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Abstract

The efficient coding hypothesis posits that early sensory neurons transmit maximal information

about sensory stimuli, given internal constraints. A central prediction of this theory is that neurons

should preferentially encode stimuli that are most surprising. Previous studies suggest this may be the

case in early visual areas, where many neurons respond strongly to rare or surprising stimuli. For example,

previous research showed that when presented with a rhythmic sequence of full-field flashes, many retinal

ganglion cells (RGCs) respond strongly at the instance the flash sequence stops, and when another flash

would be expected. This phenomenon is called the ‘omitted stimulus response’. However, it is not known

whether the responses of these cells varies in a graded way depending on the level of stimulus surprise.

To investigate this, we presented retinal neurons with extended sequences of stochastic flashes. With

this stimulus, the surprise associated with a particular flash/silence, could be quantified analytically, and

varied in a graded manner depending on the previous sequences of flashes and silences. Interestingly, we

found that RGC responses could be well explained by a simple normative model, which described how

they optimally combined their prior expectations and recent stimulus history, so as to encode surprise.

Further, much of the diversity in RGC responses could be explained by the model, due to the different

prior expectations that different neurons had about the stimulus statistics. These results suggest that even

as early as the retina many cells encode surprise, relative to their own, internally generated expectations.

Introduction1

Visual scenes are highly correlated, both in space and time. It has been hypothesized that2

neurons in early sensory areas have evolved to exploit this structure, by only encoding ‘surprising’ sensory3

signals, that cannot be predicted based on their spatio-temporal context. This efficient coding theory4
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can account for many qualitative aspects of neural responses in early sensory areas, such as the stimulus5

selectivity of neurons in the retina [Karklin and Simoncelli, 2011, Doi et al., 2012, Soto et al., 2020], as6

well as primary visual [Rao and Ballard, 1999, Olshausen and Field, 1996, Van Hateren and van der7

Schaaf, 1998] and auditory [Lewicki, 2002, Smith and Lewicki, 2006] cortices.8

A central prediction of the efficient coding theory is that neurons should best encode stimuli9

that are surprising, given the recent stimulus history. There appears to be some evidence for this in10

early visual and auditory areas, where neurons have been found that respond most strongly to rare or11

surprising stimuli [Ulanovsky et al., 2003, Gill et al., 2008]. In the retina, previous studies found that12

when a sequence of full-field light flashes are presented, many neurons respond most strongly at the13

moment the sequence of flashes is stopped, and where another flash would be expected. This phenomenon14

was labelled the ‘omitted stimulus response’ (OSR), since it can be considered to be a response to the15

stimulus that was unexpectedly omitted [Schwartz et al., 2007].16

However, if neurons in the retina really do encode surprise, then their responses should vary17

in a graded way as one varies the level of stimulus surprise. Unfortunately previous studies [Schwartz18

et al., 2007, Schwartz and Berry 2nd, 2008, Werner et al., 2008] did not test for this, since there were19

typically only two alternatives: either the stimulus was surprising (e.g the sequence of flashes ends) or it20

was unsurprising (e.g. the sequence of flashes continues). As a result, it is hard to conclude from these21

studies whether neurons in the retina encode surprise.22

To address this question, we presented retinal ganglion cells (RGCs) with extended sequences23

of stochastically occurring full-field flashes. With this stimulus, the degree of ‘surprise’ for each flash24

(or period of silence between flashes) could be quantified mathematically, and was observed to vary in a25

graded manner depending on the previous sequence of flashes and silences. We could thus test how RGC26

responses varied with the level of surprise. Interestingly, we found that the responses of RGCs to these27

stimulus sequences could be well explained by a simple normative model, which described how neurons28

optimally combined their prior expectations about the stimulus with the recent stimulus history to encode29

surprise. Further, we found that much of the diversity in the responses of different recorded RGCs could30

be explained by this model, due to the different levels of ‘confidence’ that different neurons had in their31

prior expectations. Our study provides support for the predictive coding model of retinal coding, while32

shedding light on the different prior expectations that different RGCs have about environment. More33

generally, it shows that, already at the stage of the retina, many ganglion cells do not encode the physical34

stimulus itself, but how unexpected this stimulus is, with different prior expectations for different cells.35
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Results36

RGC responses to flash sequences37

We used a multi-electrode array to record retinal ganglion cells (RGCs) of an axolotl. We38

presented a visual stimulus, consisting of random sequences of full-field dark flashes, interleaved with39

periods of silence (Fig. 1A; see Methods: Stimulus statistics for details). Recorded neural activity was40

sorted into single unit responses using SpyKing Circus [Yger et al., 2016].41

We were interested in neurons that exhibited an ‘omitted stimulus response’ (OSR), where they42

responded to the absence of a flash, following several flashes presented in a row [Schwartz et al., 2007].43

We thus selected 48 out of 114 single unit responses for further analysis, that showed (i) high quality44

recording (quantified by low number (<1%) of refractory period violations, where refractory period is 245

ms), and (ii) the presence of an OSR (quantified as a peak around 120 ms after the omitted flash).46

Fig. 1B shows the example responses of one of these cells to a varying number of flashes presented47

in a row. As can be seen, this cell responded strongly to the first flash in a sequence, and shortly after48

the sequence had ended (i.e. the OSR). The size of the OSR increased monotonically with the number of49

flashes presented in a row.50

For our analysis, we converted the stimulus to a binary variable, which was set to 1 or 051

depending on whether there was a dark flash (stim. = 1) or a period of silence (stim. = 0) within a given52

120ms window. Neural responses were taken to be the number of spikes that occurred within each 120ms53

window.54

To see how the OSR varied with the number of consecutive flashes, we computed the average55

response of each neuron, given a ‘stimulus history’ consisting of a varying number of consecutive flashes56

followed by silence (Figure 1C). The OSR increased monotonically with the number of flashes for all cells.57

However, we observed differences in the rate of increase as well as the maximum firing rate for different58

cells (Fig. 1C).59

Finally, to see how neural responses depended on all possible stimulus sequences (and not the60

number of consecutive flashes), we constructed ‘tree-plots’ (Fig. 1D), showing each neuron’s average61

response to all possible sequences of flashes and silences of a given length. The top branch of this tree plot62

corresponds to the OSR, shown in Fig. 1D. However, many cells that showed a qualitatively similar OSR63

(i.e. that increased with the number of consecutive flashes) exhibited very different tree-plots, identifying64

clear differences in how they responded to different patterns of flashes and silences (e.g. Fig. 1D).65
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Modeling ‘surprise encoding’ by RGCs66

We asked whether RGC responses were consistent with them encoding surprise. To test this,67

we constructed a simple model of how RGCs could combine their internal stimulus expectations with68

their recent stimulus history to compute surprise (Fig. 2A). Following [Shannon, 1948, MacKay et al.,69

2003], we defined surprise at time t, st, as the negative log probability of a stimulus, xt, given the recent70

stimulus history, x<t, and the neuron’s internal model of the stimulus statistics (parameterised by θ):71

st = − log p (xt|x<t, θ) (1)

The mean firing rate was then obtained by applying a simple non-linear mapping:72

rt = f (ast + b) (2)

where a and b are free parameters and f (·) was assumed to be a softplus (log(1 + ex)) non-linear function73

to prevent firing rates being negative.74

The computed ‘surprise’ for each cell thus depends on their expectations or ‘internal model’75

of the stimulus statistics (parameterized by θ). We first assumed the simplest possible internal model:76

a ‘Markov model’, in which the probability of observing a flash, xt = 1, only depends on whether77

there was a flash or not in the previous time bin (xt = 0/1). This binary Markov model has two free78

parameters: the probability of a flash occurring if there was/wasn’t a flash in the previous time-step79

(θ0 = p (xt = 1|xt−1 = 0), and θ1 = p (xt = 1|xt−1 = 1)). The parameters of the response function (a80

and b) and internal model (θ) were fitted for each neuron using maximum likelihood, assuming that the81

responses were generated by a Poisson distribution with mean rt (see Methods: Neural model).82

Fig. 2B shows the average firing rate of a single neuron (black) for a given stimulus sequence83

(above) (see Methods: Data analysis). This model accounted for the most prominent feature of the84

neuron’s responses: that it responded strongly to the first flash in a sequence, and the first silence in a85

sequence (i.e. the OSR). However, the model was unable to replicate the dependence of the OSR on the86

number of flashes presented in a row, observed for this (Fig. 2C) and many other cells (Fig. 2D). This87

was because, by design, with a Markov model the computed surprise, only depends on the stimulus in the88

previous time-bin, and thus the predicted response is also independent of the stimulus history, beyond89

one time-bin (Fig. 2E).90

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.15.512347doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Adaptive surprise model91

To account for the observed variations in the OSR with number of consecutive flashes, we next92

considered a more complex ‘dynamic belief’ internal model. Here, we assume that the transition probabil-93

ities (θi ≡ p (xt = 1|xt−1 = i)), are not known a priori by each neuron, but must be inferred. We assume94

neurons combine their prior expectations (p (θi)) with the recent stimulus history (p (xt, xt−1, . . . |θ))95

using Bayes’ law: p (θ|xt, xt−1) ∝ p (xt, xt−1, . . . |θi) p (θi). We assumed a beta-distribution for the prior96

over θi, with parameters αi and βi. This results in a simple expression for the inferred probability of97

observing xt = 1, given xt−1 = i:98

p (xt = 1|xt−1 = i, xt−2, . . .) =
ni→1 + αi

ni→0 + ni→1 + βi + αi
, (3)

where ni→j is the number of occurrences of the transition i→ j in the sequence {x1, x2, . . . , xt}, and αi99

and βi are parameters of the prior. We assume that the parameters of the prior (αi, βi) are different for100

each neuron. Note that, in the limit where the prior is very strong (i.e. ni→j � αi and ni→j � βi), this101

model becomes identical to the ‘fixed-belief’ model described in the previous section, where the transition102

probabilities for each neuron are stimulus-independent.103

If neurons had ‘infinite’ memory then, given a sufficiently long stimulus sequence, their prior104

expectations would have no effect. Instead, we assume a more biologically plausible model where105

neuron’s have a finite memory, and nj→i are estimated using a leaky integration of past observations (see106

Methods: Adaptive surprise model). This requires one additional parameter (the time-scale of integration107

i.e. the leak parameter), which we kept fixed for all neurons. In Supplementary section Dynamic surprise108

model we show how qualitatively similar results can be obtained by assuming neurons perform Bayesian109

inference, given a model where the transition probabilities have a small probability of changing on each110

time-step. However, optimal Bayesian inference in this setting required complex numerical integration,111

and it is thus hard to see how it could be implemented feasibly by individual neurons. As a result, we112

focus on the simpler ‘leaky integration’ model for the rest of the paper.113

We fitted the 4 parameters of the prior (plus the bias and gain of the LN model) for each neuron,114

using maximum likelihood, assuming Poisson noise [Pillow et al., 2005]. Fig. 3A shows the predicted115

firing rate for one neuron (blue) to a short stimulus sequence (above). The ‘adaptive surprise’ model was116

able to capture aspects of the neuron’s response that could not be accounted for by the previous ‘fixed117

surprise model’. For example, it could capture how the size of the OSR increased with the number of118

flashes presented in a row (Fig. 3B-C). Further, it captured individual differences in the OSR decay for119

different neurons (compare cells 1-3 in Fig. 3B). Overall, the correlation between the estimated firing120

rates and the model prediction was significantly higher for the adaptive, compared to the fixed, surprise121
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model (Fig. 3D).122

To further investigate how the adaptive surprise model could account for the diverse responses of123

different cells, we plotted tree-plots showing the average firing rates predicted by the model for stimulus124

sequences of different lengths (Fig. 4A). The adaptive belief model captured much of the structure in the125

neural responses to stimulus sequences of varying length, as well as the diversity across different cells.126

This was supported by plotting the correlation coefficient between the model predictions for each node of127

the tree and the data, which decayed slowly with the tree depth (Fig. 4B), compared to the fixed belief128

model which reduced dramatically for tree depth greater than 2.129

To further test our adaptive belief model, we compared it to a more complex fixed belief model,130

with a comparable number of free parameters. To do this, we implemented a ‘Markov-2 model’ in which131

the probability of observing a flash is depends on the observed stimulus in the previous two time-bins.132

This model’s prior has 4 parameters, (θij = p(xt+1 = 1|xt = i, xt−1 = j)), which is the same as the133

adaptive surprise model (aside from the leak parameter, which we kept the same for all cells). The134

behaviour of this model is shown in Fig. 5. While the Markov-2 model outperformed the fixed surprise135

model model described earlier, it could not account for increases in the OSR that occurred for sequences136

of more than 2 consecutive flashes (Fig. 5B-C), or any structure in the tree plots at a depth greater than137

2 (Fig. 5D, emphasized with a dashed ellipse). Finally, the correlation coefficient between predicted and138

observed firing rates was significantly worse for the Markov-2 model than the adaptive surprise model139

(Figure. 5E) despite them having the same number of free parameters (p = 2 · 10−8, Wilcoxon signed-rank140

test).141

Differences in the internal expectations for individual cells142

We were interested to see how the inferred expectations (the ‘prior’) varied for each cell. Recall143

that we assumed a beta-prior over the transition probabilities θi = p (xt = 1|xt−1 = i), with parameters144

αi and βi. The mean of this prior is determined by the ratio of these two parameters, αi/βi, while its145

width (i.e. the level of prior uncertainty) is determined by their sum, αi + βi. Figure 6A shows how the146

parameters of the prior varied for different cells. Interestingly, we found that while for different cells147

there was a large variation in the sum, αi + βi, the ratio, αi/βi, was relatively constant. Thus, while148

the width of the prior, which determines how much weight is accorded to prior expectations versus new149

observations, varied greatly across cells, the prior mean was roughly constant.150

Focusing on the prior parameters, α1 and β1, which determines neural responses to ‘flash→flash’151

and ‘flash→no-flash’ transitions (i.e. the OSR), we observed two clusters of cells (Fig. 6A, right panel),152

with different levels of prior uncertainty (determined by the sum, α1 + β1; Fig. 6B). We asked what effect153
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this would have on these cells responses. We reasoned that cells with a strong prior (i.e. large αi + βi)154

would not adapt their posterior belief much depending on recent observations, and hence their responses155

would be well predicted by the fixed surprise model. In contrast, cells with a weak prior (i.e. small156

αi + βi) would be strongly influenced by recent observations, and thus their responses would be poorly157

predicted by the fixed-surprise model. This turned out to be the case. Fig. 6C shows the correlation158

coefficient between the prediction of the fixed surprise model and recorded responses, versus the adaptive159

surprise model. There was a trend for cells with a strong prior (high αi + βi; colour coded in yellow) to160

be equally well-fit by both models, while cells with a weak prior (low αi + βi; colour coded in blue) were161

better fit by the adaptive surprise model. We asked whether this same effect could be observed without162

reference to the model fits. To do this, we compared the average neural responses to stimulus sequences163

of length 2, to the average response to longer sequences, of length 10. As expected, we found that the164

average responses of cells with a strong prior (i.e. log (α1 + β1) > 7) only depended on the most recently165

presented stimuli (Fig. 6D, yellow). This tended not to be the case for stimuli with a weak prior (Fig. 6D,166

blue) (p = 0.066, Wilcoxon rank-sum test).167

In Fig. 6A we observed that the prior mean, determined by αi/βi, remained near-unity across168

different cells. We thus, asked whether it would be possible to fit neural responses using a reduced169

adaptive surprise model with only two parameters (i.e. the sum, αi + βi), and αi/βi held fixed at unity.170

Fig. 7A shows that, while this reduced adaptive model performed worse than the full adaptive surprise171

model, this reduction in performance was small (< 10% reduction in correlation coefficient), despite172

having having only 2 free parameters per cell (compared to 4 parameters, for the full model). Notably,173

the reduced model was able to capture similar qualitative features of neural responses, such as how the174

OSR increased with the number of consecutive flashes (Fig. 7B, Supp. Fig. 5). Its performance was also175

significantly better than the fixed surprise model, which had the same number of free parameters per cell176

(p = 4 · 10−5, Wilcoxon signed-rank test).177

Discussion178

We observed how neural responses in the retina showed non-trivial dependencies on the precise179

order of flashes and silences in random stimulus sequences (Fig. 1C-D). Interestingly, RGC responses180

were well predicted by a simple model, which assumed that they depended on how ‘surprising’ stimuli181

were, relative to an internally generated expectation (Fig 3-4). Moreover, our model showed how the182

different ‘expectations’ of different neurons could account for the diverse way they responded to presented183

stimuli (Fig 6-7).184

Our approach contrasts with previous ideal observer models, which assume that neurons are185
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perfectly adapted to the ‘true’ presented stimulus statistics [Geisler, 1989, Geisler, 2003, Smeds et al.,186

2019, Chichilnisky and Rieke, 2005]. Instead, we found that neural responses could be well explained187

by assuming that each neuron has learned its own internal model of the stimulus statistics (with the188

parameters of the prior fitted separately for each cell). Interestingly, we found that different neurons had189

very similar prior expectations about which stimuli were most likely to occur (determined by the mean190

of the prior). What varied was the degree of confidence they had about their own prior expectations191

(determined by the width of the prior). Furthermore, recorded cells could be divided into two categories:192

those with weak confidence in their prior, and those with strong confidence in their prior expectations.193

In the future, it would be interesting to elucidate the reason for this split, and whether, for example, it194

corresponded to different types of ganglion cell identified in previous work [Baden et al., 2016].195

Our modelling framework was adapted from a previous model of Meyniel et al., that sought to196

explain psychophysical data showing how subjects’ behaviour (such as their reaction time and accuracy)197

depended on the statistics of sequentially presented sensory stimuli [Meyniel et al., 2016]. Meyniel and198

colleagues showed how their data could by explained if subjects used a Bayesian inference model, as199

described here, to predict new stimuli based on what came before. Here, we extended this model to200

include a variable ‘prior’ distribution, whose parameters could be fit to describe the diverse responses of201

different ganglion cells. Nonetheless, the fact that a similar type of model can be used to describe both202

neural responses in the retina and subjects behaviour in different tasks is intriguing, raising the question203

of whether similar computations may be present ubiquitously in the brain when subjects are presented204

stimuli with complex temporal statistics.205

Previous experimental [Schwartz and Berry 2nd, 2008, Werner et al., 2008, Deshmukh, 2015]206

and computational [Maheswaranathan et al., 2019, Tanaka et al., 2019, Chen et al., 2017] studies sought207

to understand the neural mechanisms underlying the OSR. However, there remains some controversy over208

which of the proposed theories could explain all of the experimentally observed features of the OSR, such209

as e.g. the fact that the delay before the OSR varies linearly with the time between flashes. Our work210

provides further constraints to distinguish between different theories, by showing how the OSR varies211

depending on the precise sequence of flashes and silences (Fig 1).212

The stimuli in our experiment, which consisted of sequences of full-field flashes, were chosen213

to be sufficiently rich so as to permit many different levels of ‘surprise’, while simple enough to permit214

a straight-forward analysis of neural responses. Nonetheless, in the future it would be interesting to215

investigate neural responses to more naturalistic stimuli, which for example, varied spatially as well216

temporally [Keller et al., 2012]. This would allow us to investigate, for example, the degree to which217

neurons’ internal model is adapted to the statistics of natural scenes, as predicted by the efficient coding218

hypothesis [Machens et al., 2005].219
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Methods220

Experimental setup221

The recordings were performed in the axolotl retina, using a multi-electrode array with 252222

electrodes with 60 µm spacing (procedure described in detail in [Marre et al., 2012]). The experiment223

was performed in accordance with institutional animal care standards of Sorbonne Université. The raw224

signal, recorded at 20 kHz sampling rate, was high-pass filtered at 100 Hz and then sorted offline using225

SpyKing Circus software [Yger et al., 2016]. The stimulus consisted of full-field dark flashes. The reason226

for using dark flashes was the dominance of OFF type cells in axolotl. The dark flashes had a duration of227

40 ms, with 80 ms period between the flashes, (∼12 Hz frequency) (as in [Schwartz et al., 2007]).228

Stimulus statistics229

We generated sequences of flashes and silences (i.e. where no flash occured in a 120ms window)230

using a stochastic model. The number of flashes and periods of silent states presented in a row was drawn231

from a negative binomial distribution, with parameters r and p. In the case of flashes, we varied the first232

parameter, p, at 20 minute intervals between three different values (0.98, 0.8 and 0.01, consecutively).233

The second parameter, r was adjusted so as to maintain a constant mean, of 7 flashes presented in a234

row. The length of the silence sequence was drawn from a geometrical distribution with a fixed mean p235

(p = 9). Changing p alters the degree to which the distribution is clustered around the mean. However,236

we observed no difference in the neural responses recorded with different values of p. As a result we237

concatenated data from neural responses to all three stimulus distributions for the rest of our analysis.238

Data analysis239

To generate the spike raster plots shown in Fig. 1, we aligned the spiking responses of neurons240

to a sequence of n flashes presented in a row. The peri-stimulus-time-histogram (PSTH) plotted in the241

bottom row of Fig. 1 was computed by averaging the spike count recording over all the stimulus repeats,242

and then averaging over a 5 ms time bin.243

For the remainder of the analysis, we discretised the neural responses and stimulus into time244

bins of length 120 ms (the time between consecutive flashes). The stimulus presented in each time-bin245

was treated as a binary variable: ‘1’ if there was a (dark) flash, ‘0’ otherwise. The average firing rate in246

each bin was computed by average the spike count over all repetitions of a stimulus sequence of length n.247

Except where stated explicitly in the text, we set n = 8 (so there were 256 distinct stimulus sequences248

used to compute the average firing rate).249

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.15.512347doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural model250

For our model, we assumed that at each time-bin, t, neurons fire spikes drawn from a Poisson251

distribution with mean, λt, given by:252

λt = f(ast + b) (4)

where st is the encoded surprise at time t, f is a non-linearity, and a and b are parameters describing the253

gain and bias, respectively. The non-linearity, f(x) = log(1 + ex) (soft-ReLU), was kept fixed for all the254

cells.255

The surprise at time t is defined as:256

st = − log p(xt|xt−1, xt−2, . . . , θ) (5)

where p (xt|xt, xt−2, . . . , θ) is the probability of observing no flash or a flash at time t (xt = 0 or 1257

respectively) given the stimulus x at previous times, and the internal model of the cell, parameterized by258

θ.259

Internal model260

The computed surprise depends on each cell’s internal model of the stimulus statistics. We first261

considered a binary Markov model, where the probability of observing a flash at time t is assumed to depend262

only on whether a flash was observed in the previous time bin. This model has two parameters: θ0 =263

p (xt = 1|xt−1 = 0), and θ1 = p (xt = 1|xt−1 = 1). For the Markov 2 model, we simply extend the observed264

history to 2 previous states, yielding a total of 4 parameters: θ0 = p (xt = 1|xt−1 = 0, xt−2 = 0), θ1 =265

p (xt = 1|xt−1 = 1, xt−2 = 0), θ2 = p (xt = 1|xt−1 = 0, xt−2 = 1), and θ3 = p (xt = 1|xt−1 = 1, xt−2 = 1).266

Inferring the transition probabilities267

Next, we considered an ‘adaptive belief model’ where the transition probabilities, θi = p (xt|xt−1 = i),268

are not known in advance, but must be inferred by combining each cell’s prior belief with newly observa-269

tions, using Bayes’ law, as follows:270

p (θ|xt, xt−1, . . .) ∝ p (xt|xt−1, θ) p (θ|xt−1, xt−2, . . .) (6)

where p (xt|xt−1, θ) is the likelihood of observing xt given xt−1, and is described by a Bernoulli distribution:271

p (xt|xt−1 = i, θi) = θxt
i (1− θi)1−xt . (7)
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Let us assume that at time t − 1, the posterior distribution over θi, p (θ|xt−1, xt−2, . . .), is272

described by the beta distribution with parameters αt−1i and βt−1i :273

p (θi|xt−1, xt−2, . . .) ∝ θα
i
t−1−1 (1− θ)β

i
t−1−1 . (8)

Now, at time t, multiplying this distribution by the likelihood according to Bayes law (Eqn 6) will result274

in a new beta-distribution, with parameters:275

αit ← αit + xtx
i
t−1 (1− xt−1)

1−i
(9)

βit ← βit + (1− xt)xit−1 (1− xt−1)
1−i

(10)

The probability of observing xt = 1 given previous observations is then given by:276

p (xt = 1|xt−1 = i, xt−2, xt−3, . . .) =

∫
θ

p(xt = 1|xt−1 = i, θi)p (θi|xt−1, xt−2, . . .) (11)

=
αit−1

αit−1 + βit−1
(12)

=
ni→1

ni→1 + ni→0
, (13)

where ni→0 and ni→1 describe the number of occurrences of the transitions i→ 0 and i→ 1, respectively.277

Adaptive surprise model278

The statistics of the external world are not static, but change in time. To take this into account,279

we could assume there a non-zero probability of transition matrix changing between two observations (a280

‘dynamic belief model’). Performing exact Bayesian inference in this case requires expensive numerical281

integration, which may be difficult to perform by individual neurons in the retina. However, in [Meyniel282

et al., 2016] they found that such a dynamic belief model could be approximated by a ‘forgetful’ model,283

where recent observations are weighted more strongly than the ones in the past. In contrast to the optimal284

Bayesian model, their leaky integration model results in simple linear parameter updates, and could thus285

be easy to implement neurally.286

In practice, we can implement the ‘forgetful’ model of Meyniel et al., by modifying the update287

rules described earlier for αi and βi as follows:288

αit ← (1− η)αit + ηαi0 + xtx
i
t−1 (1− xt−1)

1−i
(14)

βit ← (1− η)βit + ηβi0 + (1− xt)xit−1 (1− xt−1)
1−i

(15)
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where 1 > η > 0 is a leak term that results in forgetting observations far in the past, while αi0 and βi0289

determine the steady state values of αit and βit in the absence of new observations. With this update rule,290

the probability of observing a xt = 1 given xt−1 = i is given by:291

p (xt = 1|xt−1 = i, xt−2, xt−3, . . .) =
ñi→1 + αi0

ñi→1 + ñi→0 + βi0
, (16)

where ñi→j is the ‘effective’ number of observations of a transition i→ j, after taking into account the292

leak, when η > 0:293

ñi→j =
∞∑
k=0

(1− η)kxjt−kx
i
t−1−k (1− xt−k)

(1−j)
(1− xt−1−k)

(1−i)
. (17)

In practice we assumed that the leak, η was the same for all cells. We used a value of η = 0.2.294

However, similar results were obtained when we increased or decreased the leak by a small amount.295

In contrast, the parameters of the prior, αi0 and βi0, were allowed to vary for different cells. This296

us allowed to investigate how different cells’ ‘prior expectations’ for different transitions affected their297

responses. (Note that for notational simplicity we dropped the subscript ‘0’ in the main text.)298

Model fitting299

We fitted the internal model parameters (see previous section), and the gain and bias of the300

response curves (Eqn 4) using Maximum Likelihood (ML) algorithm [Doya et al., 2007]. For this, we301

assumed a Poisson noise model, resulting in a log-likelihood:302

L =
∑
t

nt log ft − ft (18)

where ft and nt are the spike count predicted by the model and observed spike count at time t, respectively.303

All models were fitted using algorithms with multiple starting points (MultiStart in MATLAB, 50 starting304

points, random initial parameters).305

The data analysis and model fitting were done in MATLAB R2021a. Code and data will be306

available upon paper acceptance.307
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Figure 1: Retinal ganglion cells’ responses to a sequences of dark flashes and silences. A.
Stimulus excerpt, showing periodic sequences of dark flashes. Each flash lasts 40 ms with 80 ms between.
The 120 ms bin containing a single dark flash is marked with a filled circle. A bin without a flash (called a
‘silence’) is marked by an open circle. B. Raster plot for one cell. A solid vertical line marks the occurrence
of each flash; a dashed line indicates an ‘omitted’ flash, following a sequence of flashes. Each raster plot
shows the cell’s response to a different number of consecutive flashes (ranging from 1 to 11), with 70
repeats shown in each row of the raster. The bottom row shows the peri-stimulus time histogram (PSTH)
for different numbers of consecutive flashes (colors denote the number of flashes). There is an increase
in firing rate after the missing flash, called the omitted stimulus response (OSR). The OSR magnitude
increases with the number of flashes. C. OSR for 7 cells, following a varying number of consecutive
flashes (filled circles) followed by silence (open circles). D. Tree-plot, showing the mean response of two
representative cells to different sequences of flashes (filled circles) and silences (empty circles). Cell 1
is the cell plotted in pink in panel C. Each column of the tree-plot shows the average response of the
neuron to all stimulus sequences of a given length that end with silence (tree-plots corresponding to
sequences ending with a flash are shown in Supp. Fig. 1). Moving right-ward the tree-plot branches out
to include the effect of stimuli presented further in the past. The top branch of the tree-plot shows the
cells’ responses to a series of consecutive flashes followed by silence, as in panel C. Other branches show
the cells’ responses to all the different possible flash sequences of a given length.
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Figure 2: Fixed surprise model. A. Schematic of modeling framework. The stimulus is compared
to the neuron’s expectation, which depends on their internal model, to compute surprise. The encoded
surprise is then transformed via a static non-linearity to obtain the neuron’s firing rate. B. Stimulus
excerpt (above) and recorded PSTH (below, black), and prediction of the fixed surprise model (below,
green). The fixed surprise model has limited flexibility, only permitting four possible firing rates (indicated
with dashed lines). C. Response to flash sequences of varying length (top). PSTH for a single neuron
(middle) and model prediction (bottom) to the stimulus sequences shown above. Each colour corresponds
to a different length of flash sequence. The fixed surprise model predicts the OSR magnitude to be
independent of the number of flashes. D. OSR for 5 cells (solid lines) after a varying number of consecutive
flashes. The fixed surprise model (lines with filled circles) cannot account for the increase in the OSR with
increasing number of flashes. E. Tree-plot for a single cell (above) and fixed model prediction (below).
The fixed surprise model can capture the mean response for stimulus sequences of up to length 2, but not
beyond. Tree-plots corresponding to sequences ending with a flash are shown in Supp. Fig. 2.
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Figure 3: Adaptive surprise model. A. Stimulus excerpt (above) and recorded PSTH (below, black),
alongside prediction of the adaptive surprise model (below, blue). B. Neural responses to varying number
of consecutive flashes (above). Recorded PSTH of three neurons is shown to the left, while model
predictions are shown to the right. Each colour corresponds to a different number of consecutive flashes.
The adaptive surprise model captures variations in both the magnitude and width of the OSR. C. Increase
in the OSR with the number of consecutive flashes for seven cells (each cell plotted with a different colour).
The data (solid line) is plotted alongside the predictions of the adaptive surprise model (solid lines with
circles). D. Pearson correlation coefficients between each cell’s PSTH and the model predictions, for the
fixed surprise model (y-axis) versus the adaptive surprise model (x-axis). The adaptive surprise model
significantly outperforms the fixed surprise model (p = 1 · 10−9, Wilcoxon signed-rank test).
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Figure 4: Neural responses to different stimulus sequences, for the adaptive surprise model.
A. Tree-plot, showing the mean response of three representative cells to all possible sequences of flashes
(filled circles) and silences (empty circles) of a given length. As we move rightward, the tree branches to
show responses to take into account stimuli presented further in the past. The data is shown on the left
and the model predictions on the right. The adaptive model is a able to reproduce qualitative aspects of
each tree-plot, beyond the top branch (which shows how the OSR magnitude varies with the number of
consecutive flashes). Tree-plots corresponding to sequences ending with a flash are shown in Supp. Fig.
3. B. Correlation coefficient between the tree-plot obtained with the adaptive surprise model and the
data, computed separately for each tree-depth (i.e. stimulus sequence length). The adaptive model is
significantly better at capturing the shape of the tree for stimulus sequences longer than 2, compared to
the fixed surprise model.
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Figure 5: Fixed surprise model with longer past (Markov-2 model). A. Stimulus excerpt (above)
and recorded PSTH (below, black), and firing rate predicted by the Markov-2 model (below, blue).
B. Response to varying number of consecutive flashes (top). PSTH for a single neuron (middle) and
model prediction (below) to the stimulus sequences shown above. Each colour corresponds to a different
length of flash sequence. The Markov-2 surprise model predicts the OSR magnitude to be dependent on
the previous two state only. C. Average responses of 5 cells (solid lines) to flash sequences of varying
lengths. The Markov-2 surprise model (lines with filled circles) cannot account for the increase in the OSR
beyond 2 consecutive flashes. D. Tree-plot for a single cell (above) and fixed model prediction (bottom).
The Markov-2 surprise model cannot capture the response for stimulus sequences greater than length 2
(highlighted with dashed circle). Tree-plots corresponding to sequences ending with a flash are shown in
Supp. Fig. 4. E. The correlation coefficient between the adaptive surprise model and recorded PSTH for
each cell is significantly better than for the Markov-2 model (p = 2 · 10−8, Wilcoxon signed-rank test).
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Figure 6: Parameters of internal model. A. Parameters of the inferred prior (αi and βi) for each cell.
These parameters determine each cell’s prior expectation for the different transitions from silence (left) or
flash (right). In both cases, the ratio between these parameters, αi/βi (which determine the mean of the
prior) is close to unity for all the cells, while their sum, αi + βi (which determines the strength of the
prior) varies across different cells. B. Histogram of log (α1 + β1) for different cells. The population could
be split into two groups: cells with low confidence in the prior (i.e. small αi + βi; blue) and cells with
high confidence in the prior (i.e. large αi + βi; yellow). C. Correlation coefficient between the responses
predicted by the adaptive surprise model, versus the fixed surprise model. Each circle is colour coded
according to the parameters of the inferred prior for that cell log(α1 + β1). Cells that had a strong prior
(yellow) tended to be better fit by the fixed surprise model, relative to the adaptive surprise model. D.
For each cell we computed the correlation coefficient between the average neural responses to stimulus
sequences of length 2, versus average responses that take into account stimulus sequences of length 10.
The responses of cells with a strong prior (right, yellow), but not a weak prior (left, blue), could be
reasonably well predicted just by looking at the most recent stimulus transition.
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Figure 7: Reduced adaptive surprise model, with a fixed prior mean (i.e. αi/βi = 1). A. The
reduced model performs almost as well as the adaptive surprise model despite having half the number
of free parameters. (p = 3 · 10−9, Wilcoxon signed-rank test). B. Mean response of 7 cells following a
variable number of flashes presented in a row. The increase in the OSR with the number of flashes is
well-fitted by the reduced model. C. The reduced adaptive surprise model performs significantly better
at fitting the recorded neural responses, despite both models having the same number of free parameters
per cell. (p = 4 · 10−5, Wilcoxon signed-rank test.)
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