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ABSTRACT 

Fluorescence imaging is widely used for the mesoscopic mapping of neuronal 

connectivity. However, neurite reconstruction is challenging, especially when neurons 

are densely labelled. Here we report a strategy for the fully automated reconstruction of 

densely labelled neuronal circuits. Firstly, we established stochastic “super-

multicolour” labelling with up to seven different fluorescent proteins using the Tetbow 

method. With this method, each neuron was labelled with a unique combination of 

fluorescent proteins, which were then imaged and separated by linear unmixing. We 

also established an automated neurite reconstruction pipeline based on the quantitative 

analysis of multiple dyes (QDyeFinder). To classify colour combinations, we used a 

newly developed unsupervised clustering algorithm, dCrawler, in which data points in 

multi-dimensional space were clustered based on a given threshold distance. Our new 

strategy allows for the reconstruction of neurites for up to hundreds of neurons at a 

millimetre scale without manual tracing.  

MAIN 

The brain is made up of dense networks of interconnected neurons. Mapping the anatomy of 

these dense networks is one of the biggest challenges in neuroscience. Electron microscopy 

(EM) provides the synaptic resolution and is used as a gold standard in connectomics 1, 2. It is 

now possible to obtain EM images for 1 mm3 volumes (~petabyte scale) 3, 4; however, due to 

its extremely large data size, the reconstruction process is the bottle neck. Light microscopy 

(LM) is useful for the mesoscopic circuit mapping at a whole-brain level 5-9. However, the 

reconstruction of densely labelled circuits is challenging as its limited resolution hinders the 

discrimination of thin axonal fibres (down to ~100 nm) originating from different neurons. It 

is, therefore, essential to limit the number of labelled neurons in single-cell reconstruction in 

LM. Moreover, manual circuit tracing is a highly laborious and rate limiting step in large-

scale circuit reconstruction with LM. For both EM and LM connectomics, current 

reconstruction strategies are all based on the continuity of the target structure; we, therefore, 

cannot reconstruct the neurites correctly once we lose just a few sections of the images. In 

theory, error rates in reconstruction exponentially increase as the length of the neurites 

increases. Thus, connectomics beyond a millimetre scale remains a big challenge. 

To improve the discriminability of neurites in a densely labelled circuits, it is effective 

to utilize the colour information in LM. For example, if we utilize the combination of three 
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colours (red, green, and blue), ~20 different lines can be easily dissociable in a Tokyo railway 

map (Fig. 1a). Similarly, multicolour labelling is useful for LM-based circuit reconstruction 

in the brain. Stochastic multicolour labelling strategies, such as Brainbow, utilize a 

combination of 3 fluorescent proteins (XFPs) to create different colour hues 10, 11. A brighter 

version of this method, Tetbow 12, allows for multicolour fluorescence imaging in 3D in 

combination with tissue clearing with SeeDB2 13. However, the combination of three colours 

only produces ~20 discernible colour hues 12, which falls well short of the variations 

necessary to reconstruct densely labelled neuronal circuits. 

In this study, we performed “super-multicolour” labelling of neuronal circuits, in 

which >3 XFPs were utilized to expand colour combinations. However, we cannot recognize 

the combination of >3 colours visually, as most humans only have trichromatic colour vision. 

We, therefore, developed a fully automated neurite reconstruction pipeline based on 

quantitative analysis of multiple dyes (QDyeFinder). In this pipeline, we identified neurites 

for different neurons based on colour information only. The combination of super-

multicolour labelling and the QDyeFinder pipeline facilitates automated circuit 

reconstruction beyond a millimetre scale without tedious manual tracing.  

RESULTS 

Super-multicolour imaging with 7 XFPs and linear unmixing 

Stochastic multicolour labelling of neurons (e.g., Brainbow) typically utilizes only 3 XFPs 11. 

This is simply because it is difficult to identify >3 colours in the merged images visually. 

However, the possible combinations or “colour hues” will increase by utilizing more colours 
14, 15. We, therefore, aimed for “super-multicolour” fluorescence labelling utilizing >3 types 

of XFPs. 

 Firstly, we screened for XFPs which are bright, monomeric, evenly distributed in 

mammalian neurons, excitable with conventional laser lines, and are spectrally dissimilar to 

each other. We identified a combination of 7 XFPs that met all the above criteria: 

mTagBFP2, mTurquoise2, and mAmetrine1.1 were excitable with 405 nm laser; 

mNeonGreen and YPet were excitable with 488 nm laser; mRuby3 and tdKatushka2 were 

excitable with 552 nm laser (Fig. 1b).  We excluded XFPs that were prone to aggregation, 

photobleaching, and/or distributing unevenly in neurites. Emission signals for different XFPs 

were separated by diffraction gratings during confocal imaging.  

When multiple types of XFPs are excited with a single laser, the emission spectra 

partially overlap with each other. To extract the fluorescence signals derived from a single 

type of XFP, we used linear unmixing 16, 17. For successful linear unmixing, the linearity of 

the fluorescence signal is critical. When detectors of the confocal microscope are not 

sufficiently linear (e.g., Leica HyD detectors 18, 19), we have to correct the linearity to 

improve the performance of linear unmixing (Extended Data Fig. 1). Then, using HEK293T 

cells expressing a single type of XFPs, we determined how much signals leaks into different 

channels. Based on this reference data, we calculated how much signals are derived from 

each of the XFPs (Extended Data Fig. 2). In this way, 2 or 3 XFPs excited with the same laser 

line were fully separated after linear unmixing (Fig. 1c). Thus, we can obtain fluorescence 

signals for up to 7 XFPs separately with conventional laser lines in confocal microscopy. 
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 We previously reported the bright and stochastic multicolour labelling method, 

Tetbow 12. With Tetbow, tTA and TRE-XFP vectors are stochastically introduced into 

neurons. As each of the XFP genes are encoded in different plasmids or adeno-associated 

virus (AAVs), it is easy to increase the number of XFPs. Following the same condition as in 

the original study, we established 7-colour Tetbow in the mouse brain. Using in utero 

electroporation at E15, L2/3 neurons in the primary somatosensory cortex (S1) was labelled 

with 7-colour Tetbow (Fig. 1d). After 7-colour imaging and linear unmixing, we observed the 

combinatorial expression of 7 different XFPs. Both axons and dendrites were brightly 

labelled with these XFPs. 

7-colour Tetbow provides superior discriminability of neurons based on colour hues 

Our trichromatic colour vision can only recognize the combination of 3 channels, namely red, 

green, and blue. To quantitatively evaluate colour hues produced by ≥3 channels of the 

fluorescence signals, we need to introduce a numerical description of the colour hues that can 

also be extended to N channel images. Fluorescence intensities in the N channel images can 

be plotted in the N-dimensional space. After normalizing values across N channels 

(normalized to the maximum ROI value), we obtained vector-normalized intensity values 

(designated “colour vector”, hereafter). The colour vector data will be plotted on the surface 

of the hyperplane in the N-dimensional space (Extended Data Fig. 3a). One easy way to 

assess the colour hue similarity is to calculate the Euclidean distance (d) between the colour 

vectors. The more similar the colour hues are, the shorter the d value will be. We can also 

evaluate colour hue discriminability in this scheme.  We can judge discriminable when 

distance between the two colour vectors is above a defined threshold value, Th(d) (Fig. 2a). 

 Firstly, we examined whether neurons labelled with 7-colour Tetbow are more 

discriminable than the conventional 3-colour Tetbow. To compare the discrimination 

performance in the same condition, we utilized synthetic datasets. As the copy number of 

introduced XFP expression vectors follows a Poisson’s distribution in Tetbow, we can 

simulate the expression patterns of XFPs 12 (Extended Data Fig. 3b). We simulated the 

expression profiles under the condition of an average of 0.1-6 gene copies / cell / colour. We 

compared synthetic data for 3- vs. 7-colour Tetbow. When an average of 2 copies / cell / 

colour was introduced, for example, only 93% of neuronal pairs were discriminable at Th(d) 

= 0.2 with 3-colour Tetbow; however, >99.9% of neuronal pairs were discriminable with 7-

colour Tetbow at the same threshold (Fig. 2b and Extended Data Fig. 3c).  

This does not mean that all of the 1000 neurons are fully separated because of the 

“birthday problem” 20. We estimated the fraction of “uniquely-labelled neurons”, which are 

separated by >Th(d) from any other neurons (Fig. 2c). Using Monte-Carlo simulations with 

various numbers of cells, we calculated what percentage of cells would be uniquely labelled 

at different Th(d) values. We found that 93.3% of neurons are uniquely labelled when 100 

neurons are labelled (and 86.3% for 200 cells) with 7-colour Tetbow and Th(d) = 0.2 (Fig. 2d 

and Extended Data Fig. 3d). 

 Next, we evaluated colour discriminability with 7-colour Tetbow using the real 

samples. Layer 2/3 neurons in S1 were labelled with the 7-colour Tetbow using in utero 

electroporation. Four-week-old brain samples were cleared with SeeDB2G 13, and 7-channel 

images were obtained with confocal microscopy followed by linear unmixing. Fluorescence 

signals isolated from 2031 somata were analysed for colour vector similarity (Fig. 2e). We 

found that 99.7% of neuronal pairs were discriminable at Th(d) = 0.2 (Fig. 2f), which is much 
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better than the 3-colour Tetbow (64.5%) 12.  In this condition, 79% out of 100 neurons can be 

uniquely labelled (Fig. 2g).  

Strategy for automated neurite reconstructions based on colour hue similarity 

As many of neurons are uniquely labelled by the combinatorial expression of 7 XFPs, we 

considered that we should be able to identify neurites for different neurons solely based on 

the colour hue information. This will be conceptually different from existing neurite 

reconstruction strategy which is based on the physical continuity of the neurites (neurite 

“tracing”) 21-25. Thus, our new strategy could overcome the limitation of the existing 

reconstruction methods. 

 Colour hue similarity can be evaluated based on the Euclidean distance between 

colour vectors in the 7-dimensional space as described in Fig. 2a. We initially tried to 

evaluate colour vector for each pixel. However, it was difficult for two reasons. Firstly, the 

colour vector was not stable enough at the single pixel level. Shot noise contributed to 

significant fluctuations. Furthermore, the distribution of XFPs were not completely uniform 

at a local level (< several microns) especially in thin axons.  Secondly, pixel-based analysis 

required a massive amount of machine power for pairwise distance calculations, hampering 

analysis of gigabyte-scale images. We, therefore, decided to extract colour vector data for 

regions of interest (ROIs) consisting of multiple pixels. 

 We thus needed to set ROIs for neurites. There are many open source and 

commercialized software to automatically detect fibrous structures such as neurites. They 

cannot trace neurites entirely but are good enough to detect many of the bright neurite 

fragments. We used one of them, Neurolucida 360 22, to automatically detect neurite 

fragments.  

Briefly, we obtained fluorescence intensity values from each of the neurite fragments 

as ROIs and obtained colour vector data. We then performed unsupervised clustering of the 

colour vector data for all of the ROIs. If neurites from the same neuron have very similar 

colour hues, each cluster should represent neurites from the same neuron.  In this way, we 

established an automated neurite reconstruction pipeline based on quantitative analysis of 

multiple dyes (QDyeFinder) (Fig. 3). 

QDyeFinder pipeline and quality control 

Here we describe the more details of the QDyeFinder pipeline, including pre-processing, 

parameter setting, and quality control (QC) procedures. 

  Firstly, after obtaining N-channel fluorescence images, we performed linear 

unmixing as described in Fig. 1. To obtain N-channel signals accurately from thin neurites, it 

is important to minimize chromatic aberrations. When necessary, we performed post-hoc 

correction of chromatic aberrations as described previously 26 (Fig. 3a).  

 Next, we generated channel-stacked images and automatically detected neurite 

fragments using Neurolucida 360. This software can detect bright neurite fragments with 

sufficient signal-to-noise ratios but cannot fully trace neurites with dim compartments. 

Existing neurite detection software including Neurolucida 360 often make mistakes when 

neurites are making branches and/or multiple neurites are crossing over along z. We, 
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therefore, broke the detected fragments down to smaller fragments at branch and crossing-

over points (Fig. 3b). These fragments were used as ROIs in subsequent analyses. 

 We obtained mean intensity values for N channels in each of the ROIs. As a part of 

QC, we examined whether all the N channels have sufficient signal-to-noise (S/N) ratios. We 

determined cumulative plots for signal intensities in the ROIs and background (non-ROI 

areas). We checked if all of the channels have sufficient S/N at the 80-100 percentile range of 

the intensities. We need to discard the channel when S/N in this range was <2.5, as we cannot 

expect reliable signals for that channel (Extended Data Fig.4a). There may be no or little 

label for that channel, in that case. 

 We also needed to discard very short neurite fragments, as the colour vector data 

becomes less stable as the length decreases. We used neurite fragment data from 7-colour 

Tetbow samples (L2/3 neurons in S1, imaged with a 63x lens) to evaluate this issue. Neurite 

fragments were artificially broken down to smaller sub-fragments of varying lengths. To 

examine the relationship between length and colour vector stability we measured the 

Euclidean distance (d) between the sub-fragments the parental (whole) fragment. We found 

that d > 0.1 when the lengths of sub-fragments become <5 m (Supplementary Fig. 4b). We, 

thus, decided to consider ROIs at a length of >5 m for this image. 

 We also discarded ROIs with insufficient brightness. There is a trade-off between the 

brightness and reliability of the colour vectors, where neurites that are dim produce unreliable 

colour vectors. We split each neurite fragment into sub-fragments of the minimum length and 

calculated the Euclidean distance (d) of the colour vector to that of the parental fragment. If  

d > 0.2, we defined it as an inaccurate sub-fragment. To determine a magnitude threshold, we 

found the smallest magnitude cut-off where less than 5% of the sub-fragments were 

inaccurate. We then excluded ROIs whose channel-stacked signals are below the defined 

threshold brightness, 0.1 (Extended Data Fig. 4c).  

 While we broke fragments at the branch and crossing-over points, the Neurolucida 

360 software can still make mistakes for neurite identification. If the colour hue abruptly 

changes in the middle of the fragment, then detected fragment is most likely a “wrong” 

hybrid of different neurites that intersect. We, therefore, broke down the fragments further 

when the colour vectors in adjacent sub-fragments (segmenting by the minimum fragment 

length described above) of the fragment are separated by d > 0.3 (Extended Data Fig. 4d).  

 With all the ROIs with reliable signals, the mean intensity values were extracted and 

then vector normalized to obtain the final colour vectors. We next performed unsupervised 

clustering of colour vectors. Ideally, each of the cluster should represent neurite fragments 

from a single neuron (Fig. 3d). Clustering algorithm and its parameter setting are critical for 

accurate classification.  

dCrawler: A threshold distance-based unsupervised clustering 

Various types of algorithms are known for unsupervised clustering (Extended Data Table 1). 

For example, k-means clustering is a distance-based clustering and requires the number of 

clusters beforehand. However, it is often difficult to know the exact number of clusters (i.e., 

labelled neurons) in the Tetbow sample. Mean-shift clustering is a density-based clustering 

and requires a density kernel beforehand. However, the density of the fluorescence signals 

(i.e., the total length of the neurites) is not necessarily equal among neurons in the Tetbow 

sample.  
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 What we want to do in the QDyeFinder is to classify the neurite fragments based on 

their colour hue similarity. We, therefore, developed a new unsupervised clustering 

algorithm, named dCrawler, in which multi-dimensional vector data are classified based on a 

threshold distance, Th(d) (Fig. 4). In the dCrawler method, we aimed to classify data points 

into clusters, so that data points within a cluster are all within a defined Th(d) from their 

centroid position.  

In the dCrawler, the first data point will be the first cluster. If a new data point is 

within Th(d) from the centroid position of the existing cluster, we included it in that cluster 

and updated the centroid position. If the data point is separated by >Th(d) from the centroids 

of any existing clusters, we assigned a new cluster to the data point. We repeated this process 

until all of the datapoints are assigned to clusters (Fig. 4a-f). To avoid a primacy bias, we 

then re-allocated points to their closest centroid and updated the centroid positions (Fig. 4g-i). 

Lastly, we merged clusters whose centroids are located within a defined distance (Fig. 4j-l). 

All the processes were repeated until all the data points are assigned to clusters. To avoid 

infinite looping, the merging threshold begins to be gradually reduced (Th(d)*0.99) for each 

loop after 20 loops. Eventually, we can obtain clusters whose data points are within Th(d) 

from their centroids (Fig. 4l).  

Once we have defined an appropriate Th(d) value based on experimental data (e.g., 

small-scale data under similar conditions), we should be able to classify numerous neurite 

fragments based on the similarity of their colour vectors. Under the appropriate Th(d) value, 

each of the clusters should represent neurites from a single neuron. 

Evaluating the performance of QDyeFinder 

To evaluate the performance of QDyeFinder, we compared the performance with 

conventional manual tracing. We used a 100 m-thick 4-week-old mouse brain sample, in 

which layer 2/3 neurons were labelled with 7-colour Tetbow. After obtaining 7-channel 

images with a confocal microscope with a 63x Objective (NA = 1.30), we found 35 neuronal 

somata expressing at least one of XFPs. To obtain the “ground-truth” data, we manually 

traced all the neurites (mostly dendrites) from the 35 neuronal somata (Fig. 5a). The traced 

neurites were then broken into smaller fragments according to the standard procedure in 

QDyeFinder (Fig. 3b). We examined whether dCrawler with an appropriate Th(d) value can 

accurately classify the neurite fragments for different neurons. 

 Using manually traced ground truth data, we checked whether the colour hues are 

consistent across all the neurite fragments.  We examined the distribution of colour vectors 

and found that for most neurons, the distance (d) to the mean value of all the neurite 

fragments belonging to that neuron is less than 0.2 for most of the neurons (Fig. 5b, Extended 

Data Fig. 5a, b, and Supplementary Fig. 2). UMAP plotting of all the 679 neurite fragments 

demonstrated clear discrete clusters, each of which represents neurite fragments from the 

same neuron (Fig. 5c). We next optimized the Th(d) value for the dCrawler. We used the F1 

score to evaluate correct classification based on the ground truth data. We performed 

dCrawler with different Th(d) values and calculated the median F1 score across neurons. For 

this particular sample, the Th(d) that demonstrated the highest median F1 score (0.971) was a 

Th(d) of 0.2. The dCrawler at Th(d) = 0.2 identified 42 clusters (Fig. 5e). A side-by-side 

comparison of the manually traced neurons (blue) and identified clusters (green) 

demonstrated high degree of consensus (Fig. 5f, Extended Data Fig. 5c, d, and 

Supplementary Fig. 3). Thus, the performance of neurite reconstruction with QDyeFinder 

was overall comparable to manual tracing for this sample. The remaining errors (pseudo-
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positives and negatives) are likely due to poor colour hue representation, errors in manual 

tracing, and/or the birthday problem (Fig. 2f). 

Automated reconstruction of dendrites and axons with QDyeFinder 

We next tried the QDyeFinder pipeline for an independent brain sample without a ground 

truth data. Again, layer 2/3 neurons were labelled with 7-colour Tetbow using in utero 

electroporation. We took a fluorescence image spanning a 581.53 x 454.32 x 290.41 m3 

volume using a 20x objective (NA = 0.75) (Fig. 6a). A total of 290 labelled neuronal somata 

were found within this volume. In addition, it should contain neurites from many more 

neurons including those extending from outside this volume. The automatic detection 

program identified 15,174 neurite fragments (median fragment length, 12.1 m; interquartile 

range, 7.9-20.3 m) (Fig. 6b), many of which should be dendrites. The dCrawler at Th(d) = 

0.2 identified 302 clusters (Fig. 6b). In many of the clusters, the identified neurite fragments 

were spatially clustered, suggesting that each cluster corresponds to neurites from one or a 

few neurons (Fig. 6c, d). We also ran the dCrawler at different Th(d)s where the F1 score was 

above 0.9, (Th(d) = 0.13, 0.15, 0.175, 0.225, 0.25, and 0.26). To evaluate the effectiveness of 

the clustering each cluster was allocated into one of three groups; where a single neuron is 

visible (Fig.6d, left panels, >90% of fragments seem to belong to a single neuron), where few 

fragments are visible but no neuron is visible (Fig. 6d, middle panels, <30% of fragments for 

a neuron seemed to be detected), and finally a cluster where the fragments belong to two or 

more neurons (Fig. 6d, right panels). The percentage of clearly visible single neuron clusters 

increases up to the optimized Th(d) of 0.2, and then begins to decrease. We sometimes 

observed occasions where multiple clusters actually represented the same neuron, especially 

at lower Th(d) values (Extended Data Fig. 6).  

 We next examined whether QDyeFinder can accurately reconstruct axons. 

Reconstructing long-range projecting axons are more challenging than dendrites, as axons are 

much longer and thinner. We tested mitral/tufted cells in the olfactory bulb, which project 

millimetre-long axons to the olfactory cortices. A typical mitral/tufted cell project a single 

axon within the lateral olfactory tract (LOT) and extends several collaterals towards various 

cortical regions. AAV-CAG-tTA and AAV-TRE-XFP were locally injected into the olfactory 

bulb to brightly label a limited number of neurons (<100). Three weeks after the injection, the 

LOT and olfactory cortices were imaged with confocal microscopy (20x Objective, NA = 

0.75) (Fig. 7a). In a pilot trial with a small-scale sample, we compared the results of 

QDyeFinder and manually traced ground truth and obtained F1 score of 0.955 at Th(d) = 0.2 

(Extended Data Fig. 7). Then, we tested large-scale images (2629.5 x 1636.4 x 437.3 m3). A 

total of 4230 axonal fragments were automatically detected (median fragment length, 24.1 

m; interquartile range, 14.4-50.5 m) (Extended Data Fig. 8). We classified the type of the 

clusters (single neuron, few fragments, and multiple neurons) at varying Th(d)s. We found 

that a Th(d) of 0.25 produced the highest number of single neuron clusters (Supplementary 

Fig. 8c). Therefore, we evaluated the fragments at Th(d) = 0.25. A dCrawler at Th(d) = 0.25 

identified 88 clusters, with 14 clusters that clearly label axons for a single neuron (Fig. 7c, 

and Extended Data Fig. 8b). Many of the clusters included axons spanning a millimetre scale. 

Thus, super-multicolour labelling combined with QDyeFinder can be used for the analysis of 

long-range axonal projection. 

 

Discussion 
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During the past years, large-scale image acquisition is becoming easier for EM and LM-based 

connectomics. However, circuit reconstruction is still a laborious and technically challenging. 

Existing neurite reconstruction pipelines are based on “tracing” of physically continuous 

structures. Thus, slight damage to the images would have a deleterious impact for successful 

circuit tracing. The error rates will exponentially increase as the distance of the traced 

neurites increases, hampering large-scale reconstructions.  

 In this study, we developed a conceptually new type of neurite reconstruction pipeline 

based on super-multicolour labelling and QDyeFinder. In this strategy, we identified neurite 

fragments only based on their colour hue information. In other words, each of the neurite 

fragments have a unique fluorescent “barcode” 4. We, therefore, do not need to care about the 

physical continuity of the neurite fragments. This means that the physical distance does not 

limit the accuracy of the reconstruction, as in previous methods. We do not even need to take 

continuous images of neurites as long as the neurons are labelled with unique and consistent 

colour hues (Extended Data Fig. 9). Moreover, QDyeFinder is fully automated, and excludes 

any human biases in reconstruction. This is conceptually similar to a DNA barcode-based 

connectomics, such as MAPseq and BARseq 20, 27. However, our fluorescent protein-based 

approach is more useful for morphological analyses in 3D. 

 With 7 XFPs, we can differentiate 99.9% of neuronal pairs. However, the practical 

limit of neuronal numbers is ~100 due to the birthday problem (Fig. 2g). For example, 

clusters frequently contained multiple neurons in Fig. 6, where >290 neurons were labelled. 

In contrast, a majority of the clusters corresponded to single neurons when <100 neurons 

were labelled (Fig. 5 and Extended Data Fig. 7). Thus, it is critical to limit the number of 

labelled neurons to identify majority of neurons with unique colour hues. It is also important 

to label neurons brightly. To obtain consistent colour hues, it is important to avoid photo-

bleaching. Tissue clearing is also important as blue signals scatter more in thick brain 

samples. Fluorescent proteins are bright and stable in the clearing agent, SeeDB2G 13. 

 With our QDyeFinder, unsupervised clustering with dCrawler was critical. The 

appropriate Th(d) value should be determined based on the stability of colour hues within a 

neuron and number of labelled neurons in the sample. dCrawler has unique advantages over 

existing clustering algorithms (Extended Data Table 1) and should be useful for various kind 

of high-dimensional data analysis, not only in biology (e.g., cell typing with highly 

multiplexed in situ hybridization and/or antibody staining), but also in other fields. 

 In the future, we may be able to differentiate more neurons with unique colour hues, if 

we can utilize more XFPs. Chemical tags are also potentially useful to expand spectral 

variations 12. While 7 XFPs are close to the upper limit due to spectral overlap, we may be 

able to utilize fluorescent lifetime to further differentiate more XFPs 28, 29. If we can use 

peptide-based barcodes and detect them by serial antibody staining 30, 31, we should be able to 

massively increase the number of unique labels 32.  

 In this study, we utilized super-multicolour imaging and QDyeFinder for neurite 

identification. In the future, we should be able to use a similar approach for time-lapse 

imaging. Like neurite reconstruction in 3D, cell tracking is challenging in a single-colour 

time lapse images. Super-multicolour labelling with QDyeFinder should facilitate more 

accurate cell tracking. While we ignored spatial information in our QDyeFinder pipeline, we 

can, of course, consider both spatial and colour hue information for more accurate neurite/cell 

tracking. Our quantitative approach should be useful for highly multiplexed fluorescence 

imaging for various kinds of applications. 
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METHODS 

Plasmids 

XFPs were initially selected based on the information in FPbase (https://www.fpbase.org/) 33. 

Candidate XFPs were further evaluated based on the brightness and distribution in neurons. 

pCAG-tTA (Addgene #104102), pAAV-SYN1-tTA (Addgene #104109), pBS-TRE- 

mTurquoise2-WPRE (Addgene #104103), pAAV-TRE-mTurquoise2-WPRE (Addgene 

#104110) were described previously 12. mTagBFP2 34 was generated from TagBFP 

(Evrogen). mNeonGreen 35 was obtained from Allele Biotechnology.  YPet 36 was amplified 

by PCR from pCAGGS-RaichuEV-Rac 37. Plasmids encoding, mAmetrine1.1 36 (Addgene 

#18084), mRuby3 38 (Addgene #74234), and tdKatushka2 39 (Addgene #30181) were 

obtained from Addgene. Each XFP gene was PCR-amplified and subcloned into pBS-TRE or 

pAAV-TRE vector 12. pBS-TRE-mTagBFP2-WPRE (Addgene #193332), pBS-TRE- 

mAmetrine1.1-WPRE (Addgene #193333), pBS-TRE- mNeonGreen-WPRE (Addgene 

#193334), pBS-TRE-YPet-WPRE (Addgene #193335), pBS-TRE-mRuby3-WPRE (Addgene 

#193336), pBS-TRE-tdKatushka2-WPRE (Addgene #193337), pAAV-CAG-tTA (Addgene 

#193338), pAAV-FLEX-tTA (Addgene #149363), pAAV-TRE-mTagBFP2-WPRE 

(Addgene #193339), pAAV-TRE-mAmetrine1.1-WPRE (Addgene #193340), pAAV-TRE-

mNeonGreen-WPRE (Addgene #193341), pAAV-TRE-YPet-WPRE (Addgene #193342), 

pAAV-TRE-mRuby3-WPRE (Addgene #193343), and pAAV-TRE-tdKatushka2-WPRE 

(Addgene #193344) were generated in this study and are available at Addgene.  
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Mice 

All animal experiments were reviewed and approved by the Institutional Animal Care and 

Use Committee of Kyushu University. ICR mice (Japan SLC, RRID: MGI: 5652524) were 

used for in utero electroporation. C57BL/6N mice (Japan SLC, RRID: MGI: 5658686) and 

mitral/tufted cell-specific Pcdh21-Cre 40 mice were used for used for AAV experiments (8-13 

week-old male). 

In vitro experiments (HEK cells and spectrum data) 

HEK293T cells were cultured in high-glucose DMEM (044-29765, FUJIFILM-Wako) with 

10% FBS, and 1% penicillin/streptomycin (FUJIFILM -Wako) under the humidified 

conditions in 95% air and 5% CO2 at 37°C. For spectral measurements, pCAG-tTA2 (0.35 

ug) and one of pBS-TRE-XFP-WPRE (0.9 ug) vectors were transfected to 50-80% confluent 

HEK293T cells in 35-mm dish using PEI-MAX (25 mM, 5 L/dish; Polysciences, Inc.). 

Twenty-four hours after transfection, cells were washed twice with 1 mL of PBS, and 

collected with 1 mL of PBS. Cell suspensions were transferred into a glass cuvette. Excitation 

and emission spectra were quantified using a fluorescence spectrophotometer (F2700, 

Hitachi). For each XFP, spectra were measured 5 times in 0.5 nm wavelength increments and 

averaged. Excitation (ex) and emission (em) wavelengths to determine the spectral curves 

(ex, em) were as follows (in nm): mTagBFP2 (400, 460), mTurquoise2 (430, 505), 

mAmetrine1.1 (400, 535), mNeonGreen (465, 540), YPet (490, 550), mRuby3 (530, 610), 

tdKatushka2 (550, 650). To obtain reference images for unmixing, single colour labelled cells 

were cultured on a poly-D-lysine coated 35-mm glass-bottom dish (MatTek). Twenty-four 

hours after transfection, cells were fixed with 4% paraformaldehyde, washed twice with PBS, 

and treated with SeeDB2G solution 13. 

In utero electroporation 

In utero electroporation was performed as described previously 12.  To label cortical layer 2/3 

neurons in S1, 1-2 L of plasmid solutions (0.1 g/ L of pCAG-tTA and 0.1 g/ L of pBS-

TRE-XFP-WPRE each) were injected into the lateral ventricle at E15 and electric pulses (a 

single 10-ms poration pulse at 72 V, followed by five 50-ms driving pulses at 42 V with 950-

ms intervals) were delivered toward the medio-lateral axis of the brain with forceps-type 

electrodes (LF650P5, BEX) and an electroporator (CUY21EX, BEX). 

AAV production 

AAV vectors (serotype DJ) were generated using the pHelper (AAVpro Helper-free system, 

Takara), pAAV-DJ (Cell Biolabs), and the AAVpro 293 T cell line (#632273, Takara) 

following the manufacturers’ instructions. AAV vectors were purified using the AAVpro 

Purification Kit All Serotypes (#6666, Takara). Viral titers were measured using AAVpro 

Titration Kit (#6233, Takara) or THUNDERBIRD SYBR qPCR Mix (QPS-201, TOYOBO) 

with StepOnePlus system (ThermoFisher) or QuantStudio3 real-time PCR system (Applied 

Biosystems).  

AAV injections into the olfactory bulb 

To infect the Tetbow AAV vectors, C57BL/6N mice (Extended Data Fig. 9) and Pcdh21-Cre 

mice 40 (Fig. 7 and Extended Data Fig. 7-8) at age 8-13W were used. Mice were 

anaesthetised with i.p. injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). The hair 
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between the mouse's head and the ears was removed, then mouse was fixed onto a stereotaxic 

frame (Stoelting). The scalp and underlying connective tissue was then removed. Skull over 

the olfactory bulb was drilled. Injection depth was ~0.1 mm. Then, the virus was slowly 

injected at a rate of 2.3 nL every 6 seconds for 2 minutes (total 46 nL) using the nanoject II 

system and glass capillaries (#3-00-203-G/XL, Drummond). The concentration of the 

injected virus cocktail was 4 × 109 gc/mL for AAV2/1-FLEX-tTA2 and 1.25 × 109 gc/mL 

each for AAVDJ-TRE-XFP-WPRE.  Before and after the injection, the needle was kept in 

place for 5 minutes. The hole on the skull was covered with superglue and the exposed skull 

was then covered with dental cement. Post-surgery, the body of the mouse was kept warm to 

facilitate recovery. As toxic effects of prolonged XFP expression began to be observed after 4 

weeks post injection, mice were sacrificed 3-4 weeks after virus injection 12. 

Sample preparation and tissue clearing with SeeDB2G 

To obtain brain tissue, mice were intraperitoneally injected with an overdose of pentobarbital 

(P0776, TCI) in PBS to produce deep anaesthesia, followed by an intracardiac perfusion with 

a 25 mL PBS wash followed by 25mL of 4% PFA in PBS. Excised brain samples were then 

fixed with 4% paraformaldehyde in PBS at 4°C overnight. Brains were then embedded in 4% 

agarose (ThermoFisher, #16520-100). Cortical samples were cut into 120- or 320-μm-thick 

slices with a microslicer (PRO7N, Dosaka EM), and cleared with the SeeDB2G protocol 13. 

Cleared cortical samples were then mounted in SeeDB2G (Omnipaque 350, Sankyo) on a 

glass slide using a 0.1 or 0.3 m-thick silicone rubber sheet (AS ONE, #6-9085-12 or #6-

9085-14, Togawa rubber) and glass coverslips (Marienfeld, No. 1.5H, #0109030091) as 

described previously 41.  

To analyse long-rage axonal projections of M/T cells, a brain hemisphere was dissected, and 

the dorsal part and subcortical matter was trimmed away with forceps and a scalpel. The 

remaining part, containing all of the olfactory cortical areas, was flattened with a 1 mm 

spacer, and fixed with 4% PFA in PBS overnight at room temperature on a rocker 12. Then, 

the sample was treated with ScaleCUBIC-1 42 (25% (wt/wt) urea (#219–00175, Wako), 25% 

(wt/wt) N,N,N’,N’-tetrakis(2-hydroxypropyl)ethylenediamine (#T0781, TCI), and 15% 

(wt/wt) Triton X-100 (#12967–45, Nacalai-tesque) in H2O) for 24 hr to remove lipids from 

the lateral olfactory tract, washed with PBS, and then cleared with SeeDB2G as described 

previously 13, 41. 

Confocal microscopy 

Samples cleared with SeeDB2G were mounted on glass slides with 100 or 300 m-thick 

silicone rubber spacer. Samples were imaged with an inverted confocal microscope, SP8 TCS 

(Leica) with HyD detectors. 20x (HC PL APO 20x/0.75 IMM CORR CS2) and 63x (HCX PL 

APO 63x/1.30 GLYC CORR 37°C) objective lenses were used. Type G glycerol immersion 

(ThermoFisher, Cat#15336741) were used. XFPs were excited at 405, 488, or 552 nm lasers 

and emission signals were dispersed by a diffraction gating as described in legends to Fig. 1c. 

Pinhole size was set at 1 A.U. Images were acquired under “standard mode” and at 16-bit. 

Linearity was even worse under “photon counting mode”. At both conditions, linearity was 

poor when recorded at 16-bit 18, 19, and linearity correction was needed as described below. 

Linearity correction for fluorescence intensity acquired with Leica HyD detectors 

Measuring reference data and calculating the coefficients 
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HEK293T cells were transfected with mNeonGreen, then following fixation they were 

imaged with an inverted confocal microscope with the laser power increasing for 0.2 to 3% 

with 0.2% intervals (Extended Data Fig. 1a, b, SP8 TCS with HyD detectors, Leica). Laser 

power was linearly controlled by ATOF. The intensity values for each pixel were then 

recorded and the values from 0.2% to 1% were used to calculate a linear trend unique to each 

pixel (Extended Data Fig. 1c). This was then used to create a predicted value for each original 

intensity value which can then be used to create a fit to the equation below (Extended Data 

Fig. 1d). 

( )cxy ax b e b= +  −  

In our microscope, a = 0.9838, b = 1.1044, and c = 0.001. As we can see in Extended Data 

Fig. 1b, values above 7,000 were almost saturated and uncorrectable (Extended Data Fig 1d-

f). We, therefore, discarded pixels above 7,000 (assigned “not a number”). Pixels below 

7,000 were transformed to produce a corrected image. The MATLAB code for the linearity 

correction is available at Github (https://github.com/mleiwe/HyD_NonLinearCorrection). 

Evaluation of non-linearity corrections 

For successful linear unmixing, it is important to ensure that the ratios between channels are 

consistent across various intensity ranges. We, therefore, evaluated the consistency of the 

ratio (Ch4 / Ch4 + Ch5) using mNeonGreen. ROIs for HEK293T cells were determined using 

Cellpose 2.0 (https://www.cellpose.org/) 43. This was used to exclude background voxels 

from our ratio calculations. (Extended Data Fig 1g-i). 

Soma detection for brain samples 

All neurite tracing and soma detection was performed in Nerurolucida 360 (MBF 

Biosciences). For Soma detection, somas were initially detected with the automatic 

algorithm, followed by manual guided detection of the remaining soma. 

Manual neurite tracing for ground truth 

Neurolucida 360 (MBF Biosciences) was used for manual neurite tracing. For the creation of 

ground truth dendrite data (Fig. 5a), fully manual tracing was performed on the 63x images 

containing all of the channels. This enabled the accurate grouping of neurites into sets. For 

the manual tracing of 20x axon images (Extended Data Fig. 7a), user-guided tracing was 

performed (with directional kernels selected as the chosen method).  

Automatic detection of neurite fragments with Neurolucida 360 

For fully automated tracing of neurites, each channel was individually normalized to its 

maximum, and then the maximum value was taken for each voxel to create a single channel 

volumetric image. This was then loaded into Neurolucida360 where firstly, the somata were 

auto detected, adjusting the parameters to ensure all soma were labelled (with remaining 

soma manually detected). Then, a two-stage auto-tracing procedure was used. First, a 

rayburst crawl was implemented to detect bright and large neurites, then a directional kernel 

algorithm was implemented to detect finer less bright neurites (seed density: dense; seed 

sensitivity: 80; refine filter: 2; trace sensitivity: 70; connect branches and remove traces 

shorter than… options: de-selected, for both tracing algorithms). Files were then saved as an 

xml file for export to our MATLAB analysis pipeline. To correct for errors where all 
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Neurolucida algorithms selected the edge rather than centre of the neurite a custom written 

MATLAB code was written to move the points to the centre of the neurite. 

Unmixing of overlapping fluorescence signals 

Reference data was acquired with HEK293T cells expressing each of XFPs and cleared with 

SeeDB2G. mTagBFP2, mTurquoise2, and mAmetrine1.1 were excited at 405 nm and 

fluorescence at 410-468 nm (Ch1), 468-505 nm (Ch2), and 520-600 nm (Ch3) were acquired. 

mNeonGreen and YPet were excited at 488 nm and fluorescence at 495-525 nm (Ch4) and 

525-555 nm (Ch5) were acquired. mRuby3 and tdKatushka2 were excited at 552 nm and 

fluorescence at 575-600 nm (Ch6) and 615-755 nm (Ch7) were acquired. Linearity correction 

was performed as described above. Based on the ratios across channels, linear unmixing was 

performed for sample images as described previously 16, 17. See Supplementary Fig. 2 for 

more details. Images acquired with 20x and 63x objective lenses were processed with 

reference data with 20x and 63x, respectively. The MATLAB code for the linear unmixing is 

available at Github (https://github.com/mleiwe/LinearUnmixing).  

Post-hoc correction of chromatic aberration 

Correction of chromatic aberration has been described previously 26. MATLAB and Python 

codes are available at Github (https://github.com/mleiwe/ChromaticAberrationCorrection). 

Our program can correct non-uniform chromatic aberrations in cleared tissues post hoc. 

Extracting colour vectors from neurite fragments 

Fluorescence signals were extracted from the Neurolucida 360 traces using custom-built 

MATLAB codes. The putative fragments then went through a quality control pipeline 

(Extended Data Fig. 4) as follows. Firstly, traces were split into fragments at all branch 

points. Secondly, the brightness of each channel was evaluated by calculating the signal to 

noise ratio for the trace voxels compared to the background (non-traced) voxels. Each 

channel can be assessed manually or automatically where a minimum signal to noise ratio of 

3 was required for a channel to be included. Thirdly, a minimum length of a fragment was 

calculated (or manually inputted) to remove any short fragments that may have a large degree 

of colour variability. Fourthly, a minimum brightness was calculated (or manually inputted) 

in order to prevent analysis of any dim fragments which will have proportionally inaccurate 

vector normalised values. Finally, fragments where the colour changes significantly (d > 0.3) 

were split at the point of colour change. This occurred often when Neurolucida automatic 

tracing was performed as it does not use colour information for the tracing. Following these 

quality control steps, the mean raw intensity values of each fragment was obtained. Then, the 

median background of each channel was subtracted, and then normalized to the maximum per 

channel. The resulting values were then vector-normalized to obtain colour vectors. 

dCrawler 

Clustering was performed from a matrix containing the vector normalised colour values, with 

the colour vector weighted by the magnitude for the centroid calculations. See Fig. 4 and 

Supplementary Fig. 1 for more details. The MATLAB code for dCrawler is available at 

Github (https://github.com/mleiwe/dCrawler). 

Calculation of optimum threshold distance 
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The optimum threshold distance (Th(d)) was calculated by using manually traced neurons 

from Neurolucida 360. The traces were processed the same as the automatically traced 

neurons. This created fragments that had a known neuron identity as well as a cluster identity. 

We determined that the correct cluster was the cluster that had the most fragments from the 

same neuron. This leads us to classify all fragments as true positive (correct cluster and 

correct neuron), false positive (correct cluster, different neuron), false negative (different 

cluster, correct neuron), and true negative (different cluster, different neuron). From there an 

F1 score can be created for each individual neuron. These F1 scores were calculated for each 

neuron for a range of Th(d) from 0.05 to 1. The Th(d) with the highest median F1 score was 

considered optimum. 

Modelling and synthetic data 

Generation of synthetic data for Tetbow-labelled cells 

The generation of N-dimensional colour vectors for “cells” was an extension of the modelling 

performed in our previous study 12. Briefly a Poisson probability distribution function was 

created for a range of copy numbers (average 0, 0.1, 0.2, 0.5, 1, 2, 4, 8 copies / colour / cell) 

to calculate the probability of up to 50 XFP copies being expressed per cell. This was then 

fitted to the number of “cells” specified for each dimension, with the order of the expression 

being shuffled for each channel to simulate the stochastic nature of transfection. The data was 

then vector normalised to place it into standard colour space (colour vectors). 

Percent discriminable 

This was performed as has been described in our previous study 12. Discriminability (where d 

> Th(d)) was tested with 10,000 cells for between 1 – 7 XFPs. 

Percent unique 

To measure the number of “cells” that had a unique colour, we performed Monte-Carlo 

simulations (n = 200), by generating simulated colours in N dimensions, with a specified 

number of cells. “Cells” were classed as unique if they had no other cells within the threshold 

distance, Th(d). The percent of cells that were unique within each simulation was recorded 

and the mean and standard deviation were determined. All analysis was performed on 

MATLAB and are available on GitHub (https://github.com/mleiwe/QDyeFinder) 

Data and code availability 

All of the image data acquired in this study will be deposited to SSBD:repository 

(https://ssbd.riken.jp/repository/xxx).  

Post-hoc chromatic aberration correction codes (both MATLAB and Python) are available at 

Github (https://github.com/mleiwe/ChromaticAberrationCorrection). 

Linearity correction program for HyD detectors is available at Github 

(https://github.com/mleiwe/HyD_NonLinearCorrection). 

Linear unmixing code is available at Github (https://github.com/mleiwe/LinearUnmixing). 

dCrawler written in MATLAB is available at Github (https://github.com/mleiwe/dCrawler). 
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QDyeFinder written in MATLAB as well as test data is available in Github 

(https://github.com/mleiwe/QDyeFinder). 

Additional resources and protocols are available in SeeDB Resources 

(https://sites.google.com/site/seedbresources/). 

Requests for additional data should be directed to and will be fulfilled on reasonable request 

by the Lead Contact, Takeshi Imai (imai.takeshi.457@m.kyushu-u.ac.jp). 
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FIGURE LEGENDS 

 

Fig. 1 | 7-colour fluorescence imaging with linear unmixing 
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a, Cartoons illustrating the concept of super-multicolour fluorescence imaging. Tokyo 

railway maps shown by the combination of 1-3 colours. Multicolour labelling facilitates 

identification of different lines. However, using >3 colours is beyond the human visual range.  

b, Excitation and emission spectra of our chosen XFPs for 7-colour Tetbow, highlighting the 

overlap of emission signals between XFPs.  

c, 7 XFPs transfected in HEK293T cells before (left panels) and after (right panels) linear 

unmixing. Reference data for the linear unmixing was acquired from another set of images 

(Extended Data Fig. 2a). Percentages of normalized intensities are shown below. 

d, Layer 2/3 neurons in S1 were labelled with 7-colour Tetbow using in utero electroporation. 

XFP images after linear unmixing are shown. Z-stacked images of 514.57 x 513.49 x 

43.48695 m3. Inset displays magnified images (white box). Age, P28. 
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Fig. 2 | 7-colour labelling facilitates unique labelling of more neurons than with 3-colour 

labelling in Tetbow method. 

a, Determining the number of colour vectors discriminable in 3 dimensions. Cartoon 

illustrating our discrimination analysis. Modelled “cells” within a threshold distance, Th(d), 

from the chosen cell were considered indiscriminable, and those with a greater distance were 

considered discriminable.  

b, Discrimination analysis of 10,000 modelled cells with up to 7 XFPs. Plots show the mean 

(bold line) ± 1 standard deviation (shaded areas) for average 1 copy (purple), 2 copies 

(magenta), and 4 copies (orange) per cell per colour with 3XFPs (left), 5 XFPs (middle), and 

7 XFPs (right).  Bottom panels are zoomed in insets of the top panels. At all number of colour 

dimensions 2 copies per colour per cell seemed to be the optimal if the Th(d) was between 0.1 

and 0.2.  

c, Cartoon to measure the uniquely labelled cells. Cells were considered uniquely labelled if 

there were no neighbouring cells within a specified Th(d) (light blue circles).  Monte-Carlo 

simulations (200 per condition) were performed to calculate the percent of unique cells 

generated at a given number of cells, at varying concentrations, number of XFPs, and varying 

Th(d)s.  
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d, Modelling results at the optimum conditions (7 XFPs, at average 2 copies per colour per 

cell). For 100 cells, 93.3% will have a unique colour hue.  

e, Evaluation with real data. Four serial sections of S1 labelled with 7-colour Tetbow were 

imaged. Neurolucida was then used to auto-detect 2031 somata with the mean colour 

recorded. Z-stacked images of 2677.27 x 2369.32 x 101.9694 m3 are shown. 

f, Discrimination analysis of somata.  

g, Fraction of uniquely labelled cells. 100, 200, or 300 somata were chosen at random (x100 

simulations) and the percentage of somata that have a unique colour hue was recorded. Our 

data suggests that >80% out of 100 cells are uniquely labelled at Th(d) = 0.2. 
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Fig. 3 | QDyeFinder pipeline for automated reconstruction of neurites 

a, Image processing. Firstly, the images were non-linearly corrected (see Extended Data Fig. 

1), then the images were linearly unmixed (see Fig. 1c, and Extended Data Fig. 2). If axial 

chromatic aberration correction was necessary, it was performed 26.  

b, Neurite detection with Neurolucida 360. Fluorescence images were loaded into 

Neurolucida 360, to automatically detect neurites using the directional kernels method. 

However, mistracing frequently occurred in densely labelled images, especially at branch and 

crossing points. Therefore, detected neurites are split into fragments at branch and crossing 

points (right). Note that somata were excluded in this step, as they are too bright, and their 

signals are beyond the linear range. 

c, Once the fragments have been detected, the relevant voxels are identified, and the mean 

pixel intensity is calculated for each channel. After quality control (see Extended Data Fig. 

4), fragments are represented in vector normalised space (colour vectors).  
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d, Colour vectors for the fragments are then clustered based on Th(d) with our new clustering 

algorithm dCrawler (left and middle). Individual clusters can then be plotted to identify 

neurons from individual fragments (right).  
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Fig. 4 | Schematic for an unsupervised clustering method, dCrawler 

dCrawler has three main steps. The first step is an initial crawl (a-f) where a centroid 

identifies the nearest non labelled point within a specified distance, Th(d), and then updates 

its position. This continues until all points have an allocated cluster (f).  

Then, the adjustment phase occurs (g-i) where each point is re-allocated to its nearest 

centroid, and then the centroid positions are updated. This is then repeated until all the points 

are associated with their closest centroid (i).  

Next, the merge phase begins (j-l), where if any centroids are within Th(d) of each other, they 

are then merged, with the any points that are outside of the cluster being unassigned (e.g. k). 

Finally, the crawl, adjust, and merge steps are repeated until a stable solution is reached. 

See Supplementary Fig. 1 and Suppmementary Video 1 for more details. 
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Fig. 5 | Comparison of QDyeFinder versus ground truth with manual tracing 

a, L2/3 neurons in S1 were labelled with 7-colour Tetbow via in utero electroporation (left). 

35 neurons were then manually traced via Neurolucida 360. They were then split into 

fragments (no branches). Each fragment is represented by a different colour (right). Somata 

are also highlighted, but were excluded from the analyses. Image taken with a 63x objective 

lens (NA = 1.30). Z-stacked images of 511.36 x 512.99 x 47.99 m3 are shown. 
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b, A representative example neuron showing the relevant fragments (left), the vector 

normalised colour vector of each trace (middle), and the Euclidean distance to the mean for 

the neuron (right). See Supplementary Fig. 2 for all the results.  

c, The ground truth of each neuron and their neurite fragments in physical space (left), and in 

UMAP-reduced colour space (right).  

d, The optimum threshold was calculated by running the dCrawler at a Th(d) ranging from 

0.05 to 1, and calculating F1 score for each neuron at each Th(d) (gray dots). The median F1 

score for each Th(d) is also displayed (red line). The optimum Th(d) was calculated to be 0.2.  

e, The dCrawler clustering of the neurite fragments at the the optimum Th(d), shown in 

physical space (left), and in UMAP-reduced colour space (right panel).  

f, Representative neurons (ground truth in blue lines, top row) paired to their best cluster. 

Fragments in both the ground truth and the dCrawler cluster (bottom row) are considered 

correct (green), those only in the dCrawler cluster are a false positive (red), those in the 

ground truth only as a false negative (black), and those in neither the ground truth or 

dCrawler cluster as a true negative (grey). See Supplementary Fig. 3 for all the results. 
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Fig. 6 | Fully automated reconstruction of densely labelled neurons with 7-colour Tetbow in 

the cerebral cortex 

a, L2/3 neurons in S1 labelled with 7-colour Tetbow. Z-stacked images of 581.53 x 454.32 x 

290.41 m3 are shown. Note that the data are from a representative result from four 

independent experiments with similar results.  

b, 15,174 fragments were then automatically detected using Neurolucida 360 and put through 

our processing pipeline which detected 302 clusters after clustering at Th(d) = 0.2 (left panel). 

Each fragment is represented by their unique cluster colour in both the fragment plot (left 

panel) and the UMAP plot (right panel). Colours correspond to each cluster. 
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c, Classification of dCrawler clusters at a range of Th(d). Clusters were grouped by whether a 

cluster contained a single neuron, multiple neurons, or few fragments. As with the manually 

traced data the best results were with the optimum Th(d) of 0.2. The optimum Th(d) of 0.2 

provided the best percentage of single neuron clusters (37.75%). 

d, Two representative example clusters are provided for each of the classification groups, 

fragments belonging to the cluster (red), and the remaining clusters (grey) are shown. 
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Fig. 7 | Fully automated reconstruction of mitral/tufted cell axons at a millimetre scale 

a, A 3 x 5 tiled image (A z-stacked image of 2629.55 x 1636.36 x 437.31 m3) of the lateral 

olfactory tract and olfactory cortex, with mitral and tufted cell axons labelled with 7-colour 

Tetbow. Mitral/tufted cell-specific Pcdh21-Cre mice and FLEX-tTA AAV was used to label 

mitral/tufted cells with AAV-TRE-XFP. Images taken with a 20x objective. 7 XFP images 
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are merged after linear unmixing. Note that the data are from a representative result from four 

independent experiments with similar results.  

b, Representative clusters of the three types after QDyeFinder at Th(d) = 0.25. Clusters were 

either clearly single neuron, containing few fragments, or containing axons from multiple 

neurons. See supplemental data for more details. 

c, All 14 single neuron clusters (left panel) and their positions in UMAP space (right panel). 

Colours correspond to each cluster. See Extended Data Fig. 8 for individual plots. 
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Extended Data Fig. 1 | Linearity correction  

a, HEK293T cells transfected with mNeonGreen were cleared with SeeDB2G and imaged at 

laser powers from 0.2% to 3% to examine the saturation curve of the Leica HyD detectors. 

Images were acquired under “standard mode” at 16-bit. Laser powers were changed linearly 

with AOTF. 

b, Intensities of pixels as the laser power increases, after the intensity goes beyond 4000 

pixels begin to saturate. For the plot, pixels were grouped according to their intensity values 

at the lowest laser power with the mean (line) ± standard deviation (shaded area) displayed 

for each group. 

c, Top panel, cartoon plot highlighting the difference between an ideal linear detector (black 

line) compared to the Leica HyD detector which begins to saturate (red line). Bottom panel, 

the values of our ideal detector can be predicted by extrapolating from the linear range of the 

HyD detector. An equation can then be fitted and used to convert values from the HyD 

detector to the linear values. 

d, Pixels from the images in a were used to determine the equation used to convert 

intensities. Intensities above 8,000 are still noisy and a poor fit. 

e, Corrected images from a, showing the improved linearity of the image, especially in the 

bright range. 

f, Corrected intensities of pixels as the laser power increases. Pixels were binned in the same 

manner as in b. 

g, Evaluation of non-linearity correction on the ratio of two different fluorescent proteins 

(Ch4 for mNeonGreen, and Ch5 for YPet). Raw intensity values before unmixing were used 

to calculate the ratio, Ch4 / (Ch4 + Ch5). Top panel shows the images and ratios at a low 

laser power (0.2%). Middle panel shows the images and ratios at a high laser power (3%). 

Bottom panels show the zoomed in areas of the ratiometric image (white box). Note that 

ratiometric images have an applied mask to remove background signal. White arrows indicate 

examples where the intensity ratios change with differences in laser power. 

h, Schematic cartoon predicting the improvement in the consistency of the ratio values, Ch4 / 

(Ch4 + Ch5), at all levels of brightness. 

i, Changes in ratio, Ch4 / (Ch4 + Ch5), with laser power before and after non-linear 

correction. Line represents the mean, and the shaded area represents ±1 standard deviation. 
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Extended Data Fig. 2 | Linear unmixing separates 7 XFPs. 
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a, Cartoon to explain the process of linear unmixing. Box 1 left shows the problem when two 

dyes have spectral overlap. The intensity value recorded by the channel is the sum of 

intensities of both dye A and dye B. We can then record the reference intensities for both 

channels recording them as a ratio for each dye (1:a, and b:1 respectively), which can then be 

expressed as a matrix. The recorded intensity can be expressed as the matrix multiplication of 

our reference matrix and the intensity signal generated by each dye separately. This means 

we can rearrange the equation to calculate the intensity signal generated by each dye 

separately.  

b, To generate our reference matrices, HEK293T cells transfected with a single XFP were 

imaged. There reference values were used to unmix the images in Fig. 1c.   

c-d, A mixture of HEK293T cells, each expressing just one type out of 7 XFPs. Images 

before (c) and after (d) linear unmixing. We were able to remove spectral overlap so that no 

cells were double labelled.  
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Extended Data Fig. 3 | Additional modelling data. 

a, Cartoon showing the conversion of 3-channel fluorescence signals into vector normalised 

colour vectors. The same scheme was used for N-channel images.  
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b, Copy number of XFP genes follow Poisson distributions in Tetbow method 12. Cartoon 

shows the effect of plasmid/AAV concentrations for 3 XFPs.  

c, More detailed investigation of the percent discriminable for 1-7 XFPs at 0.1, 0.2, 0.5, 1, 2, 

4, and 6 copies per colour per cell. Top row displays the overall patterns at a Th(d) from 0 to 

0.5. Bottom row displays a zoomed in version showing the differences between the copy 

numbers at tighter range.  

d, More detailed investigation of the percent of cells unique at 3-7 XFPs when 5, 10, 25, 50, 

100, 200, and 300 cells are labelled at 2 copies per cell per colour. Top panels display a broad 

organisation of pattern for the different number of cells labelled at each number of XFPs. 

Bottom row contains a zoomed in view of the data in the top row. 
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Extended Data Fig. 4 | Quality control for neurite fragment quantifications. 

a, Firstly, the overall quality of each channel was assessed by comparing the signal to noise 

ratio of the voxels labelled in the neurite fragments (cyan) and the background/non-labelled 

voxels (blue). The mean signal to noise ratio was calculated for each percentile between 80-

100 (infinite values excluded). If the mean signal to noise ratio was above 2.5, the channel 

was retained.  
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b, Determining the minimum fragment length. Shorter fragments often produce inaccurate 

colour vectors as they do not have sufficient voxels to produce a stable mean value. To 

calculate the minimum length of a fragment that produces a stable colour vector, each neurite 

fragment was split into sub-fragments of varying lengths (leftmost cartoon). The colour 

distance (d) between each sub-fragment and the parent fragment was measured (second left 

plot), for each fragment a decay curve is fitted (step 3). Finally, the decay curves for each 

fragment are used to calculate a median decay curve. The minimum length is then calculated 

at where the curve crosses d = 0.1.  

c, Dim fragments can also result in inaccurate colour vectors (left panel). Brightness can be 

measured for a fragment before vector normalisation. To establish the minimum brightness 

necessary, the fragment was split into sub-fragments each at the minimum distance calculated 

in b. Then the brightness was calculated before vector normalisation. After vector 

normalization to obtain the colour vectors, distance to the parent fragment (d) was measured. 

If the colour distance was above the specified threshold, it was marked as an error (middle 

panel). Finally, to calculate the minimum brightness necessary, the error percentage was 

calculated if sub-fragments less than a particular brightness were excluded. From this line the 

first brightness value below an error threshold (5%) was selected to be the minimum 

brightness (b) of a threshold.  

d, Another possible error that can emerge from Neurolucida 360 fragment detection. When 

neurites cross each other, the tracer (automated or manual) can make a wrong decision (left). 

To correct for this, the fragments were split into small sub-fragments as in b and the colour 

distance (d) between neighbouring sub-fragments was measured (middle). If d was greater 

than the specified value (0.3), the fragment was split into two at that point (right). 
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Extended Data Fig. 5 | Optimization of the threshold distance, Th(d). 

a, The initial variation of colour vectors per cell. Each fragment is represented by a grey 

point, mean (red horizontal bar), median (blue horizontal bar), ± 1 standard deviation (red 

whiskers), and the interquartile range (blue box). Panel on the right shows all the points 

together.  

b, Precision recall curves for each manually traced neuron (grey lines) and the median (red 

line), with the position of the optimal threshold indicated (green circle). Each point in each 

curve represents a Th(d) ranging from 0.05 to 1. Precision is defined as the number of true 

positives divided by the sum of the true positives and false positives. Recall is defined as the 

number of true positives divided by the sum of the true positives and the false negatives.  

c, Matrix that displays the percentage contribution of fragments belonging to each cluster (x-

axis) to the 37 manually traced neurons (y-axis). 100% represents the situation where a single 

cluster includes all the fragments associated with the neuron.  
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Extended Data Fig. 6 | Investigation into a neuron represented by multiple clusters. 

If Th(d) is too small, one neuron can split into multiple clusters. By using the UMAP plot we 

were able to occasionally identify neurons that were spread across multiple clusters. At our 

optimum threshold of 0.2 we detected that this example neuron contained fragments in 

clusters 50 and 95 (left panel). Therefore, we plotted all fragments belonging to each cluster 

separately (middle panels) and combined (right most panel). As we increase the Th(d) there 

are more fragments included within each cluster including false positives that clearly don’t 

belong to the neuron. While as the Th(d) decreases there are more clusters associated with the 

fragments of the neuron. Note that UMAP distance does not necessarily reflect distance in the 

Euclidean space.   

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.20.512984doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.512984
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 

Extended Data Fig. 7 | Optimization for axonal reconstruction. 

a, A 1 x 2 tiled image (A z-stacked image of 491.16 x 259.09 x 179.2 µm3) of mitral and 

tufted cell axons were imaged at the lateral olfactory tract (left) and then manually traced 

using Neurolucida 360 (right). Image taken with a 20x objective lens. 

b, A representative axon containing 8 fragments (left), their vector normalised colour vectors 

(middle), and the distance to the mean colour vector of the axon (right). See Supplementary 

Fig. 4 for all the results. 

c, Ground truth of all the axons (manually traced). Left panel shows the location of 

fragments, while the right panel shows the location of these fragments in UMAP-reduced 

colour space.  
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d, The optimum threshold was calculated by running the dCrawler at a d ranging from 0.05 to 

1. An F1 score was calculated for each axon at each d (gray dots), with the median F1 score  

for each d also displayed (red line). The optimum d was calculated to be 0.2.  

e, The traces after clustering at the the optimum Th(d), shown in physical space (a z-stacked 

image, left), and in UMAP-reduced colour space (right).  

f, Representative neurons (blue lines, top row) paired to their best cluster (bottom row). 

Traces in both the neuron and the cluster are considered correct (green), those only in the 

cluster are a false positive (red), those in the neuron only as a false negative (black), and 

those in neither the neuron or cluster as a true negative (grey). See Supplementary Fig. 5 for 

all the results. 
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Extended Data Fig. 8 | Evaluation of mitral/tufted cell axons identified with QDyeFinder 
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a, All fragments detected automatically by Neurolucida360 in physical (left) and UMAP-

reduced (right) space. Fragments are colour coded according to their cluster obtained when 

Th(d) = 0.25. 

b, 14 clusters identified that seems to cover axons for a single neuron at Th(d) = 0.25. 

c, Classification of dCrawler clusters at a range of Th(d) for mitral/tufted cell axon data. 

Clusters were grouped by whether a cluster contained a single neuron, multiple neurons, or 

few fragments. The best results were with Th(d) = 0.25.  
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Extended Data Fig. 9 | Reconstruction of neurites across non-continuous samples 
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a, 7-color Tetbow AAV (with CAG-tTA) was injected into the olfactory bulb of wild-type 

C57BL/6N mice. Mitral/tufted cells and various types of periglomerular neurons are labelled. 

Four consecutive slices (100 m thick) were cut with vibratome, cleared with SeeDB2G, and 

imaged with SeeDB2G. Top row shows z-stacked images (volume = 581.82 x 581.82 x 109 

µm) for each of the four brain slices. The bottom row reflects the traces extracted by 

Neurolucida 360, colour-coded to reflect their corresponding cluster, after running 

QDyeFinder at Th(d) = 0.2.  

b, All fragments represented in UMAP-reduced colour space, colours represent the cluster it 

is assigned by QDyeFinder. 

c, Representative clusters which clearly belong to single neurons that span several brain 

sections. This suggests that provided acquisition parameters are constant colour vector alone 

is sufficient for reconstruction, without physical continuity. 
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Clustering 

Algorithm 

K-means 

clustering 

Mean Shift 

Clustering 

DBSCAN dCrawler 

What it measures Distance Density Density and 

distance 

Distance 

Input Required Number of 

clusters 

A density 

kernel 

Minimum 

points and 

distance 

A threshold 

distance 

Advantage Standard and 

fast 

Outliers have 

very little 

effect 

Considers both 

the density and 

distance of the 

points 

Input doesn’t 

require any 

assumptions on 

the spread of 

data 

Disadvantage We don’t know 

the number of 

final clusters 

The density of 

clusters may be 

variable 

The clusters 

may be 

unevenly 

spread over 

space 

Can produce 

too many 

clusters 

Extended Data Table 1 | Comparison of unsupervised clustering algorithms 
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Supplementary Information 

Supplementary Information contains following dataset. 

Supplementary Fig. 1 | dCrawler description, related to Fig. 4. 

Supplementary Fig. 2 | Evaluation of colour consistency in dendrites, related to Fig. 5b. 

Supplementary Fig. 3 | Comparison of dCrawler clusters vs. ground truth for dendrites, 

related to Fig. 5f. 

Supplementary Fig. 4 | Evaluation of colour consistency in axons, related to Extended Data 

Fig. 7. 

Supplementary Fig. 5 | Comparison of dCrawler clusters vs. ground truth for axons, related 

to Extended Data Fig. 7. 

Supplementary Video 1 | Visual representation of the dCrawler algorithm, related to Fig. 4. 
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