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Abstract 

This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides 

for the identification of novel and verifiable splice-switching oligonucleotide (SSO) targets in-silico. 

SSOs are antisense compounds that act directly on pre-mRNA to modulate alternative splicing 

(AS). To leverage the potential of AS research for therapeutic development, we created 

SpliceLearnTM, an AI/ML algorithm for the identification of modulatory SSO binding sites on pre-

mRNA. SpliceLearn also predicts the identity of specific splicing factors whose binding to pre-

mRNA is blocked by SSOs, adding considerable transparency to AI/ML-driven drug discovery 

and informing biological insights useful in further validation steps. Here we predicted NEDD4L 

exon 13 (NEDD4Le13) as a novel target in triple negative breast cancer (TNBC) and 

computationally designed an SSO to modulate NEDD4Le13. Targeting NEDD4Le13 with this 

SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the 

TGFβ pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from 

RNA-seq data. SpliceLearn is part of the SpliceCore® platform, an AI/ML predictive ensemble for 

AS-based drug target discovery. 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.512313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Introduction 

 

RNA splicing is the mechanism by which introns are removed from newly transcribed pre-

mRNA to produce mature mRNA. Alternative splicing (AS), a process by which exonic sequences 

are differentially skipped or included in the mRNA, allows multiple protein isoforms to be encoded 

by a single gene. AS regulates many biological processes such as cell differentiation, cell state 

reprogramming, and stress response (Ule & Blencowe, 2019). AS also plays a role in cancer, where 

tumor-specific AS events can drive tumor progression, metastatic transition, and drug resistance, 

among other hallmarks of cancer (Urbanski et al., 2018). The growing body of evidence 

reinforcing the importance of AS in cancer highlights an opportunity to target and drug AS events. 

While AS can drastically change the structure and function of the resulting protein, it is often 

difficult to design novel treatments to specifically drug AS protein isoforms. Conversely, 

modulation of RNA splicing represents a powerful tool for targeting ‘undruggable’ targets, as these 

treatment modalities can act directly on mRNA or pre-mRNA (Havens & Hastings, 2016). 

Splice-switching oligonucleotides (SSOs) are effective in blocking the interaction between 

splicing factors (SFs) and their pre-mRNA targets in the nucleus to change AS outcomes.(Havens 

& Hastings, 2016) SSOs can target mis-splicing or disease-specific AS events ahead of translation, 

allowing the SSO to potentially modulate downstream protein activity without the need to inhibit 

protein function.(Havens & Hastings, 2016) Recent advances in antisense chemistry and delivery 

have led to successful clinical translation of oligonucleotide drugs in muscle and the spinal cord 

diseases (Centa et al., 2020; Finkel et al., 2017; Han et al., 2020; J. Kim et al., 2019; Syed, 2016; 

K. R. Wagner et al., 2021). While SSOs for monogenic CNS diseases have shown success in 

clinical trials, most antisense oligonucleotides currently under investigation are for the treatment 

of cancer (H. Xiong et al., 2021), including but not limited to SSOs targeting AR-V7, PKM, and 

BCL-X pre-mRNAs (Z. Li et al., 2016; Ma et al., 2021; Yamamoto et al., 2015). To unlock the 
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innovative potential of SSO treatments, there is a need for efficient, scalable technologies to 

discover novel drug targets and develop SSO compounds for the treatment of cancer and other 

diseases in which AS mis-regulation plays a key role (Dvinge et al., 2016; Kahles et al., 2018; 

Park et al., 2019; Urbanski et al., 2018). 

In this study, we utilized the SpliceCore® platform (https://www.envisagenics.com/platform/), 

an ensemble of artificial intelligence/machine learning (AI/ML) algorithms for the discovery of 

novel therapeutic SSOs based on the analysis of RNA-seq data. We demonstrate the utility of 

this platform by discovering a novel AS target in Triple Negative Breast Cancer (TNBC), followed 

by SSO design and validation. We highlight the use of SpliceLearnTM, the newest AI/ML algorithm 

from the SpliceCore platform, to identify AS regulatory elements amenable to SSO targeting. 

SpliceLearn was trained using sequence-specific binding profiles of SFs along with spliceosome 

assembly information based on SF-RNA and SF-SF interactions. As a result, SpliceLearn not only 

predicts the optimal binding position of SSOs that modulate AS, but also informs the identity of 

SF regulatory networks under steric inhibition on a given RNA, allowing for more transparent and 

actionable SSO predictions.  

The primary goal for this study was to leverage an AI/ML approach to efficiently analyze RNA-

seq data for the identification of AS targets amenable to SSO modulation. Once identified, our 

secondary goal was to develop and experimentally validate a new SSO compound to modulate 

the AS in TNBC models. We present experimental evidence showing that a novel target 

discovered with SpliceCore, NEDD4L exon 13 (NEDD4Le13), was successfully targeted with 

SSOs predicted with SpliceLearn to promote cell death specifically in TNBC by modulating the 

TGFβ pathway. Overall, these data lend credence to the use of AI/ML for drug discovery by 

identifying innovative yet verifiable drug targets in-silico, and provide evidence for a novel 

therapeutic candidate for TNBC. 
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Results 

  

Figure 1. Overview of SpliceCore and SpliceLearn. A. Overview of the SpliceCore platform, including 

SpliceLearn. Using RNA-seq data as its input, the SpliceCore platform performs de-novo transcript 

assembly using an exon-centric reference transcriptome called TXdb. It integrates several AI/ML 

algorithms that allow for modular data analysis and is implemented on the Microsoft Azure cloud to 

efficiently scale resources. SpliceLearn takes disease-specific AS events identified by SpliceCore and 

uses a novel AI/ML algorithm to identify functional binding sites for SSOs. B. SpliceLearn was trained on 

splicing regulatory information including SF binding profiles to RNA as well as SF-SF interactions using 

tree-based learning for upstream introns, exons and downstream introns independently. 
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Development of the SpliceCore ensemble of AI/ML algorithms for target discovery 

SpliceCore is Envisagenics’ software platform that applies AI/ML algorithms to RNA-seq 

data to discover disease-specific and biologically relevant AS events amenable to SSO 

modulation (Figure 1A). To demonstrate the unique potential of SpliceCore in identifying new drug 

targets, we sought to investigate the cancer genome atlas (TCGA), one of the most popular 

sources of RNA-seq data in cancer studies (Koboldt et al., 2012). Our premise was to accurately 

identify a novel SSO drug target in a highly accessed dataset like TCGA, to prove that SpliceCore 

can discover new targets and extract value from public data, even if it has been used thousands 

of times in the past. 

In brief, SpliceCore performs de-novo transcript assembly using an exon-centric reference 

transcriptome called TXdb (Wu et al., 2011). Exon-centric analysis differs from transcript-centric 

analysis in that it treats the transcriptome as a collection of independent AS events rather than 

full-length transcripts (Supplemental Figure 1A-B, Methods). Exon-centric analysis is best suited 

for SSO target discovery because these compounds operate at short sequence length to 

modulate the inclusion or skipping of a target exon.   

TXdb assembly produced a total of 1,743,426 unique AS events derived from 1,252 breast 

cancer RNA-seq samples in TCGA, where 68% of the assemblies were cassette exon trios, and 

the remaining 32% were divided among other AS types (Supplemental Figure 1C). In addition, 

only 4% of the assemblies belonged to previously known AS events, 31% were “supported” 

assemblies (i.e., constitutive exons) and 65% were novel assemblies (Supplemental Figure 1D). 

Following TXdb assembly, two additional algorithms from the SpliceCore platform were 

utilized to identify disease-specific AS changes: SpliceTrap, a method for AS quantification (Wu 

et al., 2011), and SpliceDuo, a regression-based predictive model for AS cross-comparison 

between case and control (Anczuków et al., 2015). Compared to other open access tools, 

SpliceCore optimizes compute time by pooling RNA-seq mapping and quantification into a single 
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step and allows multiple cross-comparison steps to streamline AS analysis from large volumes of 

RNA-seq data with cloud computing (Supplemental Figure 2, Methods).  

To identify productive SSO binding sites for the modulation of the AS events identified by 

SpliceCore, we developed a new AI/ML algorithm called SpliceLearn. Given a pre-mRNA 

sequence, SpliceLearn estimates the probability that delivering SSOs to a specific RNA binding 

position would elicit AS of its most proximal exon (Figure 1B). In addition, SpliceLearn utilizes a 

feature selection procedure to prioritize specific SF networks most likely to be blocked by a given 

SSO, increasing its usefulness and interpretability. SpliceLearn was developed as three separate 

AI/ML models, depending on the sequence context (i.e., exons, upstream introns, and 

downstream introns). Our results indicated that both intron models were far superior to the exon 

model (Figure 1B and Supplemental Figure 3, Methods), thus we decided to target only the 

upstream and downstream introns flanking exons in targetable events.  

Since SpliceLearn was developed using probability-based tree learning and trained on 

features derived from splicing regulatory information, we were able to develop a model that is 

superior in both performance and interpretability. SpliceLearn outperformed comparable tools 

(SPANR(H. Y. Xiong et al., 2014) and MMSplice(Cheng, Yen, et al., 2019)) with more balanced 

sensitivity and specificity (Supplemental Figure 4). In addition, SpliceLearn performance peaked 

at the intuitive, optimal cutoff of a probability of 0.5, as measured by the Youden Index (Fluss et 

al., 2005) making SpliceLearn scores more legible to human interpretation (Supplemental Figure 

4, Methods). To further the interpretability of SpliceLearn, we developed a feature selection 

procedure based on Shapley (SHAP) and out-of-bag (OOB) analyses (Lundberg et al., 2019). 

This allowed for the ranking of SpliceLearn hits by informing the most likely SFs to be blocked by 

SSOs at a given position on the RNA. The predicted regulatory role of these SFs was further 

supported by external eCLIP data from the ENCODE project (van Nostrand et al., 2020). When 

we examined a set of 2,124 cassette exon events, we found that the SFs determined to be most 

likely to regulate AS were significantly enriched for eCLIP peaks at SpliceLearn predicted binding 
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locations (Supplemental Figure 5, Methods). Ultimately, the interpretability of SpliceLearn allows 

for the identification of SFs most likely to be modulated by SSOs, and therefore facilitates efficient 

and informed downstream mechanistic studies.  

 

Identification of novel AS events in TNBC using the SpliceCore platform 

TNBC is one of the most aggressive forms of breast cancer (Garrido-Castro et al., 2019). 

Interestingly, we observed that 81.5% of TNBC samples in TCGA presented copy-number or 

transcriptional alterations in at least one regulatory SF, illustrating the extent of variability and 

potential damage to the spliceosome in TNBC (Supplemental Figure 5A). It has been shown that 

TNBC progression and survival depends on SFs like SRSF1 and TRA2B (Anczuków et al., 2015; 

Du et al., 2021; Leclair et al., 2020). Based on the unmet need and the strong scientific premise, 

we decided to investigate novel AS events critical for TNBC progression and develop AS-

correcting SSOs for these potential targets. TNBC has been shown to be transcriptionally distinct 

when compared to other subtypes of breast cancer and particularly with respect to luminal breast 

cancer, which overexpresses hormone receptors (Kahles et al., 2018). We applied the SpliceCore 

platform to TCGA breast cancer data and identified 1,701 AS events expressed in TNBC basal 

tumors (n=169) but not normal breast tissue (n=108), and 652 AS events unique to TNBC basal 

tumors when compared to luminal tumors (n=694) (Figure 2A).  

To independently confirm basal-specific AS changes identified in TCGA, we generated 

RNA-seq data in triplicate for two representative basal cell lines that emulate TNBC (HS578T and 

BT549) and two representative luminal cell lines as a control (MCF7 and T47D). Cross-

comparison of AS profiles in basal vs. luminal cell lines resulted in the confirmation of 250 AS 

changes originally found in TCGA (Figure 2B). These candidates were further prioritized based 

on additional parameters, including the extent of AS (measured as the delta in Percent Spliced 

In, or dPSI), prevalence in TCGA samples, and biological significance of the underlying genes in 

cancer pathways. While some of SpliceCore’s candidates have been previously reported to play 
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a role in cancer (FLNB, MAP3K7, NFYA, ESYT2 (de Miguel et al., 2016; Dolfini et al., 2019; J. Li 

et al., 2018; Z. Li et al., 2021)) others were identified to be breast cancer-relevant for the first time 

(NEDD4L, MARK2, ABI1). The combination of these parameters resulted in a short-list of 7 

candidates with potential for further investigation as SSO targets, and we confirmed the AS 

changes using RT-PCR in a panel of normal and breast cancer cell lines (Figure 2C).  

 

 

 

Figure 2. SpliceCore identified disease-specific, biologically relevant AS events in TNBC. A. Overlap 

of AS changes across breast cancer tissue types in TCGA. B. Overlap of AS changes identified in TCGA 

and in-house cell-line RNA-seq data C. Top seven SpliceCore targets identified in TNBC. The table shows 

dPSI values for basal vs. luminal tumor cross-comparisons, prevalence across 169 TNBC samples, function 

of the target candidates, and RT-PCRs with AS changes. 
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NEDD4Le13 was identified as a potential candidate for therapeutic SSOs in TNBC 

AS of NEDD4Le13 was selected by SpliceCore as a top candidate, showing prominent 

exon skipping in 109/169 (64%) of TNBC patients, as well as at the RNA and protein levels in 

breast cancer basal cell lines (Figures 2C, 3A). NEDD4L belongs to the ubiquitin ligase family of 

proteins that play a role in the mono-ubiquitination of several important proteins involved in cellular 

homeostasis and signaling, including proteins in the TGFβ pathway. At the protein level, skipping 

of NEDD4Le13 was predicted to remove a short loop region next to the second WW domain, a 

region important for binding other proteins (Figure 3B-C)(Aragón et al., 2012; Gao et al., 2009). The 

loop also contains an accessible threonine residue that is likely phosphorylated by Protein Kinase 

A.(Snyder et al., 2004) Since this region has been shown to critically interact with SMAD proteins 

to regulate TGFβ signaling, we hypothesized that loss of this short loop through AS of exon 13 

deregulates TGFβ signaling to promote tumor progression. Accordingly, we observed that breast 

cancer patients expressing full-length NEDD4L had significantly better overall survival compared 

to patients with predominant skipping of exon 13 (Figure 3D). Tumor-type stratification of 

NEDD4Le13 in TCGA data showed the skipping isoform to be significantly enriched in TNBC 

patients compared to normal breast tissue, luminal tumors, normal-like tumors, and HER2+ breast 

cancer samples. Of note, while differences were highly significant at the splicing level (Figure 3E), 

there was only a modest difference in the RNA expression of NEDD4L across cancer subtypes 

(Figure 3F), reinforcing the usefulness of AS analysis for tumor-specific target discovery.  

SpliceLearn identified an optimal SSO to promote NEDD4Le13 inclusion and explained the 

underlying AS regulatory network 

Next, we utilized SpliceLearn to find the optimal binding sites for SSOs to promote 

NEDD4Le13 inclusion, as well as to identify the underlying SF network regulating this AS event. 

SpliceLearn analysis revealed that the three SFs most likely to bind the upstream intron and 

regulate AS of NEDD4Le13 were HNRNPL, QKI, and SRSF7.  
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Figure 3. SpliceCore platform identifies NEDD4Le13 as a potential therapeutic target for TNBC. A. 

Western blot showing the expression of the NEDD4L full length (top band) and exon 13 skipping (bottom band) 

isoforms across a panel of breast cancer cell lines B. 3D model of amino acids 193-418 in NEDD4L from the 

transcript including exon 13. WW domains 1 and 2 are in orange and blue, respectively. Phosphorylation of 

S342 and T367 are shown as spheres. Red indicates region encoded by exon 13. Yellow colored region in both 

models have RMSD of 4.271. C. 3D model of the same region of NEDD4L when exon 13 is skipped. Exclusion 

of 20 amino acids in the loop connecting WW1 and WW2 domain alters the helix in the proximity of the WW2 

domain with RMSD of 4.271 whereas no significant RMSD (0.188) was obtained when the two full models were 

superimposed. D. Survival curves showing a significant difference in survival between patients where 

NEDD4Le13 is included and NEDD4Le13 is skipped. D. NEDD4L Percent Spliced In (PSI) and E. gene 

expression data from the TCGA BRCA samples stratified into subtypes. 
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These three SFs showed confirmatory ENCODE eCLIP peaks (van Nostrand et al., 2020) 

 

Figure 4. SpliceLearn predicts the optimal functional SSO binding site to modulate the splicing of 

NEDD4Le13 in TNBC. A. SF-specific SpliceLearn scores as determined by SHAP analysis. SRSF1 was 

included as a negative example. Black boxes in the top track indicate the binding sites of the SSOs (20-mers) 

designed and tested to promote NEDD4Le13 exon inclusion. Blue heatmaps indicate eCLIP binding from 

ENCODE cell lines, where darker blue indicates higher binding score. B-D. HNRNPL, SRSF7, and QKI 

expression levels across the subtypes of breast cancer in TCGA. E. Protein-protein interaction network 

between the three SFs highlighted in A as determined in Akerman et al 2015. F. Probability distribution of 

protein-protein interaction scores between HNRNPL and the rest of the SFs in the Akerman et al 2015 

dataset. P-values and probability highlighted for QKI and SRSF7.  
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overlapping with SpliceLearn hits. Particularly, HNRNPL presented a strong binding signal in four 

eCLIP replicates, in stark contrast to other well-known SFs like SRSF1, which SpliceLearn did 

not predict to regulate NEDD4Le13 splicing, and did not show any confirmatory eCLIP peaks 

(Figure 4A). We found that HNRNPL and SRSF7 were both significantly overexpressed in basal 

tumors when compared to other breast cancer subtypes and to normal tissue samples (Figure 

4B-C). QKI was overexpressed in TNBC when compared to luminal and HER2+ samples but was 

downregulated when compared to normal-like tumors and normal tissue (Figure 4D). These 

subtype-specific changes in SF expression highlight their potential to regulate tumor-specific AS 

events like NEDD4Le13. Finally, we investigated protein-protein interactions (PPIs) among the 

three SFs using a probabilistic network of spliceosomal PPIs (Akerman et al., 2015).  

In fact, we observed that while QKI and SRS7 were unlikely to bind with each other directly 

(𝑃𝑄𝐾𝐼−𝑆𝑅𝑆𝐹7 = 0.098) the probability of each directly binding HNRNPL was high (𝑃𝐻𝑁𝑅𝑁𝑃𝐿−𝑄𝐾𝐼 =

0.826 , 𝑃𝐻𝑁𝑅𝑁𝑃𝐿−𝑆𝑅𝑆𝐹7 = 0.784) (Figure 4E). Of note, PPIs predicted between HNRNPL and 

QKI/SRSF7 were among the top interactions within the full network of HNRNPL interactions that 

included 601 proteins (Figure 4F). In summary, these data suggest that HNRNPL binds 

consistently and specifically to the intron upstream of NEDD4Le13, to further recruit QKI and 

SRSF7 as they work together to regulate AS. 

To experimentally validate the SpliceLearn-predicted functional SSO binding sites, a list 

of 20- to 22-mer sequences spanning locations across the highest SpliceLearn scores that 

overlapped with ENCODE HNRNPL peaks was generated (Figure 4A, Table S1). These seven 

oligos were chemically modified to enhance stability and nuclease resistance using 2nd generation 

antisense chemistry consisting of a phosphothioate backbone and uniformly modified 2’ 

methoxyethane (2’MOE) ribose sugar. Chemically synthesized and purified oligonucleotides were 

subjected to functional assays in breast cancer cell lines. Out of the seven sequences tested, 

SSO-0205 was found to promote the strongest NEDD4Le13 inclusion in MDA-MB-231 cells. 

Treatment with SSO-0205 caused an average of 67% exon inclusion in 3 independent 
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experiments, compared to 15% inclusion in the lipofectamine control group (Figure 5A-B). 

Additionally, MDA-MB-231 cells treated with SSO-0205 showed substantial exon 13 RNA-seq 

read coverage in NEDD4L, compared to the untreated, lipofectamine treated, or SSO-0202 

treated cells (Figure 5C). In summary, SpliceLearn successfully identified functional SSO binding 

sites, reducing the need for time-consuming microwalks for SSO optimization. 

 

 

SSOs targeted to NEDD4Le13 promoted exon inclusion and affected the TGFβ pathway  

NEDD4L is a ubiquitin ligase that has been previously shown to play a role in TGFβ 

regulation (Aragón et al., 2012; Gao et al., 2009). Moreover, NEDD4L has been shown to be 

involved in both oncogenesis and tumor suppression (X. Y. Guo et al., 2022; Xie et al., 2021). 

 

Figure 5. SpliceLearn-predicted SSOs modulate NEDD4Le13 inclusion. A. Representative 2% 

agarose gel for NEDD4L PCR showing isoform changes in three breast tissue cell lines treated with the 

indicated SSOs (400nM) for 48h. Actin expression used as cDNA internal control. B. Inclusion/Skipping 

percentage measured by qPCR in three breast cancer cell lines after SSO (400nM) treatment for 48h 

(n=3). C. Genome browser tracks displaying RNA-seq data in MDA-MB-231 cells (untreated (dark 

purple), treated with a lipofectamine control (light purple), SSO-0205 (maroon), or SSO-0202 (peach). 

Box highlights NEDD4Le13. 
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However, it is unclear if a specific AS isoform of NEDD4L is responsible for regulating TGFβ 

signaling in TNBC tumors, where it has the potential to drive multiple aspects of tumor 

progression. The TGFβ-dependent response is highly contextual throughout development, across 

different tissues, and therefore its dysregulation is highly relevant in tumor development and 

progression (Bellomo et al., 2016; Massagué, 2008). 

Using MDA-MB-231 as a representative TNBC cell line, and MCF10A (cell line derived 

from breast fibroadenoma) as a control, we evaluated the splicing patterns of NEDD4Le13 in the 

context of TGFβ stimulation via treatment with human recombinant TGFβ (hrTGFβ). Untreated 

MDA-MB-231 cells predominantly expressed the skipping isoform. When SSO-0205 was added 

to the cells for 24 hours, there was a significant increase in NEDD4Le13 inclusion. SSO-0205 

maintained a high level of NEDD4Le13 inclusion even after exposure to hrTGFβ for 3 or 6 hours. 

On the other hand, even though MCF10A cells often skip NEDD4Le13 in untreated conditions, 

they did not show a response to SSO-0205 under TGFβ treatment, perhaps due to differences in 

NEDD4Le13 regulation between the cell types and a dependency on the short isoform in the 

context of tumor maintenance (Figure 6A). Accordingly, RNA-seq analysis showed HNRNPL, 

SRSF7, and QKI to be highly expressed in MDA-MB-231 cells compared to MCF10A cells, 

pointing to a specific role of this regulatory network in the context of TNBC (Figure 6B).  

Next, we evaluated the effect of SSO-0205-induced NEDD4Le13 inclusion on the protein 

level and localization of several members of TGFβ pathway. MDA-MB-231 cells were treated with 

either SSO-0205, SSO-0202 (used as a control), or with lipofectamine alone as a vehicle control 

for 24 hours followed by a 0-, 1- or 3-hour treatment with hrTGFβ. Following SSO-0205 and 

hrTGFβ treatment, MDA-MB-231 cells showed an accumulation of phosphorylated SMAD2/3 

(phSMAD2/3) and TGFβ-receptor (TGFβRI) in the cytoplasm, concomitant with a nuclear 

decrease in phSMAD2/3, total SMAD2/3 and a decrease in TGFβRI at the membrane compared 

to the lipofectamine control (LFC). These cellular localization changes were time dependent and 

more prominent at 3 hours after the hrTGFβ treatment. In the case of SSO-0202 and in MCF10A  
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Figure 6. SSO-0205 modulates NEDD4Le13 inclusion, causes cancer cell migratory response to 

TGFβ, and decreases cell proliferation. A. PCR measuring NEDD4L isoforms in MDA-MB-231 and 

MCF10A cells in response to TGFβ stimulation (0, 3 or 6 hours) after SSO-0205 treatment (400 nM) 

(24h). B. Normalized RNA-seq counts for HNRNPL, QKI, and SRSF7 in MCF10A and MDA-MB-231 cells 

showing significantly higher expression of these SFs in MDA-MB-231 cells. Statistical differences 

calculated with DESeq2; *≤1x10-85 (n=2). 
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cells, these effects on protein localization were very modest, as expected given the <20% 

change in inclusion ratio in cells treated with SSO-0202 and the lack of response to the SSOs by 

MCF10A cells (Supplemental Figure 7).  

NEDD4L has been previously described to interact with phSMAD2/3, SMAD7 and TGFβRI 

as part of its role in the ubiquitination and subsequent proteasomal degradation of these proteins 

(Gao et al., 2009; Kuratomi et al., 2005). We used MMG132 to inhibit proteasome activity and 

performed immunoprecipitation assays for SMAD2/3 and TGFβRI to determine their interaction 

with NEDD4L after treating cells with SSO-0205 for 24h then with hrTGFβ for 0, 3 or 6 hours. 

When we inhibited proteasome activity before treating with SSO-0205 the total levels of NEDD4L, 

phSMAD2/3 and TGFβRI increased after hrTGFβ addition to the cells at 3 and 6 hours, specifically 

in the MDA-MB-231 cells (Supplemental Figure 8A). Moreover, we found that SSO-0205 

treatment promoted PPI between NEDD4L and SMAD2/3 as well as between NEDD4L and 

SMAD7, particularly after 3 hours of hrTGFβ treatment as observed by an increase of NEDD4L 

signal after SMAD2/3 IP and SMAD7 IP (Supplemental Figure 8A). Importantly, MCF10A cells 

treated with SSO-0205 and hrTGFβ did not show any change in downstream TGFβ signaling 

protein subcellular localization or PPIs by IP (Supplemental Figure 8A). These subcellular 

fractionation data and PPI results confirm the direct role of the NEDD4L inclusion isoform in 

C. Cell proliferation as measured by Cell TiterGlo® 96 well assay. MDA-MB-231 (top graph) and MCF10A 

(bottom graph) cells were treated with lipofectamine alone as a control or with the indicated SSO for 48h 

(400 nM) (n=4). D. Cell cycle phase analysis measured by propidium iodide flow cytometry. Cell cycle 

phase for each cell line is represented by % (top graphs), a representative Propidium Iodide histogram plot 

for MDA-MB-231 is shown below. Cells were treated with lipofectamine alone or with SSO-0205 (400 nM) 

for 24h (n=3). E. qPCR quantifying expression levels of the indicated cell cycle related genes in MDA-MB-

231 (top line) or MCF10A (bottom line) cells treated with SSO or lipofectamine alone as control for 24 hours 

followed by 0, 3 or 6 hours treatment with hrTGFβ (n=3-4). F. qPCR quantifying expression levels of the 

indicated migration/invasion related genes in MDA-MB-231 (top line) or MCF10A (bottom line) cells treated 

with SSO (400 nM) or lipofectamine as control for 24 hours followed by 0, 3 or 6 hours treatment with 

hrTGFβ (n=3-4). G. Transwell migration assay on the indicated cell types (MDA-MB-231 top graph and 

MCF10A bottom graph), cells were treated with lipofectamine or SSO-0205 (1 µM) for 24 hours, followed 

by overnight TGFβ treatment in the Transwell chamber (n=2-3). Statistical differences were calculated by 

Student’s t-test vs the corresponding time point at the control (Ctr) group; *≤0.05; #≤0.1. 
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modulating TGFβ pathway activity by marking the phSAMDs and TGFβRI for degradation as 

previously described (Gao et al., 2009; Kuratomi et al., 2005). 

 

SSO-mediated NEDD4L exon inclusion selectively modulated TNBC cell proliferation  

To understand the role of the NEDD4Le13 in TNBC cell viability, we conducted a cell titer 

glow viability assay in the presence or absence of SSO-0205. Treatment of MDA-MB-231 cells 

with SSO-0205 significantly decreased the viable cell count in MDA-MB-231 cells both in fixed 

concentration (400nM), as well as in a dose-dependent manner. (Figure 6C, Supplemental Figure 

8B). Additionally, a cell cycle evaluation indicated that SSO-0205 treatment significantly increased 

the number of cells in G1 and decreased the number of cells in G2 at the 24-hour time point 

(Figure 6D). Treatment of MCF10A with SSO-0205 did not change cell proportions along the cell 

cycle or cause a significant change in cell viability. To determine whether NEDD4Le13 AS 

modulates the cell cycle in response to TGFβ, we analyzed the gene expression of CDKN1A and 

c-MYC, two key downstream targets of TGFβ in epithelial cells (Decker et al., 2021; Weiss, 2003). 

We observed that 24 hours after SSO-0205 treatment, and prior to hrTGFβ treatment, MDA-MB-

231 cells showed a decrease in both CDKN1A and c-MYC gene expression levels compared to 

the control cells treated with lipofectamine (Figure 6E). Interestingly, when hrTGFβ was added to 

the cells, the increase in CDKN1A gene expression observed in the lipofectamine control group 

was inhibited by the SSO-0205 treatment (Figure 6E) (TGFβ time 3 and 6h). Additionally, we saw 

that SMAD7 expression showed a similar expression profile to the CDKN1A when comparing the 

lipofectamine control to SSO-0205 treated cells (Figure 6E). Consistent with the viability assay, 

these changes were limited to MDA-MB-231 cells and not observed in MCF10A cells. Taken 

together, these data indicate that promoting NEDD4Le13 inclusion with SSO-0205 specifically 

modulated the proliferation and viability of the MDA-MB-231 cells, further supporting its biological 

importance and therapeutic potential in TNBC.  
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NEDD4Le13 AS modulated the MDA-MB-231 migratory response to TGFβ pathway 

activation 

Cell migration and invasion is one of the hallmarks of cancer that enables metastasis. 

ANGPTL4, ITG5, and ITG3 are TGFβ-dependent cell migration-associated markers. SSO-

0205 pre-treatment of MDA-MB-231 cells decreased the gene expression response of ANGPTL4, 

ITG5, and ITG3 after hrTGFβ addition at time 0, 3 and 6h, while SSO-0202 treatment did not 

cause significant changes for any of the time points (Figure 6F). Expression changes in migration-

associated genes were not observed in MCF10A cells after SSO-0205 or SSO-0202 treatment, 

even though TGFβ stimulation induced the expression of some of these genes (Figure 6F). 

Finally, evaluation of changes in the migration of MDA-MB-231 cells using a Transwell Migration 

Assay showed a 40-50% decrease in cell migration in SSO-0205 treated cells, even in the 

presence of hrTGFβ. This effect was specific to MDA-MB-231 cells; MCF10A cells did not show 

a decrease in migration in the presence of SSO-0205 (Figure 6G). 

Overall, we have shown that NEDD4Le13 skipping contributes to TNBC tumor progression 

and promotes overactivation of the TGFβ pathway in MDA-MB-231 cells. Furthermore, SSO-0205 

was able to reverse NEDD4Le13 exon skipping by presumably blocking the binding of HNRNPL, 

QKI and SRSF7 to the intron upstream NEDD4Le13, thereby decreasing both the proliferative 

and migratory behavior of MDA-MB-231 cells. Both the target, NEDD4Le13, and the binding site 

for the compound, SSO-0205, were discovered de-novo by applying AI/ML algorithms to RNA-

seq data sets, demonstrating the potential for innovative drug discovery with the SpliceCore 

platform in the field of RNA therapeutics.  

 

Discussion  
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Our goals for this study were two-fold: to develop a new SSO compound to modulate AS 

of a novel drug target, and to do so through a data-driven approach, using RNA-seq data and 

AI/ML algorithms. Here, we experimentally validated NEDD4Le13, a new target for TNBC, along 

with a corresponding SSO called SSO-0205. Both were predicted de-novo using the SpliceCore 

platform. SpliceCore allows for drug discovery at scale because it has been optimized for AS 

analysis of large RNA-seq datasets, outperforming many of the most common open-access tools 

(Supplemental Figure 2). SpliceCore’s ability to rapidly integrate and analyze thousands of RNA-

seq samples to identify druggable AS events reinforces its competency as a target-discovery 

platform for SSO development. 

The binding site for the SSO-0205 compound that successfully promoted NEDD4Le13 

inclusion was predicted de-novo using SpliceLearn. In terms of interpretability, SpliceLearn 

outperforms comparable methods (Supplemental Figure 4). We have improved the interpretability 

of SpliceLearn by employing a novel feature selection method using SHAP/OOB. Previous studies 

showed that while many predictive models in molecular biology are optimized for maximum 

performance, they often lack interpretability, making it harder for scientists to make actionable 

decisions based on the AI/ML algorithm’s results. Reduced interpretability can stem from the use 

of complex predictive features with hidden associations, or unbalanced sensitivity/specificity, 

often overlooked in favor of maximizing performance metrics such as AUC (Azodi et al., 2020; 

Johansson et al., 2011). In contrast, SpliceLearn relies on the use of tree-based learning methods, 

which are inherently more interpretable (e.g., when compared to deep learning) because they 

enable the investigation of the content and relationship between predictive features. SpliceLearn 

therefore allows for the identification of regulatory SFs at each nucleotide of interest, which is 

crucial for downstream studies on the regulation of the AS event and the mechanisms by which 

the SSOs modulate it (Figure 4, Supplemental Figure 5). SpliceLearn optimizes both sensitivity 

and specificity, which we found to be lacking in comparable algorithms (Supplemental Figure 4). 

Finally, SpliceLearn eliminates the need for time consuming and expensive SSO microwalks that 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.512313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/


20 
 

require 100- 200 tiling oligos to be tested manually for activity. ML-based SSO design not only 

consolidates the number of oligos tested, but also informs the potential regulatory mechanism 

associated with the targeting sites.  

Remarkably, the SpliceCore platform validation study presented here produced significant 

biological insights related to splicing regulation in TNBC. First, we identified seven AS events 

highly recurrent in TNBC. Of particular interest, AS of NEDD4Le13 was found to be present in 

64% of TNBC patient tumors. Second, we showed that NEDD4Le13 is a promising target for 

TNBC since splice-switching with SSO-0205 caused TNBC-specific viability loss (Figure 6). This 

effect may be partially explained through altered localization of SMAD proteins downstream of 

pro-tumorigenic TGFβ activation (Supplemental Figure 7). The tumor-specific anti-proliferative 

effects of SSO-0205 are encouraging and may result in reduced toxicity compared to 

chemotherapy in future pre-clinical and clinical development. Third, skipping of NEDD4Le13 

causes the exclusion of a protein loop region between the WW1 and WW2 domains important for 

protein interaction (Figure 3B-C) (Aragón et al., 2012; Gao et al., 2009). This loop region 

contained a threonine residue that can be phosphorylated, potentially adding an additional 

regulation through post translational modifications (Snyder et al., 2004). Fourth, SSO-0205 

treatment affected TGFβ-dependent gene expression changes in proliferation- (CDKN1A, C-

MYC) and invasion-related genes (Integrins α5 and β3, ANGPTL4), leading to significant changes 

in cell cycle and cell migration (Figure 6). While the TGFβ-independent downregulation of 

CDKN1A in the presence of SSO0205 was surprising, it is possible that additional players regulate 

CDKN1A levels through non-canonical TGFβ regulation (Weiss, 2003). Finally, despite the 

abundance of NEDD4Le13 skipping in MCF10A cells (a non-cancerous mammary fibroadenoma 

cell line), SSO-0205 did not promote exon inclusion in these cells, suggesting that the TNBC-

specific SF network identified with SpliceLearn could have a differentiating role, further supported 

by the observed TNBC-specific overexpression of HNRNPL, SRSF7 and QKI1. We suggest that 

NEDD4Le13 skipping is lineage-restricted to basal cells like MCF10A and MDA-MB-231; 
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however, AS regulation appears to divert between both cell types, such that exon skipping in the 

latter promotes tumor progression, which may lead to dependency for NEDD4Le13 skipping in 

the context of TNBC (Figure 6B).  

Currently, several SSOs remain under investigation as potential treatments for cancer and 

other diseases, providing an alternative to small molecules, which are currently limited to a subset 

of “druggable” proteins.3,10 There is still progress to be made in the field of SSO therapeutics, 

especially in the area of drug delivery, but this is a highly active area of research and is the focus 

of several biotechnology companies (Roberts et al., 2020). Ultimately, this study illustrates the 

usefulness of a new AI/ML algorithm developed upon key principles of RNA biology, to extract 

novel, actionable insights from RNA-seq data. We have shown that it is possible to identify a novel 

drug target, and design an effective SSO against it, that not only modulates exon inclusion but ay 

lso displays anti-cancer activity. The efficiency of the SpliceCore platform in analyzing thousands 

of RNA-seq samples to identify novel drug targets in a timely manner can be expanded beyond 

cancer research into other diseases driven by splicing alterations, like neurodegeneration or 

metabolic diseases (Centa et al., 2020; Finkel et al., 2017; Han et al., 2020; J. Kim et al., 2019; 

Syed, 2016; K. R. Wagner et al., 2021). 

Methods 

SpliceCore 

The SpliceCore software platform is Envisagenics’ proprietary technology for the discovery of 

splicing-modulatory drug targets using RNA-seq data. SpliceCore utilizes scalable cloud-

computing through Microsoft Azure services to efficiently perform de-novo transcript assembly 

using an exon-centric reference transcriptome called TXdb, followed by AS analysis. SpliceCore 

implements the following algorithms: SpliceTrap, a Bayesian-based method for RNA-seq 

alignment and AS quantification, SpliceDuo, a regression-based predictive model for AS cross-

comparison, SpliceImpact, an AI/ML algorithm for the prioritization of biologically relevant AS 
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events based on the impact of AS on protein structure and RNA stability, and SpliceLearn, its 

newest algorithm for the identification of productive SSO binding sites (Anczuków et al., 2015; 

Wu et al., 2011). 

 

SpliceLearn  

SpliceLearn, an AI/ML module of the SpliceCore platform, was trained with predictive 

features combining three sources of splicing regulatory information: the relative position of 

prospect SSOs binding sites to an exon, the identity and binding motif scores of SFs potentially 

blocked by SSOs (Paz et al., 2014; Ray et al., 2009; X. Wang et al., 2011), and the interaction of 

such SFs with other SFs within the spliceosome (Figure 1B, Akerman et al., 2015).  

To train and test SpliceLearn, we utilized data from a massively parallel splicing minigene 

reporter assays (MFASS(Cheung et al., 2019)) which quantifies the effect of SNVs on AS 

outcomes, therefore mimicking the impact of SF-blocking by SSOs. The MFASS datasets 

assessed the effect of 27,733 SNVs extracted from the ExAC database on the splicing of 2,198 

distinct human exons. Of these, 14,130 SNVs occurred in exons, 7,938 in the intronic region 

upstream the 3’ splice site, and 6,271 in the intronic region downstream the 5’ splice site. These 

three RNA regions present striking differences in sequence composition and have evolved to play 

distinct roles in splicing regulation. Therefore, we developed three independent SpliceLearn 

models SpliceLearn-e, -up and -down to account for the unique regulatory properties of each 

exonic and upstream/downstream intronic elements (Figure 1B and Supplemental Figure 3, 

Methods). To test SpliceLearn with an independent data source, we used the Vex-seq dataset, 

which consists of 1226 qualifying variants that were experimentally identified to have impact on 

pre-mRNA splicing using a high-throughput reporter assay.(Adamson et al., 2018) The SpliceLearn-

down model classified VexSeq data with an AUC of 0.98, SpliceLearn-up with and AUC of 0.86 

and SpliceLearn-e with AUC of 0.66 (Supplemental Figure 3B). These results confirm the 

usefulness of both intronic SpliceLearn models to predict SF-binding perturbation positions critical 
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for AS regulation and useful for SSO targeting. See Methods for detailed description of 

SpliceLearn training, testing, and benchmarking.  

 

NEDD4L protein structure modelling 

The three-dimensional model of the NEDD4L amino acids 193-418 was obtained by ab-initio 

modelling on Robetta platform (http://robetta.bakerlab.org/, D. E. Kim et al., 2004). Five models 

were obtained and all of them were validated in the Molprobity server 

(http://molprobity.biochem.duke.edu/, Davis et al., 2007). Two energy minimization processes 

using the Chimera program (Yang et al., 2012) were followed by residue specific minimization in 

SPDBV (Guex & Peitsch, 1997). The model with best molprobity score was used for comparative 

modelling of alternate structure with exclusion. Root mean square deviation was calculated by 

superimposing two structures in PYMOL. 

 

Cell Lines 

All cell lines used in this study were purchased from NCI Cancer Cell line-60 panel and/or 

American Type Culture Collection (ATCC) authenticated by STR profiling and mycoplasma 

testing.  

 

RNA extraction and RT-PCR 

Total RNA from different breast cancer cell lines were extracted using the TriZol reagent as per 

manufacturer’s instruction. One microgram of RNA was used to make cDNAs using oligo-dT 

primers. One-tenth of the volume of the cDNA reaction mixture was used in the PCR reaction 

containing specific forward and reverse primers for detecting different splicing isoforms. The 

amplicons are separated in 2% agarose gels. The primer sequences for genes used in the PCR 

assays are given below. 
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Splice-switching assays 

Computationally predicted SSO sequences were purchased from Microsynth technologies, 

Switzerland. The oligos were uniformly modified to contain phosphothioate backbone and 2’ 

methoxy ethane containing ribose sugars (2’ MOE). All oligos were HPLC purified and lyophilized 

oligos were reconstituted in calcium and magnesium free PBS to obtain 100uM stocks. The cells 

were plated to 80% confluency and 400nM SSO specific to NEDD4L or control SSOs was 

transfected using Lipofectamine 3000 according to the manufacturer’s instruction. Alternatively 

linear concentration of doses of the oligos were used for the dose response assay. The cells were 

harvested, and RNA was extracted 48 hours post-transfection. RT-PCR evaluation of the splice-

switch was performed as described above.  

 

Cell viability assay 

Cell TitreGlo (Promega) was used to determine the viability of the SSO transfected breast 

cancer cells according to manufacturer's instruction. Briefly, about 10K MCF7 or MDA-MB-231 

cells were plated into each well of a 96 well plate that was treated with either control or single 

concentration or linear concentrations (100nM, 200nM, 400nM, 600nM, 800nM, 1uM) of NEDD4L 

specific SSOs in the presence of lipofectamine in triplicates. 48 hours post-transfection equal 

volume of Cell TitreGlo reagent was added to the well and the total luminescence was measured 

using a plate reader (Perkin Elmer). The average percentage of viable cells that is proportional to 

the total luminescence was calculated and plotted to obtain viable cell percentage and dose 

response curve for NEDD4L SSO.  

 

Cell culture and cell treatments for TGFβ pathway studies 

MDA-MB-231 cells were grown in RPMI media containing 10% fetal bovine serum (FBS) and 

penicillin and streptomycin. MCF10A cells were grown in DMEM/F12 media supplemented with 

MEGM™ Mammary Epithelial Cell Growth Medium SingleQuots™ Kit (Lonza, CC-4136) and 
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penicillin and streptomycin. For the TGFβ pathway analysis experiments, cells were plated in 6 

well plates at 2x105 cells/well. SSOs treatment were added to the cells growing in complete media 

at 400nM final concentration, in the presence of lipofectamine 3000 (Thermo Fisher Scientific, 

L3000001) following manufacturer instructions, unless otherwise specified. Lipofectamine alone 

was added as control group. Human recombinant TGFβ (hrTGFβ) (R&D Systems), was 

administered directly into the media at 100pM final concentration. RNA or protein samples were 

harvested at different time points. Nuclear, Cytoplasm and membrane protein fractions were 

extracted following the manufacturer instruction for the Subcellular Protein Fractionation Kit for 

Culture Cells (Thermo Scientific, Cat. # 78840). 

 

 

Cell Cycle Analysis 

MDA-MB-231 and MCF10A cells were plated on 6 well plates at 1x105 cells/mL. The following 

day the cells were treated with SSO-0205 at 400nM for 24 hours. Cells were trypsinized, fixed 

with 70% ethanol on ice and stained with Propidium Iodide (Invitrogen, P3566) at 50µg/mL final 

concentration for 30-40 minutes. Stained cells were analyzed by flow cytometry MACSQuant® 

Analyzer (MACS Miltenyi Biotech) following the manufacturer instruction. 

 

Transwell migration assay 

MDA-MB-231 and MCF10A cells were plated on 6 well plates at 1x105 cells/mL, treated with 

SSO-0205 at 1µM (no lipofectamine – free uptake) for 24 hours, trypsinized and resuspended in 

serum free media at 5x105 cells/mL containing SSO-0205 at 1µM with or without hrTGFβ 100pM. 

500µL of cell suspension was added to the transwell inner chamber (8µm pore size) (Falcon, 

#353097), the inserts were placed on a 12 well plate containing complete media to promote 

chemoattraction to the outer chamber. Cells were incubated overnight and migratory cells were 
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measured following the manufacturer instruction for the cell dissociation and Calcein AM staining 

and luminescence measurement (Cultrex® Cell Invasion Assay, Trevigen, Cat. # 3455-024-K). 

 

RNA-sequencing 

~5*105 cells were harvested in biological triplicates from each breast cancer cell line (MCF7, 

T47D, MDA-MB-231, MDA-MB-468, HS578T, BT549). Frozen cell pellets were provided to 

GeneWiz (SD, California) for RNA extraction and library preparation. Briefly, 1ug of RNA extracted 

using TriZol was enriched for PolyA containing RNA using oligo dT columns. Libraries for polyA+ 

RNA-seq were prepared using TruSeq chemistry (Illumina), multiplexed, and sequenced to obtain 

paired-end 101-base-pair (bp) reads on an Illumina HiSeq 2000 platform, resulting in 30 million 

to 45 million reads per library. 

 

 

Supplemental Methods 

 

Assembly of TXdb 

TXdb is an exon-centric reference transcriptome used by all of SpliceCore’s algorithms 

(Wu et al., 2011). The premise of “exon-centric” is to treat the transcriptome as a collection of 

independent AS events rather than full-length transcripts. In TXdb, CA and IR events are 

represented as exon trios where the middle exon is subjected to AS analysis and the flanking 

exons provide the transcriptomic context with the corresponding splicing junctions necessary for 

the analysis. Every exon trio is presented in two splicing states: inclusion, where the three exons 

are connected through a pair of splicing junctions, and skipping, where the flanking exons are 

connected by a single splicing junction and the middle exon is skipped. Likewise, alternative 3’ 

splice sites (A3SS) and alternative 5’ splice sites (A5SS) are represented as exon duos where 

the extended exon segment is subjected to AS analysis and the remining sequences provide 
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context (Supplemental Figure 1A). For simplicity, we use the term “inclusion” to also define intron 

retention and distal A3SS and A5SS splicing; and we use “skipping” to define intron splicing and 

proximal A3SS and A5SS splicing. In addition, CA events in TXdb include annotations for both 

alternative and constitutive exons, i.e., for exon trios only supported by their inclusion state. In 

contrast, evidence for both inclusion and skipping states were required for IR, A3SS and A5SS 

as a way to limit the sequence search space due to lengthy introns and the exponentially large 

number of dinucleotides matching the splice site consensus that could result in A3SS or A5SS. 

To generate TXdb, we assembled mRNA contigs from 1,252 breast cancer RNA-seq datafiles 

from TCGA. STAR aligner (Dobin et al., 2013) was used for read mapping and Stringtie (Pertea 

et al., 2015) for contig building. A total of 5,617,407 AS events were supported by at least one out 

of 1,252 RNA-seq datafiles, although many of these AS events were redundant. Almost every AS 

was clustered with several others showing identical inclusion and skipping junctions, identical 

middle (or extended) exon, but flanking exons of different sizes. We pruned redundant clusters of 

AS events by selecting a single representative exon trio/duo by applying the following steps: First, 

we looked for known AS events supported by Ensemble or RefSeq. Second, we prioritized exon 

trios/duos supported by Ensemble or RefSeq. Third, we took AS events with the highest reliability 

score (see next section for details). Finally, if a tie persisted, we selected the shortest AS event 

to further reduce sequence search space (Supplemental Figure 1B). We identified a total of 

1,743,426 non-redundant AS events, including 1,190,514 CA, 199,238 IR, 202,851 A3SS and 

150,823 A5SS (Supplemental Figure 1C). Also 534,231 (31%) exon trios/duos were supported 

by ENSEMBL or RefSeq (GRCh38.p12), 77,381 (4%) further presented both inclusion and 

skipping evidence in ENSEMBL or RefSeq (i.e. known AS events). The remaining 1,131,814 

(65%) showed no evidence of in public mRNA databases and where therefore annotated as novel 

trios/duos (Supplemental Figure 1D).  

 

SpliceCore analysis and benchmarks 
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SpliceCore takes RNA-seq FASTQ/A files as an input to predict disease-specific SSO 

drug targets. The first step of the analysis is to estimate AS between “disease” and “normal” RNA-

seq samples in order to prioritize drug targets amenable to SSO modulation. AS analysis is often 

divided into three steps: alignment, quantification, and comparison (Alamancos et al., 2014) 

(Supplemental Figure 2A). The SpliceCore platform uses the SpliceTrap algorithm to align RNA-

seq data to TXdb and quantify the “percent spliced in” (PSI) of every AS event. Next, SpliceDuo 

performs case/control comparisons and reports splicing changes as ΔPSI values between -100% 

(i.e. full exon skipping) and 100% (full exon inclusion). Sequence alignment is the most time-

consuming step of RNA-seq analysis, in part due to the use of a large reference transcriptome 

like TXdb, with 1,743,426 AS annotations. However, most RNA-seq analysis projects only require 

a single alignment iteration. One-time sequence alignment is common practice in bioinformatics 

supported by evidence that changes in alignment parameters have little impact on both technical 

and biological performance.(Ballouz et al., 2018) The SpliceTrap algorithm is optimized for a one-

time execution step that includes sequence alignment and PSI quantification. In contrast, the 

comparison step is often repeated multiple times to allow thorough interrogation of the data 

(Supplemental Figure 2A). This is especially important when analyzing RNA-seq data from 

heterogenous patient cohorts, including subjects with various disease subtypes, at different 

disease stages, responding differently to drug treatments, and with diverse clinical backgrounds. 

The motivation to perform multiple comparisons has only increased as a result of progress in the 

areas of personalized therapies and discovery of biomarkers (Shyr & Liu, 2013). Some of the most 

popular tools for AS analysis, like rMATS (Shen et al., 2014), MAJIQ (Green et al., 2018), and 

MISO (Katz et al., 2010), offer a combined solution for quantification and comparison across pre-

aligned BAM files generated with other tools such as STAR aligner (Dobin et al., 2013) 

(Supplemental Figure 2B). While these are all highly accurate tools for AS analysis, they carry 

the burden of unnecessary repeated quantifications, when only the comparisons should be 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.512313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/


29 
 

repeated. To expedite data analysis, SpliceCore offers an alternative software design, by pulling 

one-time alignment and quantification with SpliceTrap, allowing for fast and scalable statistical 

modeling of AS comparison using SpliceDuo. Benchmarking to open-source competitors 

demonstrated that SpliceCore performs in a significantly larger search space (Supplemental 

Figure 2C) with outstanding speed (Supplemental Figure 2D-G), scalability (Supplemental Figure 

2H-J) and accuracy (Supplemental fig. 3K-O), thereby accelerating value extraction from RNA-

seq data.  

 

SpliceLearn is an AI/ML method for predicting functional SSO binding sites  

Previous methods for antisense oligonucleotide binding predictions were designed to 

predict RNA down-regulation instead of splicing changes (Giddings et al., 2002) or focused on SF 

binding perturbations without informing whether such binding affects the AS outcome (Bjørnholt 

Grønning et al., 2020). In recent years, novel methods to predict the effect of single nucleotide 

variants (SNV) on the AS outcome have been developed (Cheng, Yen, et al., 2019; H. Y. Xiong 

et al., 2014). Like SSOs, SNVs can also perturb RNA sequences to change AS. Current methods 

to predict the effect of SNVs on splicing regulation can be used to identify SSO binding sites in 

RNA sequences (H. Y. Xiong et al., 2014). However, such methods do not inform the identity of 

specific SFs potentially blocked by binding perturbations. Informing the identity of prospective SFs 

blocked by SSO can help accelerate drug development by increasing the biological 

interpretability, assisting experimental design, and enabling integration with other data types, such 

as CLIP-seq or genomics, to better understand SSO mechanism and SF involvement in disease 

progression. SpliceLearn innovates by offering the combined benefit of robust AS outcome 

predictions with high biological interpretability using machine learning. 

 

SpliceLearn was trained and validated using massively parallel splicing reporter assays 
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To train and test SpliceLearn, we utilized data from a massively parallel splicing minigene 

reporter assay (MFASS) that quantifies the effect of SNVs on AS outcomes, therefore mimicking 

the impact of SF-blocking by SSOs (Cheung et al., 2019). To develop predictive models with high 

interpretability, we estimated the differential effect of SNVs in the binding motif scores of 141 SFs 

derived from three different methods (Paz et al., 2014; Ray et al., 2009; X. Wang et al., 2011). 

We combined SFs into 83 non-exclusive clusters (SFCs), based on spliceosomal functional 

annotations (Table S2) and SF-SF binding probabilities (Akerman et al., 2015). Each SFC was 

composed of physically interacting SFs attributed to a given splicing-related function such as 

membership to spliceosomal subcomplexes (e.g. U1 snRNP), RNA-binding specificity (e.g. AG 

binding), regulatory outcome (e.g. repressor) and others (Table S2). Since SFs perform multiple 

functions in splicing regulation, they were non-exclusive and permitted to appear in more than 

one SFC. The advantage of using SFCs as predictive features in lieu of SFs scores is that they 

reduced matrix sparsity and zero-inflation, while capturing functional, regulatory, and evolutionary 

aspects of the spliceosome. By grouping SFs into SFCs, we provided a more intuitive context for 

biological interpretation.  

We tested the ability of each independent SFC to differentiate between “positives” and 

“negatives” using the Wilcoxon test with Holm-Sidak p-value adjustment (W. Guo & Romano, 2007). 

We performed the analysis in exons, upstream and downstream introns independently. We 

observed that the three sequence types were characterized by different subsets of significant 

SFCs (Table S2). For instance, the “distance to splice site” SFCs were highly significant in introns 

(adj.p-val<5.06E-11) but not exons (adj.p-val≤0.356). This observation was expected and agrees 

with many studies showing intronic sequences around the splice sites to be enriched with SF 

binding sites important for AS regulation (van Nostrand et al., 2016; Z. Wang & Burge, 2008; Yee et al., 

2019; Yeo et al., 2007). In addition, SR proteins and activators were highly significant SFCs in exons 

(adj.p-val≤2.14E-08 and adj.p-val≤4.91E-05, respectively) but not introns (0.003≤adj.p-val≤0.98), 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.512313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

consistent with several studies describing the role of SR proteins as splicing activators that bind 

exonic splicing enhancers (Jeong, 2017; Lin & Fu, 2007; J. Wang et al., 2005). In upstream introns, SF 

binding sites such as U-rich (adj.p-val≤6.64E-07) and CG-rich (adj.p-val≤2.1E-06) motifs were 

highly significant. Interestingly, CG-rich introns have been associated with weak 3’ splice sites 

and polypyrimidine tracts, important for the regulation of alternative exons (Murray et al., 2008; E. 

J. Wagner & Garcia-Blanco, 2001). These polypyrimidine tracts, which are intrinsically uridine-rich, 

are known for attracting several SFs (Barreau et al., 2006), including members of the A complex 

such as U2AF2, known for its crucial role in 3’ splice site recognition and exon inclusion (Graveley 

et al., 2001; R. Singh et al., 2000; Warnasooriya et al., 2020). Accordingly, the “A complex” SFC 

was more significant in upstream (adj.p-val≤0.0006) and downstream introns (adj.p-val≤3.62E-

13) than exons (adj.p-val≤0.756). Other highly significant SFCs in downstream introns were 

“repressors” (adj.p-val≈0) and members of the hnRNP family (adj.p-val≈0) known to interact with 

intronic splicing silencers to inhibit exon inclusion (Geuens et al., 2016). In addition, SFCs 

corresponding to hnRNP binding motifs were highly significant, including UG-rich (adj.p-val≈0), 

CU-rich (adj.p-val≤1.80E-14) and CA-rich (adj.p-val≤4.11E-13) elements. The U1 snRNP SFC 

was also highly significant in the downstream intron (adj.p-val≤1.84E-10). In summary, a total of 

2, 5 and 14 SFCs showed adj.p-val≤1.0E-06 in exons, upstream and downstream introns, 

respectively. This distribution suggested that the base information for AI/ML model development 

was particularly rich in the downstream introns. 

We then trained SpliceLearn using the MFASS data for exonic, upstream, and 

downstream intronic sequences. We tested six different types of AI/ML classifiers and in all of the 

cases, the best performing model type were XGboost trees, an implementation of gradient 

boosted decision trees designed for speed and performance (Sheridan et al., 2016). Prominently, 

SpliceLearn-down was the top performing model with an AUC of 0.95, followed by SpliceLearn-

up with an AUC of 0.88 and finally SpliceLearn-exon with AUC of 0.60. The sensitivity and 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.512313doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/


32 
 

specificity were high for both SpliceLearn-downstream (0.92 and 0.93 respectively) and 

SpliceLearn-upstream (0.84 and 0.75) although for SpliceLearn-exon only the specificity was 

relatively high (0.71) while the sensitivity was poor (0.40) (Supplemental Figure 3). Notably, both 

intronic SpliceLearn classifiers clearly outperformed the exonic one, suggesting that it would be 

easier to predict productive SSO binding sites in introns vs exons. This could be due the fact that, 

unlike exons, introns are not subjected to protein-coding constraints, thus regulatory information 

may be easier to identify in introns using AI/ML (Z. Wang & Burge, 2008). In addition, intronic regions 

near the splice sites are preferable for SSO targeting compared to exons, since introns are only 

present in nuclear pre-mRNA, while exons are both present in pre- and mRNA, potentially 

increasing the chances of off-target effects. For example, the SSO Nusinersen that treats Spinal 

Muscular Atrophy targets the intron downstream of exon 7 in the SMN2 pre-mRNA, to block 

binding of the splicing repressor hnRNPA1 (R. N. Singh & Singh, 2018). To test SpliceLearn with an 

independent data source, we used the Vex-seq dataset, which consists of 1226 qualifying variants 

that were experimentally identified to have impact on pre-mRNA splicing using a high-throughput 

reporter assay (Adamson et al., 2018). As a result, The SpliceLearn-down model classified 

VexSeq data with an AUC of 0.98, SpliceLearn-up with and AUC of 0.86 and SpliceLean-e with 

AUC of 0.66 (Supplemental Figure 3). These results confirm the usefulness of both upstream and 

downstream intronic SpliceLearn models to predict SF-binding perturbation positions critical for 

AS regulation and useful for SSO targeting.  

 

SpliceLearn balances performance and interpretability 

We compared SpliceLearn’s predictive accuracy to that of two competitive methods, 

SPANR, a tool to predict SNVs effect on AS outcome, which has been used before for SSO 

design,(H. Y. Xiong et al., 2014) and a more recent method called MMSplice (Cheng, Yen, et al., 

2019), which was previously shown to outperform other equivalent tools by winning the CAGI 5 
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splicing challenge (Cheng, Çelik, et al., 2019). The overall performance of the three methods was 

comparable, with MMSplice showing slightly better AUC for upstream introns (MMsplice=0.88, 

SpliceLearn=0.86, SPANR=0.77) and SpliceLearn matching MMsplice’s AUC for the downstream 

intron (SpliceLearn=0.95, MMSplice=0.95, SPANR=0.89) (Supplemental Figure 4). 

While SpliceLearn performance was comparable to competitive tools, it showed significant 

advantage in interpretability with more balanced sensitivity/specificity overall. SpliceLearn was 

developed using tree-based learning (i.e. XGboost trees), an AI/ML methodology that is inherently 

more interpretable because it enables the investigation of predictive features content and 

relationships. In addition, tree-based methods output probabilistic quantities (in a scale from 0 to 

1) which are intuitive to users (Azodi et al., 2020). We computed the sensitivity/specificity trade-

off of SpliceLearn, MMsplice and SPANR using the Youden index, a summary measure that 

enables the selection of an optimal threshold values for predictive model (Fluss et al., 2005). 

SpliceLearn’s optimal threshold was 0.5 for both -up and -down intronic models, with Youden 

indexes of 0.55 and 0.84, and sensitivity/specificity tradeoffs of 0.82/0.73 and 0.91/0.93 

respectively (Supplemental Figure 4C). These results indicate that SpliceLearn performs with 

balanced sensitivity/specificity and an intuitive threshold that appropriately represents the 

midpoint of the tree-based probability distribution. In contrast, MMsplice and SPANR scored with 

relatively lower Youden indexes (upstream introns 0.4 and 0.27 downstream introns 0.36 and 

0.49) leading to less balanced sensitivity/specificity. For instance, the sensitivity/specificity 

tradeoff at the Youden inflexion point were 0.92/0.48 and 0.79/0.48 for MMsplice and SPANR, 

respectively, in the upstream intron, and 0.96/0.53 and 0.89/0.47, respectively, in the downstream 

intron. In addition to a strong bias towards sensitivity, the selected optimal thresholds for these 

tools (-0.1 to 0, respectively) seemed subjective and not representative of the training data 

distribution or positive/negative ratios (Supplemental Figure 4B).  

 

Identification of most predictive SFs 
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To deliver SSO target discovery using SpliceLearn, it is necessary to backtrack the identity 

of SFs to be displaced by SSOs. Knowledge of these specific SSOs is not only crucial for the 

biological interpretability, but also to facilitate experimental drug design and integration with other 

data types (e.g. CLIP-seq). To this aim, we derived a feature selection approach based on 

Shapley additive explanation analysis (SHAP). SHAP is a game theory approach to estimate the 

importance of specific predictive features to the overall performance of AI/ML models (Lundberg 

et al., 2019). 

Tree learning algorithms like XGboost build several decision trees by bootstrapping the 

training data. For a given predictive feature, the SHAP value is the average marginal contribution 

of this feature value across all possible decision trees. A key advantage of SHAP over other 

feature importance inference methods, is that it is unaffected by the order in which features are 

randomly chosen by tree-models, thus it is a robust tool for the interpretation of the primary 

information driving predictive efficiency in AI/ML (Lundberg et al., 2019). To complement the 

SHAP analysis we also performed an additional feature prioritization analysis where the data 

considered at each bootstrap sample (called bag data) are considered to learn a classifier and 

the remaining training data are considered as out-of-bag data (OOB) (Breiman, 2001). 

We applied OOB and SHAP to weigh the contribution of every SFC to the SpliceLearn-

upstream and SpliceLearn-downstream models. OOB/SHAP scatter plot revealed the “distance 

to splice site” information as a major driver of predictability, whereby positions closer to the splice 

sites show greater potential of AS alterations (Supplemental Figure 5A, C). Strikingly, this 

observation suggests that the position of perturbing factors (i.e. SNVs, SSOs) relative to the splice 

sites is sufficient to explain much of the AS outcome. Despite its strong predictive power, “distance 

to splice sites” as predictive feature does not provide interpretability regarding the role of specific 

SFs, because distance is consistent at a single nucleotide for every SF, rather than subsets, as 

in the case of all other SFCs. To avoid the dominating effect of “distance to splice site” and allow 

SHAP to best prioritize interpretable SFCs, we retrained SpliceLearn-upstream and -downstream, 
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only this time after without any “distance to splice site” information (Supplemental Figure 5B, D). 

As a result, we observed that despite a proportional reduction in predictive efficacy, SpliceLearn-

downstream still performed well with an AUC of 0.80, while SpliceLearn-upstream showed more 

borderline, yet clear predictive power with an AUC of 0.67 (Supplemental Figure 3C).  

 

Validation of most predictive SFs 

SHAP/OOB values can be estimated for every predictive feature at every tested data point 

(i.e., nucleotide), and therefore we can estimate SHAP/OOB values per SFC at each nucleotide 

position to identify the most important SFs driving predictive accuracy of every putative SSO 

binding site. Furthermore, each SF within an SFC has percentile scores from each of the three 

methodologies used to measure SF binding (Paz et al., 2014; Ray et al., 2009; X. Wang et al., 

2011), which allows us to rank SFs within the SFC. We used these datapoints to find the most 

predictive SFs within each SFC. While these scores were calculated from computational and in-

vitro approaches, in-vivo approaches such as eCLIP can be used to confirm if an SF occupies a 

specific location in the genome (in the cell type of interest). We used eCLIP data from ENCODE 

(Encode Project Consortium, 2012) to evaluate the correspondence between measured 

predictivity in SpliceLearn and evidence of binding in-vivo. We compiled SpliceLearn predictions 

from 2,124 introns and started by determining the most predictive SFs in the SFCs in the top 25% 

(based on ranked SHAP values) with the best binding scores (percentile score > 50) at each 

position where the splicing effect probability was at least 0.5 (as previously established in 

Supplemental Figure 4C). We found that the sites where several SFs are predictive to influence 

splicing outcomes are highly enriched for eCLIP peaks at those same sites (Supplemental Figure 

5E-F). Using the odds ratio as a metric, we then proceeded to test a wide range of cutoffs for 

each variable to determine the set of conditions that best enriches the SpliceLearn hits for eCLIP 

peaks for each individual SF. Generally, we found that using a highly stringent cutoff for the 

splicing effect probability allowed for the most robust enrichment with the eCLIP data 
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(Supplemental Figure 7G). While this stringent cutoff for splicing effect probability enriches the 

hits for eCLIP peaks, it is likely that this will be too stringent when looking to identify sites to test 

with SSOs. Overall, we have shown that SpliceLearn provides much better biological 

interpretability than alternative methods, which is crucial for the development of novel 

therapeutics. Specifically, we have seen that the predictions made by SpliceLearn can be traced 

back to one or multiple SFs, and that these predicted SF binding sites are enriched for eCLIP 

peaks in independent datasets, confirming the binding of those SFs at those locations.  

 

Western Blot 

Total cell lysates were prepared from breast cancer cell lines using RIPA or NP-40 buffer in the 

presence of protease inhibitor. Nuclear, cytoplasmic and membrane protein extracts were 

obtained according to the Subcellular Protein Fractionation Kit for Culture Cells (Thermo Scientific 

#78840) manufacturer instructions. About 10ug of total protein was separated in 4-15% gradient 

gel. The membrane bound specific protein bands were detected using specific primary antibodies 

(phSMAD2/3 (Cell Signaling) 1:1000, SMAD2/3 (Cell Signaling) 1:1000, TGFβ Receptor I (EMD 

Millipore), 1:500, Tubulin (Cell Signaling) 1:1000, Actin (Sigma Aldrich) 1:5000 and H3 (Cell 

Signaling) 1:1000 followed by incubation with HRP conjugated secondary antibody and 

chemiluminescence detection (Biorad) according to the manufacturer’s instruction. Tubulin was 

used as a loading control. 
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