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Abstract 25 

The fundamental question of how the brain derives 3D information from the inherently ambiguous 26 

visual input has been approached during the last two decades with probabilistic theories of 3D 27 

perception. Probabilistic models, such as the Maximum Likelihood Estimation (MLE) model, derive 28 

from multiple independent depth cues the most probable 3D interpretations. These estimates are then 29 

combined by weighing them according to their uncertainty to obtain the most accurate and least noisy 30 

estimate. In three experiments we tested an alternative theory of cue integration termed the Intrinsic 31 

Constraint (IC) theory. This theory postulates that the visual system does not derive the most 32 

probable interpretation of the visual input, but the most stable interpretation amid variations in 33 

viewing conditions. This goal is achieved with the Vector Sum model, that represents individual cue 34 

estimates as components of a multidimensional vector whose norm determines the combined output. 35 

In contrast with the MLE model, individual cue estimates are not accurate, but linearly related to 36 

distal 3D properties through a deterministic mapping. In Experiment 1, we measured the cue-specific 37 

biases that arise when viewing single-cue stimuli of various simulated depths and show that the 38 

Vector Sum model accurately predicts an increase in perceived depth when the same cues are 39 

presented together in a combined-cue stimulus. In Experiment 2, we show how Just Noticeable 40 

Differences (JNDs) are accounted for by the IC theory and demonstrate that the Vector Sum model 41 

predicts the classic finding of smaller JNDs for combined-cue versus single-cue stimuli. Most 42 

importantly, this prediction is made through a radical re-interpretation of the JND, a hallmark 43 

measure of stimulus discriminability previously thought to estimate perceptual uncertainty. In 44 

Experiment 3, we show that biases found in cue-integration experiments cannot be attributed to 45 

flatness cues, as assumed by the MLE model. Instead, we show that flatness cues produce no 46 

measurable difference in perceived depth for monocular (3A) or binocular viewing (3B), as predicted 47 

by the Vector Sum model. 48 

 49 

Keywords: 3D vision; cue combination; virtual reality 50 
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Introduction 52 

A fundamental aspect of human visual perception is its ability to interpret three-dimensional space 53 

from patterns of light. We may be able to ignore color when judging brightness or divert our attention from 54 

specific objects with eye movements, but we cannot possibly suppress our experience of a three-dimensional 55 

environment. The problem of how the visual system constructs a 3D interpretation from the two-56 

dimensional manifold of light intensity at the retina has been approached during the last three decades 57 

through a probabilistic inference theory of 3D vision (Landy et al., 2011; Landy et al., 1995). The intuitive 58 

appeal of this theory has led to a large number of empirical studies aimed at evaluating its predictions 59 

(Adams et al., 2004; Adams & Mamassian, 2004; Ernst & Banks, 2002; Chen, & Saunders, 2019; Jacobs, 60 

1999; Jacobs, 2002; Knill, 1998a; Knill, 2007; Knill & Saunders, 2003; Mamassian & Landy, 1998; Hillis et 61 

al., 2002; Hillis et al., 2004; Saunders & Chen; 2015; Schrater & Kersten, 2000; Saunders & Knill, 2001; 62 

Welchman et al., 2008; Young et al., 1993). Though this approach successfully accounts for a wide range of 63 

findings, it is unable to predict many fundamental real-world phenomena, such as systematic biases in 3D 64 

judgments (Bozzacchi & Domini, 2015; Bozzacchi et al., 2016; Campagnoli et al.,  2017; Caudek & 65 

Domini, 1998; Domini & Braunstein, 1998; Domini & Caudek, 1999; Domini & Caudek, 2003; Domini et 66 

al., 1998; Egan & Todd, 2015; Fantoni et al., 2010; Kopiske et al., 2019; Liu & Todd, 2004; Norman et al., 67 

2004; Norman et al., 1996; Norman et al., 1995; Perotti et al., 1998; Phillips & Todd, 1996; Tittle et al., 68 

1995; Todd, 2004; Todd & Bressan, 1990; Todd et al., 1998; Todd & Norman, 2003; Todd et al., 2014; 69 

Todd & Thaler, 2010; Todd et al., 2005; Todd et al, 2007; Todd et al., 1995;  Volcic et al, 2013), internal 70 

inconsistencies among judgments at different scales (Lappin & Craft, 2000; Loomis et al., 1996; Loomis et 71 

al., 2002), the paradox of pictorial depth and pictorial duality (Haber, 1980; Koenderink, 1998; Koenderink 72 

et al., 2001; Vishwanath, 2011; 2013; 2014; 2020), and differences in phenomenology of 3D vision 73 

(Koenderink et al., 2015; Koenderink et al., 2018; Vishwanath, 2013). In this paper, we test a new 74 

theoretical framework based on an entirely different set of assumptions that can more parsimoniously 75 

account for the full range of observations in 3D perception. 76 

There are two main assumptions that have guided recent research in 3D vision: (1) Independent 77 

modules derive noisy estimates that are on average veridical (i.e. unbiased) (Clark & Yuille, 1990; Landy et 78 

al., 2011) and (2) visual mechanisms also estimate the magnitude of sensory noise, such that the outputs of 79 

individual modules represent probability distributions. Representing probability distributions enables the 80 

statistically optimal combination of independent estimates, as proposed by Bayesian integration frameworks 81 

(e.g., Landy et al., 2011). Although there are more general implementations of Bayesian combination, in this 82 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/


4 
 

paper we focus on the linear Maximum Likelihood Estimation (MLE) model (Ernst & Bülthoff, 2004), 83 

following similar past studies that have assumed a negligible influence of priors when viewing objects 84 

defined by binocular disparity, texture, or both (Chen & Saunders, 2020; Hillis et al., 2004; Johnston et al., 85 

1993; Knill & Saunders, 2003). 86 

The predictions of the linear MLE model for the integration of texture and disparity information can 87 

be summarized by two equations. First, if 𝑧̂𝑧𝑇𝑇 and 𝑧̂𝑧𝐷𝐷 are the depth estimates from the texture and disparity 88 

modules and 𝜎𝜎𝑇𝑇 and 𝜎𝜎𝐷𝐷 are the standard deviations of the noise of these estimates, then the combined 89 

estimate 𝑧̂𝑧𝐶𝐶  is a weighted average with weights proportional to the reliabilities of the estimates: 90 

 91 

𝑧̂𝑧𝐶𝐶 = 𝑤𝑤𝑇𝑇𝑧̂𝑧𝑇𝑇 + 𝑤𝑤𝐷𝐷𝑧̂𝑧𝐷𝐷  [1] 92 

 93 
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). Second, the variance of the combined estimate is smaller than that of either 94 

single-cue estimate, as predicted by the following relationship: 95 
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 98 

While applying the MLE model to explain perceptual processing may appear straightforward, some 99 

of its core assumptions seem not to be satisfied by human perceptual systems. First, many experiments have 100 

shown that texture, motion, and binocular disparity cues generally fail to produce accurate percepts, contrary 101 

to the veridicality assumption (Bozzacchi & Domini, 2015; Bozzacchi et al., 2016; Campagnoli et al., 2017; 102 

Caudek & Domini, 1998; Domini & Braunstein, 1998; Domini & Caudek, 1999; Domini & Caudek, 2003; 103 

Domini et al., 1998; Egan & Todd, 2015; Fantoni et al., 2010; Kopiske et al., 2019; Liu & Todd, 2004; 104 

Norman et al., 2004; Norman et al., 1996; Norman et al., 1995; Perotti et al., 1998; Phillips & Todd, 1996; 105 

Tittle et al., 1995; Todd, 2004; Todd & Bressan, 1990; Todd et al., 1998; Todd & Norman, 2003; Todd et 106 

al., 2014; Todd et al., 1995; Todd & Thaler, 2010; Todd et al., 2005; Todd et al., 2007; Volcic et al., 2013). 107 

Second, it has been shown that when perception is measured with techniques other than depth discrimination 108 

(e.g. by setting an independent 2D probe), the measured variability in perceived depth does not predict the 109 

relative weighting of depth cues (Todd et al., 2010), contrary to the assumption that cue estimates are 110 

represented as probability distributions. These considerations suggest that the widespread application of the 111 
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MLE model to human 3D perception may be inappropriate, and that cue-combination experiments need to 112 

be reinterpreted with an alternative explanation.  113 

Here we aim to develop a theoretical framework of 3D cue combination that does not require any of 114 

the controversial assumptions of the mainstream MLE account described above. Instead, this framework 115 

assumes: (1) A derivation of estimates of 3D properties that are generally biased but under some viewing 116 

conditions may be veridical and (2) are deterministic rather than probabilistic estimates of 3D properties 117 

from single and multiple signals. The combination rule for multiple signals is therefore not dependent on 118 

knowledge of variance within a cue estimate. Instead, this process is optimized to achieve perceptual 119 

stability in face of the natural variation of viewing conditions and material composition of external surfaces. 120 

In the next section, we provide a formal specification of this framework that makes specific quantitative 121 

predictions. We then test these predictions in three experiments. Notably, we find that the model accurately 122 

predicts the reduction in discrimination threshold that occurs when additional depth cues are added to a 123 

stimulus. This finding has been interpreted as a critical piece of evidence for the MLE model, but here we 124 

show that it is entirely consistent with our novel framework. Moreover, our model predicts several novel 125 

results that cannot be predicted by previous theories of cue integration.  126 

 127 

Intrinsic Constraint Theory of multi-cue processing. 128 

The computational model we propose is termed the Intrinsic Constraint (IC) theory, in reference to 129 

the original model from which it was developed (Domini & Caudek, 2009; Domini et al., 2006). 130 

Importantly, however, it is based on entirely different assumptions than the earlier IC theory. 131 

First, we postulate that separate visual modules independently process distinct image regularities. We 132 

assume these modules are tuned to approximate a linear mapping between the distal 3D property 𝑧𝑧 and the 133 

internal 3D estimate 𝑧̂𝑧. The slope of this linear function depends on the strength of the visual information. 134 

For instance, from the image in Figure 1, a texture module extracts the systematic change in shape and 135 

spatial frequency of texture elements resulting in an estimate 𝑧̂𝑧𝑇𝑇 = 𝑘𝑘𝑇𝑇𝑧𝑧. The IC theory defines visual 136 

modules as independent insofar as the slopes 𝑘𝑘 of the transfer functions vary independently. Critically, 137 

notice that in direct contrast to the MLE model, there is no assumption that the transfer function is veridical, 138 

nor is there any explicit representation of the associated sensory noise. These simplifications make the IC 139 

theory far more parsimonious than the MLE model. 140 

To illustrate the independence of the slopes of the transfer functions, consider the bumpy surface 141 

depicted in Figure 1a. Now imagine how the various image signals indicating the 3D relief of this surface 142 
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would be affected by different viewing conditions. For instance, overcast weather would wash out the 143 

shading gradient while leaving the texture pattern unmodified, resulting in the image shown in Figure 1b. On 144 

the other hand, the same surface can be covered with irregular texture rather than the highly regular cheetah 145 

pattern while the lighting condition remains the same. The shading pattern would be unmodified but there 146 

would be no clear gradient of texture elements, as depicted in Figure 1c. In these examples, independent 147 

confounding variables are associated with the material composition of the surface and the sources of 148 

illumination. In a similar fashion, different confounding variables will affect other image signals, such as the 149 

speed of the observer in motion parallax (Fantoni et al., 2012) or the fixation distance between the observer 150 

and the object in binocular disparities (Johnston, 1991). Thus, in general, the slopes of the transfer functions 151 

for modules devoted to processing different image regularities will vary independently across stimuli and 152 

viewing contexts. Note that within this framework, a type of visual information traditionally defined as a 153 

single, monolithic cue may in fact be better understood as multiple cues, so long as they are affected by 154 

independent confounding variables. Indeed, by this definition there are several distinct types of texture cues 155 

that are traditionally treated as a single cue (Chen & Saunders, 2020; Todd & Thaler, 2010; Todd et al., 156 

2007).  157 

Since the slopes of the transfer functions, 𝑘𝑘 are determined by the strengths of individual cues, we 158 

will refer to these parameters as cue strengths. As a consequence of independent cue strengths, we can 159 

represent the totality of the cue estimates derived from a given stimulus as a multidimensional vector. This is 160 

illustrated in Figures 1d-f, which correspond to three stimuli composed of texture and shading information 161 

(Figs. 1a-c). Figure 1d depicts a stimulus for which texture and shading (arbitrarily) have the same strength 162 

(𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑆𝑆). In Figure 1e, the strength of texture is much greater than the strength of shading, as the shading 163 

has been removed (𝑘𝑘𝑇𝑇 ≫ 𝑘𝑘𝑆𝑆). In Figure 1f, the strength of shading is much greater than the strength of 164 

texture, as the texture is highly irregular (𝑘𝑘𝑇𝑇 ≪ 𝑘𝑘𝑆𝑆). Since both 𝑧̂𝑧𝑇𝑇 and 𝑧̂𝑧𝑆𝑆 are proportional to the 3D 165 

property 𝑧𝑧, the length of the combined vector (𝑧𝑧�𝑇𝑇,𝑧𝑧�𝑆𝑆 ) is also proportional to 𝑧𝑧. However, since the combined 166 

vector length depends on the individual cue strengths, it will therefore fluctuate with the confounding 167 

variables. Critically, the central claim of our theory is that the goal of the visual system is to maximize 168 

sensitivity to underlying 3D information while minimizing sensitivity to confounding variables.  169 

In Appendix 1, we show that the combined estimate, calculated as a vector-sum of single-cue signals 170 

scaled by parameters representing the variability of independent confounding variables, achieves this goal. 171 

For the general case of multiple image signals this leads to the Vector Sum Equation:  172 

 173 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/


7 
 

𝑧̂𝑧𝐶𝐶 = �(𝑧̂𝑧1)2 + (𝑧̂𝑧2)2 + ⋯ (𝑧̂𝑧𝑛𝑛)2 = �(𝑘𝑘1𝑧𝑧)2 + (𝑘𝑘2𝑧𝑧)2 + ⋯ (𝑘𝑘𝑛𝑛𝑧𝑧)2  [3] 174 

 175 

There are several nuances to the IC theory that should be noted. First, the value 𝑧𝑧 does not 176 

necessarily imply a single depth value or depth map, but more generally can also signify a slant or a 177 

curvature map. Second, the cue strengths 𝑘𝑘𝑖𝑖 are not free parameters, they are the empirically identified 178 

values for the single-module transfer function. Third, since the model is additive, it may be misunderstood 179 

as producing systematic overestimations as more cues are added to a stimulus. In fact, it is quite the 180 

contrary. We speculate that removing cues brings the model outside of its optimal operating conditions, 181 

which results in underestimation of depth from reduced- or single-cue stimuli. Note that we will refer to the 182 

phenomenon of observing an increase in depth with the addition of cues as the Vector Sum model. 183 

 184 

Figure 1: (a-c) A series of bumpy surfaces with varying levels of texture and shading gradients. The cue strength, ki, 
depends on the “quality” of the gradients, with more detectible gradients producing larger cue strength. Textures with 
identifiable, regular elements and shading gradients with continuously varying luminance intensities produce large cue 
strengths that in this example are assumed to be identical (a). Textures with ambiguous elements (c) and shading with 
small luminance differences (b) produce smaller cue strengths. (d-e) Each cue is analyzed by an independent function 
that produces a depth signal, which is linearly proportional to the distal depth. These signals exist in a multidimensional 
space where the vector length of the signals depend on the depth of the surface and the cue strength of the cue. It is this 
vector length which drives perceived depth magnitude. If both cues form strong gradients (d), then the vector length and 
subsequent perceived depth will be large. Weaker gradients for either cue will reduce this vector length and the 
perceived depth (e, f). 

k = kT S Sk >> kT k << kT S

zT zTzT

z D z D z D

a. b. c.

d. e. f.
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Another important point to highlight is about the source of variability of 3D estimates that is 185 

considered relevant from the IC theory perspective. Previous models assume that depending on the “quality” 186 

(i.e., reliability) of 3D information specifying a given stimulus, 3D estimates will fluctuate from one view of 187 

the stimulus to the next. For instance, multiple views of stimuli carrying the same regular texture pattern of 188 

Figure 1b. will produce a much smaller variation of 3D judgements than repeated viewing of the plaster 189 

texture of Figure 1c. In contrast, the IC theory only predicts negligible fluctuations, due to unavoidable 190 

neural noise and slight variations in the texture patterns from one view to the next. The relevant variability 191 

of 3D estimates affecting repeated viewing of the same distal structure is instead due to a change of the 192 

confounding variables (e.g. the material composition of the object, resulting in a change of the strength of 193 

the texture pattern). What is fundamental to this theory is that the Vector Sum combination rule is blind to 194 

the strength of each individual cue. Therefore, it does not, as MLE models, dynamically weigh the output of 195 

single-cue modules according to their individual “quality”. 196 

The main goal of this study is to test the efficacy of the Vector Sum model in predicting several 197 

documented properties of depth perception while reinterpreting the mechanisms which bring about cue 198 

processing and combination. Experiment 1 examines the inaccuracy of single-cue estimates and the 199 

systematic biases that can be expected when cues are combined. We show that these biases can be predicted 200 

without free parameters through the Vector Sum Model. Experiment 2 replicates the previous finding that 201 

discrimination thresholds decrease for combined-cue stimuli relative to single-cues. We discuss why the 202 

Vector Sum model and the MLE model make similar predictions regarding discrimination thresholds, but 203 

for very different reasons (i.e., reasons related to the properties of linear cue strengths versus the properties 204 

of probability distributions). Experiment 3 provides evidence that cues-to-flatness are unlikely to allow the 205 

MLE model to account for the biases that the Vector Sum model successfully predicts. 206 

 207 

Experiment 1 208 

A first test of the Intrinsic Constraint theory is to verify that the combination of multiple cues leads 209 

to depth estimates in alignment with the Vector Sum Model. According to Equation 3, the perceived depth 210 

of a combined-cue stimulus is predicted to be larger than the perceived depth of single-cue stimuli. For the 211 

specific case of texture and binocular disparities Equation 3 can be reduced to the following equation: 212 

 213 

𝑧̂𝑧𝐶𝐶 = �(𝑘𝑘𝑇𝑇𝑧𝑧𝑇𝑇)2 + (𝑘𝑘𝐷𝐷𝑧𝑧𝐷𝐷)2  [4] 214 

 215 
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In single-cue conditions only one cue is present, which means that the cue strength of all absent cues is zero. 216 

We studied the perceived depth of a sinusoidally corrugated surface by manipulating the amplitude of the 217 

sinusoid. In the disparity-only condition, the surface was specified by a random-dot stereogram (RDS) 218 

which did not provide any discernible texture information (i.e., 𝑘𝑘𝑇𝑇 = 0). In the texture-only condition, a 219 

compelling texture gradient specified the depth profile of the surface while binocular disparities were set to 220 

zero (𝑧𝑧𝐷𝐷 = 0; equivalent to  𝑘𝑘𝐷𝐷 = 0 in the Vector Sum model). The choice of rendering the texture-only 221 

stimulus binocularly was made for the practical reason of keeping the vergence signal constant in all 222 

viewing conditions. In the combined-cue condition both texture and disparity information were present in 223 

the stimulus. 224 

 225 

Experiment 1: Methods 226 

Participants 227 

Eleven participants (3 being the authors) were drawn from the Brown University community and 228 

participants completed Experiment 1. Participants either received $12/hour or course credit as compensation. 229 

Participants provided informed consent prior to testing. The procedure reported was approved by the Brown 230 

University Institutional Review Board. 231 

 232 

Apparatus 233 

Experiments were completed on a Dell Precision T7500 powered by a nVidia Quadro 4000 graphics 234 

card. Stimuli were simulated on a Sony Triniton GDM-f520 CRT monitor with a resolution of 1280x1024 at 235 

a refresh rate of 85hz. The display was projected onto a half-silvered mirror that was slanted 45 deg about 236 

the vertical axis in front of the participant with respect to the fronto-parallel plane. The monitor was 237 

repositioned to different viewing distances via a Velmex linear actuator (Velmex, Inc., Bloomfield, NY). 238 

Binocular disparity was provided using NVIDIA 3D Vision® 2 wireless glasses (NVIDIA, Santa Clara, CA) 239 

which were synchronized to the refresh rate of the monitor to provide unique images to each eye. The 240 

interocular distance (IOD) of every participant was measured using a digital pupillometer (Reichert Inc., 241 

Depew, NY). Participants viewed the stimuli while positioned on a chinrest. 242 

  243 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/


10 
 

Stimuli 244 

The target stimuli were three-dimensional corrugated surfaces whose depth profile followed a 245 

sinusoidal modulation along the vertical axis. An example stimulus and probe presented to participants is 246 

shown in Figure 2a. The corrugated surface was seen through a square frame subtending approximately 8° of 247 

visual angle to eliminate contour information. The wave period was 4.50° of visual angle.  248 

Participants made depth judgments by adjusting a two-dimensional sinusoidal probe whose 249 

horizontal amplitude varied along the vertical axis. The wave period of the probe also subtended 4.50° of 250 

visual angle. An example of the probe with its amplitude set to the correct magnitude is shown below the 251 

corrugated surface in Figure 2b. The phase of the 3D surface was randomly varied on each trial to eliminate 252 

depth adaptation. However, the phase of the probe line remained constant throughout all sessions. 253 

Participants judged the depth of three types of 3D information: texture-only, disparity-only, and 254 

combined-cue stimuli. Texture-only sine waves were constructed by volumetric texturing. This process first 255 

involved randomly placing the centers of spheres with radii subtending visual angle of 0.55° onto the 256 

simulated 3D corrugated surface. Any portion of the wave that intersected a sphere was darkened relative to 257 

the surrounding red surface. This produced a compelling texture gradient on the image projection. To 258 

eliminate depth order ambiguity, shading information was produced by placing a single directional light 259 

source from above oriented at a 45° with respect to the fronto-parallel plane. We refer to this as texture cue 260 

for simplicity. To keep a steady fixation at the center of the display as in the disparity-only and combined-261 

cue conditions, texture-only stimuli were also seen binocularly.  262 

 263 

Figure 2: An example of a monocular view of the sinusoidal stimulus (a) and the 2D probe (b). The surface 
of the stimulus is defined by shading and texture information. This combination of depth cues is referred to 
as “texture cue” for simplicity. In the combined-cue condition the 3D structure was also specified by 
binocular disparities. Participants adjusted the amplitude of the 2D probe to report perceived depth. In this 
example, the probe is set to the correct amplitude which matches the simulated depth profile of the surface. 

a. b.
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Disparity-only surfaces were constructed with a random dot stereogram consisting of 400 dots each 264 

with a visual angle of 0.1°. The dots were uniformly distributed on the image plane with the constraint that 265 

they did not overlap. Because part of the surface was occluded by a frame, there were on average 320 visible 266 

dots. Two views were rendered by placing the rendering cameras at the estimated locations of the observer’s 267 

nodal points, which were determined after measuring for each observer the interocular distance (IOD). 268 

NVIDIA 3D Vision® 2 wireless stereo-glasses were used to separate the projection of the left and right 269 

images for the appropriate eye. Combined-cue stimuli were obtained by rendering stereoscopically the 270 

polka-dot textured surfaces. 271 

 272 

Procedure 273 

Participants completed two blocks within a single session. Each block had a constant fixation 274 

distance of either 40 or 80 cm. Within each block, participants viewed sinusoidal surfaces with four different 275 

peak-to-trough depths (2.5, 5, 10, or 15 mm) defined by one of three cue types (disparity-only, texture-only, 276 

and combined-cue), with 7 repetitions for each combination of depth and cue type. Thus, each block 277 

involved 84 judgments and lasted approximately 20 minutes. At the onset of each trial, a fixation cross was 278 

displayed for 700 ms, followed by the presentation of the surface stimulus, as well as a 2D sine wave probe 279 

icon at the bottom of the display (Fig. 2b). Participants adjusted the amplitude of the icon until the peak-to-280 

trough length matched their perceived depth of the target stimulus. During the adjustment they were free to 281 

move their eyes back and forth between the 3D surface and the 2D icon. Once they were satisfied with their 282 

setting, they submitted their judgment with a button press, which also initiated the next trial. Before the 283 

experimental session, participants completed a small number of practice trials with stimuli of random 284 

depths. No feedback about response accuracy was provided at any point. 285 

 286 

Experiment 1: Results and Discussion 287 

  Qualitatively, the Vector Sum model predicts that the combined-cue stimulus should be perceived 288 

deeper than the single-cue stimuli. Figure 3 shows the average probe settings across cues (denoted by line 289 

color) and fixation distances (denoted by separate panels). A repeated-measures ANOVA found a main 290 

effect of simulated depth (F(1,10) = 272.67, p = 1.4e-8 ; Generalized η2 = 0.89) and cue type (F(2,10) = 291 

48.40, p = 2.2e-8; Generalized η2 = 0.43). For both fixation distances, the perceived depth of combined-cue 292 

stimuli (purple diamonds) was consistently greater than the perceived depth of single-cue stimuli (red 293 

squares, blue circles). A Bonferroni-corrected post-hoc analysis confirmed that perceived depth in the 294 
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combined-cue condition was larger than the perceived depth in both the disparity-only condition (T(10) = 295 

4.42, p = 0.0039) and the texture-only condition (T(10) = 10.59, p = 2.8e-6). Additionally, texture-only 296 

stimuli were in general perceived as shallower than disparity-only stimuli, demonstrating cue-specific biases 297 

(T(10) = -5.02, p = 0.0016).  298 

All interactions were significant. The interaction between cue type and fixation distance (F(2,20) = 299 

3.76, p = 0.041; Generalized η2 = 0.03), between simulated depth and fixation distance (F(1,10) = 7.19, p = 300 

0.023; Generalized η2 = 0.07),  and between all three factors (F(2,20) = 5.11, p = 0.016; Generalized η2 = 301 

0.031) reflects the dependence of cue strength on how the fixation distance influences the quality of the cue. 302 

This was expected particularly for the disparity-only cue where a lack of depth constancy across distances is 303 

a well-documented phenomenon (Johnston, 1991). The interaction between simulated depth and cue type 304 

(F(2,20) = 45.42, p = 3.7e-8; Generalized η2 = 0.20) further supports the existence of cue-specific biases due 305 

to differing cue strengths between cue types. 306 

 307 

Figure 3 Average depth judgments as function of simulated depth for viewing distances of 40 (left panel) and 80 cm 
(right panel) with error bars showing the standard error of the mean. The horizontal axis labeled “Simulated Depth” 
represents the peak to trough depth of the corrugated 3D surface while the vertical axis labeled “Perceived Depth” 
represents the set amplitude of the 2D probe. The different cue conditions are denoted by the shape and color of the 
data points: purple squares for the combined-cue condition, red diamonds for the disparity condition, and blue 
triangles for the texture condition. The Vector Sum  prediction is denoted by the grey line with 95% confidence 
intervals at each point. The dashed grey line is the unity line denoting veridical perception. 

40 cm 80 cm

0 5 10 15 0 5 10 15
0

10

20

30

Simulated Depth (mm)

Pe
rc

ei
ve

d 
D

ep
th

 (m
m

)

Disparity
Texture
Combined
Vector Sum

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/


13 
 

The Vector Sum model predicts that the perceived depth of the combined cue should be the square 308 

root of the sum of squares of the perceived depth of the single-cues (eqs. 3 and 4). Figure 3 plots the average 309 

predictions of the Vector Sum model across participants with 95% confidence intervals (gray). Given that 310 

we assume a (ideally) linear mapping, the model can directly predict the cue strength of the combined-cue 311 

from those of the single-cues through Equation 4. The prediction is simplified to the following since the 312 

simulated depth rendered for each cue is the same (i.e., there are no cue conflicts): 313 

 314 

𝑧̂𝑧𝐶𝐶 = �(𝑘𝑘𝑇𝑇𝑧𝑧)2 + (𝑘𝑘𝐷𝐷𝑧𝑧)2 = �𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2 𝑧𝑧 =  𝑘𝑘𝐶𝐶𝑧𝑧  [5] 315 

 316 

Since the slopes of the functions relating perceived to distal depth are proxies for the cue strengths, Equation 317 

5 predicts the slope of the combined-cue estimate (𝑘𝑘𝐶𝐶 = �𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2) from the slopes of the single-cue 318 

estimates (𝑘𝑘𝑇𝑇 and 𝑘𝑘𝐷𝐷) without any free parameters. Figure 4 shows the predicted slopes plotted against the 319 

measured slopes for each participant. The correlation coefficient r was found to be 0.79 while a linear fit 320 

with an intercept of zero found a slope of 0.96 (SE = 0.034) showing a close match to the unity line. 321 

Overall, these results demonstrate that the Vector Sum Model produces highly accurate predictions 322 

of the relationship between simulated and perceived depth in single- and combined-cue conditions, with no 323 

free parameters. In contrast, the results clearly contradict the MLE model prediction that the combined-cue 324 

perceived depth will fall between the single-cue perceived depths. Although the MLE model predictions 325 

may be amended by introducing cues-to-flatness, we will provide evidence in Experiment 3 rejecting the 326 

cues-to-flatness explanation. Additionally, single-cue and combined-cue depths were consistently 327 

overestimated in five of six stimulus conditions, contradicting the veridicality assumption of the MLE 328 

model. 329 

 If previous findings from ostensibly similar tasks have supported the MLE model (Hillis et al., 2004; 330 

Knill & Saunders, 2003; Lovell et al., 2012) then why does the MLE model fail in predicting these results? 331 

A critical difference is that observers in this task provided absolute judgments of depth using a probe figure, 332 

whereas in earlier studies observers made relative judgments by comparing or matching two 3D shapes. 333 

While relative judgment tasks are often useful, they cannot reveal systematic biases in depth perception. For 334 

example, Hillis et al. (2004) asked participants to match the perceived slant of an adjustable cue-consistent 335 

surface with the slant of a fixed cue-conflict surface (i.e., the simulated slants from texture and from 336 

disparity were either matched or mismatched). The cue-consistent slant that yielded a match was predicted 337 
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through the MLE model (Equation 1). However, there is no guarantee that either surface was perceived 338 

veridically. Nevertheless, it is notable that discrimination thresholds measured on single-cue stimuli were 339 

indeed good predictors of the weights estimated in the slant matching task. The IC theory, however, 340 

provides a radically different interpretation of discrimination thresholds. When this new interpretation is 341 

adopted it can be shown that an approximation of the Vector Sum model makes identical predictions of the 342 

results of Hillis et al. (2004) to those of the MLE model (Appendix 2). 343 

 344 

Cue Uncertainty and Judgment Variance. 345 

An important prediction of the MLE model is that the variance of the combined-cue estimate should 346 

be smaller than the variances of the single-cue estimates (eq. 2). Test of this MLE prediction is usually 347 

conducted by measuring discrimination thresholds of single-cue and combined-cue stimuli. However, noise 348 

coming from depth estimation should also surface in the standard deviation of probe adjustments.  We should 349 

therefore expect that the standard deviation of probe adjustments in the combined-cue condition should be 350 

smaller than that measured in the single-cue conditions. Alternatively, the Vector Sum model assumes that 351 

Figure 4: Observed combined-cue strength vs. predicted combined-cue strength. The predicted combined-cue 
strength is computed with the Vector Sum model without free parameters directly from the single-cue strengths. 
The single-cue and combined-cue strengths were determined by the slopes of linear fits. Each data point 
represents a subject either in the 40 cm (red) or 80 cm (blue) fixation distance condition. The dashed grey line 
represents accurate prediction. The gray area denotes the 95% confidence interval of the linear fit (black line) of 
the observed vs. the predicted cue-strength. 
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depth estimates are basically deterministic, only affected by negligible neural noise.  According to this 352 

theory variability in perceptual judgements is all due to late-stage, task related processes independent of the 353 

stimulus itself. We therefore should expect that there is no difference between the cue types for the response 354 

variance. Given the different predictions of the two models, we tested whether there was a difference in the 355 

SD between the cues. Figure 5 shows the standard deviation of the probe-adjustment task as function of 356 

simulated depth in all experimental conditions. In this figure the prediction of the MLE model for the 357 

standard deviation of the combined-cue adjustments is shown in gray. 358 

 359 

 A repeated measures ANOVA indicated one main effect of simulated depth (F(1,10) = 54.75, p = 360 

2.3e-5; Generalized η2 = 0.57). This follows the classic effect of Weber’s law where the response variance is 361 

proportional to the magnitude of the stimulus, in this case the surface depth. There was also an interaction 362 

between the cue type and simulated depth (F(2,20) = 7.31, p = 0.0041; Generalized η2 = 0.09). However, 363 

there was no main effect of cue type (F(2,20) = 0.45, p = 0.65; Generalized η2 = 0.0053). This can be easily 364 

observed in Figure 5 where the combined-cue standard deviation (purple) is not smaller than the single-cue 365 

Figure 5: The average standard deviations of the probe adjustment task in Experiment 1 with error bars averaged 
across subjects. The MLE predictions together with the 95% confidence intervals are shown in gray. The do not align 
with the MLE predictions since the SDs observed in the combined-cue condition are not smaller the SDs observed in 
the single-cue conditions.  
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standard deviations, as predicted by the MLE model (gray). Instead, these results support the prediction of 366 

the Vector Sum model that noise observed in perceptual judgements is stimulus independent. Because the 367 

Vector Sum predicts a null effect of cue type, we conducted a Bayes factor analysis using the BayesFactor 368 

package in R (Morey & Rouder, 2021). A Bayes factor of 0.055 indicated strong evidence for a model 369 

including fixed effects of simulated depth and fixation distance, compared to a model including the same 370 

fixed effects with the inclusion of cue type. Both models included a random effect for participants. 371 

 These results are particularly intriguing since they seem to be inconsistent with findings obtained in 372 

experiments where discrimination thresholds are used to test the predictions of the MLE model. Indeed, 373 

results from discrimination threshold experiments suggest that the variance of combined-cue stimuli is 374 

smaller than the variance of single-cue stimuli by an amount predicted by Equation 2. This quantitative 375 

prediction, however, is also compatible with the prediction of the Vector Sum model once discrimination 376 

thresholds are interpreted in a radically different way. 377 

 378 

Experiment 2 379 

The central hypothesis of the MLE framework is that cue combination leads to an increase in the 380 

reliability of the depth estimate. In many previous investigations, the reliability of a depth estimate has been 381 

assumed to be directly reflected by the just-noticeable difference (JND) in a two-interval forced choice 382 

(2IFC) task. The JND is the difference in distal depth that leads to 84% accuracy in identifying the deeper 383 

stimulus. Under the MLE model, this is interpreted as the standard deviation of the noise in the estimation 384 

process. Figure 6a depicts how in typical MLE models JNDs arise from a noise-free decision process that 385 

compares two noisy estimates. For example, the JNDs are larger for a disparity stimulus at near viewing 386 

distances than at far viewing distances due to less estimation noise.. Studies using this approach have 387 

repeatedly demonstrated that single-cue and combined-cue JNDs adhere to the relationship predicted by the 388 

MLE model (eq. 2; Ernst & Banks, 2002; Hillis et al., 2004; Knill & Saunders, 2003). 389 

In contrast, the IC theory assumes that the noise in the estimation process is negligible. In other 390 

words, perceived depth is approximately the same across repeated viewings of the same stimulus under the 391 

same viewing conditions. However, noise in the response distributions of a task (task noise; often neglected 392 

by MLE models of cue combination) may arise due to factors such as response execution and memory 393 

requirements. Importantly, this noise is independent of distal stimulus properties such as texture quality or 394 

viewing distance. This leads to a different interpretation of the JND: given a particular cue strength, the JND 395 

is the change in distal stimulus magnitude needed to produce a perceptual difference that is large enough to 396 
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overcome the effects of task noise 𝜎𝜎𝑁𝑁. As shown in the hypothetical experiment of Figure 6b, the JND is 397 

larger at the far viewing distance because the cue strength becomes weaker (consistent with the fact that 398 

binocular disparities decrease with viewing distance). We see that the JND is inversely proportional to the 399 

Figure 6: Two different interpretations of JND according to Bayesian theories (a) and the IC theory (b). a. 
Bayesian theories assume that variability of depth judgments are due to uncertainty of 3D estimates. For instance, 
disparities at near distances (left) are more reliable than disparities at far distances (right). Therefore the 
distribution of depth estimates are narrower at near distances than at far distances. In the example, only a small 
change of 5mm in distal depth is necessary to overcome the perceptual noise at near distances. However, at far 
distances a change of 10mm is needed. Note that the function relating distal depth to estimated depth is veridical. 
b. The IC theory predicts nearly deterministic estimates. However, it also predicts that the main cause of 
variability of perceptual judgements is task related. For the IC theory  the JND measures the depth difference 
needed to overcome the task related noise. When the cue-strength is large, as what happens for disparity fields at 
near distances, only a small distal depth difference is needed. When the cue-strength is small, as it is for disparity 
fields at far distances, a larger distal depth difference is needed. 
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cue strength (𝐽𝐽𝐽𝐽𝐽𝐽 = 𝜎𝜎𝑁𝑁
𝑘𝑘

). Recall that the Vector Sum model posits that adding cues to a stimulus increases 400 

the combined-cue strength according to the magnitude of the vector sum. Since the JND is inversely 401 

proportional to cue strength, the Vector Sum model therefore predicts that the JND shrinks with additional 402 

cues, similar to the MLE model. Specifically, the single-cue and combined-cue JNDs for stim uli defined by 403 

texture and/or disparity cues are given by 𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇 = 𝜎𝜎𝑁𝑁
𝑘𝑘𝑇𝑇

 , 𝐽𝐽𝐽𝐽𝐽𝐽𝐷𝐷 = 𝜎𝜎𝑁𝑁
𝑘𝑘𝐷𝐷

, and 𝐽𝐽𝐽𝐽𝐽𝐽𝐶𝐶 = 𝜎𝜎𝑁𝑁
𝑘𝑘𝐶𝐶

= 𝜎𝜎𝑁𝑁

�𝑘𝑘𝑇𝑇2+𝑘𝑘𝐷𝐷2
. Appendix 3 404 

shows how, from these equations, we can predict the combined-cue JND directly from the single-cue JNDs 405 

as follows: 1
𝐽𝐽𝐽𝐽𝐽𝐽𝐶𝐶

2 = 1
𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇

2 + 1
𝐽𝐽𝐽𝐽𝐽𝐽𝐷𝐷

2 . Notice that this equation is formally identical to Equation 2 of the MLE 406 

model, where JNDs are assumed to measure the estimation noise (i.e., 𝐽𝐽𝐽𝐽𝐽𝐽𝑖𝑖 = 𝜎𝜎𝑖𝑖). However, the Vector 407 

Sum model predicts that this relationship will hold at the same perceived depth (in order to equate task-408 

related task noise, as the decision process operates on perceived depth), whereas the MLE model predicts it 409 

will hold at the same simulated depth (in order to equate estimation noise). Thus, the predictions of the two 410 

models for a given dataset may slightly differ, as we will show.  411 

The goal of Experiment 2 was to demonstrate that the Vector Sum model correctly predicts the 412 

relationship between single-cue and combined-cue JNDs for the same stimuli presented in Experiment 1. 413 

Additionally, we aimed to show that this relationship is consistent with the independently measured cue 414 

strengths obtained in Experiment 1. These findings demonstrate that the IC theory’s interpretation of the 415 

JND is highly consistent with empirical results of depth discrimination tasks.  416 

 417 

Experiment 2: Methods 418 

Participants 419 

Eight participants from Experiment 1 returned to complete Experiment 2, including two of the 420 

authors. 421 

 422 

Stimuli 423 

Stimuli were identical to those in Experiment 1. However, in this experiment participants did not 424 

provide a judgment of absolute perceived depth. Instead, they performed a 2IFC depth discrimination task. 425 

Note that to make quantitative predictions of JNDs from the Vector Sum model, the perceived depth must be 426 

matched across the single-cue and combined cue standards so that the task noise, which is dependent on 427 

perceived depth, is kept constant. Thus, we used data from Experiment 1 to infer, for each participant in 428 

each viewing condition, a set of three simulated depths for texture-only, disparity-only, and combined-cue 429 
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stimuli that elicited the same perceived depth (Figure 7a, horizontal lines). These simulated depths served as 430 

the standard stimuli in the 2IFC tasks, around which the JND was measured. For each viewing distance, we 431 

defined a large standard and small standard. The perceived depth that defined the small standard was 432 

anchored by the cue that elicited the greatest response at a distal depth of 2.5 mm. For the representative 433 

participant depicted in Figure 6a, the small standard corresponded to a perceived depth of approximately 4.5 434 

mm, as this was the greatest reported perceived depth at 2.5 mm of simulated depth. Similarly, the simulated 435 

depth values for the large standard stimuli were anchored by the smallest perceived depth for a simulated 436 

depth of 15 mm. The simulated depth values for the various standard stimuli were chosen by interpolation 437 

using second-order curvilinear fits (see Fig. 7a). Through this procedure we determined 12 standard stimuli 438 

(3 cues x 2 viewing distances x 2 perceived depths) to be used in a 2IFC depth-discrimination task. 439 

  440 

Figure 7: a. An example from a representative observer of how simulated depths for the fixed standards were chosen at 
40 cm fixation distance. Two perceived depths were chosen, the largest and the smallest possible given the range of 
data. For a given perceived depth, each cue requires a different simulated depth to elicit that same perceived depth. 
These unique simulated depths were inferred for each cue through the intersection between curvilinear fits to the data 
(solid curved lines) and horizontal lines set at the preferred perceived depth. The vertical lines indicate these inferred 
values. b. MLE predictions need JNDs measured at the same simulated pedestal depth values. However, we measured 
the JNDs at slightly different pedestal values (solid circles). We therefore inferred the JNDs at the required pedestal 
values through interpolation or extrapolation (solid squares). 
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Procedure  441 

Participants performed a 2IFC task in which the perceived depth of a standard stimulus with a fixed 442 

simulated depth was compared to that of a comparison stimulus whose simulated depth was varied through a 443 

staircase procedure. Four staircases were used in each condition (2-up-1-down, 1-up-2-down, 3-up-1-down, 444 

and 1-up-3-down) with 12 reversals each. On each trial, a fixation cross was displayed (700 ms), followed 445 

by the first stimulus (1000 ms), followed by a blank screen (1000 ms), then, again, the fixation cross (700 446 

ms), and finally the second stimulus (1000 ms). Participants then reported with no time constraint which 447 

surface was perceived as having greater peak-to-trough depth through a keypress. 448 

Response data were analyzed using a psychometric analysis package (Wichmann & Hill, 2001) in 449 

MATLAB. The data from each staircase procedure were fit with a cumulative Gaussian function. The point 450 

of subjective equality (PSE) was defined as the simulated depth at which participants responded with 50% 451 

accuracy. The JND was defined at the difference between the PSE and the simulated depth at which 452 

participants responded with 84% accuracy. 453 

 454 

Experiment 2: Results and Discussion 455 

Figure 8 (colored bars) shows the average JND in each stimulus condition. On the horizontal axis, 456 

we indicate the average perceived depth corresponding to the two standard stimuli at each viewing distance. 457 

A repeated-measures ANOVA reported a significant main effect of cue (F(2, 14) = 25.42, p = 2.2e-5; 458 

Generalized η2 = 0.41). A critical prediction of both the MLE and Vector Sum model is that the combined-459 

cue elicits a smaller JND than the single cue conditions. Bonferroni-corrected t-tests confirmed that the JND 460 

for the combined-cue stimuli (purple) was smaller than the JND for the disparity-only (red) (t(7) = -4.60, p = 461 

0.005) and texture-only stimuli (blue) (t(7) = -7.93, p < 1.9e-4) conditions. Additionally, we found a 462 

significant main effect of perceived depth (F(1, 7) = 55.54, p = 1.4e-4; Generalized η2 = 0.38) with JNDs 463 

increasing for larger perceived depths. We suspect that this may be due to a form of Weber’s Law where the 464 

noise from the encoding and decoding of perceived depth to and from memory depends on the magnitude of 465 

perceived depth. We explore the implications of Weber’s Law further in the next section. 466 

We also found significant interactions between perceived depth and viewing distance (F(1, 7) = 8.17, 467 

p = 0.024; Generalized η2 = 0.052), between cue type and perceived depth (F(2, 14) = 11.31, p = 0.0012; 468 

Generalized η2 = 0.20), and across all three factors of cue type, perceived depth and viewing distance (F(2, 469 

14) = 5.54, p = 0.017; Generalized η2 = 0.074). These interactions, similarly, to Experiment 1, suggest a 470 

dependence of the cue strength on the cues and their viewing conditions. However, the key result is that the 471 
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combined-cue JND is smaller than the single-cue JND in all conditions. Although this is often taken as 472 

evidence for the MLE model, here we show that it can also be predicted by the Vector Sum model. 473 

The gray bars in Figure 8 show the predictions of the Vector Sum model (dark gray) and the MLE 474 

model (light gray) for the combined-cue JND. Recall that the Vector Sum model predictions are based on 475 

the single-cue JNDs for standard simulated depths that elicit the same perceived depth as the combined-cue 476 

stimulus. As mentioned above, this guarantees that the task noise was approximately matched across the 477 

three cue conditions. In contrast, the MLE model predictions are based on the single-cue JNDs for single-478 

cue stimuli with the same simulated depths as the combined-cue stimulus. Although we did not measure the 479 

single-cue JNDs at fixed simulated depths, Figure 7b demonstrates how, for each participant, we linearly 480 

interpolated or extrapolated slightly from the measured JNDs (circles) to determine appropriate values for 481 

the MLE model (squares). Regardless, in Figure 8 we see that the predictions for the two models are very 482 

similar, as should be expected, with no significant difference in accuracy (t(7) = -0.39, p = 0.71).  483 

Figure 8: The Just-Noticeable Difference averaged across participants along with model predictions. The horizontal 
axis displays the average perceived depth of the standard. The perceived depth of the standard was chosen uniquely for 
each subject based on procedures stated in the previous section (See Figure 7a).  The vertical axis represents the JND 
magnitude. Red, blue, and purple show JNDs measured for the disparity-only, texture-only, and the combined cue, 
respectively. Dark grey represents the Vector Sum model predictions while light grey represents MLE predictions. 
Error bars show standard error around the between-subject averages. 
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Relationship Between JND and cue strength. 484 

The IC theory introduces the idea that the JND is not primarily a measure of estimation noise 485 

(which is assumed to be negligible), but rather than the noise that emerges from task-related demands 486 

involved in comparing two perceived depths across a time interval (e.g., temporal decay in memory). 487 

In a 2IFC task, the JND is determined by the cue strength of the varying comparison stimulus. This is 488 

because the cue strength determines how much change in the simulated depth of the comparison is 489 

necessary to produce a perceived depth difference large enough to overcome the task noise, 𝜎𝜎𝑁𝑁 (Fig. 490 

6b). Thus, the JND depends on task noise and sensitivity to changes in distal depth. Furthermore, we 491 

expect that the JND is susceptible to Weber’s law, where increases in perceived depth will cause an 492 

increase in the standard deviation of the task noise. If we therefore assume that 𝜎𝜎𝑁𝑁 increases with the 493 

perceived depth 𝑧̂𝑧𝑠𝑠 of the standard stimulus through a Weber fraction 𝑊𝑊𝐼𝐼𝐼𝐼  then 𝜎𝜎𝑁𝑁 = 𝑊𝑊𝐼𝐼𝐼𝐼𝑧̂𝑧𝑠𝑠 + 𝑐𝑐, 494 

where 𝑐𝑐 is a constant reflecting a baseline noise. Since the  𝐽𝐽𝐽𝐽𝐽𝐽 = 𝜎𝜎𝑁𝑁
𝑘𝑘𝑖𝑖𝑖𝑖

, where 𝑘𝑘𝑖𝑖𝑖𝑖 is the cue strength 495 

of cue 𝑖𝑖 (disparity, texture, and the combined-cue) for viewing condition j (40 cm and 80 cm fixation 496 

distance), we can obtain 𝐽𝐽𝐽𝐽𝐽𝐽 = 𝑊𝑊𝐼𝐼𝐼𝐼𝑧̂𝑧𝑠𝑠+𝑐𝑐
𝑘𝑘𝑖𝑖𝑖𝑖

.  Because the perceived depth of the standard is 𝑧̂𝑧𝑠𝑠 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑧𝑧𝑠𝑠, 497 

where 𝑧𝑧𝑠𝑠 is the distal depth of the standard stimulus, the JND can be modeled relative to the distal 498 

depth by Equation 6:  499 

𝐽𝐽𝐽𝐽𝐽𝐽 = 𝑊𝑊𝐼𝐼𝐼𝐼𝑧𝑧𝑠𝑠 + 𝑐𝑐
𝑘𝑘𝑖𝑖𝑖𝑖

 [6] 500 

We expect that the JND depends (1) on the distal depth of the standard because of the Weber law, and, 501 

most critically, (2) on the cue-strength of the comparison 𝑘𝑘𝑖𝑖𝑖𝑖. We set, for each participant, the cue strength 502 

𝑘𝑘𝑖𝑖𝑖𝑖 to the individual slopes from linear fits mapping the simulated depths observed in Experiment 1 to the 503 

perceived depths. To infer the Weber fraction and the noise coefficient, we fit Equation 6 to the estimated 504 

JNDs of each participant. We found both the Weber fraction (M  = 0.13 mm, SE = 0.031 mm) and the noise 505 

coefficient (M = 1.66 mm, SE = 0.36 mm) to be significantly greater than 0 (t(7) = 4.11, p = 0.0045 and t(7) 506 

= 4.57, p = 0.0026 respectively). Critical here is that the JND measured in Experiment 2 depends on the cue 507 

strength observed in experiment 1 (Fig. 9a). Using Equation 6, we can discount for each participant from the 508 

observed JND the contribution of the Weber law and the constant reflecting the baseline noise so to produce 509 

a noise-corrected JND (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐽𝐽𝐽𝐽𝐽𝐽 = 𝐽𝐽𝐽𝐽𝐽𝐽−𝑊𝑊𝐼𝐼𝐼𝐼𝑧𝑧𝑠𝑠
𝑐𝑐

). Figure 9b plots the relationship between the cue-510 

strength and corrected JND averaged across participants. Horizontal error bars indicate the variability of the 511 

cue-strength across participants and vertical error bars the variability of the corrected JND across participants. 512 
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Once the Weber fraction and the baseline noise constant are factored out, the JND is shown to be almost 513 

entirely dependent on the cue-strength (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐽𝐽𝐽𝐽𝐽𝐽 = 1
𝑘𝑘𝑖𝑖𝑖𝑖

) and independent of the cue type as predicted 514 

by the MLE model. For instance, the JND of the disparity stimulus at the close viewing distance (Fig. 9b, red 515 

circles) is smaller than the JND at the larger viewing distance (Fig. 9b, red triangles) because the strength of 516 

disparity at the smaller viewing distances is larger than the strength of disparity at the larger viewing distance.  517 

It should be noted that the condition for the large texture-only standard (average simulated depth of 518 

17 mm) at 40 cm fixation distance was removed from this analysis for two reasons. First, we noticed that the 519 

JND in this condition is much larger than in the other conditions and, therefore, it constitutes an outlier (Fig. 520 

8). Second, we also noticed that the function relating perceived depth to simulated depth for this condition is 521 

non-linear and seems to plateau at the largest simulated depth (Fig3, left panel, blue line). Because of this, the 522 

strength of the texture cue for larger depth values is smaller than the strength in correspondence to smaller 523 

depth values and, therefore, the JND at larger depth values is larger than the JND at smaller depth values. 524 

In summary, these results indicate that the JND in a 2IFC t ask can be almost entirely explained by 525 

the cue-strength and not by the noise of depth estimates. This finding aligns with the predictions of the IC 526 

theory that postulates a deterministic mapping of depth modules between distal 3D properties and the module 527 

outputs. 528 

Figure 9: a. The JND against the cue strength cue strength extracted from Experiment 1 averaged across participants 
with SE bars. There is an inverse relationship between cue strength and the JND. b. Task noise corrected JNDs plotted 
against the cue-strength. The Vector Sum model predicts that there should be a hyperbolic relationship between the 
JND and the cue strength, which is plotted by the grey curve.  
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 529 

Experiment 3  530 

The main aim of this experiment was to test a possible alternative interpretation of the results of 531 

Experiment 1, which are in agreement with the predictions of the Vector Sum model. The MLE model could 532 

accommodate the finding that combined-cue stimuli are perceived as deeper than single-cue stimuli once the 533 

role of “cues-to-flatness” is considered. Proponents of the MLE theory argue that when stimuli are rendered 534 

on flat displays, experimenters typically fail to eliminate all uncontrolled depth cues. As a result, residual 535 

depth information (e.g., the absence of a blur gradient) may specify the flat surface of the screen (Watt et al., 536 

2005). If cues-to-flatness influence depth judgments, then single-cue conditions are inadvertently testing the 537 

combination of the single cue and the flatness cues. In this case, the MLE model predicts that the combined-538 

cue stimulus may be perceived as deeper than the single-cue stimuli. Briefly, this is because the perceived 539 

depths of the single-cue stimuli are influenced more by the flatness cues than the combined-cue stimuli, due 540 

to differences in single-cue versus combined-cue reliabilities. On the other hand, the Vector Sum model 541 

directly predicts this well-known bias without postulating the influence of flatness cues. In fact, according to 542 

the Vector Sum model, flatness cues should have no influence on perceived depth because they specify zero 543 

depth and thus do not contribute to the vector sum.  544 

In this experiment, we compared the two models predictions by testing whether intentionally adding 545 

flatness cues would reduce the perceived depth of a stimulus. In Experiment 3A, we compared perceived 546 

depth under monocular versus binocular viewing of the texture-only stimulus from Experiment 1. Binocular 547 

viewing of a texture-only stimulus with zero disparities provides a reliable flatness cue, akin to viewing a 548 

picture on a printed page, whereas monocular viewing of the same stimulus provides no such cue from 549 

disparities. Under the Vector Sum model, monocular and binocular viewing of a stimulus are equivalent, as 550 

they both have the effect of nullifying the disparity term in the Vector Sum equation (by setting either 𝑘𝑘𝐷𝐷 =551 

0 or 𝑧𝑧𝐷𝐷 = 0, respectively. Under the MLE model perceived depth should be greatly reduced under binocular 552 

viewing compared to monocular viewing, as disparities are posited to be highly reliable at near viewing 553 

distances, such that the disparity weight may exceed the texture weight. In Experiment 3B, we presented 554 

stimuli with the opposite relationship: binocular disparities provided non-zero depth information, but they 555 

were paired either with a textural flatness cue from a well-defined pattern specifying a fronto-parallel 556 

surface, or with an uninformative random-dot pattern often used to eliminate pictorial information from 557 

disparity-only stimuli.  Here, the predictions are similar. The Vector Sum model predicts no difference in 558 

perceived depth, while the MLE model predicts a measurable difference. 559 
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Figure 10 illustrates the effects of cues-to-flatness for the MLE model for sinewave surfaces with 560 

either the uninformative random-dot pattern or the textural flatness cue. Figure 10c shows the predictions of 561 

the MLE model for the random-dot stimulus (Fig. 10a). As there is potentially some residual texture 562 

information from the random dots, this cue is represented as a zero-mean, large-variance distribution (blue). 563 

When combined with the reliable disparity cue (red), it has a negligible influence on the combined-cue 564 

estimate (purple). However, texture information is much more reliable for the polka-dot stimulus containing 565 

a textural cue-to-flatness (Figure 10b). Thus, in Figure 10d, the texture cue is represented as a zero-mean, 566 

small-variance distribution (blue). Consequently, when combined with the same reliable disparity cue (red), 567 

it will exert a larger influence on the combined-cue estimate (purple). 568 

 569 

Experiment 3: Methods 570 

Participants 571 

Figure 10: a,c. According to the MLE model, RDS displays (a) are expected to provide reliable depth estimates only 
from binocular disparity given the very low reliability of texture information (b). The red distribution represents the 
depth-from-disparity likelihood and the cyan distribution the likelihood of cues-to-flatness. The violet distribution 
shows the optimally combined distribution according to MLE. Note how the center of the distribution is only slightly 
pulled towards flatness. b, d. Unlike RDS displays, large circular polkadots (b) on the image plane reliably specify a 
flat frontoparallel surface. This flatness cue therefore produces a sharply peaked likelihood function centered at 0 depth 
(cyan). In this case the peak of the combined estimate is significantly pulled towards a flatter depth estimate (violet) 
(d). In contrast, the IC model predicts the same depth estimate in both conditions. 
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Seven observers participated in Experiment 3A, including two of the authors. Seven additional 572 

observers participated in Experiment 3B. 573 

 574 

Apparatus 575 

 In Experiment 3A, the setup was the same as in Experiment 1, except that PLATO shutter glasses 576 

(Translucent Technologies Inc, Toronto, Ontario) were used to occlude the vision of the left eye during 577 

monocular viewing. Experiment 3B was conducted on a different system but using a similar setup  578 

(Alienware A51 with nVidia Quadro RTX 4000 GPU; Viewsonic G90fB CRT monitor, resolution 1280 x 579 

1024, refresh rate 60 Hz; Volfoni Edge® RF controlled shutter glasses, Volfoni, Paris, FR). 580 

 581 

Procedure 582 

Stimuli and procedures were similar to Experiment 1 with a few exceptions. 583 

In Experiment 3A, the corrugation in depth of the stimuli was specified by texture and shading cues 584 

(referred to as texture for simplicity; see Figure 3). However the same image was presented to the left and 585 

right eyes, producing zero disparities. Monocular and binocular viewing were randomly intermixed within 586 

the experiment, using the PLATO shutter glasses. 587 

In Experiment 3B, participants judged the depth of a sinusoidal corrugation specified by disparity 588 

information in two conditions. The RDS (no-texture) condition was similar to the stereo-only condition of 589 

previous experiments, except the dots were painted black on a red background square subtending 8o of 590 

visual angle (along the diagonal) with an average of 292 visible dots. The dots subtended a visual angle of 591 

0.05o. In the flat-texture condition we created a binocular stimulus that projected perfectly circular, 0.55o 592 

polka dots on the image screen by back-projecting the fronto-parallel texture onto the corrugated surface. 593 

Unlike Experiment 1, we also included the stimulus frame so that the only difference between conditions 594 

was the size and distribution of the texture elements. 595 

 596 

597 
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Experiment 3A: Results 598 

Figure 11 plots the average perceived depth as a function of simulated depth for monocular and 599 

binocular viewing at the two viewing distances. Repeated-measures ANOVA revealed a significant effect of 600 

simulated depth (F(1,6) = 49.94, p = 4.0e-4; Generalized η2 = 0.86). There were no other significant main 601 

effects or interactions. To evaluate the support for the Vector Sum model prediction of no difference 602 

between binocular and monocular viewing (i.e., the null hypothesis), we conducted a Bayes factor analysis. 603 

A Bayes factor of 0.21 indicated moderate evidence for a model including fixed effects of simulated depth 604 

and viewing distance and a random effect for participants, compared to a model including all three effects 605 

with an additional fixed effect of viewing condition. This supports the Vector Sum model prediction that the 606 

zero-disparity field specifying the flat picture plane does not influence perceived depth (see also Vishwanath 607 

and Hibbard, 2013). Overall, these findings seriously call into question the idea that the pattern of results 608 

observed in Experiment 1 (and in previous studies) is due to flatness cues. Moreover, the fact that depth 609 

perception is unaltered when viewing a pictorial stimulus with one or two eyes is successfully accounted for 610 

by the Vector Sum model.   611 

  612 

Figure 11: Averaged perceived depth as function of simulated depth in Experiment 3. 3D information is provided by 
texture and shading cues. Dark blue circles represent binocular view of the flat picture plane. Light blue squares 
represent monocular view. Error bars show the standard error around the average response.  
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Experiment 3B: Results 613 

Figure 12 plots the perceived depth estimates in the flat-texture and random-dot conditions. 614 

Repeated-measures ANOVA revealed a significant main effect of simulated depth (F(1, 6) = 216.78, p = 615 

6.2e-6; Generalized η2 = 0.92) and a significant interaction between simulated depth and fixation distance 616 

(F(1, 6) = 8.28, p = 0.028; Generalized η2 = 0.15). To evaluate the support for the Vector Sum model 617 

prediction of no difference between the flat-texture and random-dot stimuli, we again conducted a Bayes 618 

factor analysis. A Bayes factor of 0.42 indicated anecdotal evidence for a model including fixed effects of 619 

simulated depth and viewing distance and a random effect for participants, compared to a model including 620 

all three effects with an additional fixed effect of viewing condition. Together, the results of these 621 

experiments support the Vector Sum model prediction that there is no difference between setting the depth 622 

of a cue to zero or eliminating the cue altogether. 623 

 624 

General Discussion 625 

The results of three experiments challenge three fundamental assumptions of previous models of 3D 626 

cue integration. Veridicality: independent visual modules compute the veridical metric structure of 3D 627 

Figure 12: Averaged perceived depth as function of depth from binocular disparities in experiment 3b. Bright red 
indicates the RDS condition.  Dark red indicates the viewing condition where polkadot texture specified a flat fronto-
parallel surface. Error bars show the standard error around the average response. 
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objects from retinal projections. Probabilistic Inference: the output of each module is a probability 628 

distribution of all possible 3D structures that may have generated a given retinal image. The width of these 629 

probability distributions is a measure of the perceptual estimation noise from each individual cue. In other 630 

words, each module has explicit access to information about the reliability of a given visual input. 631 

Statistically Optimal Combination: 3D cue estimates are optimally combined by computing the joint 632 

probability distribution from the independent probability distributions of each individual cue. The perceptual 633 

estimate corresponds to the 3D structure that maximizes this joint probability distribution. Moreover, since 634 

the joint probability distribution has a smaller variance than that of each individual cue the combined 635 

estimate is also more reliable. In the case of the linear MLE model, a simple heuristic can achieve 636 

statistically optimal combination: single-cue estimates are combined through a weighted average where the 637 

weights are inversely proportional to the variance of the noise of single cue estimates.  638 

The Veridicality assumption is clearly contradicted by the results of the first experiment, where 639 

participants judged the amplitude of a surface with a sinusoidal depth profile. Following a classic cue-640 

combination paradigm we studied these depth judgments with disparity-only, texture-only, and combined-641 

cue stimuli. In most of these conditions the perceptual slopes relating simulated depth to perceived depth 642 

differ from unity and they significantly differ from each other. Moreover, the biases observed in single-cue 643 

conditions do not diminish when cues are combined.  644 

The Probabilistic Inference assumption is challenged by the results of the second experiment where 645 

we show that JNDs measured in a depth discrimination task are inversely proportional to the slope of the 646 

transfer function independently measured in the first experiment. Since the perceptual slope is sufficient to 647 

predict depth-discrimination it presents a valid alternative interpretation of JNDs from the one postulated by 648 

the MLE models. Moreover, the IC theory’s explanation is more parsimonious since it does not assume 649 

mechanisms that have access to explicit measures of reliability of the visual input.  650 

The Statistically Optimal Combination assumption is contradicted by the results of all three 651 

experiments.  In the first experiment we found that the perceptual slope in the combined-cue condition is 652 

larger than the perceptual slope in the single-cue conditions, a result incompatible with the prediction of 653 

weighted cue combination of the linear MLE models.  In the second experiment we show that the smaller 654 

JND in the combined-cue condition relative to the single-cue conditions can be explained by the larger 655 

perceptual slope. In the third experiment we show that adding a reliable cue-to-flatness to a 3D stimulus 656 

does not produce a significant reduction in depth magnitude. This finding contradicts the weighted cue 657 

combination rule of the MLE model, since adding to a depth cue a reliable cue-to-flatness should produce a 658 
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weighted average that is biased towards flatness. These results should especially be expected when a flat 659 

disparity field is added to a texture specified 3D surface since at close distances disparity information is 660 

highly reliable. Instead, we observed no difference in perceived depth magnitudes when the picture of a 661 

texture stimulus was seen monocularly or binocularly. This finding also contradicts a possible MLE 662 

interpretation of the results of the first experiment. According to this interpretation, the larger slope of the 663 

combined-cue condition relative to the single-cue conditions may be attributed to the influence of spurious 664 

cues-to-flatness affecting stimuli rendered on flat CRT displays. The larger slope in the combined-cue 665 

condition is because these cues-to-flatness influence single-cue estimates to a greater extent than combined-666 

cue estimates since the former are less reliable than the latter. If this explanation is correct and spurious 667 

cues-to-flatness such as the blurring gradient noticeably influence depth estimates, then we should expect an 668 

even larger effect when we introduce highly reliable cues-to-flatness such as a flat disparity field. But this is 669 

not what we found. In contrast to the observed discordance between the empirical data and the predictions of 670 

the MLE models, these findings can be accounted for by the Intrinsic Constraint theory of cue integration. 671 

These results therefore have significant theoretical implications since the IC theory rejects the fundamental 672 

hypotheses on which the MLE theory and the Bayesian approach in general stand.  673 

 674 

Linear mapping versus veridicality. 675 

The first important departure of the IC theory from previous theories is the rejection of metric 676 

accuracy as the normative goal of 3D processing. For the IC theory, mechanisms performing independent 677 

computations on the visual input derive 3D estimates that are linearly related to distal properties but are in 678 

general inaccurate. The slope of these linear functions, which we term cue strength, depends on the quality 679 

of the visual input. For instance, a regular pattern of texture elements on a distal surface such as polkadots 680 

will produce a stronger texture signal than sparse texture elements. Therefore, a depth-from-texture module 681 

will in the first case exhibit a steeper input-output transfer function than in the second case. Similarly, a 682 

disparity module will respond with a steeper transfer function to the depth of objects at closer distances than 683 

at further distances. The results of Experiment 1 show indeed that depth judgments are not veridical and 684 

depend on the viewing conditions. It can be observed that the perceptual slope in the disparity-only 685 

condition is shallower at a viewing distance of 80 cm than at 40 cm. At the smaller distance depth from 686 

disparity is overestimated and it is larger in magnitude than depth-from-texture.  However, at the larger 687 

distance these estimates are almost the same. 688 

 689 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513044doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/


31 
 

Deterministic versus probabilistic mapping. 690 

The second fundamental difference between the IC theory and MLE models is that the output of 691 

visual modules is deterministic and does not carry any information about the reliability of the input. 692 

Consider again a texture gradient projected by sparse surface texture elements. For the MLE account this is 693 

an unreliable image signal that produces a noisy output. In other words, each time similar (i.e. equally 694 

unreliable) stimuli are viewed the texture module will provide a different depth estimate. However, 695 

according to the veridicality assumption, the average estimate arising from multiple measurements will be 696 

unbiased. In contrast, the IC theory will derive similar depth estimates albeit much smaller than the distal 697 

depth magnitude. As explained above, what the MLE approach considers unreliable stimuli are considered 698 

as weak signals for the IC theory because a change in distal depth elicits a small change in the module 699 

output.  700 

The deterministic nature of the mapping between distal and derived depth postulated by the IC 701 

theory requires an adequate re-interpretation of perceptual variability in depth estimation tasks. The most 702 

radical re-interpretation of variability measurements is with respect to the Just Noticeable Difference (JND) 703 

observed in depth-discrimination tasks. The MLE model considers the JND as a proxy measure of the 704 

standard deviation of the noise underlying perceptual estimates of depth. However, according to the IC 705 

theory, the noise influencing discriminability does not stem from variability of depth estimates, but, instead, 706 

from task processes. In the specific case of a 2IFC task, memory retention and retrieval of the stimulus 707 

presented in the first interval is subject to “smearing” (Rademaker et al., 2018), therefore affecting the 708 

following comparison with the stimulus presented in the second interval. To overcome this memory related 709 

noise the perceived depth magnitude of the two stimuli must differ by some minimum amount. Although 710 

this perceived depth difference necessary for a reliable discrimination is fixed, the simulated depth 711 

difference required to yield this perceived depth difference depends on the cue strength. Therefore, the JND, 712 

defined as the simulated depth difference necessary for a reliable discrimination, is inversely proportional to 713 

the cue strength. This novel interpretation of the JND is sufficient to predict the data of the second 714 

experiment since the observed JND is proportional to the inverse of the cue strength. Moreover, as we will 715 

discuss shortly, the Vector Sum rule of the IC theory and the alternative interpretation of discrimination 716 

thresholds yields the same prediction as the MLE model for the JND of combined-cue stimuli. 717 

 718 

  719 
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Vector sum versus probabilistic inference. 720 

Within the IC framework independent depth modules have a deterministic input-output mapping. 721 

That is, the same type of visual input elicits the same output. However, this does not mean that the output of 722 

a 3D module is not subject to undesired fluctuations. The important distinction between the MLE theory and 723 

the IC theory resides in the nature of these fluctuations.  For the MLE models the inferential process 724 

interpreting an unreliable visual input will produces large variations in the output estimates because even 725 

slight changes in the input will result in large perturbations of the associated likelihood function (Ernst & 726 

Banks, 2002; Held et al., 2012; Hillis et al., 2004; Knill 1998a,b; Knill, 2003; Knill & Saunders, 2003). It 727 

therefore makes intuitive sense that linear MLE models combine visual estimates with weights that are 728 

inversely related to the variance of the output noise.  Note, however, that the weights must be estimated at 729 

each single instance and therefore visual modules must carry information about the reliability of a given 730 

visual input.  731 

For the IC theory, fluctuations of a module output are caused by changes in the strength of the visual 732 

input. For instance, the same distal structure will yield 3D estimates of different magnitudes depending on 733 

the material composition of the object, the viewing distance, the illumination, and so on. It can be shown 734 

that the vector sum of the appropriately scaled module outputs minimizes the undesired influence of scene 735 

parameters while maximizing the sensitivity to distal depth changes (Appendix 1). This simple rule of cue 736 

combination yields specific predictions regarding both (1) the magnitude of depth judgments and (2) the 737 

discrimination thresholds of combined-cue stimuli. The first prediction is that the perceived magnitude of 738 

combined-cue stimuli is equal to the vector sum of the perceived magnitude of single-cue stimuli. 739 

Specifically, the cue strength (i.e. perceptual slope) of the combined-cue stimuli is the vector sum of the 740 

strengths of the single-cue stimuli. This prediction is confirmed by the results of the first experiment. The 741 

second prediction follows from the first. Since according to the IC theory, the JND is inversely proportional 742 

to the perceptual slope, it follows that the JND of the combined-cue stimuli is smaller than the JND of the 743 

single-cue stimuli (Appendix 3). Notably, the predicted reduction in magnitude of the JND for the 744 

combined-cue stimuli is identical to that of the MLE model. The algebraic equivalence of the Vector Sum 745 

and MLE prediction of the JND expected from cue combination validates the IC theory because it can 746 

account for many empirical findings that use depth discrimination to support the MLE predictions (Hillis et 747 

al., 2004; Knill & Saunders, 2003). Finally, the Vector  Sum combination rule also predicts the results of the 748 

third experiment. When a cue to flatness is present in a display, its contribution to the vector sum is 749 

equivalent to that of an absent cue. For instance, when looking at a picture with only one eye, no disparity 750 
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information is present whereas when looking at the same picture with two eyes the disparity field specifies 751 

zero depth. In both cases the contribution of the disparity term is nil. 752 

 753 

Conclusion. 754 

 In this study we tested the predictions of a new theory of depth cue integration termed Intrinsic 755 

Constraint (IC) theory. This theory postulates the existence of independent modules relating perceived 3D 756 

properties to distal 3D properties through deterministic functions that are, in optimal conditions, linear. The 757 

slopes of these functions depend on scene parameters specific to the viewing conditions. In ideal viewing 758 

conditions depth modules are highly sensitive to distal changes in 3D properties, as for example when the 759 

material composition of an object determines a strong texture gradient.  However, in viewing conditions 760 

where 3D information from a specific cue is weak, as for an object that only has very sparse texture 761 

elements on its surface, the response of the depth module will be shallow. The IC theory combines 762 

individual estimates through a vector sum that maximizes the response to changes in distal 3D properties 763 

while minimizing the module-output fluctuations due to varying scene parameters.  764 

 We tested this model in three experiments targeting different aspects of 3D shape judgments. First, 765 

we confirmed the prediction that increasing the number of cues specifying a 3D surface will increase the 766 

perceived depth of that surface, a hypothesis which we call the Vector Sum Model. This result has been 767 

recently found in other studies using grasping to test depth perception in both VR environments and with 768 

real objects (Campagnoli & Domini, 2019; 2022). Although Bayesian models can account for the 769 

phenomenon predicted by the Vector Sum model, the IC theory has the significant advantage of achieving 770 

the same predictions without the need for further ad-hoc assumptions such as cues-to-flatness or priors-to-771 

flatness (Di Luca et al., 2010; Domini and Caudek, 2003, 2009, 2010, 2011, 2013; Domini et al., 2006; 772 

Domini et al., 2011). This advantage is not confined to the case of depth-cue integration, but it applies to 773 

other common visual experiences such as picture perception. In this case too, neither flatness cues nor a 774 

prior-to-flatness appear to be able to explain the empirical data. Second, we tested the ability of the IC 775 

theory to predict the JND of a multi-cue stimulus from the JNDs of single-cue stimuli. Notably, the IC 776 

theory makes formally identical predictions to those of Bayesian models, therefore accounting for a number 777 

of previous investigations that leverage JND data as the strongest source of evidence in support of Bayesian 778 

cue combination. However, the JND for the IC theory is determined by the slope of the response function 779 

and not by the noise of depth estimates.  780 
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In summary, the IC theory seems to be a better candidate for explaining 3D cue-integration 781 

experiments since (1) It can predict previous data in support of Bayesian models, (2) it predicts new results 782 

that are incompatible with previous models and (3) it is more parsimonious since it does not postulate 783 

veridical perception or needs estimates of cue-reliability that are necessary for the functioning of Bayesian 784 

models. 785 

 786 
Appendix. 787 

Appendix 1: The Vector Sum equation maximizes the Signal-to-Noise-Ratio. For simplicity consider only 788 

two signals 𝑠𝑠1 = 𝜆𝜆1𝑧𝑧 and 𝑠𝑠2 = 𝜆𝜆2𝑧𝑧, where 𝜆𝜆𝑖𝑖 are unknown multipliers depending on confounding variables 789 

and 𝑧𝑧 is the magnitude of the 3D property. These signals are the visual systems encoding of the 3D 790 

information from independent cues (e.g. texture and disparity). We seek an estimate  𝑧̂𝑧𝐶𝐶 = 𝑓𝑓(𝑠𝑠1, 𝑠𝑠2) (1) 791 

Proportional to 𝑧𝑧 and (2) Most sensitive to 3D information and least sensitive to random fluctuations 𝜀𝜀𝑖𝑖 of 𝜆𝜆𝑖𝑖. 792 

If 𝜆𝜆𝑖𝑖0 is the unperturbed value of 𝜆𝜆𝑖𝑖: 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖0 +  𝜀𝜀𝑖𝑖 and 𝑠𝑠𝑖𝑖0 = 𝜆𝜆𝑖𝑖0𝑧𝑧. We assume small random perturbations 793 

due to changes in viewing conditions such that 𝜀𝜀𝑖𝑖 are Gaussian distributions with zero mean and standard 794 

deviations 𝜎𝜎𝑖𝑖 . Taking the derivative of  𝑑𝑑𝑑𝑑(𝑠𝑠1,𝑠𝑠2) 
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑠𝑠1

(𝜆𝜆10 +  𝜀𝜀1) + 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑠𝑠2

(𝜆𝜆20 +  𝜀𝜀2), where 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑠𝑠𝑖𝑖

 are calculated 795 

at 𝑠𝑠𝑖𝑖0, we observe a signal term  𝑆𝑆 = 𝑓𝑓1𝜆𝜆10 + 𝑓𝑓2𝜆𝜆20 (where 𝑓𝑓𝑖𝑖 = 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑠𝑠𝑖𝑖

) and a noise term 𝛦𝛦 = 𝑓𝑓1𝜀𝜀1 + 𝑓𝑓2𝜀𝜀2 796 

having standard deviation 𝜎𝜎𝛦𝛦 = �𝑓𝑓1
2𝜎𝜎12 + 𝑓𝑓2

2𝜎𝜎22. If we minimize the Noise to Signal Ratio 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎𝛦𝛦 
𝑆𝑆

 with 797 

respect to 𝑓𝑓𝑖𝑖 (by solving for 𝑓𝑓𝑖𝑖  the equation 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝑑𝑑𝑓𝑓𝑖𝑖

= 0) we find that the first derivatives of the function are 798 

𝑑𝑑𝑓𝑓 
𝑑𝑑𝑠𝑠𝑖𝑖

∝ 𝜆𝜆𝑖𝑖0  
𝜎𝜎𝑖𝑖
2 . It can be shown that the derivatives 𝑑𝑑𝑧̂𝑧𝐶𝐶 

𝑑𝑑𝑠𝑠𝑖𝑖
 of the equation 𝑧̂𝑧𝐶𝐶 = 𝛽𝛽��𝑠𝑠1 

𝜎𝜎1
�
2

+ �𝑠𝑠2 
𝜎𝜎2
�
2
 (calculated at 𝑠𝑠𝑖𝑖0) 799 

meet this requirement. By substituting 𝑘𝑘𝑖𝑖 = 𝛽𝛽 𝜆𝜆𝑖𝑖
𝜎𝜎𝑖𝑖

 we obtain the Vector Sum equation 𝑧̂𝑧𝐶𝐶 = �(𝑘𝑘1𝑧𝑧)2 + (𝑘𝑘2𝑧𝑧)2 800 

(easily generalizable to 𝑛𝑛 signals). 801 

 802 

Appendix 2: The IC theory predicts the same linear combination rule as the Bayesian models in matching 803 

tasks. Hillis el al. (2004) predict the outcome of a task where the perceived slant of a non-conflict stimulus 804 

𝑆𝑆𝑁𝑁𝑁𝑁 = 𝑆𝑆𝐵𝐵 + 𝛿𝛿 is matched to that of a conflict stimulus 𝑆𝑆𝐶𝐶 , where 𝑆𝑆𝐵𝐵 is an arbitrarily defined base slant and 𝛿𝛿 805 

is the change in slant needed for a perceptual match 𝐸𝐸�𝑆̂𝑆𝐶𝐶� = 𝐸𝐸�𝑆̂𝑆𝑁𝑁𝑁𝑁�. For the conflict stimulus the disparity 806 

slant 𝑆𝑆𝐷𝐷differs from a  texture specified slant 𝑆𝑆𝑇𝑇 by ∆: 𝑆𝑆𝑇𝑇 = 𝑆𝑆𝐵𝐵 and 𝑆𝑆𝐷𝐷 = 𝑆𝑆𝐵𝐵 + ∆. Optimal cue combination 807 
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predicts that 𝐸𝐸�𝑆̂𝑆𝐶𝐶� = 𝑤𝑤𝐷𝐷(𝑆𝑆𝐵𝐵 + ∆) + (1− 𝑤𝑤𝐷𝐷)𝑆𝑆𝐵𝐵 =  𝑆𝑆𝐵𝐵 +   𝑤𝑤𝐷𝐷∆, where 𝑤𝑤𝐷𝐷 =
1
𝜎𝜎𝐷𝐷
2

1
𝜎𝜎𝐷𝐷
2 +

1
𝜎𝜎𝑇𝑇
2

. A matching (𝐸𝐸�𝑆̂𝑆𝐶𝐶� =808 

𝐸𝐸�𝑆̂𝑆𝑁𝑁𝑁𝑁�) is obtained when 𝑤𝑤𝐷𝐷 = 𝛿𝛿
∆
 since 𝐸𝐸�𝑆̂𝑆𝑁𝑁𝑁𝑁� = 𝑆𝑆𝐵𝐵 + 𝛿𝛿.  By using JNDs as proxies for standard 809 

deviations the weight can be accurately predicted (𝑤𝑤𝐷𝐷 =
1

𝐽𝐽𝐽𝐽𝐽𝐽𝐷𝐷
2

1
𝐽𝐽𝐽𝐽𝐽𝐽𝐷𝐷

2 +
1

𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇
2

). The IC theory makes identical 810 

predictions.  For a small conflict ∆ we can approximate the Vector Sum equation through Taylor expansion 811 

at the base slant 𝑆𝑆𝐵𝐵: 𝑆̂𝑆𝐶𝐶 = �𝑘𝑘𝑇𝑇
2𝑆𝑆𝐵𝐵2 + 𝑘𝑘𝐷𝐷

2(𝑆𝑆𝐵𝐵 + ∆)2 ≈ 𝑆𝑆𝐵𝐵�𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2 + 𝑘𝑘𝐷𝐷2

�𝑘𝑘𝑇𝑇2+𝑘𝑘𝐷𝐷2
∆. Since 812 

𝑆̂𝑆𝑁𝑁𝑁𝑁=(𝑆𝑆𝐵𝐵 + 𝛿𝛿)�𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2=𝑆𝑆𝐵𝐵�𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2 + 𝛿𝛿�𝑘𝑘𝑇𝑇
2 + 𝑘𝑘𝐷𝐷

2, a match 𝑆̂𝑆𝑁𝑁𝑁𝑁 = 𝑆̂𝑆𝐶𝐶  is obtained when 813 

𝑘𝑘𝐷𝐷2

�𝑘𝑘𝑇𝑇2+𝑘𝑘𝐷𝐷2
∆= 𝛿𝛿�𝑘𝑘𝑇𝑇

2 + 𝑘𝑘𝐷𝐷
2, from which 𝑘𝑘𝐷𝐷2

𝑘𝑘𝑇𝑇2+𝑘𝑘𝐷𝐷2
= 𝛿𝛿

∆
. Note that since for the IC theory 𝐽𝐽𝐽𝐽𝐽𝐽𝑖𝑖 = 𝜎𝜎𝑁𝑁

𝑘𝑘𝑖𝑖
 (See 814 

Introduction of Experiment 2) then 𝑘𝑘𝐷𝐷2

𝑘𝑘𝑇𝑇2+𝑘𝑘𝐷𝐷2
= 𝑤𝑤𝐷𝐷, which matches Hillis et. al predictions. 815 

 816 

Appendix 3: The Vector Sum model predicts the same JND of combined stimuli as that predicted by linear 817 

MLE combination. The MLE model predicts that when two cues with independent Gaussian noise of 818 

standard deviation 𝜎𝜎𝑖𝑖2are combined through a weighted average with weights inversely proportional to the 819 

variance of each cue then the combined (inverse) variance is 1
𝜎𝜎𝐶𝐶
2 = 1

𝜎𝜎12
+ 1

𝜎𝜎22
. If JNDs are proxies for the 820 

standard deviations, then 1
𝐽𝐽𝐽𝐽𝐽𝐽𝐶𝐶

2 = 1
𝐽𝐽𝐽𝐽𝐽𝐽12

+ 1
𝐽𝐽𝐽𝐽𝐽𝐽22

. For the IC theory, JNDs depend on the task noise 𝜎𝜎𝑁𝑁 and the 821 

gain 𝑘𝑘𝑖𝑖:  𝐽𝐽𝐽𝐽𝐽𝐽1 = 𝜎𝜎𝑁𝑁
𝑘𝑘1

 and 𝐽𝐽𝐽𝐽𝐽𝐽2 = 𝜎𝜎𝑁𝑁
𝑘𝑘2

. Since from the Vector Sum equation the gain of the combined stimulus 822 

is 𝑘𝑘𝐶𝐶 = �𝑘𝑘1
2 + 𝑘𝑘2

2, the JND of the combined stimulus is 𝐽𝐽𝐽𝐽𝐽𝐽𝐶𝐶 = 𝜎𝜎𝑁𝑁
𝑘𝑘𝐶𝐶

= 𝜎𝜎𝑁𝑁

�𝑘𝑘12+𝑘𝑘22
. By substituting 𝑘𝑘𝑖𝑖 = 𝜎𝜎𝑁𝑁

𝐽𝐽𝐽𝐽𝐽𝐽𝑖𝑖
 823 

in this equation we obtain 𝐽𝐽𝐽𝐽𝐽𝐽𝐶𝐶 = 1

�
1

𝐽𝐽𝐽𝐽𝐽𝐽1
+ 1
𝐽𝐽𝐽𝐽𝐽𝐽2

, which is identical to the MLE prediction. 824 
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