

1 **Genomic underpinnings of convergent adaptation to high altitudes for alpine**
2 **plants**

3

4 Xu Zhang^{1,2}, Tianhui Kuang³, Wenlin Dong^{1,2,8}, Zhihao Qian^{1,2}, Huajie Zhang^{1,2}, Jacob B. Landis^{4,5}, Tao Feng^{1,2},
5 Lijuan Li^{1,2,8}, Yanxia Sun^{1,2}, Jinling Huang^{3,6,7}, Tao Deng^{3*}, Hengchang Wang^{1,2*} & Hang Sun^{3*}

6

7 ¹CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese
8 Academy of Sciences, Wuhan Botanical Garden, Wuhan, Hubei 430074, China

9 ²Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan,
10 Hubei 430074, China

11 ³Yunnan International Joint Laboratory for Biodiversity of Central Asia, Key Laboratory for Plant
12 Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of
13 Sciences, Kunming, Yunnan 650201, China

14 ⁴School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium,
15 Cornell University, Ithaca, NY 14850, USA

16 ⁵BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA

17 ⁶State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan
18 University, Kaifeng, Henan 475004, China

19 ⁷Department of Biology, East Carolina University, Greenville, NC 27858, USA

20 ⁸University of Chinese Academy of Sciences, Beijing 100049, China

21 *Correspondence: dengtao@mail.kib.ac.cn; hcwang@wbgcas.cn; sunhang@mail.kib.ac.cn

22

23 **Abstract**

24 Evolutionary convergence is one of the most striking examples of adaptation driven by natural
25 selection. However, genomic evidence for convergent adaptation to extreme environments remains
26 scarce. The Himalaya-Hengduan Mountains represent the world's most species-rich temperate alpine
27 biota, providing an ideal “natural laboratory” for studying convergent adaptation to high altitudes.
28 Here, we generate reference genomes for two alpine plants, *Saussurea obvallata* (Asteraceae) and
29 *Rheum alexandrae* (Polygonaceae), with 37,938 and 61,463 annotated protein-coding genes. By
30 integrating an additional five alpine genomes, we investigate genomic signatures of convergent
31 adaptation to the hostile environments of high altitudes. We show that alpine genomes tend to
32 mitigate their genetic load by contracting genes functioning in the immune system to survive such
33 harsh environments with few pathogens present. We detect signatures of convergent positive
34 selection on a set of genes involved in reproduction and development and reveal that molecular
35 convergence has acted on genes involved in self-incompatibility, cell wall modification, DNA repair
36 and stress resistance, which underlie adaptation to extremely cold, high UV radiation and hypoxia
37 environments. Using gene expression profiles, we further demonstrate that genes associated with
38 cuticular wax and flavonoid biosynthetic pathways exhibit higher expression levels in leafy bracts,
39 shedding lights on the genetic mechanisms of the adaptive ‘greenhouse’ morphology. Our integrative
40 data provide genomic insights into the convergent evolution at higher-taxonomic levels, aiding in
41 deep understanding of genetic adaptation to complex environments.

42 *Key words:* alpine plants, convergent adaptation, evolutionary rates, genomics, “greenhouse”
43 morphology, molecular convergence

44

45 **Introduction**

46 Evolutionary biologists have long aimed to understand the extent that evolutionary trajectories are
47 predictable, i.e., the extent to which convergent adaptation in distinct lineages is driven by conserved
48 molecular changes (Zhang and Kumar 1997; Stern and Orgogozo 2009; Zhen et al. 2012; Storz
49 2016). Evolutionary convergence in settings where different species repeatedly face common
50 selective pressures offer a powerful opportunity to address this issue (Yeaman et al. 2016; Birkeland
51 et al. 2020; Xu et al. 2020). An ideal system for investigating the genetic underpinnings of
52 convergent evolution is the independent adaptation of divergent lineages to high-altitude
53 environments.

54 The Himalaya-Hengduan Mountains (HHMs) exhibit extraordinarily high species richness, and
55 are believed to be the center and origin of diversity of many organisms in the Northern Hemisphere
56 (Spicer et al. 2020). In the alpine zones of the HHMs (elevation above 4500 m), usually
57 characterized by freezing temperatures, high UV (ultra violet) radiation, and hypoxia, plants typically
58 possess suites of similar morphological and physiological adaptations to allow them to survive and
59 reproduce in the hostile environments (Tsukaya and Tsuge 2001). In comparison to plants of lowland
60 areas, plants living in the HHMs (and other high-altitude areas) have dwarf stems, smaller leaves and
61 higher densities of branches, and often exhibit a specialized morphology such as leafy bracts, woolly
62 coverings and cushion forms (Nagy and Grabherr 2009; Sun et al. 2014). Genome-wide studies have
63 documented some genomic footprints of high-altitude adaptation by testing for positive selection and
64 mining expanded gene families, often involving functional pathways such as DNA repair, abiotic
65 stress response, reproductive processes, as well as secondary metabolite biosynthesis (Zeng et al.
66 2015; Zhang et al. 2019; Wang et al. 2021). However, the limited availability of reference genomes
67 for alpine plants restricts further understanding in the genomic evolution of high-altitude adaptation.
68 Additionally, the genomic convergence underpinning high-altitude adaptation have not been
69 examined.

70 To gain genomic insights into convergent adaptation to high-altitude environments, we newly
71 assembled and annotated reference genomes of *Saussurea obvallata* (Asteraceae) and *Rheum
72 alexandrae* (Polygonaceae). These two species are mainly found in mountain slopes and alpine

73 meadows of the HHMs and are renowned for their ‘glasshouse’ morphology, i.e., the upper leaves of
74 which have developed into large semi-translucent leafy bracts that cover the inflorescences, which
75 have been shown to have significant ecological benefits to the plant (Song et al. 2015). We integrate
76 an additional five available genomes of alpine plants [*Crucihamalaya himalaica* (Brassicaceae),
77 *Eutrema heterophyllum* (Brassicaceae), *Hordeum vulgare* var. *nudum* (Poaceae), *Prunus mira*
78 (Rosaceae) and *Salix brachista* (Salicaceae)] as well as their lowland relatives for comparative
79 genomic analyses (supplementary table S1). These seven alpine species represent major clades of
80 angiosperms that independently colonized high-altitude environments. Different from previous case
81 studies of plant genomes, we take advantage of a comprehensive genomic data set of alpine plants to
82 characterize genome-wide signatures of convergent evolution. Specifically, we intended to address
83 three main questions: (i) Whether expanded or contracted gene families show a convergent pattern in
84 alpine plants and have effects on the high-altitude adaptation? (ii) Which genes have undergone
85 convergent molecular evolution and are involved in adaptation to the extremely cold, high UV
86 radiation and hypoxia environment? (iii) Lastly, what are the genomic bases underlying the adaptive
87 “greenhouse” morphology? In addressing these questions, this study provides novel insights into the
88 genomic convergence that contribute to the adaptation to extreme environments.
89

90 **Results and Discussion**

91 **Assembly and annotation of two reference genomes of alpine plants**

92 Using a *K*-mer analysis method, we first estimated the genome size of *S. obvallata* and *R. alexandrae*
93 to be ~2,251 Mb and 2,137 Mb, respectively (supplementary figs. S1, S2, supplementary table S2).
94 Then we obtained a chromosome-level genome of *S. obvallata* and a contig-level genome of *R.*
95 *alexandrae* using Illumina, Oxford Nanopore, and high-throughput chromatin conformation contact
96 (Hi-C) sequencing technologies (supplementary table S3). For the *S. obvallata* genome, a total of
97 ~95 Gb Illumina short reads, ~143 Gb Nanopore long reads and ~206 Gb Hi-C data were obtained.
98 For *R. alexandrae* genome, a total of ~104 Gb Illumina short reads and ~144 Gb Nanopore long
99 reads were generated. Additionally, transcriptomic data of *R. alexandrae* (~25 Gb) and *S. obvallata*
100 (~157 Gb) were obtained for transcript-based gene annotation (supplementary table S3). Tissue-

101 specific transcriptomic data of *S. obvallata* were also used for further gene expression analysis
102 (supplementary table S4).

103 A *de novo* assembly pipeline allowed us to achieve initial genome assemblies that captured
104 2,044 Mb and 2,040 Mb in 145 and 129 contigs for *S. obvallata* and *R. alexandrae* genomes, with
105 contig N50 of 36.96 Mb and 36.32 Mb, respectively (table 1; supplementary table S5). Using a Hi-C
106 assisted assembly pipeline, 1,952 Mb which accounted for 95.5% of the assembled *S. obvallata*
107 genome, was anchored on 16 chromosomes (table 1; supplementary figs. S3, S6), in line with
108 previous cytological evidence (Fujikawa et al. 2004). We further evaluated the completeness of the
109 assembled genomes and found high completeness rates (94.6% of *S. obvallata* and 94.1% of *R.*
110 *alexandrae*) of both assemblies as evidenced by BUSCO (Benchmarking Universal Single-Copy
111 Orthologs) assessments using the Eukaryota_odb10 database (table 1; supplementary tables S7, S8)
112 (Manni et al. 2021). The long terminal repeat (LTR) assembly index (LAI), which evaluates the
113 contiguity of intergenic and repetitive regions of genome assemblies based on the intactness of LTR
114 retrotransposons (Ou et al. 2018), was 19.68 for *S. obvallata* and was 15.01 for *R. alexandrae*,
115 respectively, showing high continuity of both genomes.

116 Transposable elements (TEs) and other repeat sequences accounted for 81.88% and 81.65% of
117 the *S. obvallata* and *R. alexandrae* assemblies, respectively (table 1). In *S. obvallata*, LTR
118 retrotransposons (43.95%), followed by DNA TEs (2.03%) and LINEs (0.93%), were most abundant,
119 with LTR-*Gypsy* and LTR-*Copia* retrotransposons accounting for 18.19% and 25.76% of the LTRs,
120 respectively (supplementary table S9). LTR retrotransposons (44.31%), LINEs (2.73%), and DNA
121 TEs (4.08%) accounted for most of the *R. alexandrae* repeats, with LTR-*Gypsy* (37.98%) and LTR-
122 *Copia* (6.33%) retrotransposons predominant among the LTRs (supplementary table S10). A
123 combination of transcript-based, *de novo* and homology-based prediction methods yielded 37,938
124 and 61,463 high-confidence protein-coding gene models (table 1; supplementary figs. S4, S5). By
125 comparing to public protein databases, a total of 36,542 (96.32%) and 47,535 (77.34%) predicted
126 genes of *S. obvallata* and *R. alexandrae* were functionally annotated (supplementary table S11). For
127 the annotated genes, 93.5% and 96.1% of the complete BUSCO genes against the Eukaryota_odb10
128 database could be identified in *S. obvallata* and *R. alexandrae*, respectively. Overall, our newly

129 assembled and annotated genomes of *S. obvallata* and *R. alexandrae* were of high quality, providing
130 valuable genomic resources for the understanding of the convergent adaptation of alpine plants to
131 high-altitude environments.

132

133 **Complex adaptive histories of alpine plants**

134 The high-quality genomes of *S. obvallata* and *R. alexandrae* allowed reconstruction of the
135 phylogenomic relationships and the adaptive histories of alpine lineages. We downloaded annotated
136 protein sequences from genomes of five additional alpine species as well as 13 representative sisters
137 living in low elevations (supplementary table S1). Species were phylogenetically widely dispersed
138 with 17 eudicots and three monocots, placed in seven families of angiosperms. Orthologs were
139 inferred using OrthoFinder (supplementary table S12), resulting in 6,711 gene families present in all
140 20 species, of which 195 single-copy orthogroups were used for phylogeny inference and divergence
141 time estimation. A robustly supported phylogenetic tree obtained through maximum-likelihood (ML)
142 analysis of the concatenated protein sequences was consistent with the known phylogenetic
143 relationships within angiosperms, in which the alpine taxa included in our study occurred in seven
144 independent lineages placed in six families (fig. 1a). The time tree inferred from MCMCTree showed
145 a wide divergence history between alpine species and their sampled sisters, ranging from 2 million
146 years ago (Mya) to 31.81 Mya (fig. 1a). This indicated multiple times of adaptation during a wide
147 range of geological history for alpine plants to the high-altitude environments of the HHMs.

148

149 **Convergent changes of gene family number**

150 We determined convergent changes in gene family number when a gene family showed significant
151 expansion or contraction in more than three alpine species. A total of 56 convergently expanded
152 (CoEx) gene families were identified. Biological Process (BP) of Gene Ontology (GO) and Kyoto
153 Encyclopedia of Genes and Genomes (KEGG) analyses of CoEx families found 68 significantly
154 enriched GO terms and seven KEGG pathways (p -adjust < 0.05) (supplementary tables S13, S14).
155 Enriched pathways of CoEx gene families were mainly related to abiotic resistance, such as response
156 to hypoxia, regulation of hormone levels and hormone transports (figs. 1c, 1d; supplementary figs.

157 S6, S7). Interestingly, we found a greater number of convergently contracted (CoCo) families than
158 CoEx families, with 1,193 gene families convergently contracted, involving 390 significantly
159 enriched GO terms and 27 KEGG pathways (p -adjust < 0.05) (supplementary tables S15, S16). Most
160 of these pathways included genes involved in the response to biotic stresses, such as defense to
161 pathogens and toxicants (supplementary figs. S8, S9).

162 A unique stress at high altitudes is hypobaric hypoxia (Beall 2014). In plants, an oxygen
163 deficiency dramatically reduces the efficiency of cellular ATP production, which has diverse
164 ramifications for cellular metabolism and developmental processes (Fukao and Bailey-Serres 2004).
165 Various oxygen-sensing mechanisms have been described that are thought to trigger plant response
166 to low-level oxygen and thus adaptation to altitude (Abbas et al. 2022). In our analysis, we found
167 many significantly enriched GO terms of CoEx families were functionally related to the response to
168 oxygen levels, such as response to hypoxia, response to decreased oxygen level and response to
169 hydrogen peroxide (fig. 1c). These pathways included genes encoding the alcohol dehydrogenase
170 (ADH) (Peng et al. 2001), and the HSP20-like chaperones superfamily proteins that are functionally
171 enriched in the GO term, cellular response to hypoxia. In *A. thaliana*, the oxygen-sensing system is
172 mediated by the plant cysteine oxidase (PCO) N-degron pathway substrates group VII ethylene
173 response factors (ERF-VIIIs) (Licausi et al. 2011), which are involved in modulating ethylene
174 response activating the expression of *ADH1* (Yang et al. 2011). While we did not discover
175 convergent expansion of ERF-VIIIs in alpine plants, we found genes that are significantly enriched
176 GO terms related to response to ethylene, such as *ADH1*, *ERF1* (*ETHYLENE RESPONSE FACTOR*
177 *I*) and *EER1* (*ENHANCED ETHYLENE RESPONSE I*). Nonetheless, the expansion of genes
178 involved in the response to hypoxia is necessary for the adaptation of alpine plants to low-level
179 oxygen in high-altitude environments.

180 In addition, multiple CoEx families were found to be significantly enriched in plant hormone
181 pathways. Examples include genes encoding the probable indole-3-pyruvate monooxygenases
182 (YUC) involved in auxin biosynthesis (Cao et al. 2019), and the small auxin up-regulated RNAs
183 (SAUR) and the D6 protein kinase (D6PK) involved in auxin polar transport (van Berkel et al. 2013).
184 Auxin regulates a series of developmental processes such as apical dominance, plant organogenesis,

185 and reproductive development by affecting cell growth, differentiation, and patterning (Mockaitis
186 and Estelle 2008). Other developmental regulation pathways including leaf senescence, phototropism
187 and plant organ senescence were also detected to be significantly enriched in CoEx families. This
188 result, coupled with the commonly observed morphological divergence between alpine plants and
189 lowland relatives (Sun et al. 2014), indicates that regulation of morphological changes can be a
190 pivotal path for plant adaptation to high-altitude environments.

191 Many CoCo families in alpine plants were found to be functionally related to response to
192 pathogens or toxicants, involving GO terms of response to toxic substance and oomycetes,
193 xenobiotic transport and detoxification (supplementary tables S15, S16). Related gene families
194 include the cysteine-rich receptor-like kinases (CRKs), a large subfamily of receptor-like protein
195 kinases (RLKs) that play vital roles in defense responses and programmed cell death in plants (Chen
196 et al. 2004), the malectin-like receptor kinases (MLRs) orchestrating the plant immune responses and
197 the accommodation of fungal and bacterial symbionts (Ortiz-Moreira et al. 2022), the multidrug and
198 toxic compound extrusion (MATE) proteins involved in xenobiotic detoxification and multidrug
199 resistance (Diener et al. 2001), as well as the ubiquitin-conjugating (E2) enzymes emerging in recent
200 years as an important regulatory factor underlying plant innate immunity (Zhou et al. 2017).
201 Moreover, the results also showed that the genes encoding receptors for tyrosine-sulfated
202 glycopeptide (PSY1Rs) and phytosulfokine (PSKRs), belonging to the leucine-rich repeat receptor
203 kinases (LRR-RKs), have been undergoing contraction in all alpine species. PSKR1 and PSY1R
204 have been shown to involve in plant immune, with antagonistic effects on bacterial and fungal
205 resistances (Mosher et al. 2013).

206 The largest disease-resistance genes comprise genes encoding nucleotide-binding site and
207 leucine-rich-repeat domain receptors (NBS-LRRs). Three NBS-LRR gene subclasses, TIR-NBS-
208 LRR (TNL), CC-NBS-LRR (CNL), and RPW8-NBS-LRR (RNL), have been characterized based on
209 the N-terminal domains (McHale et al. 2006). We manually annotated NBS-LRR genes in the
210 sampled genomes using the HMMER search with the Pfam database (Wheeler and Eddy 2013). A
211 total of 5,655 NBS-LRR genes, including 4,058 CNLs, 1,024 TNLs and 173 RNLs were identified
212 among all analyzed genomes (supplementary fig. S10). Additionally, we reconciled the NBS-LRR

213 gene tree to examine the gains and losses of NBS-LRR genes in alpine species. The results showed
214 that, compared to lowland relatives, most alpine species tend to lose more NBS-LRR genes and
215 exhibit reduced copy number, while *E. heterophyllum*, *S. obvallata* and *R. alexandrae* have similar
216 numbers compared to their closest relatives (supplementary fig. S11). A similar phenomenon was
217 also described in the case study of the *C. himalaica* genome, in which the most significantly
218 contracted gene families were functionally enriched in disease and immune responses pathways
219 (Zhang et al. 2019). Due to the harsh environments characterized by freezing temperatures, aridity,
220 and high UV radiation, it is reasonable to hypothesize that gene families involved in pathogen or
221 toxicant defense have undergone contraction in alpine plants, as fewer microorganisms exist. In
222 addition, genes functioning in cellular transport were shown to be contracted in alpine plants. Related
223 pathways include cytoskeleton organization, actin filament-based process, export across plasma
224 membrane and export from the cell (fig. 1d; supplementary table S15). These processes may be a
225 component of plant immune system and possibly have undergone simplification due to the pathogen
226 depauperate environments of high altitudes. These results suggest that contractions immune system
227 genes might be an effective way to mitigate genetic loads while surviving in hostile environments
228 but with few pathogens present.

229

230 **Tests for convergent positive selection**

231 In harsh environments, positive selection is expected to be common in genes controlling early life
232 history stages, including genes involved in reproduction and development (Cui et al. 2019). Our
233 branch-site tests identified 36 convergently selected genes that show signatures of positive selection
234 in more than three alpine species (supplementary table S17). These genes were functionally related to
235 basal life processes involving reproduction and respiration, such as carpel, gynoecium, ovule and
236 endosperm developments and photorespiration pathways (supplementary fig. S12, supplementary
237 tables S18, S19). Examples included the *SEPALLATA* (*SEP*) MADS-box genes required in floral
238 organ and meristem identity (Pelaz et al. 2000), the *MALE MEIOCYTE DEATH 1* (*MMD1*) gene
239 regulating cell cycle transitions during male meiosis (Yang et al. 2003), the *NIJMEGEN BREAKAGE*
240 *SYNDROME 1* (*NBS1*) gene involved in double-strand break repair, DNA recombination and

241 maintenance of telomere integrity in the early stages of meiosis (Zhang et al. 2006), and the
242 *HYDROXYPYRUVATE REDUCTASE (HPR)* gene localized in leaf peroxisomes functioning in the
243 glycolate pathway of photorespiration (Mano et al. 1999). Moreover, genes encoding pectin
244 methylesterases (PMEs) were detected to be undergone convergently positive selection
245 (supplementary table S17). PMEs play a central role in the synthesis and metabolism of pectins,
246 which contribute both to the firming and softening of the cell wall that is important for basal
247 developmental processes of higher plants, such as meristematic growth, fruit ripening, programmed
248 cell death, and endosperm rupture upon germination (Louvet et al. 2006; Rodriguez-Gacio Mdel et
249 al. 2012). In addition, the glyoxylate and dicarboxylate metabolism, the most significantly enriched
250 KEGG pathways (supplementary fig. S13, supplementary table S19), is a fundamental biochemical
251 process that ensures a constant supply of energy to living cells. These convergently selected genes
252 detected in our analyses likely contribute to the primary adaptation of alpine plants to similar
253 extreme environments.

254

255 **Detection of molecular convergence**

256 We investigated signatures of genes undergoing molecular convergence among alpine species using a
257 combination of approaches for the detection of convergent evolutionary rate shifts and site-based
258 estimation of convergent amino acid (AA) evolution. These approaches have been commonly used in
259 previous studies that investigate the genomic signatures of convergent evolution, including
260 convergent adaptation to seasonal habitat desiccation in African killifishes (Cui et al. 2019),
261 convergent regulatory evolution and loss of flight in paleognathous birds (Sackton et al. 2019), and
262 convergent evolution of extreme lifespan in Pacific Ocean rockfishes (Kolora et al. 2021).

263 Convergent shifts in gene evolutionary rates were detected using the RERconverge method
264 (Kowalczyk et al. 2019), which estimates the correlation between relative evolutionary rates (RERs)
265 of protein sequences and the evolution of a convergent binary or continuous trait across a phylogeny.
266 Our analysis focused on positive correlations, representing genes with faster evolutionary rates in
267 alpine species relative to species living in low elevations. An increased RER could arise due to
268 relaxation of a constraint or positive selection, which could be adaptive to habitat-related changes

269 (Kowalczyk et al. 2020). We identified 69 gene families undergoing convergently accelerated RERs
270 in alpine species, significantly enriched in 93 GO terms and 12 KEGG pathways ($p\text{-adjust} < 0.05$)
271 (supplementary tables S20, S21), involving pathways for self-incompatibility system, cell wall
272 modification, DNA repair and stress resistance (fig. 2). Among them, 26 gene families were found to
273 have convergent AA shifts by a PCOC analysis (supplementary fig. S14). The PCOC method
274 considers shifts in AA preference instead of identical substitutions (Rey et al. 2018). Given the
275 relatively far phylogenetic distances among our analyzed species, selecting only sites that converged
276 to the exact same AA in all species is quite strict and is bound to capture only a subset of the
277 substitutions associated with the convergent trait change.

278

279 ***Self-incompatibility system.*** Self-incompatibility (SI) in many flowering plants is controlled by the *S*
280 (sterility) locus (Takayama and Isogai 2005). The loss of SI genes in *A. thaliana* is responsible for
281 the evolutionary transition to the self-fertile mating system (Sherman-Broyles et al. 2007). Although
282 self-fertilization is often thought to lead to a decreased fitness of homozygous offspring, this mode
283 ensures reproduction in the absence of pollinators or suitable mates, and therefore can be
284 advantageous for plants to occupy niches in harsh environments (Goodwillie et al. 2005). Our results
285 revealed the biggest orthogroup (OG0000000), which includes the *Arabidopsis* S-receptor kinase
286 (SRK) genes and the *S*-locus flanking gene *ARK3* (*RECEPTOR KINASE 3*), undergoing evolutionary
287 rate acceleration and convergent AA shifts in alpine species (fig. 3). GO analysis showed that these
288 genes were functionally enriched in the process of reproduction (recognition of pollen, recognition of
289 pollen, and pollination) and immune system (immune response). Furthermore, we identified the
290 functional domain using NCBI's conserved domain database (CDD) (Lu et al. 2020). The result
291 showed that these proteins contained the *S*-locus glycoprotein domain (Pfam00954), confirming their
292 functions in SI system.

293 Loss of function at the *S*-locus in alpine *Crucihimalaya* genomes possibly due to relaxed
294 selection were reported (Zhang et al. 2019; Feng et al. 2022), with a similar phenomenon found in
295 the high-altitude Andes maca (*Lepidium meyenii*) genome (Zhang et al. 2016). Our branch-site tests
296 did not detect any signatures of positive selection on these genes, suggesting that acceleration of

297 evolutionary rates may be the result of relaxed constraints. Therefore, we tested for the relaxation of
298 selection on the *S*-locus genes using the RELAX model (Wertheim et al. 2015). RELAX analysis
299 estimated the relaxation intensity parameter k , $k > 1$ indicates intensified selection (i.e., positive or
300 purifying selection) and $k < 1$ suggests relaxed selection. The results showed that five (*C. himalaica*,
301 *E. heterophyllum*, *H. vulgare* var. *nudum*, *S. brachista* and *S. obvallata*) of the seven alpine plants
302 exhibited significantly relaxed selection on *S*-locus genes (p -value < 0.05 ; supplementary table S22).
303 Bingham and Ort (1998) reported that low levels of insect diversity, abundance and activity often
304 occur in alpine ecosystems and hypothesized that these factors may limit the pollination of alpine
305 plants. Species living in isolated habitats like alpine environments or ocean islands are thus less
306 likely to be SI, in line with “Baker’s Law”, which assumes that pollen limitation may be an
307 important force driving the transition of mating systems (Cheptou 2012). Pollination biology studies
308 have shown several cases of autonomous selfing in various taxonomically distant species within
309 HHM communities, although the proportion of self-pollinated species has not yet been calculated to
310 test the hypothesis (Sun et al. 2014). We here hypothesize that convergent acceleration of
311 evolutionary rates of *S*-locus genes due to relaxed selection can be evidence of the evolutionary
312 transition from self-incompatibility to the self-compatibility mating system, which is potentially a
313 convergently adaptive process for alpine plants to facilitate their reproduction and the occupation of
314 alpine niches.

315

316 **Cell wall modification.** The cuticle membrane lies over and merges into the outer wall of epidermal
317 cells (Martin and Juniper 1970). The primary role of the cuticle, composed of cutin and cuticular
318 waxes, is to mitigate water loss and excessive UV radiation by functioning as a physical barrier
319 between the plant surface and its external environment (Kerstiens 1996). Cuticular waxes are
320 composed of a variety of organic solvent-soluble lipids, consisting of very-long-chain (VLC) fatty
321 acids and their derivatives, as well as secondary metabolites like flavonoids (Pollard et al. 2008). The
322 cell wall modification pathway was found significantly enriched in genes undergoing convergent
323 positive selection (supplementary table S18). Additionally, in the examination of convergent changes
324 in gene family number, we found the most significantly enriched KEGG pathway of co-expanded

325 genes to be cutin, suberine and wax biosynthesis (supplementary table S14), corresponding to the
326 enriched suberin biosynthetic process in the GO analysis (supplementary table S13), including genes
327 encoding fatty acyl-CoA reductases (FARs). FARs catalyze the formation of fatty alcohols, which are
328 common components of plant surface lipids (i.e., cutin, suberin, and associated waxes). We did not
329 detect convergent acceleration of the evolutionary rate of FARs, suggesting possible modifications of
330 FARs through the increase in gene copy number. The results showed that an aldehyde decarbonylase
331 enzyme CER1 underwent a convergent acceleration of evolutionary rate in alpine plants.
332 Overexpression of the *A. thaliana* *CER1* gene was reported to promote wax VCL alkane biosynthesis
333 and influences plant response to biotic and abiotic stresses (Bourdenx et al. 2011). The convergent
334 evolution of genes involved in the cutin, suberine and wax biosynthesis implied that cuticular waxes
335 may function as protective screens against UV radiation to protect anatomical structures and
336 dissipate excess light energy for alpine plants.

337 In addition, we detected positive selection and molecular convergence of three MYB
338 transcription factors, including MYB27, MYB48, and MYB59 (supplementary table S17). Among
339 them, MYB27 was reported to play a role in regulating the accumulation of anthocyanins (Albert et
340 al. 2014), a class of flavonoids. In the STRING database (Szklarczyk et al. 2021), MYB48 was
341 predicted to interact with proteins that are involved in flavonoid biosynthesis, including F3H
342 (naringenin,2-oxoglutarate 3-dioxygenase), catalyzing the 3-beta-hydroxylation of 2S-flavanones to
343 2R,3R-dihydroflavonols which are intermediates in the biosynthesis of flavonols and anthocyanidins,
344 FLS1 (flavonol synthase/flavanone 3-hydroxylase), catalyzing the formation of flavonols from
345 dihydroflavonols, DFR (dihydroflavonol reductase), catalyzing the conversion of dihydroquercetin to
346 leucocyanidin, and TT5, a member of chalcone-flavanone isomerase family protein (supplementary
347 fig. S15, supplementary table S23). Flavonoids function as antioxidants that reduce DNA damage
348 induced by abiotic stresses such as extreme temperatures, UV radiation and drought, and thus play
349 critical roles in species adapting to high-altitude environments (Agati et al. 2012). Many examples of
350 whole genome studies of alpine plants have shown that expansion and/or positive selection of genes
351 involved in flavonoid biosynthesis constitute an important part of the genomic footprint of alpine
352 adaptation (Zeng et al. 2015; Chen et al. 2019; Wang et al. 2021). Taken together, modifications of

353 the cell wall in alpine plants through evolutionary expansion and adaptive convergence of genes
354 involved in the biosynthesis of cuticular waxes and flavonoids might be vital strategies for adaptation
355 to dramatic weather changes and extensive UV radiation in high altitude.

356 With the newly generated transcriptomic data of *S. obvallata*, we were able to investigate
357 expression patterns of genes related to the biosynthesis of cuticular waxes and flavonoids. Five
358 tissues with three biological replicates, including three from leaves (basal leaves JL, middle leaves
359 ML, and bract leaves BL) and two from flowers and stems, were sampled (supplementary fig. S16,
360 supplementary table S3). After mapping the RNA-seq data to the assembled genome of *S. obvallata*,
361 25,096 genes had expression profiles and were retained for differential gene expression (DEG)
362 analysis. The results showed that, compared to basal and middle leaves, bract leaves exhibit 1,071
363 significant up-regulated genes (fig. 4a). These genes were significantly enriched in cytochrome P450,
364 cutin, suberine and wax biosynthesis and isoflavonoid biosynthesis KEGG pathways (fig. 4b).
365 Furthermore, we analyzed expression profiles of genes involved in the biosynthesis of cuticular
366 waxes and flavonoids. The results showed that many genes had higher expression levels in bract
367 leaves than in other leaf tissues. For example, *CER1*, *CER3*, *CER4*, and *MAH1* in the cuticular wax
368 biosynthetic pathway (fig. 4c), and *4CL*, *CHS*, *CHI*, *F3'H*, *TT7* and *OMT* in the flavonoid
369 biosynthetic pathway (fig. 4d). These results suggest that the accumulation of cuticular waxes and
370 flavonoids is an important genetic pathway from normal leaves to leafy bracts. Our findings provide
371 new insights into the genetic basis of the specialized ‘glasshouse’ morphology for a better
372 understanding of plant morphological adaptation.

373

374 **DNA repair and stress resistance pathways.** The hypoxia and intense UV radiation in alpine
375 environments exert highly abiotic stress that can cause DNA, RNA, and protein damage. DNA repair
376 processes thus play an important role in the high-altitude adaptation of plants, similar to evidence in
377 alpine animals (Li et al. 2018). The *NBS1* gene, involved in DNA repair, cellular response to DNA
378 damage stimulus and double-strand break repair, was found to be under convergent selection in
379 alpine genomes (supplementary table S17). Moreover, several significantly enriched GO terms
380 related to DNA repair and protein ubiquitination were detected undergoing convergent evolution in

381 alpine plants (fig. 2a, supplementary table S17). Similar KEGG pathways were also identified,
382 including mismatch repair, homologous recombination and nucleotide excision repair (fig. 2b,
383 supplementary table S18). Examples included the *UEV1* genes, enriched in protein K63-linked
384 ubiquitination pathway that reportedly play a role in DNA damage responses and error-free post-
385 replicative DNA repair by participating in lysine-63-based polyubiquitination reactions (Wen et al.
386 2008), and genes encoding OB-fold proteins which were found to be important for genomic stability
387 including DNA replication, recombination, repair, and telomere homeostasis (Flynn and Zou 2010).

388 In addition to low oxygen levels and excessive UV radiation, high-altitude environments pose
389 various threats to living organisms from an unpredictable climate. We found many genes with
390 convergent evolutionary rate shifts were significantly enriched in stress resistance pathways, such as
391 genes involved in the hormone signal transduction (cell recognition, intracellular signal transduction,
392 and cytokinin-activated signaling pathway), the cell rhythm system (circadian rhythm, cell cycle
393 phase transition, and programmed cell death), and the regulation of enzyme activity pathways
394 (regulation of kinase activity, regulation of GTPase activity, and regulation of transferase activity)
395 (fig. 2a, supplementary tables S17). Also, some KEGG pathways were found to be significantly
396 enriched in metabolic pathways that may contribute to stress resistance, such as plant hormone signal
397 transduction, phenylpropanoid biosynthesis, and glycine, serine, and threonine metabolism (fig. 2b,
398 supplementary table S18). Plant hormones like cytokinin and ethylene play pivotal regulatory roles
399 in plant growth and development, including cell division, shoot initiation, light responses, and leaf
400 senescence. We found that Type-A *Arabidopsis* response regulator (ARR) protein family, involved in
401 response to cytokinin and cytokinin signal transduction, undergoes molecular convergence in alpine
402 plants. An experimental study revealed that *arr* mutants show altered red-light sensitivity, indicating
403 an important role of type-A ARRs in light adaptation (To et al. 2004). The circadian clock was
404 selected as a mechanism in the control of cell-cycle progression to avoid sunlight-induced DNA
405 damage in ancient unicellular organisms (Hut and Beersma 2011). Circadian rhythm in plants
406 regulates multiple processes such as photosynthesis, flowering, seed germination, and senescence
407 (Srivastava et al. 2019). Genes involved in the regulation of the rhythm system were found to be
408 convergently accelerated evolutionary rates in alpine plants, such as the transcription factor *MYB59*,

409 which participates in the regulation of the cell cycle, mitosis and root growth by controlling the
410 duration of metaphase. The *myb59* mutant was found to have longer roots, smaller leaves and smaller
411 cells than wild-type plants (Fasani et al. 2019), which are commonly observed in alpine plants. Taken
412 together, these results suggested that adaptation to high altitude requires the participation of multiple
413 biological processes.

414

415 **Conclusions**

416 Taking advantage of an integrative genomic data set of alpine plants, our study unraveled the
417 genomic underpinnings of convergent adaptation to high-altitude environments (fig. 5). We identified
418 convergently expanded gene families involved in the oxygen-level response and contracted gene
419 families related to disease resistance in alpine plants, potentially reflecting adaptations to high-
420 altitude environments experiencing hypoxia and depauperate pathogen communities. Our results
421 showed that alpine plants have undergone convergent molecular evolution of genes involved in
422 reproduction and development, self-incompatibility, cell wall modification, as well as DNA repair
423 and stress resistance pathways that may contribute to the survival in extremely cold, high UV
424 radiation and hypoxia environments. Both molecular convergence in changes of gene copy number
425 and accelerated evolutionary rates are consequences of selective pressures posed by the surrounding
426 environment. Thus, genomic signatures of convergent evolution detected here are direct evidence for
427 alpine plants associated with independently colonizing, evolving and adapting to cold, high UV
428 radiation and hypoxia environments of the HHMs. The alpine plants included in this study belong to
429 taxonomically distant plant orders, hence, standing genetic variation and localized introgression of
430 regions of the genome can be ruled out as probable causes of genomic convergence. Identical *de*
431 *novo* mutations must therefore have occurred independently in each taxon during evolution from a
432 low-altitude ancestor. Furthermore, we gain valuable insights into genetic bases underlying the
433 adaptive ‘greenhouse’ morphology by mining differentially expressed genes involved in the
434 biosynthesis of cuticular waxes and the accumulation of flavonoids that might be vital strategies for
435 adaptation to dramatic weather changes and extensive UV radiation in high altitudes. Taken together,
436 our study reveals genomic convergence underlying adaptation to alpine environments at a high-

437 taxonomic level of angiosperms, providing a framework for further understanding of high-altitude
438 adaptation. Further genomic study of alpine adaptation should provide detailed evidence related to
439 morphological and physiological specializations using updated data, such as proteome and
440 metabolome, while also referring to discoveries from phylogenetically distant taxon to evaluate the
441 evolutionary convergence in similar environments.

442

443 **Materials and Methods**

444 **Plant material, DNA extraction and sequencing**

445 Fresh leaves of wild *S. obvallata* and *R. alexandrae* individuals were collected from Songpan county,
446 Sichuan Province, China (102°45'E,30°23'N) and Linzhi county, Tibet Province, China
447 (102°45'E,30°23'N), respectively. All samples were sent to Wuhan Benagen Technology Company
448 Limited (Wuhan, China) for genome sequencing. Total genomic DNA was extracted using the
449 Qiagen DNeasy Plant Mini Kit. For the Illumina short reads, DNA libraries with 500 bp insert sizes
450 were constructed and sequenced using an Illumina HiSeq 4000 platform. For Oxford Nanopore
451 sequencing, libraries were prepared using the SQKLSK109 ligation kit using the standard protocol,
452 and the purified library was loaded onto primed R9.4 Spot-On Flow Cells and sequenced using a
453 PromethION sequencer (Oxford Nanopore Technologies, Oxford, UK). The Hi-C sequencing was
454 performed as follows: extracted DNA was first crosslinked by 40ml of 2% formaldehyde solution to
455 capture interacting DNA segments, the chromatin DNA was then digested with the *DpnII* restriction
456 enzyme, and libraries were constructed and sequenced using Illumina HiSeq 4000 instrument with
457 2×150 bp reads.

458 For RNA sequencing, fresh tissue samples were collected and immediately frozen in liquid
459 nitrogen. Three biological replicates of five tissues of *S. obvallata* were sampled. Total RNA was
460 extracted using the TRIzol® Reagent (Invitrogen, Shanghai, China). Paired-end cDNA libraries were
461 constructed using TruSeq Stranded mRNA Library Prep Kit (Illumina), and were sequenced using
462 Illumina HiSeq 4000 platform.

463

464

465 **Genome assembly and quality control**

466 Before genome assembly, Kmerfreq (<https://github.com/fanagislab/kmerfreq>) was used for counting
467 *K*-mer frequency with the *K*-mer set to 19, and GCE v1.0 was used for estimating the genome size
468 (Liu et al. 2013). The ONT long reads were corrected and assembled using NextDenovo v2.3.1
469 (<https://github.com/Nextomics/NextDenovo>) with default parameters. The contigs were polished
470 using NextPolish v1.4.1 (Hu et al. 2020) with the long reads and Pilon v1.23 (Walker et al. 2014)
471 with Illumina short reads for three rounds. Hi-C data were used to execute chromosome
472 conformation using the 3D-DNA pipeline with default parameters. The accuracy of Hi-C based
473 chromosomal assembly was improved using Juicerbox's chromatin contact matrix (Dudchenko et al.
474 2017). The completeness and continuity of the assemblies were evaluated by the statistics of BUSCO
475 and LAI, respectively.

476

477 **Genome annotation**

478 **Repeat annotation.** TEs were identified based on *de novo* and homology-based strategies.
479 RepeatMasker v4.0.7 was used to run a homology search for known repeat sequences against the
480 Repbase database v22.11 (Tarailo-Graovac and Chen 2009). RepeatModeler v2.0.10 was employed
481 to predict the TEs based on the *de novo* method (Flynn et al. 2020). LTRharvest v1.5.10,
482 LTR_FINDER v1.05 and LTR_retriever v1.8.0 were used to build an LTR library with default
483 parameters (Xu and Wang 2007; Ellinghaus et al. 2008; Ou and Jiang 2018). Finally, RepeatMasker
484 was used to merge these library files of the two methods and to identify the repeat contents.

485

486 **Gene prediction.** A combination of *de novo*-, homology-, and transcript-based methods were used for
487 gene prediction in both genomes. RNA-seq reads were assembled using Trinity v2.1.1 using the *de*
488 *novo*-based and genome-guided modes, respectively. Coding DNA sequences (CDS) and protein
489 sequences were predicted with TransDecoder (<http://transdecoder.github.io>). Homologs were
490 predicted by mapping protein sequences using GeMoMa v1.6.1 (Keilwagen et al. 2016). Sequences
491 of *Arabidopsis thaliana*, *Oryza sativa* and *Solanum tuberosum* were mapped to both genomes.
492 Additionally, sequences of *Helianthus annuus*, *Lactuca sativa*, *Cynara cardunculus* and *Mikania*

493 *micrantha* were mapped to *S. obvallata*, and sequences of *Fagopyrum tataricum* and *Rumex hastatus*
494 were mapped to *R. alexandrae*, respectively. A *de novo* gene prediction was performed with Braker2
495 v2.1.5 and GlimmerHMM v3.0.4 (Majoros et al. 2004; Bruna et al. 2021). Assembled transcripts
496 were used for training gene models in Braker2. Gene models from the three main sources were
497 merged to produce consensus models using EVidenceModeler v1.1.1 (Haas et al. 2008).

498

499 **Gene functional annotation.** The annotated protein-coding genes were used for a BLAST search
500 against the UniProt and NCBI nonredundant protein databases to predict gene functions. The
501 functional domains of protein sequences were identified by InterProScan v5.51-85.0 using data from
502 Pfam (Jones et al. 2014). KEGG and gene ontology (GO) terms of the gene models were obtained
503 using eggNOG-mapper v2.0.1 (Cantalapiedra et al. 2021).

504

505 **Orthogroup inference and alignment**

506 Protein sequences from the seven alpine genomes as well as 13 relatives living at low altitudes were
507 used for subsequent comparative analyses. OrthoFinder v2.5.4 was used to construct orthogroups for
508 all species with default settings (Emms and Kelly 2019). Because the included species are
509 phylogenetically distant (widely dispersed across the eudicots and monocots), OrthoFinder recovered
510 an extremely low number of strictly single-copy orthogroups. We therefore reduced orthogroups that
511 contained multiple gene copies per species to one copy per species based on the smallest genetic
512 distance following the study of Birkeland et al. (2020). Briefly, all orthogroups were aligned based
513 on protein sequence using MAFFT v7.3 (Katoh and Standley 2013), and genetic distances between
514 all pairs of genes were calculated as Kimura protein distances (Kimura 1980). One gene copy per
515 species was retained based on the smallest genetic distance to the longest protein sequence of *A.*
516 *thaliana* in each orthogroup. The rationale is that the annotation of *A. thaliana* genome is complete
517 and reliable, and our subsequent functional analyses of candidate genes were based on the *A.*
518 *thaliana* orthologs. The resulting orthogroup sequences that contained only one protein sequence per
519 species were realigned using PRANK v170427 (Löytynoja 2014). Coding sequences of genes in
520 orthogroups were extracted based on the same gene identifier of protein sequences and were aligned

521 using PRANK with the codon mode.

522

523 **Phylogeny and estimation of divergence time**

524 Protein sequences of 195 single-copy orthogroups were used for phylogenetic inference with
525 RAxML v8.2.12 using the PROTGAMMAUTO substitution model with 500 bootstrap replicates
526 (Stamatakis 2014). Divergence time was estimated in the MCMCTree program from PAML v4.9j
527 (Yang 2007), using the approximate likelihood method with the tree topology inferred with RAxML,
528 an independent substitution rate (clock = 2), and the HKY85+GAMMA model. Three calibration
529 points were assigned based on the TimeTree database (Kumar et al. 2017) (<http://www.timetree.org/>,
530 accessed on 1 May 2022): the MRCA (most recent common ancestor) of rosids (95% HPD 105 - 115
531 Mya), the MRCA of *Pentapetae* (95% HPD 110 - 124 Mya), and the MRCA of *Mesangiospermae*
532 (95% HPD 148 - 173 Mya). Samples were drawn every 1,000 MCMC steps from a total of 10^6 steps,
533 with a burn-in of 10^5 steps. Convergence was assessed by comparing parameter estimates from two
534 independent runs, with all effective sample sizes >200 .

535

536 **Gene family evolution**

537 The change in gene family number was examined using CAFÉ5 (Mendes et al. 2020). Besides the
538 base model, the number of gamma categories ($-k$) was set to estimate separate lambda values for
539 different lineages in the tree (Gamma model). The highest likelihood was found using $k = 2$ rate
540 categories ($-\ln L = 286114$), with $\lambda = 0.00553$ and $\alpha = 1.58$. Gene family expansions or contractions
541 were identified only when the change in gene count was significant with a p -value < 0.05 . Genome-
542 wide NBS-LRR genes were manually identified using HMMER v3.2 with an e-value 1e-05 (Wheeler
543 and Eddy 2013). The NBS-LRR protein domains (NB-ARC: PF00931; RPW8: PF05659; TIR:
544 PF01582; LRR: PF00560, PF07723, PF07725 and PF12799) were retrieved from Pfam
545 (<http://pfam.xfam.org>) and were used to identify conserved motif of NBS-LRR genes in sampled
546 genomes. The ML phylogenetic tree of NBS-LRR was constructed using RAxML. Then, Notung
547 v2.9 was used to recover gains and losses of NBS-LRR genes by reconciling the NBS-LRR gene tree
548 (Chen et al. 2000). The concatenated tree reconstructed by RAxML was used as input topology.

549

550 **Functional enrichment analysis**

551 GO and KEGG over-representation tests were performed using clusterProfiler v4.3.4 implemented in
552 R to identify significantly enriched pathways (Wu et al. 2021). GO and KEGG terms were assigned
553 according to the orthologous genes of *A. thaliana* genome. In the ‘enrichGO’ function, we set ‘ont =
554 BP’ to only search for enriched biological pathways (BP). The resulting *p*-values were corrected for
555 multiple comparisons using a Benjamini–Hochberg FDR correction. A criterion of *p*-adjust < 0.05
556 was used to access the significance of enrichment analyses.

557

558 **Tests for positive selection and relaxation of selection**

559 The branch-site model implemented in CodeML (PAML package) was performed to test for positive
560 selection. In this test, an alternative model allowing sites to be under positive selection on the
561 foreground branch was contrasted to a null model limiting sites to evolve neutrally or under
562 purifying selection using a likelihood-ratio test (LRT). LRT *p*-values were computed based on Chi-
563 squared distribution (df = 2) and were corrected for multiple tests at a *p*-adjust < 0.05 threshold using
564 a Benjamini-Hochberg FDR correction. A gene showing signature of positive selection in more than
565 three alpine species was identified as a convergent selected gene. Additionally, RELAX was
566 employed to test for the relaxation of selection on *S*-locus genes using the likelihood ratio test by
567 comparing the model fixing $k = 1$ and the model allowing k to be estimated (Wertheim et al. 2015).
568 In both analyses, seven tests were conducted separately by setting each alpine species as the
569 foreground branch.

570

571 **Convergent evolutionary rate shifts**

572 To perform the RERconverge analysis, we first used PAML to estimate maximum-likelihood gene
573 trees whose branch lengths represent evolutionary rates using the number of amino acid
574 substitutions. RERs were calculated using ‘getAllResiduals’ function with weight = T, scale = T and
575 cutoff = 0.001 (Kowalczyk et al. 2019). We set alpine species as foreground branches (branches of
576 the tree with the trait of interest) and ran ‘foreground2Paths’ function to estimate RERs for all genes

577 and to correlate them with trait evolution (i.e., alpine habitats in our study). We then used
578 ‘correlateWithBinaryPhenotype’ function to test for a significant association between RERs and
579 traits across all branches of the tree with a *p*-value < 0.05.

580

581 **Convergent AA evolution**

582 Two models were compared in PCOC analysis: the convergent model in which a site on convergent
583 branches evolves under a profile different from that of the nonconvergent branches, and
584 nonconvergent (null) model in which a site evolves under a single amino acid profile throughout the
585 phylogeny (Rey et al. 2018). PCOC then detected convergent sites by identifying the better fit
586 between the two models. To filter for only sites with strong evidence for convergent profile shifts, we
587 set a posterior probability threshold of > 0.9 in the analysis.

588

589 **Differential gene expression (DEG) analysis**

590 RNA-seq data of *S. obvallata* were mapped to the assembled genome using HISAT2 v2.2.1 (Kim et
591 al. 2019). Only uniquely mapped paired-end reads were retained for read counting by featureCounts
592 v2.0.3 (Liao et al. 2014) to generate the count and Transcripts per Kilobase Million (TPM) tables.
593 DEG analyses among the five tissues were performed in DESeq2 v1.36.0 (Love et al. 2014), with a
594 *p*-value <0.05 as a cut-off and a log2 fold change cut-off of 1.

595

596 **Data Availability**

597 The genomic data generated and analyzed in this study including the raw sequencing data of Oxford
598 Nanopore, Illumina, Hi-C and RNA-seq, as well as genome assembly have been deposited in China
599 National GeneBank (CNGB, <https://db.cngb.org/>) under accession number CNP0003451. All the
600 custom scripts and specific command lines have been deposited at GitHub
601 (https://github.com/ZhangXu-CAS/Alpine_genome).

602

603 **Supplementary Material**

604 Supplementary data are available at *Molecular Biology and Evolution* online.

605

606 **Acknowledgements**

607 The authors thank Ticao Zhang and Yingxiong Qiu for insightful comments on our paper, and thank
608 Xinyi Guo for providing genome data. This work was supported by the Second Tibetan Plateau
609 Scientific Expedition and Research program (2019QZKK0502), the Strategic Priority Research
610 Program of Chinese Academy of Sciences (XDA20050203), the Key Projects of the Joint Fund of
611 the National Natural Science Foundation of China (U1802232), the Youth Innovation Promotion
612 Association of Chinese Academy of Sciences (2019382), the Yunnan Young & Elite Talents Project
613 (YNWR-QNBJ-2019-033) and the Ten Thousand Talents Program of Yunnan Province
614 (202005AB160005).

615

616 **Author contributions**

617 T.D., H.W. and H.S. conceived and led the project. X.Z., T.K., W.D. and Z.Q. processed data,
618 performed analyses and drew figures. X.Z., H.Z., T.F., L.L. and T.D. collected materials. X.Z. wrote
619 the manuscript. J.B.L., Y.S., J.H., T.D., H.W. and H.S. revised the manuscript.

620

621 **References**

622 Abbas M, Sharma G, Dambire C, Marquez J, Alonso-Blanco C, Proaño K, Holdsworth MJ. 2022. An
623 oxygen-sensing mechanism for angiosperm adaptation to altitude. *Nature* 606:565-569.

624 Agati G, Azzarello E, Pollastri S, Tattini M. 2012. Flavonoids as antioxidants in plants: location and
625 functional significance. *Plant Sci.* 196:67-76.

626 Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H,
627 Jameson PE, Schwinn KE. 2014. A conserved network of transcriptional activators and
628 repressors regulates anthocyanin pigmentation in eudicots. *Plant Cell* 26:962-980.

629 Beall CM. 2014. Adaptation to High Altitude: Phenotypes and Genotypes. *Annual Review of*
630 *Anthropology* 43:251-272.

631 Bingham RA, Ort AR. 1998. Efficient pollination of alpine plants. *Nature* 391:238-239.

632 Birkeland S, Gustafsson ALS, Brysting AK, Brochmann C, Nowak MD. 2020. Multiple Genetic

633 Trajectories to Extreme Abiotic Stress Adaptation in Arctic Brassicaceae. *Mol Biol Evol*
634 37:2052-2068.

635 Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP,
636 Napier JA, et al. 2011. Overexpression of *Arabidopsis ECERIFERUM1* promotes wax very-
637 long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. *Plant*
638 *Physiol.* 156:29-45.

639 Bruna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic
640 genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database.
641 *NAR Genom Bioinform* 3:1qaa108.

642 Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2:
643 Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic
644 Scale. *Mol Biol Evol* 38:5825-5829.

645 Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. 2019. The Roles of Auxin Biosynthesis YUCCA
646 Gene Family in Plants. *Int J Mol Sci* 20:6343.

647 Chen JH, Huang Y, Brachi B, Yun QZ, Zhang W, Lu W, Li HN, Li WQ, Sun XD, Wang GY, et al.
648 2019. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence
649 in a biodiversity hotspot. *Nat Commun* 10:5230.

650 Chen K, Durand D, Farach-Colton M. 2000. NOTUNG: a program for dating gene duplications and
651 optimizing gene family trees. *J Comput Biol* 7:429-447.

652 Chen K, Fan B, Du L, Chen Z. 2004. Activation of hypersensitive cell death by pathogen-induced
653 receptor-like protein kinases from *Arabidopsis*. *Plant Mol Biol* 56:271-283.

654 Cheptou PO. 2012. Clarifying Baker's Law. *Ann. Bot.* 109:633-641.

655 Cui R, Medeiros T, Willemse D, Iasi LNM, Collier GE, Graef M, Reichard M, Valenzano DR.
656 2019. Relaxed Selection Limits Lifespan by Increasing Mutation Load. *Cell* 178:385-399 e320.

657 Diener AC, Gaxiola RA, Fink GR. 2001. *Arabidopsis ALF5*, a multidrug efflux transporter gene
658 family member, confers resistance to toxins. *Plant Cell* 13:1625-1638.

659 Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I,
660 Lander ES, Aiden AP, et al. 2017. De novo assembly of the *Aedes aegypti* genome using Hi-C

661 yields chromosome-length scaffolds. *Science* 356:92-95.

662 Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible software for de novo
663 detection of LTR retrotransposons. *BMC Bioinformatics* 9:18.

664 Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative
665 genomics. *Genome Biol* 20:238.

666 Fasani E, DalCorso G, Costa A, Zenoni S, Furini A. 2019. The *Arabidopsis thaliana* transcription
667 factor MYB59 regulates calcium signalling during plant growth and stress response. *Plant Mol
668 Biol* 99:517-534.

669 Feng L, Lin H, Kang M, Ren Y, Yu X, Xu Z, Wang S, Li T, Yang W, Hu Q. 2022. A chromosome-
670 level genome assembly of an alpine plant *Crucihimalaya lasiocarpa* provides insights into high-
671 altitude adaptation. *DNA Res.* 29:dsac004.

672 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler2
673 for automated genomic discovery of transposable element families. *Proc Natl Acad Sci U S A*
674 117:9451-9457.

675 Flynn RL, Zou L. 2010. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of
676 genome guardians. *Crit. Rev. Biochem. Mol. Biol.* 45:266-275.

677 Fujikawa K, Ikeda H, Murata K, Kobayashi T, Nakano T, Ohba H, Wu SG. 2004. Chromosome
678 numbers of fifteen species of the genus *Saussurea* DC. (Asteraceae) in the Himalayas and the
679 adjacent regions. *Journal of Japanese Botany* 79:271-280.

680 Fukao T, Bailey-Serres J. 2004. Plant responses to hypoxia--is survival a balancing act? *Trends Plant
681 Sci.* 9:449-456.

682 Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in
683 plants: Occurrence, theoretical explanations, and empirical evidence. *Annu Rev Ecol Evol Syst*
684 36:47-79.

685 Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. 2008.
686 Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to
687 Assemble Spliced Alignments. *Genome Biol* 9:R7.

688 Hu J, Fan J, Sun Z, Liu S. 2020. NextPolish: a fast and efficient genome polishing tool for long-read

689 assembly. *Bioinformatics* 36:2253-2255.

690 Hut RA, Beersma DG. 2011. Evolution of time-keeping mechanisms: early emergence and
691 adaptation to photoperiod. *Philos Trans R Soc Lond B Biol Sci* 366:2141-2154.

692 Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A,
693 Nuka G, et al. 2014. InterProScan 5: genome-scale protein function classification.
694 *Bioinformatics* 30:1236-1240.

695 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
696 improvements in performance and usability. *Mol Biol Evol* 30:772-780.

697 Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J, Hartung F. 2016. Using intron position
698 conservation for homology-based gene prediction. *Nucleic Acids Res* 44:e89.

699 Kerstiens G. 1996. Cuticular water permeability and its physiological significance. *Journal of*
700 *Experimental Botany* 47:1813-1832.

701 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and
702 genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* 37:907-915.

703 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through
704 comparative studies of nucleotide sequences. *J Mol Evol* 16:111-120.

705 Kolora SRR, Owens GL, Vazquez JM, Stubbs A, Chatla K, Jainese C, Seeto K, McCrea M, Sandel
706 MW, Vianna JA, et al. 2021. Origins and evolution of extreme life span in Pacific Ocean
707 rockfishes. *Science* 374:842-847.

708 Kowalczyk A, Meyer WK, Partha R, Mao W, Clark NL, Chikina M. 2019. RERconverge: an R
709 package for associating evolutionary rates with convergent traits. *Bioinformatics* 35:4815-4817.

710 Kowalczyk A, Partha R, Clark NL, Chikina M. 2020. Pan-mammalian analysis of molecular
711 constraints underlying extended lifespan. *Elife* 9:e51089.

712 Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: A Resource for Timelines, Timetrees,
713 and Divergence Times. *Mol Biol Evol* 34:1812-1819.

714 Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, Huang S, Ren JL, Wu DD, Ding L, et al. 2018.
715 Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. *Proc
716 Natl Acad Sci U S A* 115:8406-8411.

717 Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning
718 sequence reads to genomic features. *Bioinformatics* 30:923-930.

719 Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT.
720 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein
721 destabilization. *Nature* 479:419-422.

722 Liu B, Shi Y, Yuan J, Hu X, Zhang H, Li N, Li Z, Chen Y, Mu D, Fan W. 2013. Estimation of
723 genomic characteristics by analyzing k-mer frequency in de novo genome projects.

724 Louvet R, Cavel E, Gutierrez L, Guenin S, Roger D, Gillet F, Guerineau F, Pelloux J. 2006.
725 Comprehensive expression profiling of the pectin methylesterase gene family during silique
726 development in *Arabidopsis thaliana*. *Planta* 224:782-791.

727 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-
728 seq data with DESeq2. *Genome Biol* 15:550.

729 Löytynoja A. 2014. Phylogeny-aware alignment with PRANK. In: Russell DJ, editor. *Multiple*
730 *Sequence Alignment Methods*. Totowa, NJ: Humana Press. p. 155-170.

731 Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler
732 GH, Song JS, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. *Nucleic*
733 *Acids Res* 48:D265-D268.

734 Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio
735 eukaryotic gene-finders. *Bioinformatics* 20:2878-2879.

736 Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. 2021. BUSCO Update: Novel and
737 Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of
738 Eukaryotic, Prokaryotic, and Viral Genomes. *Mol Biol Evol* 38:4647-4654.

739 Mano S, Hayashi M, Nishimura M. 1999. Light regulates alternative splicing of hydroxypyruvate
740 reductase in pumpkin. *Plant J*. 17:309-320.

741 Martin JT, Juniper BE. 1970. The cuticles of plants. New York: St. Martin's Press.

742 McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards.
743 *Genome Biol* 7:212.

744 Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in evolutionary

745 rates among gene families. *Bioinformatics* 36:5516-5518.

746 Mockaitis K, Estelle M. 2008. Auxin receptors and plant development: a new signaling paradigm.

747 *Annu Rev Cell Dev Biol* 24:55-80.

748 Mosher S, Seybold H, Rodriguez P, Stahl M, Davies KA, Dayaratne S, Morillo SA, Wierzba M,

749 Favery B, Keller H, et al. 2013. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R

750 modify the immunity of *Arabidopsis* to biotrophic and necrotrophic pathogens in an antagonistic

751 manner. *Plant J.* 73:469-482.

752 Nagy L, Grabherr G. 2009. The Biology of Alpine Habitats. Oxford: Oxford University Press.

753 Ortiz-Moreira FA, Liu J, Shan L, He P. 2022. Malectin-like receptor kinases as protector deities in

754 plant immunity. *Nat Plants* 8:27-37.

755 Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index

756 (LAI). *Nucleic Acids Res* 46:e126.

757 Ou S, Jiang N. 2018. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of

758 Long Terminal Repeat Retrotransposons. *Plant Physiol.* 176:1410-1422.

759 Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity

760 functions require *SEPALLATA* MADS-box genes. *Nature* 405:200-203.

761 Peng HP, Chan CS, Shih MC, Yang SF. 2001. Signaling events in the hypoxic induction of alcohol

762 dehydrogenase gene in *Arabidopsis*. *Plant Physiol.* 126:742-749.

763 Pollard M, Beisson F, Li Y, Ohlrogge JB. 2008. Building lipid barriers: biosynthesis of cutin and

764 suberin. *Trends Plant Sci.* 13:236-246.

765 Rey C, Gueguen L, Semon M, Boussau B. 2018. Accurate Detection of Convergent Amino-Acid

766 Evolution with PCOC. *Mol Biol Evol* 35:2296-2306.

767 Rodriguez-Gacio Mdel C, Iglesias-Fernandez R, Carbonero P, Matilla AJ. 2012. Softening-up

768 mannan-rich cell walls. *J Exp Bot* 63:3976-3988.

769 Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ,

770 Clamp M, et al. 2019. Convergent regulatory evolution and loss of flight in paleognathous birds.

771 *Science* 364:74-78.

772 Sherman-Broyles S, Boggs N, Farkas A, Liu P, Vrebalov J, Nasrallah ME, Nasrallah JB. 2007. S

773 locus genes and the evolution of self-fertility in *Arabidopsis thaliana*. *Plant Cell* 19:94-106.

774 Song B, Stocklin J, Peng DL, Gao YQ, Sun H. 2015. The bracts of the alpine 'glasshouse' plant

775 *Rheum alexandrae* (Polygonaceae) enhance reproductive fitness of its pollinating seed-

776 consuming mutualist. *Botanical Journal of the Linnean Society* 179:349-359.

777 Spicer RA, Farnsworth A, Su T. 2020. Cenozoic topography, monsoons and biodiversity

778 conservation within the Tibetan Region: An evolving story. *Plant Divers* 42:229-254.

779 Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh KN. 2019.

780 Role of circadian rhythm in plant system: An update from development to stress response.

781 *Environmental and Experimental Botany* 162:256-271.

782 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large

783 phylogenies. *Bioinformatics* 30:1312-1313.

784 Stern DL, Orgogozo V. 2009. Is genetic evolution predictable? *Science* 323:746-751.

785 Storz JF. 2016. Causes of molecular convergence and parallelism in protein evolution. *Nat Rev Genet*

786 17:239-250.

787 Sun H, Niu Y, Chen YS, Song B, Liu CQ, Peng DL, Chen JG, Yang Y. 2014. Survival and

788 reproduction of plant species in the Qinghai-Tibet Plateau. *Journal of Systematics and Evolution*

789 52:378-396.

790 Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang

791 T, Bork P, et al. 2021. The STRING database in 2021: customizable protein-protein networks,

792 and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Res*

793 49:D605-D612.

794 Takayama S, Isogai A. 2005. Self-incompatibility in plants. *Annu. Rev. Plant Biol.* 56:467-489.

795 Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic

796 sequences. *Curr Protoc Bioinformatics* Chapter 4:Unit 4 10.

797 To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ.

798 2004. Type-A *Arabidopsis* response regulators are partially redundant negative regulators of

799 cytokinin signaling. *Plant Cell* 16:658-671.

800 Tsukaya H, Tsuge T. 2001. Morphological adaptation of inflorescences in plants that develop at low

801 temperatures in early spring: The convergent evolution of "downy plants". *Plant Biol.* 3:536-
802 543.

803 van Berkel K, de Boer RJ, Scheres B, ten Tusscher K. 2013. Polar auxin transport: models and
804 mechanisms. *Development* 140:2253-2268.

805 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J,
806 Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection
807 and genome assembly improvement. *PLoS ONE* 9:e112963.

808 Wang X, Kong L, Zhi P, Chang C. 2020. Update on Cuticular Wax Biosynthesis and Its Roles in
809 Plant Disease Resistance. *Int J Mol Sci* 21.

810 Wang X, Liu S, Zuo H, Zheng W, Zhang S, Huang Y, Pingcuo G, Ying H, Zhao F, Li Y, et al. 2021.
811 Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees. *Curr Biol* 31:3848-3860
812 e3848.

813 Wen R, Torres-Acosta JA, Pastushok L, Lai X, Pelzer L, Wang H, Xiao W. 2008. Arabidopsis
814 UEV1D promotes Lysine-63-linked polyubiquitination and is involved in DNA damage
815 response. *Plant Cell* 20:213-227.

816 Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. 2015. RELAX: detecting
817 relaxed selection in a phylogenetic framework. *Mol Biol Evol* 32:820-832.

818 Wheeler TJ, Eddy SR. 2013. nhmmer: DNA homology search with profile HMMs. *Bioinformatics*
819 29:2487-2489.

820 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. 2021.
821 clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation (Camb)*
822 2:100141.

823 Xu S, Wang J, Guo Z, He Z, Shi S. 2020. Genomic Convergence in the Adaptation to Extreme
824 Environments. *Plant Commun* 1:100117.

825 Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR
826 retrotransposons. *Nucleic Acids Res* 35:W265-268.

827 Yang CY, Hsu FC, Li JP, Wang NN, Shih MC. 2011. The AP2/ERF transcription factor
828 AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. *Plant Physiol.*

829 156:202-212.

830 Yang XH, Makaroff CA, Ma H. 2003. The *Arabidopsis* MALE MEIOCYTE DEATH1 gene encodes
831 a PHD-finger protein that is required for male meiosis. *Plant Cell* 15:1281-1295.

832 Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24:1586-1591.

833 Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P,
834 Wang T, Gray LK, et al. 2016. Convergent local adaptation to climate in distantly related
835 conifers. *Science* 353:1431-1433.

836 Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-
837 Takahashi A, Inoue E, Saito K. 2008. Comprehensive flavonol profiling and transcriptome
838 coexpression analysis leading to decoding gene-metabolite correlations in *Arabidopsis*. *Plant*
839 *Cell* 20:2160-2176.

840 Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G, et al. 2015.
841 The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful
842 Tibetan Plateau. *Proc Natl Acad Sci U S A* 112:1095-1100.

843 Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence
844 level. *Mol Biol Evol* 14:527-536.

845 Zhang J, Tian Y, Yan L, Zhang G, Wang X, Zeng Y, Zhang J, Ma X, Tan Y, Long N, et al. 2016.
846 Genome of Plant Maca (*Lepidium meyenii*) Illuminates Genomic Basis for High-Altitude
847 Adaptation in the Central Andes. *Mol Plant* 9:1066-1077.

848 Zhang T, Qiao Q, Novikova PY, Wang Q, Yue J, Guan Y, Ming S, Liu T, De J, Liu Y, et al. 2019.
849 Genome of *Crucihamalaya himalaica*, a close relative of *Arabidopsis*, shows ecological
850 adaptation to high altitude. *Proc Natl Acad Sci U S A* 116:7137-7146.

851 Zhang Y, Zhou J, Lim CU. 2006. The role of NBS1 in DNA double strand break repair, telomere
852 stability, and cell cycle checkpoint control. *Cell Res.* 16:45-54.

853 Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. 2012. Parallel molecular evolution in
854 an herbivore community. *Science* 337:1634-1637.

855 Zhou B, Mural RV, Chen X, Oates ME, Connor RA, Martin GB, Gough J, Zeng L. 2017. A Subset of
856 Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. *Plant Physiol.* 173:1371-1390.

857 **Figure Legneds**

858 **FIG. 1.** Evolutionary history of alpine plants. (a) Chronogram showing divergence times among
859 alpine plants (cyan background) with their lowland relatives (orange background) with node age and
860 95% confidence intervals (blue bars). The red and blue numbers above the branches represent
861 significant expansion and contraction events, respectively. (b) Bar plot showing gene number
862 identified by OrthoFinder. (c) REVIGO clusters of significantly enriched GO terms for convergently
863 expended (CoEx) gene families in alpine plant genomes. Each bubble represents a summarized GO
864 term from the full GO list by reducing functional redundancies, and their closeness on the plot
865 reflects their closeness in the GO graph, i.e., the semantic similarity. (d) KEGG pathways of CoEx
866 gene families in alpine plant genomes. “p-adj” refers to the adjusted *p*-value using the Benjamini–
867 Hochberg method.

868

869 **FIG. 2.** Function enrichment results of gene families undergoing convergently evolutionary rate
870 acceleration in alpine plant genomes. (a) REVIGO clusters of significantly enriched GO terms. Each
871 bubble represents a summarized GO term from the full GO list by reducing functional redundancies,
872 and their closeness on the plot reflects their closeness in the GO graph, i.e., the semantic similarity.
873 (b) Top 20 enriched KEGG pathways. “p-adj” refers to the adjusted *p*-value using the Benjamini–
874 Hochberg method.

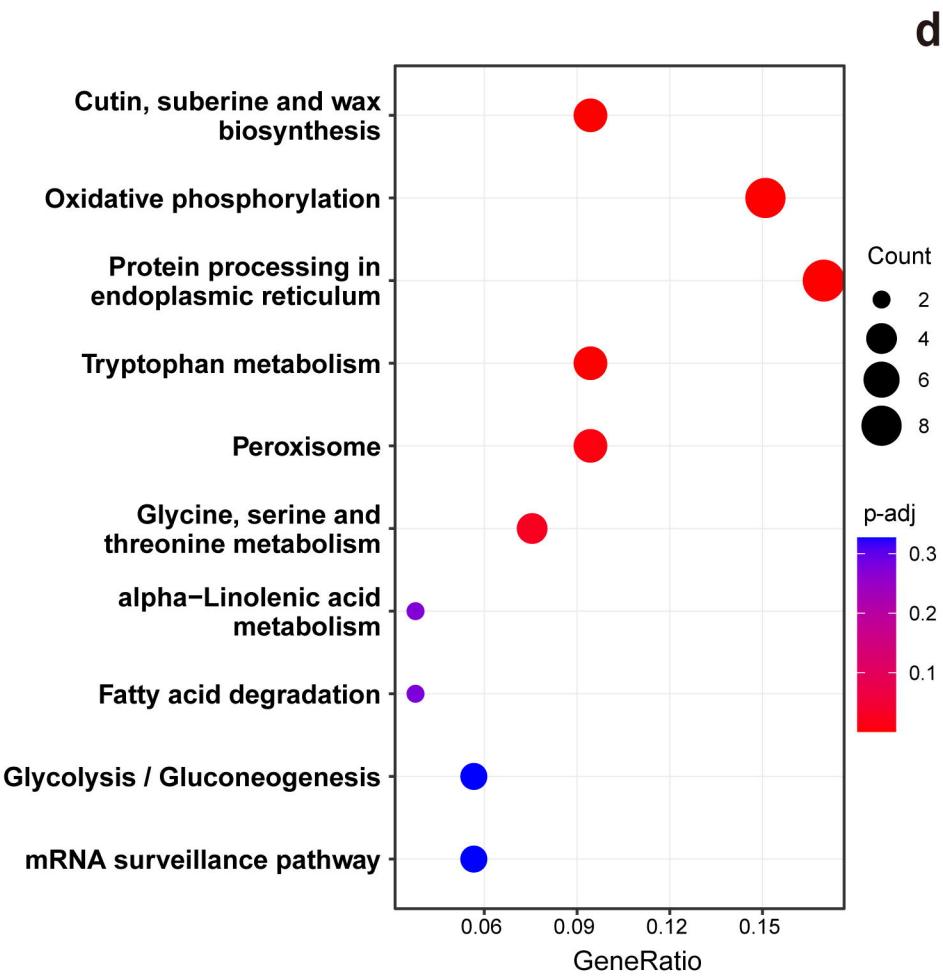
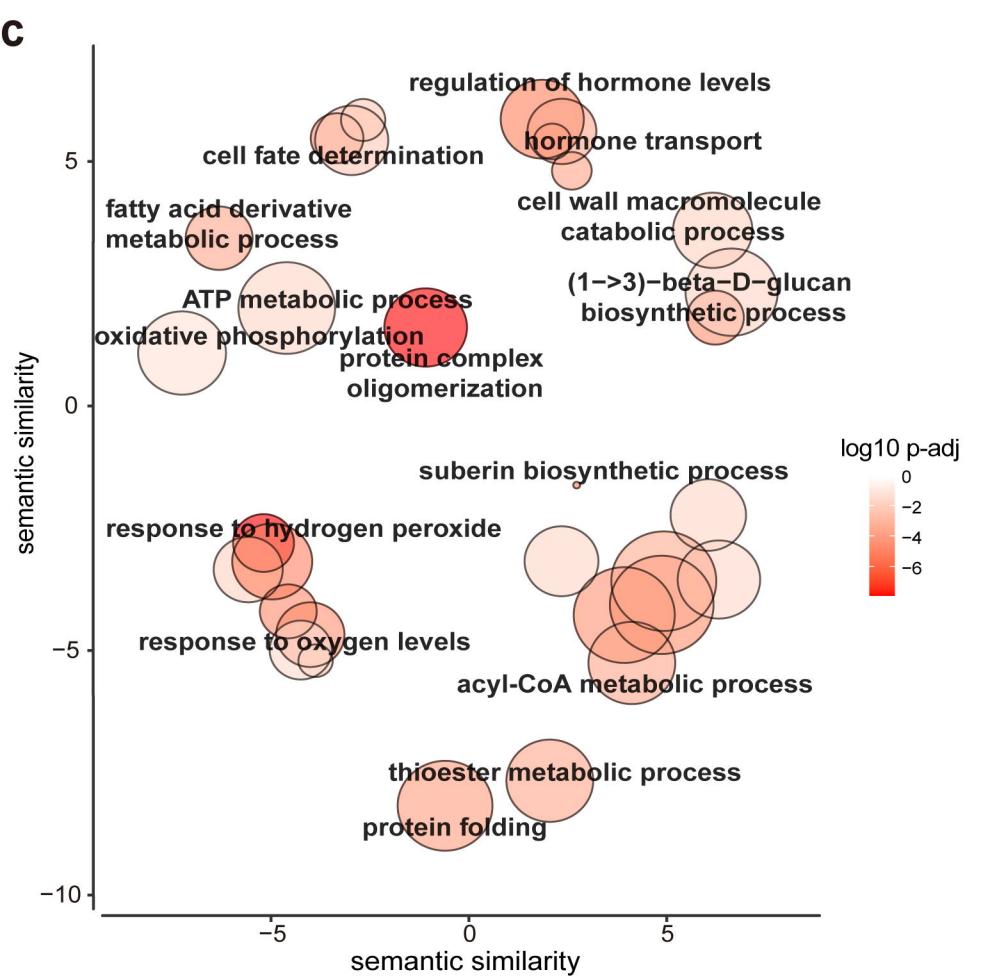
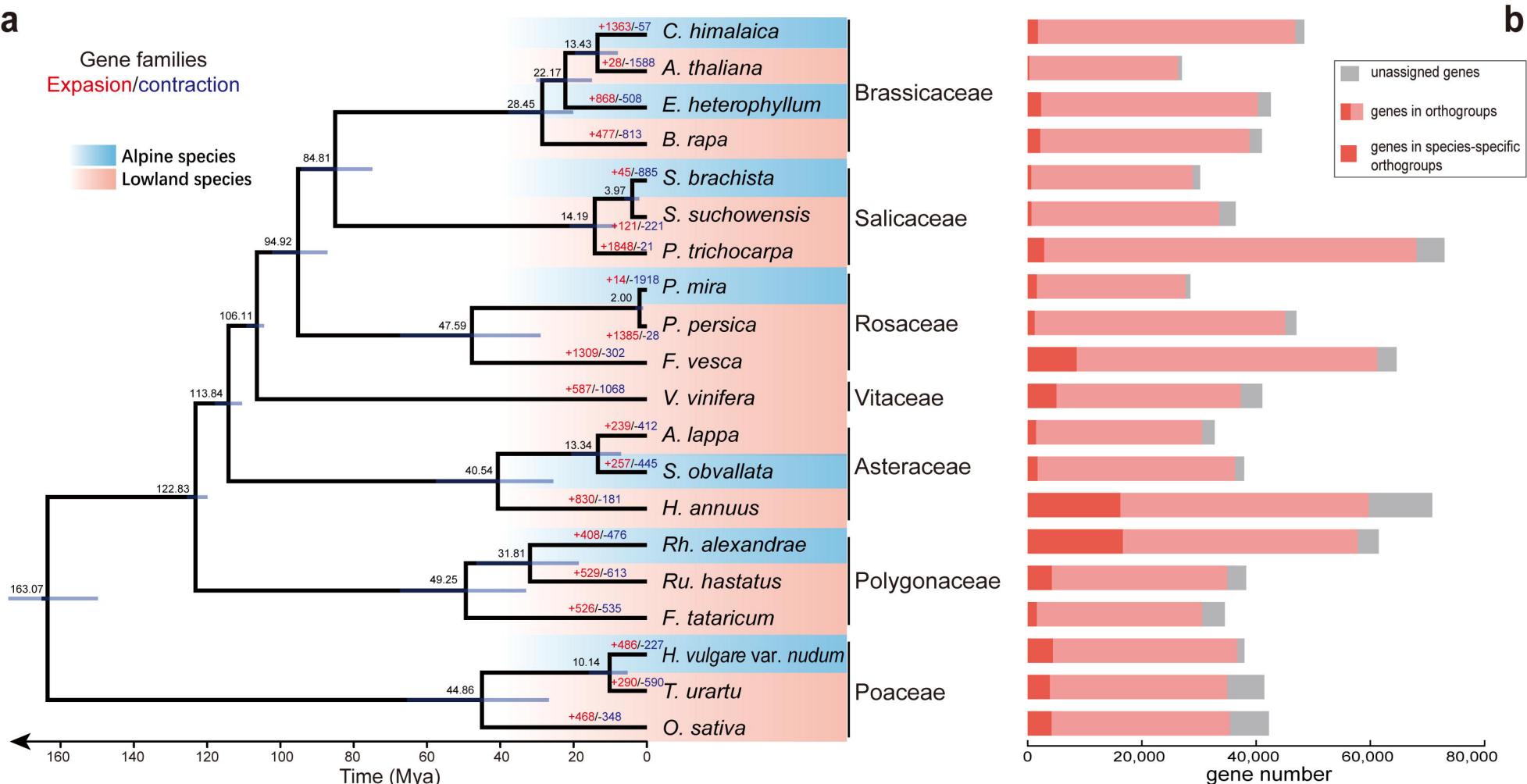
875

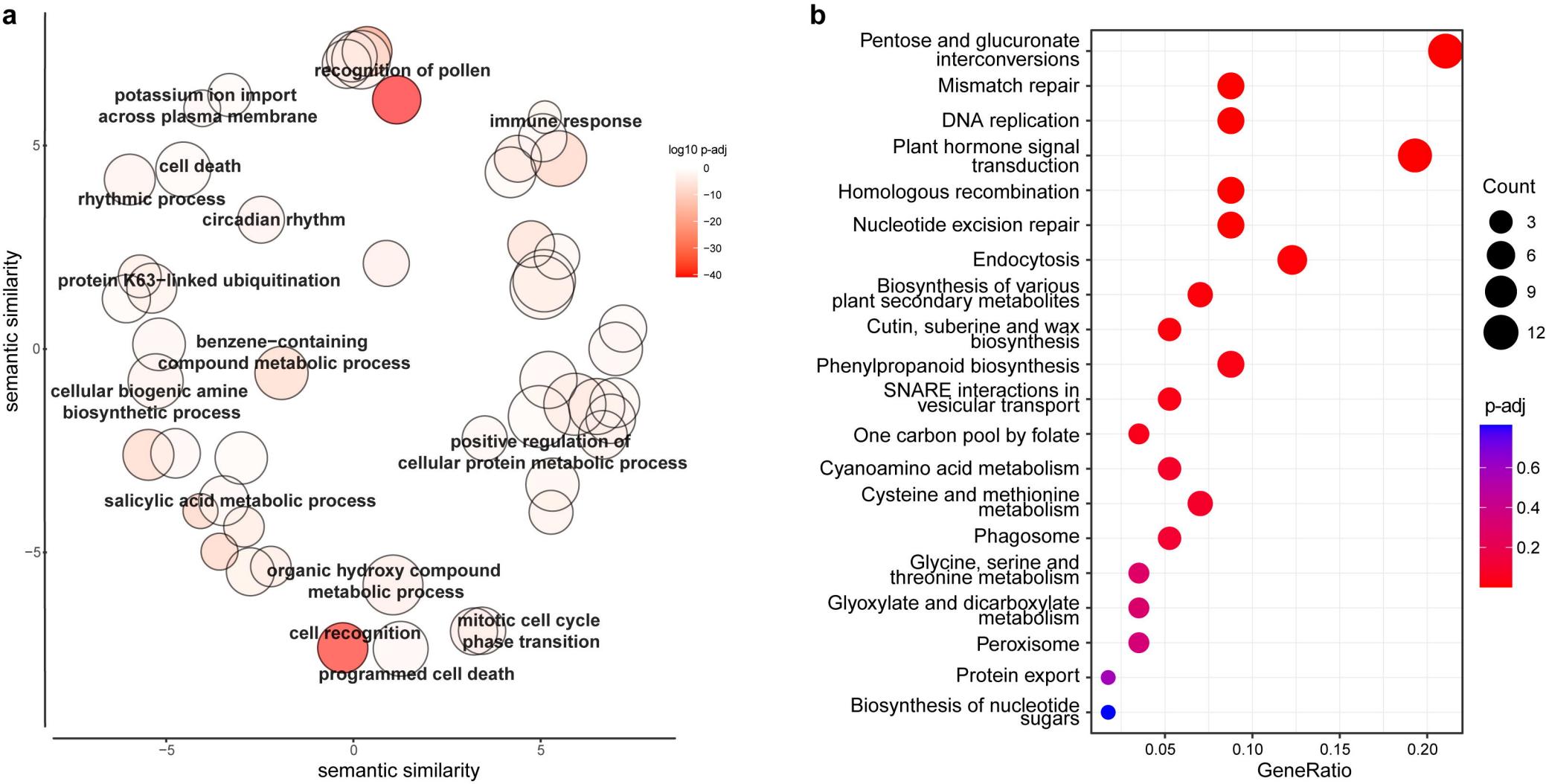
876 **FIG. 3.** Molecular convergence of *S*-locus genes. (a) Convergent evolutionary rate shifts detected by
877 RERconverge using correlations of relative rates of the gene with traits of interest (here alpine
878 environments) (Kowalczyk et al. 2020). (b) Site-based estimation of convergent amino acid
879 evolution using PCOC method. Only sites with a posterior probability above 0.9 according to the
880 PCOC model are represented. Detailed information for the PCOC, PC, and OC models is described
881 in Rey et al. (2018). Alpine species are in red and their low-land relatives are in blue.

882

883

884 **FIG. 4.** Highly expressed genes in bract leaves of *Saussurea obvallata*. (a) Differentially expressed
885 genes between bract leaves with normal leaves. (b) Top 20 KEGG pathways of significantly up-
886 regulated genes in bract leaves. “p-adj” refers to the adjusted *p*-value using the Benjamini–Hochberg
887 method. Expression profiles of genes involved in cuticular wax (c) and flavonoid biosynthetic
888 pathways (d) in different tissues of *S. obvallata* (F: flowers, S: stems, JL: basal leaves, ML: middle
889 leaves and BL: bract leaves). High expressed genes in BL are shown in red in the simplified pathway
890 models. The bar represents the gene expression level of each gene (z-score). Abbreviations: FA-CoA,
891 fatty acyl-coenzyme A; VLC, very-long-chain; CER, protein eceriferum; FAR, fatty acid synthetase;
892 WSD1, diacylglycerol acyltransferase 1; MAH1, midchain alkane hydroxylase 1; 4CL, 4-coumarate:
893 CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase;
894 F3'H, flavonoid 3'-hydroxylase; FLS, flavonol synthase; TT7, transparent testa 7; OMT, O-
895 methyltransferase; DFR, dihydroflavonol 4-reductase; LDOX/ANS, leucoanthocyanidin
896 dioxygenase/anthocyanidin synthase. The pathways for the cuticular wax biosynthesis was adapted
897 from the study of Wang et al. (2020), and for flavonoid biosynthesis was adapted from the study of
898 Yonekura-Sakakibara et al. (2008).

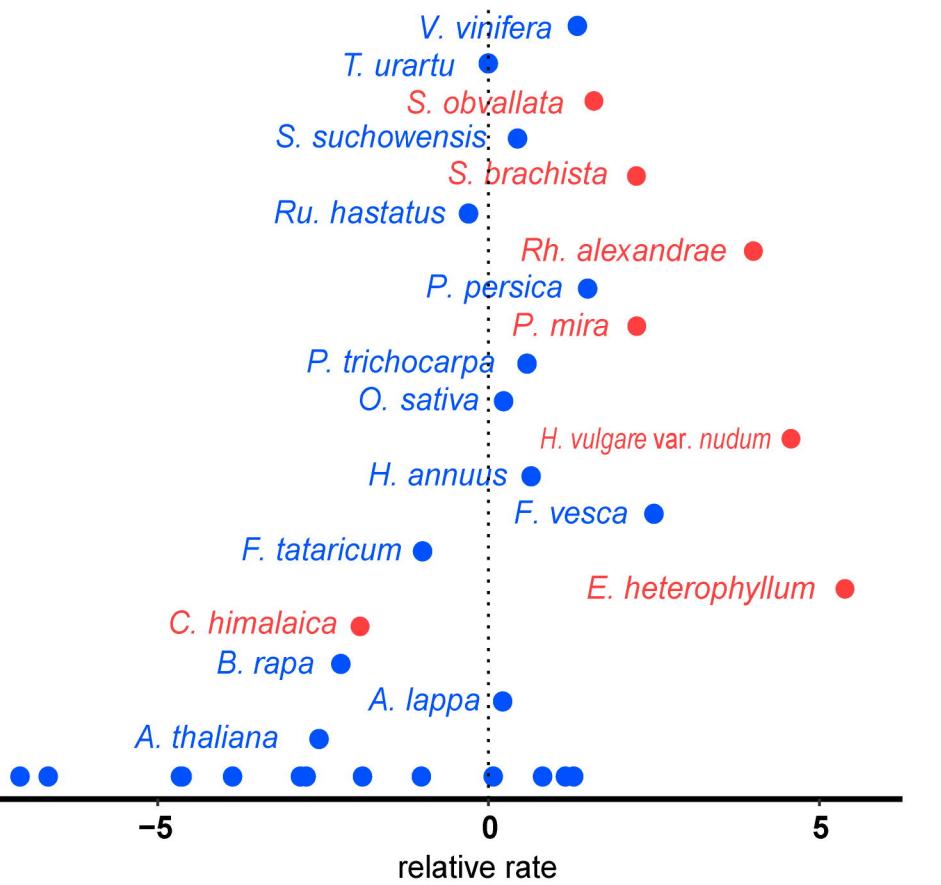



899
900 **FIG. 5.** Summary of convergent adaptation to high-altitude environments for seven alpine species.
901 The outer circle shows examples of enriched GO-terms (biological pathways). The middle circle
902 shows examples of candidate genes named after the *A. thaliana* orthologs. The inner gray circle
903 shows environmental stresses from high altitudes. Species names are provided below the picture.
904 *Genes undergone convergent contraction.

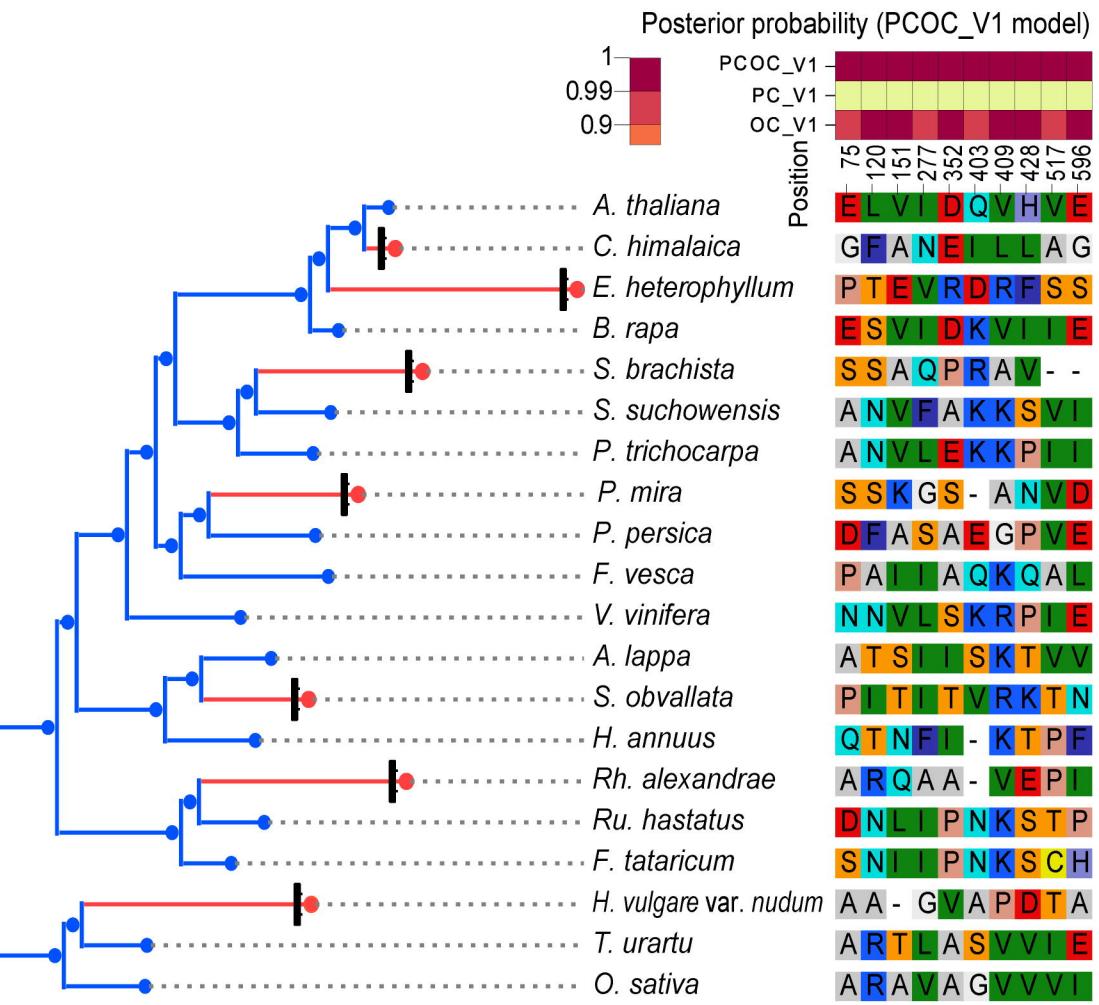

905

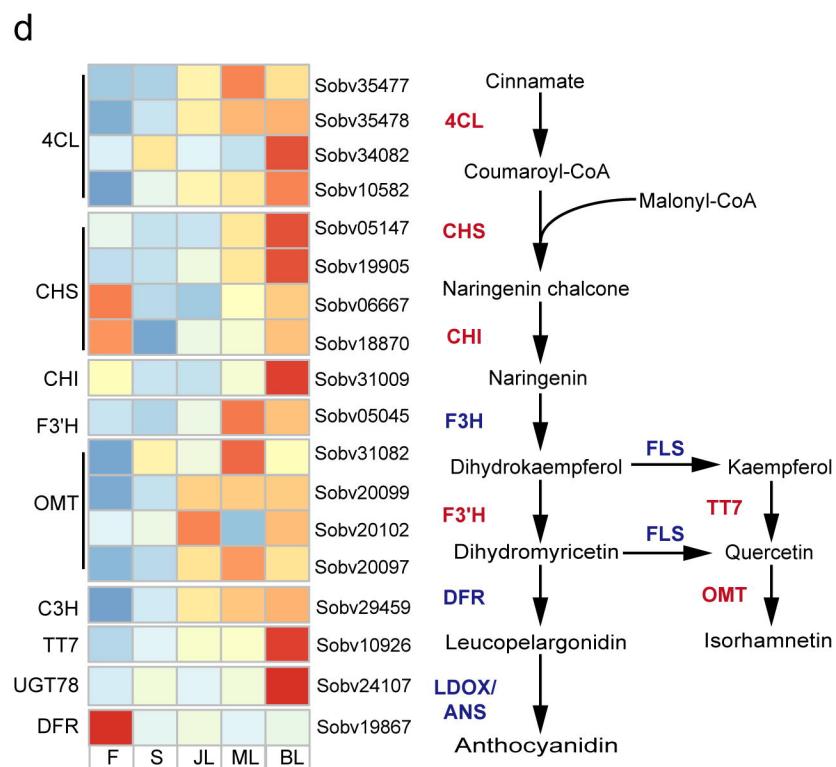
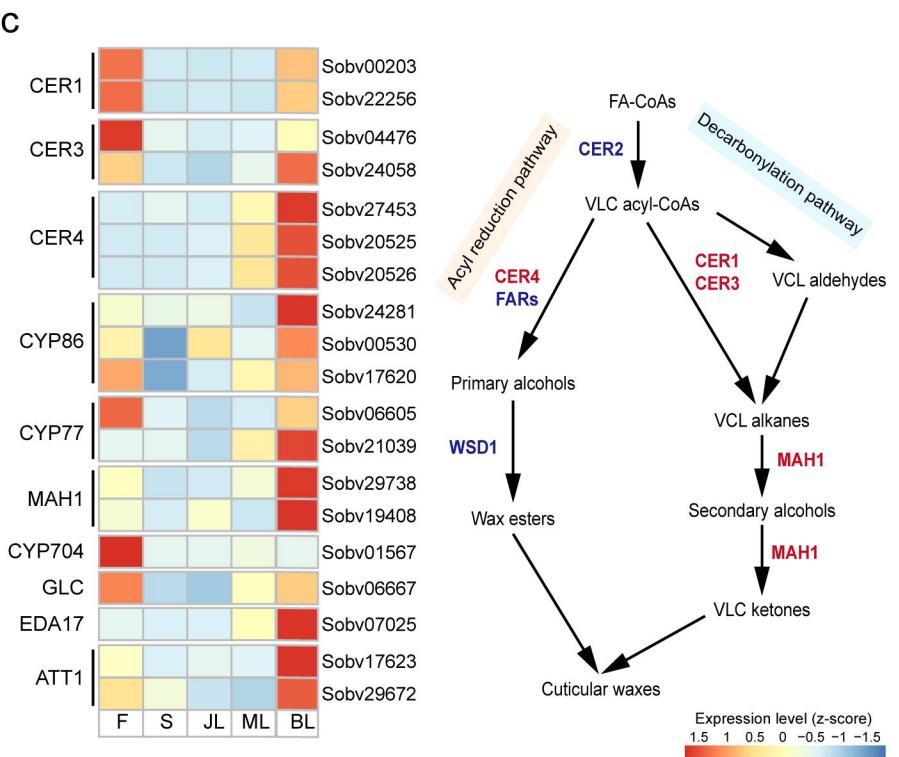
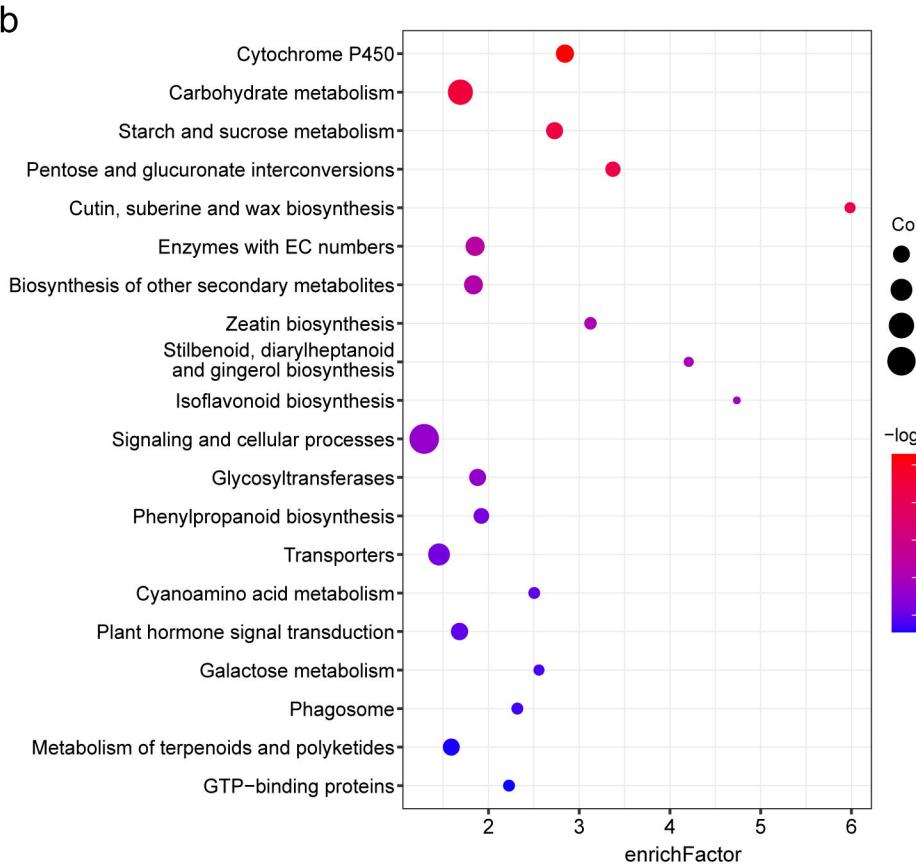
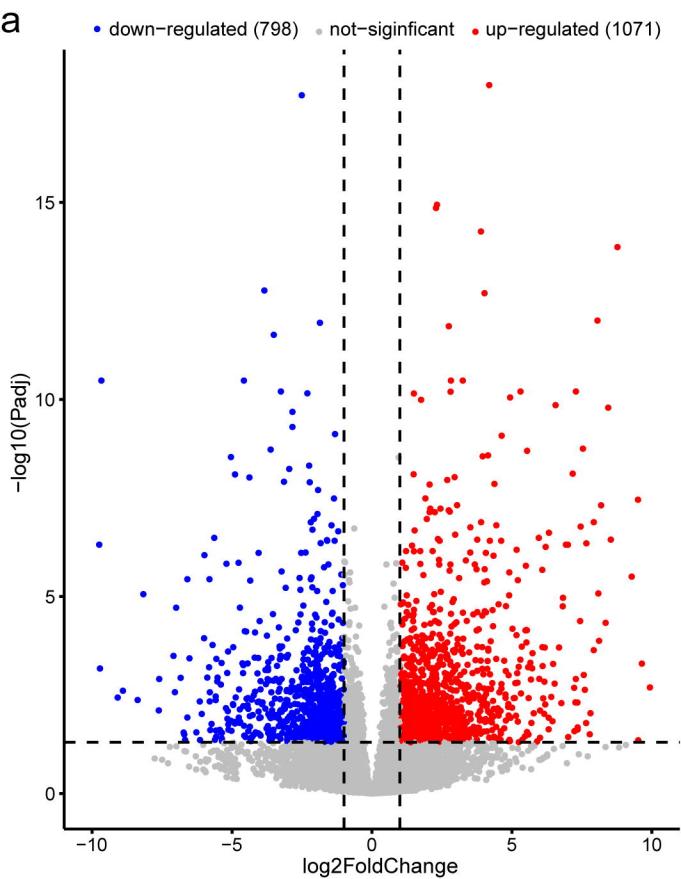
906 **Table 1. Statistics of genome assembly and annotation of *S. obvallata* and *R. alexandrae*.**

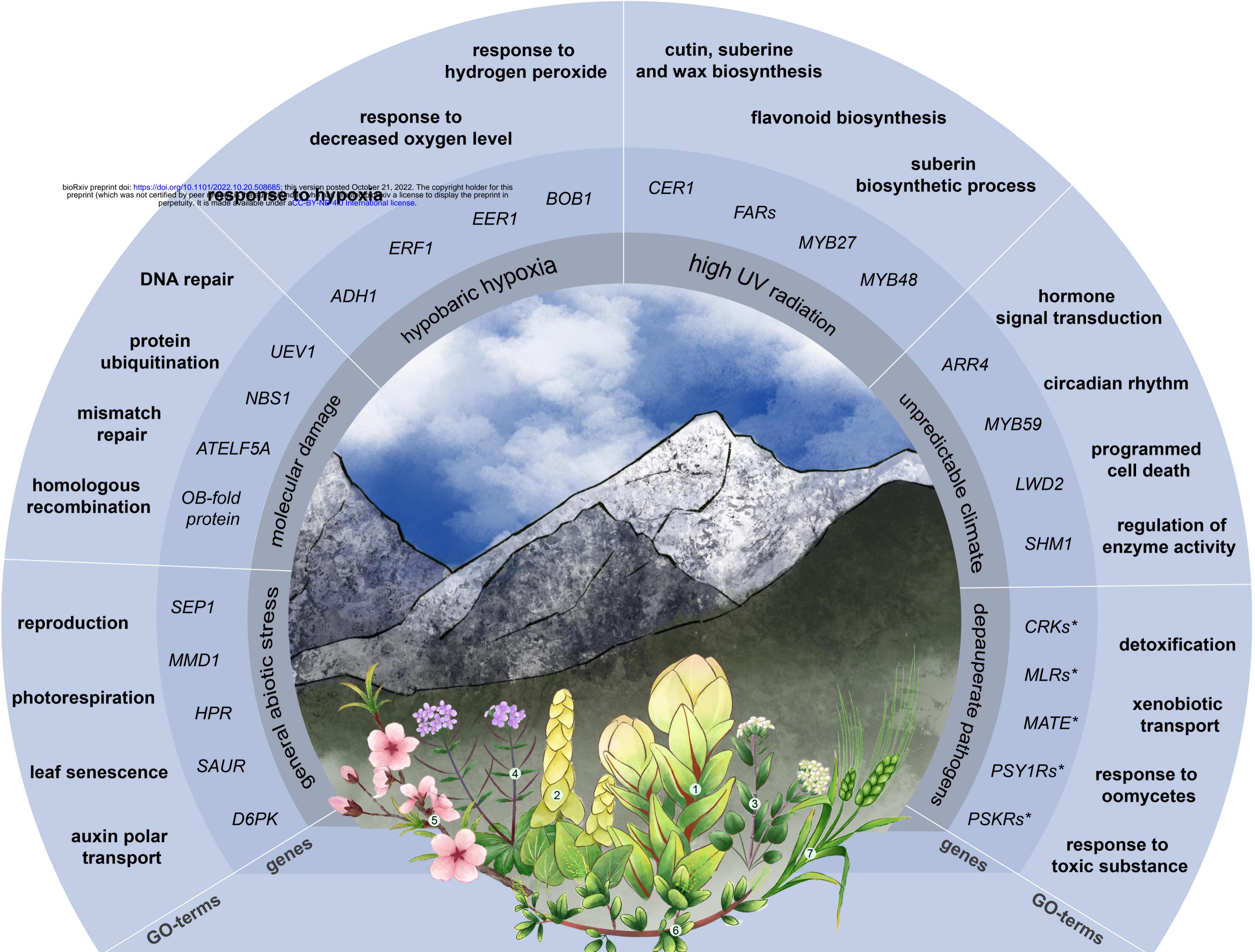
Statistic	<i>S. obvallata</i>	<i>R. alexandrae</i>
Total length (bp)	2,044,030,733	2,039,881,226
Number of contigs	145	129
Largest contig (bp)	126,457,859	160,815,976
Anchored length (bp)	1,951,503,694	-
GC (%)	37.94	41.41
N50 (bp)	36,958,263	36,323,674
Complete BUSCOs (%)	94.6	94.1
Repeat content (%)	81.88	81.65
Number of genes	37,938	61,463

907




a





OG0000000: rho = 0.4581, p = 0.0018


Branches

b

¹*S. obvallata*, ²*R. alexandrae*, ³*E. heterophyllum*, ⁴*C. himalaica*, ⁵*P. mira*, ⁶*S. brachista*, ⁷*H. vulgare* var. *nudum*