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Abstract 

Smoking behaviors and alcohol use disorder (AUD), moderately heritable traits, 

commonly co-occur in the general population. Single-trait genome-wide association 

studies (GWAS) have identified multiple loci for smoking and AUD. However, GWASs 

that have aimed to identify loci contributing to comorbid smoking and AUD have used 

small samples and thus have not been highly informative. Applying multi-trait analysis of 

GWASs (MTAG), we conducted a joint GWAS of smoking and AUD with data from the 

Million Veteran Program (N=318,694). By leveraging GWAS summary statistics for AUD, 

MTAG identified 21 genome-wide significant (GWS) loci associated with smoking 

initiation and 18 loci associated with smoking cessation compared to 16 and 8 loci, 

respectively, identified by single-trait GWAS. The novel loci for smoking behaviors 

identified by MTAG included those previously associated with psychiatric or substance 

use traits. Colocalization analysis identified 10 loci shared by AUD and smoking status 

traits, all of which achieved GWS in MTAG, including variants on SIX3, NCAM1, and 

near DRD2. Functional annotation of the MTAG variants highlighted biologically 

important regions on ZBTB20, DRD2, PPP6C, and GCKR that contribute to smoking 

behaviors. In contrast, MTAG of smoking behaviors and alcohol consumption (AC) did 

not enhance discovery compared with single-trait GWAS for smoking behaviors. We 

conclude that using MTAG to augment the power of GWAS enables the identification of 

novel genetic variants for commonly comorbid phenotypes, providing new insights into 

their pleiotropic effects on smoking behavior and AUD. 
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Introduction 

Smoking and alcohol use disorder (AUD) commonly co-occur in the general population. 

Compared to the use of a single substance, smoking comorbid with AUD has greater 

adverse health effects [1]. Smoking-related behaviors (e.g., smoking initiation, smoking 

cessation) and alcohol-related behaviors (e.g., alcohol consumption (AC) and AUD) 

have an estimated heritability of 40-50% [2-4]. The genetic correlations between 

smoking-related and alcohol-related behaviors are estimated to be about 40% [5, 6], 

suggesting that the pleiotropic effects of genetic variants contribute to their co-

occurrence. 

 

Genome-wide association studies (GWAS) with large sample sizes have made 

remarkable progress in identifying genetic loci for individual smoking-related and 

alcohol-related phenotypes. In a sample of over 1.2 million individuals, Liu et al. 

reported over 400 genome-wide significant (GWS) loci associated with multiple 

smoking-related and alcohol-related behaviors: 378 variants for smoking initiation, 24 

variants for smoking cessation, and 99 variants for the number of alcoholic drinks 

consumed per week [7]. Quach et al. identified five loci for nicotine dependence in a 

meta-GWAS that included individuals with European ancestry and African ancestry [8]. 

In a sample of 209,915 European Americans (EA) from the Million Veteran Program 

(MVP), we reported 18 GWS loci for a smoking trajectory contrasting current versus 

never smoking (contrast I), which corresponds to smoking initiation, and five loci for 

another smoking trajectory contrasting current versus mixed smoking (contrast II), which 

is similar to smoking cessation [9]. Several dozen single nucleotide polymorphisms 
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(SNPs) have been linked to alcohol misuse, AC, and AUD. For example, in another 

MVP study, we identified 13 loci for AC and 10 loci for AUD in an EA population [6]. In 

that study, as in others [10], AC and AUD were shown to have distinct genetic 

architectures. 

 

Consistent with the phenotypic correlation between smoking- and alcohol-related 

behaviors, phenotypes related to these two different substances have moderate to 

strong genetic correlations [11, 12] and these correlations remain significant even after 

adjustment for environmental factors such as socioeconomic status [13]. However, the 

loci that contribute to the combined risks of smoking and drinking remain unclear, as 

standard GWAS considers traits in isolation rather than the combined influence of 

genetic variants on smoking and alcohol consumption or AUD. Thus, little is known 

regarding the pleiotropic effects of genetic variants on combined smoking- and alcohol-

related phenotypes.    

 

A recently developed method, multi-trait analysis of GWASs (MTAG), enables the joint 

analysis of genetically correlated traits to boost statistical power to detect variants for 

each trait [14]. MTAG takes summary statistics from single trait GWASs as input, 

generalizes inverse-variance-weighted meta-analysis to explore multiple traits, and 

calculates the trait-specific association for each variant. Moreover, MTAG accounts for 

overlap of samples among GWASs for different traits based on regression of linkage 

disequilibrium (LD) scores. Because of these features, MTAG has recently been applied 

to identify genetic variants for multiple, related phenotypes in psychiatric disorders and 
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in substance use disorders. For example, Wu et al. utilized a sample size of 

approximately 60,000 EA individuals and identified genetic variants on seven genes 

commonly associated with four out of the following five psychiatric disorders: 

schizophrenia, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity 

disorder, and depression [15]. Recently, Deak et al applied MTAG to discover novel risk 

loci for opioid use disorder [16], and Xu et al. applied MTAG for four common substance 

use disorders and reported several novel loci for opioid use disorder, cannabis use 

disorder, alcohol and smoking behaviors [17]. These studies show that MTAG is a 

useful method for identifying loci associated with strongly correlated psychiatric 

disorders, including substance use behaviors. 

 

In this study, we performed MTAG for two smoking-related behaviors (smoking initiation 

and smoking cessation) and two alcohol traits (AC, defined the same way as Alcohol 

Use Disorders Identification Test–Consumption (AUDIT-C), and AUD) in 318,694 EA 

individuals from the MVP database. Single-trait GWAS was performed for each of the 

four phenotypes, deriving summary statistics for MTAG. Multi-trait colocalization served 

to identify genetic risk loci shared by the smoking- and alcohol-related traits and to 

verify that MTAG augmented the power to identify the colocalized loci [18]. We also 

characterized MTAG performance by estimating the SNP-based heritability and 

heritability enrichment and by prioritizing causal genes. The analysis strategy is 

presented in Figure 1. Our results provide novel insight for the genetic contribution to 

the comorbidity of smoking- and alcohol-related behaviors. 
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Methods 

Study samples and phenotypes 

The MVP recruited veteran volunteers and collected data from them using 

questionnaires, access to their electronic medical records (EMRs), and genomic 

analysis of blood samples. The Institutional Review Board (IRB) of the Veterans Affairs 

Central Office and site-specific IRBs approved the MVP study. All relevant ethical 

regulations for work with human subjects were followed in the conduct of the study, and 

informed consent was obtained from all participants prior to data collection. 

 

We used flashpca to perform principal component analysis (PCA) on all MVP samples 

and 2,504 samples from the 1,000 Genomes Project (1KG) to identify the genetic 

ancestry of subjects [19], which was unified with self-reported race/ethnicity using the 

HARE (Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity) method to 

construct ancestral groups [20]. We removed samples with a high genotype missing 

rate (>10%), discordant sex, excessive heterozygosity (>3 SD), and up to second-

degree relatives. A total of 318,694 EAs, 81,057 African Americans (AA), and 31,828 

Hispanic Americans (HA) passed quality control filters. In the analyses reported herein, 

we focused on the MVP EA samples. Among the MVP EA samples, the mean age was 

70.50 years with a standard deviation of 13.80. Most participants were male (92.81%). 

 

Using the available EMR smoking observations, we identified 108,210 nonsmokers, 

97,591 former smokers, and 101,734 current smokers. We defined smoking behaviors 

following Xu, Li, et al. [9]: individuals who ever smoked (former or current smokers) 
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were contrasted with those who never smoked (nonsmokers) to study smoking initiation, 

while current smokers were contrasted with former smokers to explore smoking 

cessation. 

 

For alcohol-related behaviors, we defined age-adjusted AUDIT-C (herein we call it AC) 

as described by Justice et al [21]. AUD cases were defined as individuals with >1 

inpatient or >2 outpatient AUD codes according to the International Statistical 

Classification of Diseases and Related Health Problems, 9th (ICD-9) or 10th (ICD-10) 

revision; non-AUD (controls) were defined as the absence of any AUD code. The study 

sample comprised 58,113 individuals with AUD and 248,847 individuals without AUD. 

 

Genotyping and quality control 

The MVP used an Affymetrix Axiom Biobank Array to genotype ~ 723,000 markers. 

SNPs were validated for common diseases and phenotypes of specific interest to the 

VA population (e.g., psychiatric traits) [22]. Minimac4 and the 1000 Genomes Project 3 

reference panel were used to conduct genotype imputation [23, 24]. During the quality 

control step, we filtered out variants that were rare (minor allele frequency < 0.01), had 

a missing rate > 5%, an imputation r2 < 0.8, or that deviated significantly from Hardy–

Weinberg equilibrium (p < 1E−6). This yielded a total of 4.14 million variants. 

 

Single trait GWAS for smoking and alcohol traits 

For the smoking phenotypes (smoking initiation and smoking cessation) and AUD, 

logistic regression was applied to estimate marginal effects of each single genetic 
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variant on the phenotype, while for AC, linear regression was used. PLINK (v1.9) was 

employed to perform logistic and linear regression analyses [25], and age, sex, and the 

top 10 genotype principal components (PCs) calculated by flashpca were included in 

each model as covariates.  

 

MTAG analysis for smoking-related behaviors 

We used MTAG to jointly analyze summary statistics of one alcohol-related GWAS with 

one smoking-related GWAS [14], yielding a total of 4 combinations: AUD with smoking 

initiation, AUD with smoking cessation, AC with smoking initiation, AC with smoking 

cessation. The MTAG results for smoking behaviors were our focus. 

 

Lead SNPs and risk loci were defined in the same way for the single-trait GWAS and 

MTAG summary statistics: independent SNPs (LD, r2 < 0.1) with the most significant p- 

values were identified as lead SNPs, while the region containing all GWS variants (p < 

5E−8) that were in LD (r2 > 0.6) with the lead SNP was defined as a risk locus. We 

merged loci within 250 kb [26, 27]. ANNOVAR was then employed to map lead SNPs to 

their nearest genes [28], and loci whose lead SNPs were mapped to the same gene 

were further merged into a single risk locus [9]. 

 

Colocalization between AUD and smoking-related behaviors 

To identify genetic risk factors shared by AUD and smoking-related behaviors, we 

applied HyPrColoc (Hypothesis Prioritization for multi-trait Colocalization) [18] in 

multiple genomic regions using summary statistics from single-trait GWAS. HyPrColoc 
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reports (1) the posterior probability that alcohol and smoking behaviors are colocalized 

in a specific region, (2) the causal variant in this colocalized region and the proportion of 

the posterior probability of colocalization explained by this variant. The identified shared 

risk variants facilitate validation of whether MTAG improves the power to identify 

colocalized loci between alcohol and smoking traits. We first used LDetect to partition 

the genome into 2258 independent regions (each, on average, approximately 1.6 cM in 

length) [29, 30], with LD estimated from the 1000 Genomes Project phase III samples of 

European ancestry [31]. We paired AUD with each of the smoking behaviors and 

performed colocalization analysis to identify shared genetic risk factors. For each pair, 

we reported the regions whose posterior probability of colocalization was greater than 

0.75, as suggested by the authors of HyPrColoc [18]. LocusZoom (v1.3) was applied to 

visualize the change in regional associations after performing MTAG [32]. 

 

Downstream analysis of the results from single-trait GWAS and MTAG 

We estimated heritability and heritability enrichment for the 2 smoking-related single-

trait GWASs and 2 smoking-related MTAGs. LD score regression (v1.0.0) was 

performed to estimate the narrow-sense heritability due to additive genetic effects [33]. 

To identify tissues most relevant to smoking-related phenotypes, we performed 

heritability enrichment analyses using 66 functional annotations from GenoSkyline-Plus 

(v1.0.0), which included tissues and cell lines from the blood, brain, lung, vascular 

system, heart, thymus, spleen, muscles, gastrointestinal tract, pancreas, liver, fat, 

bone/connective tissue, skin, breast, and ovary [34]. To adjust for multiple comparisons, 
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we applied Bonferroni correction to the 66 enrichment tests for 2 smoking-related 

single-trait GWASs and 2 smoking-related MTAGs (p < 0.05/66/4 = 1.89E−4). 

 

Functional gene mapping was performed for 2 smoking-related MTAGs. We used the 

FUMA tool (v1.3.6) to conduct eQTL and chromatin interaction mapping [35]. We 

restricted eQTL mapping to 13 genotype-tissue expression (GTEx) v8 brain tissues and 

performed chromatin interaction mapping with the built-in adult cortex Hi–C data and 

enhancer/promoter annotations in 12 brain tissues from the Roadmap epigenomes. By 

default, we used false-discovery rate (FDR) < 0.05 for significant SNP-gene pairs in the 

eQTL mapping and FDR < 1E−6 for significant chromatin interactions, as suggested by 

Schmitt et al [36]. 

 

Results 

Single-trait GWAS for smoking initiation, cessation, and alcohol behaviors 

Single-trait GWAS for smoking initiation and cessation: We previously reported 12 GWS 

loci associated with smoking initiation and 8 loci associated with smoking cessation 

among 209,915 EA individuals in the MVP database [9]. In this study, where we utilized 

a larger sample from the MVP (N=318,694), we identified 16 loci for smoking initiation 

(Supplementary Figure 1A) (Supplementary Table 1), five of which were previously 

reported to be linked to smoking initiation (TEX41, ZBTB20, EPHX2, NCAM1, and 

SPATS2), including two identical lead SNPs, rs6438208 on ZBTB20 and rs78875955 on 

EPHX2. In addition, we identified novel loci for smoking initiation, which included 

several RNA coding genes: Y_RNA, LINC01360, and LINC01833. The intronic SNP 
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rs4687552 on ITIH3 was also a novel locus associated with smoking initiation in this 

sample. 

 

We found eight GWS loci associated with smoking cessation, including two that we 

previously reported: rs6011779 on CHRNA4 and rs17602038 on DRD2 

(Supplementary Figure 1B) (Supplementary Table 1). We also previously reported a 

GWS association of rs112270518 near DBH with smoking trajectory II (current versus 

mixed smoking) [9], which corresponds to the smoking cessation trait. Here, rs3025360, 

near DBH, was a GWS locus associated with smoking cessation. Rs12341778 on 

MAPKAP1 and rs11881918 near CYP2A6, with the mapped genes previously linked to 

mood disorder [37] and nicotine metabolite ratio [38] respectively, also showed GWS 

associations with smoking cessation. The other two novel GWS loci associated with 

smoking cessation in the present study were 3:49638084:A:AAAATT on BSN and 

rs650599 on SCAI. 

 

Single-trait GWAS for alcohol phenotypes: Compared with our previous GWASs on 

AUD and AC in the MVP cohort [6, 39], here with a larger MVP sample size, we 

identified eight loci that overlapped with previously reported loci for AUD (i.e., GCKR, 

SIX3, ARHGAP15, ADH1B, SLC39A8, CNTLN, DRD2, and FTO) as well as six novel 

loci for AUD (LNC01360, FANCL, LOC646736, PLCL2, KLB, and MTCH2). Regarding 

AC, there were 27 GWS loci, six of which overlapped with loci associated with AUD, 

including five that we previously reported. Rs13130101, near KLB, was a GWS locus 

associated with AUD, and rs13146907, also near KLB, was a GWS locus associated 
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with AC (Supplementary Table 1 and Supplementary Figure 1C, 1D). KLB is a 

coreceptor for the hormone FGF21 and was previously linked to alcohol intake in a 

European ancestry population [40]. Altogether, we identified more loci for each 

smoking- and alcohol-related trait in the present study with a larger sample size drawn 

from the MVP database. 

 

Genetic correlations between smoking- and alcohol-related phenotypes: The genetic 

correlation between smoking behaviors and AUD ranged from 0.59 to 0.62, substantially 

higher than the correlation between smoking behaviors and AC (ranging from 0.08 to 

0.12) (Supplementary Figure 2) (Supplementary Table 1). This pattern indicates that 

the shared genetic risk between smoking-related phenotypes and AUD is much greater 

than that between smoking-related phenotypes and AC. 

 

MTAG analysis for smoking-related behaviors 

We conducted a joint-GWAS for two smoking-related phenotypes (smoking initiation, 

smoking cessation) and two alcohol-related phenotypes (AUD and AC) using MTAG. 

Each smoking phenotype was paired with AUD or AC. 

  

Leveraging the summary statistics from single-trait GWAS for smoking initiation and 

AUD, MTAG identified 21 GWS loci for smoking initiation; five more than the number of 

loci identified through single-trait GWAS for smoking initiation. Among the 21 loci, 11 

were identified by the single-trait GWAS for smoking initiation, while 10 were novel loci 

from the MTAG results (Figure 2A). The novel loci identified by MTAG included the 
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well-known loci for alcohol phenotypes, rs1229984 on ADH1B and rs6589386 on DRD2 

(Supplementary Table 2). Another novel locus for smoking initiation has been linked 

with smoking-related phenotypes in previous studies: rs6778080 on USP4 was linked to 

lifetime smoking index and depression [41, 42].   

 

Regarding smoking cessation, MTAG identified 18 GWS loci, 10 more than the single-

trait GWAS for smoking cessation. Two of the 18 loci, rs6011779 on CHRNA4 and 

rs17602038 on DRD2, were identified by both the single-trait GWAS and MTAG for 

smoking cessation. Sixteen of these loci attained GWS only in MTAG (Figure 2B). As 

with the MTAG for smoking initiation, we found that multiple alcohol-related loci also 

attained GWS for smoking cessation. These loci included rs1229984 on ADH1B and 

rs62048402 on FTO (Supplementary Table 2). Another highly pleiotropic locus, 

rs13135092 on SLC39A8, previously associated with high-density lipoprotein 

cholesterol (HDL) in current drinkers [43] and schizophrenia [44], was a GWS locus 

associated with smoking cessation. Additionally, rs1260326 on GCKR, which has been 

linked to multiple metabolic traits [45], attained GWS for smoking cessation.  

 

Of note, compared with the single-trait GWAS results (Supplementary Figure 1A, 1B), 

the MTAG of AC and smoking phenotypes did not yield new loci for smoking 

phenotypes (Supplementary Figure 3). The subsequent analyses included only the 

results from the MTAG of each smoking trait and AUD. Together, these findings show 

that by leveraging the strongly correlated AUD trait, MTAG was able to identify more loci 

for smoking phenotypes than single-trait GWAS. 
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Colocalization between AUD and smoking-related behaviors 

To identify genetic risk factors shared by AUD and smoking-related behaviors, we 

performed hypothesis prioritization for multi-trait colocalization (HyPrColoc) by pairing 

single-trait GWAS for each of the two smoking traits with single-trait GWAS for AUD. 

For each pair, we reported the regions whose posterior probability of colocalization was 

greater than 0.75 [18]. We identified a total of 10 colocalized regions, including six 

regions shared by AUD and smoking initiation and four shared by AUD and smoking 

cessation (Figure 3A). Of note, among the 10 regions shared by AUD and smoking 

traits, MTAG identified all as attaining GWS, while single-trait GWAS identified only 4 

out of 10 as GWS loci. Thus, the greater power of MTAG is most obvious for loci shared 

by AUD and smoking-related behaviors. For example, one colocalized SNP for AUD 

and smoking initiation, rs6589386 on DRD2, was marginally significant in the single-trait 

GWAS (p-value = 7.17E-06) but attained GWS in MTAG (p-value = 3.58E-10) (Figure 

3B).  

Another noteworthy colocalized SNP shared by AUD and two smoking traits was 

rs11210229 on LINC01360 (Supplementary Figure 4). For smoking initiation, MTAG 

resulted in a moderate increase in the significance of the association with rs11210229 

and other variants in LD. For smoking cessation, the increase in significance was 

greater: rs11210229 did not attain significance in the single-trait GWAS (p-value = 

1.33E-06) but was the lead GWS SNP in MTAG (p-value = 3.03E-10).  

 

Estimated heritability and enrichment for smoking-related behaviors  
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The estimated heritability from MTAG was 1-2% greater for each smoking trait than the 

heritability from single-trait GWAS (Supplementary Table 3). For the two smoking traits, 

single-trait GWAS did not detect significant heritability enrichment, while MTAG 

identified significant heritability enrichment for smoking initiation in the anterior caudate 

(enrichment = 4.08, Wald test p = 1.86E-05) and the dorsolateral prefrontal cortex 

(enrichment = 5.41, Wald test p = 4.40E-05) as well as significant heritability enrichment 

for smoking cessation in the anterior caudate (enrichment = 5.64, Wald test p = 2.72E-

06) and the colonic mucosa (enrichment = 7.69, Wald test p = 4.61E-05) 

(Supplementary Table 3). 

 

Prioritizing genetic regions for smoking phenotypes based on MTAG  

By integrating MTAG variants with functional genomic features in brain tissues, we 

identified biologically important regions/genes for smoking behaviors. We performed 

expression quantitative trait loci (eQTL) and chromatin interaction mapping for the 

MTAG summary statistics of two smoking-related behaviors with the functional mapping 

and annotation (FUMA) tool [35]. For smoking initiation, we identified 41 genes mapped 

by eQTL and 85 genes mapped by chromatin interaction (Supplementary Table 4). 

Among those regions, seven overlapped with MTAG-identified loci, including two newly 

identified loci, rs6589386 on DRD2 and rs6778080 on USP4 (Figure 4A); this finding 

indicates the causal role of those genes. For smoking cessation, we identified 46 

significant genomic regions by eQTL mapping and 67 regions by chromatin interaction 

mapping. Importantly, six of those regions overlapped with MTAG-identified loci, 

including five newly identified loci (Supplementary Table 4). For example, the MTAG-
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identified SNP rs10986603 on PPP6C colocalized with PPP6C eQTL in the anterior 

cingulate cortex and chromatin interaction in the cortex (Figure 4B). PPP6C was 

recently associated with opioid addiction in EA individuals according to gene-based and 

eQTL analyses [46]. This finding was replicated in a GWAS on opioid use disorder 

conducted among MVP participants [47]. 

 

 

Discussion 

By leveraging the genetic architecture of AUD, we identified new loci for smoking 

behaviors that were not identified using a single-trait GWAS approach. MTAG revealed 

genetic variants that affect both smoking behaviors and AUD. Convergent evidence 

from MTAG, colocalization, and functional annotation analyses highlighted several 

AUD-associated genes that contribute to smoking behaviors. Importantly, the newly 

identified loci for smoking were colocalized with eQTL and chromatin interaction in brain 

regions previously shown to be relevant for addictive behavior. These findings 

underscore prior findings that MTAG is a powerful approach for identifying genetic 

variants for complex traits, as it is particularly important for revealing pleiotropic effects 

of significant variants that contribute to highly comorbid disorders. Although smoking 

and alcohol use are closely associated both epidemiologically and clinically, our study 

revealed GWS variants contributing to the cooccurrence of these traits in a large EA 

population, thereby providing insight into their pleiotropic effects on the comorbid 

phenotypes. 
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Using MTAG, we replicated previous findings that linked genomic regions to smoking 

initiation and smoking cessation in the Genetic Sequencing Consortium of Alcohol and 

Nicotine Use (GSCAN) study of 1.2 million individuals [7]. Among the 21 MTAG-

identified variants for smoking initiation, nine had the same nearest genes as those in 

the GSCAN study, including SPATS2L, PLCL2, BDNF-AS, and NCAM1. For smoking 

cessation, five of 18 MTAG-loci overlapped with the GSCAN study, including three long 

intergenic nonprotein coding RNA genes (i.e., LINC01360, LINC01833, and 

LINC00637). However, AUD-associated genes such as ADH1B and FTO only attained 

GWS for smoking initiation or smoking cessation in the present study. 

 

This study provides novel genomic findings that link well-established genetic loci for 

AUD to smoking behavior. These findings augment well-established phenotypic 

associations showing both high rates of smoking among individuals with AUD [48] and 

greater difficulty in stopping smoking among individuals with AUD [49]. A functional 

variant, rs1229984 on ADH1B, has long been recognized as a risk locus for AC and 

alcohol-related diseases across populations with different ancestry. Recently, this locus, 

combined with another functional locus on ALDH2, was shown to be predictive of 

smoking initiation in a Japanese population [50]. We found that rs1229984 was strongly 

associated with two smoking behaviors in the context of AUD, suggesting that 

rs1229984 influences smoking behavior for individuals with problematic alcohol use. 

 

In addition, rs9937709, near FTO, was significantly associated with smoking cessation. 

FTO has been linked to obesity [51], AC, and AUD [6]. We previously reported that 
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rs62033408, a lead SNP on FTO, was associated with AC and that rs1421085, near 

FTO, was associated with AUD. The MTAG results indicated that rs9937709, near FTO 

and 19.9 kb from rs1421085, was associated with smoking behaviors. Another region 

near DRD2 was important for alcohol and smoking behaviors: we previously reported 

significant associations of rs61902812 with AUD and of rs3133388 with smoking 

trajectory contrast I (current versus never smoking, corresponding to smoking initiation). 

In this study, MTAG identified multiple novel loci near DRD2 for different smoking 

behaviors, including rs6589386 for smoking initiation and rs17602038 for smoking 

cessation, suggesting that this region is biologically important for understanding the 

mechanism underlying how variation in DRD2 leads to addictive behaviors. 

 

In contrast to the highly informative MTAG for AUD and smoking behaviors, the MTAG 

for AC and smoking behaviors did not show enhanced effects relative to the single-trait 

GWAS. Although the reasons for these differences are unclear, we hypothesize that the 

different genetic architectures of AC and AUD partially explain these findings. As we 

previously reported, AC and AUD have distinct profiles of genetic correlations [6, 10]. 

AC is negatively genetically correlated with some medical diseases, such as coronary 

artery disease and Type 2 diabetes, while AUD is positively genetically correlated with 

psychiatric diseases, including addictive disorders. Consistent with other studies, we 

found that the genetic correlations between AUD and the smoking behaviors were 

greater than those between AC and the smoking behaviors. In the MTAG results 

presented here, the genetic correlations between AUD and the different smoking 

behaviors were approximately 0.6, while those between AC and the smoking behaviors 
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were approximately 0.1. This pattern is consistent with the original report [14], which 

emphasized that MTAG is most useful for analyzing phenotypes with strong genetic 

correlations. Another explanation is that the AC measurements may have been 

inaccurate. The AUDIT-C component of the MVP study is a self-reported measure of 

alcohol intake over the past 12 months. As we previously reported, individuals who were 

lifetime abstainers or former drinkers could have a confounding effect on gene 

associations with AC [52]. After removing former alcohol drinkers, single-trait GWAS 

identified more loci for AC in a sample from the UK Biobank. Future studies using 

longitudinal assessment of AC are warranted to deepen our understanding of the 

genetic architecture of smoking behaviors in the context of AUD and AC. 

 

We acknowledge several limitations in the study. A lack of ancestral diversity limits the 

findings to EA individuals, due to lack of availability of GWASs on non-EA individuals 

that are large enough to provide adequate statistical power. As larger samples of other 

ancestral groups become available, we plan to examine whether the findings reported 

here are replicable in other populations. Second, MTAG is established on the 

assumption that all SNPs share the same variance–covariance matrix of effect sizes 

across multiple traits [14]. This assumption may not be applicable to AUD and smoking 

behavior. Authors of MTAG also stressed one potential problem for SNPs that are true 

null for one trait but non-null for another trait. For such SNPs, MTAG could have false 

positives in the first trait [14]. This statement is consistent with a recent study on opioid 

use disorder, which showed that increased detection of MTAG might come with the loss 

of specificity [16]. In our analyses, some of the newly identified loci by MTAG were 
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verified to be shared between AUD and smoking behaviors by colocalization, such as 

rs6589386 on DRD2. However, there also existed MTAG-identified loci that were not 

significant in the colocalization analysis, such as rs1229984 on ADH1B, suggesting that 

some loci identified by MTAG may be biased towards AUD. The MTAG-identified 

rs1229984 on ADH1B for smoking traits need to be interpreted with cautiousness. 

Further investigations are needed to verify whether this locus revealed by MTAG is truly 

shared across different phenotypes. Third, we were unable to differentiate lifetime 

abstainers from former alcohol users who quit drinking (possibly due to alcohol-related 

problems) in the MVP samples. Future studies that use biomarkers instead of self-

reported data to quantify AC could benefit from greater statistical power to detect risk 

loci for smoking behaviors. Finally, we did not examine the functional effects of the 

pleiotropic loci for smoking and AUD; such studies are needed to understand the 

mechanisms underlying the findings we report. 

 

 

In summary, we identified multiple genetic loci significantly associated with the 

cooccurrence of smoking behavior and AUD in an EA population. The findings highlight 

several biologically relevant regions for further study that could elucidate mechanisms 

shared by smoking behavior and AUD and thus provide opportunities for novel 

interventions that target these mechanisms. 
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Figure legends 

 

Figure 1: Phenotypes and analytic strategy. (A) The distribution of two smoking-

related, two alcohol-related phenotypes, and demographic characteristics in the Million 

Veteran Program (MVP). (B) An overview of analyses performed on the single trait 

genome-wide association study (GWAS) and multi-trait GWAS (MTAG). All participants 

are from European American ancestry in the MVP (N = 318,694). 

Smkinit: smoking initiation; Smkcess: smoking cessation; AUD: alcohol use disorder; 

AC: alcohol consumption measured by Alcohol Use Disorders Identification Test-

consumption (AUDIT-C). 

 

Figure 2: Multi-trait analysis of GWASs (MTAG) on two smoking phenotypes with 

alcohol use disorder (AUD). Manhattan plot of MTAG and Venn plot of the number of 

genome-wide significant (GWS) loci identified by single-trait GWAS and MTAG for (A) 
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smoking initiation and (B) smoking cessation. The nearest genes to GWS loci are 

shown. New MTAG-identified loci are shown in red.  

Smkinit: smoking initiation; Smkcess: smoking cessation; AUD: alcohol use disorder. 

 

Figure 3: Multi-trait colocalization analysis of two smoking traits and alcohol use 

disorder (AUD). (A) Hypothesis prioritization for multi-trait colocalization (HyPrColoc) 

identified six regions shared by AUD and smoking initiation and four regions shared by 

AUD and smoking cessation. We report regions whose posterior probability of 

colocalization was greater than 0.75. 

$: p values for the colocalized SNP in the single-trait GWAS and in MTAG for the 

corresponding smoking trait.  

(B) LocusZoom plots for the association of rs6589386 with smoking initiation. The 

genetic variant rs6589386 mapped near DRD2 was identified as a colocalized SNP 

between AUD and smoking initiation.  

Smkinit: smoking initiation; Smkcess: smoking cessation; AUD: alcohol use disorder. 

 

Figure 4: Gene prioritization for smoking traits using the MTAG. Functional 

mapping and annotation (FUMA) gene prioritization were performed for (A) smoking 

initiation and (B) smoking cessation. The outer layer shows chromosomal Manhattan 

plots. The GWS locus is indicated in blue. Genes mapped by chromatin interactions or 

eQTL are shown in orange or green, respectively. Genes mapped by both chromatin 

interactions and eQTL are shown in red. 
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(A)

(B)

Colocalization Genome-wide association study (GWAS)  

Trait Chr 
Colocalized 

SNP Gene 

Posterior 
probability of 
colocalization 
in the region 

Proportion of 
posterior 

probability 
explained by 

the listed SNP 
P-value

single-GWAS 
P-value
MTAG

Significance 
single-GWAS 

Significance 
MTAG 

Smkinit, AUD chr1 rs11210229 LINC01360 0.9954 0.9325 9.72E-15 1.11E-17 * * 
chr2 rs472140 LINC01833 0.9872 0.8587 4.22E-13 6.21E-17 * * 
chr7 rs1155397 LINC01392 0.9234 0.9976 3.12E-06 9.36E-09 * 
chr11 rs6589386 DRD2 0.919 0.3383 7.17E-06 3.58E-10 * 
chr2 rs1823673 LINC01935 0.8997 0.2635 2.67E-07 8.06E-10 * 
chr11 rs4144892 NCAM1 0.8342 0.0645 6.96E-10 1.11E-11 * * 

Smkcess, AUD chr2 rs4953152 SIX3 0.988 0.4955 3.98E-07 4.52E-12 * 
chr1 rs11210229 LINC01360 0.9747 0.7568 1.33E-06 3.03E-10 * 
chr8 rs6469450 CSMD3 0.8938 0.6913 1.68E-07 5.58E-10 * 
chr9 rs10986603 PPP6C 0.8397 0.0962 3.49E-08 3.55E-11 * * 
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