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Abstract 16 
Acinetobacter are generally soil-dwelling organisms that can also cause serious human 17 
infections. A. baumannii is one of the most common causative agents of Acinetobacter 18 
infections and is extensively drug resistant. However, an additional 25 species within the 19 
genus have also been associated with infection. A. baumannii encodes 6 RND efflux pumps, 20 
the most clinically relevant class of efflux pumps for antibiotic export, however the 21 
distribution and types of RND efflux pumps across the genus is currently unknown. Sixty-three 22 
species making up the Acinetobacter genus were searched for RND systems within their 23 
genomes. We also developed a novel method using conserved RND residues to predict the 24 
total number of RND proteins including currently undescribed RND pump proteins. The total 25 
number of RND proteins differed both within a species and across the genus. Species 26 
associated with infection tended to encode more pumps. AdeIJK/AdeXYZ was found in all 27 
searched species of Acinetobacter, and through genomic, structural and phenotypic work we 28 
show that these genes are actually orthologues of the same system. This interpretation is 29 
further supported by structural analysis of the potential drug-binding determinants of the 30 
associated RND-transporters, which reveal their close similarity to each other, and 31 
distinctiveness from other RND-pumps in Acinetobacter, such as AdeB. Therefore, we 32 
conclude that AdeIJK is the fundamental RND system for species in the Acinetobacter genus. 33 
AdeIJK can export a broad range of antibiotics and provides crucial functions within the cell, 34 
for example lipid modulation of the cell membrane, therefore it is likely that all Acinetobacter 35 
require AdeIJK for survival and homeostasis. In contrast, additional RND systems, such as 36 
AdeABC and AdeFGH were only found in a subset of Acinetobacter, that are associated with 37 
infection. By understanding the roles and mechanisms of RND efflux systems in 38 
Acinetobacter, treatments for infections can avoid efflux-mediated resistance and improve 39 
patient outcomes.    40 
 41 
Impact statement 42 
Efflux pumps extrude antibiotics from within bacterial cells directly conferring antibiotic 43 
resistance and underpinning other mechanisms of resistance. By understanding the exact 44 
complement of efflux pumps and their roles across infection-causing organisms such as those 45 
within the Acinetobacter genus, it is possible to understand how cells become resistant to 46 
antibiotics and how this might be tackled. Efflux is an attractive target for inhibition to 47 
increase susceptibility to existing drugs and therefore, knowing which pumps are present in 48 
each species is important. Furthermore, we present a novel method using conserved RND 49 
residues to predict the total number of RND proteins including currently novel systems, within 50 
bacterial genomes. 51 
 52 
Data Summary 53 
This study made use of publicly available datasets downloaded from NCBI’s GenBank. A full 54 
list of accession numbers can be found in supplementary text 3. Bioinformatics software 55 
used in this study was previously published and listed in the methods section. The BLASTp 56 
conserved residue files are in S1 text 1 and 2.  57 
The authors confirm all supporting data, code and protocols have been provided within the 58 
article or through supplementary data files. 59 
  60 
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Introduction 61 
Members of the Acinetobacter genus are Gram-negative bacteria commonly isolated from 62 
soil and water (1). However, many species are also important human pathogens and 63 
Acinetobacter baumannii is on the World Health Organisation’s priority pathogens list due to 64 
the number of drug resistant infections it causes (2). In addition to A. baumannii, a number 65 
of other Acinetobacter species are known to cause human infections for example A. lwoffii, 66 
which is the leading cause of Acinetobacter-derived bacteraemia in England and A. 67 
nosocomialis and A. pittii, which also cause nosocomial infections (3,4).  68 
 69 
A. baumannii isolates are commonly multidrug resistant and this is mediated by a 70 
combination of molecular mechanisms including acquired resistance genes (e.g. blaOXA-23) (5), 71 
mutations in genes encoding the target of antibiotics, for example gyrA (6) and increased 72 
expression of multidrug efflux pump systems which actively pump antibiotic compounds out 73 
of the cell (7,8). Of particular importance are efflux pumps from the resistance nodulation 74 
division (RND) family. RND systems are broadly split into two categories based upon the 75 
substrates they export – hydrophobic and amphiphilic efflux pumps (HAE) which contribute 76 
to antimicrobial resistance and heavy metal efflux pumps (HME) (9). Typical RND systems are 77 
tripartite efflux pumps, which are built around an inner membrane H+/drug antiporter (9), the 78 
allosteric “pumping” of which allows the drug to be acquired from either the periplasmic 79 
space or the outer leaflet of the inner membrane and passed out of the cell via a conduit 80 
involving the partner outer membrane factor (OMF) channels and periplasmic adaptor 81 
proteins (PAPs) (10–13). The RND transporters themselves function as trimers, which contain 82 
three functionally interdependent protomers, cycling consecutively through the Loose (L), 83 
Tight (T) and Open (O) conformational states during cooperative catalysis (14,15). RND pumps 84 
exhibit a broad substrate specificity which is underpinned by the presence of distinct binding 85 
pockets within the transporter protomers. The principal binding pockets being known as the 86 
‘Proximal Binding Pocket’ (PBP) and ‘Distal Binding Pocket’ (DBP), which have wide 87 
specificities, but are broadly associated with the processing of drugs of different molecular 88 
weight and are separated by the so-called gating-, or switch-loop (16–19).  89 
 90 
To date, nine RND genes have been found in Acinetobacter: adeJ, adeB, adeE, adeG, adeY, 91 
abeD, arpB, acrB and czcA (7,20–28). AdeABC, AdeFGH and AdeIJK have all been characterised 92 
in A. baumannii and are known to export a broad range of compounds. AdeABC exports 93 
aminoglycosides, trimethoprim, chloramphenicol and fluoroquinolones (20,21). AdeFGH also 94 
exports trimethoprim, chloramphenicol and fluoroquinolones, but in addition exports 95 
tetracycline, tigecycline and clindamycin (7). Lastly, AdeIJK exports chloramphenicol, 96 
tetracycline, fluoroquinolones, trimethoprim as well as beta lactams, erythromycin, 97 
lincosamides, fusidic acid, novobiocin and rifampicin (23). Expression of AdeABC and AdeFGH 98 
can be increased in the presence of an antibiotic challenge, leading to reduced susceptibility 99 
to the drug (7,29,30). AdeIJK is constitutively expressed and provides intrinsic levels of 100 
resistance to antibiotics. Whilst small increases in expression have been characterised, 101 
leading to multi-drug resistance (MDR) phenotypes, increased expression of AdeIJK can be 102 
toxic to the cell, therefore increased expression of AdeABC and AdeFGH more commonly 103 
mediate MDR (31,32).  104 
 105 
The number of RND efflux pumps present varies between bacterial species and also within 106 
members of the same species (10,24,33–35). For example, Neisseria gonorrhoeae has only 107 
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one RND system, while Pseudomonas aeruginosa can have up to 12, showing that the number 108 
of RND genes in a given genome does not necessarily correlate with the ability of bacteria to 109 
cause human infections (36). However, it seems plausible that encoding more RND systems 110 
may allow a bacterium to adapt to a broader range of environmental stresses.  111 
 112 
While a number of efflux pumps have been well-studied in A. baumannii, the range of RND 113 
systems across the Acinetobacter genus is not currently known. In this study we have 114 
developed a method to search available genomes for RND efflux systems and have used it to 115 
determine their number, type and distribution across the entire Acinetobacter genus, and 116 
have considered whether these correlate with species that commonly cause human 117 
infections. By mapping these data onto the phylogeny of the Acinetobacter genus, combined 118 
with structural modelling of these systems, we have shown that the pumps currently 119 
annotated as AdeIJK and AdeXYZ are actually orthologous RND systems. In addition, we show 120 
that AdeIJK is the ancestral pump found across all Acinetobacter species and that other RND 121 
systems, such as AdeABC have been acquired independently in specific Acinetobacter species. 122 
 123 
Methods 124 
Predicting the total number of RND proteins within a whole genome sequence 125 
Amino acid sequences of characterised HAE proteins from 15 different Gram-negative 126 
bacterial species and HME RND proteins from 7 different species were aligned in separate 127 
files using MAFFT (v.7) (37). Alignments of the final HAE and HMD proteins used can be found 128 
in supplementary S1, text 1 and 2. The consensus sequence in >80% of the aligned sequences 129 
was taken from either alignment file to create conserved residue files, supplementary S3, 130 
texts 1-2, which can then be searched using BLASTp for other RND proteins within genomes 131 
from both Acinetobacter and other Gram-negative species (38). An e-value cutoff of 10 was 132 
used for the BLASTp command.    133 
 134 
For the prediction of RND proteins across the genus, up to 4 reference sequences per 135 
Acinetobacter species were downloaded from NCBI, totalling 170 genomes. A full list of 136 
sequences and accession codes can be found in supplementary S2 table 1. At the time of 137 
analysis there were 64 Acinetobacter species fully validated by ICNP 138 
(https://lpsn.dsmz.de/genus/acinetobacter).  139 
 140 
When determining the number of RND proteins in other Gram-negative species the following 141 
reference sequences were searched: A. baumannii AYE CU459141.1, C. jejuni NCTC 11168 142 
GCA_900475265.1, E. coli K12 MG1655 NC_000913.3, H. influenzae NCTC 8143 143 
GCA_001457655.1, K. pneumoniae ATCC 43816 CP064352.1, N. gonorrhoeae FA1090 144 
NC_002946.2, P. aeruginosa PAO1 GCA_000006765.1, S. enterica SL1344 GCA_000210855.2 145 
and S. flexneri 5a M90T CP037923.  146 
 147 
Furthermore, 100 A. baumannii assemblies from NCBI were downloaded to determine if the 148 
number of RND proteins differs within a species, supplementary S3, text 3. These assemblies 149 
were quality checked using Quast (v.5.0.2) (39), where all assemblies had an N50 of >30,000. 150 
Furthermore, their average nucleotide identity across the genome compared to A. baumannii 151 
AYE (CU459141.1) was confirmed to be > 95% using fastANI (v.1.31) (40). The presence if 152 
duplicate A. baumannii genomes were detected using MASH (v.2.2.2) to confirm all genomes 153 
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represented genetically distinct strains (41). The same sequences were used for 154 
recombination analysis of AdeABC, AdeFGH and AdeIJK below.   155 
 156 
Finding individual known RND genes across Acinetobacter 157 
In addition to searching for the number of RND proteins within the genomes, the presence of 158 
known RND genes was also determined across the entire genus. The sequences of RND genes 159 
were searched using ABRicate (v.0.8.13) with a custom database comprised of PAP, RND and 160 
OMF encoding genes, S3 text 4 (42). Most reference gene sequences were from A. baumannii 161 
AYE (CU459141.1), apart from adeDE from A. pittii PHEA-2 (NC_016603.1), adeXYZ from A. 162 
baylyi ADP1 (CR543861.1) and acrAB from A. nosocomialis NCTC 8102 (CP029351.1). ABRicate 163 
cut-off values of >50% identity and >50% coverage were used to highlight orthologs in the 164 
different species.  165 
 166 
The heatmap displaying the number of RND proteins and presence of RND genes was created 167 
using R packages gheatmap in ggtree, ggplot2 and treeio, where the phylogenetic tree and 168 
the metadata were visualised (43–46). A literature search was done to determine if a given 169 
Acinetobacter species had been documented to cause human infection by searching PubMed 170 
for the given species and “infection”. The phylogenetic tree of Acinetobacter was created 171 
using a core gene alignment generated by Panaroo (v.1.2.3) as an input for Fasttree (v.2.1.10) 172 
(47). Fasttree was implemented using the generalised time reversible model of evolution (48).  173 
 174 
Genomic context and recombination 175 
To determine if adeIJK is found in the same genomic context in three species of Acinetobacter, 176 
A. baumannii AYE (CU459141.1), A. lwoffii 5867 (GCA_900444925.1) and A. baylyi ADP1 177 
(CR543861.1), 10 Kb of sequence up and down stream of adeIJK was extracted and visualised 178 
in Easyfig (v.2.2.5), with tBLASTx homology annotated (38,49). To assess whether adeABC, 179 
adeFGH or adeIJK were found in a recombination hotspots, whole genome alignments of A. 180 
baumannii (n=100 assemblies, described above, mapped against A. baumannii AYE 181 
CU459141.1 reference) were created using Snippy (4.6.0) and Gubbins (v.3.1.3), where 182 
Gubbins highlighted areas of recombination (50,51). Recombination predictions were 183 
visualised in Phandango (52).  184 
 185 
Structural analysis and modelling of Acinetobacter RND pump components. 186 
Experimental structures of AdeJ from A. baumannii in both apo- and eravacycline-bound 187 
forms (7M4Q.pdb; and 7M4P.pdb respectively (53)) were used to perform homology 188 
modelling of the AdeJ from A. lwoffii (76.38% identity) and AdeY from A. baylyi (79.25% 189 
identity), using I-TASSER (54).   190 
 191 
For the analysis of the properties of the drug-binding pockets, the experimental eravacycline-192 
bound structure of A. baumannii AdeJ (PDB ID 7M4P, chain B), corresponding to the T-193 
conformer was used, as well as the corresponding T-conformer structures of AcrB occupied 194 
by minocycline (PDB ID 4DX5.pdb chain B; (55)) and levofloxacin (PDB ID 7B8T, chain C; (56)). 195 
In addition, the L-conformer of the asymmetric AcrB (4DX5.pdb (55)); and the L-conformer of 196 
the AdeB in L*OO state (7B8Q.pdb (56)), were used to analyse the drug-binding pockets of 197 
AcrB and AdeB respectively, alongside the L-conformer and the ampicillin-bound T-conformer 198 
of the MtrD structure (6VKS.pdb; (57)). Sequence alignments have been performed with 199 
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MAFFT (v.7) (37), and secondary structure visualised with ESpript 3 (58). All visualisations 200 
done with the PyMOL Molecular Graphics System, (v.1.8), Schrödinger, LLC. 201 
 202 
Cloning of Acinetobacter efflux genes 203 
Efflux pump genes adeIJK from A. baumannii AYE and adeXYZ from A. baylyi ADP1 204 
(supplementary S2, table 2) were cloned using NEB HiFi cloning into the expression vector 205 
pVRL2 (59). Briefly, the efflux genes were amplified using PCR and primers in supplementary 206 
S2, table 3. The vectors were digested using NotI-HF and XmaI restriction endonucleases (New 207 
England Biolabs) that left complementary overhangs to the PCR products. The PCR products 208 
and digested vectors were then ligated using HiFi assembly mix. Cloned vectors were 209 
transformed into A. baumannii ATCC 17978 ΔadeAB ΔadeFGH ΔadeIJK to determine function. 210 
The complete sequence of cloned vectors was determined by Plasmidsaurus, sequencing files 211 
in supplementary files S5 and S6 (60).  212 
 213 
Antimicrobial Susceptibility  214 
The minimum inhibitory concentration was measured using broth micro-dilution method 215 
according to CLSI guidance with 1% arabinose (Acros Organics) (61,62). Compounds were 216 
chosen because they are exported by different Ade systems: Ampicillin (Sigma), 217 
Chloramphenicol (Sigma), Ciprofloxacin (Acros Organics), Clindamycin hydrochloride (TCI 218 
Chemicals), Ethidium bromide (Acros Organics), Rifampicin (Fisher) and Tetracycline (Sigma). 219 
  220 
Results  221 
Development of BLASTp database to detect RND proteins 222 
The number of RND proteins is known to differ between different bacterial genera. Here, we 223 
developed a method to quantify the number of HAE and HME RND proteins within a genome 224 
sequence based upon conserved residues in characterised RND proteins. To do this, the 225 
sequences of 24 known RND genes from 16 species were aligned to determine the conserved 226 
residues which could be used to search for known and unknown RND genes in genome 227 
sequences of Gram-negative bacteria. Due to the degree of difference in sequences between 228 
HAE and HME pumps, two separate alignments were created. From each alignment residues 229 
that were the same in 80% of sequences or more were used to create a conserved residue 230 
file, with which BLASTp could search genomes to determine the number of each type of RND 231 
pump (supplementary S3, texts 1-2). To validate this method, the number of RND pumps in 232 
well characterised type strains of Gram-negative bacteria were determined, shown in table 233 
1.  234 
 235 
Table 1: Number of RND proteins within the genomes of Gram-negative bacteria, as determined by 236 
BLASTp of the conserved RND residues. 237 

Species Accession 
Number of 
predicted HAE 
proteins 

Number of 
predicted 
HME proteins 

Total number of 
proposed RND 
proteins in the 
literature 

Acinetobacter 
baumannii ACICU GCA_000018445.1 5 1 6 (63) 

Acinetobacter 
baumannii AYE CU459141.1 4* 1 6 (63) 
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Campylobacter jejuni 
NCTC 11168 GCA_900475265.1 2 0 2 (10) 

Escherichia coli K12 NC_000913.3 6 1 7 (64) 
Haemophilus 
influenzae NCTC 8143 GCA_001457655.1 1 0 1 (65) 

Klebsiella 
pneumoniae ATCC 
43816 

CP064352.1 8 1 9 (10,66,67)  

Neisseria 
gonorrhoeae FA1090 NC_002946.2 1 0 1 (68) 

Pseudomonas 
aeruginosa PAO1 GCA_000006765.1 10 1 11 (10) 

Shigella flexneri 5a 
M90T CP037923 5 1 6 (69) 

Salmonella enterica 
serovar Typhimurium 
SL1344 

FQ312003.1 6 0 5 (10) 

* AB AYE results were missing ArpB due to sequence dissimilarity with the RND proteins used in our 238 
alignments. This is discussed further below.  239 
S. enterica Typhimurium is shown separately at the bottom because an additional RND efflux protein, to 240 
those described in the literature, was found. 241 
 242 
For A. baumannii, C. jejuni, E. coli, H. influenzae, N. gonorrhoeae, P. aeruginosa, K. 243 
pneumoniae and S. flexneri the number of RND efflux pumps detected using our method 244 
matched that in the literature for the species tested, validating this approach. For example, 245 
N. gonorrhoeae is well known for encoding only one RND protein (68) and this was also true 246 
when FA1090 was tested using our method. For E. coli K12 all 7 known RND proteins were 247 
detected, including the HME protein CusA. CusA was identified in both the HAE and HMD RND 248 
protein searches, but only included once in table 1. Interestingly, we were also able to find an 249 
additional RND protein in S. enterica serovar Typhimurium, with homology to OqxB.  250 
 251 
In A. baumannii AYE, however, the BLASTp searches only identified 5 out of 6 known RND 252 
proteins. Both HAE and HMD searches failed to highlight ArpB, an RND-like protein that is 253 
involved in opaque to translucent colony formation switching (27). ArpB was added to both 254 
the HAE and HME alignments, but due to differences in the sequences of the other RND 255 
proteins compared to it, the number of conserved residues reduced dramatically across the 256 
aligned proteins and rendered the method unable to then detect any RND proteins 257 
successfully via BLASTp. Phylogenetic trees based upon the alignments with ArpB are shown 258 
in supplementary S1, figures 3 and 4 and show that ArpB clusters separately from the other 259 
proteins. Interestingly, when using BLASTp to estimate the number of HAE RND proteins 260 
across 100 sequences of A. baumannii (including Acinetobacter baumannii ACICU), in 95% of 261 
the sequences all 5 proteins were detected, supplementary S2, table 4. This suggests that 262 
ArpB can be identified by the search and that the sequence of ArpB in A. baumannii AYE differs 263 
from that of other A. baumannii sequences. When directly comparing the amino acid 264 
sequence of ArpB from AYE and ArpB from ACICU, they are only 24.5% identical with a 265 
coverage of 94%.  266 
 267 
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Of the 100 A. baumannii sequences analysed 95% had 5 HAE RND proteins, 3% had 4, and 2% 268 
had 6/7. In the three sequences that had only 4 RND proteins, they were missing AdeB and a 269 
subsequent targeted BLASTn search for adeB provided no results. The additional RND protein 270 
in the other two sequences (GCA_000302135.1 and GCA_000301875.1) is currently not 271 
characterised and when looking more closely at the 7th protein identified in 272 
GCA_000301875.1, it seems to be truncated RND protein with sequence similarity to AdeB 273 
and found next to ArpB.   274 
 275 
In the 100 A. baumannii sequences the number of HME pumps also differed within the 276 
species. 67% of sequences had only 1 heavy metal pump protein – CzcA, supplementary S2, 277 
table 5. Although another inner membrane protein (CzcD) exists in the Czc system, its 278 
sequence is much shorter than the HME proteins in the alignment, so it isn’t found using the 279 
BLASTp search. The remaining sequences had an additional 1-3 proteins in their genomes. 280 
Where, 27% had a total of two HME proteins, CzcA and a protein annotated as CusA. 281 
Furthermore, 5% had 3 HME proteins where the third protein was also labelled as CzcA, but 282 
wasn’t found with CzcD, so it is likely to be annotated incorrectly and could represent a third 283 
distinct heavy metal efflux system in A. baumannii. Finally, one sequence had 4 HME proteins 284 
and three of them were annotated as CzcA and one as CusA. Of the three CzcA, one was found 285 
in the expected operon with other Czc proteins and the other two are presumably proteins 286 
with sequence similarity to CzcA.  287 
 288 
Table 1 shows that not only does the method to identify RND proteins work across a broad 289 
range of Gram-negative species, it has also highlighted uncharacterised RND proteins within 290 
genomes. The method was further applied to determine the number of RND proteins in every 291 
species of the Acinetobacter genus, figure 1, column 1.   292 
 293 
The number of RND proteins differs across the Acinetobacter genus 294 
The number of RND proteins in species of Acinetobacter ranged from 2 to 9, figure 1 column 295 
1, and this correlated with whether that species is known to cause human infection. When 296 
doing a Pearson’s correlation between number of RND proteins and ability to cause infection 297 
the r2 value was 0.1411, and therefore 14% of the variance in infectivity can be explained by 298 
number of RNDs, which was statistically significant (p=0.002). Therefore, infection causing 299 
species generally encoded more RND genes than those that have not been reported to cause 300 
infection. Whilst there are likely to be more Acinetobacter species that have the capacity to 301 
cause human infection, the heatmap documents those published to date. 302 
 303 
Previous work has shown that not all species have the same number of total RND 304 
components, for example in A. baumannii around 20% of all isolates are missing the OMF 305 
AdeC and up to 25-30% have been shown to be missing the RND protein AdeB (24,33,70). This 306 
is also evident in our data; whilst the number of RND proteins differs across the Acinetobacter 307 
genus, the number of RND proteins also differs between members of the same species. For 308 
example, in A. colistiniresistens sequences there were between 3 and 5 HAE RND proteins and 309 
between 1 and 4 HME RND proteins. The mean average of the total RND proteins, 7, 310 
highlighted in the four A. colistiniresistens sequences tested is shown in figure 1. Furthermore, 311 
this variation is seen in other species for example A. bereziniae, where 3-4 HAE and 1-3 HME 312 
proteins were highlighted as well as in A. haemolyticus, A. pittii, A. proteolyticus, A. tandoii 313 
and above in the 100 A. baumannii sequences. 314 
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 315 
Presence of RND efflux pumps across the Acinetobacter genus 316 
In order to get a broader picture of what RND genes, including periplasmic adaptor protein 317 
(PAP) genes and outer membrane factor (OMF) genes, are present in the Acinetobacter genus, 318 
genomes from all validated Acinetobacter species were searched for the presence of these 319 
genes using a custom database of Acinetobacter RND genes in ABRicate, supplementary S3, 320 
text 4. Figure 1 shows a heatmap, where the presence (green) and absence (blue) of RND 321 
genes is mapped onto a phylogenetic tree of the genus. The average number of RND proteins, 322 
as determined by the novel RND residue BLASTp search, is also plotted in greyscale, column 323 
1. The average number of RND proteins sometimes over or underestimates the number 324 
compared to the RND genes found by ABRicate, this is because ABRicate searched only one 325 
reference sequence and the number of RND proteins is the average of up to four sequences 326 
searched by BLASTp. When directly comparing the same sequence using BLASTp to search for 327 
proteins with conserved RND residues and ABRicate to highlight all characterised RND genes, 328 
BLASTp finds the same or more efflux pump proteins compared to ABRicate in 38 species. In 329 
the remaining 27 species, BLASTp found 75% of the RND proteins highlighted by ABRicate. 330 
Therefore, a combination approach of both methods provides the best resolution when 331 
looking for RND genes and proteins. In total BLASTp found 274 proteins with conserved RND 332 
residues and ABRicate found 272 characterised RND genes.  333 
 334 
Parts of the metal ion efflux system, Czc, are also common across the genus where czcD and 335 
czcA, coding for the inner membrane proteins, are found in almost all species. In contrast, 336 
other RND systems, such as adeABC and adeFGH, are commonly found in a clade comprised 337 
of A. baumannii and closely related species, which have a higher propensity to cause human 338 
infection.  339 
 340 
Notably, almost all Acinetobacter species encode adeIJK and it is striking, that those that do 341 
not, encode the adeXYZ operon instead. This is true in all but three species, A. 342 
colistiniresistens, A. gyllenbergii and A. proteolyticus, which encode genes that are similar to 343 
both adeK and adeZ according to the ABRicate search. Indeed, when looking more closely at 344 
these, it seems that they have a full adeIJK operon, but also an additional RND operon with 345 
an OMF that is 69-71% identical to adeK, found with a PAP and RND protein. 346 
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 347 
Figure 1: The presence of RND pumps across the Acinetobacter genus. 348 
Heatmap of Acinetobacter genus with characterised RND genes presence/absence and the number of RND 349 
proteins. For column 1, number of RNDs, the mean average of the total number of (both HME and HAE) RND 350 
efflux proteins for each species was determined, to 1 significant fgure place, where the greater the number of 351 
proteins, the darker grey the colour. For column 2, if a species has been shown in the literature to cause infection 352 
it is turquoise. Subsequent columns 3-25 are highlighted green if the efflux gene was found in the reference 353 
sequences using ABRicate. A. lwoffii is highlighted yellow, A. baumannii is pink and A. baylyi is blue. 354 
 355 
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 A. baumanii adeIJK and A. baylyi adeXYZ are orthologous efflux systems 356 
 357 
Originally, adeXYZ was described in A. baylyi and stated to have high sequence similarity to 358 
adeIJK from A. baumannii (24,71). The fact that the absence of adeIJK in figure 1 seems to 359 
match almost perfectly to the presence of adeXYZ suggested that these pumps may be 360 
divergent examples of the same pump, rather than distinct systems. Therefore, the sequence, 361 
genomic location, function and structure of adeIJK from A. baumannii AYE, and adeXYZ from 362 
A. baylyi ADP1 were compared. In addition, another adeIJK from a more phylogenetically 363 
distant Acinetobacter (A. lwoffii 5867) was included for context.  364 
 365 
In A. baumannii AYE, A. lwoffii 5867 and A. baylyi ADP1, the adeIJK and adeXYZ operons are 366 
found in the same genomic location, with conserved regions up and immediately downstream 367 
of the operon, figure 2. The genes flanking the adeIJK/XYZ operons encode PAP2 phosphatase 368 
family proteins and YbjQ family proteins. Despite the high level of conservation around the 369 
operons, downstream from the OMF the sequences differ dramatically. Neighbouring genes 370 
that could be annotated by Prokka (72) are also included in figure 2, however there are 371 
discrepancies where orthologous genes are annotated differently in different species.  372 
 373 
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 374 
 375 

 376 
Figure 2: The genomic context of adeIJK and adeXYZ is identical 377 
Figure was created in Easyfig (v.2.2.5) using A. baumannii AYE, A. baylyi ADP1 and A. lwoffii 5867 sequences plus and minus 10 Kb from the ade operons, annotated using 378 
Prokka (72). The grey scale shows tBLASTx homology and arrows refer to coding regions within the genome. Immediately around adeIJK/XYZ is conserved but differs further 379 
downstream of the OMF. A. baumannii and A. baylyi are more similar downstream of the OMF, compared to A. lwoffii. The two genes immediately after each OMF are genes 380 
which encode YbjQ family proteins and this is conserved in all three species (Abau: HKO16_14475,HKO16_14480, Abay: KJPEBFEI_02742, KJPEBFEI_02743, Alwo: 381 
NCTC5867_02643, ybjQ. The gene immediately upstream of AdeI/X is a gene encoding a PAP2 phosphatase family protein (Abau:HKO16_14455, Abay:KJPEBFEI_02738, 382 
Alwo:NCTC5867_02647).  383 
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 384 
The periplasmic adaptor proteins, adeI and adeX, in A. baumannii, A. lwoffii and A. baylyi are 385 
between 62-70% similar. The sequence of adeI from A. baumannii is more similar to adeX 386 
from A. baylyi than adeI from A. lwoffii. The same pattern can be seen for the RND (adeJ/Y) 387 
and OMF (adeK/Z) genes, where the nucleotide sequences from A. baumannii for each 388 
component of the tripartite pump are more like the sequences from A. baylyi than A. lwoffii, 389 
despite them sharing the nomenclature with A. lwoffii, figure 3.  390 
 391 

 392 
Figure 3: Venn diagrams of percentage identity between Acinetobacter RND genes 393 
Percentage identity was determined by a MAFFT (v.7) alignment of the PAP, RND and OMF genes, which was 394 
analysed by Sequence Manipulation Suite (73).  395 
BM- A. baumannii (green) LW-A. lwoffii (yellow) BY-A. baylyi (blue) a – PAP b – RND c- OMF. In bold are 396 
most similar pair for PAP, RND and OMF based upon nucleotide % identity. 397 
 398 
Given that adeIJK/XYZ is found in all Acinetobacter, but adeABC and adeFGH are found only 399 
in a subset of species, the recombination levels and polymorphisms in and around all three 400 
ade operons were analysed. To determine if there were any recombination hotspots and 401 
polymorphisms around adeIJK, Gubbins was used to infer recombination levels across the 402 
whole genomes of 100 A. baumannii sequences. Figure 4 shows the recombination 403 
predictions for adeABC (e and f), adeFGH (c and d) and adeIJK (a and b) across the sequences. 404 
Of the three systems, there is no signature of recombination seen around the adeIJK genes 405 
across these sequences indicating this is an ancestral operon common across all genomes 406 
studied here. High levels of recombination are seen around adeABC and since it is found in A. 407 
baumannii and other infection-causing species (figure 1) but not all Acinetobacter, it is likely 408 
that this operon is in a recombination hotspot where genes are acquired by horizontal gene 409 
transfer. Polymorphisms are also shown in figure 4 (red and blue blocks), where more are 410 
seen around AdeABC. Further to this, the level of recombination and polymorphisms is also 411 
low around adeFGH.412 
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Figure 4: AdeIJK has fewer SNPs within it and lower levels of recombination surrounding it than AdeABC or AdeFGH. 414 
100 A. baumannii genomes were aligned against reference A. baumannii AYE and the presence of polymorphisms and recombination was determined using Gubbins. Parts 415 
a, c and e are zoomed in parts of the genome at each ade operon, showing the levels of SNPs (red and blue squares, red are ancestral SNPs) and recombination levels (the 416 
black line on the bottom, the higher the peak the more recombination). The right hand side, b, d and f, show the entire genome and the position of each different ade 417 
operon, which is highlighted red underneath the label. All figures have an associated phylogenetic tree created by Snippy to show the relatedness of the A. baumannii 418 
sequences. AdeIJK (a) has fewer SNPs and recombination than AdeABC (e) and AdeFGH (c) indicating it is highly conserved. 419 
 420 
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The phenotypic impact of adeIJK and adeXYZ expression is the same. 421 
 422 
To determine whether the substrate profile of AdeIJK and AdeXYZ are the same, adeIJK from 423 
A. baumannii AYE and adeXYZ from A. baylyi ADP1 were cloned and expressed in A. baumannii 424 
ATCC 17978 ΔadeAB ΔadeFGH ΔadeIJK and susceptibility to known substrates of different Ade 425 
systems was measured. The effect of expression of AdeIJK and AdeXYZ in ATCC 17978 ΔadeAB 426 
ΔadeFGH ΔadeIJK was identical with both conferring decreased susceptibility to 427 
chloramphenicol, ciprofloxacin, clindamycin, tetracycline and rifampicin. 428 
 429 
Initially, these plasmids were expressed in ATCC 17978 lacking only adeIJK (ΔadeIJK), which 430 
increased the ethidium bromide (EtBr) MIC from 1 to 64 µg/mL (data not shown). However, 431 
in the triple pump deletion background ΔadeAB ΔadeFGH ΔadeIJK, expression of neither 432 
AdeIJK nor AdeXYZ altered susceptibility to EtBr (Table 2) suggesting AdeIJK does not export 433 
EtBr as shown previously (23). The basis for this difference in relation to strain background is 434 
not fully understood but has been reported previously (23).   435 
 436 
Table 2: Broth microdilution MIC results (μg/mL) for AdeIJK and AdeXYZ when expressed in A. 437 
baumannii ATCC 17978 ΔadeAB ΔadeFGH ΔadeIJK. 438 

Strain Chloramphenicol  Ciprofloxacin  Clindamycin  Tetracycline  Ethidium 
Bromide  

Rifampicin  

RND systems 
known to 
export 

AdeABC, AdeFGH, 
AdeIJK 

AdeABC, 
AdeFGH,  
AdeIJK 

AdeFGH, 
AdeIJK 

AdeABC, 
AdeIJK 

AdeABC AdeIJK 

Presumed 
efflux routes 

DBP DBP DBP DBP/PBP  DBP PBP 

WT 64 16 64 2 >256 4 

KO 8 8 4 0.25 1 2 

padeIJK 512 128 16 8 1 8 

padeXYZ 512 128 32 8 1 8 

WT = A. baumannii ATCC 17978, KO = A. baumannii ATCC 17978 ∆AdeAB ∆AdeFGH ∆AdeIJK + empty pVRL2 439 
vector, padeIJK = A. baumannii ATCC 17978 ∆AdeAB ∆AdeFGH ∆AdeIJK + Abaum adeIJK pVRL2, padeXYZ = 440 
A. baumannii ATCC 17978 ∆AdeAB ∆AdeFGH ∆AdeIJK + Abayl adeXYZ pVRL2. 441 
 442 
 443 
AdeJ from A. baumannii and AdeY from A. baylyi are structurally similar  444 
 445 
Since the AdeIJK from A. baumanii and AdeXYZ from A. baylyi are genetically and functionally 446 
similar, we next examined whether their respective RND-transporters also shared similar 447 
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structural features using comparative analysis of the experimentally available structures and 448 
making homology models of the missing ones. Again, A. lwoffii AdeJ was included for context.  449 
 450 
The high-fidelity homology modelling of the AdeJ from A. lwoffii  (76.38% identity) and AdeY 451 
from A. baylyi (79.25% identity) was enabled by recent determination of the experimental 452 
structures of AdeJ from A. baumannii  (AbAdeJ) in both apo- and eravacycline-bound forms 453 
(7M4Q.pdb; and 7M4P.pdb respectively (53)). The amino acid sequence of AdeJ from A. 454 
baumannii (AbAdeJ), A. lwoffii (AlAdeJ) and A. baylyi AdeY align without any gaps, allowing 455 
for one-to-one positional correspondence between them (figure 5), with the sole exception 456 
of a single residue insertion after position 602 (AbAdeJ numbering) in both A. lwoffii AdeJ and 457 
AdeY, which maps to the protein surface (PC1 sub-domain), and thus should not directly affect 458 
drug binding. There is also a high level of conservation with other members of the RND-459 
transporter family, including AdeB (56,74), AcrB (55,75) and MtrD (57). Indeed, reflecting it is 460 
the very close geometry of these transporters, with the superposition of the AdeJ structure 461 
and the ligand-occupied T-conformers AcrB (7M4P:B and 4DX5:B respectively) yielding a 462 
strikingly low RMSD of 1.17Å, allowing for direct comparison and interpretation of their 463 
binding pockets (supplementary S4, figure 5). As our current knowledge of substrate 464 
recognition within RND pumps derives primarily from AcrB, this close relation allows for an 465 
unambiguous assignment of the binding determinants between the pumps. Accordingly, the 466 
analysis of the residues lining the proximal and the distal binding pockets, which are 467 
implicated in the processing of the high-molecular weight (including macrolides and 468 
rifampins) and lower-molecular weight/planar compounds (e.g. tetracyclines, 469 
fluoroquinolones and beta-lactams) respectively (55,56,76,77), identified high levels of 470 
positional conservation of the residues previously described as forming the recognition 471 
determinants of these binding pockets (19,55,76) (annotated in figure 5) between the AdeJ 472 
and AdeY, fitting with the antimicrobial susceptibility data in table 2 and suggesting an 473 
identical substrate profile. A detailed description of the residue conservation within the 474 
respective binding pockets and comparison to other RND-transporters is provided in the 475 
supplementary S4 text 4 and table 6. 476 
 477 
The PBP is generally relatively conserved amongst the RND transporters, except for the 478 
residue range 660-688 (AbAdeJ numbering), which forms the bottom section of the PBP and 479 
covers the so-called F-loop (figure 5). Strikingly, while this region displays near-complete 480 
conservation between the AdeJ and AdeY (the only minor exception of T679, which in A. 481 
lwoffii  is represented by a conservative substitution to Serine), it shows major deviation from 482 
both the AbAdeB (53,74,78) and E. coli and Salmonella AcrB (79,80). The AdeJ/Y PBP also 483 
features a diagnostic V573, which is strictly conserved amongst them, but not present in other 484 
RND-transporters, providing a clear differentiation of the AdeJ and AdeY pumps. Another 485 
prominently conserved residue within the AdeJ/Y-subfamily is found in the front of the PBP, 486 
corresponding to the R718 in AbAdeJ (supplementary S4 figure 6, panel B). It is notable, that 487 
the R718 is conserved in AcrB/MtrD/MexB transporters, but not in the paralogous AdeB, 488 
which suggests closer relation of the AdeJ/Y to the former. Taken together the above 489 
conservation analysis suggests a common mode of substrate recognition in the PBP of the 490 
AdeJ and AdeY, once again highlighting their close relationship to each other.  491 
 492 
 493 
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 494 
Figure 5: Sequence alignment of the AdeJ/Y and AbAdeB, highlighting the key binding determinants in the DBP 495 
(blue boxes/font) and PBP (red boxes/font). The alignment shows the close relationship between AdeJ and AdeY, 496 
and positional equivalence between the members of AdeJ/Y clade. Residues within the drug-binding pockets 497 
that are divergent within the AdeJ/Y clade are highlighted in purple. Secondary structural elements derived from 498 
the experimental AbAdeJ structure 7M4P.pdb. Consensus sequence displayed as a bottom row. Figure prepared 499 
with ESpript 3.0 (58). 500 
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 501 
The PBP and DBP are separated by the flexible G-loop (covering residue range 613-624 in 502 
AbAdeJ), which contains a conserved phenylalanine (F618), which is involved in drug-binding 503 
in the DBP of both the newly-determined AdeJ fluorocycline-bound structures (53,81), and in 504 
AdeB (74). Amongst the AdeJ/Y the whole of the G-loop is strictly conserved, which yet again 505 
suggest similar binding properties in the upper part of the PBP and the front part of the DBP. 506 
 507 
Moving to the DBP, the AbAdeJ residues F136, F178, Y327, V613, F618, and F629 are 508 
universally conserved across AdeJ/Y, AcrB/MtrD and AdeB-transporters. Again, amongst the 509 
AdeJ/Y family members, there are very few substitutions (figure 6), but it is striking that three 510 
out of four that are present (A46, Q91 and T128), are clustered together at the back of the 511 
pocket (supplementary S4, figure 6, panel C), forming a plausible interaction site, hinted by 512 
the apparent covariation of the residues occupying positions 46 and 128. While in A. 513 
baumannii this pair is represented by A46/T128, in A. lwoffii and A. baylyi it is instead a S46 514 
in combination with either R128 or K128 respectively. The last DBP residue to show variation 515 
within the AdeJ/Y subfamily is Y327 (F327 in A.  lwoffii), and is found at the bottom of the 516 
pocket, opposite side across from the A46/T128 pair (supplementary S4, figure 6, panel C). 517 
Intriguingly, it is in direct contact with M575, itself a variable residue, forming the front of the 518 
PBP, and also interacting with the variable PBP residue T679 mentioned above.  519 
 520 
In summary, the structural analysis of the AdeJ and AdeY transporters reveals that they share 521 
a number of distinguishing features that are common across them, but distinctive enough to 522 
set them apart as a separate group within the wider RND-family. These include major changes 523 
in the PBP, including the entire F-loop region, which is very much divergent from other RND 524 
transporters. At the same time, the overall high conservation of the DBP, combined with the 525 
presence of the R718 residue, helps to explain their identical substrate profile (Table 2), while 526 
suggesting a closer functional alignment to AcrB/MtrD/MexB transporters than to the 527 
paralogous AdeB. 528 
 529 
Thus, based upon the genetic, structural and phenotypic similarities between adeIJK and 530 
adeXYZ, we propose than adeXYZ should be named adeIJK and have hence amalgamated the 531 
two systems in the heatmap in figure 6, which now shows the presence of adeIJK in every 532 
described Acinetobacter species. 533 
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 534 

 535 
Figure 6: AdeIJK is the ancestral efflux pump in the Acinetobacter genus 536 
Heatmap of Acinetobacter genus with characterised RND genes presence/absence and the number of RND 537 
proteins. For column 1, number of RNDs, the mean average of the total number of (both HME and HAE) RND 538 
efflux proteins for each species was determined, to 1 significant figure, where the greater the number of 539 
proteins, the darker grey the colour. For column 2, if a species has been shown in the literature to cause infection 540 
it is turquoise. Subsequent columns 3-22 are highlighted green if the efflux gene was found in the reference 541 
sequences using ABRicate. adeIJK and adeXYZ columns were amalgamated (black box) in this heatmap because 542 
they are the orthologs, for clarity.  543 
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Discussion  544 
The number of RND efflux genes per genome differs at both the genus and species level. Novel 545 
RND pumps are being characterised continually and it is likely there are many yet to be 546 
discovered. Due to the broad roles that RND pumps have within cells, fully understanding the 547 
complement of systems within a given species is important, especially when trying to 548 
understand MDR phenotypes in pathogens. We have presented a simple way to screen for 549 
HAE and HME RND proteins from bacterial genomes based upon conserved residues, which 550 
highlighted both known RND proteins and some uncharacterised ones in a variety of Gram-551 
negative species. There are some limitations to the method as very divergent systems, such 552 
as ArpB, may not be detected. A combination approach of searching for known efflux genes 553 
and using the conserved residue RND protein search provides the best insight into the 554 
complement of RND systems in a given species. 555 
 556 
The number of RND proteins differs between species of Acinetobacter and also within species. 557 
In Acinetobacter, there were between two and nine RND proteins in any given genome 558 
sequence, where A. nosocomialis and A. modestus had the most RND genes. Species that 559 
cause human infection encoded more RND proteins. Previous work has shown that by over-560 
expressing the RND genes adeABC, A. baumannii is more virulent in the lungs of a mouse (82) 561 
and the role of RND pumps in infections has also been noted in other Gram-negative bacteria 562 
including N. gonorrhoeae (MtrCDE), Salmonella enterica (AcrAB-TolC), Pseudomonas 563 
aeruginosa (MexAB-OprM), Campylobacter jejuni (CmeABC) and Vibrio cholerae (VexB/D/K) 564 
(83–87). Subsequent work is needed to fully elucidate if there is a link between the number 565 
of RND proteins and a species! ability to cause infection in humans across the Acinetobacter 566 
genus. In this study sixty-four Acinetobacter species were characterised at the time the 567 
analyses were done, however since then further Acinetobacter species have been described. 568 
Additionally, when looking at RND proteins within the A. baumannii species, almost all 569 
sequences had the five characterised RND proteins but there was some variation, with some 570 
sequences lacking AdeB, which has been seen previously in A. baumannii isolates (24,33). 571 
 572 
The RND system adeIJK was found to be present across Acinetobacter and isolates without it 573 
encoded adeXYZ, which led us to investigate if these systems are actually the same. The MIC 574 
data shows that both AdeIJK and AdeXYZ can export the same compounds including 575 
tetracycline, chloramphenicol and clindamycin which have previously been identified as 576 
substrates as AdeIJK (63).  Exact values were not directly comparable to previous studies as 577 
different expression systems were used. The pVRL vectors are high copy number plasmids 578 
explaining why some MICs increased above that of the wild-type strain. Very high levels of 579 
expression of AdeIJK have previously been shown to be toxic in both A. baumannii and E. coli 580 
(23) and correspondingly we were unable to successfully express AdeIJK in E. coli despite 581 
testing a range of vectors.  582 
 583 
Homology modelling supported the data suggesting identical substrate profiles as the 584 
structure of AdeJ and AdeY, and in particular their binding pockets, were highly similar. 585 
 586 
 587 
Our structural analysis also confirmed the common structural features of AdeJ/Y, which 588 
justifies isolating them as a separate subfamily of RND transporters. Indeed, while the overall 589 
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architecture, and correspondingly the structure of the drug-binding pockets is conserved 590 
across AdeJ/Y, they show unique features clearly distinguishing them even from the closely 591 
related RND relatives. In interests of space, the detailed discussion of residue conservation is 592 
provided in supplementary S4, text 4, but a few noteworthy elements are highlighted below. 593 
 594 
The differentiating features of AdeJ/Y include the organisation of the principal drug-binding 595 
pockets, with, in particular the base of the PBP displaying clear differences from other 596 
members of RND family, including the so-called F-loop (figure 6, supplementary S4, figure 6B). 597 
Indeed, the F-loop is different not only between the AdeJ/Y and AdeB, but also between 598 
AdeJ/Y and AcrB/MtrD. It seems likely this discrepancy may be contributing to the differential 599 
substrate efflux efficiencies between AdeB and AdeJ/Y reported earlier (88). 600 
 601 
The PBP also features a diagnostic V573, which is only present within the AdeJ/Y subfamily, 602 
providing differentiation from other transporters. In addition, AdeJ/Y also display some 603 
hybrid features, linking them to the canonical MDR transporters. These include the presence 604 
of an arginine (R718 in AdeJ/Y), which forms front part of the PBP (substrate channel 2 exit) 605 
(77,89), and which is conserved across AcrB/MtrD/MexB (R717 in AcrB) (57,90,91), where it 606 
has been implicated in the binding of the macrolides and rifamicyns (57,95,96). This critical 607 
residue is not conserved in AdeB however, suggesting that AdeJ/Y likely process their 608 
substrates more similarly to the AcrB/MtrD than to AdeB. This is further supported by our 609 
analysis of DBP, where only 4 residues have been shown to have limited variability within the 610 
analysed AdeJ/Y structures. As mentioned above, three out of four variable residues (A46, 611 
Q91 and T128) are clustered together at the back of the pocket and display positional 612 
covariation (supplementary S4, figure 6, panel C), suggesting functional interaction between 613 
them and formation of a plausible interaction site, which could be responsible for distinctive 614 
DBP ligand coordination and warrant further investigation beyond the remit of the current 615 
study. The additional conservation of the residues within the DBP, including the critical ligand-616 
binding residues such as AcrB F610 (corresponding to AbAdeJ F611), across AcrB/MtrD/MexB, 617 
but not AdeB once again suggests closer relation of AdeJ/Y to the former. 618 
 619 
The clear distinction of AdeJ/Y from AdeB, and the closeness of AdeJ/Y instead to 620 
AcrB/MtrD/MexB, suggest that the AdeJ/Y represent the basal efflux pumps within the genus, 621 
while AdeB paralogues may have been acquired within the Acinetobacter genus. 622 
 623 
Together, the genetic, structural and phenotypic data presented shows that AdeIJK and 624 
AdeXYZ are in fact divergent orthologues of the same system and we propose than adeXYZ 625 
should be named adeIJK. As shown in figure 6, this highlights the presence of adeIJK in every 626 
Acinetobacter species studied to date indicating it is under high selection pressure providing 627 
an important function. The reason for the presence of adeIJK across all species in the genus 628 
might be due to the wide roles that adeIJK carries out in Acinetobacter, for example its ability 629 
to protect against antibacterial host-associated fatty acids and modulate the bacterial cell 630 
membrane (88). Furthermore, adeIJK plays a role in virulence, biofilm formation, surface 631 
motility and can export a broad range of compounds, including clinically relevant antibiotics, 632 
providing intrinsic resistance (82,92,93). It is therefore possible to say that adeIJK is the 633 
defining Acinetobacter pump, and to belong to the genus a species will encode a version of 634 
adeIJK. Important disease-causing Acinetobacter may also encode adeABC, which when 635 
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overexpressed increases antibiotic resistance in A. baumannii (8). Therefore, it is 636 
advantageous in some species to have the combination of adeIJK, providing intrinsic 637 
resistance, and adeABC, synergistically providing even higher resistance. It is uncommon for 638 
adeIJK to be overexpressed, implying the functions it carries out are important and need to 639 
be tightly regulated (8,23). 640 
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