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Abstract

Longitudinal bulk and single-cell omics data is increasingly generated for biological and
clinical research but is challenging to analyze due to its many intrinsic types of variations.
We present PALMO (https://github.com/aifimmunology/PALMO), a platform that contains
five analytical modules to examine longitudinal bulk and single-cell multi-omics data from
multiple perspectives, including decomposition of sources of variations within the data,
collection of stable or variable features across timepoints and participants, identification
of up- or down-regulated markers across timepoints of individual participants, and
investigation on samples of same participants for possible outlier events. We tested
PALMO performance on a complex longitudinal multi-omics dataset of five data
modalities on the same samples and six external datasets of diverse background. Both
PALMO and our longitudinal multi-omics dataset can be valuable resources to the
scientific community.
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Introduction

Applying multi-omics technologies to measure longitudinal specimens of human
participants provides unprecedented insights on disease such as COVID-19'-3, diabetes*
and lymphoma?®. Single-cell technologies such as single-cell ribonucleic acid sequencing
(scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) can offer granular details on disease mechanisms and are increasingly
utilized in biological and clinical research®3. It is anticipated that more and more
longitudinal bulk and single-cell omics data will be generated by the scientific community.

Different statistical methods are used to analyze longitudinal data to account for
the diversities in research interest, study design, and/or data type (continuous or
categorical)®'°. Generalized linear mixed model (GLMM) is a popular approach for
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analyzing continuous longitudinal data. It is common that the same dataset can be
examined from multiple perspectives with different methods. Complications such as
human heterogeneity, interdependency between multiple samples of same participant,
missing and/or incomplete data, unbalanced dataset, and unexpected outlier events (e.g.,
severe adverse events in clinical trials) are all intrinsic to longitudinal data. The usage of
single-cell technologies brings additional complications such as dropout, sparseness,
interdependency between cells of same sample, and unbalanced cell counts in individual
samples’ 2. Advanced methods have been applied to analyze longitudinal bulk omics
data with customized codes for specific projects*'3. Sophisticated methods for analyzing
cross-sectional single-cell omics data have also been developed with mixed
performance’-'8. While software tools such as variancePartition and tcR?° can be
repurposed to examine longitudinal omics data either from a single perspective and/or
collected on a single technical platform, we are not aware of any well-accepted software
package that is specifically designed to analyze longitudinal bulk and single-cell omics
data. Instead, researchers rely on customized codes to analyze such data, which is time-
consuming, error-prone and a non-small challenge to many people. A comprehensive yet
simple-to-use software tool to extract insightful information from longitudinal omics data
is desired.

Here, we present PALMO (https://github.com/aifimmunology/PALMO), a software
package designed to analyze longitudinal bulk and single-cell omics data (Fig. 1a). Five
analytical modules are implemented in PALMO (Fig. 1b): (i) Variance decomposition
analysis (VDA) evaluates contributions of factors of interest to the total variance of
individual features (Fig. 1c). (ii) Coefficient of variation (CV) profiling (CVP) assesses
intra-participant variation over time in bulk data and identifies consistently stable or
variable features among participants (Fig. 1d). (iii) Stability pattern evaluation across cell
types (SPECT) assesses longitudinal stability patterns of features in single-cell omics
data and identifies stable or variable features that are unique to individual cell types but
consistent among participants (Fig. 1e). (iv) Outlier detection analysis (ODA) examines
the possibility of abnormal events occurring during a longitudinal study (Fig. 1f). (v) Time
course analysis (TCA) evaluates transcriptomic changes over time based on longitudinal
scRNA-seq data of the same participant and identifies genes that exhibit significant
temporal changes (Fig. 1g). Together these five modules provide unique insights on
longitudinal omics data from multiple perspectives. We also developed functions to
display CVs of features of interest in circos plots (Fig.1h). We test PALMO performance
on a complex longitudinal multi-omics dataset of five data modalities and six external
datasets of diverse background.

Results

A complex longitudinal multi-omics dataset to demonstrate PALMO performance
To demonstrate PALMO performance, we collected sixty blood samples (plasma and
peripheral blood mononuclear cells (PBMCs)) from six healthy, non-smoking Caucasian
donors (three females and three males) between 25 to 38 years old over a 10-week period
(Supplementary Fig. 1a, Supplementary Table 1a). Complete blood count (CBC) was
collected on all these samples (Supplementary Table 1b). The abundance of 1,536
plasma proteins were measured on these samples as well, but only 1,042 (68%) proteins
had reliable quantification results (Supplementary Table 2a). High-dimensional flow
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cytometry and droplet-based scRNA-seq assays were performed on a subset of 24 PBMC
samples from four donors over Week 2 to 7. A total of 27 cell types were identified from
flow cytometry data (Supplementary Fig. 2, Supplementary Table 1c). Droplet-based
sCATAC-seq assay was also performed on 18 out of the 24 PBMC samples. This multi-
omics dataset of five data modalities on the same samples can be a valuable resource to
the scientific community for immune health study and/or software development.

We retrieved high quality scRNA-seq data of 472,464 cells and labeled them to 31
different cell types using Seurat V2'® (Supplementary Fig. 3a,b, Supplementary Table
3a). Among the nineteen overlapping cell types identified by both scRNA-seq and flow
cytometry, the corresponding cell frequencies as measured by the two data modalities
were highly correlated (p<0.05 on Pearson correlation) except for those of double
negative T (dnT) cells (Supplementary Fig. 3c). Unless specified otherwise, we filtered
out low frequent cell types (average frequency <0.5%) and kept 19 out of the 31 cell types
for downstream analysis (Supplementary Table 3b). We also kept only 11,191 genes
that had an average (across timepoints) expression of 0.1 or higher in at least one cell
type of one donor.

scATAC-seq data was analyzed using the ArchR?" package. We observed 294,623
peaks in 135,566 cells after removing doublets. Cells were labeled to 28 different cell
types using genescore matrix as implemented in ArchR (Supplementary Fig. 3d,e). We
noticed the labeling scores on scATAC-seq data were much lower than the corresponding
scores on scRNA-seq data, likely reflecting the challenge in cell labeling on scATAC-seq
data. We filtered out low quality cells (labeling score <0.5), removed cell types having less
than 50 remaining cells, and kept 14 out of the 28 cell types for downstream analysis
(Supplementary Table 3b). We also kept only 24,769 genes that had an average (across
timepoints) gene score of 0.1 or higher in at least one cell type of one donor.

In addition to our own data, we also evaluated PALMO performance against six
external omics datasets of diverse complexities, different sample types and/or different
technical platforms (Supplementary Fig. 1b). More examples of PALMO usage beyond
those presented here can be found in PALMO vignettes
(https://github.com/aifimmunology/PALMO/blob/main/Vignette-PALMO.pdf),  including
performance on unbalanced data, data with replicates, and data of a single donor with
multiple timepoints.

Application of VDA to assess sources of variations

We applied VDA to evaluate inter- and intra-donor variations in our bulk data (CBC, PBMC
frequencies from flow cytometry, and plasma proteomics data), using donor and week
(timepoint) as factors of interestt CBC measurements showed strong inter-donor
variations and minuscule intra-donor variations (Supplementary Fig. 4a,b). PBMC
frequencies from flow cytometry showed very strong inter-donor variations
(Supplementary Fig. 4c,d) with intra-class correlation (ICC) ranging from 51% (lgD
CD27- B cells) to 98% (CD4 Temra: CD4* effector memory T cells re-expressing
CD45RA). In comparison, the highest ICC on intra-donor variations was 19% (cDC1:
conventional type 1 dendritic cells). Plasma proteins followed a similar trend with some
exceptions (Supplementary Fig. 4e,f, Supplementary Table 2a). Inter-donor variations
of 621 (60%) out of the 1,042 quantified proteins contributed more than 50% to the
corresponding total variance. Only 75 proteins (7%) had more intra-donor variation than
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inter-donor variation, but none contributed more than 50% to the total. A previous study??
identified 155 proteins having high inter-donor variations, 81% (126) of which overlapped
with the 621 inter-donor variable proteins.

We added cell type as a factor of interest in the VDA of our scRNA-seq and
sCATAC-seq data. Inter-cell-type variations were more prominent than inter- and intra-
donor variations in both single-cell data modalities. Based on our scRNA-seq data, 10, O,
and 4,384 genes had more than 50% of total variance from inter-donor, intra-donor, and
inter-cell-type variations, respectively (Fig. 2a, Supplementary Table 3c). Nine of the
top ten inter-cell-type variable genes (ICC: 98-99%, Fig. 2b) have known immune
functions (Supplementary Table 3d). The top gene, LILRA4, is predominantly expressed
in plasmacytoid dendritic cells (pDCs) and prevents pDCs from overblown reaction to viral
infections?®. Six of the top ten inter-donor variable genes (ICC: 53-94%, Fig. 2c) are linked
to the X or Y chromosome and seven of them showed differential expression between
ovary and prostate/testis, reflecting the sex difference between male and female donors.
Contributions from intra-donor variations to the total variance were small (ICC <3%, Fig.
2d), indicating the immune systems of the four healthy donors were quite stable over the
study period.

The VDA results on our scATAC-seq data, using genescore matrix, showed similar
trends as that on our scRNA-seq data (Fig 2e). A total of 33, 0, and 7,847 genes had
more than 50% of total variance from inter-donor, intra-donor, and inter-cell-type
variations, respectively (Supplementary Table 3e). All the top ten inter-cell-type variable
genes (ICC: 95-97%, Fig. 2f) have known immune functions (Supplementary Table 3f).
The top gene, SPIB, is an enhancer regulating pDC development?*. Among the top ten
inter-donor variable genes (ICC: 58-89%, Fig. 2g), XIST, ZNF705D, GTF2IRD2, and
USP32P2 have differential expression between ovary and prostate/testis; RHD encodes
a key protein in the Rh blood group system; and GSTM1 belongs to a highly polymorphic
supergene family and affects heterogeneous response to toxicity?®. These genes
appeared to capture more diverse types of differences among donors than their
counterparts from scRNA-seq data. The ICCs of the top five intra-donor variable genes
(ICC: 32-34%, Fig. 2h) were about 10-fold higher than that of the corresponding top gene,
JUN, by scRNA-seq data, suggesting chromatin accessibility might be more sensitive to
biological changes than gene expression.

variancePartition’® was previously developed to study variations in gene
expression data and can be applied to longitudinal omics data for the same purpose. VDA
generated almost identical results as variancePartition on two tested datasets after
removing missing values (Supplementary Fig. 5), which was needed to run
variancePartition but not VDA.

VDA can be used to study T-cell receptor (TCR) repertoires. Previously sorted
CD4+ and CD8+ non-naive T cells were isolated from PBMC samples of four systemic
sclerosis (SSc) donors and analyzed to obtain sequencing data of TCR B-chains?6. The
data was originally analyzed using tcR?°, which was developed specifically for TCR data
with functions either providing sample-level views on the whole repertories or treating
clonotype data as binary (present or absent). We downloaded the TCRp data
(GSE156980) and calculated the frequency of unique clonotypes from both CD4+ and
CD8+ T cells. A total of 288,597 unique clonotypes were obtained from CD4+ T cells and
11,739 from CD8+ T cells, respectively. We treated the clonotype data as continuous and
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used donor, time, and subtype (limited SSc versus diffuse SSc) as factors of interest in
VDA. We identified from CD4+ T cells 6,625, 3, and 41 clonotypes having more than 50%
of total variance from inter-donor, intra-donor, and inter-subtype variations, respectively
(Supplementary Fig. 6a-d, Supplementary Table 4a). The corresponding counts from
CD8+ T cells were 650, 0, and 1 (Supplementary Figure 6e-h, Supplementary Table
4b). As illustrated in Supplementary Fig. 6b,f, many inter-donor variable clonotypes
were donor-specific and stable over time, making them potential candidates responsible
for SSc pathogenesis. The identification of inter-subtype variable clonotypes
(Supplementary Fig. 6d,h) is interesting since some of them might be specific to either
limited SSc or diffuse SSc. VDA provided novel insights on the TCR data, which was not
presented in the original study?®.

Application of CVP to evaluate longitudinal stability

We applied CVP to identify longitudinally stable and variable proteins from our proteomics
data (Fig. 3a). The distribution of median CV (among donors) peaked near 5%
(Supplementary Fig. 7a), which we used as a cut-off to separate variable (median CV >
5%) and stable (median CV < 5%) proteins (Supplementary Table 2b-d). A total of 413
proteins were longitudinally variable, among which SNAP23, GRAP2, ARG1, AIFM1, and
MESD had the highest median CV (24.6-27.7%, Fig. 3b). Such moderate CV values are
consistent with the observed low intra-donor variations by VDA. A total of 629 proteins
were longitudinally stable, among which SOD2, NRP2, OSCAR, NRCAM, and MIA had
the lowest median CV (0.6-0.8%, Fig. 3c). These stable proteins may be interesting
biomarker candidates if they change under some disease conditions. They can also be
used to bridge proteomics data of different experimental batches.

Application of ODA to discover a possible abnormal event

We noticed that proteomics data of donor PTID3 exhibited higher CV values than those
of other donors (Fig. 3a) and weaker intra-donor correlations at week 6 than at other
weeks (Supplementary Fig. 7b). We applied ODA to check whether donor PTID3 had
an abnormal event at week 6. We selected |z| > 2.5 as the criterion for outliers so that
just above 1% of all quantifiable proteins are expected to be outliers. More accurately, we
expected 1.24% of proteins, i.e., 19 proteins per donor per time point, to be outliers by
chance (Methods). A total of 71 outlier proteins were identified at Week 6 on donor PTID3
(adj p = 6.0x10%’, Fig. 3d,e, Supplementary Table 2e,f). Eight of the top ten proteins
having the highest z scores (2.84-2.85) play important roles in immune response and
immunity (Supplementary Table 2g). Gene set enrichment analysis (GSEA) revealed
the outlier proteins were enriched in immunological processes such as adaptive immune
responses, antigen processing and presentation via major histocompatibility complex
(MHC) class IlI, T cell activation, etc. (Supplementary Fig. 7c¢). Single-sample GSEA
(ssGSEA)?” on all PTID3 samples identified Week 6 as an outlier and revealed increased
activity at Week 6 in important immune processes (Supplementary Fig. 7d), including
MYC targets (v1 and v2)?, interferon-alpha and gamma responses?®, androgen
response®, pancreas beta cells®', and peroxisome?®?. Although further validation is
required, these results suggest the possible occurrence of an immunological perturbation
event (such as infection) experienced by PTID3 at week 6. Such outlier phenotypes can
be obscured by analyses focusing on differences between sample groups.
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Application of SPECT to reveal diverse gene stability patterns

We applied SPECT to analyze our scRNA-seq data. Noticing the two well-known
housekeeping genes, ACTB and GAPDH, had CVs (across timepoints) just above 10%
in some cell types (Supplementary Fig. 8), we used a CV cut-off of 10% to separate
longitudinally variable (CV > 10%) or stable (CV < 10%) genes in individual cell types of
individual donors. We then counted how many times individual genes were variable
and/or stable in the 76 combinations between donor (n=4) and cell type (n=19). A gene
was denoted as super variable (SUV) or super stable (SUS) if it was variable or stable in
at least 40 donor-cell type combinations. A gene was denoted as variable across time in
cell-types (VATIC) or stable across time in cell-types (STATIC) if it was variable or stable
in at least one cell type across all donors but in less than 40 donor-cell type combinations.
We identified a total of 700 SUV genes (Supplementary Fig. 9a), 2,129 SUS genes
(Supplementary Fig. 9b), 5,750 VATIC genes, and 4,004 STATIC genes from the
dataset. Since a gene can be consistently variable in one cell type and consistently stable
in another, VATIC and STATIC genes are not mutually exclusive (Supplementary Fig.
9¢c).

The SUV genes were enriched in 57 pathways, many of which are associated with
cellular proliferation and activity (Supplementary Table 3g). Eight of the top ten SUV
genes (Supplementary Table 3h) have distinct roles in gene regulation, including four
transcription factors (FOS, FOSB, JUN, and KLF9), two phosphatases (DUSP1 and
PPP1R15A), one regulator of mTOR pathway (DDIT4)33, and one inhibitor of NF-kB
pathway (TNFAIP3)34. In comparison, the SUS genes were enriched in 501 pathways of
rather diverse, basic cellular processes (Supplementary Table 3i). Among the top ten
SUS genes (Supplementary Table 3j), five (RPS12, RPL10, RPL13, RPLP1, and
RPL41) encode ribosomal proteins and two (FTL and FTH1) encode ferritin for iron
storage. Many SUS genes are more stable than ACTB and GAPDH and may be good
candidates for estimating batch effects in scRNA-seq data3®.

STATIC genes as potential biomarkers for cell types or biological conditions
We collected up to 25 top STATIC genes from each cell type and obtained 220 unique
genes (Fig. 4a, Supplementary Table 5a). These 220 STATIC genes are enriched in
pathways such as innate (adj p=1.43x10°) and adaptive (adj p=1.33x10°) immune
response, allograft rejection (adjusted p=3.06x10"6), lymphocyte mediated immunity (adj
p=3.72x10%), myeloid mediated immunity (adj p=2.71x10°), B/T-cell proliferation (adj
p<1.46x103), acute inflammatory response (adj p=7.48x10-3), hematopoietic cell lineage
(adjusted p=2.44x10%), etc. (Supplementary Table 5b). Examples of top STATIC genes
for major cell types were shown in Fig. 4b, including: IL32, CCL5, TCF7, IL7R, and LEF1
for T cells; CD79A, MS4A1, TCL1A, CD79B, and TNFRSF13C for B cells; PRF1,
FGFBP2, SPON2, CST7, and KLRD1 for natural killer (NK) cells; LILRA1, LILRB2,
CD300LF, IFNAR1, and SPI1 for monocytes; and LILRA4, IRF7, FCER1A, SERPINF1,
and SPIB for dendritic cells (DCs). All these genes demonstrated cell type-specific
stability patterns and have well-documented roles in the corresponding cell types
(Supplementary Table 5c).

We used the 220 STATIC genes as input features and projected PBMCs in our
scRNA-seq data onto a two-dimensional Uniform Manifold Approximation and
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Projection’ (UMAP; Fig. 4c), which we refer to as sUMAP from now on. We also
generated sUMAPs using the same 220 STATIC genes on three independent scRNA-
seq datasets?31® of PBMCs (Fig. 4d-f) in which cells were labeled as in the original
studies. In all four cases, the 220 STATIC genes separated major cell types and most of
their subtypes very well, suggesting that some STATIC genes are potentially good
markers for cell types.

Gene scores are routinely computed from scATAC-seq data to infer expression of
the corresponding genes and used to label cells in scATAC-seq data based on a scRNA-
seq reference?’. We calculated the Pearson correlation between expression in scRNA-
seq data and gene score in scCATAC-seq data of the same genes across cell types and
samples. Due to data sparseness, incomplete reference assembly, non-coding RNAs,
and uncharacterized sequences, Pearson correlation could be calculated only on 10,611
(95%) of the 11,191 reliable genes (Fig. 4g). Interestingly, among genes with strong
correlations (Supplementary Fig. 10), the correlation was mainly influenced by
differences between cell types, which partially justifies the use of gene score for cell
labeling on scATAC-seq data. Within individual cell types, the correlation however
appeared to be poor across different samples, likely reflecting the complexity of gene
regulation. Pearson correlation was obtained on 208 (95%) of the 220 STATIC genes with
a median value of 0.70. In comparison, Pearson correlation was obtained on 232 (93%)
of the top 250 highly variable genes (HVGs), which are widely used in dimension
reduction on scRNA-seq data'', with a significantly lower median value of 0.37 (p =
2.2x10°'®, Mann-Whiney test; Supplementary Table 5d). We randomly paired unrelated
genes, calculated the corresponding correlations between expression and gene score,
and found that the obtained distribution had a 95% upper confidence bound at Ro=0.399
(Methods). Thus, any correlations below Ro were not statistically better than those
between random, unrelated gene pairs. A total of 7,255 (68%) out of the 10,611 reliable
genes and 128 (55%) out of the 232 HVGs had a correlation below Ro, in comparison
with 42 (20%) out of the 208 STATIC genes. To properly label cells in scATAC-seq data
based on gene score approach, one should only use genes whose expression versus
gene score correlations are above Ro. Some STATIC genes might be good candidates
for this purpose.

We further investigated how the 220 STATIC genes fared as potential disease
biomarkers. Previously, two studies?? applied scRNA-seq to analyze PBMCs of healthy
controls (Normal) and of patients infected with either influenza (FLU) or SARS-CoV-2
(COVID19). We reanalyzed the data using methods described in the original studies and
identified differential expression genes (DEGs) distinguishing Normal versus FLU or
Normal versus COVID19. For simplicity, DEGs from individual cell types were combined
when compared with the 220 STATIC genes. Out of the 18,824 genes measured in the
first study (CNP0001102)3, 681 and 632 DEGs were identified for distinguishing Normal
versus FLU and Normal versus COVID19, respectively. The corresponding overlap with
the STATIC genes was 49 for Normal versus FLU (hypergeometric p = 4.8x102¢) and 50
for Normal versus COVID19 (hypergeometric p = 1.7x10?8, Fig. 4h). A total of 33,538
genes were measured in the second study (GSE149689)?. A total of 126 STATIC genes
(hypergeometric p = 4.8x1074) overlapped with the 3,040 DEGs for Normal versus FLU
while 86 STATIC genes (hypergeometric p = 2.1x10%") overlapped with the 1,396 DEGs
for Normal versus COVID19 (Fig. 4i). In all cases, the 220 STATIC genes were
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significantly enriched as DEGs, suggesting their potential for monitoring some disease
conditions.

To illustrate that SPECT can handle scRNA-seq data of diverse sample types, we
applied it to scRNA-seq data from a mouse brain study (GSE129788)%. In the study
scRNA-seq data was collected from brain tissues of eight young (2-3 months) and eight
old (21-23 months) mice, from which 37,069 cells of high-quality data were labeled to 25
cell types, 14,699 genes were detected, marker genes for each of the 25 cell types were
collected, and 1,113 DEGs distinguishing young versus old mouse brains were identified
from a subset of 15 cell types. The study was not longitudinal per se. We treated data
from the eight samples of each age group as repeated measurements for the group, just
like repeated measurements at different timepoints in a longitudinal study. Since SPECT
does not utilize the ordering of timepoints, its usage to the data is justified. We collected
up to 25 STATIC genes per cell type and obtained 304 unique genes from all 25 cell types
(Fig. 5a, Supplementary Table 6a). sUMAP using these 304 STATIC genes was able to
separate the cell types as labeled in the original study very well (Fig. 5b). Out of the 304
STATIC genes, 299 genes were identified in the original study as marker genes for the
corresponding cell types (Fig. 5¢, Supplementary Table 6b). From the 15 cell types
having DEGs, we collected 234 STATIC genes that were significantly overlapped with the
1,113 young versus old DEGs (n=123, hypergeometric p = 6.2x1077, Fig. 5d). These
results further demonstrated that some STATIC genes are good markers for cell types or
biological conditions in the mouse brain study.

Circos plots to reveal stability patterns of protein families

PALMO implements circos plots to display stability patterns from multiple single-cell data
modalities together. We displayed the stability pattern of gene expression and gene score
of six protein families that are essential for immunity in Fig. 6, including human leukocyte
antigens (HLAs, Fig. 6a), interferon regulatory factors (IRFs, Fig. 6b), interleukins (ILs,
Fig. 6¢), chemokine (C-X-C motif) receptor/ligand (CXCR/L) family (Fig. 6d), Janus
kinases (JAKs) and signal transducer and activator of transcription proteins (STATSs, Fig.
6e), and tumor necrosis factor receptor superfamily (TNFRSF, Fig. 6f). All these protein
families showed diverse stability patterns among members and across cell types, with
HLAs and ILs having the most striking contrasts. The rich variety in such stability patterns
suggests that different members of the protein superfamilies may play different roles in
individual cell types. We noticed that gene expression and gene score generally did not
exhibit the same stability patterns despite the rather strong correlations between them
(Supplementary Fig. 11). It turns out that strong correlations were mainly driven by
difference between cell types rather than difference between samples, likely reflecting the
complexity of gene regulation as mentioned before.

Application of TCA to reveal heterogenous immune responses among COVID-19
patients

We applied TCA to analyze longitudinal scRNA-seq data of four COVID-19 patients, each
having data of at least three timepoints, in a previous study® and identified significantly
up- or down-regulated genes over time (adjusted p<0.05 and slope magnitude > 0.1, Fig.
7a-d, Supplementary Table 7a) and the corresponding pathways (Supplementary
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Table 7b). We observed rather heterogeneous immune responses by these patients
during recovery (Fig. 7e), which was not presented in the original study.

Patient COV-3 had barely any significant genes except that IFI27 decreased in
DCs, IFI44L decreased in naive B cells, and IGLC3 decreased in plasma cells, suggesting
possible dampening of immune modulation.

The significant genes of patient COV-2 included eighteen upregulated genes in
monocytes, four genes each in memory B cells and naive B cells, and twelve genes split
among other six cell types. Gene enrichment analysis on the eighteen upregulated genes
in monocytes revealed only one significant pathway: myeloid leukocyte mediated
immunity (adjusted p=0.044).

The significant genes of COV-1 included eleven upregulated and six
downregulated genes in cycling plasma cells, seven upregulated and sixteen
downregulated genes in cycling T cells, six downregulated genes in naive B cells, and
fifteen genes split among other seven cell types. The significant genes in cycling plasma
cells are significantly enriched in five pathways including regulation of humoral immune
response (adjusted p=3.92x103), Fc receptor mediated stimulatory signaling pathway
(adjusted p=3.92x103), and immunoglobulin production (adjusted p=0.011), indicating a
predominant role of humoral immunity in the recovery of the patient.

Patient COV-5 had significant genes in almost all cell types except for DCs and
monocytes, including eight upregulated and eight downregulated genes in memory B
cells, six upregulated and six downregulated genes in naive B cells, one upregulated and
ten downregulated genes in activated CD4* T cells, two upregulated and eight
downregulated genes in plasma cells, and 43 genes split among other seven cell types.
Seven (58%) of the twelve significant genes in naive B cells were also significant in
memory B cells and in the same direction of change, suggesting common responses by
the two cell types. The significant genes in memory B cells are enriched in interferon
gamma (adjusted p=3.28x10°) and alpha (adjusted p=4.86x107°) response, antigen
processing and presentation (adjusted p=0.036), and antigen processing and
presentation of peptide or polysaccharide antigen via MHC class Il (adjusted p=0.044).
The significant genes in naive B cells are enriched in interferon alpha (adjusted
p=1.96x10°) and gamma (adjusted p=1.96x107°) response. The significant genes in
plasma cells were enriched in innate and humoral immune responses (p=3.46x10* and
p=5.79x104, respectively) although both with an adjusted p=0.084. These results align to
the patient’s disease severity and advanced age.

For comparison, we also used Seurat to analyze patient COV-5 data of activated
CD4* T cells. To satisfy Seurat’s requirement of selecting two contrast groups, we did
the analysis in two iterations, i.e. day 1 (D1) versus D7+D13 and D1+D7 versus D13,
and obtained 942 and 1,018 DEGs (adjusted p<0.05), respectively, with an overlap of
813 DEGs (Supplementary Figure 12a). TCA identified 921 significantly up- or down-
regulated genes (adjusted p<0.05), only 21 of which overlapped with both Seurat
results. The genes obtained from TCA or Seurat were quite different. We collected top
ten up- and top ten down-regulated genes from all three approaches and plotted the
corresponding gene expression in heatmaps (Supplementary Figure 12b-d). TCA
results showed better dynamic changes over time than Seurat results in our opinion.

Discussion
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The five modules in PALMO analyze longitudinal omics data from multiple
perspectives as continuous data. VDA provides a global view on the sources of variance
within the whole dataset. TCA studies the time series of individual participants. CVP and
SPECT first examine data of individual participants separately and then summarize the
observations across different participants. All these four methods focus on individual
features. ODA is the only method to provide a sample-level analysis. Which module(s) to
use on a specific dataset depends on the research question of interest. Additional
methods need to be developed for research interest not covered here.

We observed that a small set of STATIC genes, 220 for PBMC and 304 for mouse
brain tissues, distinguished cell types well and captured some biological differences. The
PBMC STATIC genes showed better correlation between gene expression in scRNA-seq
data and gene score in scATAC-seq data than HVGs. It would be interesting to see
whether these observations can be extended to scRNA-seq data of other sample types.
We selected up to 25 STATIC genes per cell type in our analysis. It is possible that a
better set of genes can be selected with a more sophisticated selection procedure.

Plasma proteins are often targeted as disease biomarkers, thus understanding
their temporal stability is of particular interest. Conceptually, highly variable proteins are
poor biomarker candidates since their values likely have very high sampling variations.
The rather moderate CV values of the most variable proteins in our study suggest
sampling variations are not a big concern on these proteins. The small CV values of the
most stable proteins, on the other hand, indicate they do not change much under normal,
healthy conditions. So, if they ever change under some disease conditions, they should
be closely explored as potential biomarkers.

We condensed single-cell data into pseudo-bulk data in VDA, SPECT and ODA.
Recent literature'#7:18 revealed that many single-cell methods fail to properly account for
variations in cross-sectional scRNA-seq data and generate many false DEGs as a result.
In comparison, pseudo-bulk approaches mostly generate reliable results although they
may be underpowered. Longitudinal single-cell omics data is even more complicated than
cross-sectional scRNA-seq data and may require new statistical methods to properly
handle its many types of variations. Furthermore, memory and CPU requirements for
using GLMMs to analyze longitudinal single-cell omics data at single-cell level may be
challenging even for cloud-based computing. We adopted the pseudo-bulk approach in
VDA, SPECT and ODA as a practical compromise. In TCA we bypassed some of the
complications by analyzing data of individual cell types and of individual participants
separately.

The lack of a well-accepted software package for longitudinal omics data makes it
difficult to benchmark PALMO performance. We compared PALMO with
variancePartition'®, tcR?°, and Seurat'®, which is summarized in Supplementary Fig. 1c.
VDA can handle missing data but variancePartition cannot, which is an advantage of VDA
since missing values in longitudinal omics data are almost inevitable. The two tools
generated almost identical results on two tested datasets after removing missing values.
PALMO was not developed specifically for TCR data. When we applied VDA to the TCR
data of SSc donors, we obtained results that are potentially interesting but not reported
in the original study using tcR. We believe PALMO complements TCR specific tools (such
as tcR) on TCR data. Seurat requires users to select two contrast groups in DEG analysis
and thus is not appropriate for analyzing longitudinal data of more than two timepoints.
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Nevertheless, when we applied both TCA and Seurat to the longitudinal scRNA-seq data
of activated CD4* T cells of a COVID-19 patient, the two methods generated rather
different results on up- or down-regulated genes. Heatmaps of the corresponding top
genes revealed that TCA results showed better dynamic changes over time than Seurat
results.

PALMO has been published as an R package in CRAN with a detailed reference
manual and vignettes to demonstrate its usage. It can be easily installed and executed in
R or RStudio. As we demonstrated, it can be used to analyze longitudinal bulk and single-
cell omics data generated on diverse technical platforms and/or of diverse sample types,
including but not limited to: clinical lab test results, cell type composition, gene expression,
protein abundance, bulk or single-cell omics data, TCR sequencing data, etc. We believe
it can facilitate the analysis of some longitudinal omics data. In addition, our longitudinal
multi-omics dataset of five data modalities on the same samples can also be a valuable
resource for immune health study and software development.

Methods

Healthy donors

We enrolled six clinically healthy donors (no diagnosis of active or chronic disease) with
age between 25 to 38 years with equal sex ratio. Blood samples were obtained from
Bloodworks Northwest (Seattle, WA) through protocols approved by the Bloodworks
Northwest institutional review board. The cohort demographics are described in the
Supplementary Table 1a. Viable peripheral blood mononuclear cells (PBMCs) and
plasma samples were collected from each donor over 10 weeks. Complete blood count
(CBC) was measured to evaluate overall health of all donors over all timepoints (n=6,
t=10). Minimal biometric data were collected on these donors which were handled
following the Health Insurance Portability and Accountability Act (HIPAA) guidelines.

Sample handling

A volume of 30 mL of blood was drawn into BD NaHeparin vacutainer tubes (for PBMC,;
BD #367874) or K2-EDTA vacutainer tubes (for plasma; BD #367863). Upon arrival at
the processing lab all NaHeparin tubes for each donor were pooled into a sterile plastic
receptacle to establish one common pool and stored at room temperature until processing
(4 hours or less from draw). PBMC were isolated by Ficoll density gradient separation
and cryopreserved by a team of operators, as previously described®’. Thawed PBMC of
four donors over six timepoints (n=4, t=6) were assayed by flow cytometry, scRNA-seq
and scATAC-seq in two batches (donors PTIDS and PTID6, donors PTID2 and PTID4)
by a team of operators. Plasma of all donors over all timepoints (n=6, t=10) was isolated
and cryopreserved by a team of operators, as previously described®”.

Flow cytometry

Flow cytometry was performed as previously described®’. In brief, cryopreserved PBMC
were thawed, washed, and counted. 1-2x10° cells were incubated with Human TruStain
FcX (BioLegend #422302) and Fixable Viability Stain 510 (BD #564406) prior to staining
with a 25-color cell surface panel (Key Resources Table) on ice for 25 minutes. Cells were
washed and fixed with 4% paraformaldehyde (Electron Microscopy Sciences #15713)
prior to acquisition on a BD Symphony cytometer. Raw data were compensated and
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curated to remove unrepresentative events due to instrument fluidics variability (time
gating), doublets (by FSC-H and FSC-W), and cells exhibiting membrane permeability
(live/dead gating) prior to quantification using BD FlowJo software.

Proteomics

Plasma samples were submitted to Olink (Uppsala, Sweden) for assay using the Olink
Proximity Extension assay, run on the Fluidigm Biomark system. Patient samples were
distributed evenly across two plates, and all time points per patient were run on the same
plate, with randomized well locations. Samples were assayed using the Olink Discovery
Assay which encompasses a total of 1536 proteins across 13 panels (Cardiometabolic
[V.3603], Cardiovascular Il [V.5006], Cardiovascular Ill [V.6113], Cell Regulation
[V.3701], Development [V.3512], Immune Response [V.3202], Inflammation [V.3021],
Metabolism [V.3402], Neuro Exploratory [V.3901], Neurology [V.8012], Oncology Il
[V.7004], Oncology Il [V.4001], Organ Damage [V.3311]). Quality assessment, limit of
detection, and normalization were performed by Olink using the plate bridging control,
two positive controls, and three background controls.

Single-cell RNA-seq

Sample preparation, hashing, and pooling: Single-cell RNA-seq libraries were
generated using the 10x Genomics Chromium 3’ Single Cell Gene Expression assay
(#1000121) and Chromium Controller Instrument according to the manufacturer's
published protocol with modifications for cell hashing®. To block off-target antibody
binding, Blocking Solution (5 pL of Human Trustain FcX (BioLegend #422302), and 13.7
uL of a 10% Bovine Serum Albumin (BSA)) was added to 500,000 cells suspended in 50
ML Dulbecco’s Phosphate Buffered Saline (DPBS; Corning Life Sciences #21-031-CM)
and incubated for 10 minutes on ice. To stain samples, 0.5 pg (1 pL) of a TotalSeq™-A
anti-human Hashtag Antibody was suspended in 31.3 yL DPBS/2% BSA, then added to
each sample. For each batch of samples, 100,000 cells from 12 hashed samples with a
distinct Hashtag Antibody were pooled into the hashed pool. Roughly 20,000 cells from a
Leukopak healthy control were also labeled with a distinct TotalSeq™-A Hashtag
Antibody and were spiked into each pool to serve as a batch control.

Droplet encapsulation and reverse transcription: From each pool, 64,000 cells
were loaded into each well of a Chromium Single Cell Chip G (10x Genomics #1000073)
(8 wells per chip), targeting a recovery of 20,000 singlets from each well. Gel Beads-in-
emulsion (GEMs) were then generated using the 10x Chromium Controller. The resulting
GEM generation products were then transferred to semi-skirted 96-well plates and
reverse transcribed on a C1000 Touch Thermal Cycler (Bio-Rad) programmed at 53°C
for 45 minutes, 85°C for 5 minutes, and a hold at 4°C. Following reverse transcription,
GEMs were broken, and the pooled single-stranded cDNA and Hashtag Oligo fractions
were recovered using Silane magnetic beads (Dynabeads MyOne SILANE #37002D).

Library generation and separation: Barcoded, full-length cDNA including the
Hashtag Oligos (HTOs) from the TotalSeq™-A Hashtag Antibodies were then amplified
with a C1000 Touch Thermal Cycler programmed at 98°C for 3 minutes, 11 cycles of
(98°C for 15 seconds, 63°C for 20 seconds, 72°C for 1 minute), 72°C for 1 minute, and a
hold at 4°C. Amplified cDNA was purified and separated from amplified HTOs using a
0.6x size selection via SPRIselect magnetic bead (Beckman Coulter #22667) and a 1:10
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dilution of the resulting cDNA was run on a Fragment Analyzer (Agilent Technologies
#5067-4626) to assess cDNA quality and yield. HTO libraries were purified further with
SPRIselect magnetic bead (Beckman Coulter #22667) and amplified and indexed with a
custom HTO i7 index on a C1000 Touch Thermal Cycler programmed at 95°C for 3
minutes, 10 cycles of (95°C for 20 seconds, 64°C for 30 seconds, 72°C for 20 seconds),
72°C for 1 minute, and a hold at 4°C. The resulting HTO libraries were purified with
SPRIselect magnetic bead (Beckman Coulter #22667) post-amplification and a 1:10
dilution of the resulting HTO libraries were run on a Fragment Analyzer (Agilent
Technologies #5067-4626) to assess HTO quality and yield. A quarter of the cDNA
sample (10 ul) was used as input for library preparation. Amplified cDNA was fragmented,
end-repaired, and A-tailed is a single incubation protocol on a C1000 Touch Thermal
Cycler programmed at 4°C start, 32°C for minutes, 65°C for 30 minutes, and a 4°C hold.
Fragmented and A-tailed cDNA was purified by performing a dual-sided size-selection
using SPRIselect magnetic beads (Beckman Coulter #22667). A partial TruSeq Read 2
primer sequence was ligated to the fragmented and A-tailed end of cDNA molecules via
an incubation of 20°C for 15 minutes on a C1000 Touch Thermal Cycler. The ligation
reaction was then cleaned using SPRIselect magnetic beads (Beckman Coulter #22667).
PCR was then performed to amplify the library and add the P5 and indexed P7 ends (10x
Genomics #1000084) on a C1000 Touch Thermal Cycler programmed at 98°C for 45
seconds, 13 cycles of (98°C for 20 seconds, 54°C for 30 seconds, 72°C for 20 seconds),
72°C for 1 minute, and a hold at 4°C. PCR products were purified by performing a dual-
sided size-selection using SPRIselect magnetic beads (Beckman Coulter #22667) to
produce final, sequencing-ready libraries.

Quantification and sequencing: Final libraries were quantified using Picogreen
and their quality was assessed via capillary electrophoresis using the Agilent Fragment
Analyzer HS DNA fragment kit and/or Agilent Bioanalyzer High Sensitivity chips. Libraries
were sequenced on the lllumina NovaSeq platform using S4 flow cells. Read lengths were
28bp read1, 8bp i7 index read, 91bp read2.

scRNA-seq data pre-processing: scRNA-seq data of four donors were
generated in two batches, each containing data of two donors. Each batch of data was
pre-processed separately as previously described?’. Briefly, binary base call (BCL) files
were demultiplexed using the mkfastq function in the 10x Cell Ranger software (version
3.1.0), producing fastq files. Fastq files were then checked for quality (FastQC version
0.11.3) and run through the 10x Cell Ranger alignment function (cell ranger count) against
the human reference annotation (Ensembl GRCh38). Mapping was performed using
default parameters. Upon completion, Cell Ranger produced an output directory per file
that contains the following: bam file (binary alignment file), HDF5 file (Hierarchical Data
Format) with all reads, HDF file containing just the filtered reads, summary report (html
and csv), and cloupe.cloupe (a file for the 10x Loupe visual browser).

scRNA-seq data analysis: As previously described®, individual HDF5 files
(filtered) were loaded into the R statistical programming language (version 3.6.0) using
Bioconductor (version 3.1.0) and the Seurat package (version 3.1.5). For simplicity,
sample names were captured as a list in R and iteratively processed within a loop (refer
to hitps://satijalab.org/seurat/ for more information). Within the loop, samples were
normalized with the NormalizeData function followed by the FindVariableFeatures
function with parameters: vst selection method and 2000 features. Label transfer was

13


https://doi.org/10.1101/2022.10.17.512585
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.17.512585; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

performed using previously published procedures® and with the Seurat reference
dataset. Labeling included the FindTransferAnchors and TransferData functions
performed in the Seurat package.

We merged the two batches of data using the Seurat merge function. We
calculated read depth, mitochondrial percentage, and number of UMIs per sample. Cells
were filtered with nFeature_ RNA > 200 and percent.mt < 10. The merged data structure
was normalized (using NormalizeData and FindVariableFeatures functions) and then
saved as an RDS for further analysis. The top 3000 variable genes were used for PCA
and UMAP based dimension-reduction maps using 30 principle components (PCs). We
checked for possible batch effects using the bridging controls but did not observe any
obvious batch effects.

Cell labels obtained from the original batches were kept. Doublets were removed
from further analysis. In total we retrieved high quality data of 472,464 cells from 4 donors
and labeled them to 31 cell types from Seurat V2. The cell type frequencies in each
sample were calculated and compared with flow-based cell frequencies. Nineteen cell
types (CD4_Naive, CD4_TEM, CD4 _TCM, CD4_CTL, CD8 Naive, CD8_TEM,
CD8_TCM, Treg, MAIT, gdT, NK, NK_CD56bright, B_naive, B_memory, B_intermediate,
CD14_Mono, CD16_Mono, cDC2, pDC) were selected for further analysis after filtering
out cell types with a low frequency (<0.5%).

Single-cell ATAC-seq

Sample preparation: Permeabilized-cell scATAC-seq was performed as
described previously (Swanson et al. 2021). A 5% w/v digitonin stock was prepared by
diluting powdered digitonin (MP Biomedicals, 0215948082) in DMSO (Fisher Scientific,
D12345), which was stored in 20 pL aliquots at —20°C until use. To permeabilize, 1x106
cells were added to a 1.5 mL low binding tube (Eppendorf, 022431021) and centrifuged
(400xg for 5 min at 4°C) using a swinging bucket rotor (Beckman Coulter Avanti J-15RIVD
with JS4.750 swinging bucket, B99516). Cells were resuspended in 100 uL cold isotonic
Permeabilization Buffer (20 mM Tris-HCI pH 7.4, 150 mM NaCl, 3 mM MgCI2, 0.01%
digitonin) by pipette-mixing 10 times, then incubated on ice for 5 min, after which they
were diluted with 1 mL of isotonic Wash Buffer (20 mM Tris-HCI pH 7.4, 150 mM NacCl, 3
mM MgClI2) by pipette-mixing five times. Cells were centrifuged (400xg for 5 min at 4°C)
using a swinging bucket rotor, and the supernatant was slowly removed using a vacuum
aspirator pipette. Cells were resuspended in a chilled TD1 buffer (lllumina, 15027866) by
pipette-mixing to a target concentration of 2,300-10,000 cells per yL. Cells were filtered
through 35 pm Falcon Cell Strainers (Corning, 352235) before counting on a Cellometer
Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide
solution (Nexcelom, C52-0106-5).

Tagmentation and fragment capture: scATAC-seq libraries were prepared
according to the Chromium Single Cell ATAC v1.1 Reagent Kits User Guide (CG000209
Rev B) with several modifications. 19,000 cells were loaded into each tagmentation
reaction. Permeabilized cells were brought up to a volume of 12 ul in TD1 buffer (Illumina,
15027866) and mixed with 3 pl of lllumina TDE1 Tn5 transposase (lllumina, 15027916).
Transposition was performed by incubating the prepared reactions on a C1000 Touch
thermal cycler with 96—Deep Well Reaction Module (Bio-Rad, 1851197) at 37°C for 60
minutes, followed by a brief hold at 4°C. A Chromium NextGEM Chip H (10x Genomics,
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2000180) was placed in a Chromium Next GEM Secondary Holder (10x Genomics,
3000332) and 50% Glycerol (Teknova, G1798) was dispensed into all unused wells. A
master mix composed of Barcoding Reagent B (10x Genomics, 2000194), Reducing
Agent B (10x Genomics, 2000087), and Barcoding Enzyme (10x Genomics, 2000125)
was then added to each sample well, pipette-mixed, and loaded into row 1 of the chip.
Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 2000210) were vortexed
for 30 seconds and loaded into row 2 of the chip, along with Partitioning Oil (10x
Genomics, 2000190) in row 3. A 10x Gasket (10x Genomics, 370017) was placed over
the chip and attached to the Secondary Holder. The chip was loaded into a Chromium
Single Cell Controller instrument (10x Genomics, 120270) for GEM generation. At the
completion of the run, GEMs were collected, and linear amplification was performed on a
C1000 Touch thermal cycler with 96—Deep Well Reaction Module: 72°C for 5 min, 98°C
for 30 sec, 12 cycles of: 98°C for 10 sec, 59°C for 30 sec and 72°C for 1 min.

Sequencing library preparation: GEMs were separated into a biphasic mixture
through addition of Recovery Agent (10x Genomics, 220016), the aqueous phase was
retained and removed of barcoding reagents using Dynabead MyOne SILANE (10x
Genomics, 2000048) and SPRIselect reagent (Beckman Coulter, B23318) bead clean-
ups. Sequencing libraries were constructed by amplifying the barcoded ATAC fragments
in a sample indexing PCR consisting of SI-PCR Primer B (10x Genomics, 2000128), Amp
Mix (10x Genomics, 2000047) and Chromium i7 Sample Index Plate N, Set A (10x
Genomics, 3000262) as described in the 10x scATAC User Guide. Amplification was
performed in a C1000 Touch thermal cycler with 96—Deep Well Reaction Module: 98°C
for 45 sec, for 11 cycles of: 98°C for 20 sec, 67°C for 30 sec, 72°C for 20 sec, with a final
extension of 72°C for 1 min. Final libraries were prepared using a dual-sided SPRIselect
size-selection cleanup. SPRIselect beads were mixed with completed PCR reactions at
a ratio of 0.4x bead:sample and incubated at room temperature to bind large DNA
fragments. Reactions were incubated on a magnet, the supernatant was transferred and
mixed with additional SPRIselect reagent to a final ratio of 1.2x bead:sample (ratio
includes first SPRI addition) and incubated at room temperature to bind ATAC fragments.
Reactions were incubated on a magnet, the supernatant containing unbound PCR
primers and reagents was discarded, and DNA bound SPRI beads were washed twice
with 80% v/v ethanol. SPRI beads were resuspended in Buffer EB (Qiagen, 1014609),
incubated on a magnet, and the supernatant was transferred resulting in final,
sequencing-ready libraries.

Quantification and sequencing: Final libraries were quantified using a Quant-iT
PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589) on a SpectraMax iD3
(Molecular Devices). Library quality and average fragment size was assessed using a
Bioanalyzer (Agilent, G2939A) High Sensitivity DNA chip (Agilent, 5067-4626). Libraries
were sequenced on the lllumina NovaSeq platform with the following read lengths: 51nt
read 1, 8nti7 index, 16nt i5 index, 51nt read 2.

scATAC data pre-processing: scCATAC-seq data were available for donor PTID2
and PTID4 at week 2-7 (6 timepoints) and for PTID5 and PTID6 at week 2, 4, and 7.
SCATAC-seq libraries were processed as described previously (Swanson et al., 2021a).
In brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to demultiplex BCL files
to FASTQ. FASTQ files were aligned to the human genome (10x Genomics refdata-
cellranger-atac-GRCh38-1.1.0) using cellranger-atac count (10x Genomics v1.1.0) with
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default settings. scATAC fragments were submitted to the ArchR package to create the
ArchR object?!. Per-cell quality control (QC) was performed using methods as mentioned
in ArchR. The QC analysis showed FRIP score (the fraction of reads that fall into a peak)
>0.25. The TSS enrichment and log10(nFrags) data showed comparable range across
all samples. Doublets were removed using filterDoublets() function. In total we observed
294,623 peaks in 135,566 cells.

scATAC-seq data analysis: Using plotEmbedding function in ArchR, embedded
IterativeLSI was used to perform UMAP based dimension reduction. Unconstrained
integration was used to align scATAC-seq gene score matrix in ArchR object with the
corresponding scRNA-seq gene expression matrix, from which cells were labeled to 28
cell types along with labeling scores to measure the quality of the cell-label transfer. We
filtered out low quality cells (labeling score <0.5), removed cell types having less than 50
remaining cells, and kept 14 (B_intermediate, B_naive, CD14_Mono, CD16_Mono,
CD4_Naive, CD4_TCM, CD8_Naive, CD8_TEM, cDC2, gdT, MAIT, NK, NK_CD56bright,
and pDC) out of the 28 cell types for downstream analysis. The gene score matrix was
retrieved using the getGroupSE() function in ArchR?' and used for downstream analysis
by PALMO.

PALMO

Overview: The current version of PALMO contains five analytical modules to
analyze longitudinal omics data from multiple perspectives. It treats longitudinal omics
data as continuous variables. PALMO has been published as an R package in CRAN with
a detailed reference manual and vignettes to demonstrate its usage (https://cran.r-
project.org/web/packages/PALMO/index.html). It can be easily installed and executed in
R or RStudio.

PALMO S4 object: PALMO is a R based package that uses the setClass function
to create an S4 object oriented system. The S4 object consists of a list of data structures
with different types of elements such as strings, numbers, vectors, embedded lists, etc. It
stores input expression data, input metadata, and output results into separate data
structures for easy retrieval and interpretation. More details can be found in Section 3.9
of PALMO vignettes
(https://raw.qithubusercontent.com/aifimmunology/PALMO/main/Vignette-PALMO. pdf).

Function createPALMOQOobject() takes two inputs (anndata and data) to create an
PALMO S4 object: anndata is a data frame containing sample annotations. For
longitudinal bulk data, data is a data frame with features (such as genes or proteins) as
rows, samples as columns, and expression values as elements. For longitudinal single-
cell omics data, data is a Seurat object. For single-cell omics data without a Seurat object,
function createPALMOfromsinglecellmatrix() first creates a Seurat object from an
expression matrix or data frame and then creates a PALMO S4 object. Function
annotateMetadata() assigns columns in the original sample annotation data to designated
variables (sample_column, donor_column, and time_column) of the PALMO object for
longitudinal analysis. Function mergePALMOdata() cleans up the PLAMO object by
filtering out data missing essential information on sample_column, donor_column, or
time_column. Function checkReplicates() first checks whether there are replicated
samples at the same time points and of the same participants and, if yes, takes the
median values among replicated samples. Function avgExpCalc() carries out pseudo-
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bulking on single-cell omics data. Function naFilter() filters out data whose fraction of NAs
is above na_cutoff (default: 0.4).

Variance decomposition analysis (VDA): For variance decomposition, we want
to evaluate contributions from factors of interest {F;} to the total variance of analyte Y with
or without the influence of fixed effects {X;}. Some {F;} and {X;} may be the same
variables. We treat {F;} as random effects in a linear mixed model, that is, with fixed
effects,

Y~X +X,++ X, + (1|F) + (1|F,) + -+ (1|E). (1)
Or, without fixed effects,
Y ~(1|F) + (A|F) + -+ (1|FY). (2)

Using Ime4*, one can obtain the corresponding variance 7, including the residual
variance a3. Then the total variance of Y is given by
0l a1 = 02 + 02 + -+ 02 + 03. (3)

The proportion of variance explained by factor F; is then 67 /62 ,4,. Similar approach was
used in variancePartition'® where the percentage of variance explained was interpreted
as the intra-class correlation (ICC). VDA can be performed with the function
ImeVariance(). VDA results can be displayed with functions variancefeaturePlot() and
gene_featureplot().

Coefficient of variation (CV) profiling (CVP): CVP is designed for bulk
longitudinal data and contains two functions: (1) Function cvCalcBulkProfile() calculates
CV of all features and generates the corresponding CV profile. (2) Function cvCalcBulk()
identifies consistently stable and variable features, which has two important parameters:
Parameter cvThreshold (default: 5%) specifies the CV cutoff for distinguishing stable (CV
< cvThreshold) or variable (CV > cvThreshold) features. Parameter donorThreshold
(default: the total number of donors) defines the minimum number of donors on which a
feature needs to be stable or variable to be considered as consistently stable or variable.
One may choose cvThreshold as the mode of the corresponding CV distribution.

Stability pattern evaluation across cell types (SPECT): SPECT is the CVP
counterpart for single-cell data and contains the following functions: (1) Function
cvCalcSCProfile() calculates the CVs of all features in individual cell types and of
individual donors and generates the corresponding CV profile. (2) Function
cvSCsampleprofile() calculates the CVs of all features of individual donors regardless of
difference in cell types and generates the corresponding CV profile. (3) Function
cvCalcSC() determines whether individual features are stable (CV < cvThreshold) or
variable (CV > cvThreshold) in individual cell types and of individual donors. One may
choose cvThreshold as the mode of the corresponding CV distribution or a convenient
value based on the CVs of housekeeping genes. (4) Function VarFeatures() first counts
how many times individual features are variable in cell type-donor combinations and then
classifies variable features as follows: Features whose counts are above parameter
group Threshold are classified as super variable (SUV). Features whose counts are below
group Threshold but which are consistently variable across all donors in at least one cell
type are classified as variable across time in cell-types (VATIC). The default

groupThreshold value is set to Nyynor * Neentype/2 Where Nyoy,, is the number of donors

and Noyeype is the number of cell types. (5) Function StableFeatures() is similar to
VarFeatures() but classifies stable features as super stable (SUS) or stable across time
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in cell-types (STATIC). (6) Function dimUMAPPIot() generates a UMAP plot using a set
of selected genes as input.

Outlier detection analysis (ODA): ODA applies both graphic and statistical
methods to examine the temporal behavior of longitudinal data. Function
sample_correlation() calculates intra- and inter-donor correlations (across analytes) and
displays the results in a heatmap. Timepoints showing obvious weaker correlations with
other timepoints are potential outliers. To detect abnormal timepoints, function
outlierDetect() first calculates the mean and the standard deviation (SD) of each analyte

. . lue—
from samples of the same donor across all timepoints, calculates z = " for the

analyte at individual timepoints, and then counts at individual timepoints how many
analytes are outliers with |z| > z,, where z, is a user selected cutoff value. Assuming z
follows a normal distribution, it is straightforward to calculate the expected rate r of
analytes having |z| > z, (two-sided) or having z > z, or z < —z, (one-sided). Afterwards
function outlierDetectP() uses binomial tests to evaluate the p values for the counts of
outliers at individual timepoints and applies Benjamini and Hochberg procedure to adjust
the p values since multiple timepoints are tested. A donor-specific abnormal timepoint is
identified if the corresponding adjusted p value is less than 0.05. In this study we chose
7z, = 2.5 and thus r = 1.24% for |z| > 2.5 orr = 0.62% for z > 2.5 or z < —2.5. While the
z-score method described here can handle data with only three timepoints, Dixon’s test
may be a better alternative for such a small dataset.

Time course analysis (TCA): Function sclongitudinalDEG() uses the hurdle
model implemented in the MAST package (https://github.com/RGLab/MAST/) to study
temporal changes in longitudinal scRNA-seq data. The data is first split into subsets of
individual cell types and individual participants and then analyzed independently. If the
data has at least three timepoints, the function models normalized expression of each
gene as a linear function of time and evaluates the slope of time and the corresponding
p value (likelihood ratio test). If the data has only two timepoints, the function performs
DEG analysis between the two timepoints as implemented in MAST and obtains fold
change and the corresponding p value. Potential confounding factors (such as
experimental batch, sex, age, etc.) can be specified by parameter adjfac which are
adjusted in the analysis. Genes that are expressed in less than a certain fraction of cells
(specified by parameter mincellsexpressed, default 0.1) are filtered out from the analysis.
Obtained p-values are adjusted for multiple comparisons using the Benjamini and
Hochberg procedure. Adjusted p-value < 0.05 were considered significant in this study.

Circos plots for displaying stability patterns: PALMO has two functions to show
the stability patterns of single-cell omics data. Function genecircosPlot() displays the CV
values of features of interest in individual cell types and across individual donors based
on a single data modality. Function multimodalView() displays the CV values of features
of interest in individual cell types and across individual donors based on two independent
data modalities.

Random correlation between gene expression and gene score

To generate the distribution of random correlation between gene expression in scRNA-
seq data and gene score in scATAC-seq data, we randomly shuffled the order of reliable
genes, calculated the correlations between expression of pre-shuffle genes and gene
score of post-shuffle genes at the same positions, and repeated the process 1000 times.
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The obtained distribution of correlations provided a good estimate on the correlation
between random, unrelated gene pairs, which had a 95% upper confidence bound at
R0=0.399. Any correlations below Ro were no better than that between random, unrelated
gene pairs and thus not statistically meaningful.

Published single cell datasets

We retrieved scRNA-seq data from published PBMC datasets CNP00011023,
GSE1496892, and GSE164378'6. Datasets CNP0001102 and GSE164378 were from
longitudinal studies. Single-cell data objects were created in Seurat V4 and cells were
labeled as in the original studies. Zhu et al., 2020 (CNP0001102) dataset consists of three
healthy controls (normal), two participants infected with influenza (Flu) and five
participants infected with SARS-CoV-2 (COVID-19). Lee et al., 2020 (GSE149689)
dataset consists of four normal, five Flu, and eleven COVID-19 participants. The Hao et
al.,, 2021 (GSE164378) dataset consists of eight participants with PBMC samples
collected at three timepoints.

Mouse brain scRNA-seq data was obtained from Ximerakis et al (2019) published
dataset (GSE129788)%. The dataset contains single cell RNA data from brain tissues of
eight young (2-3 months) and eight old (21-23 months) mice. The dataset consists of a
total 37,069 cells labeled to 25 cell types.

TCRR repertoire dataset

We downloaded the TCRP sequencing data of 4 systemic sclerosis patients from
GSE156980%¢. First, we merged the TCR repertoire data from the 4 patients with 3
timepoints into a single file. Second, we calculated the frequency of each unique CDR3
peptide in each patient sample as the ratio between the observed reads of the peptide to
the total peptide reads in the sample. Third, we termed unique CDR3 peptides as
clonotypes and labeled them from 1 to the total number of clonotypes. In total, we
collected 288,597 (out of 355,024) unique clonotypes from CD4+ T cells and 11,739 (out
of 14,883) from CD8+ T cells, respectively. The frequency data matrix from CD4+ or
CD8+ T cells was then submitted to PALMO as input data frame.

Differential expression gene (DEG) analysis on scRNA-seq data

DEG analysis on datasets (CNP0001102 and GSE149689) was performed using the
FindMarkers function from the Seurat package (version 3.1.5). The groups were specified
using “ident.1” and “ident.2” in the function. The Benjamini and Hochberg (BH) procedure
as implemented in the Seurat package was applied to adjust p-values, controlling the
false discovery rate (FDR) in multiple testing. DEGs were identified if the corresponding
average log2-Fold change was greater than 0.1 and the corresponding adjusted p value
was less than 0.05.

Seurat differential analysis on longitudinal scRNA-seq data of a COVID19 patient

Seurat based differential analysis was performed on the longitudinal scRNA-seq data of
activated CD4* T cells of patient COV-5 in Zhu et al., 2020 (CNP0001102)3, using the
function FindMarkers() with parameters test.use="MAST" and logfc.threshold = 0. The
groups were defined by parameters ident.1 and ident.2. For example, to capture
differential genes between day 1 (D1) versus day 7 (D7) and day 13 (D13), we selected
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ident.1=D1 and ident.2=(D7 and D13). Similar approach was carried out for comparing
D13 versus D1 and D7 (ident.1=(D1 and D7) and ident.2=D13). The significant genes
were identified by adjusted pvalue <0.05.

Pathway enrichment analysis

Fast Gene Set Enrichment Analysis (fgsea) was performed to identify enriched pathways
among targeted genes*'. A custom collection of gene sets that included the GO v7.2,
KEGG v7.2 and Hallmark v7.2 from the Molecular Signatures Database (MSigDB, v7.2)
were used as the pathway database. Genes were pre-ranked by the decreasing order of
their correlation or changes or coefficients. The running sum statistics and Normalized
Enrichment Scores (NES) were calculated for each comparison. The pathway enrichment
p-values were adjusted using the Benjamini and Hochberg procedure and pathways with
adjusted p-values < 0.05 were considered significantly enriched. Over representation
analysis was performed using the Fisher test. For a single sample GSEA (ssGSEA), we
used the GSVA v1.40 R package?’.

Data analysis and visualization

Data analysis was performed in R, a statistical computing language (https://www.R-
project.org/). Basic data visualization was performed using ggplot2 v3.3, ggpubr 0.4, and
circular plots by circlize v0.4. The UMAP visualization was performed using Seurat v4.
Statistical tests were performed as mentioned in each section. Multi-test correction was
applied to the p-values to control the FDR using the Benjamini and Hochberg procedure
and adjusted p< 0.05 were considered significant.

Data availability

The scRNA-seq and scATAC-seq data generated during this study are available at GEO
under accession number GSE190992. The Olink and flow cytometry data are available
at https://github.com/aifimmunology/PALMO/tree/data/data. Participant information is
provided in Supplementary Table 1a. Independent datasets used for evaluation are
publicly available and their accession numbers are CNP0001102, GSE149689,
GSE164378, GSE129788, and GSE156980.

Code availability

An open-source R implementation of PALMO and R codes used in this study are available
at GitHub (https://github.com/aifimmunology/PALMO). The release includes tutorials and
example vignettes. PALMO can also be installed in R or RStudio as an R package in
CRAN.
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Figures

Fig. 1: General workflow and analysis schema of PALMO.

a PALMO can work with complex longitudinal data, including clinical data, bulk omics
data, and single-cell omics data. b Overview of five analytical modules implemented in
PALMO. ¢ Variance decomposition analysis (VDA) applies generalized linear mixed
model to assess contributions of factors of interest (such as disease status, sex,
individual participant, cell type, experimental batch, etc.) to the total variance of
individual features in the data. d Coefficient of variation (CV) profiling (CVP) is designed
for bulk longitudinal data, calculates CV of repeated measurements on the same
participant to assess the corresponding longitudinal stability, and compares CVs of
different participants to identify consistently stable or variable features. e Stability
pattern evaluation across cell types (SPECT) is the CVP counterpart for single-cell
omics data, analyzes stability patterns of features across different cell types and
different participants, classifies features based on how often they are stable or variable
in cell type-donor combinations, and identifies features that are unique to individual cell
types and consistent among participants. f Outlier detection analysis (ODA) evaluates
how many features in a sample are outliers when compared with the corresponding
features in other samples of same participant, assesses whether the number of outlier
features in the sample is significantly higher than expectation, and identifies possible
abnormal events occurred during a longitudinal study. g Time course analysis (TCA)
uses the hurdle model to evaluate transcriptomic changes over time based on
longitudinal scRNA-seq data of same participants, models time as a continuous variable
for data with at least three timepoints, and identifies up- or down-regulated genes over
time. h PALMO uses circos plots to display CVs of features of interest and reveal
stability patterns across features, participants, cell types, and data modalities.

Fig. 2: Variance decomposition on longitudinal single-cell omics data.

a Overall distributions of variance explained by inter-donor variations (Donor),
longitudinal intra-donor variations (Week), variations among cell types (Celltype), or
residual variations (Residual) based on scRNA-seq data. b-c Examples of genes whose
total expression variance was most explained by inter-cell-type variations (b) or inter-
donor variations (¢). d Examples of genes that had the most but still minuscular intra-
donor variations in expression. e Same as a but based on scATAC-seq data. f,g The
top list of genes whose inter-cell-type (f) or inter-donor (g) variations contributed most to
the total variance in scATAC-seq data. h The top list of genes that had the most intra-
donor variations in scATAC-seq data. b-d Kruskal-Wallis test was used to calculate the
p value. ICC: intra-class correlation.

Fig. 3: Longitudinal stability of plasma proteome.

a Scatter plots of coefficient of variation (CV) versus mean of normalized protein
expression (NPX) over timepoints in six donors. The longitudinal stable and variable
proteins are represented in blue and red, respectively. b,c Heatmap of CV of top 50
longitudinally variable (b CV>5%) or stable (¢ CV<5%) plasma proteins. d Top panel:
Number of proteins with z > 2.5 (red) or z < —2.5 (blue) in individual samples, where
z = (NPX — NPX)/SD with NPX and SD being the mean and the standard deviation,
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respectively, of NPX across samples of the same participant. Bottom panel:
—log10(pqqj) for individual samples being possible outliers, where p,,; is calculated

based on a binomial test and adjusted by Benjamini and Hochberg procedure for p
values of all samples. e Protein examples clearly demonstrate that Week 6 of donor
PTID3 was an outlier.

Fig. 4: Properties of 220 STATIC genes of PBMC.

a Heatmap of coefficient of variation (CV) evaluated on 93 out of the 220 stable across
time in cell-types (STATIC) genes that were identified from nineteen cell types in the
longitudinal scRNA-seq data of four healthy donors. The 93 STATIC genes include up
to ten top STATIC genes from individual cell types. b Circos plots displaying CV of five
example STATIC genes identified from each of five major cell types: T cells, B cells,
natural killer (NK) cells, monocytes, and dendritic cells (DCs). ¢ Uniform Manifold
Approximation and Projection (UMAP) using only the 220 STATIC genes as input
features (sUMAP) on the same longitudinal scRNA-seq data. d-f SUMAP using the
same 220 STATIC genes on three external PBMC datasets (d Zhu et al., 2020
(CNP0001102); e Lee et al., 2020 (GSE149689); f Hao et al., 2021 (GSE164378))
where cells are labeled as in the original studies. g Distributions of Pearson correlation
coefficient between gene expression in scRNA-seq data and gene score in scCATAC-seq
data, one for the 220 STATIC genes (median correlation 0.70), one for the top 250
highly variable genes (HVGs, median correlation 0.37), one for the 10,611 reliable
genes (average expression 20.1, median correlation 0.21), and one for random gene
pairs (95% upper confidence bound at 0.399). h,i Venn diagrams showing the overlaps
between the 220 STATIC genes and biomarkers distinguishing either healthy controls
(Normal) versus participants infected with influenza (FLU, left panel) or Normal versus
participants infected with SARS-CoV-2 (COVID19, right panel). The biomarkers were
identified from the dataset in either h Zhu et al., 2020 (CNP0001102) or i Lee et al.,
2020 (GSE149689).

Fig. 5: Properties of 304 STATIC genes of mouse brain tissue.

a Heatmap of coefficient of variation (CV) of the 304 stable across time in cell-types
(STATIC) genes that were identified from 25 cell types in the scRNA-seq data of a
mouse brain study (Ximerakis et al., 2019; GSE129788). b Uniform Manifold
Approximation and Projection (UMAP) using only the 304 STATIC genes as input
features (sUMAP) on the same scRNA-seq data. Cells are labeled as in the original
study. ¢ Percentage of top STATIC genes that overlap with cell-type marker genes
identified in the original study. Up to 25 top STATIC genes from each cell type are
compared with the corresponding marker genes of the same cell type. d Venn diagram
showing the overlap between the 234 STATIC genes identified from 15 out of the 25 cell
types and biomarkers distinguishing young versus old mice that were identified in the
original study from the same 15 cell types.

Fig.6: Circos plots showing stability patterns of five protein families.

a Circos plot displaying stability patterns of gene expression (outer circles) and gene
score (inner circles) of human leukocyte antigen (HLA) protein family (member: HLA-A,
HLA-B, HLA-C, HLA-DRA, HLA-DPA1, and HLA-DRB1). Samples with missing data or
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cell types with low cell counts are shown in grey. b-f Same as a but for b interferon
regulatory factors (IRFs; member: IRF1, IRF2, IRF3, IRF4, IRF5, and IRF8), ¢
interleukins (ILs; member: IL32, IL7R, IL10RA, IL2RB, IL1B and IL18), d chemokine (C-
X-C motif) receptor/ligand (CXCR/L) protein family (member: CXCR4, CXCR5, CXCR6,
CSCL8, CSCL10, and CSCL16), e Janus kinase (JAK) and signal transducer and
activator of transcription (STAT) protein family (member: JAK1, JAK2, JAK3, STAT3,
STAT4, and STAT6), and f tumor necrosis factor receptor superfamily (TNFRSF;
member: TNFRSF1B, TNFRSF13C, TNFRSF10B, TNFRSF25, TNFRSF11A, and
TNFRSF17).

Fig. 7: Heterogeneous immune responses by COVID19 patients during recovery.
a Volcano plot showing temporal expression changes of individual genes in different cell
types during the recovery of patient COV-3 (female, 41 years old, mild symptoms, data
on day D1/D4/D16), based on longitudinal scRNA-seq data in Zhu et al., 2020
(CNP0001102). The x-axis shows the slope (coefficient) of gene expression change as
a linear function of time. The y-axis shows the corresponding adjusted p value of the
slope. b-d Same as a but for patients b COV-2 (male, 45 years old, mild symptoms,
data on D1/D4/D7/D10/D16), ¢ COV-1 (male, 15 years old, mild symptoms, data on
D1/D4/D16), and d COV-5 (female, 85 years old, severe symptoms, data on
D1/D7/D13). e Counts of significantly upregulated (adjusted p < 0.05 and slope > 0.1,
red) and significantly downregulated (adjusted p < 0.05 and slope < —0.1, blue) genes
during the recovery of the four COVID-19 patients in individual cell types.

Supplementary Data

Supplementary Fig. 1: Datasets used to evaluate PALMO performance.

a Characteristics (sex and age) of six healthy donors in a longitudinal study of ten
weeks and specific data modalities collected on their samples. b Six external datasets
used to evaluate PALMO. ¢ Summary of benchmarking comparison between PALMO
and variancePartition, tcR, and Seurat (DEG analysis).

Supplementary Fig. 2: Flow cytometry gating schemes.
Red labels indicate gates used to determine population frequencies.

Supplementary Fig. 3: Longitudinal scRNA-seq data and scATAC-seq data on
PBMCs of four healthy participants over six weeks.

a Uniform Manifold Approximation and Projection (UMAP) of scRNA-seq data consisting
of 472,464 peripheral blood mononuclear cells (PBMCs). The dot color represents
identified cell types based on Seurat V2. b Distributions of labeling scores of individual
cell types as observed in scRNA-seq data. Cells having scores below the red vertical
dashed lines (0.5) were filtered out from analysis due to poor labeling quality. ¢
Pearson correlations between frequencies of the same cell types as measured by
scRNA-seq or flow cytometry on all samples. d UMAP projection of scATAC-seq data
using iterative latent semantic indexing (LSI) for clustering and Seurat algorithm for cell
labeling, as implemented in ArchR. e Distributions of labeling scores of individual cell
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types as observed in scATAC-seq data. Cells having scores below the red vertical
dashed lines (0.5) were filtered out from analysis due to poor labeling quality.

Supplementary Fig. 4: Variance decomposition on bulk longitudinal data.

a Overall distributions of total variance explained by inter-donor variations (Donor),
longitudinal intra-donor variations (Week) or residual variations (Residual) based on
complete blood count (CBC) data as measured on six healthy participants over ten
weeks. b Variance of specific CBC measurements that was explained by Donor, Week
or Residual. ¢ Overall distributions of total variance explained by Donor, Week or
Residual based on peripheral blood mononuclear cell (PBMC) frequencies as measured
by flow cytometry on four healthy participants over six weeks. d Variance of specific
PBMC frequencies that was explained by Donor, Week or Residual. e Overall
distributions of total variance explained by Donor, Week or Residual based on plasma
protein abundance as measured on six healthy participants over ten weeks. f Examples
of proteins whose total variance was most explained by inter-donor variations (top
panel) or intra-donor variations (bottom panel).

Supplementary Fig. 5: Comparison between variance decomposition analysis
(VDA) and variancePartition.

a Scatter plots of percentage of total variance explained by donor (left panel), tissue
(middle panel), or batch (right panel) as obtained by using VDA or variancePartition™®.
The simulated dataset of 200 genes in 100 samples of 25 donors is described in
“Tutorial on using variancePartition” at
https://bioconductor.org/packages/release/bioc/html/variancePartition.html (accessed on
September 9, 2022). b Scatter plots of percentage of total variance explained by donor
(left panel) or time (right panel) as obtained by using VDA or variancePartition on our
longitudinal proteomics data after removing 922 proteins with missing values.

Supplementary Fig. 6: Variance decomposition on T-cell receptor (TCR)
sequencing data.

a Overall distributions of total variance explained by inter-donor variations (Donor),
longitudinal intra-donor variations (Time), inter-subtype variations (Subtype), or residual
variations (Residual) based on sequencing data of TCR 3-chains from sorted CD4+ T
cells of four systemic sclerosis (SSc) donors, each contributing three samples over
more than two years??. The two SSc subtypes considered are limited SSc and diffuse
SSc. b-d Examples of clonotypes showing most b inter-donor variations, ¢ intra-donor
variations, or d inter-subtype variations. e Same as ¢ but for TCR data of the
corresponding CD8+ T cells. f-h Same as b-d but for TCR[3 data of the corresponding
CD8+ T cells.

Supplementary Fig. 7: Coefficient of variation (CV) profiling (CVP) of longitudinal
plasma proteomics data.

a Histogram of coefficient of variation (CV) of normalized protein expression (NPX) over
timepoints in six donors. CV of 5% was selected as the cutoff separating longitudinally
stable versus variable proteins. b Heatmap showing NPX intra- and inter-donor
correlations. ¢ Top pathways (p<0.05) from gene set enrichment analysis (GSEA) on
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outlier proteins detected in donor PTID3 at week 6. d Single-sample GSEA (ssGSEA)
on outlier proteins, showing enrichment in MYC targets, IFN-alpha response, etc., at
week 6.

Supplementary Fig. 8: Scatter plots of coefficient of variation (CV) of longitudinal
scRNA-seq data of individual cell types.

Scatter plots of CV versus mean of gene expression (log2(avg counts)) over timepoints
of individual donors. Only reliable genes with an average expression >0.1 were kept.
Results from individual donors were calculated separately and combined.
Housekeeping genes ACTB and GAPDH (blue) were used to select a CV threshold of
10% by which genes were split into longitudinally stable (red) or variable (black).

Supplementary Fig. 9: Longitudinally variable and stable genes across nineteen
cell types.

a Heatmap of coefficient of variation (CV) of the top 25 super-variable (SUV) genes. b
Heatmap of CV of the top 25 super-stable (SUS) genes. CVs of the housekeeping
genes ACTB and GAPDH are also shown for comparison. ¢ Venn diagram showing
overlaps between SUV genes, stable across time in cell-types (STATIC) genes, variable
across time in cell-types (VATIC) genes, and SUS genes.

Supplementary Fig. 10: The five most correlated genes between expression in
scRNA-seq data and gene score in scATAC-seq data.

a-e Scatter plots between expression in scRNA-seq data and gene score in scATAC-
seq data of the five most correlated genes (LEF1, TNFRSF13C, CST7, SPI1 and
SERPINF1). f-j Open chromatin regions around the five most correlated genes in
different cell types using ArchR?" visualization of scATAC-seq data.

Supplementary Fig. 11: Correlations of six protein families between expresion in
scRNA-seq data and gene score in scATAC-seq data.

a Human leukocyte antigens (HLAs). b Interferon regulatory factors (IRFs). ¢
Interleukins (ILs). d chemokine (C-X-C motif) receptor/ligand (CXCR/L) family. e Janus
kinases (JAKs) and signal transducer and activator of transcription proteins (STATS).

f Tumor necrosis factor receptor superfamily (TNFRSF).

Supplementary Fig. 12: Comparison between time course analysis (TCA) and
Seurat on longitudinal scRNA-seq data of a COVID-19 patient (COV-5).

a Venn diagram for differential expression genes (DEGs) from TCA and DEGs from two
runs of Seurat analyses: D1 versus D7+D13 or D1+D7 versus D13. b-d Top 10 up- and
top 10 down-regulated genes from b Seurat D1 versus D7+D13 analysis, ¢ Seurat
D1+D7 versus D13 analysis and d TCA. The data (CNP0001102) was described in Zhu
et al., 2020).

Supplementary Tables
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Supplementary Table 1: Healthy cohort overview including clinical metadata, complete
blood count (CBC), and flow cytometry-based cell frequencies.

Supplementary Table 2: PALMO results on plasma proteomics data, including results
from variance decomposition analysis (VDA), coefficient of variation profiling (CVP), and
outlier detection analysis (ODA).

Supplementary Table 3: Cell types identified from scRNA-seq and scATAC-seq data
and the corresponding PALMO results from variance decomposition analysis (VDA),
stability pattern evaluation across cell types (SPECT), and pathway enrichment
analysis.

Supplementary Table 4: Variance decomposition analysis (VDA) results on T-cell
receptor (TCR) repertoires. The data was downloaded from GSE156980 (Servaas et al.,
J. Autoimmun. 117, 102574 (2021)).

Supplementary Table 5: Top 220 stable across time in cell-types (STATIC) genes and
Pearson's correlation between gene expression in scRNA-seq data and gene score in
scATAC-seq data.

Supplementary Table 6: Top 304 stable across time in cell-types (STATIC) genes
observed in 25 cell types from mouse brain dataset GSE129788 (Ximerakis et al., Nat.
Neurosci. 22, 1696-1708 (2019)) and their overlap with the corresponding marker genes
of the same cell types.

Supplementary Table 7: List of up- or down-regulated genes observed from time
course analysis (TCA) on longitudinal scRNA-seq data of four COVID-19 patients
(CNP0001102; Zhu et al., Immunity 53, 685-696 (2020)).
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Supplementary Figure. 1

a
Donor Sex Age Week
1 2 3 4 5 6 7 8 9 10
PTID1 female 36 CcpP CpP CcpP CpP CcpP CpP CcpP CpP CcpP CP
PTID2 male 38 CcpP CPFRA CPFRA CPFRA CPFRA CPFRA CPFRA CcpP CcpP CP
PTID3 female 25 CcpP CcpP CcpP CcpP CcpP CcpP CcpP CcpP CcpP CP
PTID4 male 33 CcpP CPFRA CPFRA CPFRA CPFRA CPFRA CPFRA CcpP CcpP CP
PTIDS female 29 CcpP CPFRA CPFR CPFRA CPFR CPFR CPFRA CcpP CcpP CP
PTID6 male 36 CcpP CPFRA CPFR CPFRA CPFR CPFR CPFRA CpP CcpP CP
Assay symbols: C — complete blood count, P — proteomics, F — flow cytometry, R — scRNA-seq, A — scATAC-seq
Dataset Sample type Condition(s) Data type Subjects Samples per Analysis
(n) subject
Hoffman and Three human unknown Simulated 25 4 VDA
Schadt! tissues expression
of 200 genes
Servaas et al.2 Sorted CD4* & CD8* Systemic sclerosis TCRB 4 3 VDA
(GSE156980) non-naive T-cells sequencing
Zhu et al.3 Human PBMC Normal, influenza, scRNA-seq 5 2-5 sUMAP, VDA,
(CNP0001102) COVID-19 SPECT, TCA
Lee etal* Human PBMC Normal, influenza, scRNA-seq 17 1-2 sUMAP
(GSE149689) COVID-19
Hao et al.® Human PBMC HIV vaccine scRNA-seq in 8 3 sUMAP
(GSE164378) CITE-seq
Ximerakis et al.® Mouse brain tissue aging scRNA-seq 16 1 VDA, SPECT,
(GSE129788) sUMAP
1. Hoffman and Schadt, BMC Bioinformatics 17, 483 (2016). The dataset is described in “Tutorial on using variancePartition” at
https://bioconductor.org/packages/release/bioc/html/variancePartition.html (accessed on September 9, 2022). 2. Servaas et al., J.
Autoimmun. 117, 102574 (2021). 3. Zhu et al., Immunity 53, 685-696 (2020). 4. Lee et al., Sci. Immunol. 5, eabd1554 (2020). 5. Hao et
al., Cell 184, 3573-3587 (2021). 6. Ximerakis et al., Nat. Neurosci. 22, 1696-1708 (2019).
(o]

Software

Comparison

variancePartition

tcR

Seurat DEG

* Similar method and almost identical results
e PALMO can handle missing data but variancePartition cannot

* tcRis specific to TCR sequencing data, provides sample-level analysis or treats clonotype data as

binary

¢ PALMO handles broad omics data types, including TCR data, and treats clonotype data as continuous

* Seurat requires users to select two contrast groups in DEG analysis and thus is inappropriate for
longitudinal data with >2 timepoints
* PALMO treats time as a continuous variable for data with >2 timepoints or is similar to Seurat for data

with 2 timepoints
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