfamily (AdDV) as well as with PstDV, its closest relative for which the high-resolution capsid structure
696 has been resolved, of subfamily *Hamaparvovirinae*.

697



698

699 **Figure 5** Multimer interactions of the *Acheta domesticus* segmented densovirus (AdSDV) capsid. (A) Cross-
700 section view of the fivefold channel in case of the VP-ORF1 virus-like particles (VLPs), both high-buoyancy
701 (HB) capsid populations and the low-buoyancy (LB) genome-filled particles. The electron density is
702 radially-colored from the map center and is shown as a mesh at $\sigma(\sigma?)=2$. Each map is fitted with its
703 corresponding atomic model as ribbon diagrams as well as with the ribbon diagram of the LB capsid
704 structure. The orange arrow indicates the LB capsid N-terminus. (B) Top-down view of the opening of the

705 fivefold channel, the fivefold pore, with the electron density rendered at $\sigma=2$. The atomic model fitted
706 shows the ribbon diagram as well as the sidechains of the corresponding residues. Note the drastic
707 conformation change of the five DE loops in opening up the channel from the closed conformation of the
708 empty HB capsids vs. the open conformation of the genome-filled LB capsids. Note the difference between
709 the hydrophobic plug covering the channel in case of the VP-ORF1 VLPs, as opposed to the actual N-
710 terminus externalization observed in the LB capsids. (C) Ribbon diagrams of the AdSDV LB capsid trimer
711 (left panel), displaying the opening of the β -annulus, typical of densoviruses. The middle panel shows the
712 hydrophobic and positively-charged sidechains occupying the annulus, cf this threefold axis architecture
713 with those of vertebrate-infecting parvoviruses, represented by canine parvovirus, in the right panel. (D)
714 Ribbon diagrams of the AdSDV dimer, shown from capsid lumen, in comparison with the three other types
715 of dimer assembly strategy, described in the *Parvoviridae* thus far. Symmetry axes are labeled by a
716 pentagon (fivefold axis), a triangle (threefold axis) and an ellipse (twofold axis). The N-terminus of each
717 subunit is marked by the green arrow. Note the differences between the vertebrate-infecting
718 parvoviruses, represented here by canine parvovirus (CPV) in comparison to the domain swapping
719 conformation of the invertebrate-infecting members of the family, represented by *Galleria mellonella*
720 densovirus (GmDV) and *Penaeus monodon* metalloedensovirus (PmMDV).

721

722

723 **Figure 6** Interactions between the Acheta domesticus densovirus (AdSDV) ssDNA genome and the capsid
724 lumen. (A) Luminal view of the AdSDV twofold axis, with the representation of electron density zoned to
725 the six ordered nucleic acid bases ($\sigma=3$), only present in case of the genome-filled low buoyancy (LB)
726 capsids. The ribbon diagram representation of the chain A atomic model is shown in blue and its twofold-
727 neighboring subunit in black. The fivefold-neighboring subunit of chain A is presented in green, while the
728 fivefold-neighbor of its twofold neighboring subunit in yellow. The atomic model of the nucleic acid is

729 shown in cyan. (B) Side cross section view of the β -annulus, occupying the AdSDV threefold axis. The actual
730 threefold axis is marked by an arrow. Electron density is shown zoned to the final C-terminally ordered
731 residues, indicating that the ordered portion of the LB capsid C-terminus stretches far and bends
732 underneath the twofold symmetry axis. In the absence of a packaged genome, the ordered region ends
733 directly underneath the threefold axis. (C) The AdSDV genome interacts with the luminal surface via π -
734 stacking interactions, underneath the twofold symmetry axis. Note how these stacks are the result of
735 interactions between two ssDNA regions and four subunits, colored the same as in panel A. (D) Cross
736 section of the AdSDV LB capsid map, with density shown as a mesh at $\sigma=1.5$. The closer the luminal
737 genome density is located to the twofold symmetry axis, the more ordered it appears. The cyan arrow
738 points to the location of the ordered nucleotides under the twofold symmetry axis. (E) Differential
739 scanning fluorometry melting temperature profile of the AdSDV capsids and VLPs at the four pHs
740 parvoviruses may encounter during endo-lysosomal trafficking. Note the difference in thermostability
741 between the empty particles and VLPs (HB1, HB2, HB, ORF1 only VLPs) vs. the genome-containing LB
742 capsids.

743

744 **References**

- 745 1. Cotmore, S.F., et al., *The family Parvoviridae*. Arch Virol, 2014. **159**(5): p. 1239-47.
- 746 2. Pénzes, J.J., et al., *Reorganizing the family Parvoviridae: proposal for a revised taxonomy*
747 *independent from the canonical approach based on host affiliation*. Archives of Virology, 2020.
748 In Press.
- 749 3. Guo, H., J. Zhang, and Y. Hu, *Complete sequence and organization of Periplaneta fuliginosa*
750 *densovirus genome*. Acta Virol, 2000. **44**(6): p. 315-22.
- 751 4. Thao, M.L., et al., *Genetic characterization of a putative Densovirus from the mealybug*
752 *Planococcus citri*. Curr Microbiol, 2001. **43**(6): p. 457-8.

753 5. Fediere, G., et al., *Genome organization of Casphalia extranea densovirus, a new iteravirus.*
754 *Virology*, 2002. **292**(2): p. 299-308.

755 6. Baquerizo-Audiot, E., et al., *Structure and expression strategy of the genome of Culex pipiens*
756 *densovirus, a mosquito densovirus with an ambisense organization.* *J Virol*, 2009. **83**(13): p.
757 6863-73.

758 7. Kapelinskaya, T.V., et al., *Expression strategy of densonucleosis virus from the German*
759 *cockroach, Blattella germanica.* *J Virol*, 2011. **85**(22): p. 11855-70.

760 8. Liu, K., et al., *The Acheta domesticus densovirus, isolated from the European house cricket, has*
761 *evolved an expression strategy unique among parvoviruses.* *J Virol*, 2011. **85**(19): p. 10069-78.

762 9. Gudenkauf, B.M., et al., *Discovery of urchin-associated densoviruses (family Parvoviridae) in*
763 *coastal waters of the Big Island, Hawaii.* *J Gen Virol*, 2014. **95**(Pt 3): p. 652-8.

764 10. Bucci, C., et al., *Sea Star Wasting Disease in Asterias forbesi along the Atlantic Coast of North*
765 *America.* *PLoS One*, 2017. **12**(12): p. e0188523.

766 11. Kang, Y.J., et al., *Densoviruses in oyster Crassostrea ariakensis.* *Arch Virol*, 2017. **162**(7): p. 2153-
767 2157.

768 12. Francois, S., et al., *A New Prevalent Densovirus Discovered in Acari. Insight from Metagenomics*
769 *in Viral Communities Associated with Two-Spotted Mite (Tetranychus urticae) Populations.*
770 *Viruses*, 2019. **11**(3).

771 13. Ribeiro, J.M., et al., *An insight into the sialome, mialome and virome of the horn fly, Haematobia*
772 *irritans.* *BMC Genomics*, 2019. **20**(1): p. 616.

773 14. Richard, J.C., et al., *Mass mortality in freshwater mussels (Actinonaias pectorosa) in the Clinch*
774 *River, USA, linked to a novel densovirus.* *Sci Rep*, 2020. **10**(1): p. 14498.

775 15. Jackson, E.W., et al., *A Highly Prevalent and Pervasive Densovirus Discovered among Sea Stars*
776 *from the North American Atlantic Coast.* *Appl Environ Microbiol*, 2020. **86**(6).

777 16. Li, Y., et al., *Genome organization of the densovirus from Bombyx mori (BmDNV-1) and enzyme*
778 *activity of its capsid*. J Gen Virol, 2001. **82**(Pt 11): p. 2821-5.

779 17. Pham, H.T., et al., *A Novel Ambisense Densovirus, Acheta domesticus Mini Ambidensovirus, from*
780 *Crickets*. Genome Announc, 2013. **1**(6).

781 18. Nigg, J.C. and B.W. Falk, *Diaphorina citri densovirus is a persistently infecting virus with a hybrid*
782 *genome organization and unique transcription strategy*. J Gen Virol, 2020. **101**(2): p. 226-239.

783 19. Bochow, S., et al., *First complete genome of an Ambidensovirus; Cherax quadricarinatus*
784 *densovirus, from freshwater crayfish Cherax quadricarinatus*. Mar Genomics, 2015. **24** Pt 3: p.
785 305-12.

786 20. Hewson, I., et al., *Densovirus associated with sea-star wasting disease and mass mortality*. Proc
787 Natl Acad Sci U S A, 2014. **111**(48): p. 17278-83.

788 21. Bonami, J.R., et al., *Characterization of hepatopancreatic parvo-like virus, a second unusual*
789 *parvovirus pathogenic for penaeid shrimps*. J Gen Virol, 1995. **76** (Pt 4): p. 813-7.

790 22. Tang, K.F., et al., *Geographic variations among infectious hypodermal and hematopoietic*
791 *necrosis virus (IHHNV) isolates and characteristics of their infection*. Dis Aquat Organ, 2003.
792 **53**(2): p. 91-9.

793 23. Tang, K.F., C.R. Pantoja, and D.V. Lightner, *Nucleotide sequence of a Madagascar*
794 *hepatopancreatic parvovirus (HPV) and comparison of genetic variation among geographic*
795 *isolates*. Dis Aquat Organ, 2008. **80**(2): p. 105-12.

796 24. Lightner, D.V., et al., *Historic emergence, impact and current status of shrimp pathogens in the*
797 *Americas*. J Invertebr Pathol, 2012. **110**(2): p. 174-83.

798 25. Shike, H., et al., *Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to*
799 *mosquito brevidensoviruses*. Virology, 2000. **277**(1): p. 167-77.

800 26. Roekring, S., et al., *Comparison of penaeid shrimp and insect parvoviruses suggests that viral*
801 *transfers may occur between two distantly related arthropod groups.* Virus Res, 2002. **87**(1): p.
802 79-87.

803 27. Sivaram, A., et al., *Isolation and characterization of densonucleosis virus from Aedes aegypti*
804 *mosquitoes and its distribution in India.* Intervirology, 2009. **52**(1): p. 1-7.

805 28. Chen, S., et al., *Genetic, biochemical, and structural characterization of a new densovirus*
806 *isolated from a chronically infected Aedes albopictus C6/36 cell line.* Virology, 2004. **318**(1): p.
807 123-33.

808 29. Li, J., et al., *A Novel Densovirus Isolated From the Asian Tiger Mosquito Displays Varied*
809 *Pathogenicity Depending on Its Host Species.* Front Microbiol, 2019. **10**: p. 1549.

810 30. Tijssen, P., et al., *Organization and expression strategy of the ambisense genome of*
811 *densonucleosis virus of Galleria mellonella.* J Virol, 2003. **77**(19): p. 10357-65.

812 31. Sukhumsirichart, W., et al., *Complete nucleotide sequence and genomic organization of*
813 *hepatopancreatic parvovirus (HPV) of Penaeus monodon.* Virology, 2006. **346**(2): p. 266-77.

814 32. Cotmore, S.F., et al., *ICTV Virus Taxonomy Profile: Parvoviridae.* J Gen Virol, 2019. **100**(3): p. 367-
815 368.

816 33. Cotmore, S.F. and P. Tattersall, *Parvoviruses: Small Does Not Mean Simple.* Annu Rev Virol, 2014.
817 **1**(1): p. 517-37.

818 34. Pénzes, J.J., et al., *Reorganizing the family Parvoviridae: a revised taxonomy independent of the*
819 *canonical approach based on host association.* Arch Virol, 2020. **165**(9): p. 2133-2146.

820 35. Mietzsch, M., J.J. Penzes, and M. Agbandje-McKenna, *Twenty-Five Years of Structural*
821 *Parvovirology.* Viruses, 2019. **11**(4).

822 36. Zadori, Z., et al., *A viral phospholipase A2 is required for parvovirus infectivity.* Dev Cell, 2001.
823 **1**(2): p. 291-302.

824 37. Farr, G.A., L.G. Zhang, and P. Tattersall, *Parvoviral virions deploy a capsid-tethered lipolytic*
825 *enzyme to breach the endosomal membrane during cell entry*. Proc Natl Acad Sci U S A, 2005.
826 **102**(47): p. 17148-53.

827 38. Bartlett, J.S., R. Wilcher, and R.J. Samulski, *Infectious entry pathway of adeno-associated virus*
828 *and adeno-associated virus vectors*. J Virol, 2000. **74**(6): p. 2777-85.

829 39. Nam, H.J., et al., *Structural studies of adeno-associated virus serotype 8 capsid transitions*
830 *associated with endosomal trafficking*. J Virol, 2011. **85**(22): p. 11791-9.

831 40. Mani, B., et al., *Low pH-dependent endosomal processing of the incoming parvovirus minute*
832 *virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2*
833 *cleavage, and uncoating of the full-length genome*. J Virol, 2006. **80**(2): p. 1015-24.

834 41. Vendeville, A., et al., *Densovirus infectious pathway requires clathrin-mediated endocytosis*
835 *followed by trafficking to the nucleus*. J Virol, 2009. **83**(9): p. 4678-89.

836 42. Pénzes, J.J., et al., *Molecular biology and structure of a novel penaeid shrimp densovirus*
837 *elucidate convergent parvoviral host capsid evolution*. Proc Natl Acad Sci U S A, 2020. **117**(33): p.
838 20211-20222.

839 43. Simpson, A.A., et al., *The structure of an insect parvovirus (*Galleria mellonella* densovirus) at 3.7*
840 *A resolution*. Structure, 1998. **6**(11): p. 1355-67.

841 44. Meng, G., et al., *The structure and host entry of an invertebrate parvovirus*. J Virol, 2013. **87**(23):
842 p. 12523-30.

843 45. Kaufmann, B., et al., *Structure of *Bombyx mori* densovirus 1, a silkworm pathogen*. J Virol, 2011.
844 **85**(10): p. 4691-7.

845 46. Kaufmann, B., et al., *Structure of *Penaeus stylirostris* densovirus, a shrimp pathogen*. J Virol,
846 2010. **84**(21): p. 11289-96.

847 47. Rossmann, M.G., et al., *Structural comparisons of some small spherical plant viruses*. J Mol Biol,
848 1983. **165**(4): p. 711-36.

849 48. Penzes, J.J., et al., *Adeno-associated Virus 9 Structural Rearrangements Induced by Endosomal
850 Trafficking pH and Glycan Attachment*. J Virol, 2021. **95**(19): p. e0084321.

851 49. Plevka, P., et al., *Structure of a packaging-defective mutant of minute virus of mice indicates that
852 the genome is packaged via a pore at a 5-fold axis*. J Virol, 2011. **85**(10): p. 4822-7.

853 50. Venkatakrishnan, B., et al., *Structure and dynamics of adeno-associated virus serotype 1 VP1-
854 unique N-terminal domain and its role in capsid trafficking*. J Virol, 2013. **87**(9): p. 4974-84.

855 51. Pham, H.T., et al., *Comparative Genomic Analysis of Acheta domesticus Densovirus Isolates from
856 Different Outbreaks in Europe, North America, and Japan*. Genome Announc, 2013. **1**(4).

857 52. Guo, F. and W. Jiang, *Single particle cryo-electron microscopy and 3-D reconstruction of viruses*.
858 Methods Mol Biol, 2014. **1117**: p. 401-43.

859 53. Duffield, K.R., et al., *Active and Covert Infections of Cricket Iridovirus and Acheta domesticus
860 Densovirus in Reared Gryllodes sigillatus Crickets*. Front Microbiol, 2021. **12**: p. 780796.

861 54. Yamagishi, J., et al., *Genome organization and mRNA structure of Periplaneta fuliginosa
862 densovirus imply alternative splicing involvement in viral gene expression*. Arch Virol, 1999.
863 **144**(11): p. 2111-24.

864 55. Iranzo, J. and S.C. Manrubia, *Evolutionary dynamics of genome segmentation in multipartite
865 viruses*. Proc Biol Sci, 2012. **279**(1743): p. 3812-9.

866 56. Sicard, A., et al., *The Strange Lifestyle of Multipartite Viruses*. PLoS Pathog, 2016. **12**(11): p.
867 e1005819.

868 57. Ojosnegros, S., et al., *Viral genome segmentation can result from a trade-off between genetic
869 content and particle stability*. PLoS Genet, 2011. **7**(3): p. e1001344.

870 58. Krupovic, M. and E.V. Koonin, *Evolution of eukaryotic single-stranded DNA viruses of the*
871 *Bidnaviridae family from genes of four other groups of widely different viruses*. *Sci Rep*, 2014. **4**:
872 p. 5347.

873 59. Tijssen, P., et al., *Diversity of small, single-stranded DNA viruses of invertebrates and their*
874 *chaotic evolutionary past*. *J Invertebr Pathol*, 2016. **140**: p. 83-96.

875 60. Pham, H.T., et al., *Expression strategy of Aedes albopictus densovirus*. *J Virol*, 2013. **87**(17): p.
876 9928-32.

877 61. Sherman, M.B., et al., *Near-Atomic-Resolution Cryo-Electron Microscopy Structures of Cucumber*
878 *Leaf Spot Virus and Red Clover Necrotic Mosaic Virus: Evolutionary Divergence at the Icosahedral*
879 *Three-Fold Axes*. *J Virol*, 2020. **94**(2).

880 62. Subramanian, S., et al., *Cryo-EM maps reveal five-fold channel structures and their modification*
881 *by gatekeeper mutations in the parvovirus minute virus of mice (MVM) capsid*. *Virology*, 2017.
882 **510**: p. 216-223.

883 63. Mietzsch, M., et al., *Comparative Analysis of the Capsid Structures of AAVrh.10, AAVrh.39, and*
884 *AAV8*. *J Virol*, 2020. **94**(6).

885 64. Halder, S., et al., *Structure of neurotropic adeno-associated virus AAVrh.8*. *J Struct Biol*, 2015.
886 **192**(1): p. 21-36.

887 65. Halder, S., et al., *Structural characterization of H-1 parvovirus: comparison of infectious virions to*
888 *empty capsids*. *J Virol*, 2013. **87**(9): p. 5128-40.

889 66. Llamas-Saiz, A.L., et al., *Structure determination of minute virus of mice*. *Acta Crystallogr D Biol*
890 *Crystallogr*, 1997. **53**(Pt 1): p. 93-102.

891 67. Tsao, J., et al., *The three-dimensional structure of canine parvovirus and its functional*
892 *implications*. *Science*, 1991. **251**(5000): p. 1456-64.

893 68. Afione, S., et al., *Identification and mutagenesis of the adeno-associated virus 5 sialic acid*
894 *binding region*. J Virol, 2015. **89**(3): p. 1660-72.

895 69. Kaufmann, B., et al., *Visualization of the externalized VP2 N termini of infectious human*
896 *parvovirus B19*. J Virol, 2008. **82**(15): p. 7306-12.

897 70. Izaguirre, G., *The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein*
898 *Convertases*. Viruses, 2019. **11**(9).

899 71. Staden, R., K.F. Beal, and J.K. Bonfield, *The Staden package, 1998*. Methods Mol Biol, 2000. **132**:
900 p. 115-30.

901 72. Carver, T., et al., *Artemis: an integrated platform for visualization and analysis of high-*
902 *throughput sequence-based experimental data*. Bioinformatics, 2012. **28**(4): p. 464-9.

903 73. Altschul, S.F., et al., *Gapped BLAST and PSI-BLAST: a new generation of protein database search*
904 *programs*. Nucleic Acids Res, 1997. **25**(17): p. 3389-402.

905 74. Letunic, I. and P. Bork, *20 years of the SMART protein domain annotation resource*. Nucleic Acids
906 Res, 2018. **46**(D1): p. D493-d496.

907 75. Holm, L., *DALI and the persistence of protein shape*. Protein Sci, 2019.

908 76. Armougom, F., et al., *Expresso: automatic incorporation of structural information in multiple*
909 *sequence alignments using 3D-Coffee*. Nucleic Acids Res, 2006. **34**(Web Server issue): p. W604-8.

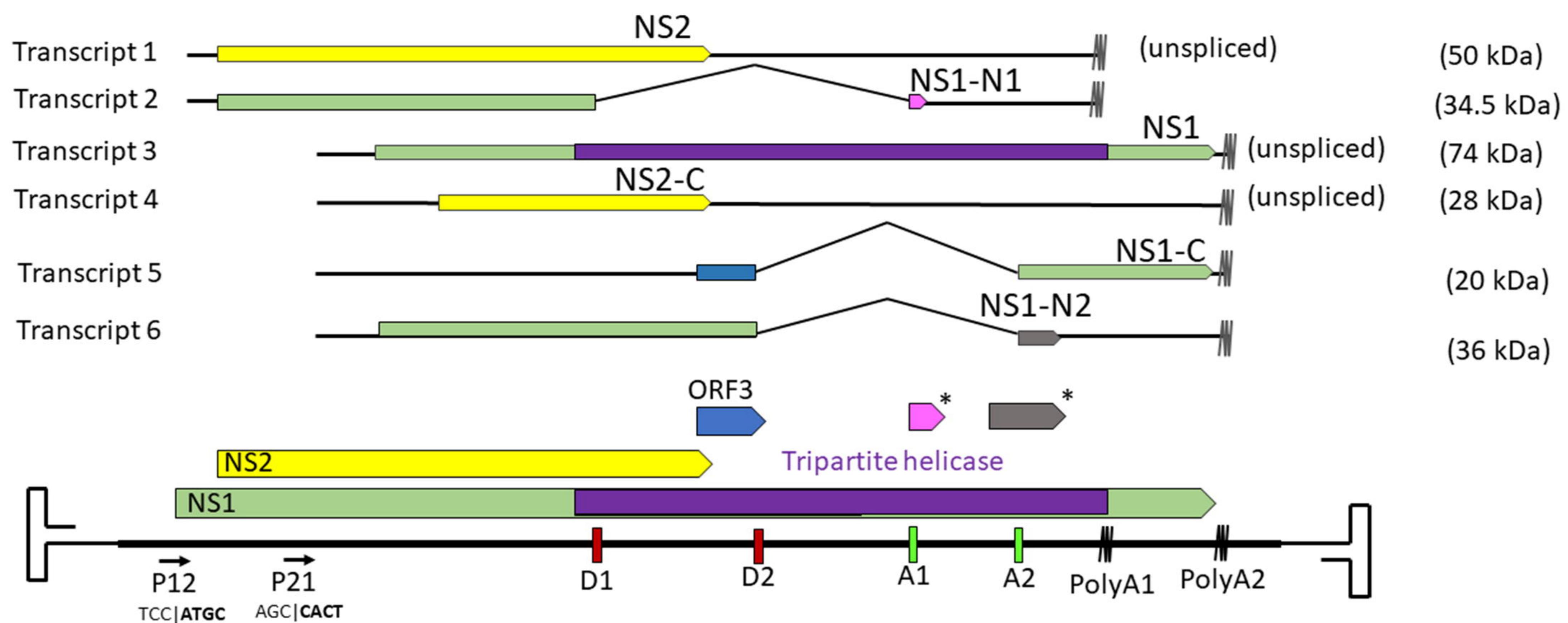
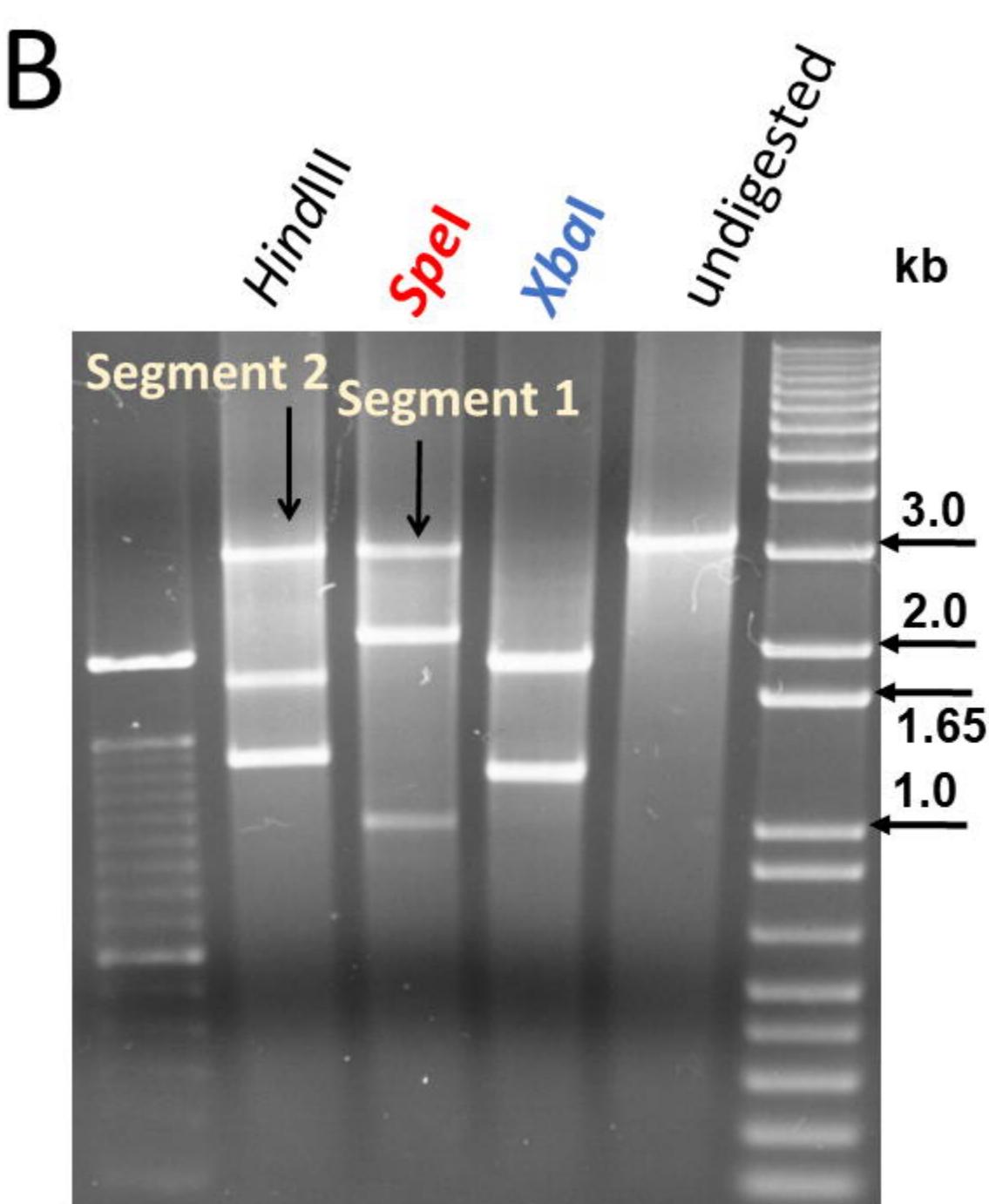
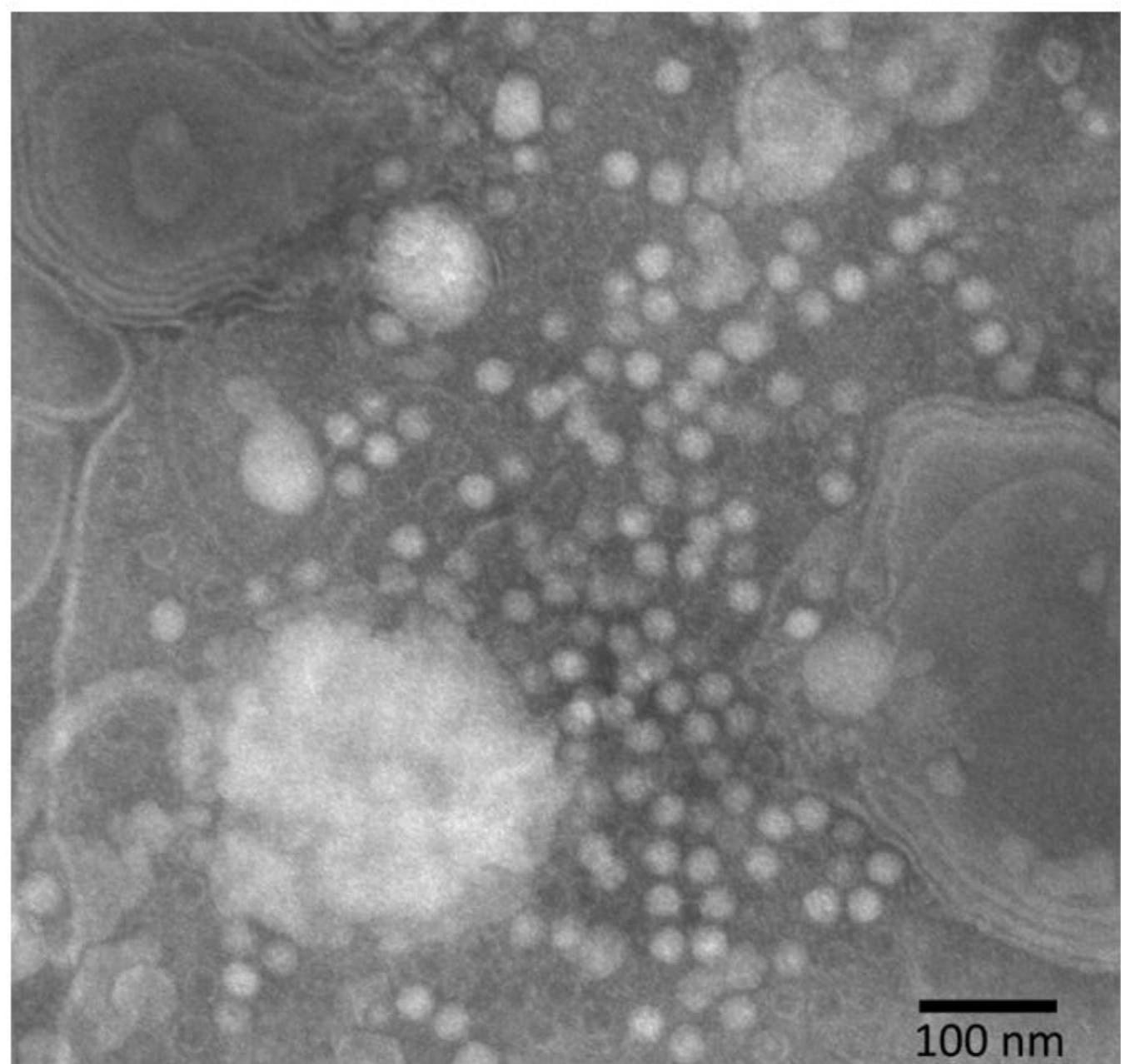
910 77. Okonechnikov, K., O. Golosova, and M. Fursov, *Unipro UGENE: a unified bioinformatics toolkit*.
911 Bioinformatics, 2012. **28**(8): p. 1166-7.

912 78. Darriba, D., et al., *ProtTest 3: fast selection of best-fit models of protein evolution*.
913 Bioinformatics, 2011. **27**(8): p. 1164-5.

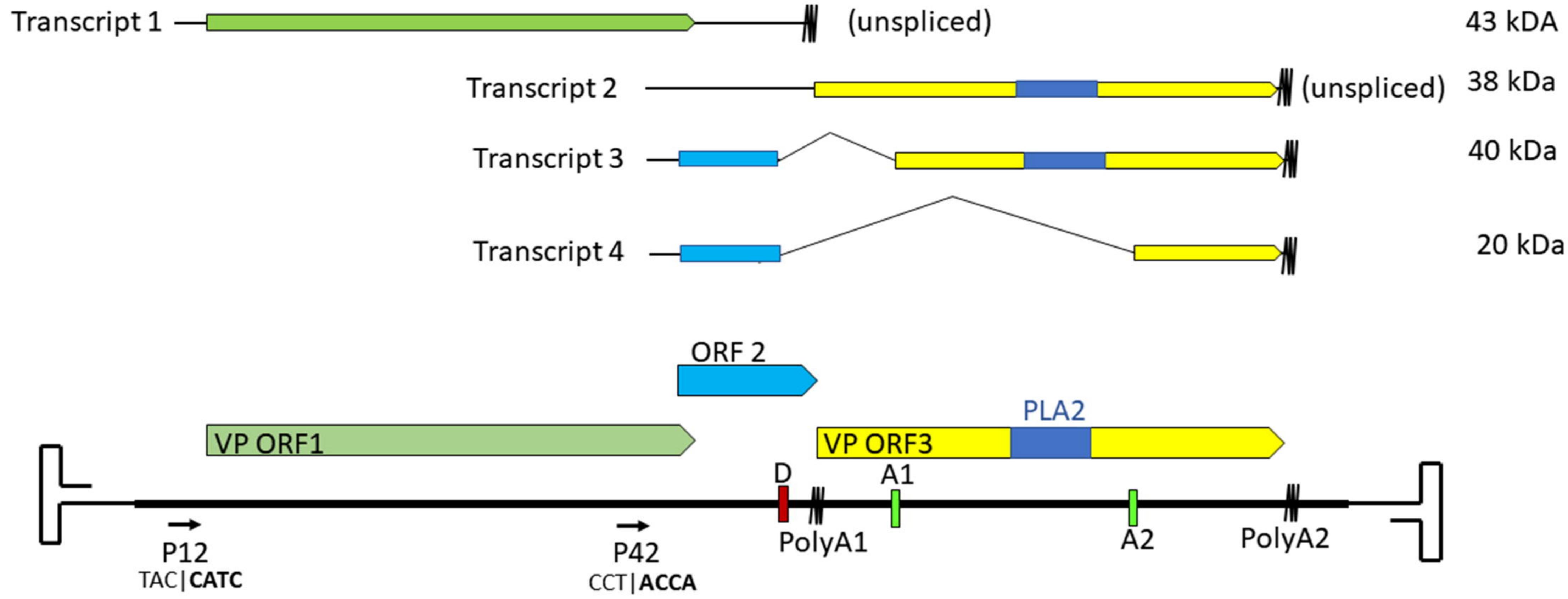
914 79. Suchard, M.A., et al., *Bayesian phylogenetic and phylodynamic data integration using BEAST*
915 *1.10*. Virus Evol, 2018. **4**(1): p. vey016.

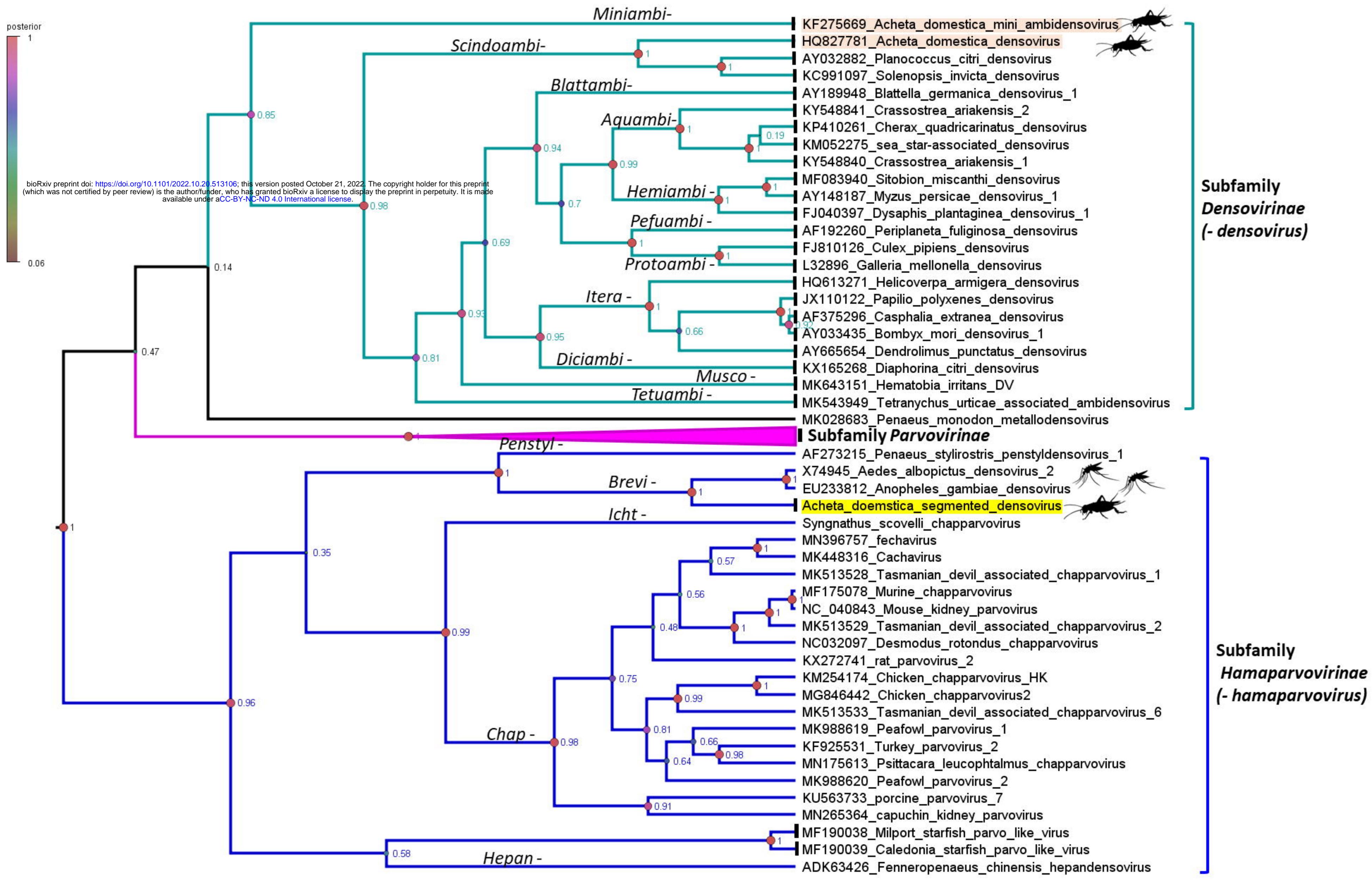
916 80. Suloway, C., et al., *Automated molecular microscopy: the new Leginon system*. J Struct Biol,
917 2005. **151**(1): p. 41-60.

918 81. Zheng, S.Q., et al., *MotionCor2: anisotropic correction of beam-induced motion for improved*
919 *cryo-electron microscopy*. Nat Methods, 2017. **14**(4): p. 331-332.

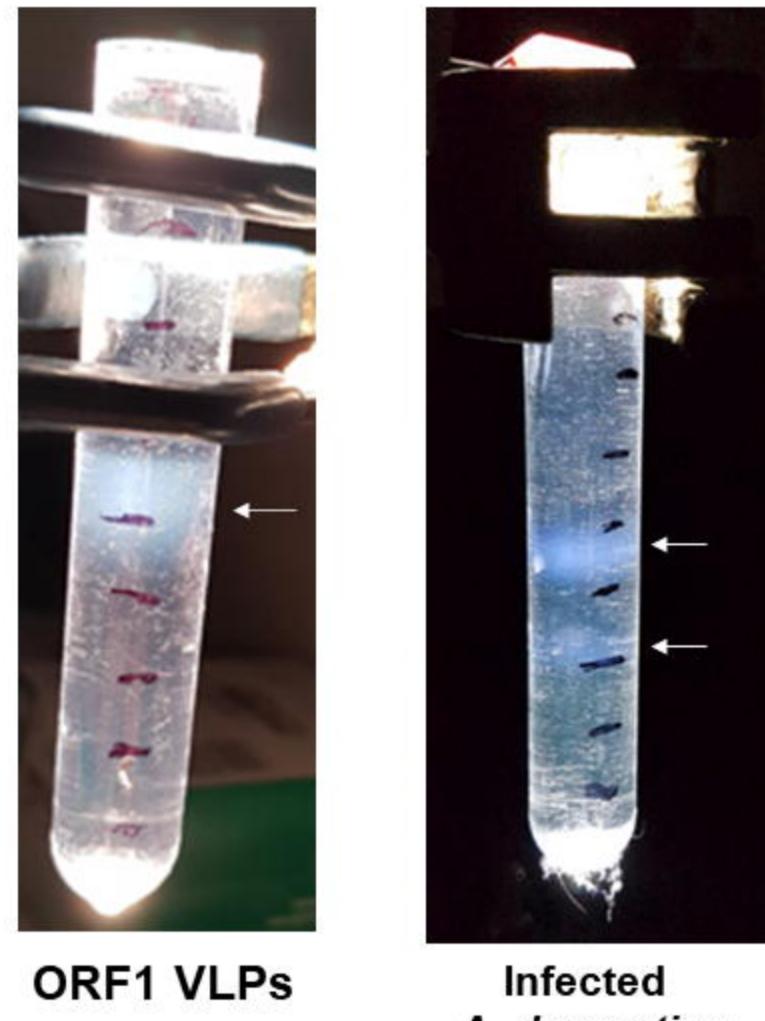



920 82. Grant, T., A. Rohou, and N. Grigorieff, *cisTEM, user-friendly software for single-particle image*
921 *processing*. Elife, 2018. **7**.

922 83. Kleywegt, G.J. and T.A. Jones, *xdIMAPMAN and xdIDATAMAN - programs for reformatting,*
923 *analysis and manipulation of biomacromolecular electron-density maps and reflection data sets*.
924 Acta Crystallogr D Biol Crystallogr, 1996. **52**(Pt 4): p. 826-8.


925 84. Emsley, P., et al., *Features and development of Coot*. Acta Crystallogr D Biol Crystallogr, 2010.
926 **66**(Pt 4): p. 486-501.

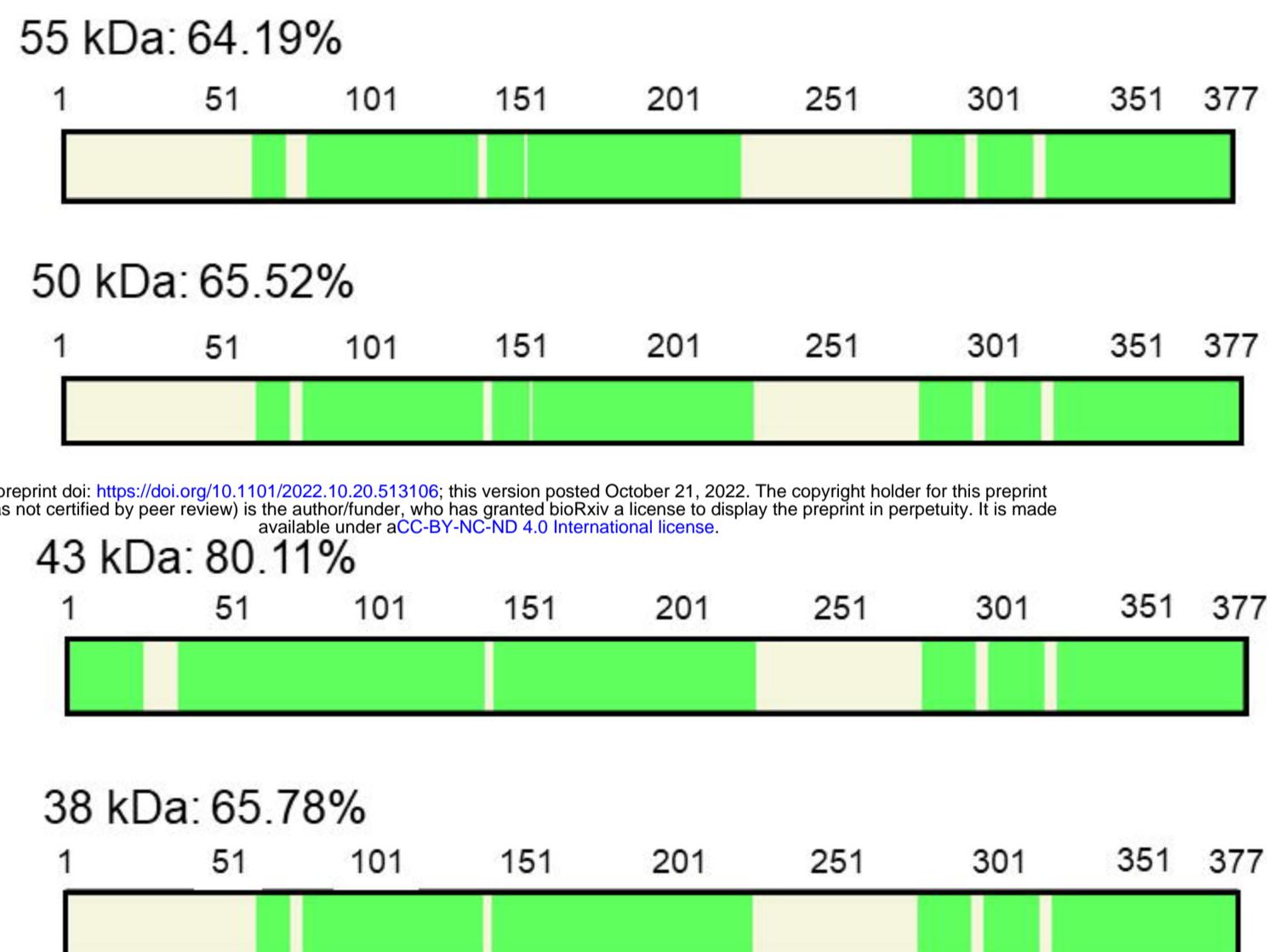

927 85. Adams, P.D., et al., *PHENIX: a comprehensive Python-based system for macromolecular structure*
928 *solution*. Acta Crystallogr D Biol Crystallogr, 2010. **66**(Pt 2): p. 213-21.

929

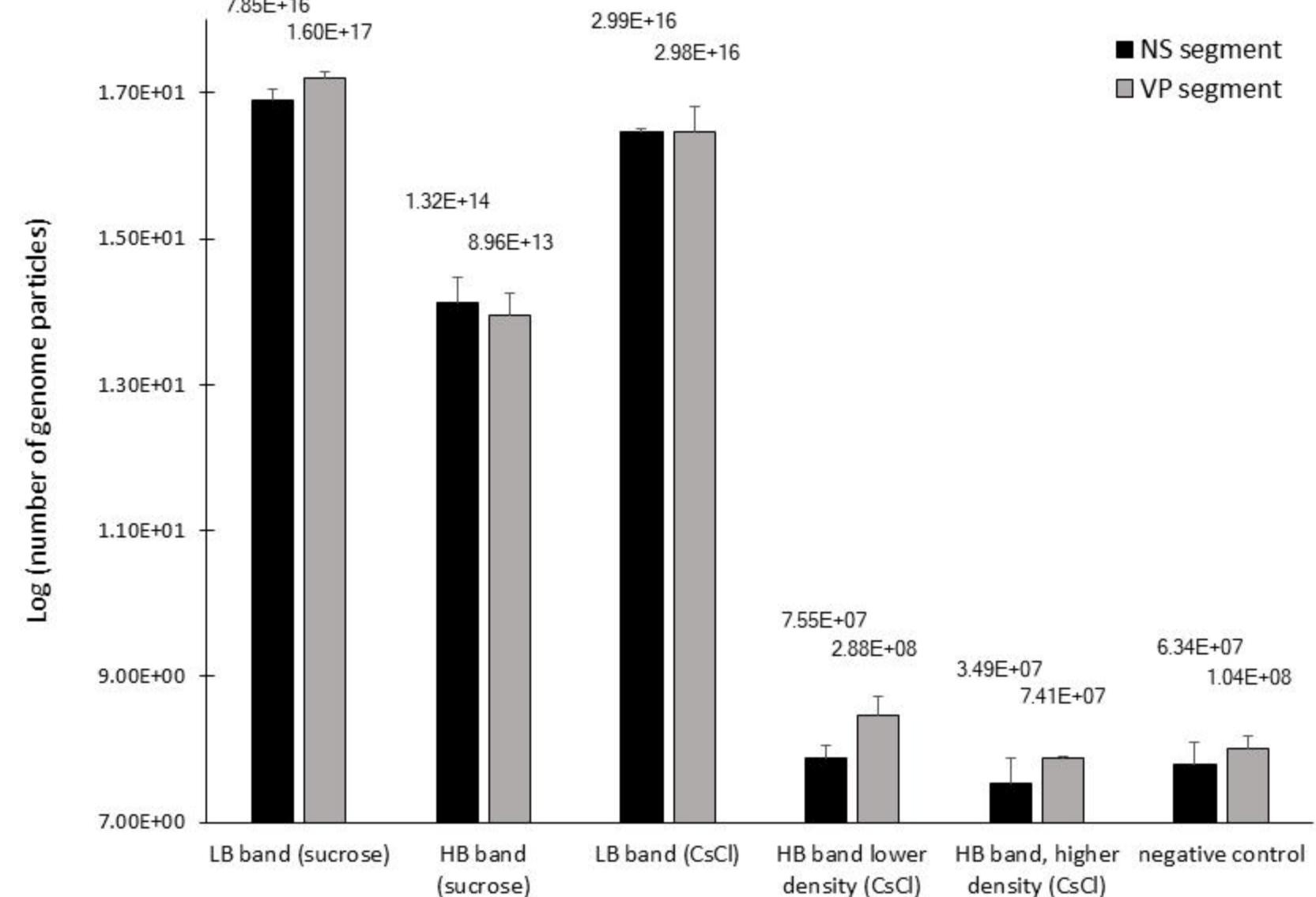


* French without ATG start bioRxiv preprint doi: <https://doi.org/10.1101/2022.10.21.513106>; this version posted October 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

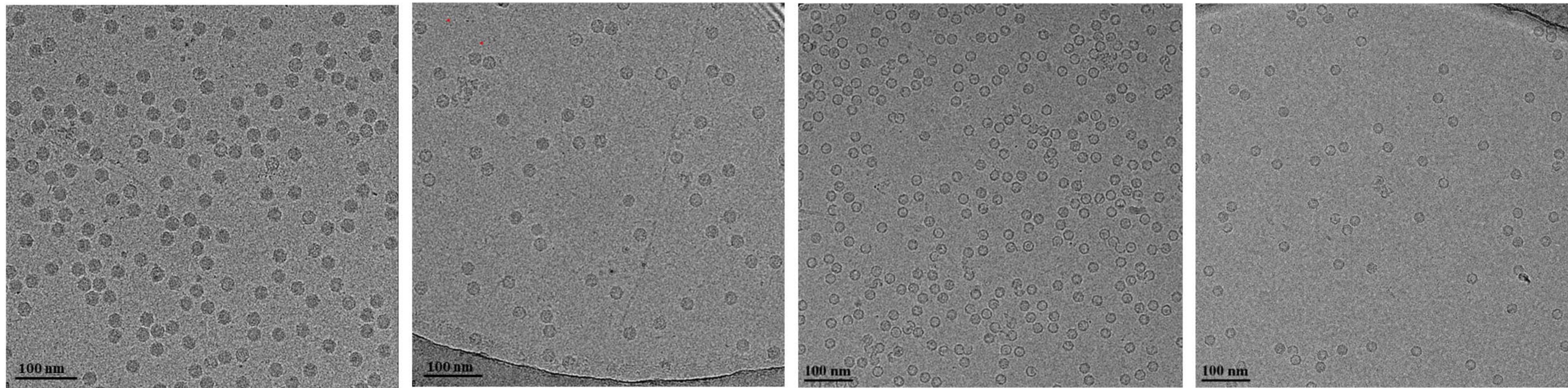
A

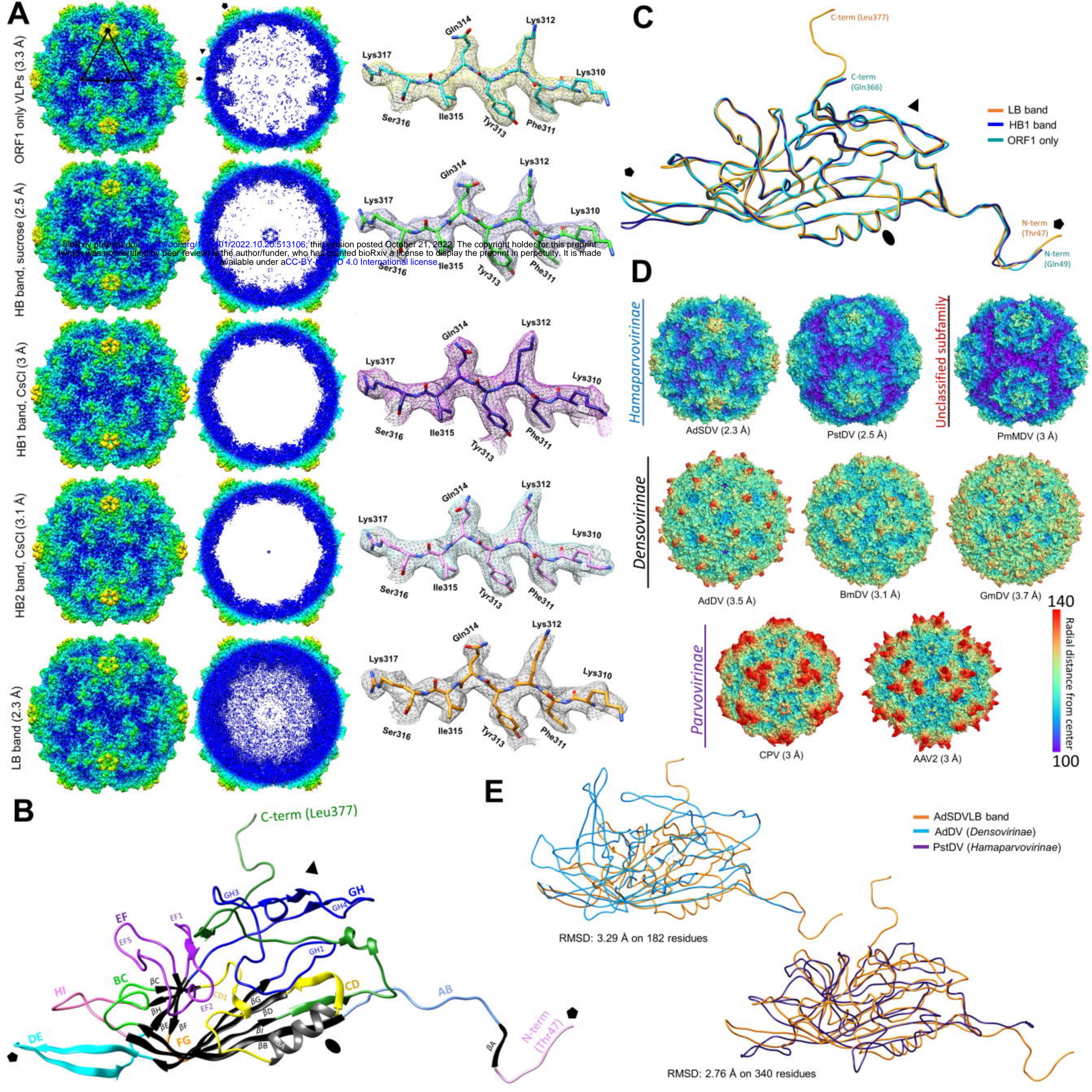

B

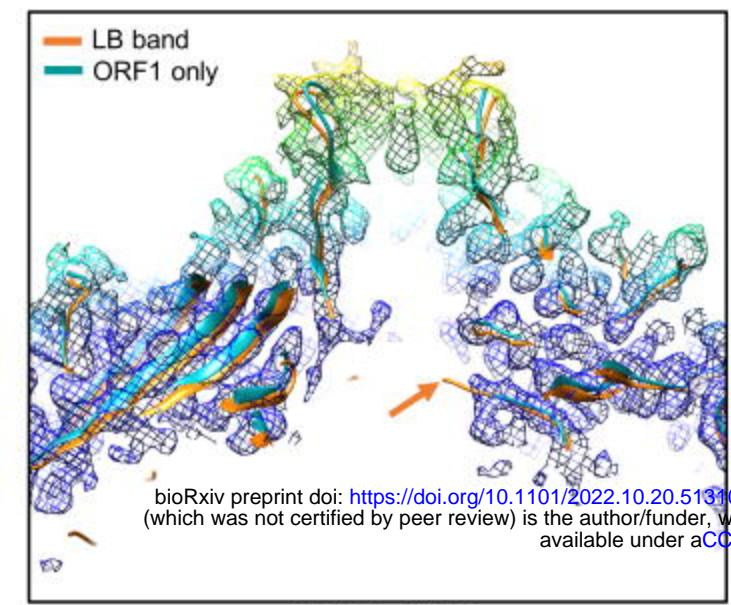
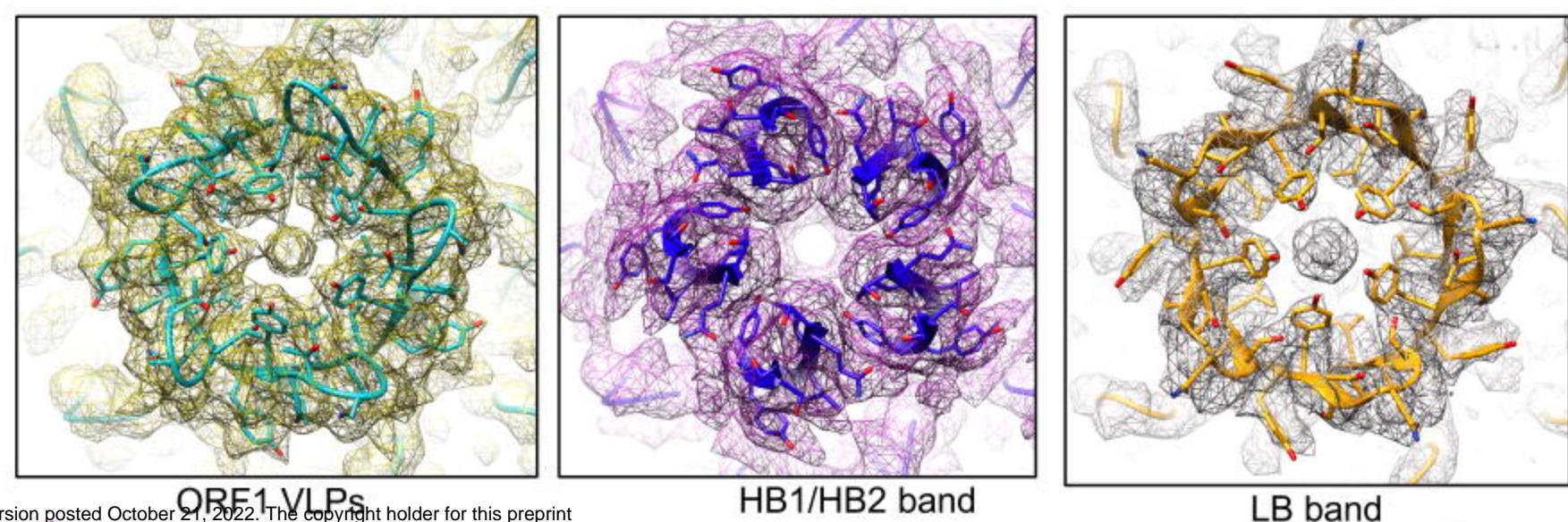
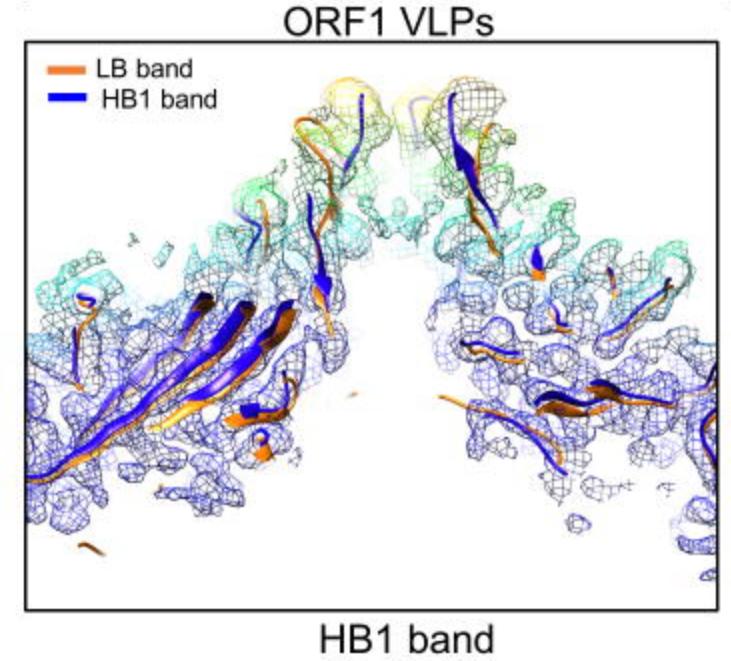
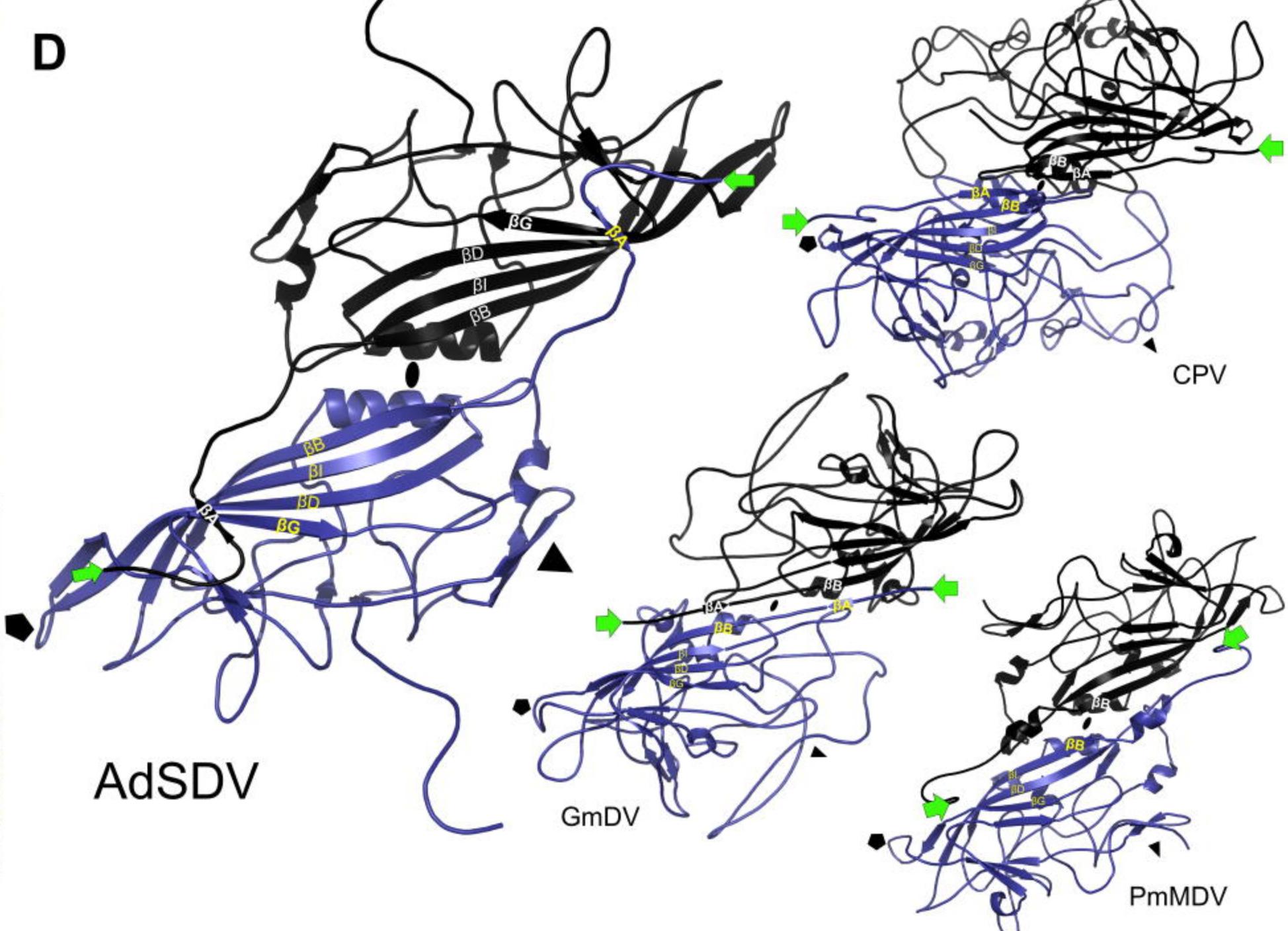
C

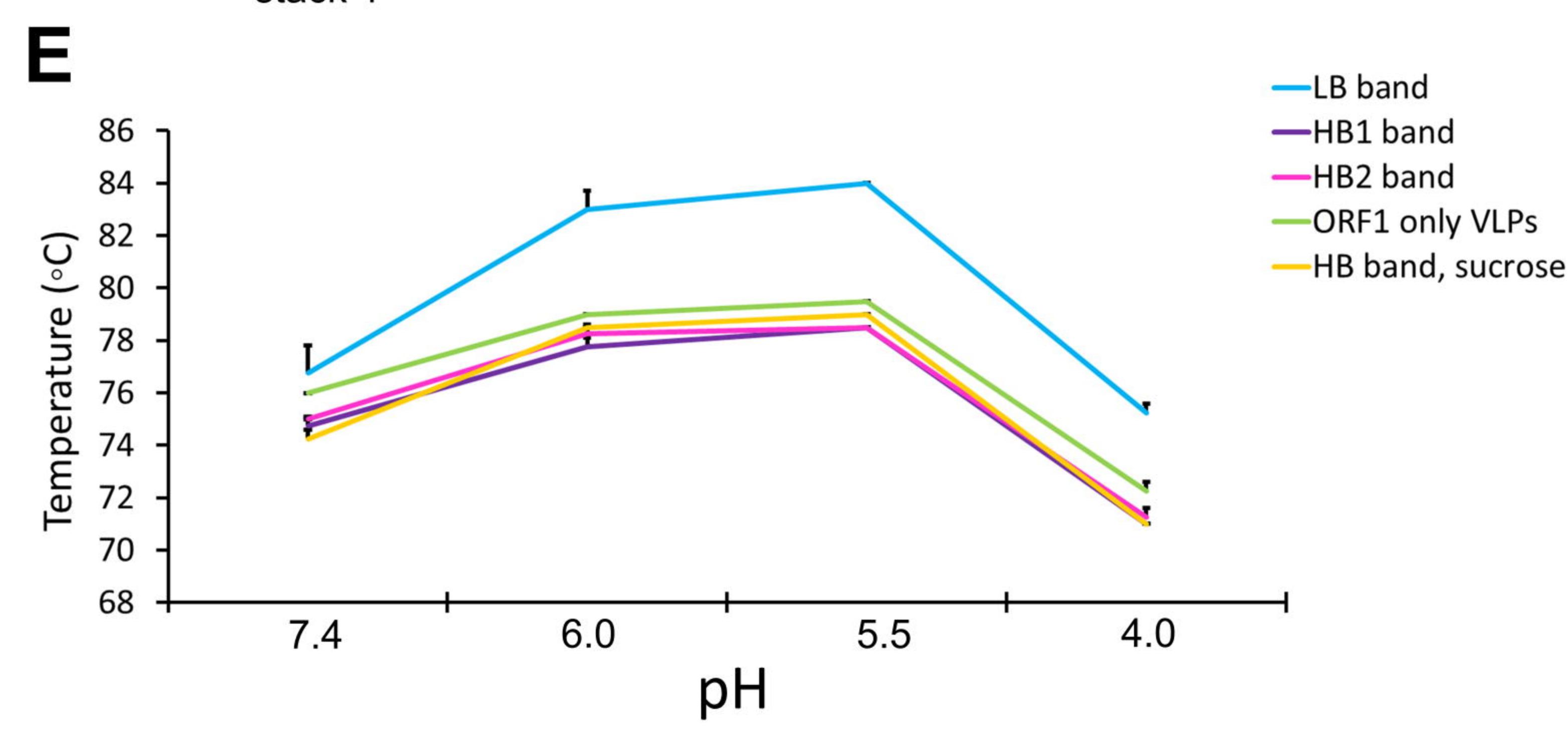
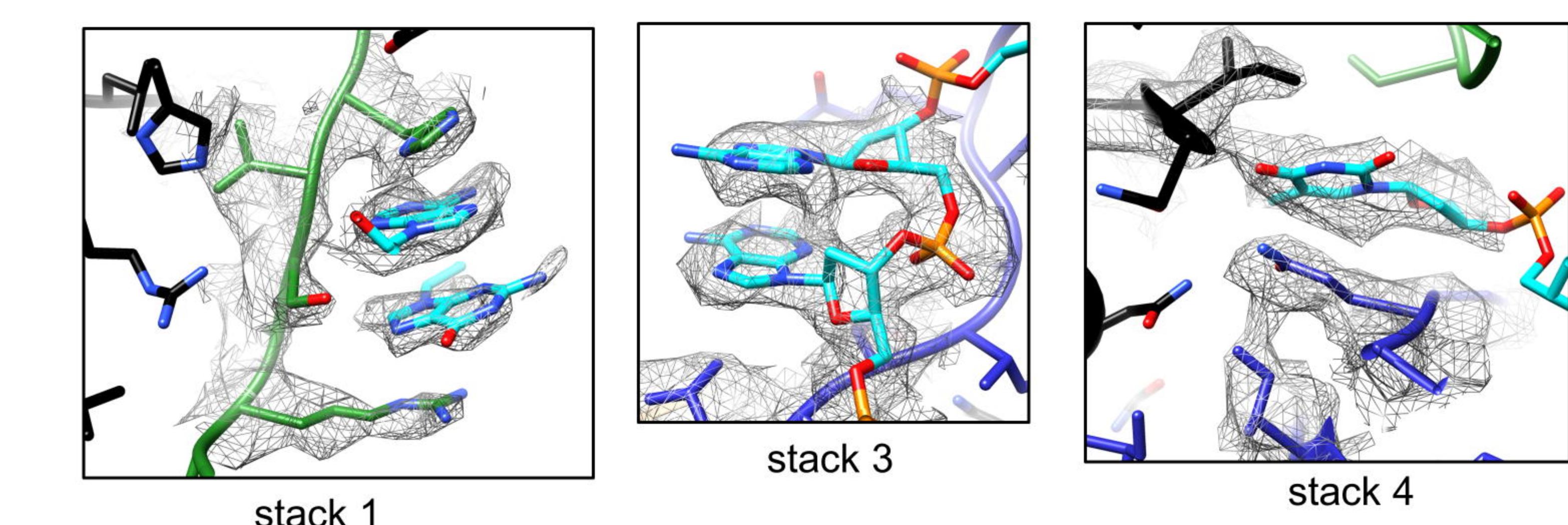
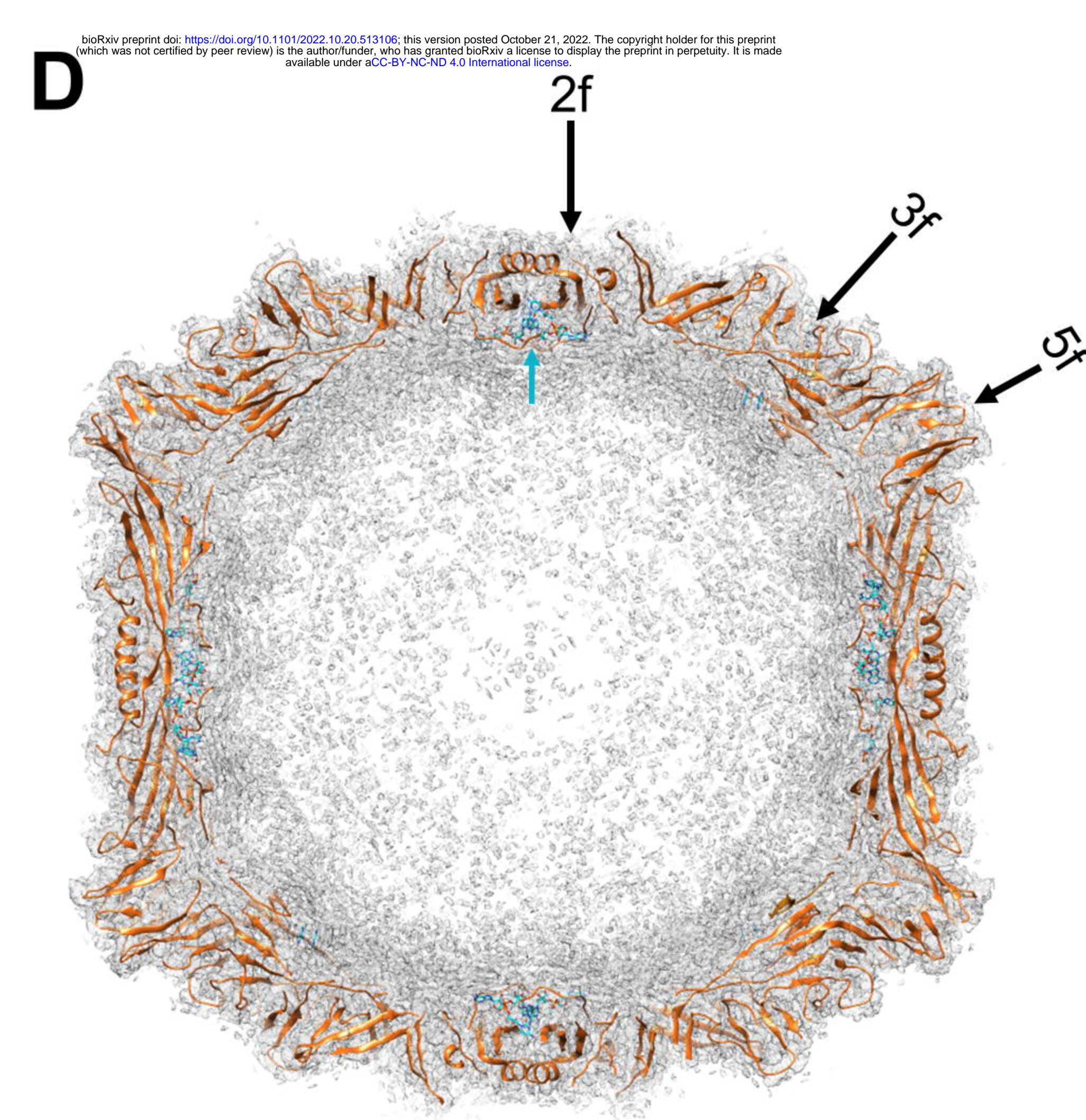
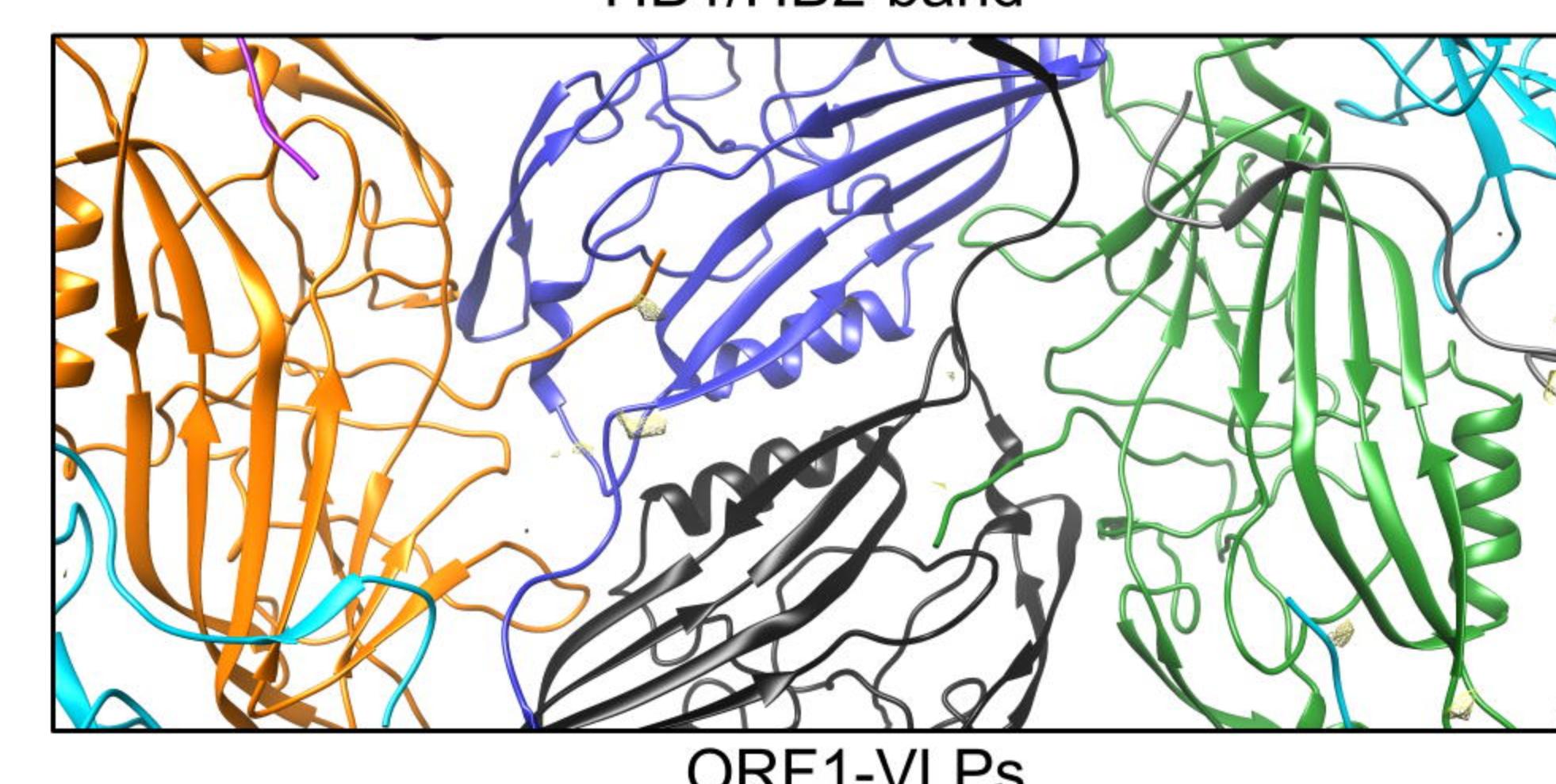
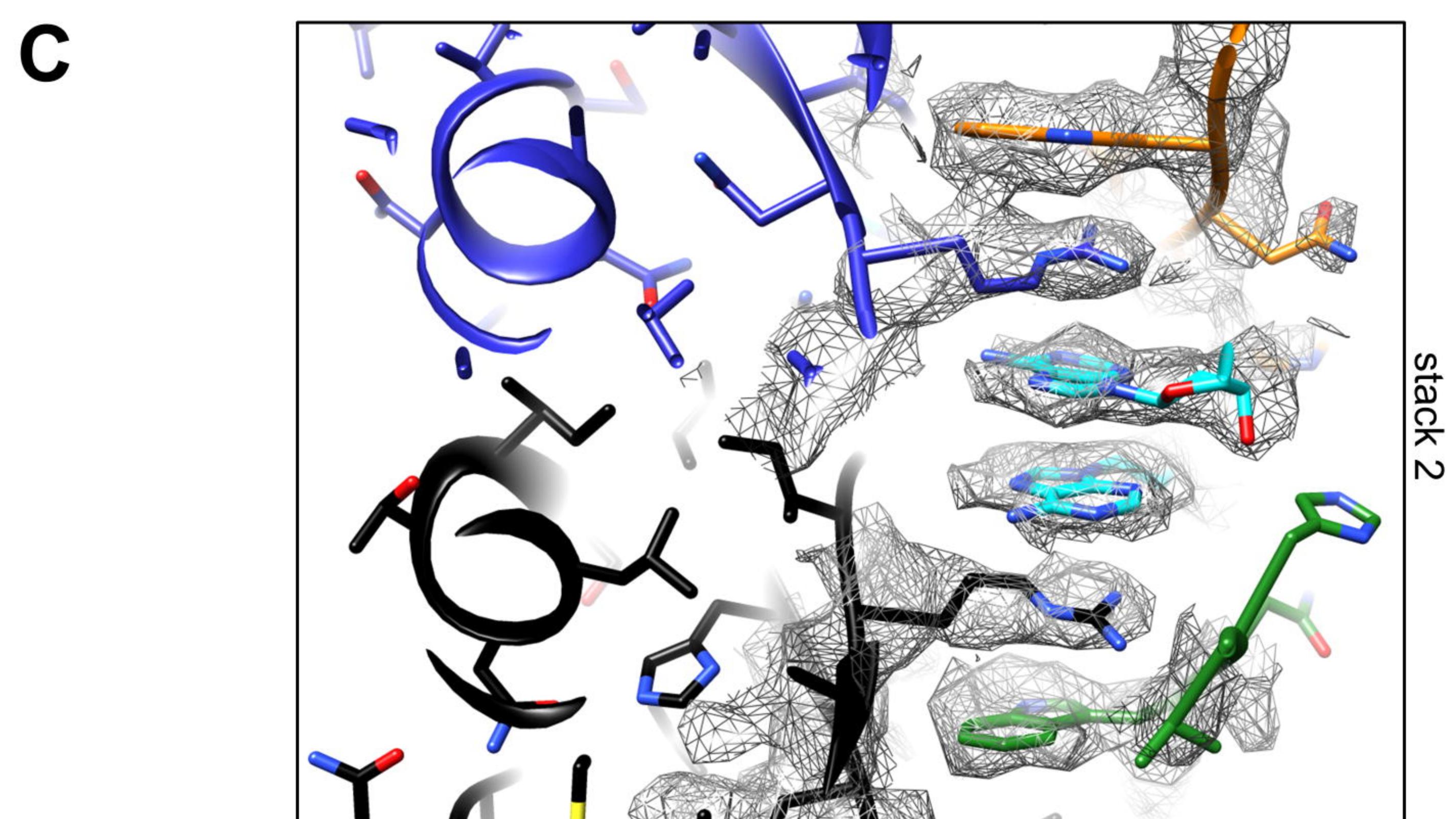
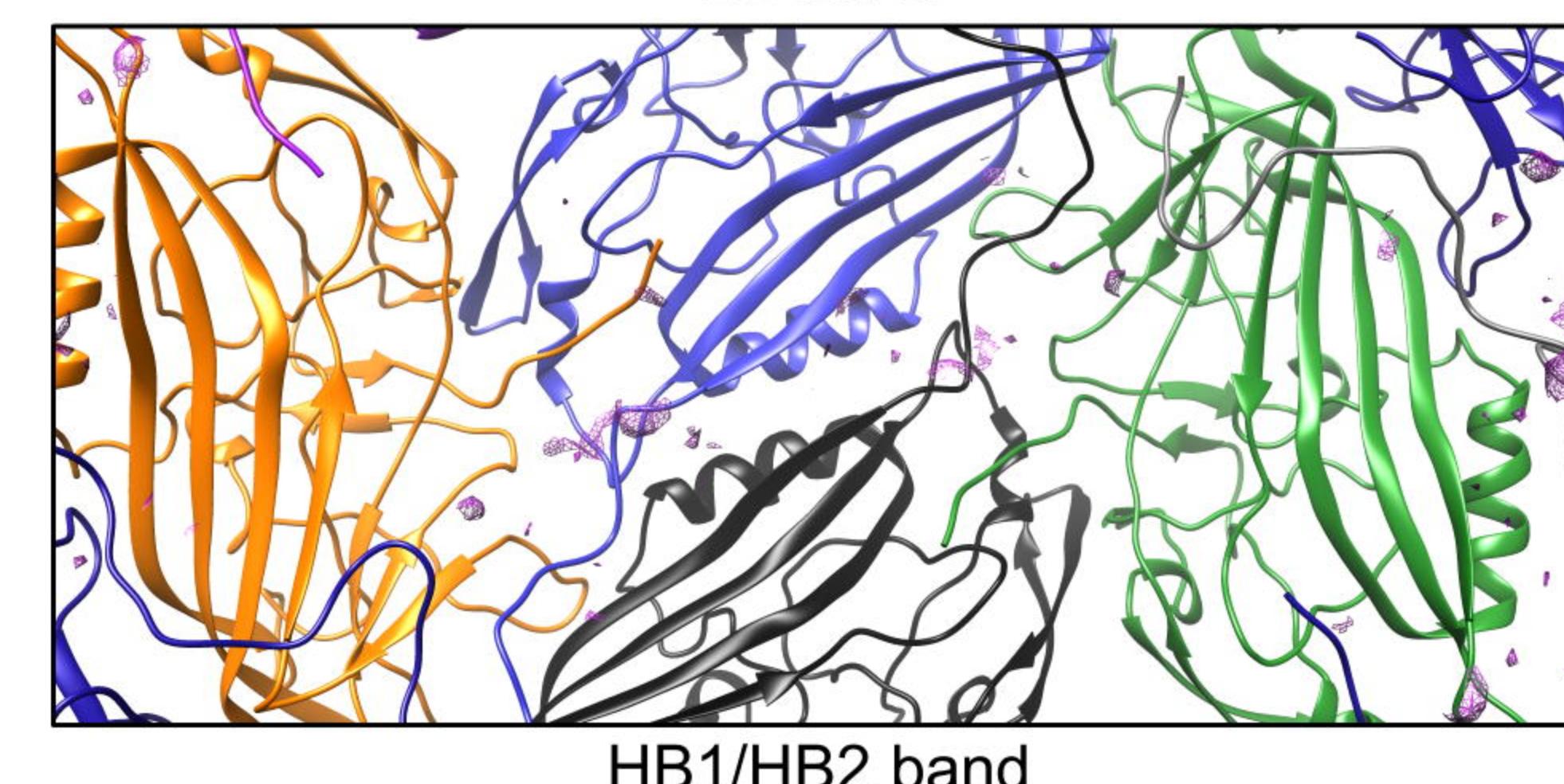
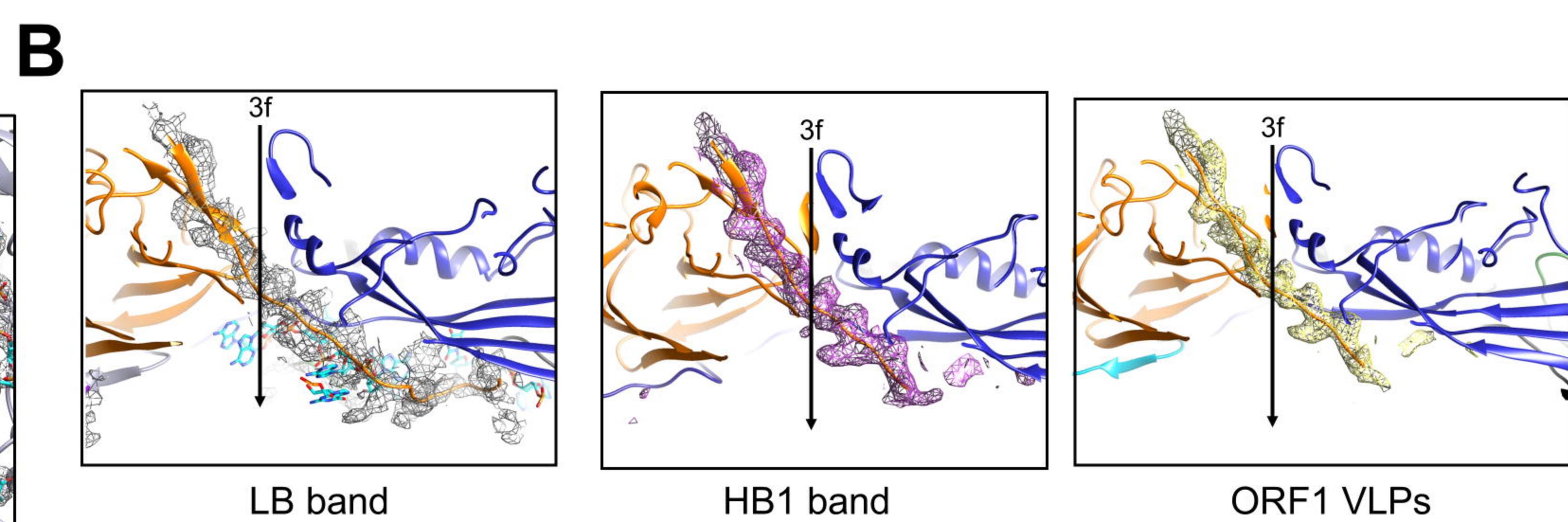
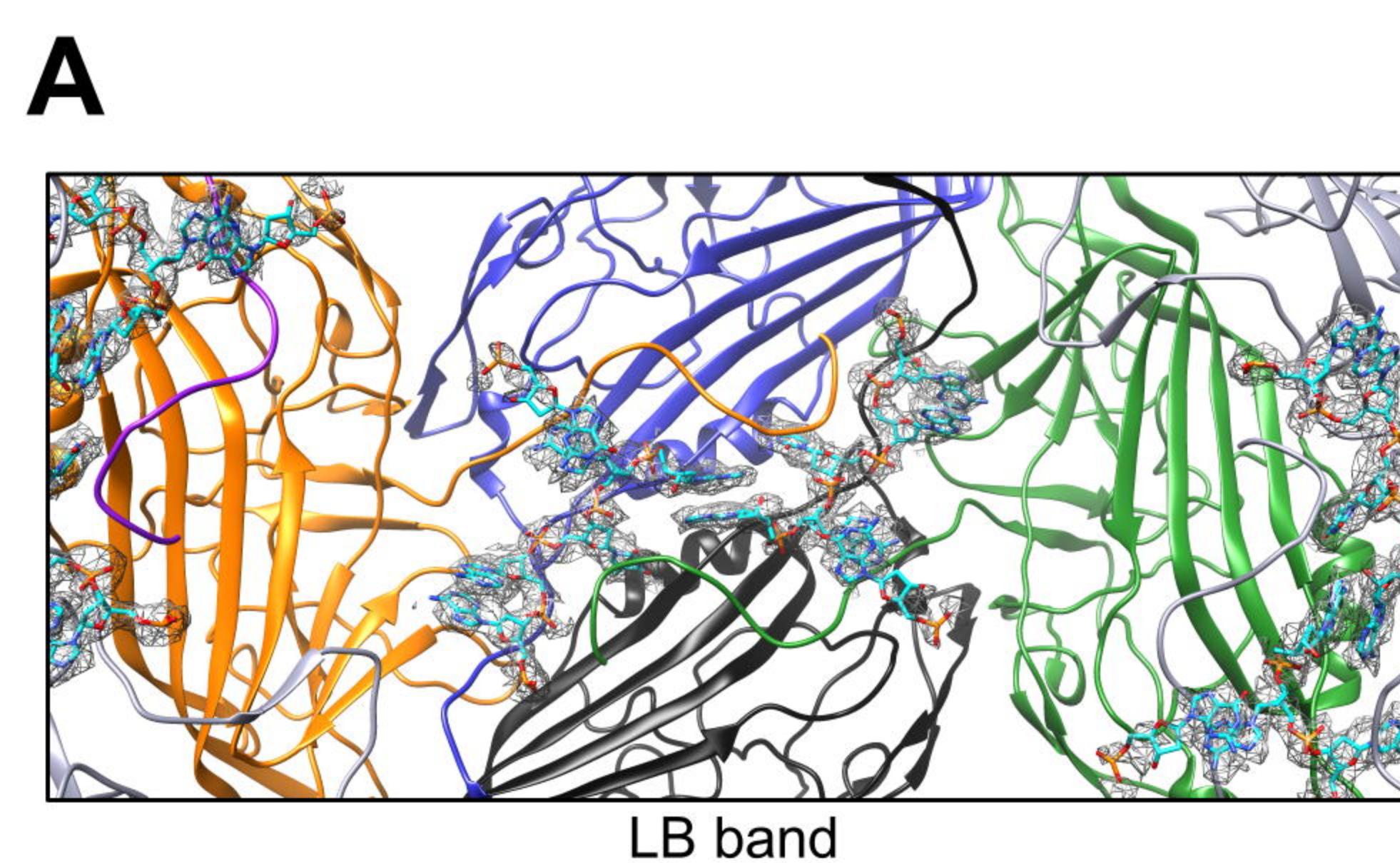


D




bioRxiv preprint doi: <https://doi.org/10.1101/2022.10.20.513106>; this version posted October 21, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.





E

F

A**B****C****D**

