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Abstract 
Longitudinal bulk and single-cell omics data is increasingly generated for biological and 
clinical research but is challenging to analyze due to its many intrinsic types of variations. 
We present PALMO (https://github.com/aifimmunology/PALMO), a platform that contains 
five analytical modules to examine longitudinal bulk and single-cell multi-omics data from 
multiple perspectives, including decomposition of sources of variations within the data, 
collection of stable or variable features across timepoints and participants, identification 
of up- or down-regulated markers across timepoints of individual participants, and 
investigation on samples of same participants for possible outlier events. We tested 
PALMO performance on a complex longitudinal multi-omics dataset of five data 
modalities on the same samples and six external datasets of diverse background. Both 
PALMO and our longitudinal multi-omics dataset can be valuable resources to the 
scientific community. 
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Introduction 

Applying multi-omics technologies to measure longitudinal specimens of human 
participants provides unprecedented insights on disease such as COVID-191–3, diabetes4 
and lymphoma5. Single-cell technologies such as single-cell ribonucleic acid sequencing 
(scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing 
(scATAC-seq) can offer granular details on disease mechanisms and are increasingly 
utilized in biological and clinical research6–8. It is anticipated that more and more 
longitudinal bulk and single-cell omics data will be generated by the scientific community. 

Different statistical methods are used to analyze longitudinal data to account for 
the diversities in research interest, study design, and/or data type (continuous or 
categorical)9,10. Generalized linear mixed model (GLMM) is a popular approach for 
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analyzing continuous longitudinal data. It is common that the same dataset can be 
examined from multiple perspectives with different methods. Complications such as 
human heterogeneity, interdependency between multiple samples of same participant, 
missing and/or incomplete data, unbalanced dataset, and unexpected outlier events (e.g., 
severe adverse events in clinical trials) are all intrinsic to longitudinal data. The usage of 
single-cell technologies brings additional complications such as dropout, sparseness, 
interdependency between cells of same sample, and unbalanced cell counts in individual 
samples11,12. Advanced methods have been applied to analyze longitudinal bulk omics 
data with customized codes for specific projects4,13. Sophisticated methods for analyzing 
cross-sectional single-cell omics data have also been developed with mixed 
performance14–18. While software tools such as variancePartition19 and tcR20 can be 
repurposed to examine longitudinal omics data either from a single perspective and/or 
collected on a single technical platform, we are not aware of any well-accepted software 
package that is specifically designed to analyze longitudinal bulk and single-cell omics 
data. Instead, researchers rely on customized codes to analyze such data, which is time-
consuming, error-prone and a non-small challenge to many people. A comprehensive yet 
simple-to-use software tool to extract insightful information from longitudinal omics data 
is desired. 

Here, we present PALMO (https://github.com/aifimmunology/PALMO), a software 
package designed to analyze longitudinal bulk and single-cell omics data (Fig. 1a). Five 
analytical modules are implemented in PALMO (Fig. 1b): (i) Variance decomposition 
analysis (VDA) evaluates contributions of factors of interest to the total variance of 
individual features (Fig. 1c). (ii) Coefficient of variation (CV) profiling (CVP) assesses 
intra-participant variation over time in bulk data and identifies consistently stable or 
variable features among participants (Fig. 1d). (iii) Stability pattern evaluation across cell 
types (SPECT) assesses longitudinal stability patterns of features in single-cell omics 
data and identifies stable or variable features that are unique to individual cell types but 
consistent among participants (Fig. 1e). (iv) Outlier detection analysis (ODA) examines 
the possibility of abnormal events occurring during a longitudinal study (Fig. 1f). (v) Time 
course analysis (TCA) evaluates transcriptomic changes over time based on longitudinal 
scRNA-seq data of the same participant and identifies genes that exhibit significant 
temporal changes (Fig. 1g). Together these five modules provide unique insights on 
longitudinal omics data from multiple perspectives. We also developed functions to 
display CVs of features of interest in circos plots (Fig.1h). We test PALMO performance 
on a complex longitudinal multi-omics dataset of five data modalities and six external 
datasets of diverse background.  
 
Results 
A complex longitudinal multi-omics dataset to demonstrate PALMO performance 
To demonstrate PALMO performance, we collected sixty blood samples (plasma and 
peripheral blood mononuclear cells (PBMCs)) from six healthy, non-smoking Caucasian 
donors (three females and three males) between 25 to 38 years old over a 10-week period 
(Supplementary Fig. 1a, Supplementary Table 1a). Complete blood count (CBC) was 
collected on all these samples (Supplementary Table 1b). The abundance of 1,536 
plasma proteins were measured on these samples as well, but only 1,042 (68%) proteins 
had reliable quantification results (Supplementary Table 2a). High-dimensional flow 
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cytometry and droplet-based scRNA-seq assays were performed on a subset of 24 PBMC 
samples from four donors over Week 2 to 7. A total of 27 cell types were identified from 
flow cytometry data (Supplementary Fig. 2, Supplementary Table 1c). Droplet-based 
scATAC-seq assay was also performed on 18 out of the 24 PBMC samples. This multi-
omics dataset of five data modalities on the same samples can be a valuable resource to 
the scientific community for immune health study and/or software development. 

We retrieved high quality scRNA-seq data of 472,464 cells and labeled them to 31 
different cell types using Seurat V216 (Supplementary Fig. 3a,b, Supplementary Table 
3a). Among the nineteen overlapping cell types identified by both scRNA-seq and flow 
cytometry, the corresponding cell frequencies as measured by the two data modalities 
were highly correlated (p<0.05 on Pearson correlation) except for those of double 
negative T (dnT) cells (Supplementary Fig. 3c). Unless specified otherwise, we filtered 
out low frequent cell types (average frequency <0.5%) and kept 19 out of the 31 cell types 
for downstream analysis (Supplementary Table 3b). We also kept only 11,191 genes 
that had an average (across timepoints) expression of 0.1 or higher in at least one cell 
type of one donor. 

scATAC-seq data was analyzed using the ArchR21 package. We observed 294,623 
peaks in 135,566 cells after removing doublets. Cells were labeled to 28 different cell 
types using genescore matrix as implemented in ArchR (Supplementary Fig. 3d,e). We 
noticed the labeling scores on scATAC-seq data were much lower than the corresponding 
scores on scRNA-seq data, likely reflecting the challenge in cell labeling on scATAC-seq 
data. We filtered out low quality cells (labeling score <0.5), removed cell types having less 
than 50 remaining cells, and kept 14 out of the 28 cell types for downstream analysis 
(Supplementary Table 3b). We also kept only 24,769 genes that had an average (across 
timepoints) gene score of 0.1 or higher in at least one cell type of one donor. 

In addition to our own data, we also evaluated PALMO performance against six 
external omics datasets of diverse complexities, different sample types and/or different 
technical platforms (Supplementary Fig. 1b). More examples of PALMO usage beyond 
those presented here can be found in PALMO vignettes 
(https://github.com/aifimmunology/PALMO/blob/main/Vignette-PALMO.pdf), including 
performance on unbalanced data, data with replicates, and data of a single donor with 
multiple timepoints. 
 
Application of VDA to assess sources of variations 
We applied VDA to evaluate inter- and intra-donor variations in our bulk data (CBC, PBMC 
frequencies from flow cytometry, and plasma proteomics data), using donor and week 
(timepoint) as factors of interest. CBC measurements showed strong inter-donor 
variations and minuscule intra-donor variations (Supplementary Fig. 4a,b). PBMC 
frequencies from flow cytometry showed very strong inter-donor variations 
(Supplementary Fig. 4c,d) with intra-class correlation (ICC) ranging from 51% (IgD 

CD27- B cells) to 98% (CD4 Temra: CD4+ effector memory T cells re-expressing 
CD45RA). In comparison, the highest ICC on intra-donor variations was 19% (cDC1: 
conventional type 1 dendritic cells). Plasma proteins followed a similar trend with some 
exceptions (Supplementary Fig. 4e,f, Supplementary Table 2a). Inter-donor variations 
of 621 (60%) out of the 1,042 quantified proteins contributed more than 50% to the 
corresponding total variance. Only 75 proteins (7%) had more intra-donor variation than 
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inter-donor variation, but none contributed more than 50% to the total. A previous study22 
identified 155 proteins having high inter-donor variations, 81% (126) of which overlapped 
with the 621 inter-donor variable proteins. 

We added cell type as a factor of interest in the VDA of our scRNA-seq and 
scATAC-seq data. Inter-cell-type variations were more prominent than inter- and intra-
donor variations in both single-cell data modalities. Based on our scRNA-seq data, 10, 0, 
and 4,384 genes had more than 50% of total variance from inter-donor, intra-donor, and 
inter-cell-type variations, respectively (Fig. 2a, Supplementary Table 3c). Nine of the 
top ten inter-cell-type variable genes (ICC: 98-99%, Fig. 2b) have known immune 
functions (Supplementary Table 3d). The top gene, LILRA4, is predominantly expressed 
in plasmacytoid dendritic cells (pDCs) and prevents pDCs from overblown reaction to viral 
infections23. Six of the top ten inter-donor variable genes (ICC: 53-94%, Fig. 2c) are linked 
to the X or Y chromosome and seven of them showed differential expression between 
ovary and prostate/testis, reflecting the sex difference between male and female donors. 
Contributions from intra-donor variations to the total variance were small (ICC ≤3%, Fig. 
2d), indicating the immune systems of the four healthy donors were quite stable over the 
study period. 

The VDA results on our scATAC-seq data, using genescore matrix, showed similar 
trends as that on our scRNA-seq data (Fig 2e). A total of 33, 0, and 7,847 genes had 
more than 50% of total variance from inter-donor, intra-donor, and inter-cell-type 
variations, respectively (Supplementary Table 3e). All the top ten inter-cell-type variable 
genes (ICC: 95-97%, Fig. 2f) have known immune functions (Supplementary Table 3f). 
The top gene, SPIB, is an enhancer regulating pDC development24. Among the top ten 
inter-donor variable genes (ICC: 58-89%, Fig. 2g), XIST, ZNF705D, GTF2IRD2, and 
USP32P2 have differential expression between ovary and prostate/testis; RHD encodes 
a key protein in the Rh blood group system; and GSTM1 belongs to a highly polymorphic 
supergene family and affects heterogeneous response to toxicity25. These genes 
appeared to capture more diverse types of differences among donors than their 
counterparts from scRNA-seq data. The ICCs of the top five intra-donor variable genes 
(ICC: 32-34%, Fig. 2h) were about 10-fold higher than that of the corresponding top gene, 
JUN, by scRNA-seq data, suggesting chromatin accessibility might be more sensitive to 
biological changes than gene expression. 

variancePartition19 was previously developed to study variations in gene 
expression data and can be applied to longitudinal omics data for the same purpose. VDA 
generated almost identical results as variancePartition on two tested datasets after 
removing missing values (Supplementary Fig. 5), which was needed to run 
variancePartition but not VDA. 

VDA can be used to study T-cell receptor (TCR) repertoires. Previously sorted 
CD4+ and CD8+ non-naïve T cells were isolated from PBMC samples of four systemic 
sclerosis (SSc) donors and analyzed to obtain sequencing data of TCR β-chains26. The 
data was originally analyzed using tcR20, which was developed specifically for TCR data 
with functions either providing sample-level views on the whole repertories or treating 
clonotype data as binary (present or absent). We downloaded the TCRβ data 
(GSE156980) and calculated the frequency of unique clonotypes from both CD4+ and 
CD8+ T cells. A total of 288,597 unique clonotypes were obtained from CD4+ T cells and 
11,739 from CD8+ T cells, respectively. We treated the clonotype data as continuous and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512585
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

used donor, time, and subtype (limited SSc versus diffuse SSc) as factors of interest in 
VDA. We identified from CD4+ T cells 6,625, 3, and 41 clonotypes having more than 50% 
of total variance from inter-donor, intra-donor, and inter-subtype variations, respectively 
(Supplementary Fig. 6a-d, Supplementary Table 4a). The corresponding counts from 
CD8+ T cells were 650, 0, and 1 (Supplementary Figure 6e-h, Supplementary Table 
4b). As illustrated in Supplementary Fig. 6b,f, many inter-donor variable clonotypes 
were donor-specific and stable over time, making them potential candidates responsible 
for SSc pathogenesis. The identification of inter-subtype variable clonotypes 
(Supplementary Fig. 6d,h) is interesting since some of them might be specific to either 
limited SSc or diffuse SSc. VDA provided novel insights on the TCR data, which was not 
presented in the original study26.    
 
Application of CVP to evaluate longitudinal stability  
We applied CVP to identify longitudinally stable and variable proteins from our proteomics 
data (Fig. 3a). The distribution of median CV (among donors) peaked near 5% 
(Supplementary Fig. 7a), which we used as a cut-off to separate variable (median CV > 
5%) and stable (median CV < 5%) proteins (Supplementary Table 2b-d). A total of 413 
proteins were longitudinally variable, among which SNAP23, GRAP2, ARG1, AIFM1, and 
MESD had the highest median CV (24.6-27.7%, Fig. 3b). Such moderate CV values are 
consistent with the observed low intra-donor variations by VDA. A total of 629 proteins 
were longitudinally stable, among which SOD2, NRP2, OSCAR, NRCAM, and MIA had 
the lowest median CV (0.6-0.8%, Fig. 3c). These stable proteins may be interesting 
biomarker candidates if they change under some disease conditions. They can also be 
used to bridge proteomics data of different experimental batches. 
  
Application of ODA to discover a possible abnormal event 
We noticed that proteomics data of donor PTID3 exhibited higher CV values than those 
of other donors (Fig. 3a) and weaker intra-donor correlations at week 6 than at other 
weeks (Supplementary Fig. 7b). We applied ODA to check whether donor PTID3 had 
an abnormal event at week 6. We selected |𝑧| > 2.5 as the criterion for outliers so that 
just above 1% of all quantifiable proteins are expected to be outliers. More accurately, we 
expected 1.24% of proteins, i.e., 19 proteins per donor per time point, to be outliers by 
chance (Methods). A total of 71 outlier proteins were identified at Week 6 on donor PTID3 
(adj p = 6.0x10-47, Fig. 3d,e, Supplementary Table 2e,f). Eight of the top ten proteins 
having the highest z scores (2.84-2.85) play important roles in immune response and 
immunity (Supplementary Table 2g). Gene set enrichment analysis (GSEA) revealed 
the outlier proteins were enriched in immunological processes such as adaptive immune 
responses, antigen processing and presentation via major histocompatibility complex 
(MHC) class II, T cell activation, etc. (Supplementary Fig. 7c). Single-sample GSEA 
(ssGSEA)27 on all PTID3 samples identified Week 6 as an outlier and revealed increased 
activity at Week 6 in important immune processes (Supplementary Fig. 7d), including 
MYC targets (v1 and v2)28, interferon-alpha and gamma responses29, androgen 
response30, pancreas beta cells31, and peroxisome32. Although further validation is 
required, these results suggest the possible occurrence of an immunological perturbation 
event (such as infection) experienced by PTID3 at week 6. Such outlier phenotypes can 
be obscured by analyses focusing on differences between sample groups. 
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Application of SPECT to reveal diverse gene stability patterns 
We applied SPECT to analyze our scRNA-seq data. Noticing the two well-known 
housekeeping genes, ACTB and GAPDH, had CVs (across timepoints) just above 10% 
in some cell types (Supplementary Fig. 8), we used a CV cut-off of 10% to separate 
longitudinally variable (CV > 10%) or stable (CV < 10%) genes in individual cell types of 
individual donors. We then counted how many times individual genes were variable 
and/or stable in the 76 combinations between donor (n=4) and cell type (n=19). A gene 
was denoted as super variable (SUV) or super stable (SUS) if it was variable or stable in 
at least 40 donor-cell type combinations. A gene was denoted as variable across time in 
cell-types (VATIC) or stable across time in cell-types (STATIC) if it was variable or stable 
in at least one cell type across all donors but in less than 40 donor-cell type combinations. 
We identified a total of 700 SUV genes (Supplementary Fig. 9a), 2,129 SUS genes 
(Supplementary Fig. 9b), 5,750 VATIC genes, and 4,004 STATIC genes from the 
dataset. Since a gene can be consistently variable in one cell type and consistently stable 
in another, VATIC and STATIC genes are not mutually exclusive (Supplementary Fig. 
9c).  

The SUV genes were enriched in 57 pathways, many of which are associated with 
cellular proliferation and activity (Supplementary Table 3g). Eight of the top ten SUV 
genes (Supplementary Table 3h) have distinct roles in gene regulation, including four 
transcription factors (FOS, FOSB, JUN, and KLF9), two phosphatases (DUSP1 and 
PPP1R15A), one regulator of mTOR pathway (DDIT4)33, and one inhibitor of NF-κB 
pathway (TNFAIP3)34. In comparison, the SUS genes were enriched in 501 pathways of 
rather diverse, basic cellular processes (Supplementary Table 3i). Among the top ten 
SUS genes (Supplementary Table 3j), five (RPS12, RPL10, RPL13, RPLP1, and 
RPL41) encode ribosomal proteins and two (FTL and FTH1) encode ferritin for iron 
storage. Many SUS genes are more stable than ACTB and GAPDH and may be good 
candidates for estimating batch effects in scRNA-seq data35. 
 
STATIC genes as potential biomarkers for cell types or biological conditions 
We collected up to 25 top STATIC genes from each cell type and obtained 220 unique 
genes (Fig. 4a, Supplementary Table 5a). These 220 STATIC genes are enriched in 
pathways such as innate (adj p=1.43x10-9) and adaptive (adj p=1.33x10-9) immune 
response, allograft rejection (adjusted p=3.06x10-16), lymphocyte mediated immunity (adj 
p=3.72x10-8), myeloid mediated immunity (adj p=2.71x10-5), B/T-cell proliferation (adj 
p<1.46x10-3), acute inflammatory response (adj p=7.48x10-3), hematopoietic cell lineage 
(adjusted p=2.44x10-4), etc. (Supplementary Table 5b). Examples of top STATIC genes 
for major cell types were shown in Fig. 4b, including: IL32, CCL5, TCF7, IL7R, and LEF1 
for T cells; CD79A, MS4A1, TCL1A, CD79B, and TNFRSF13C for B cells; PRF1, 
FGFBP2, SPON2, CST7, and KLRD1 for natural killer (NK) cells; LILRA1, LILRB2, 
CD300LF, IFNAR1, and SPI1 for monocytes; and LILRA4, IRF7, FCER1A, SERPINF1, 
and SPIB for dendritic cells (DCs). All these genes demonstrated cell type-specific 
stability patterns and have well-documented roles in the corresponding cell types 
(Supplementary Table 5c). 

We used the 220 STATIC genes as input features and projected PBMCs in our 
scRNA-seq data onto a two-dimensional Uniform Manifold Approximation and 
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Projection11 (UMAP; Fig. 4c), which we refer to as sUMAP from now on. We also 
generated sUMAPs using the same 220 STATIC genes on three independent scRNA-
seq datasets2,3,16 of PBMCs (Fig. 4d-f) in which cells were labeled as in the original 
studies. In all four cases, the 220 STATIC genes separated major cell types and most of 
their subtypes very well, suggesting that some STATIC genes are potentially good 
markers for cell types. 

Gene scores are routinely computed from scATAC-seq data to infer expression of 
the corresponding genes and used to label cells in scATAC-seq data based on a scRNA-
seq reference21. We calculated the Pearson correlation between expression in scRNA-
seq data and gene score in scATAC-seq data of the same genes across cell types and 
samples. Due to data sparseness, incomplete reference assembly, non-coding RNAs, 
and uncharacterized sequences, Pearson correlation could be calculated only on 10,611 
(95%) of the 11,191 reliable genes (Fig. 4g). Interestingly, among genes with strong 
correlations (Supplementary Fig. 10), the correlation was mainly influenced by 
differences between cell types, which partially justifies the use of gene score for cell 
labeling on scATAC-seq data. Within individual cell types, the correlation however 
appeared to be poor across different samples, likely reflecting the complexity of gene 
regulation. Pearson correlation was obtained on 208 (95%) of the 220 STATIC genes with 
a median value of 0.70. In comparison, Pearson correlation was obtained on 232 (93%) 
of the top 250 highly variable genes (HVGs), which are widely used in dimension 
reduction on scRNA-seq data11, with a significantly lower median value of 0.37 (p = 
2.2x10-16, Mann-Whiney test; Supplementary Table 5d). We randomly paired unrelated 
genes, calculated the corresponding correlations between expression and gene score, 
and found that the obtained distribution had a 95% upper confidence bound at R0=0.399 
(Methods).  Thus, any correlations below R0 were not statistically better than those 
between random, unrelated gene pairs. A total of 7,255 (68%) out of the 10,611 reliable 
genes and 128 (55%) out of the 232 HVGs had a correlation below R0, in comparison 
with 42 (20%) out of the 208 STATIC genes. To properly label cells in scATAC-seq data 
based on gene score approach, one should only use genes whose expression versus 
gene score correlations are above R0. Some STATIC genes might be good candidates 
for this purpose. 

We further investigated how the 220 STATIC genes fared as potential disease 
biomarkers. Previously, two studies2,3 applied scRNA-seq to analyze PBMCs of healthy 
controls (Normal) and of patients infected with either influenza (FLU) or SARS-CoV-2 
(COVID19). We reanalyzed the data using methods described in the original studies and 
identified differential expression genes (DEGs) distinguishing Normal versus FLU or 
Normal versus COVID19. For simplicity, DEGs from individual cell types were combined 
when compared with the 220 STATIC genes. Out of the 18,824 genes measured in the 
first study (CNP0001102)3, 681 and 632 DEGs were identified for distinguishing Normal 
versus FLU and Normal versus COVID19, respectively. The corresponding overlap with 
the STATIC genes was 49 for Normal versus FLU (hypergeometric p = 4.8x10-26) and 50 
for Normal versus COVID19 (hypergeometric p = 1.7x10-28, Fig. 4h). A total of 33,538 
genes were measured in the second study (GSE149689)2. A total of 126 STATIC genes 
(hypergeometric p = 4.8x10-74) overlapped with the 3,040 DEGs for Normal versus FLU 
while 86 STATIC genes (hypergeometric p = 2.1x10-61) overlapped with the 1,396 DEGs 
for Normal versus COVID19 (Fig. 4i). In all cases, the 220 STATIC genes were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512585
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

significantly enriched as DEGs, suggesting their potential for monitoring some disease 
conditions. 

To illustrate that SPECT can handle scRNA-seq data of diverse sample types, we 
applied it to scRNA-seq data from a mouse brain study (GSE129788)36. In the study 
scRNA-seq data was collected from brain tissues of eight young (2-3 months) and eight 
old (21-23 months) mice, from which 37,069 cells of high-quality data were labeled to 25 
cell types, 14,699 genes were detected, marker genes for each of the 25 cell types were 
collected, and 1,113 DEGs distinguishing young versus old mouse brains were identified 
from a subset of 15 cell types. The study was not longitudinal per se. We treated data 
from the eight samples of each age group as repeated measurements for the group, just 
like repeated measurements at different timepoints in a longitudinal study. Since SPECT 
does not utilize the ordering of timepoints, its usage to the data is justified. We collected 
up to 25 STATIC genes per cell type and obtained 304 unique genes from all 25 cell types 
(Fig. 5a, Supplementary Table 6a). sUMAP using these 304 STATIC genes was able to 
separate the cell types as labeled in the original study very well (Fig. 5b). Out of the 304 
STATIC genes, 299 genes were identified in the original study as marker genes for the 
corresponding cell types (Fig. 5c, Supplementary Table 6b). From the 15 cell types 
having DEGs, we collected 234 STATIC genes that were significantly overlapped with the 
1,113 young versus old DEGs (n=123, hypergeometric p = 6.2x10-77, Fig. 5d). These 
results further demonstrated that some STATIC genes are good markers for cell types or 
biological conditions in the mouse brain study. 

 
Circos plots to reveal stability patterns of protein families 
PALMO implements circos plots to display stability patterns from multiple single-cell data 
modalities together. We displayed the stability pattern of gene expression and gene score 
of six protein families that are essential for immunity in Fig. 6, including human leukocyte 
antigens (HLAs, Fig. 6a), interferon regulatory factors (IRFs, Fig. 6b), interleukins (ILs, 
Fig. 6c), chemokine (C-X-C motif) receptor/ligand (CXCR/L) family (Fig. 6d), Janus 
kinases (JAKs) and signal transducer and activator of transcription proteins (STATs, Fig. 
6e), and tumor necrosis factor receptor superfamily (TNFRSF, Fig. 6f). All these protein 
families showed diverse stability patterns among members and across cell types, with 
HLAs and ILs having the most striking contrasts. The rich variety in such stability patterns 
suggests that different members of the protein superfamilies may play different roles in 
individual cell types. We noticed that gene expression and gene score generally did not 
exhibit the same stability patterns despite the rather strong correlations between them 
(Supplementary Fig. 11). It turns out that strong correlations were mainly driven by 
difference between cell types rather than difference between samples, likely reflecting the 
complexity of gene regulation as mentioned before. 
 
Application of TCA to reveal heterogenous immune responses among COVID-19 
patients 
We applied TCA to analyze longitudinal scRNA-seq data of four COVID-19 patients, each 
having data of at least three timepoints, in a previous study3 and identified significantly 
up- or down-regulated genes over time (adjusted p<0.05 and slope magnitude > 0.1, Fig. 
7a-d, Supplementary Table 7a) and the corresponding pathways (Supplementary 
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Table 7b). We observed rather heterogeneous immune responses by these patients 
during recovery (Fig. 7e), which was not presented in the original study. 

Patient COV-3 had barely any significant genes except that IFI27 decreased in 
DCs, IFI44L decreased in naïve B cells, and IGLC3 decreased in plasma cells, suggesting 
possible dampening of immune modulation. 

The significant genes of patient COV-2 included eighteen upregulated genes in 
monocytes, four genes each in memory B cells and naïve B cells, and twelve genes split 
among other six cell types. Gene enrichment analysis on the eighteen upregulated genes 
in monocytes revealed only one significant pathway: myeloid leukocyte mediated 
immunity (adjusted p=0.044). 

The significant genes of COV-1 included eleven upregulated and six 
downregulated genes in cycling plasma cells, seven upregulated and sixteen 
downregulated genes in cycling T cells, six downregulated genes in naïve B cells, and 
fifteen genes split among other seven cell types. The significant genes in cycling plasma 
cells are significantly enriched in five pathways including regulation of humoral immune 
response (adjusted p=3.92x10-3), Fc receptor mediated stimulatory signaling pathway 
(adjusted p=3.92x10-3), and immunoglobulin production (adjusted p=0.011), indicating a 
predominant role of humoral immunity in the recovery of the patient.   

Patient COV-5 had significant genes in almost all cell types except for DCs and 
monocytes, including eight upregulated and eight downregulated genes in memory B 
cells, six upregulated and six downregulated genes in naïve B cells, one upregulated and 
ten downregulated genes in activated CD4+ T cells, two upregulated and eight 
downregulated genes in plasma cells, and 43 genes split among other seven cell types. 
Seven (58%) of the twelve significant genes in naïve B cells were also significant in 
memory B cells and in the same direction of change, suggesting common responses by 
the two cell types. The significant genes in memory B cells are enriched in interferon 
gamma (adjusted p=3.28x10-6) and alpha (adjusted p=4.86x10-5) response, antigen 
processing and presentation (adjusted p=0.036), and antigen processing and 
presentation of peptide or polysaccharide antigen via MHC class II (adjusted p=0.044). 
The significant genes in naïve B cells are enriched in interferon alpha (adjusted 
p=1.96x10-5) and gamma (adjusted p=1.96x10-5) response. The significant genes in 
plasma cells were enriched in innate and humoral immune responses (p=3.46x10-4 and 
p=5.79x10-4, respectively) although both with an adjusted p=0.084. These results align to 
the patient’s disease severity and advanced age. 

For comparison, we also used Seurat to analyze patient COV-5 data of activated 
CD4+ T cells. To satisfy Seurat’s requirement of selecting two contrast groups, we did 
the analysis in two iterations, i.e. day 1 (D1) versus D7+D13 and D1+D7 versus D13, 
and obtained 942 and 1,018 DEGs (adjusted p<0.05), respectively, with an overlap of 
813 DEGs (Supplementary Figure 12a). TCA identified 921 significantly up- or down-
regulated genes (adjusted p<0.05), only 21 of which overlapped with both Seurat 
results. The genes obtained from TCA or Seurat were quite different. We collected top 
ten up- and top ten down-regulated genes from all three approaches and plotted the 
corresponding gene expression in heatmaps (Supplementary Figure 12b-d). TCA 
results showed better dynamic changes over time than Seurat results in our opinion.  
 
Discussion 
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The five modules in PALMO analyze longitudinal omics data from multiple 
perspectives as continuous data. VDA provides a global view on the sources of variance 
within the whole dataset. TCA studies the time series of individual participants. CVP and 
SPECT first examine data of individual participants separately and then summarize the 
observations across different participants. All these four methods focus on individual 
features. ODA is the only method to provide a sample-level analysis. Which module(s) to 
use on a specific dataset depends on the research question of interest. Additional 
methods need to be developed for research interest not covered here. 

We observed that a small set of STATIC genes, 220 for PBMC and 304 for mouse 
brain tissues, distinguished cell types well and captured some biological differences. The 
PBMC STATIC genes showed better correlation between gene expression in scRNA-seq 
data and gene score in scATAC-seq data than HVGs. It would be interesting to see 
whether these observations can be extended to scRNA-seq data of other sample types. 
We selected up to 25 STATIC genes per cell type in our analysis. It is possible that a 
better set of genes can be selected with a more sophisticated selection procedure. 

Plasma proteins are often targeted as disease biomarkers, thus understanding 
their temporal stability is of particular interest. Conceptually, highly variable proteins are 
poor biomarker candidates since their values likely have very high sampling variations. 
The rather moderate CV values of the most variable proteins in our study suggest 
sampling variations are not a big concern on these proteins. The small CV values of the 
most stable proteins, on the other hand, indicate they do not change much under normal, 
healthy conditions. So, if they ever change under some disease conditions, they should 
be closely explored as potential biomarkers.  

We condensed single-cell data into pseudo-bulk data in VDA, SPECT and ODA. 
Recent literature14,17,18 revealed that many single-cell methods fail to properly account for 
variations in cross-sectional scRNA-seq data and generate many false DEGs as a result. 
In comparison, pseudo-bulk approaches mostly generate reliable results although they 
may be underpowered. Longitudinal single-cell omics data is even more complicated than 
cross-sectional scRNA-seq data and may require new statistical methods to properly 
handle its many types of variations. Furthermore, memory and CPU requirements for 
using GLMMs to analyze longitudinal single-cell omics data at single-cell level may be 
challenging even for cloud-based computing. We adopted the pseudo-bulk approach in 
VDA, SPECT and ODA as a practical compromise. In TCA we bypassed some of the 
complications by analyzing data of individual cell types and of individual participants 
separately. 

The lack of a well-accepted software package for longitudinal omics data makes it 
difficult to benchmark PALMO performance. We compared PALMO with 
variancePartition19, tcR20, and Seurat16, which is summarized in Supplementary Fig. 1c. 
VDA can handle missing data but variancePartition cannot, which is an advantage of VDA 
since missing values in longitudinal omics data are almost inevitable. The two tools 
generated almost identical results on two tested datasets after removing missing values. 
PALMO was not developed specifically for TCR data. When we applied VDA to the TCR 
data of SSc donors, we obtained results that are potentially interesting but not reported 
in the original study using tcR. We believe PALMO complements TCR specific tools (such 
as tcR) on TCR data. Seurat requires users to select two contrast groups in DEG analysis 
and thus is not appropriate for analyzing longitudinal data of more than two timepoints. 
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Nevertheless, when we applied both TCA and Seurat to the longitudinal scRNA-seq data 
of activated CD4+ T cells of a COVID-19 patient, the two methods generated rather 
different results on up- or down-regulated genes. Heatmaps of the corresponding top 
genes revealed that TCA results showed better dynamic changes over time than Seurat 
results.  

PALMO has been published as an R package in CRAN with a detailed reference 
manual and vignettes to demonstrate its usage. It can be easily installed and executed in 
R or RStudio. As we demonstrated, it can be used to analyze longitudinal bulk and single-
cell omics data generated on diverse technical platforms and/or of diverse sample types, 
including but not limited to: clinical lab test results, cell type composition, gene expression, 
protein abundance, bulk or single-cell omics data, TCR sequencing data, etc. We believe 
it can facilitate the analysis of some longitudinal omics data. In addition, our longitudinal 
multi-omics dataset of five data modalities on the same samples can also be a valuable 
resource for immune health study and software development. 
 
Methods 
Healthy donors  
We enrolled six clinically healthy donors (no diagnosis of active or chronic disease) with 
age between 25 to 38 years with equal sex ratio. Blood samples were obtained from 
Bloodworks Northwest (Seattle, WA) through protocols approved by the Bloodworks 
Northwest institutional review board. The cohort demographics are described in the 
Supplementary Table 1a. Viable peripheral blood mononuclear cells (PBMCs) and 
plasma samples were collected from each donor over 10 weeks. Complete blood count 
(CBC) was measured to evaluate overall health of all donors over all timepoints (n=6, 
t=10). Minimal biometric data were collected on these donors which were handled 
following the Health Insurance Portability and Accountability Act (HIPAA) guidelines.  
 
Sample handling 
A volume of 30 mL of blood was drawn into BD NaHeparin vacutainer tubes (for PBMC; 
BD #367874) or K2-EDTA vacutainer tubes (for plasma; BD #367863). Upon arrival at 
the processing lab all NaHeparin tubes for each donor were pooled into a sterile plastic 
receptacle to establish one common pool and stored at room temperature until processing 
(4 hours or less from draw). PBMC were isolated by Ficoll density gradient separation 
and cryopreserved by a team of operators, as previously described37. Thawed PBMC of 
four donors over six timepoints (n=4, t=6) were assayed by flow cytometry, scRNA-seq 
and scATAC-seq in two batches (donors PTID5 and PTID6, donors PTID2 and PTID4) 
by a team of operators. Plasma of all donors over all timepoints (n=6, t=10) was isolated 
and cryopreserved by a team of operators, as previously described37.  
 
Flow cytometry 
Flow cytometry was performed as previously described37. In brief, cryopreserved PBMC 
were thawed, washed, and counted. 1-2x106 cells were incubated with Human TruStain 
FcX (BioLegend #422302) and Fixable Viability Stain 510 (BD #564406) prior to staining 
with a 25-color cell surface panel (Key Resources Table) on ice for 25 minutes. Cells were 
washed and fixed with 4% paraformaldehyde (Electron Microscopy Sciences #15713) 
prior to acquisition on a BD Symphony cytometer. Raw data were compensated and 
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curated to remove unrepresentative events due to instrument fluidics variability (time 
gating), doublets (by FSC-H and FSC-W), and cells exhibiting membrane permeability 
(live/dead gating) prior to quantification using BD FlowJo software. 
 
Proteomics 
Plasma samples were submitted to Olink (Uppsala, Sweden) for assay using the Olink 
Proximity Extension assay, run on the Fluidigm Biomark system. Patient samples were 
distributed evenly across two plates, and all time points per patient were run on the same 
plate, with randomized well locations. Samples were assayed using the Olink Discovery 
Assay which encompasses a total of 1536 proteins across 13 panels (Cardiometabolic 
[V.3603], Cardiovascular II [V.5006], Cardiovascular III [V.6113], Cell Regulation 
[V.3701], Development [V.3512], Immune Response [V.3202], Inflammation [V.3021], 
Metabolism [V.3402], Neuro Exploratory [V.3901], Neurology [V.8012], Oncology II 
[V.7004], Oncology III [V.4001], Organ Damage [V.3311]). Quality assessment, limit of 
detection, and normalization were performed by Olink using the plate bridging control, 
two positive controls, and three background controls.  
 
Single-cell RNA-seq 

Sample preparation, hashing, and pooling: Single-cell RNA-seq libraries were 
generated using the 10x Genomics Chromium 3’ Single Cell Gene Expression assay 
(#1000121) and Chromium Controller Instrument according to the manufacturer’s 
published protocol with modifications for cell hashing38. To block off-target antibody 
binding, Blocking Solution (5 µL of Human Trustain FcX (BioLegend #422302), and 13.7 
µL of a 10% Bovine Serum Albumin (BSA)) was added to 500,000 cells suspended in 50 
µL Dulbecco’s Phosphate Buffered Saline (DPBS; Corning Life Sciences #21-031-CM) 
and incubated for 10 minutes on ice. To stain samples, 0.5 µg (1 µL) of a TotalSeq™-A 
anti-human Hashtag Antibody was suspended in 31.3 µL DPBS/2% BSA, then added to 
each sample. For each batch of samples, 100,000 cells from 12 hashed samples with a 
distinct Hashtag Antibody were pooled into the hashed pool. Roughly 20,000 cells from a 
Leukopak healthy control were also labeled with a distinct TotalSeq™-A Hashtag 
Antibody and were spiked into each pool to serve as a batch control.  

Droplet encapsulation and reverse transcription: From each pool, 64,000 cells 
were loaded into each well of a Chromium Single Cell Chip G (10x Genomics #1000073) 
(8 wells per chip), targeting a recovery of 20,000 singlets from each well. Gel Beads-in-
emulsion (GEMs) were then generated using the 10x Chromium Controller. The resulting 
GEM generation products were then transferred to semi-skirted 96-well plates and 
reverse transcribed on a C1000 Touch Thermal Cycler (Bio-Rad) programmed at 53°C 
for 45 minutes, 85°C for 5 minutes, and a hold at 4°C. Following reverse transcription, 
GEMs were broken, and the pooled single-stranded cDNA and Hashtag Oligo fractions 
were recovered using Silane magnetic beads (Dynabeads MyOne SILANE #37002D). 

Library generation and separation: Barcoded, full-length cDNA including the 
Hashtag Oligos (HTOs) from the TotalSeq™-A Hashtag Antibodies were then amplified 
with a C1000 Touch Thermal Cycler programmed at 98°C for 3 minutes, 11 cycles of 
(98°C for 15 seconds, 63°C for 20 seconds, 72°C for 1 minute), 72°C for 1 minute, and a 
hold at 4°C. Amplified cDNA was purified and separated from amplified HTOs using a 
0.6x size selection via SPRIselect magnetic bead (Beckman Coulter #22667) and a 1:10 
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dilution of the resulting cDNA was run on a Fragment Analyzer (Agilent Technologies 
#5067-4626) to assess cDNA quality and yield. HTO libraries were purified further with 
SPRIselect magnetic bead (Beckman Coulter #22667) and amplified and indexed with a 
custom HTO i7 index on a C1000 Touch Thermal Cycler programmed at 95°C for 3 
minutes, 10 cycles of (95°C for 20 seconds, 64°C for 30 seconds, 72°C for 20 seconds), 
72°C for 1 minute, and a hold at 4°C. The resulting HTO libraries were purified with 
SPRIselect magnetic bead (Beckman Coulter #22667) post-amplification and a 1:10 
dilution of the resulting HTO libraries were run on a Fragment Analyzer (Agilent 
Technologies #5067-4626) to assess HTO quality and yield. A quarter of the cDNA 
sample (10 ul) was used as input for library preparation. Amplified cDNA was fragmented, 
end-repaired, and A-tailed is a single incubation protocol on a C1000 Touch Thermal 
Cycler programmed at 4°C start, 32°C for minutes, 65°C for 30 minutes, and a 4°C hold. 
Fragmented and A-tailed cDNA was purified by performing a dual-sided size-selection 
using SPRIselect magnetic beads (Beckman Coulter #22667). A partial TruSeq Read 2 
primer sequence was ligated to the fragmented and A-tailed end of cDNA molecules via 
an incubation of 20°C for 15 minutes on a C1000 Touch Thermal Cycler. The ligation 
reaction was then cleaned using SPRIselect magnetic beads (Beckman Coulter #22667). 
PCR was then performed to amplify the library and add the P5 and indexed P7 ends (10x 
Genomics #1000084) on a C1000 Touch Thermal Cycler programmed at 98°C for 45 
seconds, 13 cycles of (98°C for 20 seconds, 54°C for 30 seconds, 72°C for 20 seconds), 
72°C for 1 minute, and a hold at 4°C. PCR products were purified by performing a dual-
sided size-selection using SPRIselect magnetic beads (Beckman Coulter #22667) to 
produce final, sequencing-ready libraries.  

Quantification and sequencing: Final libraries were quantified using Picogreen 
and their quality was assessed via capillary electrophoresis using the Agilent Fragment 
Analyzer HS DNA fragment kit and/or Agilent Bioanalyzer High Sensitivity chips. Libraries 
were sequenced on the Illumina NovaSeq platform using S4 flow cells. Read lengths were 
28bp read1, 8bp i7 index read, 91bp read2. 

scRNA-seq data pre-processing: scRNA-seq data of four donors were 
generated in two batches, each containing data of two donors. Each batch of data was 
pre-processed separately as previously described37. Briefly, binary base call (BCL) files 
were demultiplexed using the mkfastq function in the 10x Cell Ranger software (version 
3.1.0), producing fastq files. Fastq files were then checked for quality (FastQC version 
0.11.3) and run through the 10x Cell Ranger alignment function (cell ranger count) against 
the human reference annotation (Ensembl GRCh38). Mapping was performed using 
default parameters. Upon completion, Cell Ranger produced an output directory per file 
that contains the following: bam file (binary alignment file), HDF5 file (Hierarchical Data 
Format) with all reads, HDF file containing just the filtered reads, summary report (html 
and csv), and cloupe.cloupe (a file for the 10x Loupe visual browser).  

scRNA-seq data analysis: As previously described37, individual HDF5 files 
(filtered) were loaded into the R statistical programming language (version 3.6.0) using 
Bioconductor (version 3.1.0) and the Seurat package (version 3.1.5). For simplicity, 
sample names were captured as a list in R and iteratively processed within a loop (refer 
to https://satijalab.org/seurat/ for more information). Within the loop, samples were 
normalized with the NormalizeData function followed by the FindVariableFeatures 
function with parameters: vst selection method and 2000 features. Label transfer was 
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performed using previously published procedures39 and with the Seurat reference 
dataset. Labeling included the FindTransferAnchors and TransferData functions 
performed in the Seurat package.  

We merged the two batches of data using the Seurat merge function. We 
calculated read depth, mitochondrial percentage, and number of UMIs per sample. Cells 
were filtered with nFeature_RNA > 200 and percent.mt < 10. The merged data structure 
was normalized (using NormalizeData and FindVariableFeatures functions) and then 
saved as an RDS for further analysis. The top 3000 variable genes were used for PCA 
and UMAP based dimension-reduction maps using 30 principle components (PCs). We 
checked for possible batch effects using the bridging controls but did not observe any 
obvious batch effects.  

Cell labels obtained from the original batches were kept. Doublets were removed 
from further analysis. In total we retrieved high quality data of 472,464 cells from 4 donors 
and labeled them to 31 cell types from Seurat V2. The cell type frequencies in each 
sample were calculated and compared with flow-based cell frequencies. Nineteen cell 
types (CD4_Naive, CD4_TEM, CD4_TCM, CD4_CTL, CD8_Naive, CD8_TEM, 
CD8_TCM, Treg, MAIT, gdT, NK, NK_CD56bright, B_naive, B_memory, B_intermediate, 
CD14_Mono, CD16_Mono, cDC2, pDC) were selected for further analysis after filtering 
out cell types with a low frequency (<0.5%). 
 
Single-cell ATAC-seq 

Sample preparation: Permeabilized-cell scATAC-seq was performed as 
described previously (Swanson et al. 2021). A 5% w/v digitonin stock was prepared by 
diluting powdered digitonin (MP Biomedicals, 0215948082) in DMSO (Fisher Scientific, 
D12345), which was stored in 20 µL aliquots at −20°C until use. To permeabilize, 1×106 
cells were added to a 1.5 mL low binding tube (Eppendorf, 022431021) and centrifuged 
(400×g for 5 min at 4°C) using a swinging bucket rotor (Beckman Coulter Avanti J-15RIVD 
with JS4.750 swinging bucket, B99516). Cells were resuspended in 100 µL cold isotonic 
Permeabilization Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, 0.01% 
digitonin) by pipette-mixing 10 times, then incubated on ice for 5 min, after which they 
were diluted with 1 mL of isotonic Wash Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 
mM MgCl2) by pipette-mixing five times. Cells were centrifuged (400×g for 5 min at 4°C) 
using a swinging bucket rotor, and the supernatant was slowly removed using a vacuum 
aspirator pipette. Cells were resuspended in a chilled TD1 buffer (Illumina, 15027866) by 
pipette-mixing to a target concentration of 2,300-10,000 cells per µL. Cells were filtered 
through 35 µm Falcon Cell Strainers (Corning, 352235) before counting on a Cellometer 
Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide 
solution (Nexcelom, C52-0106-5). 

Tagmentation and fragment capture: scATAC-seq libraries were prepared 
according to the Chromium Single Cell ATAC v1.1 Reagent Kits User Guide (CG000209 
Rev B) with several modifications. 19,000 cells were loaded into each tagmentation 
reaction. Permeabilized cells were brought up to a volume of 12 µl in TD1 buffer (Illumina, 
15027866) and mixed with 3 µl of Illumina TDE1 Tn5 transposase (Illumina, 15027916). 
Transposition was performed by incubating the prepared reactions on a C1000 Touch 
thermal cycler with 96–Deep Well Reaction Module (Bio-Rad, 1851197) at 37°C for 60 
minutes, followed by a brief hold at 4°C. A Chromium NextGEM Chip H (10x Genomics, 
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2000180) was placed in a Chromium Next GEM Secondary Holder (10x Genomics, 
3000332) and 50% Glycerol (Teknova, G1798) was dispensed into all unused wells. A 
master mix composed of Barcoding Reagent B (10x Genomics, 2000194), Reducing 
Agent B (10x Genomics, 2000087), and Barcoding Enzyme (10x Genomics, 2000125) 
was then added to each sample well, pipette-mixed, and loaded into row 1 of the chip. 
Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 2000210) were vortexed 
for 30 seconds and loaded into row 2 of the chip, along with Partitioning Oil (10x 
Genomics, 2000190) in row 3. A 10x Gasket (10x Genomics, 370017) was placed over 
the chip and attached to the Secondary Holder. The chip was loaded into a Chromium 
Single Cell Controller instrument (10x Genomics, 120270) for GEM generation. At the 
completion of the run, GEMs were collected, and linear amplification was performed on a 
C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 72°C for 5 min, 98°C 
for 30 sec, 12 cycles of: 98°C for 10 sec, 59°C for 30 sec and 72°C for 1 min. 

Sequencing library preparation: GEMs were separated into a biphasic mixture 
through addition of Recovery Agent (10x Genomics, 220016), the aqueous phase was 
retained and removed of barcoding reagents using Dynabead MyOne SILANE (10x 
Genomics, 2000048) and SPRIselect reagent (Beckman Coulter, B23318) bead clean-
ups. Sequencing libraries were constructed by amplifying the barcoded ATAC fragments 
in a sample indexing PCR consisting of SI-PCR Primer B (10x Genomics, 2000128), Amp 
Mix (10x Genomics, 2000047) and Chromium i7 Sample Index Plate N, Set A (10x 
Genomics, 3000262) as described in the 10x scATAC User Guide. Amplification was 
performed in a C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 98°C 
for 45 sec, for 11 cycles of: 98°C for 20 sec, 67°C for 30 sec, 72°C for 20 sec, with a final 
extension of 72°C for 1 min. Final libraries were prepared using a dual-sided SPRIselect 
size-selection cleanup. SPRIselect beads were mixed with completed PCR reactions at 
a ratio of 0.4x bead:sample and incubated at room temperature to bind large DNA 
fragments. Reactions were incubated on a magnet, the supernatant was transferred and 
mixed with additional SPRIselect reagent to a final ratio of 1.2x bead:sample (ratio 
includes first SPRI addition) and incubated at room temperature to bind ATAC fragments. 
Reactions were incubated on a magnet, the supernatant containing unbound PCR 
primers and reagents was discarded, and DNA bound SPRI beads were washed twice 
with 80% v/v ethanol. SPRI beads were resuspended in Buffer EB (Qiagen, 1014609), 
incubated on a magnet, and the supernatant was transferred resulting in final, 
sequencing-ready libraries. 

Quantification and sequencing: Final libraries were quantified using a Quant-iT 
PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589) on a SpectraMax iD3 
(Molecular Devices). Library quality and average fragment size was assessed using a 
Bioanalyzer (Agilent, G2939A) High Sensitivity DNA chip (Agilent, 5067-4626). Libraries 
were sequenced on the Illumina NovaSeq platform with the following read lengths: 51nt 
read 1, 8nt i7 index, 16nt i5 index, 51nt read 2. 

scATAC data pre-processing: scATAC-seq data were available for donor PTID2 
and PTID4 at week 2-7 (6 timepoints) and for PTID5 and PTID6 at week 2, 4, and 7. 
scATAC-seq libraries were processed as described previously (Swanson et al., 2021a). 
In brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to demultiplex BCL files 
to FASTQ. FASTQ files were aligned to the human genome (10x Genomics refdata-
cellranger-atac-GRCh38-1.1.0) using cellranger-atac count (10x Genomics v1.1.0) with 
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default settings. scATAC fragments were submitted to the ArchR package to create the 
ArchR object21. Per-cell quality control (QC) was performed using methods as mentioned 
in ArchR. The QC analysis showed FRiP score (the fraction of reads that fall into a peak) 
>0.25. The TSS enrichment and log10(nFrags) data showed comparable range across 
all samples. Doublets were removed using filterDoublets() function. In total we observed 
294,623 peaks in 135,566 cells. 

scATAC-seq data analysis: Using plotEmbedding function in ArchR, embedded 
IterativeLSI was used to perform UMAP based dimension reduction. Unconstrained 
integration was used to align scATAC-seq gene score matrix in ArchR object with the 
corresponding scRNA-seq gene expression matrix, from which cells were labeled to 28 
cell types along with labeling scores to measure the quality of the cell-label transfer. We 
filtered out low quality cells (labeling score <0.5), removed cell types having less than 50 
remaining cells, and kept 14 (B_intermediate, B_naive, CD14_Mono, CD16_Mono, 
CD4_Naive, CD4_TCM, CD8_Naive, CD8_TEM, cDC2, gdT, MAIT, NK, NK_CD56bright, 
and pDC) out of the 28 cell types for downstream analysis. The gene score matrix was 
retrieved using the getGroupSE() function in ArchR21 and used for downstream analysis 
by PALMO. 
 
PALMO  

Overview: The current version of PALMO contains five analytical modules to 
analyze longitudinal omics data from multiple perspectives. It treats longitudinal omics 
data as continuous variables. PALMO has been published as an R package in CRAN with 
a detailed reference manual and vignettes to demonstrate its usage (https://cran.r-
project.org/web/packages/PALMO/index.html). It can be easily installed and executed in 
R or RStudio.  

PALMO S4 object: PALMO is a R based package that uses the setClass function 
to create an S4 object oriented system. The S4 object consists of a list of data structures 
with different types of elements such as strings, numbers, vectors, embedded lists, etc. It 
stores input expression data, input metadata, and output results into separate data 
structures for easy retrieval and interpretation. More details can be found in Section 3.9 
of PALMO vignettes 
(https://raw.githubusercontent.com/aifimmunology/PALMO/main/Vignette-PALMO.pdf).  

Function createPALMOobject() takes two inputs (anndata and data) to create an 
PALMO S4 object: anndata is a data frame containing sample annotations. For  
longitudinal bulk data, data is a data frame with features (such as genes or proteins) as 
rows, samples as columns, and expression values as elements. For  longitudinal single-
cell omics data, data is a Seurat object. For single-cell omics data without a Seurat object, 
function createPALMOfromsinglecellmatrix() first creates a Seurat object from an 
expression matrix or data frame and then creates a PALMO S4 object. Function 
annotateMetadata() assigns columns in the original sample annotation data to designated 
variables (sample_column, donor_column, and time_column) of the PALMO object for 
longitudinal analysis. Function mergePALMOdata() cleans up the PLAMO object by 
filtering out data missing essential information on sample_column, donor_column, or 
time_column. Function checkReplicates() first checks whether there are replicated 
samples at the same time points and of the same participants and, if yes, takes the 
median values among replicated samples. Function avgExpCalc() carries out pseudo-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512585
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

bulking on single-cell omics data. Function naFilter() filters out data whose fraction of NAs 
is above na_cutoff (default: 0.4).    

Variance decomposition analysis (VDA): For variance decomposition, we want 
to evaluate contributions from factors of interest {𝐹!} to the total variance of analyte Y with 
or without the influence of fixed effects {𝑋"}. Some {𝐹!} and {𝑋"} may be the same 
variables. We treat {𝐹!} as random effects in a linear mixed model, that is, with fixed 
effects, 

𝑌	~	𝑋# + 𝑋$ +⋯+ 𝑋% +	(1|𝐹#) + (1|𝐹$) + ⋯+ (1|𝐹&).  (1) 
Or, without fixed effects, 

𝑌	~	(1|𝐹#) + (1|𝐹$) + ⋯+ (1|𝐹&).     (2) 
Using lme440, one can obtain the corresponding variance 𝜎!$, including the residual 
variance 𝜎'$. Then the total variance of Y is given by  

𝜎()(*+$ = 𝜎#$ + 𝜎$$ +⋯+ 𝜎&$ + 𝜎'$.     (3) 
The proportion of variance explained by factor 𝐹! is then 𝜎!$/𝜎()(*+$ . Similar approach was 
used in variancePartition19 where the percentage of variance explained was interpreted 
as the intra-class correlation (ICC). VDA can be performed with the function 
lmeVariance(). VDA results can be displayed with functions variancefeaturePlot() and 
gene_featureplot().  

Coefficient of variation (CV) profiling (CVP): CVP is designed for bulk 
longitudinal data and contains two functions: (1) Function cvCalcBulkProfile() calculates 
CV of all features and generates the corresponding CV profile. (2) Function cvCalcBulk() 
identifies consistently stable and variable features, which has two important parameters: 
Parameter cvThreshold (default: 5%) specifies the CV cutoff for distinguishing stable (CV 
< cvThreshold) or variable (CV > cvThreshold) features. Parameter donorThreshold 
(default: the total number of donors) defines the minimum number of donors on which a 
feature needs to be stable or variable to be considered as consistently stable or variable. 
One may choose cvThreshold as the mode of the corresponding CV distribution. 

Stability pattern evaluation across cell types (SPECT): SPECT is the CVP 
counterpart for single-cell data and contains the following functions: (1) Function 
cvCalcSCProfile() calculates the CVs of all features in individual cell types and of 
individual donors and generates the corresponding CV profile. (2) Function 
cvSCsampleprofile() calculates the CVs of all features of individual donors regardless of 
difference in cell types and generates the corresponding CV profile. (3) Function 
cvCalcSC() determines whether individual features are stable (CV < cvThreshold) or 
variable (CV > cvThreshold) in individual cell types and of individual donors. One may 
choose cvThreshold as the mode of the corresponding CV distribution or a convenient 
value based on the CVs of housekeeping genes. (4) Function VarFeatures() first counts 
how many times individual features are variable in cell type-donor combinations and then 
classifies variable features as follows: Features whose counts are above parameter 
groupThreshold are classified as super variable (SUV). Features whose counts are below 
groupThreshold but which are consistently variable across all donors in at least one cell 
type are classified as variable across time in cell-types (VATIC). The default 
groupThreshold value is set to 𝑁,)&)- ∗ 𝑁./++(01//2 where 𝑁,)&)- is the number of donors 
and 𝑁./++(01/ is the number of cell types. (5) Function StableFeatures() is similar to 
VarFeatures() but classifies stable features as super stable (SUS) or stable across time 
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in cell-types (STATIC). (6) Function dimUMAPPlot() generates a UMAP plot using a set 
of selected genes as input. 

Outlier detection analysis (ODA): ODA applies both graphic and statistical 
methods to examine the temporal behavior of longitudinal data. Function 
sample_correlation() calculates intra- and inter-donor correlations (across analytes) and 
displays the results in a heatmap. Timepoints showing obvious weaker correlations with 
other timepoints are potential outliers. To detect abnormal timepoints, function 
outlierDetect() first calculates the mean and the standard deviation (SD) of each analyte 
from samples of the same donor across all timepoints, calculates 𝑧 = 2*+3/4%/*&

56
 for the 

analyte at individual timepoints, and then counts at individual timepoints how many 
analytes are outliers with |𝑧| > 𝑧7,	where	𝑧7 is a user selected cutoff value. Assuming 𝑧 
follows a normal distribution, it is straightforward to calculate the expected rate 𝑟 of 
analytes having |𝑧| > 𝑧7 (two-sided) or having 𝑧 > 𝑧7 or 𝑧 < −𝑧7 (one-sided). Afterwards 
function outlierDetectP() uses binomial tests to evaluate the p values for the counts of 
outliers at individual timepoints and applies Benjamini and Hochberg procedure to adjust 
the p values since multiple timepoints are tested. A donor-specific abnormal timepoint is 
identified if the corresponding adjusted p value is less than 0.05. In this study we chose 
𝑧7 = 2.5 and thus 𝑟 = 1.24% for |𝑧| > 2.5 or 𝑟 = 0.62% for 𝑧 > 2.5 or 𝑧 < −2.5. While the 
𝑧-score method described here can handle data with only three timepoints, Dixon’s test 
may be a better alternative for such a small dataset. 

Time course analysis (TCA): Function sclongitudinalDEG() uses the hurdle 
model implemented in the MAST package (https://github.com/RGLab/MAST/) to study 
temporal changes in longitudinal scRNA-seq data. The data is first split into subsets of 
individual cell types and individual participants and then analyzed independently. If the 
data has at least three timepoints, the function models normalized expression of each 
gene as a linear function of time and evaluates the slope of time and the corresponding 
p value (likelihood ratio test). If the data has only two timepoints, the function performs 
DEG analysis between the two timepoints as implemented in MAST and obtains fold 
change and the corresponding p value. Potential confounding factors (such as 
experimental batch, sex, age, etc.) can be specified by parameter adjfac which are 
adjusted in the analysis. Genes that are expressed in less than a certain fraction of cells 
(specified by parameter mincellsexpressed, default 0.1) are filtered out from the analysis. 
Obtained p-values are adjusted for multiple comparisons using the Benjamini and 
Hochberg procedure. Adjusted p-value < 0.05 were considered significant in this study. 

Circos plots for displaying stability patterns: PALMO has two functions to show 
the stability patterns of single-cell omics data. Function genecircosPlot() displays the CV 
values of features of interest in individual cell types and across individual donors based 
on a single data modality. Function multimodalView() displays the CV values of features 
of interest in individual cell types and across individual donors based on two independent 
data modalities.  
 
Random correlation between gene expression and gene score 
To generate the distribution of random correlation between gene expression in scRNA-
seq data and gene score in scATAC-seq data, we randomly shuffled the order of reliable 
genes, calculated the correlations between expression of pre-shuffle genes and gene 
score of post-shuffle genes at the same positions, and repeated the process 1000 times. 
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The obtained distribution of correlations provided a good estimate on the correlation 
between random, unrelated gene pairs, which had a 95% upper confidence bound at 
R0=0.399.  Any correlations below R0 were no better than that between random, unrelated 
gene pairs and thus not statistically meaningful.  
 
Published single cell datasets 
We retrieved scRNA-seq data from published PBMC datasets CNP00011023, 
GSE1496892, and GSE16437816. Datasets CNP0001102 and GSE164378 were from 
longitudinal studies. Single-cell data objects were created in Seurat V4 and cells were 
labeled as in the original studies. Zhu et al., 2020 (CNP0001102) dataset consists of three 
healthy controls (normal), two participants infected with influenza (Flu) and five 
participants infected with SARS-CoV-2 (COVID-19).  Lee et al., 2020 (GSE149689) 
dataset consists of four normal, five Flu, and eleven COVID-19 participants. The Hao et 
al., 2021 (GSE164378) dataset consists of eight participants with PBMC samples 
collected at three timepoints.  

Mouse brain scRNA-seq data was obtained from Ximerakis et al (2019) published 
dataset (GSE129788)36. The dataset contains single cell RNA data from brain tissues of 
eight young (2-3 months) and eight old (21-23 months) mice. The dataset consists of a 
total 37,069 cells labeled to 25 cell types. 

 
TCRß repertoire dataset 
We downloaded the TCRβ sequencing data of 4 systemic sclerosis patients from 
GSE15698026. First, we merged the TCR repertoire data from the 4 patients with 3 
timepoints into a single file. Second, we calculated the frequency of each unique CDR3 
peptide in each patient sample as the ratio between the observed reads of the peptide to 
the total peptide reads in the sample. Third, we termed unique CDR3 peptides as 
clonotypes and labeled them from 1 to the total number of clonotypes. In total, we 
collected 288,597 (out of 355,024) unique clonotypes from CD4+ T cells and 11,739 (out 
of 14,883) from CD8+ T cells, respectively. The frequency data matrix from CD4+ or 
CD8+ T cells was then submitted to PALMO as input data frame. 
 
Differential expression gene (DEG) analysis on scRNA-seq data 
DEG analysis on datasets (CNP0001102 and GSE149689) was performed using the 
FindMarkers function from the Seurat package (version 3.1.5). The groups were specified 
using “ident.1” and “ident.2” in the function. The Benjamini and Hochberg (BH) procedure 
as implemented in the Seurat package was applied to adjust p-values, controlling the 
false discovery rate (FDR) in multiple testing. DEGs were identified if the corresponding 
average log2-Fold change was greater than 0.1 and the corresponding adjusted p value 
was less than 0.05. 
 
Seurat differential analysis on longitudinal scRNA-seq data of a COVID19 patient 
Seurat based differential analysis was performed on the longitudinal scRNA-seq data of 
activated CD4+ T cells of patient COV-5 in Zhu et al., 2020 (CNP0001102)3, using the 
function FindMarkers() with parameters test.use="MAST" and logfc.threshold = 0. The 
groups were defined by parameters ident.1 and ident.2. For example, to capture 
differential genes between day 1 (D1) versus day 7 (D7) and day 13 (D13), we selected 
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ident.1=D1 and ident.2=(D7 and D13). Similar approach was carried out for comparing 
D13 versus D1 and D7 (ident.1=(D1 and D7) and ident.2=D13). The significant genes 
were identified by adjusted pvalue <0.05.  
      
Pathway enrichment analysis 
Fast Gene Set Enrichment Analysis (fgsea) was performed to identify enriched pathways 
among targeted genes41. A custom collection of gene sets that included the GO v7.2, 
KEGG v7.2 and Hallmark v7.2 from the Molecular Signatures Database (MSigDB, v7.2) 
were used as the pathway database. Genes were pre-ranked by the decreasing order of 
their correlation or changes or coefficients. The running sum statistics and Normalized 
Enrichment Scores (NES) were calculated for each comparison. The pathway enrichment 
p-values were adjusted using the Benjamini and Hochberg procedure and pathways with 
adjusted p-values < 0.05 were considered significantly enriched. Over representation 
analysis was performed using the Fisher test. For a single sample GSEA (ssGSEA), we 
used the GSVA v1.40 R package27. 
 
Data analysis and visualization 
Data analysis was performed in R, a statistical computing language (https://www.R-
project.org/). Basic data visualization was performed using ggplot2 v3.3, ggpubr 0.4, and 
circular plots by circlize v0.4. The UMAP visualization was performed using Seurat v4. 
Statistical tests were performed as mentioned in each section. Multi-test correction was 
applied to the p-values to control the FDR using the Benjamini and Hochberg procedure 
and adjusted p< 0.05 were considered significant. 
 
Data availability 
The scRNA-seq and scATAC-seq data generated during this study are available at GEO 
under accession number GSE190992. The Olink and flow cytometry data are available 
at https://github.com/aifimmunology/PALMO/tree/data/data. Participant information is 
provided in Supplementary Table 1a. Independent datasets used for evaluation are 
publicly available and their accession numbers are CNP0001102, GSE149689, 
GSE164378, GSE129788, and GSE156980. 
 
Code availability 
An open-source R implementation of PALMO and R codes used in this study are available 
at GitHub (https://github.com/aifimmunology/PALMO). The release includes tutorials and 
example vignettes. PALMO can also be installed in R or RStudio as an R package in 
CRAN.  
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Figures 
 
Fig. 1: General workflow and analysis schema of PALMO.  
a PALMO can work with complex longitudinal data, including clinical data, bulk omics 
data, and single-cell omics data. b Overview of five analytical modules implemented in 
PALMO. c Variance decomposition analysis (VDA) applies generalized linear mixed 
model to assess contributions of factors of interest (such as disease status, sex, 
individual participant, cell type, experimental batch, etc.) to the total variance of 
individual features in the data. d Coefficient of variation (CV) profiling (CVP) is designed 
for bulk longitudinal data, calculates CV of repeated measurements on the same 
participant to assess the corresponding longitudinal stability, and compares CVs of 
different participants to identify consistently stable or variable features. e Stability 
pattern evaluation across cell types (SPECT) is the CVP counterpart for single-cell 
omics data, analyzes stability patterns of features across different cell types and 
different participants, classifies features based on how often they are stable or variable 
in cell type-donor combinations, and identifies features that are unique to individual cell 
types and consistent among participants. f Outlier detection analysis (ODA) evaluates 
how many features in a sample are outliers when compared with the corresponding 
features in other samples of same participant, assesses whether the number of outlier 
features in the sample is significantly higher than expectation, and identifies possible 
abnormal events occurred during a longitudinal study. g Time course analysis (TCA) 
uses the hurdle model to evaluate transcriptomic changes over time based on 
longitudinal scRNA-seq data of same participants, models time as a continuous variable 
for data with at least three timepoints, and identifies up- or down-regulated genes over 
time. h PALMO uses circos plots to display CVs of features of interest and reveal 
stability patterns across features, participants, cell types, and data modalities. 
 
Fig. 2: Variance decomposition on longitudinal single-cell omics data.  
a Overall distributions of variance explained by inter-donor variations (Donor), 
longitudinal intra-donor variations (Week), variations among cell types (Celltype), or 
residual variations (Residual) based on scRNA-seq data. b-c Examples of genes whose 
total expression variance was most explained by inter-cell-type variations (b) or inter-
donor variations (c). d Examples of genes that had the most but still minuscular intra-
donor variations in expression. e Same as a but based on scATAC-seq data. f,g The 
top list of genes whose inter-cell-type (f) or inter-donor (g) variations contributed most to 
the total variance in scATAC-seq data. h The top list of genes that had the most intra-
donor variations in scATAC-seq data. b-d Kruskal-Wallis test was used to calculate the 
p value. ICC: intra-class correlation.  

 
Fig. 3: Longitudinal stability of plasma proteome.  
a Scatter plots of coefficient of variation (CV) versus mean of normalized protein 
expression (NPX) over timepoints in six donors. The longitudinal stable and variable 
proteins are represented in blue and red, respectively. b,c Heatmap of CV of top 50 
longitudinally variable (b CV>5%) or stable (c CV<5%) plasma proteins. d Top panel: 
Number of proteins with 𝑧 > 2.5 (red) or 𝑧 < −2.5 (blue) in individual samples, where 
𝑧 = (𝑁𝑃𝑋 − 𝑁𝑃𝑋)/𝑆𝐷 with 𝑁𝑃𝑋 and 𝑆𝐷 being the mean and the standard deviation, 
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respectively, of 𝑁𝑃𝑋 across samples of the same participant. Bottom panel: 
−𝑙𝑜𝑔#7(𝑝*,") for individual samples being possible outliers, where 𝑝*," is calculated 
based on a binomial test and adjusted by Benjamini and Hochberg procedure for p 
values of all samples. e Protein examples clearly demonstrate that Week 6 of donor 
PTID3 was an outlier.  
 
Fig. 4: Properties of 220 STATIC genes of PBMC.  
a Heatmap of coefficient of variation (CV) evaluated on 93 out of the 220 stable across 
time in cell-types (STATIC) genes that were identified from nineteen cell types in the 
longitudinal scRNA-seq data of four healthy donors. The 93 STATIC genes include up 
to ten top STATIC genes from individual cell types. b Circos plots displaying CV of five 
example STATIC genes identified from each of five major cell types: T cells, B cells, 
natural killer (NK) cells, monocytes, and dendritic cells (DCs). c Uniform Manifold 
Approximation and Projection (UMAP) using only the 220 STATIC genes as input 
features (sUMAP) on the same longitudinal scRNA-seq data. d-f sUMAP using the 
same 220 STATIC genes on three external PBMC datasets (d Zhu et al., 2020 
(CNP0001102); e Lee et al., 2020 (GSE149689); f Hao et al., 2021 (GSE164378)) 
where cells are labeled as in the original studies. g Distributions of Pearson correlation 
coefficient between gene expression in scRNA-seq data and gene score in scATAC-seq 
data, one for the 220 STATIC genes (median correlation 0.70), one for the top 250 
highly variable genes (HVGs, median correlation 0.37), one for the 10,611 reliable 
genes (average expression ≥0.1, median correlation 0.21), and one for random gene 
pairs (95% upper confidence bound at 0.399). h,i Venn diagrams showing the overlaps 
between the 220 STATIC genes and biomarkers distinguishing either healthy controls 
(Normal) versus participants infected with influenza (FLU, left panel) or Normal versus 
participants infected with SARS-CoV-2 (COVID19, right panel). The biomarkers were 
identified from the dataset in either h Zhu et al., 2020 (CNP0001102) or i Lee et al., 
2020 (GSE149689).  
 
Fig. 5: Properties of 304 STATIC genes of mouse brain tissue.  
a Heatmap of coefficient of variation (CV) of the 304 stable across time in cell-types 
(STATIC) genes that were identified from 25 cell types in the scRNA-seq data of a 
mouse brain study (Ximerakis et al., 2019; GSE129788). b Uniform Manifold 
Approximation and Projection (UMAP) using only the 304 STATIC genes as input 
features (sUMAP) on the same scRNA-seq data. Cells are labeled as in the original 
study. c Percentage of top STATIC genes that overlap with cell-type marker genes 
identified in the original study. Up to 25 top STATIC genes from each cell type are 
compared with the corresponding marker genes of the same cell type. d Venn diagram 
showing the overlap between the 234 STATIC genes identified from 15 out of the 25 cell 
types and biomarkers distinguishing young versus old mice that were identified in the 
original study from the same 15 cell types.  
 
Fig.6: Circos plots showing stability patterns of five protein families.  
a Circos plot displaying stability patterns of gene expression (outer circles) and gene 
score (inner circles) of human leukocyte antigen (HLA) protein family (member: HLA-A, 
HLA-B, HLA-C, HLA-DRA, HLA-DPA1, and HLA-DRB1). Samples with missing data or 
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cell types with low cell counts are shown in grey. b-f Same as a but for b interferon 
regulatory factors (IRFs; member: IRF1, IRF2, IRF3, IRF4, IRF5, and IRF8), c 
interleukins (ILs; member: IL32, IL7R, IL10RA, IL2RB, IL1B and IL18), d chemokine (C-
X-C motif) receptor/ligand (CXCR/L) protein family (member: CXCR4, CXCR5, CXCR6, 
CSCL8, CSCL10, and CSCL16), e Janus kinase (JAK) and signal transducer and 
activator of transcription (STAT) protein family (member: JAK1, JAK2, JAK3, STAT3, 
STAT4, and STAT6), and f tumor necrosis factor receptor superfamily (TNFRSF; 
member: TNFRSF1B, TNFRSF13C, TNFRSF10B, TNFRSF25, TNFRSF11A, and 
TNFRSF17).  
 
Fig. 7: Heterogeneous immune responses by COVID19 patients during recovery.  
a Volcano plot showing temporal expression changes of individual genes in different cell 
types during the recovery of patient COV-3 (female, 41 years old, mild symptoms, data 
on day D1/D4/D16), based on longitudinal scRNA-seq data in Zhu et al., 2020 
(CNP0001102). The x-axis shows the slope (coefficient) of gene expression change as 
a linear function of time. The y-axis shows the corresponding adjusted p value of the 
slope. b-d Same as a but for patients b COV-2 (male, 45 years old, mild symptoms, 
data on D1/D4/D7/D10/D16), c COV-1 (male, 15 years old, mild symptoms, data on 
D1/D4/D16), and d COV-5 (female, 85 years old, severe symptoms, data on 
D1/D7/D13). e Counts of significantly upregulated (adjusted 𝑝 < 0.05 and 𝑠𝑙𝑜𝑝𝑒 > 0.1, 
red) and significantly downregulated (adjusted 𝑝 < 0.05 and 𝑠𝑙𝑜𝑝𝑒 < −0.1, blue) genes 
during the recovery of the four COVID-19 patients in individual cell types. 
 

 
Supplementary Data 

 
Supplementary Fig. 1: Datasets used to evaluate PALMO performance.  
a Characteristics (sex and age) of six healthy donors in a longitudinal study of ten 
weeks and specific data modalities collected on their samples. b Six external datasets 
used to evaluate PALMO. c Summary of benchmarking comparison between PALMO 
and variancePartition, tcR, and Seurat (DEG analysis).  
 
Supplementary Fig. 2: Flow cytometry gating schemes. 
Red labels indicate gates used to determine population frequencies. 
 
Supplementary Fig. 3: Longitudinal scRNA-seq data and scATAC-seq data on 
PBMCs of four healthy participants over six weeks.  
a Uniform Manifold Approximation and Projection (UMAP) of scRNA-seq data consisting 
of 472,464 peripheral blood mononuclear cells (PBMCs). The dot color represents 
identified cell types based on Seurat V2. b Distributions of labeling scores of individual 
cell types as observed in scRNA-seq data. Cells having scores below the red vertical 
dashed lines (0.5) were filtered out from analysis due to poor labeling quality.  c 
Pearson correlations between frequencies of the same cell types as measured by 
scRNA-seq or flow cytometry on all samples. d UMAP projection of scATAC-seq data 
using iterative latent semantic indexing (LSI) for clustering and Seurat algorithm for cell 
labeling, as implemented in ArchR. e Distributions of labeling scores of individual cell 
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types as observed in scATAC-seq data. Cells having scores below the red vertical 
dashed lines (0.5) were filtered out from analysis due to poor labeling quality.   
 
Supplementary Fig. 4: Variance decomposition on bulk longitudinal data.  
a Overall distributions of total variance explained by inter-donor variations (Donor), 
longitudinal intra-donor variations (Week) or residual variations (Residual) based on 
complete blood count (CBC) data as measured on six healthy participants over ten 
weeks. b Variance of specific CBC measurements that was explained by Donor, Week 
or Residual. c Overall distributions of total variance explained by Donor, Week or 
Residual based on peripheral blood mononuclear cell (PBMC) frequencies as measured 
by flow cytometry on four healthy participants over six weeks. d Variance of specific 
PBMC frequencies that was explained by Donor, Week or Residual. e Overall 
distributions of total variance explained by Donor, Week or Residual based on plasma 
protein abundance as measured on six healthy participants over ten weeks. f Examples 
of proteins whose total variance was most explained by inter-donor variations (top 
panel) or intra-donor variations (bottom panel).  
 
Supplementary Fig. 5: Comparison between variance decomposition analysis 
(VDA) and variancePartition.  
a Scatter plots of percentage of total variance explained by donor (left panel), tissue 
(middle panel), or batch (right panel) as obtained by using VDA or variancePartition19. 
The simulated dataset of 200 genes in 100 samples of 25 donors is described in 
“Tutorial on using variancePartition” at  
https://bioconductor.org/packages/release/bioc/html/variancePartition.html (accessed on 
September 9, 2022). b Scatter plots of percentage of total variance explained by donor 
(left panel) or time (right panel) as obtained by using VDA or variancePartition on our 
longitudinal proteomics data after removing 922 proteins with missing values.  
 
Supplementary Fig. 6: Variance decomposition on T-cell receptor (TCR) 
sequencing data.  
a Overall distributions of total variance explained by inter-donor variations (Donor), 
longitudinal intra-donor variations (Time), inter-subtype variations (Subtype), or residual 
variations (Residual) based on sequencing data of TCR β-chains from sorted CD4+ T 
cells of four systemic sclerosis (SSc) donors, each contributing three samples over 
more than two years20. The two SSc subtypes considered are limited SSc and diffuse 
SSc. b-d Examples of clonotypes showing most b inter-donor variations, c intra-donor 
variations, or d inter-subtype variations. e Same as c but for TCRβ data of the 
corresponding CD8+ T cells. f-h Same as b-d but for TCRβ data of the corresponding 
CD8+ T cells. 
 
Supplementary Fig. 7: Coefficient of variation (CV) profiling (CVP) of longitudinal 
plasma proteomics data.  
a Histogram of coefficient of variation (CV) of normalized protein expression (NPX) over 
timepoints in six donors. CV of 5% was selected as the cutoff separating longitudinally 
stable versus variable proteins. b Heatmap showing NPX intra- and inter-donor 
correlations. c Top pathways (p<0.05) from gene set enrichment analysis (GSEA) on 
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outlier proteins detected in donor PTID3 at week 6. d Single-sample GSEA (ssGSEA) 
on outlier proteins, showing enrichment in MYC targets, IFN-alpha response, etc., at 
week 6. 
 
Supplementary Fig. 8: Scatter plots of coefficient of variation (CV) of longitudinal 
scRNA-seq data of individual cell types.  
Scatter plots of CV versus mean of gene expression (log2(avg counts)) over timepoints 
of individual donors. Only reliable genes with an average expression ≥0.1 were kept. 
Results from individual donors were calculated separately and combined. 
Housekeeping genes ACTB and GAPDH (blue) were used to select a CV threshold of 
10% by which genes were split into longitudinally stable (red) or variable (black).  
 
Supplementary Fig. 9: Longitudinally variable and stable genes across nineteen 
cell types.  
a Heatmap of coefficient of variation (CV) of the top 25 super-variable (SUV) genes. b 
Heatmap of CV of the top 25 super-stable (SUS) genes. CVs of the housekeeping 
genes ACTB and GAPDH are also shown for comparison. c Venn diagram showing 
overlaps between SUV genes, stable across time in cell-types (STATIC) genes, variable 
across time in cell-types (VATIC) genes, and SUS genes. 
 
Supplementary Fig. 10: The five most correlated genes between expression in 
scRNA-seq data and gene score in scATAC-seq data.  
a-e Scatter plots between expression in scRNA-seq data and gene score in scATAC-
seq data of the five most correlated genes (LEF1, TNFRSF13C, CST7, SPI1 and 
SERPINF1). f-j Open chromatin regions around the five most correlated genes in 
different cell types using ArchR21 visualization of scATAC-seq data. 
 
Supplementary Fig. 11: Correlations of six protein families between expresion in 
scRNA-seq data and gene score in scATAC-seq data.  
a Human leukocyte antigens (HLAs). b Interferon regulatory factors (IRFs). c 
Interleukins (ILs). d chemokine (C-X-C motif) receptor/ligand (CXCR/L) family. e Janus 
kinases (JAKs) and signal transducer and activator of transcription proteins (STATs).  
f Tumor necrosis factor receptor superfamily (TNFRSF). 
 
Supplementary Fig. 12: Comparison between time course analysis (TCA) and 
Seurat on longitudinal scRNA-seq data of a COVID-19 patient (COV-5).  
a Venn diagram for differential expression genes (DEGs) from TCA and DEGs from two 
runs of Seurat analyses: D1 versus D7+D13 or D1+D7 versus D13. b-d Top 10 up- and 
top 10 down-regulated genes from b Seurat D1 versus D7+D13 analysis, c Seurat 
D1+D7 versus D13 analysis and d TCA. The data (CNP0001102) was described in Zhu 
et al., 2020).  
 
 
Supplementary Tables 
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Supplementary Table 1: Healthy cohort overview including clinical metadata, complete 
blood count (CBC), and flow cytometry-based cell frequencies. 

 
Supplementary Table 2: PALMO results on plasma proteomics data, including results 
from variance decomposition analysis (VDA), coefficient of variation profiling (CVP), and 
outlier detection analysis (ODA). 

 
Supplementary Table 3: Cell types identified from scRNA-seq and scATAC-seq data 
and the corresponding PALMO results from variance decomposition analysis (VDA), 
stability pattern evaluation across cell types (SPECT), and pathway enrichment 
analysis. 
 
Supplementary Table 4: Variance decomposition analysis (VDA) results on T-cell 
receptor (TCR) repertoires. The data was downloaded from GSE156980 (Servaas et al., 
J. Autoimmun. 117, 102574 (2021)). 
 
Supplementary Table 5: Top 220 stable across time in cell-types (STATIC) genes and 
Pearson's correlation between gene expression in scRNA-seq data and gene score in 
scATAC-seq data. 
 
Supplementary Table 6: Top 304 stable across time in cell-types (STATIC) genes 
observed in 25 cell types from mouse brain dataset GSE129788 (Ximerakis et al., Nat. 
Neurosci. 22, 1696-1708 (2019)) and their overlap with the corresponding marker genes 
of the same cell types. 
 
Supplementary Table 7: List of up- or down-regulated genes observed from time 
course analysis (TCA) on longitudinal scRNA-seq data of four COVID-19 patients 
(CNP0001102; Zhu et al., Immunity 53, 685-696 (2020)). 
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Fig. 5
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Fig. 6
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Donor Sex Age Week

1 2 3 4 5 6 7 8 9 10

PTID1 female 36 CP CP CP CP CP CP CP CP CP CP

PTID2 male 38 CP CPFRA CPFRA CPFRA CPFRA CPFRA CPFRA CP CP CP

PTID3 female 25 CP CP CP CP CP CP CP CP CP CP

PTID4 male 33 CP CPFRA CPFRA CPFRA CPFRA CPFRA CPFRA CP CP CP

PTID5 female 29 CP CPFRA CPFR CPFRA CPFR CPFR CPFRA CP CP CP

PTID6 male 36 CP CPFRA CPFR CPFRA CPFR CPFR CPFRA CP CP CP

Assay symbols: C – complete blood count, P – proteomics, F – flow cytometry, R – scRNA-seq, A – scATAC-seq

Dataset Sample type Condition(s) Data type Subjects 
(n)

Samples per 
subject

Analysis

Hoffman and 
Schadt1

Three human 
tissues

unknown Simulated 
expression 

of 200 genes

25 4 VDA

Servaas et al.2

(GSE156980)
Sorted CD4+ & CD8+

non-naive T-cells
Systemic sclerosis TCRβ 

sequencing
4 3 VDA

Zhu et al.3

(CNP0001102)
Human PBMC Normal, influenza, 

COVID-19
scRNA-seq 5 2-5 sUMAP, VDA, 

SPECT, TCA

Lee et al.4

(GSE149689)
Human PBMC Normal, influenza, 

COVID-19
scRNA-seq 17 1-2 sUMAP

Hao et al.5

(GSE164378)
Human PBMC HIV vaccine scRNA-seq in 

CITE-seq
8 3 sUMAP

Ximerakis et al.6

(GSE129788)
Mouse brain tissue aging scRNA-seq 16 1 VDA, SPECT, 

sUMAP

1. Hoffman and Schadt, BMC Bioinformatics 17, 483 (2016). The dataset is described in “Tutorial on using variancePartition” at  
https://bioconductor.org/packages/release/bioc/html/variancePartition.html (accessed on September 9, 2022).  2. Servaas et al., J. 
Autoimmun. 117, 102574 (2021).  3. Zhu et al., Immunity 53, 685-696 (2020).  4. Lee et al., Sci. Immunol. 5, eabd1554 (2020).  5. Hao et 
al., Cell 184, 3573-3587 (2021).  6. Ximerakis et al., Nat. Neurosci. 22, 1696-1708 (2019). 

a

b

Supplementary Figure. 1

Software Comparison

variancePartition • Similar method and almost identical results
• PALMO can handle missing data but variancePartition cannot

tcR • tcR is specific to TCR sequencing data, provides sample-level analysis or treats clonotype data as 
binary

• PALMO handles broad omics data types, including TCR data, and treats clonotype data as continuous

Seurat DEG • Seurat requires users to select two contrast groups in DEG analysis and thus is inappropriate for 
longitudinal data with >2 timepoints

• PALMO treats time as a continuous variable for data with >2 timepoints or is similar to Seurat for data 
with 2 timepoints

c
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Supplementary Figure. 2
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Supplementary Figure. 5
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Supplementary Figure. 6
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Supplementary Figure. 7
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Supplementary Figure. 8
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Supplementary Figure. 9

a                                                                                             b

FOS
FOSB
JUN
AC007952.4
DUSP1
DDIT4
KLF9
TNFAIP3
PPP1R15A
LYSMD2
STAT1
CHORDC1
ALDH9A1
C2orf49
DNAJA1
DUSP2
MPLKIP
ODC1
AC103591.3
C7orf50
ECI2
GADD45B
GBP1
NFKBIZ
PIM3

CV
100500

CD
4_N

aiv
e

CD
4_T
EM

CD
4_T
CM

CD
4_C

TL

CD
8_N

aiv
e

CD
8_T
EM

CD
8_T
CM

Tre
g
MA
IT
gdT NK NK

_C
D5
6br
igh
t

B_n
aiv
e
B_m

em
ory

B_i
nte
rme

dia
te

CD
14_
Mo
no

CD
16_
Mo
no

cDC
2
pD
C
Donor

MALAT1
FTL
RPS12
B2M
RPL10
RPL13
FTH1
RPLP1
EEF1A1
RPL41
RPS27
RPL30
RPL32
RPS27A
RPL34
RPS14
TPT1
RPS8
RPS18
RPL11
TMSB4X
RPS3A
RPS23
RPL19
MT-CO1
ACTB
GAPDH

CD
4_N

aiv
e

CD
4_T
EM

CD
4_T
CM

CD
4_C

TL

CD
8_N

aiv
e

CD
8_T
EM

CD
8_T
CM

Tre
g
MA
IT
gdT NK NK

_C
D5
6br
igh
t

B_n
aiv
e
B_m

em
ory

B_i
nte
rme

dia
te

CD
14_
Mo
no

CD
16_
Mo
no

cDC
2
pD
C
Donor

10

5            695        262      3047      881      1822            307
0.1%         9.9%     3.7%   43.4%   12.6%    26%            4.4%

c

 SUV                  STATIC               VATIC                 SUS

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure. 10
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Supplementary Figure. 11
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Supplementary Figure. 12
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