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Abstract

The fundamental question of how the brain derives 3D information from the inherently ambiguous
visual input has been approached during the last two decades with probabilistic theories of 3D
perception. Probabilistic models, such as the Maximum Likelihood Estimation (MLE) model, derive
from multiple independent depth cues the most probable 3D interpretations. These estimates are then
combined by weighing them according to their uncertainty to obtain the most accurate and least noisy
estimate. In three experiments we tested an alternative theory of cue integration termed the Intrinsic
Constraint (IC) theory. This theory postulates that the visual system does not derive the most
probable interpretation of the visual input, but the most stable interpretation amid variations in
viewing conditions. This goal is achieved with the Vector Sum model, that represents individual cue
estimates as components of a multidimensional vector whose norm determines the combined output.
In contrast with the MLE model, individual cue estimates are not accurate, but linearly related to
distal 3D properties through a deterministic mapping. In Experiment 1, we measured the cue-specific
biases that arise when viewing single-cue stimuli of various simulated depths and show that the
Vector Sum model accurately predicts an increase in perceived depth when the same cues are
presented together in a combined-cue stimulus. In Experiment 2, we show how Just Noticeable
Differences (JNDs) are accounted for by the IC theory and demonstrate that the Vector Sum model
predicts the classic finding of smaller JNDs for combined-cue versus single-cue stimuli. Most
importantly, this prediction is made through a radical re-interpretation of the JND, a hallmark
measure of stimulus discriminability previously thought to estimate perceptual uncertainty. In
Experiment 3, we show that biases found in cue-integration experiments cannot be attributed to
flatness cues, as assumed by the MLE model. Instead, we show that flatness cues produce no
measurable difference in perceived depth for monocular (3A) or binocular viewing (3B), as predicted

by the Vector Sum model.

Keywords: 3D vision; cue combination; virtual reality
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Introduction

A fundamental aspect of human visual perception is its ability to interpret three-dimensional space
from patterns of light. We may be able to ignore color when judging brightness or divert our attention from
specific objects with eye movements, but we cannot possibly suppress our experience of a three-dimensional
environment. The problem of how the visual system constructs a 3D interpretation from the two-
dimensional manifold of light intensity at the retina has been approached during the last three decades
through a probabilistic inference theory of 3D vision (Landy et al., 2011; Landy et al., 1995). The intuitive
appeal of this theory has led to a large number of empirical studies aimed at evaluating its predictions
(Adams et al., 2004; Adams & Mamassian, 2004; Ernst & Banks, 2002; Chen, & Saunders, 2019; Jacobs,
1999; Jacobs, 2002; Knill, 1998a; Knill, 2007; Knill & Saunders, 2003; Mamassian & Landy, 1998; Hillis et
al., 2002; Hillis et al., 2004; Saunders & Chen; 2015; Schrater & Kersten, 2000; Saunders & Knill, 2001;
Welchman et al., 2008; Young et al., 1993). Though this approach successfully accounts for a wide range of
findings, it is unable to predict many fundamental real-world phenomena, such as systematic biases in 3D
judgments (Bozzacchi & Domini, 2015; Bozzacchi et al., 2016; Campagnoli et al., 2017; Caudek &
Domini, 1998; Domini & Braunstein, 1998; Domini & Caudek, 1999; Domini & Caudek, 2003; Domini et
al., 1998; Egan & Todd, 2015; Fantoni et al., 2010; Kopiske et al., 2019; Liu & Todd, 2004; Norman et al.,
2004; Norman et al., 1996; Norman et al., 1995; Perotti et al., 1998; Phillips & Todd, 1996; Tittle et al.,
1995; Todd, 2004; Todd & Bressan, 1990; Todd et al., 1998; Todd & Norman, 2003; Todd et al., 2014;
Todd & Thaler, 2010; Todd et al., 2005; Todd et al, 2007; Todd et al., 1995; Volcic et al, 2013), internal
inconsistencies among judgments at different scales (Lappin & Craft, 2000; Loomis et al., 1996; Loomis et
al., 2002), the paradox of pictorial depth and pictorial duality (Haber, 1980; Koenderink, 1998; Koenderink
et al., 2001; Vishwanath, 2011; 2013; 2014; 2020), and differences in phenomenology of 3D vision
(Koenderink et al., 2015; Koenderink et al., 2018; Vishwanath, 2013). In this paper, we test a new
theoretical framework based on an entirely different set of assumptions that can more parsimoniously
account for the full range of observations in 3D perception.

There are two main assumptions that have guided recent research in 3D vision: (1) Independent
modules derive noisy estimates that are on average veridical (i.e. unbiased) (Clark & Yuille, 1990; Landy et
al., 2011) and (2) visual mechanisms also estimate the magnitude of sensory noise, such that the outputs of
individual modules represent probability distributions. Representing probability distributions enables the
statistically optimal combination of independent estimates, as proposed by Bayesian integration frameworks

(e.g., Landy et al., 2011). Although there are more general implementations of Bayesian combination, in this
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paper we focus on the linear Maximum Likelihood Estimation (MLE) model (Ernst & Biilthoff, 2004),
following similar past studies that have assumed a negligible influence of priors when viewing objects
defined by binocular disparity, texture, or both (Chen & Saunders, 2020; Hillis et al., 2004; Johnston et al.,
1993; Knill & Saunders, 2003).

The predictions of the linear MLE model for the integration of texture and disparity information can
be summarized by two equations. First, if Z2; and Z, are the depth estimates from the texture and disparity
modules and o and o, are the standard deviations of the noise of these estimates, then the combined

estimate Z. is a weighted average with weights proportional to the reliabilities of the estimates:

Z2¢ = WrZr + wpZp [1]
1 1
o2 2 . . . . .
(wr == 1 and wp = 1+—1). Second, the variance of the combined estimate is smaller than that of either
ot o ot o

single-cue estimate, as predicted by the following relationship:
2 _2 1 1 -1
b= =(z+2) - [2]

While applying the MLE model to explain perceptual processing may appear straightforward, some
of its core assumptions seem not to be satisfied by human perceptual systems. First, many experiments have
shown that texture, motion, and binocular disparity cues generally fail to produce accurate percepts, contrary
to the veridicality assumption (Bozzacchi & Domini, 2015; Bozzacchi et al., 2016; Campagnoli et al., 2017;
Caudek & Domini, 1998; Domini & Braunstein, 1998; Domini & Caudek, 1999; Domini & Caudek, 2003;
Domini et al., 1998; Egan & Todd, 2015; Fantoni et al., 2010; Kopiske et al., 2019; Liu & Todd, 2004;
Norman et al., 2004; Norman et al., 1996; Norman et al., 1995; Perotti et al., 1998; Phillips & Todd, 1996;
Tittle et al., 1995; Todd, 2004; Todd & Bressan, 1990; Todd et al., 1998; Todd & Norman, 2003; Todd et
al., 2014; Todd et al., 1995; Todd & Thaler, 2010; Todd et al., 2005; Todd et al., 2007; Volcic et al., 2013).
Second, it has been shown that when perception is measured with techniques other than depth discrimination
(e.g. by setting an independent 2D probe), the measured variability in perceived depth does not predict the
relative weighting of depth cues (Todd et al., 2010), contrary to the assumption that cue estimates are

represented as probability distributions. These considerations suggest that the widespread application of the
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112  MLE model to human 3D perception may be inappropriate, and that cue-combination experiments need to
113  be reinterpreted with an alternative explanation.

114 Here we aim to develop a theoretical framework of 3D cue combination that does not require any of
115  the controversial assumptions of the mainstream MLE account described above. Instead, this framework
116  assumes: (1) A derivation of estimates of 3D properties that are generally biased but under some viewing
117  conditions may be veridical and (2) are deterministic rather than probabilistic estimates of 3D properties
118  from single and multiple signals. The combination rule for multiple signals is therefore not dependent on
119  knowledge of variance within a cue estimate. Instead, this process is optimized to achieve perceptual

120  stability in face of the natural variation of viewing conditions and material composition of external surfaces.
121 In the next section, we provide a formal specification of this framework that makes specific quantitative
122  predictions. We then test these predictions in three experiments. Notably, we find that the model accurately
123  predicts the reduction in discrimination threshold that occurs when additional depth cues are added to a

124  stimulus. This finding has been interpreted as a critical piece of evidence for the MLE model, but here we
125  show that it is entirely consistent with our novel framework. Moreover, our model predicts several novel
126  results that cannot be predicted by previous theories of cue integration.

127

128  Intrinsic Constraint Theory of multi-cue processing.

129 The computational model we propose is termed the Intrinsic Constraint (IC) theory, in reference to
130 the original model from which it was developed (Domini & Caudek, 2009; Domini et al., 2006).

131  Importantly, however, it is based on entirely different assumptions than the earlier IC theory.

132 First, we postulate that separate visual modules independently process distinct image regularities. We
133  assume these modules are tuned to approximate a linear mapping between the distal 3D property z and the
134  internal 3D estimate Z. The slope of this linear function depends on the strength of the visual information.
135  For instance, from the image in Figure 1, a texture module extracts the systematic change in shape and

136  spatial frequency of texture elements resulting in an estimate Z; = k;z. The IC theory defines visual

137  modules as independent insofar as the slopes k of the transfer functions vary independently. Critically,

138  notice that in direct contrast to the MLE model, there is no assumption that the transfer function is veridical,
139  nor is there any explicit representation of the associated sensory noise. These simplifications make the IC
140  theory far more parsimonious than the MLE model.

141 To illustrate the independence of the slopes of the transfer functions, consider the bumpy surface

142  depicted in Figure 1a. Now imagine how the various image signals indicating the 3D relief of this surface
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would be affected by different viewing conditions. For instance, overcast weather would wash out the
shading gradient while leaving the texture pattern unmodified, resulting in the image shown in Figure 1b. On
the other hand, the same surface can be covered with irregular texture rather than the highly regular cheetah
pattern while the lighting condition remains the same. The shading pattern would be unmodified but there
would be no clear gradient of texture elements, as depicted in Figure 1c. In these examples, independent
confounding variables are associated with the material composition of the surface and the sources of
illumination. In a similar fashion, different confounding variables will affect other image signals, such as the
speed of the observer in motion parallax (Fantoni et al., 2012) or the fixation distance between the observer
and the object in binocular disparities (Johnston, 1991). Thus, in general, the slopes of the transfer functions
for modules devoted to processing different image regularities will vary independently across stimuli and
viewing contexts. Note that within this framework, a type of visual information traditionally defined as a
single, monolithic cue may in fact be better understood as multiple cues, so long as they are affected by
independent confounding variables. Indeed, by this definition there are several distinct types of texture cues
that are traditionally treated as a single cue (Chen & Saunders, 2020; Todd & Thaler, 2010; Todd et al.,
2007).

Since the slopes of the transfer functions, k are determined by the strengths of individual cues, we
will refer to these parameters as cue strengths. As a consequence of independent cue strengths, we can
represent the totality of the cue estimates derived from a given stimulus as a multidimensional vector. This is
illustrated in Figures 1d-f, which correspond to three stimuli composed of texture and shading information
(Figs. la-c). Figure 1d depicts a stimulus for which texture and shading (arbitrarily) have the same strength
(kt = k). In Figure le, the strength of texture is much greater than the strength of shading, as the shading
has been removed (k > kg). In Figure 1f, the strength of shading is much greater than the strength of
texture, as the texture is highly irregular (k; < kg). Since both Z; and Zg are proportional to the 3D
property z, the length of the combined vector (Z7, Zs ) is also proportional to z. However, since the combined
vector length depends on the individual cue strengths, it will therefore fluctuate with the confounding
variables. Critically, the central claim of our theory is that the goal of the visual system is to maximize
sensitivity to underlying 3D information while minimizing sensitivity to confounding variables.

In Appendix 1, we show that the combined estimate, calculated as a vector-sum of single-cue signals
scaled by parameters representing the variability of independent confounding variables, achieves this goal.

For the general case of multiple image signals this leads to the Vector Sum Equation:
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2 =22+ ()7 + - (20)? = Y (12)? + (kz2)? + -+ (kp2)? [3]

b. C.
kT > ks kT << ks

<ND <ND

ZT Z. Z.

)

Figure 1: (a-c) A series of bumpy surfaces with varying levels of texture and shading gradients. The cue strength, ki,
depends on the “quality” of the gradients, with more detectible gradients producing larger cue strength. Textures with
identifiable, regular elements and shading gradients with continuously varying luminance intensities produce large cue
strengths that in this example are assumed to be identical (a). Textures with ambiguous elements (c¢) and shading with
small luminance differences (b) produce smaller cue strengths. (d-e) Each cue is analyzed by an independent function
that produces a depth signal, which is linearly proportional to the distal depth. These signals exist in a multidimensional
space where the vector length of the signals depend on the depth of the surface and the cue strength of the cue. It is this
vector length which drives perceived depth magnitude. If both cues form strong gradients (d), then the vector length and
subsequent perceived depth will be large. Weaker gradients for either cue will reduce this vector length and the
perceived depth (e, f).

There are several nuances to the IC theory that should be noted. First, the value z does not
necessarily imply a single depth value or depth map, but more generally can also signify a slant or a
curvature map. Second, the cue strengths k; are not free parameters, they are the empirically identified
values for the single-module transfer function. Third, since the model is additive, it may be misunderstood
as producing systematic overestimations as more cues are added to a stimulus. In fact, it is quite the
contrary. We speculate that removing cues brings the model outside of its optimal operating conditions,
which results in underestimation of depth from reduced- or single-cue stimuli. Note that we will refer to the

phenomenon of observing an increase in depth with the addition of cues as the Vector Sum model.
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Another important point to highlight is about the source of variability of 3D estimates that is
considered relevant from the IC theory perspective. Previous models assume that depending on the “quality”
(i.e., reliability) of 3D information specifying a given stimulus, 3D estimates will fluctuate from one view of
the stimulus to the next. For instance, multiple views of stimuli carrying the same regular texture pattern of
Figure 1b. will produce a much smaller variation of 3D judgements than repeated viewing of the plaster
texture of Figure 1c. In contrast, the IC theory only predicts negligible fluctuations, due to unavoidable
neural noise and slight variations in the texture patterns from one view to the next. The relevant variability
of 3D estimates affecting repeated viewing of the same distal structure is instead due to a change of the
confounding variables (e.g. the material composition of the object, resulting in a change of the strength of
the texture pattern). What is fundamental to this theory is that the Vector Sum combination rule is blind to
the strength of each individual cue. Therefore, it does not, as MLE models, dynamically weigh the output of
single-cue modules according to their individual “quality”.

The main goal of this study is to test the efficacy of the Vector Sum model in predicting several
documented properties of depth perception while reinterpreting the mechanisms which bring about cue
processing and combination. Experiment 1 examines the inaccuracy of single-cue estimates and the
systematic biases that can be expected when cues are combined. We show that these biases can be predicted
without free parameters through the Vector Sum Model. Experiment 2 replicates the previous finding that
discrimination thresholds decrease for combined-cue stimuli relative to single-cues. We discuss why the
Vector Sum model and the MLE model make similar predictions regarding discrimination thresholds, but
for very different reasons (i.e., reasons related to the properties of linear cue strengths versus the properties
of probability distributions). Experiment 3 provides evidence that cues-to-flatness are unlikely to allow the

MLE model to account for the biases that the Vector Sum model successfully predicts.

Experiment 1

A first test of the Intrinsic Constraint theory is to verify that the combination of multiple cues leads
to depth estimates in alignment with the Vector Sum Model. According to Equation 3, the perceived depth
of a combined-cue stimulus is predicted to be larger than the perceived depth of single-cue stimuli. For the

specific case of texture and binocular disparities Equation 3 can be reduced to the following equation:

Zc = \/(kTZT)Z + (kpzp)? [4]
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In single-cue conditions only one cue is present, which means that the cue strength of all absent cues is zero.
We studied the perceived depth of a sinusoidally corrugated surface by manipulating the amplitude of the
sinusoid. In the disparity-only condition, the surface was specified by a random-dot stereogram (RDS)
which did not provide any discernible texture information (i.e., kr = 0). In the texture-only condition, a
compelling texture gradient specified the depth profile of the surface while binocular disparities were set to
zero (zp = 0; equivalent to kp = 0 in the Vector Sum model). The choice of rendering the texture-only
stimulus binocularly was made for the practical reason of keeping the vergence signal constant in all
viewing conditions. In the combined-cue condition both texture and disparity information were present in

the stimulus.

Experiment 1: Methods
Participants

Eleven participants (3 being the authors) were drawn from the Brown University community and
participants completed Experiment 1. Participants either received $12/hour or course credit as compensation.
Participants provided informed consent prior to testing. The procedure reported was approved by the Brown

University Institutional Review Board.

Apparatus

Experiments were completed on a Dell Precision T7500 powered by a nVidia Quadro 4000 graphics
card. Stimuli were simulated on a Sony Triniton GDM-f520 CRT monitor with a resolution of 1280x1024 at
a refresh rate of 85hz. The display was projected onto a half-silvered mirror that was slanted 45 deg about
the vertical axis in front of the participant with respect to the fronto-parallel plane. The monitor was
repositioned to different viewing distances via a Velmex linear actuator (Velmex, Inc., Bloomfield, NY).
Binocular disparity was provided using NVIDIA 3D Vision® 2 wireless glasses (NVIDIA, Santa Clara, CA)
which were synchronized to the refresh rate of the monitor to provide unique images to each eye. The
interocular distance (/0D) of every participant was measured using a digital pupillometer (Reichert Inc.,

Depew, NY). Participants viewed the stimuli while positioned on a chinrest.
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Stimuli

The target stimuli were three-dimensional corrugated surfaces whose depth profile followed a
sinusoidal modulation along the vertical axis. An example stimulus and probe presented to participants is
shown in Figure 2a. The corrugated surface was seen through a square frame subtending approximately 8° of
visual angle to eliminate contour information. The wave period was 4.50° of visual angle.

Participants made depth judgments by adjusting a two-dimensional sinusoidal probe whose
horizontal amplitude varied along the vertical axis. The wave period of the probe also subtended 4.50° of
visual angle. An example of the probe with its amplitude set to the correct magnitude is shown below the
corrugated surface in Figure 2b. The phase of the 3D surface was randomly varied on each trial to eliminate
depth adaptation. However, the phase of the probe line remained constant throughout all sessions.

Participants judged the depth of three types of 3D information: texture-only, disparity-only, and
combined-cue stimuli. Texture-only sine waves were constructed by volumetric texturing. This process first
involved randomly placing the centers of spheres with radii subtending visual angle of 0.55° onto the
simulated 3D corrugated surface. Any portion of the wave that intersected a sphere was darkened relative to
the surrounding red surface. This produced a compelling texture gradient on the image projection. To
eliminate depth order ambiguity, shading information was produced by placing a single directional light
source from above oriented at a 45° with respect to the fronto-parallel plane. We refer to this as texture cue
for simplicity. To keep a steady fixation at the center of the display as in the disparity-only and combined-

cue conditions, texture-only stimuli were also seen binocularly.

b.

Figure 2: An example of a monocular view of the sinusoidal stimulus (a) and the 2D probe (b). The surface
of the stimulus is defined by shading and texture information. This combination of depth cues is referred to
as “texture cue” for simplicity. In the combined-cue condition the 3D structure was also specified by
binocular disparities. Participants adjusted the amplitude of the 2D probe to report perceived depth. In this
example, the probe is set to the correct amplitude which matches the simulated depth profile of the surface.

10
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Disparity-only surfaces were constructed with a random dot stereogram consisting of 400 dots each
with a visual angle of 0.1°. The dots were uniformly distributed on the image plane with the constraint that
they did not overlap. Because part of the surface was occluded by a frame, there were on average 320 visible
dots. Two views were rendered by placing the rendering cameras at the estimated locations of the observer’s
nodal points, which were determined after measuring for each observer the interocular distance (I0D).
NVIDIA 3D Vision® 2 wireless stereo-glasses were used to separate the projection of the left and right
images for the appropriate eye. Combined-cue stimuli were obtained by rendering stereoscopically the

polka-dot textured surfaces.

Procedure

Participants completed two blocks within a single session. Each block had a constant fixation
distance of either 40 or 80 cm. Within each block, participants viewed sinusoidal surfaces with four different
peak-to-trough depths (2.5, 5, 10, or 15 mm) defined by one of three cue types (disparity-only, texture-only,
and combined-cue), with 7 repetitions for each combination of depth and cue type. Thus, each block
involved 84 judgments and lasted approximately 20 minutes. At the onset of each trial, a fixation cross was
displayed for 700 ms, followed by the presentation of the surface stimulus, as well as a 2D sine wave probe
icon at the bottom of the display (Fig. 2b). Participants adjusted the amplitude of the icon until the peak-to-
trough length matched their perceived depth of the target stimulus. During the adjustment they were free to
move their eyes back and forth between the 3D surface and the 2D icon. Once they were satisfied with their
setting, they submitted their judgment with a button press, which also initiated the next trial. Before the
experimental session, participants completed a small number of practice trials with stimuli of random

depths. No feedback about response accuracy was provided at any point.

Experiment 1: Results and Discussion

Qualitatively, the Vector Sum model predicts that the combined-cue stimulus should be perceived
deeper than the single-cue stimuli. Figure 3 shows the average probe settings across cues (denoted by line
color) and fixation distances (denoted by separate panels). A repeated-measures ANOVA found a main
effect of simulated depth (F(1,10) = 272.67, p = 1.4e-8 ; Generalized 5> = 0.89) and cue type (F(2,10) =
48.40, p = 2.2e-8; Generalized 5> = 0.43). For both fixation distances, the perceived depth of combined-cue
stimuli (purple diamonds) was consistently greater than the perceived depth of single-cue stimuli (red

squares, blue circles). A Bonferroni-corrected post-hoc analysis confirmed that perceived depth in the
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combined-cue condition was larger than the perceived depth in both the disparity-only condition (7(10) =
4.42, p = 0.0039) and the texture-only condition (7(10) = 10.59, p = 2.8e-6). Additionally, texture-only
stimuli were in general perceived as shallower than disparity-only stimuli, demonstrating cue-specific biases
(7(10) =-5.02, p = 0.0016).

All interactions were significant. The interaction between cue type and fixation distance (F(2,20) =
3.76, p = 0.041; Generalized 5> = 0.03), between simulated depth and fixation distance (F(1,10) =7.19, p =
0.023; Generalized > = 0.07), and between all three factors (¥(2,20) = 5.11, p = 0.016; Generalized #* =
0.031) reflects the dependence of cue strength on how the fixation distance influences the quality of the cue.
This was expected particularly for the disparity-only cue where a lack of depth constancy across distances is
a well-documented phenomenon (Johnston, 1991). The interaction between simulated depth and cue type
(F(2,20) = 45.42, p = 3.7e-8; Generalized 5> = 0.20) further supports the existence of cue-specific biases due

to differing cue strengths between cue types.

40 cm 80 cm
-8~ Disparity
30 4 Texture

-~ Combined
~~~
= Vector Sum
£
< 20 -
Q = ]
(]
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B
2
% 10 -
v
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0 5 10 15 0 5 10 15
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Figure 3 Average depth judgments as function of simulated depth for viewing distances of 40 (left panel) and 80 cm
(right panel) with error bars showing the standard error of the mean. The horizontal axis labeled “Simulated Depth”
represents the peak to trough depth of the corrugated 3D surface while the vertical axis labeled “Perceived Depth”
represents the set amplitude of the 2D probe. The different cue conditions are denoted by the shape and color of the
data points: purple squares for the combined-cue condition, red diamonds for the disparity condition, and blue
triangles for the texture condition. The Vector Sum prediction is denoted by the grey line with 95% confidence
intervals at each point. The dashed grey line is the unity line denoting veridical perception.

12


https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/

308
309
310
311
312
313
314

315

316
317

318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.513044; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The Vector Sum model predicts that the perceived depth of the combined cue should be the square
root of the sum of squares of the perceived depth of the single-cues (egs. 3 and 4). Figure 3 plots the average
predictions of the Vector Sum model across participants with 95% confidence intervals (gray). Given that
we assume a (ideally) linear mapping, the model can directly predict the cue strength of the combined-cue
from those of the single-cues through Equation 4. The prediction is simplified to the following since the

simulated depth rendered for each cue is the same (i.e., there are no cue conflicts):

2c = \(kp2)? + (kpz)? = /kTZ +kpiz= kez [5]

Since the slopes of the functions relating perceived to distal depth are proxies for the cue strengths, Equation

5 predicts the slope of the combined-cue estimate (k. = /kTZ + kp?) from the slopes of the single-cue

estimates (k and kp) without any free parameters. Figure 4 shows the predicted slopes plotted against the
measured slopes for each participant. The correlation coefficient » was found to be 0.79 while a linear fit
with an intercept of zero found a slope of 0.96 (SE = 0.034) showing a close match to the unity line.

Overall, these results demonstrate that the Vector Sum Model produces highly accurate predictions
of the relationship between simulated and perceived depth in single- and combined-cue conditions, with no
free parameters. In contrast, the results clearly contradict the MLE model prediction that the combined-cue
perceived depth will fall between the single-cue perceived depths. Although the MLE model predictions
may be amended by introducing cues-to-flatness, we will provide evidence in Experiment 3 rejecting the
cues-to-flatness explanation. Additionally, single-cue and combined-cue depths were consistently
overestimated in five of six stimulus conditions, contradicting the veridicality assumption of the MLE
model.

If previous findings from ostensibly similar tasks have supported the MLE model (Hillis et al., 2004;
Knill & Saunders, 2003; Lovell et al., 2012) then why does the MLE model fail in predicting these results?
A critical difference is that observers in this task provided absolute judgments of depth using a probe figure,
whereas in earlier studies observers made relative judgments by comparing or matching two 3D shapes.
While relative judgment tasks are often useful, they cannot reveal systematic biases in depth perception. For
example, Hillis et al. (2004) asked participants to match the perceived slant of an adjustable cue-consistent
surface with the slant of a fixed cue-conflict surface (i.e., the simulated slants from texture and from

disparity were either matched or mismatched). The cue-consistent slant that yielded a match was predicted

13


https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/

338
339
340
341
342
343

344
345
346
347
348
349
350
351

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.513044; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

through the MLE model (Equation 1). However, there is no guarantee that either surface was perceived
veridically. Nevertheless, it is notable that discrimination thresholds measured on single-cue stimuli were
indeed good predictors of the weights estimated in the slant matching task. The IC theory, however,
provides a radically different interpretation of discrimination thresholds. When this new interpretation is
adopted it can be shown that an approximation of the Vector Sum model makes identical predictions of the

results of Hillis et al. (2004) to those of the MLE model (Appendix 2).

3.0-
Fixation Distan ce
40 cm
® 80cm
2.54

g
(=)
1

p—
()]
1

10 T T T 1
1.0 1.5 2.0 2.5 3.0

Predicted Combined—Cue Cue Strength

Measured Combined—Cue Cue Strength

Figure 4: Observed combined-cue strength vs. predicted combined-cue strength. The predicted combined-cue
strength is computed with the Vector Sum model without free parameters directly from the single-cue strengths.
The single-cue and combined-cue strengths were determined by the slopes of linear fits. Each data point
represents a subject either in the 40 cm (red) or 80 cm (blue) fixation distance condition. The dashed grey line
represents accurate prediction. The gray area denotes the 95% confidence interval of the linear fit (black line) of
the observed vs. the predicted cue-strength.

Cue Uncertainty and Judgment Variance.

An important prediction of the MLE model is that the variance of the combined-cue estimate should
be smaller than the variances of the single-cue estimates (eq. 2). Test of this MLE prediction is usually
conducted by measuring discrimination thresholds of single-cue and combined-cue stimuli. However, noise
coming from depth estimation should also surface in the standard deviation of probe adjustments. We should
therefore expect that the standard deviation of probe adjustments in the combined-cue condition should be

smaller than that measured in the single-cue conditions. Alternatively, the Vector Sum model assumes that
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depth estimates are basically deterministic, only affected by negligible neural noise. According to this
theory variability in perceptual judgements is all due to late-stage, task related processes independent of the
stimulus itself. We therefore should expect that there is no difference between the cue types for the response
variance. Given the different predictions of the two models, we tested whether there was a difference in the
SD between the cues. Figure 5 shows the standard deviation of the probe-adjustment task as function of
simulated depth in all experimental conditions. In this figure the prediction of the MLE model for the

standard deviation of the combined-cue adjustments is shown in gray.
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Figure 5: The average standard deviations of the probe adjustment task in Experiment 1 with error bars averaged
across subjects. The MLE predictions together with the 95% confidence intervals are shown in gray. The do not align
with the MLE predictions since the SDs observed in the combined-cue condition are not smaller the SDs observed in
the single-cue conditions.

A repeated measures ANOVA indicated one main effect of simulated depth (F(1,10) = 54.75, p =
2.3e-5; Generalized #* = 0.57). This follows the classic effect of Weber’s law where the response variance is
proportional to the magnitude of the stimulus, in this case the surface depth. There was also an interaction
between the cue type and simulated depth (F(2,20) = 7.31, p = 0.0041; Generalized #* = 0.09). However,
there was no main effect of cue type (F(2,20) = 0.45, p = 0.65; Generalized 5> = 0.0053). This can be easily

observed in Figure 5 where the combined-cue standard deviation (purple) is not smaller than the single-cue

15


https://doi.org/10.1101/2022.10.20.513044
http://creativecommons.org/licenses/by/4.0/

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.513044; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

standard deviations, as predicted by the MLE model (gray). Instead, these results support the prediction of
the Vector Sum model that noise observed in perceptual judgements is stimulus independent. Because the
Vector Sum predicts a null effect of cue type, we conducted a Bayes factor analysis using the BayesFactor
package in R (Morey & Rouder, 2021). A Bayes factor of 0.055 indicated strong evidence for a model
including fixed effects of simulated depth and fixation distance, compared to a model including the same
fixed effects with the inclusion of cue type. Both models included a random effect for participants.

These results are particularly intriguing since they seem to be inconsistent with findings obtained in
experiments where discrimination thresholds are used to test the predictions of the MLE model. Indeed,
results from discrimination threshold experiments suggest that the variance of combined-cue stimuli is
smaller than the variance of single-cue stimuli by an amount predicted by Equation 2. This quantitative
prediction, however, is also compatible with the prediction of the Vector Sum model once discrimination

thresholds are interpreted in a radically different way.

Experiment 2

The central hypothesis of the MLE framework is that cue combination leads to an increase in the
reliability of the depth estimate. In many previous investigations, the reliability of a depth estimate has been
assumed to be directly reflected by the just-noticeable difference (JND) in a two-interval forced choice
(2IFC) task. The JND is the difference in distal depth that leads to 84% accuracy in identifying the deeper
stimulus. Under the MLE model, this is interpreted as the standard deviation of the noise in the estimation
process. Figure 6a depicts how in typical MLE models JNDs arise from a noise-free decision process that
compares two noisy estimates. For example, the INDs are larger for a disparity stimulus at near viewing
distances than at far viewing distances due to less estimation noise.. Studies using this approach have
repeatedly demonstrated that single-cue and combined-cue JNDs adhere to the relationship predicted by the
MLE model (eq. 2; Ernst & Banks, 2002; Hillis et al., 2004; Knill & Saunders, 2003).

In contrast, the IC theory assumes that the noise in the estimation process is negligible. In other
words, perceived depth is approximately the same across repeated viewings of the same stimulus under the
same viewing conditions. However, noise in the response distributions of a task (task noise; often neglected
by MLE models of cue combination) may arise due to factors such as response execution and memory
requirements. Importantly, this noise is independent of distal stimulus properties such as texture quality or
viewing distance. This leads to a different interpretation of the JND: given a particular cue strength, the JND

is the change in distal stimulus magnitude needed to produce a perceptual difference that is large enough to
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397  overcome the effects of task noise oy. As shown in the hypothetical experiment of Figure 6b, the JND is
398 larger at the far viewing distance because the cue strength becomes weaker (consistent with the fact that

399  binocular disparities decrease with viewing distance). We see that the JND is inversely proportional to the
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Figure 6: Two different interpretations of JND according to Bayesian theories (a) and the IC theory (b). a.
Bayesian theories assume that variability of depth judgments are due to uncertainty of 3D estimates. For instance,
disparities at near distances (left) are more reliable than disparities at far distances (right). Therefore the
distribution of depth estimates are narrower at near distances than at far distances. In the example, only a small
change of 5Smm in distal depth is necessary to overcome the perceptual noise at near distances. However, at far
distances a change of 10mm is needed. Note that the function relating distal depth to estimated depth is veridical.
b. The IC theory predicts nearly deterministic estimates. However, it also predicts that the main cause of
variability of perceptual judgements is task related. For the IC theory the JND measures the depth difference
needed to overcome the task related noise. When the cue-strength is large, as what happens for disparity fields at
near distances, only a small distal depth difference is needed. When the cue-strength is small, as it is for disparity
fields at far distances, a larger distal depth difference is needed.
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cue strength (J/ND = %N). Recall that the Vector Sum model posits that adding cues to a stimulus increases

the combined-cue strength according to the magnitude of the vector sum. Since the JND is inversely
proportional to cue strength, the Vector Sum model therefore predicts that the JND shrinks with additional
cues, similar to the MLE model. Specifically, the single-cue and combined-cue JNDs for stim uli defined by

(&) oN oN

texture and/or disparity cues are given by JND = k—N ,JNDp = Z—N, and JND; = = ﬁ Appendix 3
T D Cc kT2+kD2

shows how, from these equations, we can predict the combined-cue JND directly from the single-cue JNDs

> = = >+ : > Notice that this equation is formally identical to Equation 2 of the MLE
JNDZ ~ JND} ' JND}

as follows:
model, where JNDs are assumed to measure the estimation noise (i.e., JND; = g;). However, the Vector
Sum model predicts that this relationship will hold at the same perceived depth (in order to equate task-
related task noise, as the decision process operates on perceived depth), whereas the MLE model predicts it
will hold at the same simulated depth (in order to equate estimation noise). Thus, the predictions of the two
models for a given dataset may slightly differ, as we will show.

The goal of Experiment 2 was to demonstrate that the Vector Sum model correctly predicts the
relationship between single-cue and combined-cue JNDs for the same stimuli presented in Experiment 1.
Additionally, we aimed to show that this relationship is consistent with the independently measured cue

strengths obtained in Experiment 1. These findings demonstrate that the IC theory’s interpretation of the

JND is highly consistent with empirical results of depth discrimination tasks.

Experiment 2: Methods
Participants
Eight participants from Experiment 1 returned to complete Experiment 2, including two of the

authors.

Stimuli

Stimuli were identical to those in Experiment 1. However, in this experiment participants did not
provide a judgment of absolute perceived depth. Instead, they performed a 2IFC depth discrimination task.
Note that to make quantitative predictions of JNDs from the Vector Sum model, the perceived depth must be
matched across the single-cue and combined cue standards so that the task noise, which is dependent on
perceived depth, is kept constant. Thus, we used data from Experiment 1 to infer, for each participant in

each viewing condition, a set of three simulated depths for texture-only, disparity-only, and combined-cue
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stimuli that elicited the same perceived depth (Figure 7a, horizontal lines). These simulated depths served as
the standard stimuli in the 2IFC tasks, around which the JND was measured. For each viewing distance, we
defined a large standard and small standard. The perceived depth that defined the small standard was
anchored by the cue that elicited the greatest response at a distal depth of 2.5 mm. For the representative
participant depicted in Figure 6a, the small standard corresponded to a perceived depth of approximately 4.5
mm, as this was the greatest reported perceived depth at 2.5 mm of simulated depth. Similarly, the simulated
depth values for the large standard stimuli were anchored by the smallest perceived depth for a simulated
depth of 15 mm. The simulated depth values for the various standard stimuli were chosen by interpolation

using second-order curvilinear fits (see Fig. 7a). Through this procedure we determined 12 standard stimuli
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Figure 7: a. An example from a representative observer of how simulated depths for the fixed standards were chosen at
40 cm fixation distance. Two perceived depths were chosen, the largest and the smallest possible given the range of
data. For a given perceived depth, each cue requires a different simulated depth to elicit that same perceived depth.
These unique simulated depths were inferred for each cue through the intersection between curvilinear fits to the data
(solid curved lines) and horizontal lines set at the preferred perceived depth. The vertical lines indicate these inferred
values. b. MLE predictions need JNDs measured at the same simulated pedestal depth values. However, we measured
the JNDs at slightly different pedestal values (solid circles). We therefore inferred the JNDs at the required pedestal
values through interpolation or extrapolation (solid squares).

(3 cues x 2 viewing distances x 2 perceived depths) to be used in a 2IFC depth-discrimination task.
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Procedure

Participants performed a 2IFC task in which the perceived depth of a standard stimulus with a fixed
simulated depth was compared to that of a comparison stimulus whose simulated depth was varied through a
staircase procedure. Four staircases were used in each condition (2-up-1-down, 1-up-2-down, 3-up-1-down,
and 1-up-3-down) with 12 reversals each. On each trial, a fixation cross was displayed (700 ms), followed
by the first stimulus (1000 ms), followed by a blank screen (1000 ms), then, again, the fixation cross (700
ms), and finally the second stimulus (1000 ms). Participants then reported with no time constraint which
surface was perceived as having greater peak-to-trough depth through a keypress.

Response data were analyzed using a psychometric analysis package (Wichmann & Hill, 2001) in
MATLAB. The data from each staircase procedure were fit with a cumulative Gaussian function. The point
of subjective equality (PSE) was defined as the simulated depth at which participants responded with 50%
accuracy. The JND was defined at the difference between the PSE and the simulated depth at which

participants responded with 84% accuracy.

Experiment 2: Results and Discussion

Figure 8 (colored bars) shows the average JND in each stimulus condition. On the horizontal axis,
we indicate the average perceived depth corresponding to the two standard stimuli at each viewing distance.
A repeated-measures ANOVA reported a significant main effect of cue (F(2, 14) = 25.42, p = 2.2e-5;
Generalized 5° = 0.41). A critical prediction of both the MLE and Vector Sum model is that the combined-
cue elicits a smaller JND than the single cue conditions. Bonferroni-corrected #-tests confirmed that the JND
for the combined-cue stimuli (purple) was smaller than the JND for the disparity-only (red) (#7) = -4.60, p =
0.005) and texture-only stimuli (blue) (#7) =-7.93, p < 1.9e-4) conditions. Additionally, we found a
significant main effect of perceived depth (F(1, 7) = 55.54, p = 1.4e-4; Generalized 5> = 0.38) with JNDs
increasing for larger perceived depths. We suspect that this may be due to a form of Weber’s Law where the
noise from the encoding and decoding of perceived depth to and from memory depends on the magnitude of
perceived depth. We explore the implications of Weber’s Law further in the next section.

We also found significant interactions between perceived depth and viewing distance (F(1, 7) = 8.17,
p = 0.024; Generalized 5> = 0.052), between cue type and perceived depth (F(2, 14) = 11.31, p = 0.0012;
Generalized 5* = 0.20), and across all three factors of cue type, perceived depth and viewing distance (F(2,
14) = 5.54, p = 0.017; Generalized 5> = 0.074). These interactions, similarly, to Experiment 1, suggest a

dependence of the cue strength on the cues and their viewing conditions. However, the key result is that the
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combined-cue JND is smaller than the single-cue JND in all conditions. Although this is often taken as

evidence for the MLE model, here we show that it can also be predicted by the Vector Sum model.
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Figure 8: The Just-Noticeable Difference averaged across participants along with model predictions. The horizontal
axis displays the average perceived depth of the standard. The perceived depth of the standard was chosen uniquely for
each subject based on procedures stated in the previous section (See Figure 7a). The vertical axis represents the JND
magnitude. Red, blue, and purple show JNDs measured for the disparity-only, texture-only, and the combined cue,
respectively. Dark grey represents the Vector Sum model predictions while light grey represents MLE predictions.
Error bars show standard error around the between-subject averages.

The gray bars in Figure 8 show the predictions of the Vector Sum model (dark gray) and the MLE
model (light gray) for the combined-cue JND. Recall that the Vector Sum model predictions are based on
the single-cue JNDs for standard simulated depths that elicit the same perceived depth as the combined-cue
stimulus. As mentioned above, this guarantees that the task noise was approximately matched across the
three cue conditions. In contrast, the MLE model predictions are based on the single-cue JNDs for single-
cue stimuli with the same simulated depths as the combined-cue stimulus. Although we did not measure the
single-cue JNDs at fixed simulated depths, Figure 7b demonstrates how, for each participant, we linearly
interpolated or extrapolated slightly from the measured JNDs (circles) to determine appropriate values for
the MLE model (squares). Regardless, in Figure 8 we see that the predictions for the two models are very

similar, as should be expected, with no significant difference in accuracy (#(7) = -0.39, p = 0.71).
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Relationship Between JND and cue strength.

The IC theory introduces the idea that the JND is not primarily a measure of estimation noise
(which is assumed to be negligible), but rather than the noise that emerges from task-related demands
involved in comparing two perceived depths across a time interval (e.g., temporal decay in memory).
In a 2IFC task, the JND is determined by the cue strength of the varying comparison stimulus. This is
because the cue strength determines how much change in the simulated depth of the comparison is
necessary to produce a perceived depth difference large enough to overcome the task noise, o (Fig.
6b). Thus, the JND depends on task noise and sensitivity to changes in distal depth. Furthermore, we
expect that the JND is susceptible to Weber’s law, where increases in perceived depth will cause an
increase in the standard deviation of the task noise. If we therefore assume that o, increases with the

perceived depth Z; of the standard stimulus through a Weber fraction W, then oy, = W;:Z25 + c,

where c is a constant reflecting a baseline noise. Since the JND = Z—N, where k;; is the cue strength
ij

of cue i (disparity, texture, and the combined-cue) for viewing condition j (40 cm and 80 cm fixation

Wiczs+

distance), we can obtain JND = °. Because the perceived depth of the standard is 2, = ki zs,

ij
where z; is the distal depth of the standard stimulus, the JND can be modeled relative to the distal
depth by Equation 6:

JND = Wz, + ki] [6]

We expect that the JND depends (1) on the distal depth of the standard because of the Weber law, and,
most critically, (2) on the cue-strength of the comparison k;;. We set, for each participant, the cue strength
k;; to the individual slopes from linear fits mapping the simulated depths observed in Experiment 1 to the
perceived depths. To infer the Weber fraction and the noise coefficient, we fit Equation 6 to the estimated
JNDs of each participant. We found both the Weber fraction (M = 0.13 mm, SE = 0.031 mm) and the noise
coefficient (M = 1.66 mm, SE = 0.36 mm) to be significantly greater than 0 (#7) = 4.11, p = 0.0045 and #(7)
=4.57, p = 0.0026 respectively). Critical here is that the JND measured in Experiment 2 depends on the cue
strength observed in experiment 1 (Fig. 9a). Using Equation 6, we can discount for each participant from the

observed JND the contribution of the Weber law and the constant reflecting the baseline noise so to produce

a noise-corrected JND (corrected JND = M). Figure 9b plots the relationship between the cue-

Cc

strength and corrected JND averaged across participants. Horizontal error bars indicate the variability of the

cue-strength across participants and vertical error bars the variability of the corrected IND across participants.
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Once the Weber fraction and the baseline noise constant are factored out, the JND is shown to be almost

entirely dependent on the cue-strength (corrected JND = ki) and independent of the cue type as predicted
ij

by the MLE model. For instance, the JND of the disparity stimulus at the close viewing distance (Fig. 9b, red
circles) is smaller than the JND at the larger viewing distance (Fig. 9b, red triangles) because the strength of
disparity at the smaller viewing distances is larger than the strength of disparity at the larger viewing distance.

It should be noted that the condition for the large texture-only standard (average simulated depth of
17 mm) at 40 cm fixation distance was removed from this analysis for two reasons. First, we noticed that the
JND in this condition is much larger than in the other conditions and, therefore, it constitutes an outlier (Fig.
8). Second, we also noticed that the function relating perceived depth to simulated depth for this condition is
non-linear and seems to plateau at the largest simulated depth (Fig3, left panel, blue line). Because of this, the
strength of the texture cue for larger depth values is smaller than the strength in correspondence to smaller

depth values and, therefore, the JND at larger depth values is larger than the JND at smaller depth values.
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Figure 9: a. The JND against the cue strength cue strength extracted from Experiment 1 averaged across participants
with SE bars. There is an inverse relationship between cue strength and the JND. b. Task noise corrected JNDs plotted
against the cue-strength. The Vector Sum model predicts that there should be a hyperbolic relationship between the
JND and the cue strength, which is plotted by the grey curve.

In summary, these results indicate that the JND in a 2IFC t ask can be almost entirely explained by
the cue-strength and not by the noise of depth estimates. This finding aligns with the predictions of the IC
theory that postulates a deterministic mapping of depth modules between distal 3D properties and the module

outputs.
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Experiment 3

The main aim of this experiment was to test a possible alternative interpretation of the results of
Experiment 1, which are in agreement with the predictions of the Vector Sum model. The MLE model could
accommodate the finding that combined-cue stimuli are perceived as deeper than single-cue stimuli once the
role of “cues-to-flatness” is considered. Proponents of the MLE theory argue that when stimuli are rendered
on flat displays, experimenters typically fail to eliminate all uncontrolled depth cues. As a result, residual
depth information (e.g., the absence of a blur gradient) may specify the flat surface of the screen (Watt et al.,
2005). If cues-to-flatness influence depth judgments, then single-cue conditions are inadvertently testing the
combination of the single cue and the flatness cues. In this case, the MLE model predicts that the combined-
cue stimulus may be perceived as deeper than the single-cue stimuli. Briefly, this is because the perceived
depths of the single-cue stimuli are influenced more by the flatness cues than the combined-cue stimuli, due
to differences in single-cue versus combined-cue reliabilities. On the other hand, the Vector Sum model
directly predicts this well-known bias without postulating the influence of flatness cues. In fact, according to
the Vector Sum model, flatness cues should have no influence on perceived depth because they specify zero
depth and thus do not contribute to the vector sum.

In this experiment, we compared the two models predictions by testing whether intentionally adding
flatness cues would reduce the perceived depth of a stimulus. In Experiment 3A, we compared perceived
depth under monocular versus binocular viewing of the texture-only stimulus from Experiment 1. Binocular
viewing of a texture-only stimulus with zero disparities provides a reliable flatness cue, akin to viewing a
picture on a printed page, whereas monocular viewing of the same stimulus provides no such cue from
disparities. Under the Vector Sum model, monocular and binocular viewing of a stimulus are equivalent, as
they both have the effect of nullifying the disparity term in the Vector Sum equation (by setting either k, =
0 or zp = 0, respectively. Under the MLE model perceived depth should be greatly reduced under binocular
viewing compared to monocular viewing, as disparities are posited to be highly reliable at near viewing
distances, such that the disparity weight may exceed the texture weight. In Experiment 3B, we presented
stimuli with the opposite relationship: binocular disparities provided non-zero depth information, but they
were paired either with a textural flatness cue from a well-defined pattern specifying a fronto-parallel
surface, or with an uninformative random-dot pattern often used to eliminate pictorial information from
disparity-only stimuli. Here, the predictions are similar. The Vector Sum model predicts no difference in

perceived depth, while the MLE model predicts a measurable difference.
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Figure 10 illustrates the effects of cues-to-flatness for the MLE model for sinewave surfaces with
either the uninformative random-dot pattern or the textural flatness cue. Figure 10c shows the predictions of
the MLE model for the random-dot stimulus (Fig. 10a). As there is potentially some residual texture
information from the random dots, this cue is represented as a zero-mean, large-variance distribution (blue).
When combined with the reliable disparity cue (red), it has a negligible influence on the combined-cue
estimate (purple). However, texture information is much more reliable for the polka-dot stimulus containing
a textural cue-to-flatness (Figure 10b). Thus, in Figure 10d, the texture cue is represented as a zero-mean,
small-variance distribution (blue). Consequently, when combined with the same reliable disparity cue (red),

it will exert a larger influence on the combined-cue estimate (purple).

. — Disparity

Flatness Cues
— Disp W/ Flat

Likelihood

Depth

Figure 10: a,c. According to the MLE model, RDS displays (a) are expected to provide reliable depth estimates only
from binocular disparity given the very low reliability of texture information (b). The red distribution represents the
depth-from-disparity likelihood and the cyan distribution the likelihood of cues-to-flatness. The violet distribution
shows the optimally combined distribution according to MLE. Note how the center of the distribution is only slightly
pulled towards flatness. b, d. Unlike RDS displays, large circular polkadots (b) on the image plane reliably specify a
flat frontoparallel surface. This flatness cue therefore produces a sharply peaked likelihood function centered at 0 depth
(cyan). In this case the peak of the combined estimate is significantly pulled towards a flatter depth estimate (violet)
(d). In contrast, the IC model predicts the same depth estimate in both conditions.

Experiment 3: Methods

Participants
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Seven observers participated in Experiment 3A, including two of the authors. Seven additional

observers participated in Experiment 3B.

Apparatus

In Experiment 3A, the setup was the same as in Experiment 1, except that PLATO shutter glasses
(Translucent Technologies Inc, Toronto, Ontario) were used to occlude the vision of the left eye during
monocular viewing. Experiment 3B was conducted on a different system but using a similar setup
(Alienware A51 with nVidia Quadro RTX 4000 GPU; Viewsonic G90fB CRT monitor, resolution 1280 x
1024, refresh rate 60 Hz; Volfoni Edge® RF controlled shutter glasses, Volfoni, Paris, FR).

Procedure

Stimuli and procedures were similar to Experiment 1 with a few exceptions.

In Experiment 3A, the corrugation in depth of the stimuli was specified by texture and shading cues
(referred to as texture for simplicity; see Figure 3). However the same image was presented to the left and
right eyes, producing zero disparities. Monocular and binocular viewing were randomly intermixed within
the experiment, using the PLATO shutter glasses.

In Experiment 3B, participants judged the depth of a sinusoidal corrugation specified by disparity
information in two conditions. The RDS (no-texture) condition was similar to the stereo-only condition of
previous experiments, except the dots were painted black on a red background square subtending 8° of
visual angle (along the diagonal) with an average of 292 visible dots. The dots subtended a visual angle of
0.05°. In the flat-texture condition we created a binocular stimulus that projected perfectly circular, 0.55°
polka dots on the image screen by back-projecting the fronto-parallel texture onto the corrugated surface.
Unlike Experiment 1, we also included the stimulus frame so that the only difference between conditions

was the size and distribution of the texture elements.
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Experiment 3A: Results

Figure 11 plots the average perceived depth as a function of simulated depth for monocular and
binocular viewing at the two viewing distances. Repeated-measures ANOVA revealed a significant effect of
simulated depth (F(1,6) = 49.94, p = 4.0e-4; Generalized 5> = 0.86). There were no other significant main
effects or interactions. To evaluate the support for the Vector Sum model prediction of no difference
between binocular and monocular viewing (i.e., the null hypothesis), we conducted a Bayes factor analysis.
A Bayes factor of 0.21 indicated moderate evidence for a model including fixed effects of simulated depth
and viewing distance and a random effect for participants, compared to a model including all three effects
with an additional fixed effect of viewing condition. This supports the Vector Sum model prediction that the
zero-disparity field specifying the flat picture plane does not influence perceived depth (see also Vishwanath
and Hibbard, 2013). Overall, these findings seriously call into question the idea that the pattern of results
observed in Experiment 1 (and in previous studies) is due to flatness cues. Moreover, the fact that depth

perception is unaltered when viewing a pictorial stimulus with one or two eyes is successfully accounted for

by the Vector Sum model.
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Figure 11: Averaged perceived depth as function of simulated depth in Experiment 3. 3D information is provided by
texture and shading cues. Dark blue circles represent binocular view of the flat picture plane. Light blue squares
represent monocular view. Error bars show the standard error around the average response.
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Experiment 3B: Results

Figure 12 plots the perceived depth estimates in the flat-texture and random-dot conditions.
Repeated-measures ANOVA revealed a significant main effect of simulated depth (F(1, 6) =216.78, p =
6.2e-6; Generalized 5* = 0.92) and a significant interaction between simulated depth and fixation distance
(F(1, 6) = 8.28, p = 0.028; Generalized #*> = 0.15). To evaluate the support for the Vector Sum model
prediction of no difference between the flat-texture and random-dot stimuli, we again conducted a Bayes
factor analysis. A Bayes factor of 0.42 indicated anecdotal evidence for a model including fixed effects of
simulated depth and viewing distance and a random effect for participants, compared to a model including
all three effects with an additional fixed effect of viewing condition. Together, the results of these
experiments support the Vector Sum model prediction that there is no difference between setting the depth

of a cue to zero or eliminating the cue altogether.
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Figure 12: Averaged perceived depth as function of depth from binocular disparities in experiment 3b. Bright red
indicates the RDS condition. Dark red indicates the viewing condition where polkadot texture specified a flat fronto-
parallel surface. Error bars show the standard error around the average response.

General Discussion

The results of three experiments challenge three fundamental assumptions of previous models of 3D

cue integration. Veridicality: independent visual modules compute the veridical metric structure of 3D
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objects from retinal projections. Probabilistic Inference: the output of each module is a probability
distribution of all possible 3D structures that may have generated a given retinal image. The width of these
probability distributions is a measure of the perceptual estimation noise from each individual cue. In other
words, each module has explicit access to information about the reliability of a given visual input.
Statistically Optimal Combination: 3D cue estimates are optimally combined by computing the joint
probability distribution from the independent probability distributions of each individual cue. The perceptual
estimate corresponds to the 3D structure that maximizes this joint probability distribution. Moreover, since
the joint probability distribution has a smaller variance than that of each individual cue the combined
estimate is also more reliable. In the case of the linear MLE model, a simple heuristic can achieve
statistically optimal combination: single-cue estimates are combined through a weighted average where the
weights are inversely proportional to the variance of the noise of single cue estimates.

The Veridicality assumption is clearly contradicted by the results of the first experiment, where
participants judged the amplitude of a surface with a sinusoidal depth profile. Following a classic cue-
combination paradigm we studied these depth judgments with disparity-only, texture-only, and combined-
cue stimuli. In most of these conditions the perceptual slopes relating simulated depth to perceived depth
differ from unity and they significantly differ from each other. Moreover, the biases observed in single-cue
conditions do not diminish when cues are combined.

The Probabilistic Inference assumption is challenged by the results of the second experiment where
we show that JNDs measured in a depth discrimination task are inversely proportional to the slope of the
transfer function independently measured in the first experiment. Since the perceptual slope is sufficient to
predict depth-discrimination it presents a valid alternative interpretation of JNDs from the one postulated by
the MLE models. Moreover, the IC theory’s explanation is more parsimonious since it does not assume
mechanisms that have access to explicit measures of reliability of the visual input.

The Statistically Optimal Combination assumption is contradicted by the results of all three
experiments. In the first experiment we found that the perceptual slope in the combined-cue condition is
larger than the perceptual slope in the single-cue conditions, a result incompatible with the prediction of
weighted cue combination of the linear MLE models. In the second experiment we show that the smaller
JND in the combined-cue condition relative to the single-cue conditions can be explained by the larger
perceptual slope. In the third experiment we show that adding a reliable cue-to-flatness to a 3D stimulus
does not produce a significant reduction in depth magnitude. This finding contradicts the weighted cue

combination rule of the MLE model, since adding to a depth cue a reliable cue-to-flatness should produce a
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weighted average that is biased towards flatness. These results should especially be expected when a flat
disparity field is added to a texture specified 3D surface since at close distances disparity information is
highly reliable. Instead, we observed no difference in perceived depth magnitudes when the picture of a
texture stimulus was seen monocularly or binocularly. This finding also contradicts a possible MLE
interpretation of the results of the first experiment. According to this interpretation, the larger slope of the
combined-cue condition relative to the single-cue conditions may be attributed to the influence of spurious
cues-to-flatness affecting stimuli rendered on flat CRT displays. The larger slope in the combined-cue
condition is because these cues-to-flatness influence single-cue estimates to a greater extent than combined-
cue estimates since the former are less reliable than the latter. If this explanation is correct and spurious
cues-to-flatness such as the blurring gradient noticeably influence depth estimates, then we should expect an
even larger effect when we introduce highly reliable cues-to-flatness such as a flat disparity field. But this is
not what we found. In contrast to the observed discordance between the empirical data and the predictions of
the MLE models, these findings can be accounted for by the Intrinsic Constraint theory of cue integration.
These results therefore have significant theoretical implications since the IC theory rejects the fundamental

hypotheses on which the MLE theory and the Bayesian approach in general stand.

Linear mapping versus veridicality.

The first important departure of the IC theory from previous theories is the rejection of metric
accuracy as the normative goal of 3D processing. For the IC theory, mechanisms performing independent
computations on the visual input derive 3D estimates that are /inearly related to distal properties but are in
general inaccurate. The slope of these linear functions, which we term cue strength, depends on the quality
of the visual input. For instance, a regular pattern of texture elements on a distal surface such as polkadots
will produce a stronger texture signal than sparse texture elements. Therefore, a depth-from-texture module
will in the first case exhibit a steeper input-output transfer function than in the second case. Similarly, a
disparity module will respond with a steeper transfer function to the depth of objects at closer distances than
at further distances. The results of Experiment 1 show indeed that depth judgments are not veridical and
depend on the viewing conditions. It can be observed that the perceptual slope in the disparity-only
condition is shallower at a viewing distance of 80 cm than at 40 cm. At the smaller distance depth from
disparity is overestimated and it is larger in magnitude than depth-from-texture. However, at the larger

distance these estimates are almost the same.
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Deterministic versus probabilistic mapping.

The second fundamental difference between the IC theory and MLE models is that the output of
visual modules is deterministic and does not carry any information about the reliability of the input.
Consider again a texture gradient projected by sparse surface texture elements. For the MLE account this is
an unreliable image signal that produces a noisy output. In other words, each time similar (i.e. equally
unreliable) stimuli are viewed the texture module will provide a different depth estimate. However,
according to the veridicality assumption, the average estimate arising from multiple measurements will be
unbiased. In contrast, the IC theory will derive similar depth estimates albeit much smaller than the distal
depth magnitude. As explained above, what the MLE approach considers unreliable stimuli are considered
as weak signals for the IC theory because a change in distal depth elicits a small change in the module
output.

The deterministic nature of the mapping between distal and derived depth postulated by the IC
theory requires an adequate re-interpretation of perceptual variability in depth estimation tasks. The most
radical re-interpretation of variability measurements is with respect to the Just Noticeable Difference (JND)
observed in depth-discrimination tasks. The MLE model considers the JND as a proxy measure of the
standard deviation of the noise underlying perceptual estimates of depth. However, according to the IC
theory, the noise influencing discriminability does not stem from variability of depth estimates, but, instead,
from task processes. In the specific case of a 2IFC task, memory retention and retrieval of the stimulus
presented in the first interval is subject to “smearing” (Rademaker et al., 2018), therefore affecting the
following comparison with the stimulus presented in the second interval. To overcome this memory related
noise the perceived depth magnitude of the two stimuli must differ by some minimum amount. Although
this perceived depth difference necessary for a reliable discrimination is fixed, the simulated depth
difference required to yield this perceived depth difference depends on the cue strength. Therefore, the JND,
defined as the simulated depth difference necessary for a reliable discrimination, is inversely proportional to
the cue strength. This novel interpretation of the JND is sufficient to predict the data of the second
experiment since the observed JND is proportional to the inverse of the cue strength. Moreover, as we will
discuss shortly, the Vector Sum rule of the IC theory and the alternative interpretation of discrimination

thresholds yields the same prediction as the MLE model for the JND of combined-cue stimuli.
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Vector sum versus probabilistic inference.

Within the IC framework independent depth modules have a deterministic input-output mapping.
That is, the same type of visual input elicits the same output. However, this does not mean that the output of
a 3D module is not subject to undesired fluctuations. The important distinction between the MLE theory and
the IC theory resides in the nature of these fluctuations. For the MLE models the inferential process
interpreting an unreliable visual input will produces large variations in the output estimates because even
slight changes in the input will result in large perturbations of the associated likelihood function (Ernst &
Banks, 2002; Held et al., 2012; Hillis et al., 2004; Knill 1998a,b; Knill, 2003; Knill & Saunders, 2003). It
therefore makes intuitive sense that linear MLE models combine visual estimates with weights that are
inversely related to the variance of the output noise. Note, however, that the weights must be estimated at
each single instance and therefore visual modules must carry information about the reliability of a given
visual input.

For the IC theory, fluctuations of a module output are caused by changes in the strength of the visual
input. For instance, the same distal structure will yield 3D estimates of different magnitudes depending on
the material composition of the object, the viewing distance, the illumination, and so on. It can be shown
that the vector sum of the appropriately scaled module outputs minimizes the undesired influence of scene
parameters while maximizing the sensitivity to distal depth changes (Appendix 1). This simple rule of cue
combination yields specific predictions regarding both (1) the magnitude of depth judgments and (2) the
discrimination thresholds of combined-cue stimuli. The first prediction is that the perceived magnitude of
combined-cue stimuli is equal to the vector sum of the perceived magnitude of single-cue stimuli.
Specifically, the cue strength (i.e. perceptual slope) of the combined-cue stimuli is the vector sum of the
strengths of the single-cue stimuli. This prediction is confirmed by the results of the first experiment. The
second prediction follows from the first. Since according to the IC theory, the JND is inversely proportional
to the perceptual slope, it follows that the JND of the combined-cue stimuli is smaller than the JND of the
single-cue stimuli (Appendix 3). Notably, the predicted reduction in magnitude of the JND for the
combined-cue stimuli is identical to that of the MLE model. The algebraic equivalence of the Vector Sum
and MLE prediction of the JIND expected from cue combination validates the IC theory because it can
account for many empirical findings that use depth discrimination to support the MLE predictions (Hillis et
al., 2004; Knill & Saunders, 2003). Finally, the Vector Sum combination rule also predicts the results of the
third experiment. When a cue to flatness is present in a display, its contribution to the vector sum is

equivalent to that of an absent cue. For instance, when looking at a picture with only one eye, no disparity
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information is present whereas when looking at the same picture with two eyes the disparity field specifies

zero depth. In both cases the contribution of the disparity term is nil.

Conclusion.

In this study we tested the predictions of a new theory of depth cue integration termed Intrinsic
Constraint (IC) theory. This theory postulates the existence of independent modules relating perceived 3D
properties to distal 3D properties through deterministic functions that are, in optimal conditions, linear. The
slopes of these functions depend on scene parameters specific to the viewing conditions. In ideal viewing
conditions depth modules are highly sensitive to distal changes in 3D properties, as for example when the
material composition of an object determines a strong texture gradient. However, in viewing conditions
where 3D information from a specific cue is weak, as for an object that only has very sparse texture
elements on its surface, the response of the depth module will be shallow. The IC theory combines
individual estimates through a vector sum that maximizes the response to changes in distal 3D properties
while minimizing the module-output fluctuations due to varying scene parameters.

We tested this model in three experiments targeting different aspects of 3D shape judgments. First,
we confirmed the prediction that increasing the number of cues specifying a 3D surface will increase the
perceived depth of that surface, a hypothesis which we call the Vector Sum Model. This result has been
recently found in other studies using grasping to test depth perception in both VR environments and with
real objects (Campagnoli & Domini, 2019; 2022). Although Bayesian models can account for the
phenomenon predicted by the Vector Sum model, the IC theory has the significant advantage of achieving
the same predictions without the need for further ad-hoc assumptions such as cues-to-flatness or priors-to-
flatness (Di Luca et al., 2010; Domini and Caudek, 2003, 2009, 2010, 2011, 2013; Domini et al., 2006;
Domini et al., 2011). This advantage is not confined to the case of depth-cue integration, but it applies to
other common visual experiences such as picture perception. In this case too, neither flatness cues nor a
prior-to-flatness appear to be able to explain the empirical data. Second, we tested the ability of the IC
theory to predict the JND of a multi-cue stimulus from the JNDs of single-cue stimuli. Notably, the IC
theory makes formally identical predictions to those of Bayesian models, therefore accounting for a number
of previous investigations that leverage JND data as the strongest source of evidence in support of Bayesian
cue combination. However, the JND for the IC theory is determined by the slope of the response function

and not by the noise of depth estimates.
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In summary, the IC theory seems to be a better candidate for explaining 3D cue-integration
experiments since (1) It can predict previous data in support of Bayesian models, (2) it predicts new results
that are incompatible with previous models and (3) it is more parsimonious since it does not postulate
veridical perception or needs estimates of cue-reliability that are necessary for the functioning of Bayesian

models.

Appendix.

Appendix 1: The Vector Sum equation maximizes the Signal-to-Noise-Ratio. For simplicity consider only
two signals s; = 4,z and s, = 1,2z, where A; are unknown multipliers depending on confounding variables
and z is the magnitude of the 3D property. These signals are the visual systems encoding of the 3D
information from independent cues (e.g. texture and disparity). We seek an estimate Z. = f(sq,5,) (1)
Proportional to z and (2) Most sensitive to 3D information and least sensitive to random fluctuations ¢; of 4;.
If Ao is the unperturbed value of 4;: 4; = A;p + &; and s;y = 4;p2. We assume small random perturbations

due to changes in viewing conditions such that €; are Gaussian distributions with zero mean and standard

deviations o;. Taking the derivative of % = % Ao+ &) + % (A0 + &), where % are calculated
1 2 i

at s;y, we observe a signal term S = fi1,5 + f,4,0 (Where f; = Z—J;) and anoiseterm E = fi&; + fr&;
L

having standard deviation oy = \/ f12012 + fzzazz. If we minimize the Noise to Signal Ratio NSR = UTE with

respect to f; (by solving for f; the equation dZI;R = (0) we find that the first derivatives of the function are
i
af Aio . . dzc . N S1 2 Sy 2
— o« —. It can be shown that the derivatives of the equation Z; = 8 (—) + (—) (calculated at s;4)
das; of das; o1 ()

: : o A : R
meet this requirement. By substituting k; = 8 = we obtain the Vector Sum equation Z; = V(ky2)? + (ky2)?
L

(easily generalizable to n signals).

Appendix 2: The IC theory predicts the same linear combination rule as the Bayesian models in matching
tasks. Hillis el al. (2004) predict the outcome of a task where the perceived slant of a non-conflict stimulus
Syc = Sp + & is matched to that of a conflict stimulus S, where Sy is an arbitrarily defined base slant and &§
is the change in slant needed for a perceptual match E (fc) =F (§ NC)' For the conflict stimulus the disparity

slant Spdiffers from a texture specified slant Sy by A: S¢ = Sg and S = Sp + A. Optimal cue combination
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|-

(Wl

predicts thatE(SAC) = Wp (SB + A) + (1 - WD)SB = SB + WDA, Where Wp = 1d—+1,
2T 2
9p 9T

A matching (E (fc) =

E (§ NC)) is obtained when wj, = % since E (§ NC) = Sp + 8. By using JNDs as proxies for standard

1

2
deviations the weight can be accurately predicted (w, = 11N—f’31). The IC theory makes identical

2 2
JND% JND%

predictions. For a small conflict A we can approximate the Vector Sum equation through Taylor expansion

~ 2
at the base slant Sz: S = \/kTZSBZ +kp?(Sp +A)2 = S, /kTZ +kp? + " A Since
kT2+kD2

Sve=(Sg + &) \/kTZ + kp®=S; \/kTZ +kpt+6 \/kTZ + kp?, amatch Sy = S, is obtained when

2 2
oo A=§ sz + kDZ, from which —2— = 2 Note that since for the IC theor JND; = N (See
y ;

[ kr2+kp? A
kT2+kD2 T D

Introduction of Experiment 2) then

kp?

——— = wp, which matches Hillis et. al predictions.
kr“+kp

Appendix 3: The Vector Sum model predicts the same JND of combined stimuli as that predicted by linear
MLE combination. The MLE model predicts that when two cues with independent Gaussian noise of

standard deviation oZare combined through a weighted average with weights inversely proportional to the

. . . . .1 1 1 .
variance of each cue then the combined (inverse) variance is 5=t If INDs are proxies for the
Cc 1 2

standard deviations, then : ;= : >+ : 5. For the IC theory, JNDs depend on the task noise o and the
JNDZ ~ JND? ' JND3

gain k;: JND; = Z—N and /JND, = Z—N Since from the Vector Sum equation the gain of the combined stimulus
1 2

is ke = /klz + k,°, the JND of the combined stimulus is JND, = X = —2Y__ By substituting k; = —

ND;
kc k12 4k,2 JND;

= , which is identical to the MLE prediction.

i, 1
JND1 JND,

in this equation we obtain JND, =
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