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Summary 
Despite decades of genetic studies on late onset Alzheimer’s disease (LOAD), the molecular 
mechanisms of Alzheimer’s disease (AD) remain unclear. Furthermore, different cell types in the 
central nervous system (CNS) play distinct roles in the onset and progression of AD pathology. 
To better comprehend the complex etiology of AD, we used an integrative approach to build robust 
predictive (causal) network models which were cross-validated over multiple large human multi-
omics datasets in AD. We employed a published method to delineate bulk-tissue gene expression 
into single cell-type gene expression and integrated clinical and pathologic traits of AD, single 
nucleotide variation, and deconvoluted gene expression for the construction of predictive network 
models for each cell type in AD. With these predictive causal models, we are able to identify and 
prioritize robust key drivers of the AD-associated network state. In this study, we focused on 
neuron-specific network models and prioritized 19 predicted key drivers modulating AD pathology. 
These targets were validated via shRNA knockdown in human induced pluripotent stem cell 
(iPSC) derived neurons (iNs), in which 10 out of the 19 neuron-related targets (JMJD6, NSF, 
NUDT2, YWHAZ, RBM4, DCAF12, NDRG4, STXBP1, ATP1B1, and FIBP) significantly 
modulated levels of amyloid-beta and/or phosphorylated tau peptides in the postmitotic iNs. Most 
notably, knockdown of JMJD6 significantly altered the neurotoxic ratios of Aβ42 to 40 and p231-
tau to total tau, indicating its potential therapeutic relevance to both amyloid and tau pathology in 
AD. Molecular validation by RNA sequencing (RNAseq) in iNs further confirmed the network 
structure, showing significant enrichment in differentially expressed genes after knockdown of the 
validated targets. Interestingly, our network model predicts that these 10 key drivers are upstream 
regulators of REST and VGF, two recently identified key regulators of AD pathogenesis.  
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Introduction 
Late-onset Alzheimer’s Disease (LOAD) is the leading cause of dementia, which is characterized 
by progressive impairments in memory, cognition, and executive functions, along with behavioral 
and psychiatric symptoms including agitation, aggression, mood disorders, and psychosis[1]. The 
hallmark features of AD include pathological aggregation of extracellular plaques, composed of 
amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), composed of 
hyperphosphorylated tau (p-tau) protein[2], which lead to neuron death. Genome-wide 
association studies (GWAS) have implicated over 30 loci associated with AD risk[3-16]. In 
previous studies, we and others have shown that LOAD is a complex pathological process 
involving an interactive network of pathways among multiple cell types in the brain (neurons, 
microglia, astrocytes, etc.) influenced by genetic variation, aging, and environmental factors[17, 
18]. Implicated pathways include those involved in mitochondrial metabolism, response to 
unfolded proteins, immune response, phagocytosis, and synaptic transmission[19-22]. The 
complexity of these multi-modal (cell type) networks highlights the necessity to study networks of 
molecular interactions by cell type and to identify cell-type specific pathways and key drivers in 
AD. In this study, we developed a multi-step pipeline using advanced computational systems 
biology approaches to construct robust data-driven neuron-specific network models of genetic 
regulatory programs in brain regions affected by LOAD. For these analyses, we utilized whole-
genome gene expression and whole-genome genotyping data from two independent cohorts in 
the Accelerating Medicines Partnership - Alzheimer's Disease (AMP-AD) consortium: the Mayo 
RNAseq Study (herein MAYO) and the Religious Orders Study and Memory and Aging Project 
(herein ROSMAP). 
 
We first applied a deconvolution method to deconvolve bulk-tissue RNA sequencing (RNAseq) 
data from post-mortem brain regions and derive the neuron-specific gene expression signal. 
Although single-cell RNA sequencing (scRNAseq) studies have significantly advanced our 
understanding of cellular heterogeneity[23-25] and the discovery of novel cell populations[26, 27], 
as well as spurred developments of various computational analysis tools[28], network inference 
performance using scRNAseq data is still very poor. Due to the high volume of missing gene 
expression measures and the immaturity of current network methods dealing with these missing 
data, inferred network models using scRNAseq data yield a significant amount of uncertainty[29, 
30], thus limiting the application of scRNAseq data in network inference. Alternatively, 
deconvolution of bulk-tissue RNAseq data has become increasingly popular in recent years as a 
complementary solution to the missing values in scRNAseq data[31-43], based on the core 
assumption that gene expression in bulk-tissue data is equal to the averaged gene expression of 
each cell type weighted by its relative population in the tissue. Deconvolution methods 
decompose bulk-tissue RNAseq data into gene expression of individual cell types by using cell-
type specific biomarker genes to implicitly estimate relative cell populations in the tissue. After 
deconvolution, the variances of the deconvoluted gene expression of each cell type become 
orthogonal to each other and can be analyzed independently[44].  
 
To derive neuron-specific gene expression signals from the bulk-tissue RNAseq data from the 
MAYO and ROSMAP cohorts, we chose to employ the population-specific expression analysis 
(PSEA) method of deconvolution [44]. Whereas other popular deconvolution methods such as 
Cibersort [35], dtangle [45], DSA [31], or NNLS [46] can only estimate cell fraction in a bulk-tissue 
sample, the PSEA method directly estimates cell-type specific residuals from bulk-tissue RNAseq 
data. We demonstrated the robustness of the PSEA deconvolution method using random 
selection of neuronal biomarkers derived from scRNAseq studies [47-51].  
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After deconvolution, we applied a cutting-edge systems biology approach[52-54] to build causal 
network models of the neuronal component of AD by integrating the deconvoluted neuron-specific 
RNAseq data with the whole-genome genotype (SNP) data from the MAYO and ROSMAP 
datasets. We then agnostically identified neuron-specific gene regulatory network models and key 
genetic drivers (and thus potential therapeutic targets) predicted to modulate pathological Aβ and 
hyperphosphorylated tau accumulation in AD. To evaluate and ensure the robustness of our 
results, we performed the integrative analysis and key driver identification independently in the 
two cohorts and cross-validated the results at every step of the analysis. In total, we reconstructed 
11 causal network models combined across the two separate analyses and predicted a total of 
1,563 potential key drivers modulating neuronal network states and AD pathology under LOAD. 
To validate our network prediction, we prioritized 19 novel targets which replicated across our two 
cohorts for experimental validation. We used shRNA-mediated knockdown in human iPSC-
derived neurons (iNs)[55-57] and measured levels of Aβ38, Aβ40, and Aβ42 as well as tau and 
p231-tau. Among the 19 novel targets, we identified 10 targets which affected Aβ (JMJD6, NSF, 
NUDT2, DCAF12, RBM4, YWHAZ, NDRG4, and STXBP1) and/or tau/p-tau levels (JMJD6, FIBP, 
and ATP1B1).  
 
To further validate our network models and to provide insights into network connectivity, we 
measured the whole-genome RNA expression of iNs by RNAseq after knocking down each of the 
19 targets and characterized differential gene expression (DE gene signatures) between each 
target shRNA and its associated controls. We validated network models by comparing the DE 
gene signature of each target to the downstream structure of the target in the networks, and we 
investigated pathways enriched by the gene knockdown DE signatures to shed light on the 
molecular mechanisms associated with LOAD, identifying our validated targets as upstream 
regulators of master regulators VGF and REST. 
 
 
Results 
An Integrative Systems Biology Approach for Constructing Single Cell-Type 
Regulatory Networks of AD 

We developed an integrative network analysis pipeline to construct data-driven neuron-specific 
predictive networks of AD (Fig. 1). The overall strategy for elucidating the single cell-type gene 
network model depicted in Fig. 1 centers on the objective, data-driven construction of causal 
network models, which can be directly queried to identify the network components causally 
associated with AD as well as the master regulators (key drivers) of these AD-associated 
components. This model also predicts the impact of the key drivers on the biological processes 
and pathology involved in AD, moving us towards precision molecular models of disease. We 
previously developed this network reconstruction algorithm, i.e., predictive network, which 
statistically infers causal relationships between DNA variation, gene expression, protein 
expression, and clinical features measured in hundreds of individuals[21, 52, 58].  
 
The inputs required for our network analysis are the molecular and clinical data generated in the 
MAYO and ROSMAP populations, as well as first order relationships between these data such as 
quantitative trait loci (QTLs) associated with the molecular traits. These relationships are input as 
structure priors to the network construction algorithm as a source of perturbation, boosting the 
power to infer causal relationships at the network level, as we and others have previously shown 
[19, 21, 22, 58-66]. To focus on the component of AD that is intrinsically encoded in neurons, we 
identified the neuron-specific expression component in each cohort by applying the PSEA 
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deconvolution algorithm[44] to the MAYO and ROSMAP transcriptomic datasets independently 
(Fig. S1, Step 1). We further focused on the molecular traits associated with AD by identifying 
differential gene expression (DE) signatures – comprised of several thousands of gene 
expression traits – between AD and cognitively normal (CN) samples for each dataset (Fig. S1, 
Step 2). To identify correlated gene expression traits associated with AD, we constructed gene 
co-expression networks for each dataset, and from these networks we identified highly 
interconnected sets of co-regulated genes (modules) that were significantly enriched for AD gene 
signatures (the significant DE genes) as well as for pathways previously implicated in AD (Fig. 
S1, Step 3). To obtain a final set of genes for input into the causal network construction process 
for each dataset, we combined genes in the co-expression network modules enriched for AD 
signatures (Fig. S1, Step 5-Module selection) and performed the pathFinder algorithm[58] to 
enrich the seeding gene set by including genes upstream and downstream of this set from a 
compiled pathway database (Fig. S1, Step 5-Seeding expansion). Note that we only include 
genes from the pathways without their interactions; the interactions among the final extended 
genes are solely inferred from each dataset.  
 
With our input set of neuron-centered genes for the AD network constructions defined, we 
mapped expression-QTLs (eQTLs) for neuron-specific gene expression traits in each dataset to 
incorporate the eQTLs as structure priors in the network reconstructions, given that they provide 
a systematic perturbation source that can boost the power to infer causal relationships (Fig. S1, 
Step 4)[22, 59, 60, 62-67]. The input gene set and eQTL data were then processed by an 
ensemble of causal network inference methods including Bayesian networks and our recently 
developed top-down and bottom-up predictive networks [52, 58, 68, 69], in order to construct 
probabilistic causal network models of AD independently in the MAYO and ROSMAP cohorts 
(Fig. S1, Step 6). We next applied a statistical algorithm to detect key driver genes in each given 
network structure[70] and to identify and prioritize master regulators in the AD networks (Fig. S1, 
Step 7). These key drivers derived from the individual networks across datasets were then pooled 
and prioritized based on ranking scores of impact and robustness (Methods), resulting in a final 
group of 19 top-prioritized key drivers for which we performed functional validation in a human 
induced pluripotent stem cell (iPSC) derived neuron system. The entire analysis workflow for the 
independent datasets, resulting in this final group of replicated targets, is illustrated in Fig. 1. 
 
The Mayo Clinic and ROSMAP Study Populations and Data Processing 

Our causal network pipeline starts by integrating whole-genome genotyping and RNAseq data 
generated from patients spanning the complete spectrum of clinical and neuropathological traits 
in AD. We used patient data from two separate cohorts within the AMP-AD consortium: temporal 
cortex (TCX) data from 266 subjects in MAYO[71-73] and dorsolateral prefrontal cortex (DLPFC) 
data from 612 subjects in ROSMAP[20, 74-76] (Fig. 1a). We processed matched genotype and 
RNAseq data separately in each dataset (Fig. 1, Fig. S1; Methods).  
 
CNS tissue consists of various cell types, including neurons, glia, and endothelial cells. To 
discover key network drivers specific to a single cell type in the CNS and study their contribution 
to AD in that specific cell type, we utilized verified single-cell marker genes to directly deconvolve 
bulk-tissue gene expression data into cell-type specific gene expression for the five major cell 
types in the CNS: neurons, microglia, astrocytes, endothelial cells, and oligodendrocytes 
(Methods). In this study, we focused on investigating the role of neuronal cells in AD, as they are 
the primary cell type affected by AD pathogenesis [77-79]. After normalizing the bulk-tissue 
RNAseq data, we performed variance partition analysis (VPA)[80] to evaluate the contributions of 
cell-type specific markers as well as demographic, clinical, and technical covariates (such as 
batch effects) to the gene expression variance before performing any covariate adjustment (Fig. 
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S2a,b). The cell-type specific marker genes used for neurons, microglia, astrocytes, endothelial 
cells, and oligodendrocytes were ENO2, CD68, GFAP, CD34, and OLIG2, respectively, as 
previously published [72]. The VPA results reflect the prominent effect of CNS cell types on the 
variance of the brain RNAseq data. In the MAYO dataset, the additional covariates used in the 
VPA included exonic mapping rate, RNA integrity number (RIN), sequencing batch, diagnosis, 
age at death, tissue source, APOE genotype, and sex. In the ROSMAP dataset, we were able to 
include the same covariates with the exception of tissue source and the addition of age at first AD 
diagnosis, post-mortem interval (PMI), education, and study (ROS or MAP).  
 
We then performed covariate adjustment and deconvolution using the PSEA method[44] in each 
dataset, calculating gene expression residuals using a linear regression model to adjust the 
normalized bulk-tissue expression data with demographical and technical covariates as well as 
the cell-type specific markers. Cell-type specific gene expression, including the neuron-specific 
component, was directly derived by adding the estimated variance of each cell type to the residual 
(Methods), avoiding the need to first estimate the cell population from bulk tissue data, which 
could induce approximation errors. We then repeated VPA in the neuron-specific residuals of 
each dataset to demonstrate that our deconvolution and covariate adjustment methods properly 
capture the neuronal component while removing potential confounds such as batch effect, age, 
and sex (Fig. S2c,d). Finally, to justify the use of single cell-type specific markers for deconvolution 
by the PSEA method, we performed a set of analyses comparing multiple cell-type specific 
biomarker lists (derived from existing scRNAseq studies) to each other, to our AD residuals, and 
to the AMP-AD Agora list of potential therapeutic targets in AD (Fig. S3; Methods), as well as a 
robustness analysis demonstrating that our neuron-specific residual derived from ENO2 
expression represents a robust neuronal component in the bulk-tissue RNAseq data when 
compared to random selections of multi-gene neuronal biomarkers derived from these scRNAseq 
datasets in AD (Fig. S4; Methods).  
 
Identifying AD-Associated Gene Signatures in Neurons and Mapping Their eQTLs 

To identify an AD-centered set of neuronal gene expression traits, we performed differential 
expression (DE) analysis using the deconvoluted neuron-specific expression residuals in the 
MAYO and ROSMAP cohorts (Methods). In comparing expression data between AD and 
cognitively normal (CN) controls (MAYO-TCX: 79 AD, 76 CN; ROSMAP-DLPFC: 212 AD, 194 
CN), there were 3,674 significant DE neuron-specific genes in the MAYO dataset (hereby “MAYO-
neuron”) and 6,626 neuron-specific DE genes in the ROSMAP dataset (hereby “ROSMAP-
neuron”) (Fig. 2a,b, FDR<0.05; Fig. S5). There were 2,097 significant DE genes overlapping 
between the two datasets (Supplementary Table S1, Fisher Exact Test, odd ratio=3.9784, p-
value<2.2E-16), thus cross-validating the neuron-specific DE signatures independently derived 
from the two cohorts.  
 
To examine the biological processes that are dysregulated in AD cases versus controls as 
reflected in the DE signatures, we performed pathway enrichment analysis on the MAYO-neuron 
and ROSMAP-neuron gene sets using Human ConsensusPathDB (CPDB)[81-85]. We identified 
75 and 73 enriched pathways in each dataset, respectively, with 7 pathways significantly 
dysregulated in both datasets (Fig. 2c, Supplementary Table S2, p-value<0.05). These signatures 
were enriched for a number of cellular/molecular pathways, including those involving CDC42[86-
88], IRAK/IKK[89-91], EGFR/PLCG[92], GAD[93], Hippo[94], and clock genes[95, 96], some of 
which have been implicated and/or interrogated in AD previously. Additional pathways of note 
implicated by a single cohort (MAYO or ROSMAP) with known relevance to amyloid and/or tau 
pathology include those related to NF-κB activation[97, 98] and N-cadherin signaling[99, 100].  
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We further validated our neuron-specific DE signatures in AD, which were derived from 
deconvoluted bulk-tissue RNAseq data by comparing our MAYO-neuron and ROSMAP-neuron 
DE genes with the excitatory and inhibitory neuronal signatures identified by a separate study 
which generated scRNAseq data from the same ROSMAP cohort[101]. We employed the 
sampling-based method described in this study[101] and found highly significant enrichment 
between our MAYO-neuron and ROSMAP-neuron DE signatures and their excitatory neuron 
signature (p=5.69E-11 and p=2.97E-18, respectively) as well as their inhibitory neuron signature 
(0.019 and 0.0025, respectively), demonstrating significant correlation between our deconvoluted 
neuron-specific DE signatures and scRNAseq-derived neuronal signatures in AD[101] (Fig. S4). 
The greater excitatory-neuronal enrichment among our deconvoluted neuron-specific DE 
signatures is consistent with the single-cell transcriptomics study in AD[101] and similarly 
suggests that our deconvoluted RNAseq datasets capture the aberrant increases in neuronal 
excitotoxicity associated with AD in humans[102]. 
 
Another critical input for the construction of Bayesian network and causal predictive network 
models are the eQTLs, leveraged as a systematic source of perturbation to enhance causal 
inference among molecular traits. This is an approach we and others have demonstrated across 
a broad range of diseases and data types[22, 59-63, 65-67, 69, 103-116]. We mapped cis-eQTLs 
by examining the association of neuron-specific expression traits with genome-wide genotypes 
[18, 117-120] assayed in the MAYO and ROSMAP cohorts (Methods). In the MAYO- and 
ROSMAP-neuron sets, 3,331 (16.8%) and 5,059 (25.0%), respectively, of the residual genes were 
significantly correlated with allele dosage (FDR<0.01) (Supplementary Table S3). Of the cis-
eQTLs detected in each cohort, 1,569 genes were overlapping between the two sets (47% of 
MAYO cis-eQTLs and 31% of ROSMAP cis-eQTLs, Fisher’s Exact Test, p-value=3.31E-242), 
providing further validation of the two independent cohorts. 
 
Neuronal Co-expression Networks Associated with LOAD 

While DE analysis can reveal patterns of neuron-specific expression associated with AD, the 
power of such analysis to detect a small-to-moderate expression difference is low. To complement 
the DE analyses in identifying the input gene set for the causal network, we clustered the neuronal 
gene expression traits into data-driven, coherent biological pathways by constructing co-
expression networks, which have enhanced power to identify co-regulated sets of genes 
(modules) that are likely to be involved in common biological processes under LOAD. We 
constructed co-expression networks on the AD patients within each dataset after filtering out lowly 
expressed genes (Methods), resulting in the MAYO-neuron co-expression network consisting of 
20 modules ranging in size from 30 to 6,929 gene members and the ROSMAP-neuron co-
expression network consisting of 14 modules ranging from 34 to 6,604 gene members (Fig. 3a). 
 
To evaluate the functional relevance of the each cohort’s neuron-specific modules to AD 
pathology, we performed enrichment analysis of each module for its AD-associated neuronal DE 
signatures, known single-cell marker genes for the 5 major cell types in the CNS[50], and 
categories of AD traits available from its respective cohort (Fig. 3a). From these enrichment 
results, we identified neuron-specific modules associated with AD DE genes (FDR<0.05) from the 
two co-expression networks: M1, M2, M10, M11, M15, and M16 from MAYO and M1, M5, and 
M10 from ROSMAP. 
 
To further characterize the biological processes involved in the co-expression modules from each 
dataset, we performed pathway enrichment analysis to identify overrepresented biological 
processes within and across the modules (Fig. 3b, Supplementary Table S4). Out of the selected 
AD-associated modules from the MAYO- and ROSMAP-neuron co-expression networks, 
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respectively, there were 36 and 16 significantly enriched pathways (FDR<0.05) based on the 
Human ConsensusPathDB (CPDB) database, with 11 enriched pathways overlapping between 
the two datasets (Fig. 3b, Fisher’s Exact Test, OR=383.87, p-value<2.2E-16). In comparing all 
pairs of modules between the datasets, we identified 17 module pairs with significant overlap of 
gene members (Fig. 3c, FDR<0.05 for Fisher’s Exact Test), demonstrating the robustness of the 
two independent co-expression networks.  
 
Ensemble of Neuronal Causal Networks of Genetic Regulations Identifies 
Pathological Pathways and Key Drivers for Neuronal Function in AD 

The ultimate goal of this study was to identify upstream master regulators (key drivers) of neuronal 
pathways that contribute to AD. Following our DE, eQTL, and co-expression network analyses, 
we built an ensemble of causal network models – including standard Bayesian networks[20, 22] 
and state-of-the-art predictive network models[19, 21, 58] – by integrating the eQTLs and 
deconvoluted neuron-specific RNAseq residuals.  
 
We first pooled all genes from the selected AD-associated modules per dataset (six MAYO-
neuron modules and three ROSMAP-neuron modules, indicated in Fig. 3a) to create a seeding 
set of genes for each cohort for input into the network models. This resulted in 9,361 seeding 
genes from the MAYO-neuron co-expression network and 7,530 seeding genes from the 
ROSMAP-neuron co-expression network. We note an overlap of 4,506 genes between the two 
seeding gene sets (48.1% of MAYO and 59.8% of ROSMAP, Fisher’s Exact Test, p-value<2.2e-
16), indicating the reproducibility of these analyses across the two independent datasets. To 
further improve the robustness for our network models, we also expanded each set of seeding 
genes by including their known upstream and downstream genes in each cohort’s co-expression 
network, extracted from signaling pathway databases using the pathFinder algorithm[58] 
(Methods; note that we did not include the gene-gene interactions as prior edge information for 
network construction). Co-expression network modules are only sensitive to linear relationships 
between pairs of genes, whereas non-linear gene regulations will not be captured by co-
expression analysis. This expansion step thus includes genes in the same pathways as the 
seeding genes which otherwise failed to be included in the same module derived from the co-
expression networks, resulting in 14,683 expanded genes from MAYO-neuron, 13,681 expanded 
genes from ROSMAP-neuron, and an overlap of 11,952 genes between the two expanded gene 
sets. The use of both the seeding gene set and the expanded gene set for analysis of the MAYO 
and ROSMAP datasets therefore increases the power to build robust networks and to discover 
high-confidence neuronal key drivers associated with AD pathology.  
 
We also incorporated cis-eQTL genes into each network as structural priors. As cis-eQTLs 
causally affect the expression levels of neighboring genes, they can serve as a source of 
systematic perturbation to infer causal relationships among genes[21, 52, 58, 67]. Of the 3,331 
and 5,059 unique cis-eQTL genes identified in the MAYO- and ROSMAP-neuron datasets, 
respectively, 687 and 1978 overlapped with the seeding gene set and 2,162 and 2,998 overlapped 
with the expanded gene set. We finally proceeded to build Bayesian networks and predictive 
networks using the two sets of genes per dataset – i.e., 9,361 seeding and 14,683 expanded 
genes for the MAYO dataset and 7,530 seeding and 13,681 expanded genes for the ROSMAP 
dataset – and incorporating each dataset’s cis-eQTL genes as structural priors.  
 
Since structure learning is a heuristic and stochastic process, we applied a wide range of cut-offs 
on the posterior probability of edges to derive sets of robust Bayesian and predictive network 
structures for each dataset. For the MAYO-neuron seeding gene set, we built Bayesian networks 
and applied two posterior probability cut-offs (0.4/0.5, Methods) to get two MAYO-neuron 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.19.512949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512949
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	

9 

Bayesian networks (MAYO-Neuron-BayesNet-Seed-1/-2) which were comprised of 9,111/9,044 
genes, respectively. In addition, we built predictive networks with the same two posterior 
probability cut-offs (0.4/0.5) to derive two MAYO-neuron predictive networks (MAYO-Neuron-
PredNet-Seed-1/-2), which also included 9,111/9,044 genes, respectively. For the MAYO-neuron 
expanded gene set, we built predictive networks and chose three posterior probability cut-offs 
(0.5/0.6/0.7) to get three MAYO-neuron predictive network models (MAYO-Neuron-PredNet-
Expanded-1/-2/-3), which were comprised of 14,238/13,926/13,365 genes, respectively. For the 
ROSMAP-neuron seeding gene set, we built Bayesian networks and applied two cut-offs (0.3/0.4) 
to derive two Bayesian networks (ROSMAP-Neuron-BayesNet-Seed-1/-2) which consisted of 
6,786/6,756 genes, respectively. For the ROSMAP-neuron expanded gene set, we built two 
predictive networks and chose two cut-offs (0.3/0.4) to build two predictive networks (ROSMAP-
Neuron-PredNet-Expanded-1/-2) consisting of 12,147/12,074 genes, respectively. Thus, in total 
from the MAYO and ROSMAP datasets, we derived 11 networks for the inference of a robust set 
of key drivers, using several different network reconstruction methods, network gene sets, and 
posterior cut-offs. We demonstrate 2 of the final 11 causal network models in Fig. 4a,b (MAYO-
Neuron-PredNet-Expanded-1 and ROSMAP-Neuron-PredNet-Expanded-1), and the remaining 9 
causal networks are shown in Fig. S6. 
 
Identification and Prioritization of Neuronal Key Drivers Regulating AD Pathology 

Having generated the causal predictive networks from the MAYO-neuron and ROSMAP-neuron 
datasets, we applied Key Driver Analysis (KDA)[70] to derive a list of key driver genes from each 
network. KDA seeks to identify genes in a causal network which modulate network states; in the 
present analysis, we applied KDA to identify genes causally modulating the network states of our 
neuron-specific Bayesian and predictive network models. In total, we identified 1,563 key driver 
genes across the 11 independent networks. 
 
To prioritize key drivers for further investigation, we first ranked the 1,563 initial key driver targets 
according to two separate measures: an impact score and a robustness score (Methods). Briefly, 
the impact score is a predicted value quantifying the regulatory impact of a given key driver on its 
downstream effector genes associated with AD pathology. Intuitively, the shorter a path from a 
key driver to its downstream effectors in a network – with less other parental co-regulators along 
the same path – the greater the impact of this target on its effectors in that network. Robustness 
score is reflective of the number of datasets (MAYO and/or ROSMAP), gene sets (seeding and/or 
expanded), and network models (Bayesian and/or predictive) by which a key driver is replicated. 
After ranking the total 1,563 neuron key drivers according to each score, we focused on the top 
50 key drivers in each ranked list (Fig. 4c,d).  
 
We then performed a series of steps to prioritize a final group of key driver targets for in vitro 
experimentation out of the ensemble of the top 50 ranked candidates for each score. We first 
calculated the replication frequency across the two ranked lists and identified 11 replicated 
targets, indicating robustness across these two independent ranking scores, and 39 unique 
targets in each ranked list (78 total). For the 11 replicated targets, we removed any which ranked 
lower than 15 in both scores, resulting in 7 top-ranked targets (ICA1, NSF, FSCN3, HP1BP3, 
DCAF12, JMJD6, and SLC25A45) which were replicated in both lists and ranked within the top 
15 in one or both scores. Next, for the remaining 78 unique targets, we first selected the top 3 
unique targets from each ranked list (CIRBP, NUDT2, and FIBP for impact score; YWHAZ, 
NDRG4, and RHBDD2 for robustness score). To further select targets from the remaining 36 
neuron-specific targets in each ranked list (72 total), we identified 4 targets (GABARAPL1, 
ATP1B1, ATP6V1A, and RAB3A) which were previously nominated to the AMP-AD Agora portal 
list based on separate data-driven network analysis using the bulk-tissue RNA-seq data in the 
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MAYO and ROSMAP datasets with the same approach as this study[121]. Finally, to balance our 
selection strategy, we selected an additional 4 targets (RBM4, RAB9A, FMNL2, and STXBP1) 
out of the lower-to-middle ranked top 50 unique targets based on the availability of proper 
constructs. 
 
In summary, we prioritized a group of 19 targets for experimental validation in vitro (highlighted 
red in Fig. 4c,d) by selecting the top-ranked replicated targets across the two scores (we note that 
SLC25A45 and FSCN3 were excluded at this stage due to lack of proper constructs), 6 top-ranked 
unique targets (top 3 from each score), 4 targets overlapping with prior data-driven nominations 
to the  AMP-AD Agora list, and 4 lower-to-middle ranked targets. 
 
Validation of AD-Associated Function of Neuronal Key Drivers by Knockdown in 
Human Neurons  

We next aimed to test the functional consequences of perturbation of the top candidate driver 
genes in human neurons. Healthy control human induced pluripotent stem cells (iPSCs) were 
differentiated to a neuronal fate using the well-established NGN2 direct differentiation 
protocol[56], which rapidly generates highly homogenous populations of induced neurons (iNs) 
which are cortical layer 2/3-like glutamatergic neurons[56, 57, 122]. By two weeks in culture, iNs 
are post-mitotic, electrically active, and express a full array of synaptic markers [56, 122]. In order 
to perturb the expression of the top 19 candidate key driver genes, we obtained sets of validated 
short hairpin RNA (shRNA) constructs packaged in lentivirus, with each set containing three 
constructs against each selected gene (Broad Institute). At day 17 of differentiation, iNs were 
transduced with lentivirus encoding a single shRNA, alongside control cells which either received 
empty virus or were not transduced (fresh media only). Media were exchanged on all cells 18 
hours later. Five days following transduction (day 22 of differentiation), conditioned media were 
collected, and cells lysed, either to collect RNA for RNAseq or to harvest protein for analyses of 
Aβ and p-tau/tau, similar to our previous study of LOAD GWAS hits[123]. All Aβ and tau data were 
normalized to total protein in the cell lysate per well, and all data for each shRNA knockdown 
were additionally normalized to the average of control conditions (empty vector and no 
transduction) (Fig. 5). 
 
Aβ38, 40, and 42 levels were measured in conditioned media from the transduced and control 
iNs using the Meso Scale Discovery (MSD) Triplex ELISA platform. Of the 19 genes tested, 
knockdown of 11 genes had no significant effect on the levels of any Aβ peptides measured nor 
the ratio of Aβ42 to Aβ40 (Fig. 5a-d). However, targeted knockdown of YWHAZ significantly raised 
Aβ42 peptide levels, knockdown of DCAF12 and YWHAZ increased Aβ38 levels, and knockdown 
of NSF and NUDT2 significantly increased levels of all three Aβ peptides measured (Aβ38, 40, 
and 42) (Fig. 5a-c; Dunnett’s T3 adjusted p-value<0.05). On the other hand, knockdown of RBM4 
significantly reduced levels of both Aβ42 and Aβ40 (Fig. 5a,b; Dunnett’s T3 adjusted p-
value<0.05). Lastly, knockdown of NDRG4, STXBP1, YWHAZ, and JMJD6 resulted in a 
significant elevation of the putatively neurotoxic Aβ42 to 40 ratio [124, 125](Fig. 5d; Dunnett’s T3 
adjusted p-value<0.05). 
 
We also examined levels of tau species in the transduced and control iN lysates using an MSD 
ELISA measuring both total tau and phospho-tau (Thr231). Knockdown of 16 of the 19 candidate 
genes tested had no significant effect on the levels of tau, p231-tau, or the neurotoxic ratio of 
p231-tau to tau (Fig. 5e-g). However, targeted knockdown of JMJD6 significantly decreased the 
levels of both p231-tau and tau (Fig. 5e,f; Dunnett’s T3 adjusted p-value<0.05). We also note that 
knockdown of NSF approached significance of increased levels of p231-tau (Fig. 5e; Dunnett’s 
T3 adjusted p-value=0.075). Finally, knockdown of FIBP and JMJD6 resulted in significant 
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elevation of the p231-tau to tau ratio, while knockdown of ATP1B1 significantly lowered this ratio 
(Fig. 5g; Dunnett’s T3 adjusted p-value<0.05). 
 
In summary, here we confirm modulation of AD endophenotypes in human iNs following 
independent reduction of the expression of 10 different genes out of the top 19 predicted key 
driver targets (Fig. 5h). Detailed statistical results are included in Supplementary Table S5. 
 
Validation of AD-Associated Networks and Pathways by RNAseq of Human 
Neurons Following Targeted Gene Knockdown 

To validate the network structure, we repeated shRNA-mediated knockdown of each of the 19 
target key drivers in another set of cultured control iNs and subsequently measured gene 
expression by RNAseq. For each of the 10 AD endophenotype modulating targets, we derived a 
differential expression (DE) signature from the RNAseq data (Fig. 6a-j, Supplementary Table S6). 
Next, we extracted the downstream (sub)network of each of those 10 targets from the MAYO- and 
ROSMAP- neuron networks and evaluated the enrichment of the knockdown DE signature by the 
downstream subnetworks for each target. We found that 8 out of the 10 DE signatures were enriched 
by the downstream subnetworks of their corresponding target (Fig. 6k), validating that our network 
models capture a significant portion of molecular processes and pathways at the neuron level.  
 
We then further examined the gene expression changes resulting from knockdown of the 10 
validated targets. Following JMJD6 knockdown, which significantly altered ratios of both Aβ and 
tau in iNs, 656 genes were significantly upregulated and 419 genes significantly downregulated 
(Fig. 6a, q<0.05, determined using the two-stage linear step-up procedure of Benjamini, Krieger, and 
Yekutieli, with Q=5%). Interestingly, among those significantly upregulated genes were 3 of our other 
19 key driver candidates (NDRG4, ATP6V1A, and NSF), indicating that their expression is affected 
by the reduction of JMJD6 in neurons (Fig. 6a). Volcano plots in Fig. 6b-j highlight additional key 
driver candidates whose expression was affected by knockdown of each of the 9 other validated 
targets. Moreover, we found certain common genes affected by the perturbation of multiple 
validated targets: 6 genes (FGF11, GIT2, KLHL28, PLCB3, SEPSECS, and SLC48A1) were 
affected by knockdown of NDRG4, STXBP1, YWHAZ, and JMJD6, and 9 genes (SEPTIN3, ABR, 
AOC2, CTFIP2, ZGTF2H1, MRPL17, NIIPSNAP1, RIMS4, and TMEM246) were affected by 
perturbation of DCAF12, NSF, and NUDT2. This observation indicates that there may be unique 
and common molecular pathways among these validated AD endophenotype modulating targets. 
 
To investigate possible mechanisms underlying these observations, we extracted regulatory pathways 
among the 10 validated targets in each of the 11 MAYO- and ROSMAP-neuron networks. We found 
that these 10 targets tightly regulate each other, and, interestingly, are all upstream regulators of the 
prominent proteins REST and VGF (Fig. 7a,b). REST (restrictive element 1-silencing transcription 
factor) is a known master regulator of neurogenesis via epigenetic mechanisms, apoptosis, and 
oxidative stress[126, 127]; VGF is a recently identified AD target whose overexpression in a 
mouse model reversed AD phenotypes[128]. In particular, our networks identified FIBP as a direct 
upstream regulator of VGF. Our findings thus indicate that these 10 targets may modulate AD-
related pathology partially through REST and VGF pathways (Fig. 7b).  
 
Finally, we performed pathway enrichment analysis (Methods) on the DE signatures derived from the 
RNAseq data in order to identify the unique and shared pathways affected by the knockdown of the 
10 AD endophenotype modulating targets (JMJD6, NSF, NUDT2, DCAF12, RBM4, YWHAZ, 
NDRG4, STXBP1, FIBP and ATP1B1). We compared significant pathways enriched by the DE 
signature of each of the targets and found that 1 pathway is shared by 9/10 targets, 4 pathways 
are shared by 8/10 targets, 2 pathways are shared by 7/10 targets, 18 pathways are shared by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.19.512949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512949
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	

12 

6/10 targets, and 40 pathways are shared by 5/10 targets (Fig. 7c, p-value<0.05). Comprehensive 
descriptions of all pathways affected by these targets are included in Supplementary Table S7. 
 
Discussion 
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world, affecting 
millions of people worldwide. In the United States alone, an estimated 5.8 million Americans are 
currently living with AD dementia and this number is anticipated to reach 13.8 million by 
2025[129]. Previous studies of LOAD pathogenesis using multi-omic data have identified 
numerous targets [19-22, 128]. However, although neurons are the principal cell type affected by 
AD etiology, the molecular mechanisms and therapeutic targets for AD revealed by these studies 
are not specific to neurons due to a lack of large-scale single-cell RNAseq data on neurons in AD. 
Thus, a comprehensive characterization of neuron-specific gene regulatory networks with 
association to AD is crucial to provide insight into the underlying causes of Alzheimer’s disease.  
 
In this study, we employed a self-developed computational systems biology approach to model 
AD neuronal genetic regulation networks, with which we identified upstream regulators (key 
drivers) in neurons that contribute to AD pathology. In our pipeline, we employed PSEA to 
deconvolute RNAseq data from brain region-specific tissue in the MAYO and ROSMAP cohorts 
into five major cell types in the CNS including neurons, microglia, astrocytes, endothelial cells, 
and oligodendrocytes. In this study, we focused on the neuron-specific gene expression data and 
performed basic bioinformatics analyses including differential expression (DE) analysis, eQTL 
identification, co-expression module networks, and pathway enrichment analysis, followed by 
construction of causal network models and key driver gene identification.  
 
From the network models, we identified a total of 1,563 neuronal key drivers which may represent 
new therapeutic targets. We used an unbiased ranking approach to prioritize 19 predicted key 
drivers for in vitro experimentation and tested the effects of their knockdown on the central 
components of the pathological hallmarks of AD, amyloid-β peptides (Aβ38, Aβ40, Aβ42) and 
phosphorylated tau protein, in a human iN system. We validated 10 targets which affected Aβ 
(JMJD6, NSF, NUDT2, DCAF12, RBM4, YWHAZ, NDRG4, and STXBP1) and/or tau/p-tau levels 
(JMJD6, FIBP, and ATP1B1). Only YWHAZ has been previously linked to AD through expression 
and mechanistic studies[130-134], while others have not yet been studied. Our findings of 
alterations to the neurotoxic ratios of both Aβ42 to Aβ40 and p231-tau to tau suggest therapeutic 
potential to both early and later stages of disease considering known patterns of pathology 
development in AD[135].  
 
Most interestingly, we identified that knockdown of JMJD6 (Jumonji Domain Containing 6, 
Arginine Demethylase and Lysine Hydroxylase) significantly increased both Aβ42 to 40 and p231-
tau to tau ratios, suggesting therapeutic relevance to multiple stages of AD pathology. JMJD6 
belongs to the JmjC domain-containing family, catalyzes protein hydroxylation and histone 
demethylation, and appears to interact with distinct molecular pathways through epigenetic 
modifications of the genome[136, 137]. It is expressed in many tissues throughout the body, 
including the brain according to the Human Protein Atlas[138], but very little is known about its 
role in the brain or in neurodegenerative disease. However, based on its known role in epigenetic 
regulation epigenetic, it is expected that reduction of JMJD6 expression may result in widespread 
changes in gene expression. Indeed, consistent with this prediction, we observed expression 
changes in a large number of genes following neuronal knockdown of JMJD6, including alteration 
of the expression of 3 other key driver targets of interest highlighted in this study (NDRG4, 
ATP6V1A, and NSF). Moreover, we found that an interesting association between JMJD6 (as well 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.19.512949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512949
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	

13 

as NUDT2 and NDRG4 among the 10 validated targets) and allele dosage. These 3 key driver 
genes are significantly associated with single nucleotide polymorphisms (SNPs) in their promoter 
regions (cis-eQTLs) in the MAYO and ROSMAP cohorts, further indicating that these genes may 
be actionable targets for AD therapeutic development.  
 
We recognize that one caveat of our experimental system is that the neurons in a dish are not the 
same as neurons present in the aged AD brain; however, they do represent a powerful system 
for interrogating molecular connections between gene expression and proteins relevant to AD 
(namely, Aβ and tau). In our recent study, we showed that neurons derived from >50 different 
individuals show concordance between their levels of specific Aβ peptides and p-tau species and 
levels of these same proteins expressed in the brains of the same individuals[57]. Further, we 
showed concordance between protein and RNA module expressions between the iPSC-derived 
neurons and the brain tissue of the same people. Taken together, these results suggest that in 
spite of the reductionist nature of the system and the lack of aging, molecular networks are 
captured within the cells in vitro that are reflected in changes in Aβ and tau. Here, we employ this 
same experimental system to show that targeted reduction of JMJD6 levels in human neurons 
induces effects on Aβ ratios and tau levels and phosphorylation.  
 
Through our network models, we also discovered two shared downstream effectors of the 10 
validated targets, which potentially explain the observed modulation of AD pathology: REST 
(restrictive element 1-silencing transcription factor) and VGF (VGF nerve growth factor inducible). 
REST is a known master regulator of neurogenesis via epigenetic mechanisms, apoptosis, and 
oxidative stress [126, 127] whose loss has been causally linked to Alzheimer’s disease [139, 140]. 
Additionally, recent studies have identified an association between changes in the epigenome, 
such as DNA methylation and histone modification, with changes in cognitive functions such as 
learning and memory[141-150]. Thus, dysregulation of epigenetic mechanisms through 
modulation of the targets may play a role in the pathogenesis of AD [142, 151]. VGF is also a 
target of interest which was recently validated to partially rescue memory impairment and 
neuropathology in 5xFAD mice[128]. Overexpression of VGF increased levels of activated BDNF 
receptor and adult hippocampal neurogenesis, which in turn regulated postsynaptic protein PSD-
95 and improved cognition in the 5xFAD mice[128]. Pathway enrichment analysis confirmed that 
all 10 key drivers and their downstream genes in the network models were also significantly 
enriched for a variety of convergent and unique downstream cellular processes and functions 
which may explain additional molecular mechanisms at play, including vesicle-mediated 
membrane trafficking (common downstream of 8 targets); axon guidance, intra-Golgi trafficking, 
and retrograde Golgi-to-ER trafficking (common of 7 targets); and signaling pathways for 
sphingolipids, prolactin, BDNF/NTRKs, EGF-EGFR, TNFα, RHO GTPases, TP53, receptor 
tyrosine kinases (RTKs), and ER-to-Golgi transport (common of 6 targets).  
 
In summary, our innovative computational systems biology approach using predictive network 
modeling has identified 10 targets which significantly modulate AD pathology via regulation of a 
variety of downstream pathways. These processes involve a wide spectrum of cellular pathways 
and possible mechanisms, and our results offer novel insights into potential therapeutic targets 
for drug discovery in Alzheimer’s disease.  
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Main Figures 
Figure 1. Integrative network analysis pipeline to construct data-driven neuron-specific 
predictive networks of AD and predict key drivers associated with AD pathology.  
(a) Discovery datasets include whole-genome genotype and RNAseq data of temporal cortex 
(TCX) from the MAYO cohort and dorsolateral prefrontal cortex (DLPFC) from the ROSMAP 
cohort in the NIH/NIA AMP-AD consortium. Numbers on the left indicate the total number of 
subjects in each dataset with quality-controlled matched genotype and RNAseq data used in this 
study, whereas numbers on the right (table) indicate the number of individuals of each phenotype 
used in the subsequent DE, co-expression module, and predictive network analyses. (b) 
Computational deconvolution of the bulk-tissue RNAseq data into 5 single cell-type RNAseq sets 
per cohort dataset, followed by differential expression analysis and weighted gene co-expression 
network analysis (WGCNA) in each cohort’s neuron-specific gene expression dataset. (c) mRNA 
expression and quantitative trait loci (expression-QTL, eQTL) association analysis in each dataset 
provides a source of systematic perturbation for network reconstructions. (d) Construction of 
neuron-specific predictive network models and identification of key drivers (master regulators) 
from each dataset. (e) Prioritization of key drivers targets from both datasets and experimental 
validation by shRNA-mediated gene knockdown in human iPSC-derived neurons. Venn diagrams 
at left on each panel indicate cross-validation at each step of the bioinformatics analyses 
performed independently in parallel for the MAYO and ROSMAP datasets, resulting in a single 
set of key driver targets. Statistical tests for each comparison are described in the text where 
relevant. Graphics not created by the authors were used with permission from Servier Medical Art 
(smart.servier.com).  
 
Figure 2. Neuron-specific gene expression signatures in AD.  
Differential expression (DE) analysis of deconvoluted neuron-specific residuals identifies a robust 
DE signature associated with the difference between AD patients and cognitively normal controls. 
Volcano plots (a,b) show all significantly up- and down-regulated genes with cutoffs on absolute 
log fold-change greater or less than 0.5 for MAYO-neuron (a) and 0.3 for ROSMAP-neuron (b). 
Significance was assessed by t-test with FDR<0.05. Gene symbols are highlighted for the 19 key 
drivers prioritized for experimental validation in vitro. (c) Pathway enrichment analysis with human 
ConsensusPathDB (CPDB) on the neuron-specific DE expression signatures reveals 
dysregulated biological processes associated with AD. Significance was assessed by Fisher’s 
exact test with p-value<0.05. Detailed statistical results of DE genes and enriched pathways are 
summarized in Supplementary Tables S1 and S2, respectively. 
 
Figure 3. Neuron-specific co-expression analysis identifies robust gene modules enriched 
for biological processes associated with AD.  
(a) Neuron-specific co-expression network analysis in the MAYO and ROSMAP cohorts identifies 
gene modules associated with AD in each dataset. Module functions for each dataset are 
characterized by significantly enriched biological processes (Supplementary Table S4), with bold 
text indicating neuron-specific modules selected for further analysis. Each module was evaluated 
based on enrichment for neuron-specific DE genes, for scRNAseq derived neuron-specific 
biomarker genes, and for categories of available AD traits (MAYO and ROSMAP diagnosis by 
ANOVA; BRAAK, CERAD, and MMSE by linear regression). We also evaluated enrichment for 
scRNAseq-derived biomarker genes for other four major CNS cell types (microglia, astrocytes, 
endothelial cells, and oligodendrocytes) to cross-validate that modules enriched for neuron-DE 
genes were not enriched for other cell types. Significance was assessed by Fisher’s exact test 
with adjusted p-value<0.05. (b) Pathway enrichment analysis identified robust pathways 
replicated in both cohorts associated with AD among the selected neuron-specific modules in the 
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two datasets. (c) Cross-validation of neuron-specific co-expression modules between MAYO and 
ROSMAP identifies pairs of modules with significantly overlapping gene members (FDR<0.05).   
 
Figure 4. Neuron-specific causal network analyses identify molecular mechanisms and key 
driver targets associated with AD.  
(a,b) Two predictive networks out of the final 11 neuron-specific causal Bayesian and predictive 
network models derived from the MAYO (a) and ROSMAP (b) seeding and expanded gene sets. 
The MAYO and ROSMAP networks shown here were built from their respective expanded gene 
sets with posterior probability cut-offs of 0.5 and 0.3, respectively. The 10 key driver targets which 
were validated in vitro are highlighted (red), along with their neighboring downstream 
subnetworks. (c,d) The top 50 out of 1,563 total key driver targets ranked individually according 
to impact (c) and robustness (d) scores across the 11 independent MAYO-neuron and ROSMAP-
neuron Bayesian and predictive networks. Red text indicates prioritized key drivers; yellow 
highlights those which were validated in vitro. 
 
Figure 5. Human iPSC-derived neurons show altered Aβ species and tau/phospho-tau 
levels following shRNA-mediated knockdown of selected target genes.  
(a-c) Secretion of Aβ42 (a), Aβ40 (b), and Aβ38 (c) was measured in the conditioned media by 
ELISA (MSD), normalized to the average of controls (no transduction and empty vector) as well 
as to total protein in the neuronal cell lysate. The ratio of Aβ40:42 was also calculated (d). (e-f) 
p231-tau (e) and total tau (f) were measured in cell lysates by ELISA (MSD), normalized to the 
average of controls (no transduction and empty vector) as well as to total protein in the cell lysate. 
The ratio of p231-tau to total tau was also calculated (g). For all panels, the black dashed line 
indicates the median for control conditions, and the black bar in each boxplot denotes the median 
of each gene knockdown condition. For each target gene, 3 shRNA constructs were used; each 
dot represents data from one well. A two-step statistical test was employed: first, we performed 
Welch’s ANOVA with unequal variance to detect significant differences across conditions for each 
measured parameter, with an additional non-parametric Kruskal-Wallis ANOVA to confirm the 
significance. Second, Dunnett’s T3 test (in Prism 9.0) with multiple testing correction was used to 
compare each target shRNA to the control condition for each parameter. *adj-p<0.05, 
**0.001<adj-p<0.05, ***0.0001<adj-p<0.001, ****adj-p<0.0001. (h) Circus plot summarizing the 
effects of the 10 key driver targets found to modulate Aβ42, 40, 38, Aβ42:40, tau, p231-tau and 
p231-tau:tau. Significance was assessed by -log10(Dunnett’s T3 adjusted p-value); red indicates 
that knockdown of the target significantly increased the given measurement value, whereas green 
indicates that knockdown significantly decreased the value. Detailed results and statistics are 
summarized in Supplementary Table S5. 
 
Figure 6. Gene expression changes following knockdown of the 10 validated targets in 
human iPSC-derived neurons.  
(a-j) RNAseq analysis showing significantly up- and down-regulated DE genes after shRNA-
mediated knockdown of each of the 10 validated targets. Red gene symbols indicate any of our 
prioritized 19 targets genes that were significantly affected. Significance was assessed using the 
two-stage step-up method of Benjamini, Krieger, and Yekutieli with q-value<0.05, indicated by the 
black dashed line. (k) Network validation by enrichment analysis of significant DE genes following 
shRNA knockdown of the 10 validated targets in the 11 subnetwork networks. We compared the 
DE genes after knockdown of each target to the individual downstream subnetwork of that target 
extracted from the 11 reconstructed networks; significant enrichment is indicated in color with p-
values (Fisher’s exact test, p<0.05). Detailed results are summarized in Supplementary Table S6. 
 
Figure 7. Regulatory pathway analysis reveals unique and shared biological pathways 
between the validated targets in each network.  
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(a) The downstream members of each validated target were extracted from every network model, 
and edges from each downstream sub-network were pooled together into a consensus 
subnetwork of the 10 validated targets. As indicated by colored pathways, the 10 targets (yellow 
nodes) tightly regulate each other and are upstream regulators of both REST and VGF (green 
nodes). Edge thickness indicates the frequency of corresponding edges appearing across all 
networks. (b) The shortest paths from each of the 10 targets to REST and VGF were extracted 
from each network and pooled together into a hierarchical structure. The coloring of each target 
node annotates its representative enriched ConsensusPathDB (CPDB) pathways by significant 
DE genes in the shRNA knockdown experiments, as further detailed in Supplementary Table S7 
. (c) The overall CPDB pathways significantly enriched by each of the 10 target genes were pooled 
and ranked in descending order by the frequency of enrichment by any of the targets. Significance 
was assessed by Fisher’s exact test with p-value<0.05.  
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Methods 
1. AMP-AD Consortium Data Source 

Data was downloaded from the Accelerating Medicines Partnership – Alzheimer’s Disease (AMP-
AD) consortium database hosted on the Synapse.org data portal (doi:10.7303/syn2580853). 
 
 
2. AMP-AD Mayo Clinic Cohort and Data Pre-Processing 

2.1) Mayo Clinic Transcriptome and Genome-Wide Genotype Data 
The Mayo Clinic (herein MAYO) transcriptome and genome-wide genotype datasets utilized in 
this study have previously been described[152-155]. The MAYO temporal cortex (TCX) RNA 
sequencing (RNAseq) data (Synapse ID: syn3163039) and genome-wide genotype data 
(Synapse ID: syn8650953) are available on the AMP-AD Knowledge Portal. We provide details 
on these datasets below. 
 
2.2) MAYO Cohort Participants 
The overall MAYO dataset includes 278 subjects with the following diagnoses: 84 Alzheimer’s 
disease (AD), 84 progressive supranuclear palsy (PSP), 80 cognitively normal (CN) controls, and 
30 pathologic aging. Subjects with AD each had a definite neuropathologic diagnosis according 
to the NINCDS-ADRDA criteria[156] and a Braak[157] neurofibrillary tangle (NFT) stage of ≥4.0. 
Control subjects each had a Braak NFT stage of 3.0 or less and CERAD[158] neuritic and cortical 
plaque densities of 0 (none) or 1 (sparse), and each lacked any of the following pathologic 
diagnoses: AD, Parkinson’s disease (PD), dementia with Lewy bodies (DLB), vascular dementia 
(VaD), progressive supranuclear palsy (PSP), motor neuron disease (MND), corticobasal 
degeneration (CBD), Pick’s disease (PiD), Huntington’s disease (HD), frontotemporal lobar 
degeneration (FTLD), hippocampal sclerosis (HipScl), or dementia lacking distinctive histology 
(DLDH). In the MAYO dataset, all disease subjects had ages at death ≥60 years; a more relaxed 
age cutoff of ≥50 years was applied for CN controls to achieve a sample size similar to that of the 
AD subjects, but we note there were only two additional control subjects with age at death below 
60. This work was approved by the Mayo Clinic Institutional Review Board. All human subjects or 
their next of kin provided informed consent. 
 
2.3) MAYO RNAseq Data  
TCX samples from all MAYO subjects underwent RNA extraction via the 
TRIzol/chloroform/ethanol method, followed by DNase treatment and cleanup of RNA using 
Qiagen’s RNase-Free DNase Set and RNeasy Mini Kit (Germantown, MD). Quantity and quality 
of all RNA samples were determined using the Agilent RNA 6000 Nano Kit on the Agilent 2100 
Bioanalyzer system (Agilent Technologies, Santa Clara, CA). Only samples with an RNA Integrity 
Number (RIN) ≥5.0 were included in this study. MAYO RNAseq samples were randomized across 
flowcells, taking into account age at death, sex, RIN, Braak stage, and diagnosis. Library 
preparation and sequencing of the samples were conducted at the Mayo Clinic Medical Genome 
Facility Genome Analysis Core, as previously described[159]. The TruSeq RNA Sample Prep Kit 
(Illumina) was used for library preparation from all samples. Library concentration and size 
distribution were determined using an Agilent Bioanalyzer DNA 1000 Kit (Agilent Technologies). 
Three samples were run per flowcell lane using barcoding. All samples underwent 101 base-pair 
(bp), paired-end sequencing on Illumina HiSeq2000 instruments. Base-calling was performed 
using Illumina’s Real-Time Analysis (RTA) 1.17.21.3. FASTQ sequence reads were aligned to the 
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human reference genome using TopHat 2.0.12[160] and Bowtie 1.1.0[161], and Subread 1.4.4 
was used for gene counting[162]. FastQC[163] was used for quality control (QC) of raw sequence 
reads, and RSeQC[164] was used for QC of mapped reads.  
 
2.4) MAYO RNAseq Data Processing and Quality Control 
All MAYO RNAseq samples had percentage of mapped reads ≥85%. In the first step, we used R 
statistical software (R Foundation for Statistical Computing, version 3.2.3) to transform the raw 
read counts to counts per million (CPM), which were then log2-normalized. Mean expression 
levels of Y chromosome genes with non-zero counts were plotted to identify any samples with 
deviation from expected expression based on recorded sex; 2 AD samples were identified with 
discordant sex and excluded. In the second step, raw read counts were normalized using 
Conditional Quantile Normalization (CQN) via the Bioconductor package[165], accounting for 
sequencing depth, gene length, and GC content. Before running CQN normalization, GC content 
was calculated via Repitools in the Bioconductor package[166] and sequencing depth was 
calculated as the sum of reads mapped to genes. Genes with non-zero counts across all samples 
were retained and principal component analysis (PCA) was performed using the prcomp function 
implemented with R statistical software. Principal components 1 and 2 were plotted and no 
outliers (>6 SD from mean) were identified. We additionally excluded 2 samples due to missing 
data in one or more key covariates.  
 
2.5) MAYO Genome-Wide Genotype Data 
Subjects in the MAYO RNAseq cohort underwent whole genome genotyping using the Illumina 
Infinium HumanOmni2.5-8 BeadChip Kit (San Diego, CA), which delivers comprehensive 
coverage of both common and rare single nucleotide polymorphism (SNP) content from the 1000 
Genomes Project[167] (minor allele frequency >2.5%) and provides genotypes for 2,338,671 
markers. Genotyping was performed at the Mayo Clinic Medical Genome Facility Genome 
Analysis Core. Whole genome genotype calls were made using the auto-calling algorithm in 
Illumina’s BeadStudio 2.0 software, after which they were converted into PLINK formats for 
analysis[168]. 
 
2.6) MAYO Genotype Data Quality Control 
All genome-wide genotype samples were checked for discordant sex; the same 2 AD subjects 
excluded for this reason in Section 2.4 were identified. Subjects were assessed for heterozygosity 
rates >3 SD from the mean. One AD sample had high heterozygosity with respect to the mean, 
indicating possible sample contamination, and 3 samples (2 controls and 1 AD) had low 
heterozygosity with respect to the mean, indicating either divergent ancestry or consanguinity; 
these 4 samples were also excluded from the analysis. The dataset was then filtered to include 
only autosomal SNPs. PLINK was used to identify any sample duplicates or related pairs of 
subjects. Two pairs of samples were identified as >3rd degree relatives; for each pair, the sample 
with the lower SNP call rate was excluded. The dataset was further filtered to remove complex 
genomic regions (chr8:1-12,700,000; chr2:129,900,001-136,800,000; chr17:40,900,001-
44,900,000; and chr6:32,100,001-33,500,000) and linkage disequilibrium (LD) pruned using the 
SNPRelate (v1.4.2) package in R (v3.2.3) [169], implementing an LD threshold of 0.15 and a 
sliding window of 1E-07 bp. Remaining SNPs and subjects were analyzed using 
EIGENSOFT[170] for population outliers. Two samples were identified as population outliers 
using the default parameter of >6 SD from the mean on any of the top 10 inferred axes following 
5 iterations, and they were removed from further analysis. 
 
After QC of the MAYO RNAseq and genome-wide genotype datasets, we obtained a total of 266 
subjects with matched transcriptome and genotype data, including 76 CN subjects and 79 AD 
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subjects which were used in all subsequent analysis. We performed rigorous statistical testing to 
demonstrate that these samples are well balanced with respect to age at death (p-value=0.57) as 
well as sex (p-value=0.24) (Fig. S7a,c). 
 
3. AMP-AD ROSMAP Cohort and Data Pre-Processing 

3.1) ROSMAP Transcriptome and Genome-Wide Genotype Data 
The Religious Orders Study and Memory and Aging Project (herein ROSMAP) dataset 
dorsolateral prefrontal cortex (DLPFC) gene expression (RNAseq BAM files), genotypes, and 
clinical covariates were downloaded from the Synapse.org data portal (Synapse IDs for the 
respective data types: syn4164376, syn3157325, and syn3191087) using the synapseClient R 
library[171]. Requests for ROSMAP data can be made at https://www.radc.rush.edu/.  
 
3.2) ROSMAP Cohort Participants 
The ROSMAP dataset contains two cohorts: the Religious Orders Study (ROS) and the Memory 
and Aging Project (MAP)[172]. Both ROS and MAP are longitudinal clinical-pathologic cohort 
studies of aging and dementia run by the Rush Alzheimer’s Disease Center in Chicago, IL. In both 
studies, all participants enroll without known dementia and agree to annual clinical evaluation and 
brain donation as a condition of entry. ROS has enrolled individuals from religious orders from 
across the United States starting in 1994, and MAP has enrolled lay persons from across 
northeastern Illinois since 1997. Each study annually administers a battery of 21 cognitive 
performance tests, 19 of which are in common. Alzheimer's disease status is determined by a 
computer algorithm based on cognitive test performance with a series of discrete clinical 
judgments made by both a neuropsychologist and a clinician. First, subjects are categorized as 
not cognitively impaired (NCI, if diagnosed without dementia), mild cognitive impairment (MCI), 
or Alzheimer’s disease (AD). Diagnoses of dementia and AD conform to standard definitions[172]. 
Next, a clinician reviews all cases determined by the algorithm to render a diagnosis blinded to 
data collected in prior years. In addition to dementia, 5 other diagnoses are determined by this 
approach, including stroke, cognitive impairment due to stroke, parkinsonism, Parkinson's 
disease, and depression. Most of these other diagnoses are determined by self-report. Upon 
death, a summary diagnosis is made by a neuropsychologist blinded to post-mortem assessment. 
The post-mortem neuropathologic evaluation performed includes a uniform structured 
assessment of AD pathology, cerebral infarcts, Lewy body disease, and the other pathologies 
common in aging and dementia (e.g., vascular dementia or frontotemporal dementia). The 
evaluation procedures follow those outlined by the pathologic dataset recommended by the 
National Alzheimer’s Disease Coordinating Center. Pathologic diagnoses of AD use NIA-Reagan 
and modified CERAD criteria[173], and the evaluation of neurofibrillary pathology uses Braak 
staging[174]. The ROS and MAP studies are both conducted by the same clinical and pathologic 
data collection teams, with extensive item-level harmonization allowing the data to be efficiently 
merged.  
 
3.3) ROSMAP Genotype Data and Quality Control 
PLINK 2.0[175] was used to perform operations on the genotype files, and positions were 
converted from hg18 to hg19 (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Picard[176] was used 
to sort the resulting genotype files, and samples were removed using PLINK 2.0 if they had 
variants with >2% missing values, minor allele frequency <1%, Hardy-Weinberg equilibrium <10E-
6, or inbreeding coefficient >0.15. We started with 750,173 variants in 1,708 individuals; after 
quality control, 736,073 variants in 1,091 individuals remained. 
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3.4) ROSMAP RNAseq Data Processing 
Out of the 1,091 ROSMAP subjects remaining after genotype QC, we obtained a total of 612 
subjects which had matched RNAseq data. The RNA-seq BAM files were sorted using 
samtools[177] and converted to FASTQ files using the SamToFastq function[176]. RAPiD[178] 
was used to generate a count matrix for the gene expression data and a vcf file for each sample 
aligned to hg19 from the FASTQ files. ROSMAP RNAseq read count expression data was 
normalized using log2 counts per million (CPM) and the TMM method[179] implemented in 
edgeR[180]. Genes with over 1 CPM in at least 30% of the experiments were retained. We then 
used precision weights as implemented in the voom function from the limma[181] R package to 
further normalize the gene counts.  
 
The total 612 subjects with matched QC data included 194 CN subjects and 212 AD subjects 
which were used in all subsequent analysis. Regarding the ROSMAP cohort, it has been noted 
that the range of age at death is broad but restricted to the older segment of the age distribution 
of the North American population and that age and sex are important confounders when 
performing any analyses of ROS and MAP data[76]. We observed this variance in the age at 
death (p-value<0.05) but found no significant difference in sex among the ROSMAP subjects used 
in our analysis (p-value=0.072) (Fig. S7b,d). To address the imbalanced age distribution, we later 
performed covariate adjustment for age (together with other covariates, Section 5), and we 
confirmed removal of the effects of age and other confounding variables by variance partition 
analysis (VPA) before and after covariate adjustment (Fig. S2 b,d).  
 
 
4. MAYO and ROSMAP Genotype Data Imputation 

After quality control of both datasets, we used 1000 Genomes Project[167] data and 
IMPUTEv2[182] to impute untyped variants. Imputed variants were removed if they failed any of 
the previously listed quality control criteria or had information scores <0.6. After imputation, we 
had 7,132,687 variants in MAYO and 9,333,139 variants in ROSMAP. 
 
 
5. Deconvolution of RNAseq Data into Neuron-Specific Expression Residuals 

After normalizing both MAYO and ROSMAP expression data (described above), expression 
residuals were obtained for each dataset respectively by adjusting for covariates using the limma 
R package[181]. For MAYO, expression residuals were obtained by correcting for the effects of 
technical confounding factors (i.e., sequencing batch), sample-specific variables (RNA integrity 
number [RIN], exonic mapping rate, source of tissue), and patient-specific covariates (sex, age at 
death, APOE genotype). For ROSMAP, we adjusted for a slightly different set of covariates due 
to a greater number of recorded measurements available: study (ROS or MAP), sequencing 
batch, post-mortem interval (PMI), RIN, exonic mapping rate, sex, educational attainment, APOE 
genotype, and age at death. For both MAYO and ROSMAP data, we computed the exonic 
mapping rate using RNAseQC[183]. 
 
In addition to the covariate adjustments listed above for both datasets, we also adjusted for five 
cell type markers[72]: ENO2 [neuronal], CD68 [microglial], CD34 [endothelial], OLIG2 
[oligodendrocytic], and GFAP [astrocytic]. To obtain expression residuals that mimic expression 
patterns seen in neurons, for every gene, we added the ENO2 effects estimated by the linear 
regression models back to the expression residuals. Comparing the variance of normalized gene 
expression before and after covariate adjustment, we confirmed removal of the effects from 
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confounding variables (Fig. S2), allowing us to conclude that the residual results are unbiased 
and robust against these adjusted covariates.  
 
The final neuron-specific expression residual data available for further analysis included 19,885 
genes from 155 individuals in MAYO (76 CN, 79 AD) and 20,276 genes from and 406 individuals 
in ROSMAP (194 CN, 212 AD), with 18,408 genes common to both datasets which are 
comparable with processed residuals of the same cohorts on AMP-AD knowledge portal[184].  
 
 
5.1) Rationalization and Validation of Single-Gene Biomarkers for Bulk-Tissue RNAseq 
Deconvolution 
Our rationale for using single-gene biomarkers over multi-gene biomarkers derived from single-
cell RNAseq (scRNAseq) data was manifold. First, multi-gene biomarkers derived from various 
scRNAseq studies in control human brains [47-51] show no significant overlap among 
themselves, indicating a lack of robustness and consensus in these biomarkers derived from 
scRNAseq studies (Fig. S3a). Second, PCA analysis shows a prominent overlap of scRNAseq 
biomarker expression across different CNS cell types in MAYO and ROSMAP AD data, indicating 
that the majority of scRNAseq-derived biomarker gene expression is convoluted and reflecting 
potential interactions between different cell types under the AD condition (Fig. S3b,c). 
Furthermore, there is significant overlap between scRNAseq-derived biomarkers and AD 
therapeutic targets in the AMP-AD Agora knowledge portal[121] (Fig. S3d,e); this overlap is more 
significant than randomly selected genes from the background overlapping with the Agora list, 
indicating that scRNAseq-derived biomarkers may play a significant role in AD pathology. For 
these reasons, multi-gene biomarkers of cell type are not ideal for adjusting the bulk-tissue gene 
expression variance by population-specific expression analysis (PSEA). By contrast, our single-
gene biomarkers are derived from biological knowledge and have been validated by other groups 
[72]. Moreover, our single-gene biomarkers had no overlap with AD therapeutic targets in the 
Agora list, thus making them good candidates for PSEA. Lastly, our neuron-specific residual 
derived from single-gene biomarkers is significantly correlated with the “pseudo” neuron-specific 
residuals derived from a randomly selected subset of scRNAseq biomarkers by PSEA (Fig. S4), 
indicating that our neuron-specific residual represents a robust neuronal component in the bulk-
tissue RNAseq data for neuron-specific therapeutic target discovery in LOAD. Specific methods 
behind the analyses described above are elaborated in the following subsections. 
 
5.2) Comparison of scRNAseq-Derived Biomarker Genes Per Cell Type 
We assembled cell-type specific biomarkers derived from existing scRNAseq studies for neurons, 
microglia, astrocytes, endothelial cells, and oligodendrocytes. These biomarkers are listed in 
Supplementary Table S8. For each cell type, we compared the biomarker genes by pairing each 
scRNAseq study and calculating the significance of the overlap by Fisher’s exact test (Fig. S3a; 
FDR>0.05, 1/0/1/1 significant pairs out of 6 study-pairs in 
astrocytic/endothelial/microglial/oligodendrocytic types and 2 significant pairs out of 10 study-
pairs in neuronal types). 
 
5.3) PCA Analysis of scRNAseq-Derived Biomarker Expression in AMP-AD Data  
After creating a merged biomarker list from different scRNAseq studies for each cell type as 
described, we then extracted the gene expression matrix of the merged biomarkers from the 
MAYO and ROSMAP RNAseq data and applied principal component analysis (PCA) on the 
extracted RNAseq sub-matrix (Fig. S3b,c).  
 
5.4) Comparison with AMP-AD Agora Targets 
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We also merged all biomarkers for each cell type and calculated the percentage of overlap with 
targets in the AMP-AD Agora list (Fig. S3d,e, see above). To evaluate the significance of this 
overlap, for each cell type, we simulated a background distribution of overlap by randomly 
selecting the same number (as on the merged biomarker list) of background genes – taking the 
non-duplicate union of genes in MAYO and ROSMAP RNAseq data – and comparing the 
randomly generated “pseudo” biomarker list to the AMP-AD Agora targets to generate an 
overlapping percentage. We repeated the random simulation 10,000 times to construct the 
background distribution. The p-value was then calculated per cell type by comparing the true 
percentage to the background distribution. 
 
5.5) Evaluation of Robustness of Deconvoluted Neuron-Specific Residuals  
By using population-specific expression analysis (PSEA)[44], we estimated the variance 
component of the MAYO and ROSMAP bulk-tissue RNAseq data explained by our single-gene 
neuronal biomarker (ENO2). Next, we randomly selected a subset of biomarkers of each cell type 
from the scRNAseq-derived biomarkers (Supplementary Table S8), then again applied PSEA to 
estimate the variance component of the bulk-tissue RNAseq data explained by the simulated 
biomarker subset. We then calculated the Pearson correlation of each gene in the residual 
between our single-gene neuronal residuals and the simulated neuronal residuals. We repeated 
this procedure 1,000 times to construct a distribution of the correlations (Fig. S4).  
 
Next, we constructed a background distribution of correlation. To this end, we again randomly 
selected a subset of “pseudo” biomarkers of each cell type from the background genes (the non-
duplicate union of genes in MAYO and ROSMAP RNAseq data), then applied PSEA to estimate 
the variance component of the bulk-tissue RNAseq data explained by the simulated “pseudo” 
biomarkers. We then calculated the Pearson correlation of each gene between our single-gene 
neuronal residuals and the simulated “pseudo” neuronal residuals. We repeated this procedure 
1,000 times to construct a distribution of the correlations (Fig. S4). Lastly, we applied a t-test to 
compare the correlation distribution described above with the background distribution described 
here (p-value<2.2E-16). 
 
 
6. Computational Analysis of Neuron-Specific Gene Expression Data 

6.1) eQTL Analysis 
Expression quantitative trait locus (eQTL) analysis was performed using the R package 
MatrixEQTL v2.1.1[185] using QCed genotypes and normalized and covariate-adjusted cell-type 
specific expression residuals. cis-eQTL analysis considered markers within 1 Mb of the 
transcription start site of each gene. False discovery rates (FDR) were computed using the 
Benjamini–Hochberg procedure[186]. 
 
6.2) Differential Expression (DE) Analysis 
Using linear models, as implemented in the limma R package [181], we interrogated the cell-type 
specific residual expression data for genes differentially expressed between AD cases and 
healthy controls. Significance was assessed using FDR<0.05. 
 
6.3) Pathway Enrichment Analysis 
We downloaded pathways from ConsensusPathDataBase (CPDB)[83]. Given a set of genes, we 
performed enrichment analysis of each pathway over this set of genes by Fisher’s exact test.  
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6.4) Co-Expression Network Analysis 
Co-expression networks were constructed using the coexpp R package[187]. A soft thresholding 
parameter value of 6.5 was used to power the expression correlations. Seeding gene lists for the 
predictive networks were obtained by selecting genes in co-expression modules that were 
statistically enriched (FDR<0.05) for DE genes or neuronal cell markers[50]. 
 
6.5) Key Driver Analysis 
To perform Key Driver Analysis (KDA), we used the KDA R package [70] (KDA R package version 
0.1, available at http://research.mssm.edu/multiscalenetwork/Resources.html). The package first 
defines a background sub-network by looking for a neighborhood k-step away from each node in 
the target gene list in the network. Then, stemming from each node in this sub-network, it 
assesses the enrichment in its k-step (k varies from 1 to K) downstream neighborhood for the 
target gene list. In this analysis, we used K = 6. 
 
6.6) Key Driver Prioritization 
A) Impact Score 
To rank the key drivers based on impact score, we calculated the following metrics:  

1) KDA_unit_score. For each network, we performed KDA. We defined different target gene 
lists for KDA with several gene sets: i) the overlap between DE genes and selected 
modules, recording the number of overlapping gene sets nominating a given gene as a 
key driver; ii) the selected modules, recording the number of modules nominating a given 
gene as key driver; and iii) the DE gene set, whose value was 1 or 0, indicating whether 
(1) or not (0) DE genes nominated a given gene as a key driver. 

2) KDA_score_sum. We summed the 3 KDA_unit_score values described in 1).  
3) KDA_position_sum. We found the non-zero sum of the frequency of the 3 values in 1). 
4) Normalized_priority_score. For each network, we sorted the key drivers first according to 

KDA_position_sum in descending order and then according to KDA_score_sum in 
descending order. In each network, we then calculated the normalized_priority_score by 
dividing each key driver’s rank by the maximum rank for the corresponding network.  

5) Replication_count. We recorded the number of networks from which a key driver was 
derived. 

6) Avg_priority_score. We calculated the averaged priority score per key driver across all 
networks by dividing normalized_priority_score by replication_count. 

7) Avg_DE_R. Since a gene could appear in multiple KDA files and network files (e.g. gene 
A appearing in 5 KDA files and 7 networks), we selected each corresponding network from 
which a given key driver was derived, retrieved all downstream members in the networks 
of the key driver, and calculated the following metrics: i) DE_reach, the percentage of 
corresponding DE genes covered by the gene's downstream effectors, describing an 
overall overlap between downstream effectors of a key driver and DE genes; ii) the number 
of DE genes (N) and a modified version of count (R) for each layer of a downstream 
subnetwork, where the modified count (R) was computed as following: for a given DE 
gene, if it had X parent nodes and among those X parents, Y of them were not downstream 
members of the given key driver, we would say the burden factor of the DE gene for the 
key driver is Y/X.  Thus, for each layer in the downstream sub-network, if the layer 
contained Z DE genes, then N=Z and R=Z minus the sum of burden factors over all Z DE 
genes for the layer; iii) R.coeff, the coefficient of a linear model, where the response 
variable is a vector of the normalized (by number of layers) cumulative sum of R for each 
layer, thus describing the cumulative percentage of parents that are also DE genes 
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between the first layer and the current layer (value between 0 and 1), and the predictor 
variable is the layer index. The higher this coefficient, the more impact a key driver has on 
the downstream DE genes; iv) impact_per_network score of a key driver, which was 
calculated as DE_reach*R.coeff and is a joint descriptor of the overall downstream-DE 
gene overlap and local DE percentage of every layer in the downstream sub-network of 
each key driver. Note that the above DE_reach and R.coeff values are calculated per 
network; and finally v) Avg_DE_R, the averaged value of impact_per_network for a key 
driver over all the networks to find its overall impact across all networks, since individual 
key drivers may be identified by multiple networks. 

8) Impact_score. Finally, the impact score of a key driver was calculated as (1-
avg_priority_score)*Replication_count*Avg_DE_R. We ranked the key drivers in 
descending order. 

 
B) Robustness Score 
To rank the key drivers based on robustness score, we calculated the following metrics:  

1) Dataset_Count. We calculated how many datasets, i.e., MAYO and ROSMAP cohorts, by 
which a key driver was replicated. 

2) Geneset_Count. We calculated how many types of gene sets, i.e., expanded or seeding 
gene sets, by which a key driver was replicated. 

3) Avg_DE_R score. This score was calculated in the same manner as described above 
(step 7 of Impact Score). 

4) We ranked the key drivers according to robustness first by Dataset_Count in descending 
order, then ranked by Geneset_Count in descending order, and lastly ranked by 
Avg_DE_R score in descending order. 

 
6.7) Bayesian Networks, Predictive Networks, and Network Validation 
Although the co-expression network modules capture highly co-regulated genes operating in 
coherent biological pathways, these modules do not reflect the probabilistic causal information 
needed to identify key driver genes.  
 
Bayesian networks (BNs)[188] are a long-standing form of statistical network modeling used to 
reverse-engineer probabilistic causality among variables; with the development of high-
throughput sequencing technology, BNs have been widely used to infer causal gene regulatory 
networks in different diseases [189-194]. Recent studies have applied BNs to infer molecular 
mechanisms and key drivers in Alzheimer’s disease[22, 128]. 
 
However, BNs have significant limitations with respect to inferring opposite causality given the 
symmetry of joint probability. Recent work has demonstrated that bottom-up causality inference 
can accurately distinguish true causality from opposite causality in equivalent classes[69]. In this 
study, we developed a novel computational network model, called predictive network modeling, 
by integrating conventional (top-down) Bayesian networks with bottom-up causality inference in 
order to address the problem of opposite causality inference in BN modeling. Here, our causal 
predictive network pipeline incorporates multi-scale omics data, including genotypes and 
transcriptomic profiles, in the MAYO and ROSMAP datasets (deconvoluted neuron-specific 
residuals) in order to build causal predictive networks separately in both datasets.  
 
6.8) PathFinder Pathway Analysis 
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The PathFinder method[58] is based on the classical Depth First Search (DFS) algorithm[195]. 
The goal of PathFinder is to expand the initial target gene set by including genes in the 
background network located in the paths connecting input genes.  
 
Since the background network could contain directed and undirected edges, we transformed the 
undirected edges into two edges with the same two end nodes but different directions. We did not 
allow these two edges to form a loop and simultaneously appear in one path.  
 
The DFS algorithm starts from one input gene and stops if the length of path it explores reaches 
K or if the path arrives at a node without a valid child node. Whenever any of the stop criteria 
above was satisfied, we checked whether the path contained at least two input genes. If not, the 
path was discarded. Otherwise, among all the input genes in the path, we determined the target 
gene with the maximum distance to the starting input gene, and all the nodes between this gene 
and the starting input gene were then included in the seeding gene list for the network. In practice, 
we ran DFS for each input gene and combined the results to get the final network seeding gene 
list. 
 
7. Induced Pluripotent Stem Cell (iPSC) Derived Neuron Culture and Assays 

7.1) iPSC Maintenance and Induced Neuron Differentiation 
The human control iPSC line YZ1 was obtained from the University of Connecticut Stem Cell Core 
facility and was maintained in StemFlex Medium (Thermo Fisher Scientific, Waltham, MA). 
Induced neurons (iNs) were generated as described [24, 30, 60], with minor modifications 
described below. Briefly, iPSCs were plated in mTeSR1 media (STEMCELL Technologies, 
Vancouver, Canada) at a density of 95K cells/cm2 on Matrigel-coated plates (Corning Inc., 
Corning, NY) for viral transduction. Media was changed from StemFlex to mTeSR1 as we found 
better transduction viability with mTeSR1. Viral plasmids were obtained from Addgene (plasmids 
#19780, 52047, 30130; Watertown, MA). FUdeltaGW-rtTA was a gift from Konrad Hochedlinger 
(Addgene plasmid #19780), and Tet-O-FUW-EGFP (Addgene plasmid #30130) and pTet-O-
Ngn2-puro (Addgene plasmid #52047) were gifts from Marius Wernig. Lentiviruses were obtained 
from ALSTEM (Richmond, CA) with ultra-high titers and used at the following concentrations: 
pTet-O-NGN2-puro: 0.1 μl/50K cells; Tet-O-FUW-eGFP: 0.05μl/50K cells; Fudelta GW-rtTA: 
0.11μl/50K cells. Transduced cells were dissociated with Accutase (Gibco, Thermo Fisher 
Scientific) and plated onto Matrigel-coated plates at 50,000 cells/cm2 in mTeSR1 (day 0). On day 
1, media was changed to KSR media with doxycycline (2 μg/ml, Sigma-Aldrich, St. Louis, MO). 
Doxycycline was maintained in the media for the remainder of the differentiation. On day 2, media 
was changed to 1:1 KSR:N2B media with puromycin (5 μg/ml, Gibco). On day 3, media was 
changed to N2B media + 1:100 B27 supplement and puromycin (10 μg/ml). Puromycin was 
maintained at this concentration in the media for the remainder of the differentiation. From day 4 
onwards, cells were cultured in NBM media + 1:50 B27 + BDNF, GDNF, CNTF (10 ng/ml each, 
PeproTech, Rocky Hill, NJ) + doxycycline and puromycin as described.  
 
7.2) Induced Neuron Media  

• KSR media: Knockout DMEM (Gibco), 15% KOSR (Invitrogen, Thermo Fisher Scientific), 
1x MEM-NEAA (Invitrogen), 55 μM beta-mercaptoethanol (Invitrogen), 1x GlutaMAX (Life 
Technologies, Thermo Fisher Scientific). 

• N2B media: DMEM/F12 (Life Technologies), 1x GlutaMAX (Life Technologies), 1x N2 
supplement B (STEMCELL Technologies), 0.3% dextrose (D-(+)-glucose, Sigma-Aldrich). 
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• NBM media: Neurobasal Medium (Gibco), 0.5x MEM-NEAA (Invitrogen), 1x GlutaMAX 
(Life Technologies), 0.3% dextrose (D-(+)-glucose, Sigma-Aldrich). 

 
7.3) Induced Neuron Lentiviral Transduction 
At d17 of differentiation, neurons were transduced with lentiviruses encoding shRNA constructs 
against selected targets (Broad Institute, Cambridge, MA), as described in[20]. For each round of 
experiments, two controls were included: a lentivirus expressing the pLKO vector without an 
shRNA (“empty”) or else not transduced (fresh media only). iNs were transduced with a 1:1 ratio 
of media to lentivirus. Following ~18 hours of incubation, media containing virus was removed 
and replaced with fresh media, and cells were incubated for an additional 96 hours. On d22 of 
differentiation, conditioned media was then collected and stored at -20°C for Aβ analyses, and 
cells were lysed either for RNA purification or protein harvest. Gene knockdowns were confirmed 
by qPCR.   
 
7.4) Aβ ELISA 
Aβ present in the conditioned media was measured by the 6E10 Aβ Peptide Panel Multiplex 
ELISA (Meso Scale Discovery, Rockville, MD) following manufacturer instructions. Briefly, 
conditioned media from transduced cells were incubated in pre-blocked wells along with detection 
antibody solution. Plates were read using an MSD SECTOR Imager 2400 and resulting peptide 
concentrations were normalized to total protein in the cell lysate per well measured using the 
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Data for each shRNA knockdown were 
additionally normalized to the average of control conditions for each parameter measured.  
 
7.5) Tau ELISA 
Protein was extracted from iNs by lysis in NP-40 lysis buffer (1% NP40, 0.5M EDTA, 5M NaCl, 
1M Tris) containing cOmplete protease inhibitors and phosSTOP (Roche, Penzberg, Germany). 
Lysates were analyzed using the Multi-Spot Phospho (Thr 231)/Total Tau ELISA (Meso Scale 
Discovery) following manufacturer instructions. Briefly, lysates were incubated in pre-blocked 
wells for 1 hr prior to detection antibody application for 1 hr. Plates were read using an MSD 
SECTOR Imager 2400 and resulting concentrations were again normalized to total protein in the 
cell lysate per well (Pierce BCA Protein Assay Kit) and data for each shRNA knockdown were. 
normalized to the average of control concentrations for each parameter.  
 
7.6) Induced Neuron RNA sequencing  
For iNs, at least 250 ng of total RNA input was oligo(dT) purified using the PureLink RNA Mini Kit 
(Invitrogen), then double-stranded cDNA was synthesized using SuperScript III Reverse 
Transcriptase (Invitrogen) with random hexamers. RIN >9 was confirmed using the Agilent 4200 
TapeStation system (Agilent Technologies). RNAseq on the shRNA-treated iNs was performed 
by Functional Genomics Core at the University of Arizona at a depth of 30 million single-end reads 
(100 bp long). The RNAseq data was QCed and processed with the same steps as outlined in 
ROSMAP RNAseq Data Processing (section 3.4). 
 
8. Statistical Analyses 

All statistical analyses were performed in R unless otherwise noted.  
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Supplementary Information 
Figure S1. Workflow of our network analysis pipeline integrating two independent brain 
transcriptome and genome-wide genotype datasets (MAYO and ROSMAP) to construct neuron-
specific predictive networks of AD and predict key drivers (therapeutic targets) associated with 
AD pathology. TCX: temporal cortex; PFC: prefrontal cortex.  
 
Figure S2. (a,b) Gene expression variance partition analysis (VPA) of bulk-tissue RNAseq data 
in the MAYO (a) and ROSMAP (b) cohorts before deconvolution and covariate adjustment reveals 
a prominent effect of cell type on bulk-tissue gene expression in the brain. ENO2, CD68, GFAP, 
CD34, and OLIG2 were used as cell-type specific marker genes for neurons, microglia, 
astrocytes, endothelial cells, and oligodendrocytes, respectively. ExonicRate: exonic mapping 
rate; RIN or RINcontinuous: RNA integrity number; AgeAtFirstADDxNum: age at first AD 
diagnosis; pmi: post-mortem interval; educ: education. (c,d) The variance partition analysis on 
neuron-specific gene expression residuals in MAYO (c) and ROSMAP (d) after de-convolution 
and covariate adjustment demonstrates that the neuron-specific residuals capture the neuronal 
component (variance) and that the effects of other covariates and other cell types in the brain are 
removed. 
 
Figure S3. (a) Enrichment analysis of multiple multi-gene biomarker lists for the five main CNS 
cell types derived from various scRNAseq studies in control human brains shows no significant 
overlap among the studies. Significance was assessed by Fisher’s exact test with FDR cut-off of 
0.05. (b,c) Principal component analysis (PCA) shows a prominent overlap of scRNAseq 
biomarker expression across the five main CNS cell types in AD residuals from the MAYO (b) 
and ROSMAP (c) datasets after covariate adjustment. (d) Enrichment analysis reveals significant 
overlap between scRNAseq biomarkers and AMP-AD Agora targets for neurons, microglia, 
astrocytes, and oligodendrocytes. The value in parentheses represents the number of genes 
overlapping between each biomarker list and the AMP-AD Agora targets. (e) Compared to 
randomly selected genes from the background overlapping with the AMP-AD Agora list, the 
number of overlapping genes between scRNAseq biomarkers and AMP-AD Agora targets (red 
vertical line along the distribution) is significantly higher for four cell types, including neurons. 
Significance was assessed by Fisher’s exact test with FDR cut-off of 0.05. 
 
Figure S4. Distributions of Pearson correlation coefficients between our neuron-specific residual 
derived from ENO2 and the “pseudo” neuron-specific residuals derived from a randomly selected 
subset of excitatory (a,b) and inhibitory (c,d) neuronal scRNAseq biomarkers by population-
specific expression analysis (PSEA), for both the MAYO and ROSMAP datasets. (e,f) 
Distributions of Pearson correlation coefficients for both datasets between “pseudo” residuals 
derived from a randomly selected subset of background genes and “pseudo” neuron-specific 
residuals derived from a randomly selected subset of neuronal scRNAseq biomarkers. Red 
vertical line indicates the median of each distribution. 
 
Figure S5. (a,b) Heatmaps showing clusters of upregulated (red) and downregulated (purple) 
genes in the neuron-specific residuals of AD patients compared to cognitively normal (CN) 
controls in MAYO (a) and ROSMAP (b). 
 
Figure S6. The remaining 9 of 11 neuron-specific Bayesian and predictive network models 
derived from the MAYO and ROSMAP seeding and expanded gene sets, with the downstream 
subnetworks of the 10 validated targets highlighted. Posterior probability cut-offs used to build 
each network model are indicated in each title.  
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Figure S7. (a,b) The age distribution of AD and cognitively normal (CN) samples in the MAYO 
(a) and ROSMAP (b) datasets, each compared using an unpaired, two-sided Wilcoxon test. There 
was no significant age difference in MAYO (p-value=0.57) and a significant difference in ROSMAP 
(p-value=3.68E-13). To remove this effect in ROSMAP, age was adjusted along with other 
covariates in the ROSMAP residuals. (c,d) The sex distribution of AD and CN samples in the 
MAYO (c) and ROSMAP (d) datasets. A Chi-square test showed no significant difference in the 
sex breakdown in the MAYO (p-value=0.24) or ROSMAP (p-value=0.0726) datasets. 
 
Figure S8. The frequency distributions of measurements for each AD endophenotype (Aβ38, 
Aβ40, Aβ42, Aβ42:Aβ40, p231-tau, tau, p231-tau:tau) found by pooling the values from all 19 
shRNA targets plus controls for each parameter. These plots demonstrate normal and normal-
like distributions for each measured AD endophenotype. 
 
Table S1. Neuron-specific differentially expressed (DE) gene expression signatures associated 
with AD in the MAYO and ROSMAP RNAseq datasets. There are 2,097 significant DE genes 
overlapping between the two datasets.  
 
Table S2. Significantly enriched pathways associated with neuron-specific DE gene signatures in 
the MAYO and ROSMAP RNAseq datasets, indicating dysregulated biological processes in AD. 
Pathway enrichment was assessed using Human ConsensusPathDB (CPDB).  
 
Table S3. List of cis-eQTL genes in the MAYO and ROSMAP datasets. 
 
Table S4. Significantly enriched biological pathways associated with gene modules in the MAYO 
and ROSMAP neuron-specific co-expression networks. 
 
Table S5. Summary of statistical analyses of Ab and tau data from human iNs following shRNA 
knockdown of each of the 19 prioritized key driver targets.  
 
Table S6. Differential expression (DE) analysis of gene expression from RNAseq data from 
human iNs following shRNA knockdown of each of the 10 AD endophenotype modulating key 
driver targets. 
 
Table S7. Significantly perturbed pathways associated with DE signatures of each of the 10 AD 
endophenotype modulating targets in human iNs.  
 
Table S8. Cell-type specific biomarkers derived from existing scRNAseq studies for neurons, 
microglia, astrocytes, endothelial cells, and oligodendrocytes. 
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Figure S3

Cell Type Overlap with 
AMP-AD Agora P-value

Astrocyte 5.54% (16) 9E-04

Endothelial 1.68% (6) 0.855

Microglial 7.85% (31) 0

Neuron 6.53% (37) 0

Oligodendrocyte 5.77% (30) 0

Astrocyte Endothelial Microglial Neuron Oligodendrocyte
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Figure S4
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