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Abstract

The efficient coding hypothesis posits that early sensory neurons transmit maximal information
about sensory stimuli, given internal constraints. A central prediction of this theory is that neurons
should preferentially encode stimuli that are most surprising. Previous studies suggest this may be the
case in early visual areas, where many neurons respond strongly to rare or surprising stimuli. For example,
previous research showed that when presented with a rhythmic sequence of full-field flashes, many retinal
ganglion cells (RGCs) respond strongly at the instance the flash sequence stops, and when another flash
would be expected. This phenomenon is called the ‘omitted stimulus response’. However, it is not known
whether the responses of these cells varies in a graded way depending on the level of stimulus surprise.
To investigate this, we presented retinal neurons with extended sequences of stochastic flashes. With
this stimulus, the surprise associated with a particular flash/silence, could be quantified analytically, and
varied in a graded manner depending on the previous sequences of flashes and silences. Interestingly, we
found that RGC responses could be well explained by a simple normative model, which described how
they optimally combined their prior expectations and recent stimulus history, so as to encode surprise.
Further, much of the diversity in RGC responses could be explained by the model, due to the different
prior expectations that different neurons had about the stimulus statistics. These results suggest that even

as early as the retina many cells encode surprise, relative to their own, internally generated expectations.

Introduction

Visual scenes are highly correlated, both in space and time. It has been hypothesized that
neurons in early sensory areas have evolved to exploit this structure, by only encoding ‘surprising’ sensory

signals, that cannot be predicted based on their spatio-temporal context. This efficient coding theory
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can account for many qualitative aspects of neural responses in early sensory areas, such as the stimulus
selectivity of neurons in the retina [Karklin and Simoncelli, 2011, Doi et al., 2012, Soto et al., 2020], as
well as primary visual [Rao and Ballard, 1999, Olshausen and Field, 1996, Van Hateren and van der
Schaaf, 1998] and auditory [Lewicki, 2002, Smith and Lewicki, 2006] cortices.

A central prediction of the efficient coding theory is that neurons should best encode stimuli
that are surprising, given the recent stimulus history. There appears to be some evidence for this in
early visual and auditory areas, where neurons have been found that respond most strongly to rare or
surprising stimuli [Ulanovsky et al., 2003, Gill et al., 2008]. In the retina, previous studies found that
when a sequence of full-field light flashes are presented, many neurons respond most strongly at the
moment the sequence of flashes is stopped, and where another flash would be expected. This phenomenon
was labelled the ‘omitted stimulus response’ (OSR), since it can be considered to be a response to the
stimulus that was unexpectedly omitted [Schwartz et al., 2007].

However, if neurons in the retina really do encode surprise, then their responses should vary
in a graded way as one varies the level of stimulus surprise. Unfortunately previous studies [Schwartz
et al., 2007, Schwartz and Berry 2nd, 2008, Werner et al., 2008] did not test for this, since there were
typically only two alternatives: either the stimulus was surprising (e.g the sequence of flashes ends) or it
was unsurprising (e.g. the sequence of flashes continues). As a result, it is hard to conclude from these
studies whether neurons in the retina encode surprise.

To address this question, we presented retinal ganglion cells (RGCs) with extended sequences
of stochastically occurring full-field flashes. With this stimulus, the degree of ‘surprise’ for each flash
(or period of silence between flashes) could be quantified mathematically, and was observed to vary in a
graded manner depending on the previous sequence of flashes and silences. We could thus test how RGC
responses varied with the level of surprise. Interestingly, we found that the responses of RGCs to these
stimulus sequences could be well explained by a simple normative model, which described how neurons
optimally combined their prior expectations about the stimulus with the recent stimulus history to encode
surprise. Further, we found that much of the diversity in the responses of different recorded RGCs could
be explained by this model, due to the different levels of ‘confidence’ that different neurons had in their
prior expectations. Our study provides support for the predictive coding model of retinal coding, while
shedding light on the different prior expectations that different RGCs have about environment. More
generally, it shows that, already at the stage of the retina, many ganglion cells do not encode the physical

stimulus itself, but how unexpected this stimulus is, with different prior expectations for different cells.
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Results

RGC responses to flash sequences

We used a multi-electrode array to record retinal ganglion cells (RGCs) of an axolotl. We
presented a visual stimulus, consisting of random sequences of full-field dark flashes, interleaved with
periods of silence (Fig. 1A; see Methods: Stimulus statistics for details). Recorded neural activity was
sorted into single unit responses using SpyKing Circus [Yger et al., 2016].

We were interested in neurons that exhibited an ‘omitted stimulus response’ (OSR), where they
responded to the absence of a flash, following several flashes presented in a row [Schwartz et al., 2007].
We thus selected 48 out of 114 single unit responses for further analysis, that showed (i) high quality
recording (quantified by low number (<1%) of refractory period violations, where refractory period is 2
ms), and (ii) the presence of an OSR (quantified as a peak around 120 ms after the omitted flash).

Fig. 1B shows the example responses of one of these cells to a varying number of flashes presented
in a row. As can be seen, this cell responded strongly to the first flash in a sequence, and shortly after
the sequence had ended (i.e. the OSR). The size of the OSR increased monotonically with the number of
flashes presented in a row.

For our analysis, we converted the stimulus to a binary variable, which was set to 1 or 0
depending on whether there was a dark flash (stim. = 1) or a period of silence (stim. = 0) within a given
120ms window. Neural responses were taken to be the number of spikes that occurred within each 120ms
window.

To see how the OSR varied with the number of consecutive flashes, we computed the average
response of each neuron, given a ‘stimulus history’ consisting of a varying number of consecutive flashes
followed by silence (Figure 1C). The OSR increased monotonically with the number of flashes for all cells.
However, we observed differences in the rate of increase as well as the maximum firing rate for different
cells (Fig. 10).

Finally, to see how neural responses depended on all possible stimulus sequences (and not the
number of consecutive flashes), we constructed ‘tree-plots’ (Fig. 1D), showing each neuron’s average
response to all possible sequences of flashes and silences of a given length. The top branch of this tree plot
corresponds to the OSR, shown in Fig. 1D. However, many cells that showed a qualitatively similar OSR
(i.e. that increased with the number of consecutive flashes) exhibited very different tree-plots, identifying

clear differences in how they responded to different patterns of flashes and silences (e.g. Fig. 1D).
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Modeling ‘surprise encoding’ by RGCs

We asked whether RGC responses were consistent with them encoding surprise. To test this,
we constructed a simple model of how RGCs could combine their internal stimulus expectations with
their recent stimulus history to compute surprise (Fig. 2A). Following [Shannon, 1948, MacKay et al.,
2003], we defined surprise at time t, s;, as the negative log probability of a stimulus, z, given the recent

stimulus history, 2, and the neuron’s internal model of the stimulus statistics (parameterised by 6):

sy = —logp (x¢|x<y, d) (1)

The mean firing rate was then obtained by applying a simple non-linear mapping:

e = f (as; +b) (2)

where a and b are free parameters and f (-) was assumed to be a softplus (log(1+ e*)) non-linear function
to prevent firing rates being negative.

The computed ‘surprise’ for each cell thus depends on their expectations or ‘internal model’
of the stimulus statistics (parameterized by €). We first assumed the simplest possible internal model:
a ‘Markov model’, in which the probability of observing a flash, z; = 1, only depends on whether
there was a flash or not in the previous time bin (z; = 0/1). This binary Markov model has two free
parameters: the probability of a flash occurring if there was/wasn’t a flash in the previous time-step
(0o = p(xy = 1|z4—1 =0), and 6; = p(x; = 1|ag—1 = 1)). The parameters of the response function (a
and b) and internal model (6) were fitted for each neuron using maximum likelihood, assuming that the
responses were generated by a Poisson distribution with mean r; (see Methods: Neural model).

Fig. 2B shows the average firing rate of a single neuron (black) for a given stimulus sequence
(above) (see Methods: Data analysis). This model accounted for the most prominent feature of the
neuron’s responses: that it responded strongly to the first flash in a sequence, and the first silence in a
sequence (i.e. the OSR). However, the model was unable to replicate the dependence of the OSR on the
number of flashes presented in a row, observed for this (Fig. 2C) and many other cells (Fig. 2D). This
was because, by design, with a Markov model the computed surprise, only depends on the stimulus in the
previous time-bin, and thus the predicted response is also independent of the stimulus history, beyond

one time-bin (Fig. 2E).
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Adaptive surprise model

To account for the observed variations in the OSR with number of consecutive flashes, we next
considered a more complex ‘dynamic belief” internal model. Here, we assume that the transition probabil-
ities (6; = p (vt = 1|z4—1 = 1)), are not known a priori by each neuron, but must be inferred. We assume
neurons combine their prior expectations (p(;)) with the recent stimulus history (p (x4, zt—1,...]0))
using Bayes’ law: p (0|z¢, 24—1) < p (z¢,2¢—1,...|0;) p(0;). We assumed a beta-distribution for the prior
over ;, with parameters «; and ;. This results in a simple expression for the inferred probability of

observing x; = 1, given x;_1 = i:

Ni—1 + Q;
)
N0+ Nis1 + B + oy

3)

p(re=1lxy—1 =4, 24—9,...) =

where n;_,; is the number of occurrences of the transition ¢ — j in the sequence {1, 2, ..., 2}, and o
and f; are parameters of the prior. We assume that the parameters of the prior («;, 8;) are different for
each neuron. Note that, in the limit where the prior is very strong (i.e. n;-; < o; and n;—,; < f;), this
model becomes identical to the ‘fixed-belief’ model described in the previous section, where the transition
probabilities for each neuron are stimulus-independent.

If neurons had ‘infinite’ memory then, given a sufficiently long stimulus sequence, their prior
expectations would have no effect. Instead, we assume a more biologically plausible model where
neuron’s have a finite memory, and n;_,; are estimated using a leaky integration of past observations (see
Methods: Adaptive surprise model). This requires one additional parameter (the time-scale of integration
i.e. the leak parameter), which we kept fixed for all neurons. In Supplementary section Dynamic surprise
model we show how qualitatively similar results can be obtained by assuming neurons perform Bayesian
inference, given a model where the transition probabilities have a small probability of changing on each
time-step. However, optimal Bayesian inference in this setting required complex numerical integration,
and it is thus hard to see how it could be implemented feasibly by individual neurons. As a result, we
focus on the simpler ‘leaky integration’ model for the rest of the paper.

We fitted the 4 parameters of the prior (plus the bias and gain of the LN model) for each neuron,
using maximum likelihood, assuming Poisson noise [Pillow et al., 2005]. Fig. 3A shows the predicted
firing rate for one neuron (blue) to a short stimulus sequence (above). The ‘adaptive surprise’ model was
able to capture aspects of the neuron’s response that could not be accounted for by the previous ‘fixed
surprise model’. For example, it could capture how the size of the OSR increased with the number of
flashes presented in a row (Fig. 3B-C). Further, it captured individual differences in the OSR decay for
different neurons (compare cells 1-3 in Fig. 3B). Overall, the correlation between the estimated firing

rates and the model prediction was significantly higher for the adaptive, compared to the fixed, surprise
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model (Fig. 3D).

To further investigate how the adaptive surprise model could account for the diverse responses of
different cells, we plotted tree-plots showing the average firing rates predicted by the model for stimulus
sequences of different lengths (Fig. 4A). The adaptive belief model captured much of the structure in the
neural responses to stimulus sequences of varying length, as well as the diversity across different cells.
This was supported by plotting the correlation coefficient between the model predictions for each node of
the tree and the data, which decayed slowly with the tree depth (Fig. 4B), compared to the fixed belief
model which reduced dramatically for tree depth greater than 2.

To further test our adaptive belief model, we compared it to a more complex fixed belief model,
with a comparable number of free parameters. To do this, we implemented a ‘Markov-2 model’ in which
the probability of observing a flash is depends on the observed stimulus in the previous two time-bins.
This model’s prior has 4 parameters, (6;; = p(xi+1 = 1llay = i,24—1 = j)), which is the same as the
adaptive surprise model (aside from the leak parameter, which we kept the same for all cells). The
behaviour of this model is shown in Fig. 5. While the Markov-2 model outperformed the fixed surprise
model model described earlier, it could not account for increases in the OSR that occurred for sequences
of more than 2 consecutive flashes (Fig. 5B-C), or any structure in the tree plots at a depth greater than
2 (Fig. 5D, emphasized with a dashed ellipse). Finally, the correlation coefficient between predicted and
observed firing rates was significantly worse for the Markov-2 model than the adaptive surprise model
(Figure. 5E) despite them having the same number of free parameters (p = 2- 1078, Wilcoxon signed-rank

test).

Differences in the internal expectations for individual cells

We were interested to see how the inferred expectations (the ‘prior’) varied for each cell. Recall
that we assumed a beta-prior over the transition probabilities 6; = p (z; = 1|z;—1 = i), with parameters
a; and B;. The mean of this prior is determined by the ratio of these two parameters, «;/8;, while its
width (i.e. the level of prior uncertainty) is determined by their sum, a; + ;. Figure 6A shows how the
parameters of the prior varied for different cells. Interestingly, we found that while for different cells
there was a large variation in the sum, «; + 3;, the ratio, «;/8;, was relatively constant. Thus, while
the width of the prior, which determines how much weight is accorded to prior expectations versus new
observations, varied greatly across cells, the prior mean was roughly constant.

Focusing on the prior parameters, a; and (1, which determines neural responses to ‘flash—flash’
and ‘flash—mno-flash’ transitions (i.e. the OSR), we observed two clusters of cells (Fig. 6A, right panel),

with different levels of prior uncertainty (determined by the sum, ay + 81; Fig. 6B). We asked what effect
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15 this would have on these cells responses. We reasoned that cells with a strong prior (i.e. large «; + 3;)
155 would not adapt their posterior belief much depending on recent observations, and hence their responses
155 would be well predicted by the fixed surprise model. In contrast, cells with a weak prior (i.e. small
157 + ;) would be strongly influenced by recent observations, and thus their responses would be poorly
158 predicted by the fixed-surprise model. This turned out to be the case. Fig. 6C shows the correlation
159 coefficient between the prediction of the fixed surprise model and recorded responses, versus the adaptive
10 surprise model. There was a trend for cells with a strong prior (high «; + f;; colour coded in yellow) to
11 be equally well-fit by both models, while cells with a weak prior (low «; + 5;; colour coded in blue) were
12 better fit by the adaptive surprise model. We asked whether this same effect could be observed without
163 reference to the model fits. To do this, we compared the average neural responses to stimulus sequences
16 of length 2, to the average response to longer sequences, of length 10. As expected, we found that the
165 average responses of cells with a strong prior (i.e. log (a; + 1) > 7) only depended on the most recently
166 presented stimuli (Fig. 6D, yellow). This tended not to be the case for stimuli with a weak prior (Fig. 6D,
17 blue) (p = 0.066, Wilcoxon rank-sum test).

168 In Fig. 6A we observed that the prior mean, determined by «;/3;, remained near-unity across
1o different cells. We thus, asked whether it would be possible to fit neural responses using a reduced
o adaptive surprise model with only two parameters (i.e. the sum, «; + §;), and «;/8; held fixed at unity.
i Fig. TA shows that, while this reduced adaptive model performed worse than the full adaptive surprise
2 model, this reduction in performance was small (< 10% reduction in correlation coefficient), despite
s having having only 2 free parameters per cell (compared to 4 parameters, for the full model). Notably,
s the reduced model was able to capture similar qualitative features of neural responses, such as how the
s OSR increased with the number of consecutive flashes (Fig. 7B, Supp. Fig. 5). Its performance was also
e significantly better than the fixed surprise model, which had the same number of free parameters per cell

w7 (p=4-107°, Wilcoxon signed-rank test).

w  1Discussion

179 We observed how neural responses in the retina showed non-trivial dependencies on the precise
10 order of flashes and silences in random stimulus sequences (Fig. 1C-D). Interestingly, RGC responses
11 were well predicted by a simple model, which assumed that they depended on how ‘surprising’ stimuli
12 were, relative to an internally generated expectation (Fig 3-4). Moreover, our model showed how the
183 different ‘expectations’ of different neurons could account for the diverse way they responded to presented
e stimuli (Fig 6-7).

185 Our approach contrasts with previous ideal observer models, which assume that neurons are
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perfectly adapted to the ‘true’ presented stimulus statistics [Geisler, 1989, Geisler, 2003, Smeds et al.,
2019, Chichilnisky and Rieke, 2005]. Instead, we found that neural responses could be well explained
by assuming that each neuron has learned its own internal model of the stimulus statistics (with the
parameters of the prior fitted separately for each cell). Interestingly, we found that different neurons had
very similar prior expectations about which stimuli were most likely to occur (determined by the mean
of the prior). What varied was the degree of confidence they had about their own prior expectations
(determined by the width of the prior). Furthermore, recorded cells could be divided into two categories:
those with weak confidence in their prior, and those with strong confidence in their prior expectations.
In the future, it would be interesting to elucidate the reason for this split, and whether, for example, it
corresponded to different types of ganglion cell identified in previous work [Baden et al., 2016].

Our modelling framework was adapted from a previous model of Meyniel et al., that sought to
explain psychophysical data showing how subjects’ behaviour (such as their reaction time and accuracy)
depended on the statistics of sequentially presented sensory stimuli [Meyniel et al., 2016]. Meyniel and
colleagues showed how their data could by explained if subjects used a Bayesian inference model, as
described here, to predict new stimuli based on what came before. Here, we extended this model to
include a variable ‘prior’ distribution, whose parameters could be fit to describe the diverse responses of
different ganglion cells. Nonetheless, the fact that a similar type of model can be used to describe both
neural responses in the retina and subjects behaviour in different tasks is intriguing, raising the question
of whether similar computations may be present ubiquitously in the brain when subjects are presented
stimuli with complex temporal statistics.

Previous experimental [Schwartz and Berry 2nd, 2008, Werner et al., 2008, Deshmukh, 2015]
and computational [Maheswaranathan et al., 2019, Tanaka et al., 2019, Chen et al., 2017] studies sought
to understand the neural mechanisms underlying the OSR. However, there remains some controversy over
which of the proposed theories could explain all of the experimentally observed features of the OSR, such
as e.g. the fact that the delay before the OSR varies linearly with the time between flashes. Our work
provides further constraints to distinguish between different theories, by showing how the OSR varies
depending on the precise sequence of flashes and silences (Fig 1).

The stimuli in our experiment, which consisted of sequences of full-field flashes, were chosen
to be sufficiently rich so as to permit many different levels of ‘surprise’, while simple enough to permit
a straight-forward analysis of neural responses. Nonetheless, in the future it would be interesting to
investigate neural responses to more naturalistic stimuli, which for example, varied spatially as well
temporally [Keller et al., 2012]. This would allow us to investigate, for example, the degree to which
neurons’ internal model is adapted to the statistics of natural scenes, as predicted by the efficient coding

hypothesis [Machens et al., 2005].
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Methods

Experimental setup

The recordings were performed in the axolotl retina, using a multi-electrode array with 252
electrodes with 60 um spacing (procedure described in detail in [Marre et al., 2012]). The experiment
was performed in accordance with institutional animal care standards of Sorbonne Université. The raw
signal, recorded at 20 kHz sampling rate, was high-pass filtered at 100 Hz and then sorted offline using
SpyKing Circus software [Yger et al., 2016]. The stimulus consisted of full-field dark flashes. The reason
for using dark flashes was the dominance of OFF type cells in axolotl. The dark flashes had a duration of

40 ms, with 80 ms period between the flashes, (~12 Hz frequency) (as in [Schwartz et al., 2007]).

Stimulus statistics

We generated sequences of flashes and silences (i.e. where no flash occured in a 120ms window)
using a stochastic model. The number of flashes and periods of silent states presented in a row was drawn
from a negative binomial distribution, with parameters r and p. In the case of flashes, we varied the first
parameter, p, at 20 minute intervals between three different values (0.98, 0.8 and 0.01, consecutively).
The second parameter, r was adjusted so as to maintain a constant mean, of 7 flashes presented in a
row. The length of the silence sequence was drawn from a geometrical distribution with a fixed mean p
(p =9). Changing p alters the degree to which the distribution is clustered around the mean. However,
we observed no difference in the neural responses recorded with different values of p. As a result we

concatenated data from neural responses to all three stimulus distributions for the rest of our analysis.

Data analysis

To generate the spike raster plots shown in Fig. 1, we aligned the spiking responses of neurons
to a sequence of n flashes presented in a row. The peri-stimulus-time-histogram (PSTH) plotted in the
bottom row of Fig. 1 was computed by averaging the spike count recording over all the stimulus repeats,
and then averaging over a 5 ms time bin.

For the remainder of the analysis, we discretised the neural responses and stimulus into time
bins of length 120 ms (the time between consecutive flashes). The stimulus presented in each time-bin
was treated as a binary variable: ‘1’ if there was a (dark) flash, ‘0’ otherwise. The average firing rate in
each bin was computed by average the spike count over all repetitions of a stimulus sequence of length n.
Except where stated explicitly in the text, we set n = 8 (so there were 256 distinct stimulus sequences

used to compute the average firing rate).
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Neural model

For our model, we assumed that at each time-bin, ¢, neurons fire spikes drawn from a Poisson
distribution with mean, A, given by:

At = f(as; +b) (4)

where s; is the encoded surprise at time ¢, f is a non-linearity, and a and b are parameters describing the

gain and bias, respectively. The non-linearity, f(x) = log(1 + %) (soft-ReLU), was kept fixed for all the

cells.
The surprise at time ¢ is defined as:
sy = —log p(we|re—1,24—2,...,0) (5)
where p (x¢|xs, 4_a,...,0) is the probability of observing no flash or a flash at time ¢ (z; = 0 or 1

respectively) given the stimulus x at previous times, and the internal model of the cell, parameterized by

6.

Internal model

The computed surprise depends on each cell’s internal model of the stimulus statistics. We first
considered a binary Markov model, where the probability of observing a flash at time ¢ is assumed to depend
only on whether a flash was observed in the previous time bin. This model has two parameters: 6y =
p(z: = 1lzy—1 =0),and 61 = p(x; = 1|xy—1 = 1). For the Markov 2 model, we simply extend the observed
history to 2 previous states, yielding a total of 4 parameters: 6y = p (x; = l|ay—1 = 0,242 =0), 61 =

p(re =141 =1,24-2=0), 0 =p(x; = 1llxy—1 = 0,240 = 1), and 05 = p(x; = L|xy—1 = L2490 = 1).

Inferring the transition probabilities

Next, we considered an ‘adaptive belief model’ where the transition probabilities, 8; = p (z¢|z¢—1 = @),

are not known in advance, but must be inferred by combining each cell’s prior belief with newly observa-

tions, using Bayes’ law, as follows:
p(Olze, w1, ...) o< p(zi]wi—1,0) p (Olzi—1, T1-2,. . .) (6)
where p (x¢]z¢—1, 0) is the likelihood of observing x; given x;_1, and is described by a Bernoulli distribution:

p(a]aiq =i,0;) = 0% (1—0;) " (7)

10


https://doi.org/10.1101/2022.10.15.512347
http://creativecommons.org/licenses/by-nc-nd/4.0/

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.15.512347; this version posted October 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Let us assume that at time ¢ — 1, the posterior distribution over 6;, p (0|x;—1,zi—2,...), is
described by the beta distribution with parameters a!~* and g™
p(Oilzi, @, ) o 0717 (1= )T (8)

Now, at time ¢, multiplying this distribution by the likelihood according to Bayes law (Eqn 6) will result

in a new beta-distribution, with parameters:

o — altmal  (1—xq) (9)

B B+ -z (L—ae) (10)

The probability of observing x; = 1 given previous observations is then given by:

(@ = e = by 2ray g, ..) = /p(xtzuxt_l=z',ei)p(ei\xt_l,xt_z,..» (11)
]
O‘i—l
_ G (12)
O‘t71+5t71
_ i1 (13)

)
N1+ Niso

where n;_,¢ and n;_,; describe the number of occurrences of the transitions ¢ — 0 and 7 — 1, respectively.

Adaptive surprise model

The statistics of the external world are not static, but change in time. To take this into account,
we could assume there a non-zero probability of transition matrix changing between two observations (a
‘dynamic belief model’). Performing exact Bayesian inference in this case requires expensive numerical
integration, which may be difficult to perform by individual neurons in the retina. However, in [Meyniel
et al., 2016] they found that such a dynamic belief model could be approximated by a ‘forgetful’ model,
where recent observations are weighted more strongly than the ones in the past. In contrast to the optimal
Bayesian model, their leaky integration model results in simple linear parameter updates, and could thus
be easy to implement neurally.

In practice, we can implement the ‘forgetful’ model of Meyniel et al., by modifying the update

rules described earlier for o’ and 3* as follows:

ap < (L—n)aj+naj+zwi_y (1—a1) " (14)

Bl — (=) Bi+uss+ (1 —z)zi_ (1—ae) (15)

11
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where 1 > 1 > 0 is a leak term that results in forgetting observations far in the past, while oy and 3}
determine the steady state values of ai and 3 in the absence of new observations. With this update rule,
the probability of observing a x; = 1 given x;_1 = i is given by:

i1 + ag

~ ~ ;)
i1 + Niso + B

p(ry =1z41 =0, 04_2,T4_3,...) = (16)

where 7;_,; is the ‘effective’ number of observations of a transition ¢ — j, after taking into account the

leak, when n > 0:

o0

Ay =D (L=l iy (=2 ) (=), (17)
k=0

In practice we assumed that the leak, n was the same for all cells. We used a value of n = 0.2.
However, similar results were obtained when we increased or decreased the leak by a small amount.

In contrast, the parameters of the prior, o and 3}, were allowed to vary for different cells. This
us allowed to investigate how different cells’ ‘prior expectations’ for different transitions affected their

responses. (Note that for notational simplicity we dropped the subscript ‘0’ in the main text.)

Model fitting

We fitted the internal model parameters (see previous section), and the gain and bias of the
response curves (Eqn 4) using Maximum Likelihood (ML) algorithm [Doya et al., 2007]. For this, we

assumed a Poisson noise model, resulting in a log-likelihood:

L= Znt log fi — fi (18)
t

where f; and n; are the spike count predicted by the model and observed spike count at time ¢, respectively.
All models were fitted using algorithms with multiple starting points (MultiStart in MATLAB, 50 starting
points, random initial parameters).

The data analysis and model fitting were done in MATLAB R2021a. Code and data will be

available upon paper acceptance.
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Figure 1: Retinal ganglion cells’ responses to a sequences of dark flashes and silences. A.
Stimulus excerpt, showing periodic sequences of dark flashes. Each flash lasts 40 ms with 80 ms between.
The 120 ms bin containing a single dark flash is marked with a filled circle. A bin without a flash (called a
‘silence’) is marked by an open circle. B. Raster plot for one cell. A solid vertical line marks the occurrence
of each flash; a dashed line indicates an ‘omitted’ flash, following a sequence of flashes. Each raster plot
shows the cell’s response to a different number of consecutive flashes (ranging from 1 to 11), with 70
repeats shown in each row of the raster. The bottom row shows the peri-stimulus time histogram (PSTH)
for different numbers of consecutive flashes (colors denote the number of flashes). There is an increase
in firing rate after the missing flash, called the omitted stimulus response (OSR). The OSR magnitude
increases with the number of flashes. C. OSR for 7 cells, following a varying number of consecutive
flashes (filled circles) followed by silence (open circles). D. Tree-plot, showing the mean response of two
representative cells to different sequences of flashes (filled circles) and silences (empty circles). Cell 1
is the cell plotted in pink in panel C. Each column of the tree-plot shows the average response of the
neuron to all stimulus sequences of a given length that end with silence (tree-plots corresponding to
sequences ending with a flash are shown in Supp. Fig. 1). Moving right-ward the tree-plot branches out
to include the effect of stimuli presented further in the past. The top branch of the tree-plot shows the
cells’” responses to a series of consecutive flashes followed by silence, as in panel C. Other branches show
the cells’ responses to all the different possible flash sequences of a given length.
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Figure 2: Fixed surprise model. A. Schematic of modeling framework. The stimulus is compared
to the neuron’s expectation, which depends on their internal model, to compute surprise. The encoded
surprise is then transformed via a static non-linearity to obtain the neuron’s firing rate. B. Stimulus
excerpt (above) and recorded PSTH (below, black), and prediction of the fixed surprise model (below,
green). The fixed surprise model has limited flexibility, only permitting four possible firing rates (indicated
with dashed lines). C. Response to flash sequences of varying length (top). PSTH for a single neuron
(middle) and model prediction (bottom) to the stimulus sequences shown above. Each colour corresponds
to a different length of flash sequence. The fixed surprise model predicts the OSR magnitude to be
independent of the number of flashes. D. OSR for 5 cells (solid lines) after a varying number of consecutive
flashes. The fixed surprise model (lines with filled circles) cannot account for the increase in the OSR with
increasing number of flashes. E. Tree-plot for a single cell (above) and fixed model prediction (below).
The fixed surprise model can capture the mean response for stimulus sequences of up to length 2, but not
beyond. Tree-plots corresponding to sequences ending with a flash are shown in Supp. Fig. 2.
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Figure 3: Adaptive surprise model. A. Stimulus excerpt (above) and recorded PSTH (below, black),
alongside prediction of the adaptive surprise model (below, blue). B. Neural responses to varying number
of consecutive flashes (above). Recorded PSTH of three neurons is shown to the left, while model
predictions are shown to the right. Each colour corresponds to a different number of consecutive flashes.
The adaptive surprise model captures variations in both the magnitude and width of the OSR. C. Increase
in the OSR with the number of consecutive flashes for seven cells (each cell plotted with a different colour).
The data (solid line) is plotted alongside the predictions of the adaptive surprise model (solid lines with
circles). D. Pearson correlation coefficients between each cell’s PSTH and the model predictions, for the
fixed surprise model (y-axis) versus the adaptive surprise model (x-axis). The adaptive surprise model
significantly outperforms the fixed surprise model (p = 1-10~% Wilcoxon signed-rank test).
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Figure 4: Neural responses to different stimulus sequences, for the adaptive surprise model.
A. Tree-plot, showing the mean response of three representative cells to all possible sequences of flashes
(filled circles) and silences (empty circles) of a given length. As we move rightward, the tree branches to
show responses to take into account stimuli presented further in the past. The data is shown on the left
and the model predictions on the right. The adaptive model is a able to reproduce qualitative aspects of
each tree-plot, beyond the top branch (which shows how the OSR magnitude varies with the number of
consecutive flashes). Tree-plots corresponding to sequences ending with a flash are shown in Supp. Fig.
3. B. Correlation coefficient between the tree-plot obtained with the adaptive surprise model and the
data, computed separately for each tree-depth (i.e. stimulus sequence length). The adaptive model is
significantly better at capturing the shape of the tree for stimulus sequences longer than 2, compared to
the fixed surprise model.
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Figure 5: Fixed surprise model with longer past (Markov-2 model). A. Stimulus excerpt (above)
and recorded PSTH (below, black), and firing rate predicted by the Markov-2 model (below, blue).
B. Response to varying number of consecutive flashes (top). PSTH for a single neuron (middle) and
model prediction (below) to the stimulus sequences shown above. Each colour corresponds to a different
length of flash sequence. The Markov-2 surprise model predicts the OSR magnitude to be dependent on
the previous two state only. C. Average responses of 5 cells (solid lines) to flash sequences of varying
lengths. The Markov-2 surprise model (lines with filled circles) cannot account for the increase in the OSR
beyond 2 consecutive flashes. D. Tree-plot for a single cell (above) and fixed model prediction (bottom).
The Markov-2 surprise model cannot capture the response for stimulus sequences greater than length 2
(highlighted with dashed circle). Tree-plots corresponding to sequences ending with a flash are shown in
Supp. Fig. 4. E. The correlation coefficient between the adaptive surprise model and recorded PSTH for
each cell is significantly better than for the Markov-2 model (p = 2 - 10~8, Wilcoxon signed-rank test).
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Figure 6: Parameters of internal model. A. Parameters of the inferred prior (a; and 3;) for each cell.
These parameters determine each cell’s prior expectation for the different transitions from silence (left) or
flash (right). In both cases, the ratio between these parameters, «;/3; (which determine the mean of the
prior) is close to unity for all the cells, while their sum, «; + 8; (which determines the strength of the
prior) varies across different cells. B. Histogram of log (o + 1) for different cells. The population could
be split into two groups: cells with low confidence in the prior (i.e. small a; + S;; blue) and cells with
high confidence in the prior (i.e. large a; + f;; yellow). C. Correlation coefficient between the responses
predicted by the adaptive surprise model, versus the fixed surprise model. Each circle is colour coded
according to the parameters of the inferred prior for that cell log(ay + 7). Cells that had a strong prior
(yvellow) tended to be better fit by the fixed surprise model, relative to the adaptive surprise model. D.
For each cell we computed the correlation coefficient between the average neural responses to stimulus
sequences of length 2, versus average responses that take into account stimulus sequences of length 10.
The responses of cells with a strong prior (right, yellow), but not a weak prior (left, blue), could be
reasonably well predicted just by looking at the most recent stimulus transition.
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Figure 7: Reduced adaptive surprise model, with a fixed prior mean (i.e. «;/8; =1). A. The
reduced model performs almost as well as the adaptive surprise model despite having half the number
of free parameters. (p = 3-10~?, Wilcoxon signed-rank test). B. Mean response of 7 cells following a
variable number of flashes presented in a row. The increase in the OSR with the number of flashes is
well-fitted by the reduced model. C. The reduced adaptive surprise model performs significantly better
at fitting the recorded neural responses, despite both models having the same number of free parameters
per cell. (p=4-10"°, Wilcoxon signed-rank test.)
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