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Abstract

This study demonstrates the value that artificial intelligence/machine learning (Al/ML) provides
for the identification of novel and verifiable splice-switching oligonucleotide (SSO) targets in-silico.
SSOs are antisense compounds that act directly on pre-mRNA to modulate alternative splicing
(AS). To leverage the potential of AS research for therapeutic development, we created
SpliceLearn™, an AI/ML algorithm for the identification of modulatory SSO binding sites on pre-
MRNA. SpliceLearn also predicts the identity of specific splicing factors whose binding to pre-
MRNA is blocked by SSOs, adding considerable transparency to Al/ML-driven drug discovery
and informing biological insights useful in further validation steps. Here we predicted NEDD4L
exon 13 (NEDD4Lel3) as a novel target in triple negative breast cancer (TNBC) and
computationally designed an SSO to modulate NEDD4Lel13. Targeting NEDD4Lel3 with this
SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the
TGFB pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from
RNA-seq data. SpliceLearn is part of the SpliceCore® platform, an Al/ML predictive ensemble for

AS-based drug target discovery.
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Introduction

RNA splicing is the mechanism by which introns are removed from newly transcribed pre-
MRNA to produce mature mRNA. Alternative splicing (AS), a process by which exonic sequences
are differentially skipped or included in the mRNA, allows multiple protein isoforms to be encoded
by a single gene. AS regulates many biological processes such as cell differentiation, cell state
reprogramming, and stress response (Ule & Blencowe, 2019). AS also plays a role in cancer, where
tumor-specific AS events can drive tumor progression, metastatic transition, and drug resistance,
among other hallmarks of cancer (Urbanski et al., 2018). The growing body of evidence
reinforcing the importance of AS in cancer highlights an opportunity to target and drug AS events.
While AS can drastically change the structure and function of the resulting protein, it is often
difficult to design novel treatments to specifically drug AS protein isoforms. Conversely,
modulation of RNA splicing represents a powerful tool for targeting ‘undruggable’ targets, as these
treatment modalities can act directly on mRNA or pre-mRNA (Havens & Hastings, 2016).

Splice-switching oligonucleotides (SSOs) are effective in blocking the interaction between
splicing factors (SFs) and their pre-mRNA targets in the nucleus to change AS outcomes.(Havens
& Hastings, 2016) SSOs can target mis-splicing or disease-specific AS events ahead of translation,
allowing the SSO to potentially modulate downstream protein activity without the need to inhibit
protein function.(Havens & Hastings, 2016) Recent advances in antisense chemistry and delivery
have led to successful clinical translation of oligonucleotide drugs in muscle and the spinal cord
diseases (Centa et al., 2020; Finkel et al., 2017; Han et al., 2020; J. Kim et al., 2019; Syed, 2016;
K. R. Wagner et al., 2021). While SSOs for monogenic CNS diseases have shown success in
clinical trials, most antisense oligonucleotides currently under investigation are for the treatment
of cancer (H. Xiong et al., 2021), including but not limited to SSOs targeting AR-V7, PKM, and

BCL-X pre-mRNAs (Z. Li et al., 2016; Ma et al., 2021; Yamamoto et al., 2015). To unlock the
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innovative potential of SSO treatments, there is a need for efficient, scalable technologies to
discover novel drug targets and develop SSO compounds for the treatment of cancer and other
diseases in which AS mis-regulation plays a key role (Dvinge et al., 2016; Kahles et al., 2018;
Park et al., 2019; Urbanski et al., 2018).

In this study, we utilized the SpliceCore® platform (https://www.envisagenics.com/platform/),

an ensemble of artificial intelligence/machine learning (Al/ML) algorithms for the discovery of
novel therapeutic SSOs based on the analysis of RNA-seq data. We demonstrate the utility of
this platform by discovering a novel AS target in Triple Negative Breast Cancer (TNBC), followed
by SSO design and validation. We highlight the use of SpliceLearn™, the newest Al/ML algorithm
from the SpliceCore platform, to identify AS regulatory elements amenable to SSO targeting.
SpliceLearn was trained using sequence-specific binding profiles of SFs along with spliceosome
assembly information based on SF-RNA and SF-SF interactions. As a result, SpliceLearn not only
predicts the optimal binding position of SSOs that modulate AS, but also informs the identity of
SF regulatory networks under steric inhibition on a given RNA, allowing for more transparent and
actionable SSO predictions.

The primary goal for this study was to leverage an Al/ML approach to efficiently analyze RNA-
seq data for the identification of AS targets amenable to SSO modulation. Once identified, our
secondary goal was to develop and experimentally validate a new SSO compound to modulate
the AS in TNBC models. We present experimental evidence showing that a novel target
discovered with SpliceCore, NEDD4L exon 13 (NEDD4Lel3), was successfully targeted with
SSOs predicted with SpliceLearn to promote cell death specifically in TNBC by modulating the
TGFB pathway. Overall, these data lend credence to the use of AI/ML for drug discovery by
identifying innovative yet verifiable drug targets in-silico, and provide evidence for a novel

therapeutic candidate for TNBC.
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Figure 1. Overview of SpliceCore and SpliceLearn. A. Overview of the SpliceCore platform, including
SpliceLearn. Using RNA-seq data as its input, the SpliceCore platform performs de-novo transcript
assembly using an exon-centric reference transcriptome called TXdb. It integrates several Al/ML
algorithms that allow for modular data analysis and is implemented on the Microsoft Azure cloud to
efficiently scale resources. SpliceLearn takes disease-specific AS events identified by SpliceCore and
uses a novel Al/ML algorithm to identify functional binding sites for SSOs. B. SpliceLearn was trained on
splicing regulatory information including SF binding profiles to RNA as well as SF-SF interactions using
tree-based learning for upstream introns, exons and downstream introns independently.
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Development of the SpliceCore ensemble of AI/ML algorithms for target discovery

SpliceCore is Envisagenics’ software platform that applies Al/ML algorithms to RNA-seq
data to discover disease-specific and biologically relevant AS events amenable to SSO
modulation (Figure 1A). To demonstrate the unique potential of SpliceCore in identifying new drug
targets, we sought to investigate the cancer genome atlas (TCGA), one of the most popular
sources of RNA-seq data in cancer studies (Koboldt et al., 2012). Our premise was to accurately
identify a novel SSO drug target in a highly accessed dataset like TCGA, to prove that SpliceCore
can discover new targets and extract value from public data, even if it has been used thousands
of times in the past.

In brief, SpliceCore performs de-novo transcript assembly using an exon-centric reference
transcriptome called TXdb (Wu et al., 2011). Exon-centric analysis differs from transcript-centric
analysis in that it treats the transcriptome as a collection of independent AS events rather than
full-length transcripts (Supplemental Figure 1A-B, Methods). Exon-centric analysis is best suited
for SSO target discovery because these compounds operate at short sequence length to
modulate the inclusion or skipping of a target exon.

TXdb assembly produced a total of 1,743,426 unique AS events derived from 1,252 breast
cancer RNA-seq samples in TCGA, where 68% of the assemblies were cassette exon trios, and
the remaining 32% were divided among other AS types (Supplemental Figure 1C). In addition,
only 4% of the assemblies belonged to previously known AS events, 31% were “supported”
assemblies (i.e., constitutive exons) and 65% were novel assemblies (Supplemental Figure 1D).

Following TXdb assembly, two additional algorithms from the SpliceCore platform were
utilized to identify disease-specific AS changes: SpliceTrap, a method for AS quantification (Wu
et al.,, 2011), and SpliceDuo, a regression-based predictive model for AS cross-comparison
between case and control (Anczukéw et al., 2015). Compared to other open access tools,
SpliceCore optimizes compute time by pooling RNA-seq mapping and quantification into a single
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step and allows multiple cross-comparison steps to streamline AS analysis from large volumes of
RNA-seq data with cloud computing (Supplemental Figure 2, Methods).

To identify productive SSO binding sites for the modulation of the AS events identified by
SpliceCore, we developed a new AI/ML algorithm called SpliceLearn. Given a pre-mRNA
sequence, SpliceLearn estimates the probability that delivering SSOs to a specific RNA binding
position would elicit AS of its most proximal exon (Figure 1B). In addition, SpliceLearn utilizes a
feature selection procedure to prioritize specific SF networks most likely to be blocked by a given
SSO, increasing its usefulness and interpretability. SpliceLearn was developed as three separate
AI/ML models, depending on the sequence context (i.e., exons, upstream introns, and
downstream introns). Our results indicated that both intron models were far superior to the exon
model (Figure 1B and Supplemental Figure 3, Methods), thus we decided to target only the
upstream and downstream introns flanking exons in targetable events.

Since SpliceLearn was developed using probability-based tree learning and trained on
features derived from splicing regulatory information, we were able to develop a model that is
superior in both performance and interpretability. SpliceLearn outperformed comparable tools
(SPANR(H. Y. Xiong et al., 2014) and MMSplice(Cheng, Yen, et al., 2019)) with more balanced
sensitivity and specificity (Supplemental Figure 4). In addition, SpliceLearn performance peaked
at the intuitive, optimal cutoff of a probability of 0.5, as measured by the Youden Index (Fluss et
al., 2005) making SpliceLearn scores more legible to human interpretation (Supplemental Figure
4, Methods). To further the interpretability of SpliceLearn, we developed a feature selection
procedure based on Shapley (SHAP) and out-of-bag (OOB) analyses (Lundberg et al., 2019).
This allowed for the ranking of SpliceLearn hits by informing the most likely SFs to be blocked by
SSOs at a given position on the RNA. The predicted regulatory role of these SFs was further
supported by external eCLIP data from the ENCODE project (van Nostrand et al., 2020). When
we examined a set of 2,124 cassette exon events, we found that the SFs determined to be most
likely to regulate AS were significantly enriched for eCLIP peaks at SpliceLearn predicted binding
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locations (Supplemental Figure 5, Methods). Ultimately, the interpretability of SpliceLearn allows
for the identification of SFs most likely to be modulated by SSOs, and therefore facilitates efficient

and informed downstream mechanistic studies.

Identification of novel AS events in TNBC using the SpliceCore platform

TNBC is one of the most aggressive forms of breast cancer (Garrido-Castro et al., 2019).
Interestingly, we observed that 81.5% of TNBC samples in TCGA presented copy-number or
transcriptional alterations in at least one regulatory SF, illustrating the extent of variability and
potential damage to the spliceosome in TNBC (Supplemental Figure 5A). It has been shown that
TNBC progression and survival depends on SFs like SRSF1 and TRA2B (Anczukow et al., 2015;
Du et al., 2021; Leclair et al., 2020). Based on the unmet need and the strong scientific premise,
we decided to investigate novel AS events critical for TNBC progression and develop AS-
correcting SSOs for these potential targets. TNBC has been shown to be transcriptionally distinct
when compared to other subtypes of breast cancer and particularly with respect to luminal breast
cancer, which overexpresses hormone receptors (Kahles et al., 2018). We applied the SpliceCore
platform to TCGA breast cancer data and identified 1,701 AS events expressed in TNBC basal
tumors (n=169) but not normal breast tissue (n=108), and 652 AS events unique to TNBC basal
tumors when compared to luminal tumors (n=694) (Figure 2A).

To independently confirm basal-specific AS changes identified in TCGA, we generated
RNA-seq data in triplicate for two representative basal cell lines that emulate TNBC (HS578T and
BT549) and two representative luminal cell lines as a control (MCF7 and T47D). Cross-
comparison of AS profiles in basal vs. luminal cell lines resulted in the confirmation of 250 AS
changes originally found in TCGA (Figure 2B). These candidates were further prioritized based
on additional parameters, including the extent of AS (measured as the delta in Percent Spliced
In, or dPSI), prevalence in TCGA samples, and biological significance of the underlying genes in
cancer pathways. While some of SpliceCore’s candidates have been previously reported to play
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a role in cancer (FLNB, MAP3K7, NFYA, ESYT2 (de Miguel et al., 2016; Dolfini et al., 2019; J. Li

etal., 2018; Z. Li et al., 2021)) others were identified to be breast cancer-relevant for the first time

(NEDD4L, MARK2, ABI1). The combination of these parameters resulted in a short-list of 7

candidates with potential for further investigation as SSO targets, and we confirmed the AS

changes using RT-PCR in a panel of normal and breast cancer cell lines (Figure 2C).
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Figure 2. SpliceCore identified disease-specific, biologically relevant AS events in TNBC. A. Overlap
of AS changes across breast cancer tissue types in TCGA. B. Overlap of AS changes identified in TCGA
and in-house cell-line RNA-seq data C. Top seven SpliceCore targets identified in TNBC. The table shows
dPSI values for basal vs. luminal tumor cross-comparisons, prevalence across 169 TNBC samples, function
of the target candidates, and RT-PCRs with AS changes.
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NEDD4Lel3 was identified as a potential candidate for therapeutic SSOs in TNBC

AS of NEDD4Lel13 was selected by SpliceCore as a top candidate, showing prominent
exon skipping in 109/169 (64%) of TNBC patients, as well as at the RNA and protein levels in
breast cancer basal cell lines (Figures 2C, 3A). NEDDA4L belongs to the ubiquitin ligase family of
proteins that play a role in the mono-ubiquitination of several important proteins involved in cellular
homeostasis and signaling, including proteins in the TGFB pathway. At the protein level, skipping
of NEDD4Lel13 was predicted to remove a short loop region next to the second WW domain, a
region important for binding other proteins (Figure 3B-C)(Aragén et al., 2012; Gao et al., 2009). The
loop also contains an accessible threonine residue that is likely phosphorylated by Protein Kinase
A.(Snyder et al., 2004) Since this region has been shown to critically interact with SMAD proteins
to regulate TGF signaling, we hypothesized that loss of this short loop through AS of exon 13
deregulates TGFf signaling to promote tumor progression. Accordingly, we observed that breast
cancer patients expressing full-length NEDDA4L had significantly better overall survival compared
to patients with predominant skipping of exon 13 (Figure 3D). Tumor-type stratification of
NEDD4Lel3 in TCGA data showed the skipping isoform to be significantly enriched in TNBC
patients compared to normal breast tissue, luminal tumors, normal-like tumors, and HER2+ breast
cancer samples. Of note, while differences were highly significant at the splicing level (Figure 3E),
there was only a modest difference in the RNA expression of NEDD4L across cancer subtypes
(Figure 3F), reinforcing the usefulness of AS analysis for tumor-specific target discovery.
SpliceLearn identified an optimal SSO to promote NEDD4Lel13 inclusion and explained the
underlying AS regulatory network

Next, we utilized SpliceLearn to find the optimal binding sites for SSOs to promote
NEDDA4Le13 inclusion, as well as to identify the underlying SF network regulating this AS event.
SpliceLearn analysis revealed that the three SFs most likely to bind the upstream intron and

regulate AS of NEDD4Lel13 were HNRNPL, QKI, and SRSF7.
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Figure 3. SpliceCore platform identifies NEDD4Lel3 as a potential therapeutic target for TNBC. A.
Western blot showing the expression of the NEDDAL full length (top band) and exon 13 skipping (bottom band)
isoforms across a panel of breast cancer cell lines B. 3D model of amino acids 193-418 in NEDD4L from the
transcript including exon 13. WW domains 1 and 2 are in orange and blue, respectively. Phosphorylation of
S342 and T367 are shown as spheres. Red indicates region encoded by exon 13. Yellow colored region in both
models have RMSD of 4.271. C. 3D model of the same region of NEDD4L when exon 13 is skipped. Exclusion
of 20 amino acids in the loop connecting WW1 and WW2 domain alters the helix in the proximity of the WW?2
domain with RMSD of 4.271 whereas no significant RMSD (0.188) was obtained when the two full models were
superimposed. D. Survival curves showing a significant difference in survival between patients where
NEDDA4Lel3 is included and NEDD4Lel3 is skipped. D. NEDD4L Percent Spliced In (PSl) and E. gene
expression data from the TCGA BRCA samples stratified into subtypes.
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Figure 4. SpliceLearn predicts the optimal functional SSO binding site to modulate the splicing of
NEDD4Lel13 in TNBC. A. SF-specific SpliceLearn scores as determined by SHAP analysis. SRSF1 was
included as a negative example. Black boxes in the top track indicate the binding sites of the SSOs (20-mers)
designed and tested to promote NEDD4Lel13 exon inclusion. Blue heatmaps indicate eCLIP binding from
ENCODE cell lines, where darker blue indicates higher binding score. B-D. HNRNPL, SRSF7, and QKI
expression levels across the subtypes of breast cancer in TCGA. E. Protein-protein interaction network
between the three SFs highlighted in A as determined in Akerman et al 2015. F. Probability distribution of
protein-protein interaction scores between HNRNPL and the rest of the SFs in the Akerman et al 2015
dataset. P-values and probability highlighted for QKI and SRSF7.

These three SFs showed confirmatory ENCODE eCLIP peaks (van Nostrand et al., 2020)
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overlapping with SpliceLearn hits. Particularly, HNRNPL presented a strong binding signal in four
eCLIP replicates, in stark contrast to other well-known SFs like SRSF1, which SpliceLearn did
not predict to regulate NEDD4Lel13 splicing, and did not show any confirmatory eCLIP peaks
(Figure 4A). We found that HNRNPL and SRSF7 were both significantly overexpressed in basal
tumors when compared to other breast cancer subtypes and to normal tissue samples (Figure
4B-C). QKI was overexpressed in TNBC when compared to luminal and HER2+ samples but was
downregulated when compared to normal-like tumors and normal tissue (Figure 4D). These
subtype-specific changes in SF expression highlight their potential to regulate tumor-specific AS
events like NEDD4Lel3. Finally, we investigated protein-protein interactions (PPIs) among the
three SFs using a probabilistic network of spliceosomal PPls (Akerman et al.,, 2015).
In fact, we observed that while QKI and SRS7 were unlikely to bind with each other directly
(Poki-srsr7 = 0.098) the probability of each directly binding HNRNPL was high (PyngypL-gk1 =
0.826 , PynrnpL—srsp7 = 0.784) (Figure 4E). Of note, PPIs predicted between HNRNPL and
QKI/SRSF7 were among the top interactions within the full network of HNRNPL interactions that
included 601 proteins (Figure 4F). In summary, these data suggest that HNRNPL binds
consistently and specifically to the intron upstream of NEDD4Lel13, to further recruit QKI and
SRSF7 as they work together to regulate AS.

To experimentally validate the SpliceLearn-predicted functional SSO binding sites, a list
of 20- to 22-mer sequences spanning locations across the highest SpliceLearn scores that
overlapped with ENCODE HNRNPL peaks was generated (Figure 4A, Table S1). These seven
oligos were chemically modified to enhance stability and nuclease resistance using 2" generation
antisense chemistry consisting of a phosphothioate backbone and uniformly modified 2’
methoxyethane (2’MOE) ribose sugar. Chemically synthesized and purified oligonucleotides were
subjected to functional assays in breast cancer cell lines. Out of the seven sequences tested,
SSO0-0205 was found to promote the strongest NEDD4Lel3 inclusion in MDA-MB-231 cells.

Treatment with SSO-0205 caused an average of 67% exon inclusion in 3 independent
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experiments, compared to 15% inclusion in the lipofectamine control group (Figure 5A-B).
Additionally, MDA-MB-231 cells treated with SSO-0205 showed substantial exon 13 RNA-seq
read coverage in NEDD4L, compared to the untreated, lipofectamine treated, or SSO-0202
treated cells (Figure 5C). In summary, SpliceLearn successfully identified functional SSO binding

sites, reducing the need for time-consuming microwalks for SSO optimization.
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Figure 5. SpliceLearn-predicted SSOs modulate NEDD4Lel3 inclusion. A. Representative 2%
agarose gel for NEDD4L PCR showing isoform changes in three breast tissue cell lines treated with the
indicated SSOs (400nM) for 48h. Actin expression used as cDNA internal control. B. Inclusion/Skipping
percentage measured by qPCR in three breast cancer cell lines after SSO (400nM) treatment for 48h
(n=3). C. Genome browser tracks displaying RNA-seq data in MDA-MB-231 cells (untreated (dark

purple), treated with a lipofectamine control (light purple), SSO-0205 (maroon), or SSO-0202 (peach).
Box highlights NEDD4Le13.

SSOs targeted to NEDD4Le13 promoted exon inclusion and affected the TGFf pathway
NEDDA4L is a ubiquitin ligase that has been previously shown to play a role in TGF(3
regulation (Aragon et al., 2012; Gao et al., 2009). Moreover, NEDD4L has been shown to be

involved in both oncogenesis and tumor suppression (X. Y. Guo et al., 2022; Xie et al., 2021).
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However, it is unclear if a specific AS isoform of NEDDA4L is responsible for regulating TGFf
signaling in TNBC tumors, where it has the potential to drive multiple aspects of tumor
progression. The TGFB-dependent response is highly contextual throughout development, across
different tissues, and therefore its dysregulation is highly relevant in tumor development and
progression (Bellomo et al., 2016; Massagué, 2008).

Using MDA-MB-231 as a representative TNBC cell line, and MCF10A (cell line derived
from breast fibroadenoma) as a control, we evaluated the splicing patterns of NEDD4Le13 in the
context of TGFp stimulation via treatment with human recombinant TGFB (hrTGFf). Untreated
MDA-MB-231 cells predominantly expressed the skipping isoform. When SSO-0205 was added
to the cells for 24 hours, there was a significant increase in NEDD4Lel13 inclusion. SSO-0205
maintained a high level of NEDD4Le13 inclusion even after exposure to hrTGFf for 3 or 6 hours.
On the other hand, even though MCF10A cells often skip NEDD4Le13 in untreated conditions,
they did not show a response to SSO-0205 under TGF treatment, perhaps due to differences in
NEDD4Le13 regulation between the cell types and a dependency on the short isoform in the
context of tumor maintenance (Figure 6A). Accordingly, RNA-seq analysis showed HNRNPL,
SRSF7, and QKI to be highly expressed in MDA-MB-231 cells compared to MCF10A cells,
pointing to a specific role of this regulatory network in the context of TNBC (Figure 6B).

Next, we evaluated the effect of SSO-0205-induced NEDD4Le13 inclusion on the protein
level and localization of several members of TGFB pathway. MDA-MB-231 cells were treated with
either SSO-0205, SS0-0202 (used as a control), or with lipofectamine alone as a vehicle control
for 24 hours followed by a 0-, 1- or 3-hour treatment with hrTGF. Following SSO-0205 and
hrTGFB treatment, MDA-MB-231 cells showed an accumulation of phosphorylated SMAD2/3
(phSMAD2/3) and TGFB-receptor (TGFBRI) in the cytoplasm, concomitant with a nuclear
decrease in phSMADZ2/3, total SMAD2/3 and a decrease in TGFBRI at the membrane compared
to the lipofectamine control (LFC). These cellular localization changes were time dependent and
more prominent at 3 hours after the hrTGFf treatment. In the case of SSO-0202 and in MCF10A
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Figure 6. SSO-0205 modulates NEDD4Lel3 inclusion, causes cancer cell migratory response to
TGFB, and decreases cell proliferation. A. PCR measuring NEDDA4L isoforms in MDA-MB-231 and
MCF10A cells in response to TGFf stimulation (0, 3 or 6 hours) after SSO-0205 treatment (400 nM)
(24h). B. Normalized RNA-seq counts for HNRNPL, QKI, and SRSF7 in MCF10A and MDA-MB-231 cells
showing significantly higher expression of these SFs in MDA-MB-231 cells. Statistical differences
calculated with DESeq2; *<1x10-8% (n=2).

15


https://doi.org/10.1101/2022.10.14.512313
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512313; this version posted October 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

C. Cell proliferation as measured by Cell TiterGlo® 96 well assay. MDA-MB-231 (top graph) and MCF10A
(bottom graph) cells were treated with lipofectamine alone as a control or with the indicated SSO for 48h
(400 nM) (n=4). D. Cell cycle phase analysis measured by propidium iodide flow cytometry. Cell cycle
phase for each cell line is represented by % (top graphs), a representative Propidium lodide histogram plot
for MDA-MB-231 is shown below. Cells were treated with lipofectamine alone or with SSO-0205 (400 nM)
for 24h (n=3). E. gPCR quantifying expression levels of the indicated cell cycle related genes in MDA-MB-
231 (top line) or MCF10A (bottom line) cells treated with SSO or lipofectamine alone as control for 24 hours
followed by 0, 3 or 6 hours treatment with hrTGF (n=3-4). F. gPCR quantifying expression levels of the
indicated migration/invasion related genes in MDA-MB-231 (top line) or MCF10A (bottom line) cells treated
with SSO (400 nM) or lipofectamine as control for 24 hours followed by 0, 3 or 6 hours treatment with
hrTGFB (n=3-4). G. Transwell migration assay on the indicated cell types (MDA-MB-231 top graph and
MCF10A bottom graph), cells were treated with lipofectamine or SSO-0205 (1 pM) for 24 hours, followed
by overnight TGF treatment in the Transwell chamber (n=2-3). Statistical differences were calculated by
Student’s t-test vs the corresponding time point at the control (Ctr) group; *<0.05; #<0.1.

cells, these effects on protein localization were very modest, as expected given the <20%
change in inclusion ratio in cells treated with SSO-0202 and the lack of response to the SSOs by
MCF10A cells (Supplemental Figure 7).

NEDDA4L has been previously described to interact with phSMAD2/3, SMAD7 and TGFBRI
as part of its role in the ubiquitination and subsequent proteasomal degradation of these proteins
(Gao et al., 2009; Kuratomi et al., 2005). We used MMG132 to inhibit proteasome activity and
performed immunoprecipitation assays for SMAD2/3 and TGFBRI to determine their interaction
with NEDDA4L after treating cells with SSO-0205 for 24h then with hrTGF[ for 0, 3 or 6 hours.
When we inhibited proteasome activity before treating with SSO-0205 the total levels of NEDDAL,
phSMADZ2/3 and TGFBRI increased after hrTGFf addition to the cells at 3 and 6 hours, specifically
in the MDA-MB-231 cells (Supplemental Figure 8A). Moreover, we found that SSO-0205
treatment promoted PPl between NEDD4L and SMAD2/3 as well as between NEDD4L and
SMADY7, particularly after 3 hours of hrTGF treatment as observed by an increase of NEDD4L
signal after SMAD2/3 IP and SMAD?7 IP (Supplemental Figure 8A). Importantly, MCF10A cells
treated with SSO-0205 and hrTGFf did not show any change in downstream TGF signaling
protein subcellular localization or PPIs by IP (Supplemental Figure 8A). These subcellular

fractionation data and PPI results confirm the direct role of the NEDDAL inclusion isoform in
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modulating TGFB pathway activity by marking the phSAMDs and TGFBRI for degradation as

previously described (Gao et al., 2009; Kuratomi et al., 2005).

SSO-mediated NEDDA4L exon inclusion selectively modulated TNBC cell proliferation

To understand the role of the NEDD4Le13 in TNBC cell viability, we conducted a cell titer
glow viability assay in the presence or absence of SSO-0205. Treatment of MDA-MB-231 cells
with SSO-0205 significantly decreased the viable cell count in MDA-MB-231 cells both in fixed
concentration (400nM), as well as in a dose-dependent manner. (Figure 6C, Supplemental Figure
8B). Additionally, a cell cycle evaluation indicated that SSO-0205 treatment significantly increased
the number of cells in G1 and decreased the number of cells in G2 at the 24-hour time point
(Figure 6D). Treatment of MCF10A with SSO-0205 did not change cell proportions along the cell
cycle or cause a significant change in cell viability. To determine whether NEDD4Lel3 AS
modulates the cell cycle in response to TGF[3, we analyzed the gene expression of CDKN1A and
c-MYC, two key downstream targets of TGFf in epithelial cells (Decker et al., 2021; Weiss, 2003).
We observed that 24 hours after SSO-0205 treatment, and prior to hrTGF( treatment, MDA-MB-
231 cells showed a decrease in both CDKN1A and c-MYC gene expression levels compared to
the control cells treated with lipofectamine (Figure 6E). Interestingly, when hrTGF3 was added to
the cells, the increase in CDKN1A gene expression observed in the lipofectamine control group
was inhibited by the SSO-0205 treatment (Figure 6E) (TGF( time 3 and 6h). Additionally, we saw
that SMAD7 expression showed a similar expression profile to the CDKN1A when comparing the
lipofectamine control to SSO-0205 treated cells (Figure 6E). Consistent with the viability assay,
these changes were limited to MDA-MB-231 cells and not observed in MCF10A cells. Taken
together, these data indicate that promoting NEDD4Le13 inclusion with SSO-0205 specifically
modulated the proliferation and viability of the MDA-MB-231 cells, further supporting its biological

importance and therapeutic potential in TNBC.
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NEDD4Lel3 AS modulated the MDA-MB-231 migratory response to TGFB pathway
activation

Cell migration and invasion is one of the hallmarks of cancer that enables metastasis.
ANGPTLA4, ITGab, and ITGA3 are TGFB-dependent cell migration-associated markers. SSO-
0205 pre-treatment of MDA-MB-231 cells decreased the gene expression response of ANGPTL4,
ITGab5, and ITGA3 after hrTGFB addition at time 0, 3 and 6h, while SSO-0202 treatment did not
cause significant changes for any of the time points (Figure 6F). Expression changes in migration-
associated genes were not observed in MCF10A cells after SSO-0205 or SSO-0202 treatment,
even though TGFp stimulation induced the expression of some of these genes (Figure 6F).
Finally, evaluation of changes in the migration of MDA-MB-231 cells using a Transwell Migration
Assay showed a 40-50% decrease in cell migration in SSO-0205 treated cells, even in the
presence of hrTGFB. This effect was specific to MDA-MB-231 cells; MCF10A cells did not show
a decrease in migration in the presence of SSO-0205 (Figure 6G).

Overall, we have shown that NEDD4Le13 skipping contributes to TNBC tumor progression
and promotes overactivation of the TGF pathway in MDA-MB-231 cells. Furthermore, SSO-0205
was able to reverse NEDD4Lel3 exon skipping by presumably blocking the binding of HNRNPL,
QKI and SRSF7 to the intron upstream NEDDA4Lel3, thereby decreasing both the proliferative
and migratory behavior of MDA-MB-231 cells. Both the target, NEDD4Le13, and the binding site
for the compound, SS0-0205, were discovered de-novo by applying AI/ML algorithms to RNA-
seq data sets, demonstrating the potential for innovative drug discovery with the SpliceCore

platform in the field of RNA therapeutics.

Discussion
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Our goals for this study were two-fold: to develop a new SSO compound to modulate AS
of a novel drug target, and to do so through a data-driven approach, using RNA-seq data and
Al/ML algorithms. Here, we experimentally validated NEDD4Le13, a new target for TNBC, along
with a corresponding SSO called SSO-0205. Both were predicted de-novo using the SpliceCore
platform. SpliceCore allows for drug discovery at scale because it has been optimized for AS
analysis of large RNA-seq datasets, outperforming many of the most common open-access tools
(Supplemental Figure 2). SpliceCore’s ability to rapidly integrate and analyze thousands of RNA-
seq samples to identify druggable AS events reinforces its competency as a target-discovery
platform for SSO development.

The binding site for the SS0O-0205 compound that successfully promoted NEDD4Lel3
inclusion was predicted de-novo using SpliceLearn. In terms of interpretability, SpliceLearn
outperforms comparable methods (Supplemental Figure 4). We have improved the interpretability
of SpliceLearn by employing a novel feature selection method using SHAP/OOB. Previous studies
showed that while many predictive models in molecular biology are optimized for maximum
performance, they often lack interpretability, making it harder for scientists to make actionable
decisions based on the Al/ML algorithm’s results. Reduced interpretability can stem from the use
of complex predictive features with hidden associations, or unbalanced sensitivity/specificity,
often overlooked in favor of maximizing performance metrics such as AUC (Azodi et al., 2020;
Johansson et al., 2011). In contrast, SpliceLearn relies on the use of tree-based learning methods,
which are inherently more interpretable (e.g., when compared to deep learning) because they
enable the investigation of the content and relationship between predictive features. SpliceLearn
therefore allows for the identification of regulatory SFs at each nucleotide of interest, which is
crucial for downstream studies on the regulation of the AS event and the mechanisms by which
the SSOs modulate it (Figure 4, Supplemental Figure 5). SpliceLearn optimizes both sensitivity
and specificity, which we found to be lacking in comparable algorithms (Supplemental Figure 4).
Finally, SpliceLearn eliminates the need for time consuming and expensive SSO microwalks that
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require 100- 200 tiling oligos to be tested manually for activity. ML-based SSO design not only
consolidates the number of oligos tested, but also informs the potential regulatory mechanism
associated with the targeting sites.

Remarkably, the SpliceCore platform validation study presented here produced significant
biological insights related to splicing regulation in TNBC. First, we identified seven AS events
highly recurrent in TNBC. Of particular interest, AS of NEDD4Lel3 was found to be present in
64% of TNBC patient tumors. Second, we showed that NEDD4Le13 is a promising target for
TNBC since splice-switching with SSO-0205 caused TNBC-specific viability loss (Figure 6). This
effect may be partially explained through altered localization of SMAD proteins downstream of
pro-tumorigenic TGFB activation (Supplemental Figure 7). The tumor-specific anti-proliferative
effects of SSO-0205 are encouraging and may result in reduced toxicity compared to
chemotherapy in future pre-clinical and clinical development. Third, skipping of NEDD4Le13
causes the exclusion of a protein loop region between the WW1 and WW2 domains important for
protein interaction (Figure 3B-C) (Aragén et al., 2012; Gao et al., 2009). This loop region
contained a threonine residue that can be phosphorylated, potentially adding an additional
regulation through post translational modifications (Snyder et al., 2004). Fourth, SSO-0205
treatment affected TGFB-dependent gene expression changes in proliferation- (CDKN1A, C-
MYC) and invasion-related genes (Integrins a5 and 3, ANGPTL4), leading to significant changes
in cell cycle and cell migration (Figure 6). While the TGFp-independent downregulation of
CDKN1A in the presence of SSO0205 was surprising, it is possible that additional players regulate
CDKNI1A levels through non-canonical TGFB regulation (Weiss, 2003). Finally, despite the
abundance of NEDD4Le13 skipping in MCF10A cells (a non-cancerous mammary fiboroadenoma
cell line), SSO-0205 did not promote exon inclusion in these cells, suggesting that the TNBC-
specific SF network identified with SpliceLearn could have a differentiating role, further supported
by the observed TNBC-specific overexpression of HNRNPL, SRSF7 and QKI1. We suggest that
NEDD4Lel3 skipping is lineage-restricted to basal cells like MCF10A and MDA-MB-231;
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however, AS regulation appears to divert between both cell types, such that exon skipping in the
latter promotes tumor progression, which may lead to dependency for NEDD4Le13 skipping in
the context of TNBC (Figure 6B).

Currently, several SSOs remain under investigation as potential treatments for cancer and
other diseases, providing an alternative to small molecules, which are currently limited to a subset
of “druggable” proteins.>° There is still progress to be made in the field of SSO therapeutics,
especially in the area of drug delivery, but this is a highly active area of research and is the focus
of several biotechnology companies (Roberts et al., 2020). Ultimately, this study illustrates the
usefulness of a new AI/ML algorithm developed upon key principles of RNA biology, to extract
novel, actionable insights from RNA-seq data. We have shown that it is possible to identify a novel
drug target, and design an effective SSO against it, that not only modulates exon inclusion but ay
Iso displays anti-cancer activity. The efficiency of the SpliceCore platform in analyzing thousands
of RNA-seq samples to identify novel drug targets in a timely manner can be expanded beyond
cancer research into other diseases driven by splicing alterations, like neurodegeneration or
metabolic diseases (Centa et al., 2020; Finkel et al., 2017; Han et al., 2020; J. Kim et al., 2019;

Syed, 2016; K. R. Wagner et al., 2021).

Methods

SpliceCore

The SpliceCore software platform is Envisagenics’ proprietary technology for the discovery of
splicing-modulatory drug targets using RNA-seq data. SpliceCore utilizes scalable cloud-
computing through Microsoft Azure services to efficiently perform de-novo transcript assembly
using an exon-centric reference transcriptome called TXdb, followed by AS analysis. SpliceCore
implements the following algorithms: SpliceTrap, a Bayesian-based method for RNA-seq
alignment and AS quantification, SpliceDuo, a regression-based predictive model for AS cross-

comparison, Splicelmpact, an AlI/ML algorithm for the prioritization of biologically relevant AS
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events based on the impact of AS on protein structure and RNA stability, and SpliceLearn, its
newest algorithm for the identification of productive SSO binding sites (Anczukow et al., 2015;

Wu et al., 2011).

SpliceLearn

SpliceLearn, an AI/ML module of the SpliceCore platform, was trained with predictive
features combining three sources of splicing regulatory information: the relative position of
prospect SSOs binding sites to an exon, the identity and binding motif scores of SFs potentially
blocked by SSOs (Paz et al., 2014; Ray et al., 2009; X. Wang et al., 2011), and the interaction of
such SFs with other SFs within the spliceosome (Figure 1B, Akerman et al., 2015).

To train and test SpliceLearn, we utilized data from a massively parallel splicing minigene
reporter assays (MFASS(Cheung et al., 2019)) which quantifies the effect of SNVs on AS
outcomes, therefore mimicking the impact of SF-blocking by SSOs. The MFASS datasets
assessed the effect of 27,733 SNVs extracted from the EXAC database on the splicing of 2,198
distinct human exons. Of these, 14,130 SNVs occurred in exons, 7,938 in the intronic region
upstream the 3’ splice site, and 6,271 in the intronic region downstream the 5’ splice site. These
three RNA regions present striking differences in sequence composition and have evolved to play
distinct roles in splicing regulation. Therefore, we developed three independent SpliceLearn
models SpliceLearn-e, -up and -down to account for the unique regulatory properties of each
exonic and upstream/downstream intronic elements (Figure 1B and Supplemental Figure 3,
Methods). To test SpliceLearn with an independent data source, we used the Vex-seq dataset,
which consists of 1226 qualifying variants that were experimentally identified to have impact on
pre-mRNA splicing using a high-throughput reporter assay.(Adamson et al., 2018) The SpliceLearn-
down model classified VexSeq data with an AUC of 0.98, SpliceLearn-up with and AUC of 0.86
and SpliceLearn-e with AUC of 0.66 (Supplemental Figure 3B). These results confirm the

usefulness of both intronic SpliceLearn models to predict SF-binding perturbation positions critical
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for AS regulation and useful for SSO targeting. See Methods for detailed description of

SpliceLearn training, testing, and benchmarking.

NEDDA4L protein structure modelling

The three-dimensional model of the NEDD4L amino acids 193-418 was obtained by ab-initio
modelling on Robetta platform (http://robetta.bakerlab.org/, D. E. Kim et al., 2004). Five models
were obtained and all of them were validated in the Molprobity server
(http://molprobity.biochem.duke.edu/, Davis et al., 2007). Two energy minimization processes
using the Chimera program (Yang et al., 2012) were followed by residue specific minimization in
SPDBYV (Guex & Peitsch, 1997). The model with best molprobity score was used for comparative
modelling of alternate structure with exclusion. Root mean square deviation was calculated by

superimposing two structures in PYMOL.

Cell Lines
All cell lines used in this study were purchased from NCI Cancer Cell line-60 panel and/or
American Type Culture Collection (ATCC) authenticated by STR profiling and mycoplasma

testing.

RNA extraction and RT-PCR

Total RNA from different breast cancer cell lines were extracted using the TriZol reagent as per
manufacturer’s instruction. One microgram of RNA was used to make cDNAs using oligo-dT
primers. One-tenth of the volume of the cDNA reaction mixture was used in the PCR reaction
containing specific forward and reverse primers for detecting different splicing isoforms. The
amplicons are separated in 2% agarose gels. The primer sequences for genes used in the PCR

assays are given below.
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Splice-switching assays

Computationally predicted SSO sequences were purchased from Microsynth technologies,
Switzerland. The oligos were uniformly modified to contain phosphothioate backbone and 2’
methoxy ethane containing ribose sugars (2° MOE). All oligos were HPLC purified and lyophilized
oligos were reconstituted in calcium and magnesium free PBS to obtain 100uM stocks. The cells
were plated to 80% confluency and 400nM SSO specific to NEDD4L or control SSOs was
transfected using Lipofectamine 3000 according to the manufacturer’s instruction. Alternatively
linear concentration of doses of the oligos were used for the dose response assay. The cells were
harvested, and RNA was extracted 48 hours post-transfection. RT-PCR evaluation of the splice-

switch was performed as described above.

Cell viability assay

Cell TitreGlo® (Promega) was used to determine the viability of the SSO transfected breast
cancer cells according to manufacturer's instruction. Briefly, about 10K MCF7 or MDA-MB-231
cells were plated into each well of a 96 well plate that was treated with either control or single
concentration or linear concentrations (100nM, 200nM, 400nM, 600nM, 800nM, 1uM) of NEDD4L
specific SSOs in the presence of lipofectamine in triplicates. 48 hours post-transfection equal
volume of Cell TitreGlo reagent was added to the well and the total luminescence was measured
using a plate reader (Perkin ElImer). The average percentage of viable cells that is proportional to
the total luminescence was calculated and plotted to obtain viable cell percentage and dose

response curve for NEDD4L SSO.

Cell culture and cell treatments for TGFB pathway studies
MDA-MB-231 cells were grown in RPMI media containing 10% fetal bovine serum (FBS) and
penicillin and streptomycin. MCF10A cells were grown in DMEM/F12 media supplemented with

MEGM™ Mammary Epithelial Cell Growth Medium SingleQuots™ Kit (Lonza, CC-4136) and
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penicillin and streptomycin. For the TGFB pathway analysis experiments, cells were plated in 6
well plates at 2x105 cells/well. SSOs treatment were added to the cells growing in complete media
at 400nM final concentration, in the presence of lipofectamine 3000 (Thermo Fisher Scientific,
L3000001) following manufacturer instructions, unless otherwise specified. Lipofectamine alone
was added as control group. Human recombinant TGFB (hrTGFB) (R&D Systems), was
administered directly into the media at 100pM final concentration. RNA or protein samples were
harvested at different time points. Nuclear, Cytoplasm and membrane protein fractions were
extracted following the manufacturer instruction for the Subcellular Protein Fractionation Kit for

Culture Cells (Thermo Scientific, Cat. # 78840).

Cell Cycle Analysis

MDA-MB-231 and MCF10A cells were plated on 6 well plates at 1x105 cells/mL. The following
day the cells were treated with SSO-0205 at 400nM for 24 hours. Cells were trypsinized, fixed
with 70% ethanol on ice and stained with Propidium lodide (Invitrogen, P3566) at 50ug/mL final
concentration for 30-40 minutes. Stained cells were analyzed by flow cytometry MACSQuant®

Analyzer (MACS Miltenyi Biotech) following the manufacturer instruction.

Transwell migration assay

MDA-MB-231 and MCF10A cells were plated on 6 well plates at 1x105 cells/mL, treated with
SSO0-0205 at 1uM (no lipofectamine — free uptake) for 24 hours, trypsinized and resuspended in
serum free media at 5x105 cells/mL containing SSO-0205 at 1uM with or without hrTGF 100pM.
500pL of cell suspension was added to the transwell inner chamber (8um pore size) (Falcon,
#353097), the inserts were placed on a 12 well plate containing complete media to promote

chemoattraction to the outer chamber. Cells were incubated overnight and migratory cells were
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measured following the manufacturer instruction for the cell dissociation and Calcein AM staining

and luminescence measurement (Cultrex® Cell Invasion Assay, Trevigen, Cat. # 3455-024-K).

RNA-sequencing

~5*105 cells were harvested in biological triplicates from each breast cancer cell line (MCF7,
T47D, MDA-MB-231, MDA-MB-468, HS578T, BT549). Frozen cell pellets were provided to
GeneWiz (SD, California) for RNA extraction and library preparation. Briefly, 1ug of RNA extracted
using TriZol was enriched for PolyA containing RNA using oligo dT columns. Libraries for polyA+
RNA-seq were prepared using TruSeq chemistry (Illumina), multiplexed, and sequenced to obtain
paired-end 101-base-pair (bp) reads on an lllumina HiSeq 2000 platform, resulting in 30 million

to 45 million reads per library.

Supplemental Methods

Assembly of TXdb

TXdb is an exon-centric reference transcriptome used by all of SpliceCore’s algorithms
(Wu et al., 2011). The premise of “exon-centric” is to treat the transcriptome as a collection of
independent AS events rather than full-length transcripts. In TXdb, CA and IR events are
represented as exon trios where the middle exon is subjected to AS analysis and the flanking
exons provide the transcriptomic context with the corresponding splicing junctions necessary for
the analysis. Every exon trio is presented in two splicing states: inclusion, where the three exons
are connected through a pair of splicing junctions, and skipping, where the flanking exons are
connected by a single splicing junction and the middle exon is skipped. Likewise, alternative 3’
splice sites (A3SS) and alternative 5 splice sites (A5SS) are represented as exon duos where
the extended exon segment is subjected to AS analysis and the remining sequences provide
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context (Supplemental Figure 1A). For simplicity, we use the term “inclusion” to also define intron
retention and distal A3SS and A5SS splicing; and we use “skipping” to define intron splicing and
proximal A3SS and A5SS splicing. In addition, CA events in TXdb include annotations for both
alternative and constitutive exons, i.e., for exon trios only supported by their inclusion state. In
contrast, evidence for both inclusion and skipping states were required for IR, A3SS and A5SS
as a way to limit the sequence search space due to lengthy introns and the exponentially large
number of dinucleotides matching the splice site consensus that could result in A3SS or A5SS.
To generate TXdb, we assembled mRNA contigs from 1,252 breast cancer RNA-seq datafiles
from TCGA. STAR aligner (Dobin et al., 2013) was used for read mapping and Stringtie (Pertea
et al., 2015) for contig building. A total of 5,617,407 AS events were supported by at least one out
of 1,252 RNA-seq datafiles, although many of these AS events were redundant. Almost every AS
was clustered with several others showing identical inclusion and skipping junctions, identical
middle (or extended) exon, but flanking exons of different sizes. We pruned redundant clusters of
AS events by selecting a single representative exon trio/duo by applying the following steps: First,
we looked for known AS events supported by Ensemble or RefSeq. Second, we prioritized exon
trios/duos supported by Ensemble or RefSeq. Third, we took AS events with the highest reliability
score (see next section for details). Finally, if a tie persisted, we selected the shortest AS event
to further reduce sequence search space (Supplemental Figure 1B). We identified a total of
1,743,426 non-redundant AS events, including 1,190,514 CA, 199,238 IR, 202,851 A3SS and
150,823 A5SS (Supplemental Figure 1C). Also 534,231 (31%) exon trios/duos were supported
by ENSEMBL or RefSeq (GRCh38.p12), 77,381 (4%) further presented both inclusion and
skipping evidence in ENSEMBL or RefSeq (i.e. known AS events). The remaining 1,131,814
(65%) showed no evidence of in public MRNA databases and where therefore annotated as novel

trios/duos (Supplemental Figure 1D).

SpliceCore analysis and benchmarks
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SpliceCore takes RNA-seq FASTQ/A files as an input to predict disease-specific SSO
drug targets. The first step of the analysis is to estimate AS between “disease” and “normal” RNA-
seq samples in order to prioritize drug targets amenable to SSO modulation. AS analysis is often
divided into three steps: alignment, quantification, and comparison (Alamancos et al., 2014)
(Supplemental Figure 2A). The SpliceCore platform uses the SpliceTrap algorithm to align RNA-
seq data to TXdb and quantify the “percent spliced in” (PSI) of every AS event. Next, SpliceDuo
performs case/control comparisons and reports splicing changes as APSI values between -100%
(i.e. full exon skipping) and 100% (full exon inclusion). Sequence alignment is the most time-
consuming step of RNA-seq analysis, in part due to the use of a large reference transcriptome
like TXdb, with 1,743,426 AS annotations. However, most RNA-seq analysis projects only require
a single alignment iteration. One-time sequence alignment is common practice in bioinformatics
supported by evidence that changes in alignment parameters have little impact on both technical
and biological performance.(Ballouz et al., 2018) The SpliceTrap algorithm is optimized for a one-
time execution step that includes sequence alignment and PSI quantification. In contrast, the
comparison step is often repeated multiple times to allow thorough interrogation of the data
(Supplemental Figure 2A). This is especially important when analyzing RNA-seq data from
heterogenous patient cohorts, including subjects with various disease subtypes, at different
disease stages, responding differently to drug treatments, and with diverse clinical backgrounds.
The motivation to perform multiple comparisons has only increased as a result of progress in the
areas of personalized therapies and discovery of biomarkers (Shyr & Liu, 2013). Some of the most
popular tools for AS analysis, like rMATS (Shen et al., 2014), MAJIQ (Green et al., 2018), and
MISO (Katz et al., 2010), offer a combined solution for quantification and comparison across pre-
aligned BAM files generated with other tools such as STAR aligner (Dobin et al., 2013)
(Supplemental Figure 2B). While these are all highly accurate tools for AS analysis, they carry

the burden of unnecessary repeated quantifications, when only the comparisons should be
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repeated. To expedite data analysis, SpliceCore offers an alternative software design, by pulling
one-time alignment and quantification with SpliceTrap, allowing for fast and scalable statistical
modeling of AS comparison using SpliceDuo. Benchmarking to open-source competitors
demonstrated that SpliceCore performs in a significantly larger search space (Supplemental
Figure 2C) with outstanding speed (Supplemental Figure 2D-G), scalability (Supplemental Figure
2H-J) and accuracy (Supplemental fig. 3K-O), thereby accelerating value extraction from RNA-

seq data.

SpliceLearn is an AI/ML method for predicting functional SSO binding sites

Previous methods for antisense oligonucleotide binding predictions were designed to
predict RNA down-regulation instead of splicing changes (Giddings et al., 2002) or focused on SF
binding perturbations without informing whether such binding affects the AS outcome (Bjgrnholt
Grgnning et al., 2020). In recent years, novel methods to predict the effect of single nucleotide
variants (SNV) on the AS outcome have been developed (Cheng, Yen, et al., 2019; H. Y. Xiong
et al., 2014). Like SSOs, SNVs can also perturb RNA sequences to change AS. Current methods
to predict the effect of SNVs on splicing regulation can be used to identify SSO binding sites in
RNA sequences (H. Y. Xiong et al., 2014). However, such methods do not inform the identity of
specific SFs potentially blocked by binding perturbations. Informing the identity of prospective SFs
blocked by SSO can help accelerate drug development by increasing the biological
interpretability, assisting experimental design, and enabling integration with other data types, such
as CLIP-seq or genomics, to better understand SSO mechanism and SF involvement in disease
progression. SpliceLearn innovates by offering the combined benefit of robust AS outcome

predictions with high biological interpretability using machine learning.

SpliceLearn was trained and validated using massively parallel splicing reporter assays
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To train and test SpliceLearn, we utilized data from a massively parallel splicing minigene
reporter assay (MFASS) that quantifies the effect of SNVs on AS outcomes, therefore mimicking
the impact of SF-blocking by SSOs (Cheung et al., 2019). To develop predictive models with high
interpretability, we estimated the differential effect of SNVs in the binding motif scores of 141 SFs
derived from three different methods (Paz et al., 2014; Ray et al., 2009; X. Wang et al., 2011).
We combined SFs into 83 non-exclusive clusters (SFCs), based on spliceosomal functional
annotations (Table S2) and SF-SF binding probabilities (Akerman et al., 2015). Each SFC was
composed of physically interacting SFs attributed to a given splicing-related function such as
membership to spliceosomal subcomplexes (e.g. U1 snRNP), RNA-binding specificity (e.g. AG
binding), regulatory outcome (e.g. repressor) and others (Table S2). Since SFs perform multiple
functions in splicing regulation, they were non-exclusive and permitted to appear in more than
one SFC. The advantage of using SFCs as predictive features in lieu of SFs scores is that they
reduced matrix sparsity and zero-inflation, while capturing functional, regulatory, and evolutionary
aspects of the spliceosome. By grouping SFs into SFCs, we provided a more intuitive context for
biological interpretation.

We tested the ability of each independent SFC to differentiate between “positives” and
“negatives” using the Wilcoxon test with Holm-Sidak p-value adjustment (W. Guo & Romano, 2007).
We performed the analysis in exons, upstream and downstream introns independently. We
observed that the three sequence types were characterized by different subsets of significant
SFCs (Table S2). For instance, the “distance to splice site” SFCs were highly significant in introns
(adj.p-val<5.06E-11) but not exons (adj.p-val<0.356). This observation was expected and agrees
with many studies showing intronic sequences around the splice sites to be enriched with SF
binding sites important for AS regulation (van Nostrand et al., 2016; Z. Wang & Burge, 2008; Yee et al.,
2019; Yeo et al., 2007). In addition, SR proteins and activators were highly significant SFCs in exons

(adj.p-val<2.14E-08 and adj.p-val<4.91E-05, respectively) but not introns (0.003<adj.p-val<0.98),
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consistent with several studies describing the role of SR proteins as splicing activators that bind
exonic splicing enhancers (Jeong, 2017; Lin & Fu, 2007; J. Wang et al., 2005). In upstream introns, SF
binding sites such as U-rich (adj.p-val<6.64E-07) and CG-rich (adj.p-val<2.1E-06) motifs were
highly significant. Interestingly, CG-rich introns have been associated with weak 3’ splice sites
and polypyrimidine tracts, important for the regulation of alternative exons (Murray et al., 2008; E.
J. Wagner & Garcia-Blanco, 2001). These polypyrimidine tracts, which are intrinsically uridine-rich,

are known for attracting several SFs (Barreau et al., 2006), including members of the A complex
such as U2AF2, known for its crucial role in 3’ splice site recognition and exon inclusion (Graveley
et al., 2001; R. Singh et al., 2000; Warnasooriya et al., 2020). Accordingly, the “A complex” SFC
was more significant in upstream (adj.p-val<0.0006) and downstream introns (adj.p-val<3.62E-
13) than exons (adj.p-val<0.756). Other highly significant SFCs in downstream introns were
“repressors” (adj.p-val=0) and members of the hnRNP family (adj.p-val=0) known to interact with
intronic splicing silencers to inhibit exon inclusion (Geuens et al., 2016). In addition, SFCs
corresponding to hnRNP binding motifs were highly significant, including UG-rich (adj.p-val=0),
CU-rich (adj.p-val<1.80E-14) and CA-rich (adj.p-val<4.11E-13) elements. The Ul snRNP SFC
was also highly significant in the downstream intron (adj.p-val<1.84E-10). In summary, a total of
2, 5 and 14 SFCs showed adj.p-val<1.0E-06 in exons, upstream and downstream introns,
respectively. This distribution suggested that the base information for Al/ML model development
was patrticularly rich in the downstream introns.

We then trained SpliceLearn using the MFASS data for exonic, upstream, and
downstream intronic sequences. We tested six different types of Al/ML classifiers and in all of the
cases, the best performing model type were XGboost trees, an implementation of gradient
boosted decision trees designed for speed and performance (Sheridan et al., 2016). Prominently,
SpliceLearn-down was the top performing model with an AUC of 0.95, followed by SpliceLearn-

up with an AUC of 0.88 and finally SpliceLearn-exon with AUC of 0.60. The sensitivity and
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specificity were high for both SpliceLearn-downstream (0.92 and 0.93 respectively) and
SpliceLearn-upstream (0.84 and 0.75) although for SpliceLearn-exon only the specificity was
relatively high (0.71) while the sensitivity was poor (0.40) (Supplemental Figure 3). Notably, both
intronic SpliceLearn classifiers clearly outperformed the exonic one, suggesting that it would be
easier to predict productive SSO binding sites in introns vs exons. This could be due the fact that,
unlike exons, introns are not subjected to protein-coding constraints, thus regulatory information
may be easier to identify in introns using Al/ML (Z. Wang & Burge, 2008). In addition, intronic regions
near the splice sites are preferable for SSO targeting compared to exons, since introns are only
present in nuclear pre-mRNA, while exons are both present in pre- and mRNA, potentially
increasing the chances of off-target effects. For example, the SSO Nusinersen that treats Spinal
Muscular Atrophy targets the intron downstream of exon 7 in the SMN2 pre-mRNA, to block
binding of the splicing repressor hnRNPA1 (R. N. Singh & Singh, 2018). To test SpliceLearn with an
independent data source, we used the Vex-seq dataset, which consists of 1226 qualifying variants
that were experimentally identified to have impact on pre-mRNA splicing using a high-throughput
reporter assay (Adamson et al., 2018). As a result, The SpliceLearn-down model classified
VexSeq data with an AUC of 0.98, SpliceLearn-up with and AUC of 0.86 and SpliceLean-e with
AUC of 0.66 (Supplemental Figure 3). These results confirm the usefulness of both upstream and
downstream intronic SpliceLearn models to predict SF-binding perturbation positions critical for

AS regulation and useful for SSO targeting.

SpliceLearn balances performance and interpretability

We compared SpliceLearn’s predictive accuracy to that of two competitive methods,
SPANR, a tool to predict SNVs effect on AS outcome, which has been used before for SSO
design,(H. Y. Xiong et al., 2014) and a more recent method called MMSplice (Cheng, Yen, et al.,

2019), which was previously shown to outperform other equivalent tools by winning the CAGI 5
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splicing challenge (Cheng, Celik, et al., 2019). The overall performance of the three methods was
comparable, with MMSplice showing slightly better AUC for upstream introns (MMsplice=0.88,
SpliceLearn=0.86, SPANR=0.77) and SpliceLearn matching MMsplice’s AUC for the downstream
intron (SpliceLearn=0.95, MMSplice=0.95, SPANR=0.89) (Supplemental Figure 4).

While SpliceLearn performance was comparable to competitive tools, it showed significant
advantage in interpretability with more balanced sensitivity/specificity overall. SpliceLearn was
developed using tree-based learning (i.e. XGboost trees), an Al/ML methodology that is inherently
more interpretable because it enables the investigation of predictive features content and
relationships. In addition, tree-based methods output probabilistic quantities (in a scale from 0 to
1) which are intuitive to users (Azodi et al., 2020). We computed the sensitivity/specificity trade-
off of SpliceLearn, MMsplice and SPANR using the Youden index, a summary measure that
enables the selection of an optimal threshold values for predictive model (Fluss et al., 2005).
SpliceLearn’s optimal threshold was 0.5 for both -up and -down intronic models, with Youden
indexes of 0.55 and 0.84, and sensitivity/specificity tradeoffs of 0.82/0.73 and 0.91/0.93
respectively (Supplemental Figure 4C). These results indicate that SpliceLearn performs with
balanced sensitivity/specificity and an intuitive threshold that appropriately represents the
midpoint of the tree-based probability distribution. In contrast, MMsplice and SPANR scored with
relatively lower Youden indexes (upstream introns 0.4 and 0.27 downstream introns 0.36 and
0.49) leading to less balanced sensitivity/specificity. For instance, the sensitivity/specificity
tradeoff at the Youden inflexion point were 0.92/0.48 and 0.79/0.48 for MMsplice and SPANR,
respectively, in the upstream intron, and 0.96/0.53 and 0.89/0.47, respectively, in the downstream
intron. In addition to a strong bias towards sensitivity, the selected optimal thresholds for these
tools (-0.1 to O, respectively) seemed subjective and not representative of the training data

distribution or positive/negative ratios (Supplemental Figure 4B).

Identification of most predictive SFs
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To deliver SSO target discovery using SpliceLearn, it is necessary to backtrack the identity
of SFs to be displaced by SSOs. Knowledge of these specific SSOs is not only crucial for the
biological interpretability, but also to facilitate experimental drug design and integration with other
data types (e.g. CLIP-seq). To this aim, we derived a feature selection approach based on
Shapley additive explanation analysis (SHAP). SHAP is a game theory approach to estimate the
importance of specific predictive features to the overall performance of Al/ML models (Lundberg
et al., 2019).

Tree learning algorithms like XGboost build several decision trees by bootstrapping the
training data. For a given predictive feature, the SHAP value is the average marginal contribution
of this feature value across all possible decision trees. A key advantage of SHAP over other
feature importance inference methods, is that it is unaffected by the order in which features are
randomly chosen by tree-models, thus it is a robust tool for the interpretation of the primary
information driving predictive efficiency in AI/ML (Lundberg et al., 2019). To complement the
SHAP analysis we also performed an additional feature prioritization analysis where the data
considered at each bootstrap sample (called bag data) are considered to learn a classifier and
the remaining training data are considered as out-of-bag data (OOB) (Breiman, 2001).

We applied OOB and SHAP to weigh the contribution of every SFC to the SpliceLearn-
upstream and SpliceLearn-downstream models. OOB/SHAP scatter plot revealed the “distance
to splice site” information as a major driver of predictability, whereby positions closer to the splice
sites show greater potential of AS alterations (Supplemental Figure 5A, C). Strikingly, this
observation suggests that the position of perturbing factors (i.e. SNVs, SSOs) relative to the splice
sites is sufficient to explain much of the AS outcome. Despite its strong predictive power, “distance
to splice sites” as predictive feature does not provide interpretability regarding the role of specific
SFs, because distance is consistent at a single nucleotide for every SF, rather than subsets, as
in the case of all other SFCs. To avoid the dominating effect of “distance to splice site” and allow
SHAP to best prioritize interpretable SFCs, we retrained SpliceLearn-upstream and -downstream,
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only this time after without any “distance to splice site” information (Supplemental Figure 5B, D).
As a result, we observed that despite a proportional reduction in predictive efficacy, SpliceLearn-
downstream still performed well with an AUC of 0.80, while SpliceLearn-upstream showed more

borderline, yet clear predictive power with an AUC of 0.67 (Supplemental Figure 3C).

Validation of most predictive SFs

SHAP/OOB values can be estimated for every predictive feature at every tested data point
(i.e., nucleotide), and therefore we can estimate SHAP/OOB values per SFC at each nucleotide
position to identify the most important SFs driving predictive accuracy of every putative SSO
binding site. Furthermore, each SF within an SFC has percentile scores from each of the three
methodologies used to measure SF binding (Paz et al., 2014; Ray et al., 2009; X. Wang et al.,
2011), which allows us to rank SFs within the SFC. We used these datapoints to find the most
predictive SFs within each SFC. While these scores were calculated from computational and in-
vitro approaches, in-vivo approaches such as eCLIP can be used to confirm if an SF occupies a
specific location in the genome (in the cell type of interest). We used eCLIP data from ENCODE
(Encode Project Consortium, 2012) to evaluate the correspondence between measured
predictivity in SpliceLearn and evidence of binding in-vivo. We compiled SpliceLearn predictions
from 2,124 introns and started by determining the most predictive SFs in the SFCs in the top 25%
(based on ranked SHAP values) with the best binding scores (percentile score > 50) at each
position where the splicing effect probability was at least 0.5 (as previously established in
Supplemental Figure 4C). We found that the sites where several SFs are predictive to influence
splicing outcomes are highly enriched for eCLIP peaks at those same sites (Supplemental Figure
5E-F). Using the odds ratio as a metric, we then proceeded to test a wide range of cutoffs for
each variable to determine the set of conditions that best enriches the SpliceLearn hits for eCLIP
peaks for each individual SF. Generally, we found that using a highly stringent cutoff for the
splicing effect probability allowed for the most robust enrichment with the eCLIP data
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(Supplemental Figure 7G). While this stringent cutoff for splicing effect probability enriches the
hits for eCLIP peaks, it is likely that this will be too stringent when looking to identify sites to test
with SSOs. Overall, we have shown that SpliceLearn provides much better biological
interpretability than alternative methods, which is crucial for the development of novel
therapeutics. Specifically, we have seen that the predictions made by SpliceLearn can be traced
back to one or multiple SFs, and that these predicted SF binding sites are enriched for eCLIP

peaks in independent datasets, confirming the binding of those SFs at those locations.

Western Blot

Total cell lysates were prepared from breast cancer cell lines using RIPA or NP-40 buffer in the
presence of protease inhibitor. Nuclear, cytoplasmic and membrane protein extracts were
obtained according to the Subcellular Protein Fractionation Kit for Culture Cells (Thermo Scientific
#78840) manufacturer instructions. About 10ug of total protein was separated in 4-15% gradient
gel. The membrane bound specific protein bands were detected using specific primary antibodies
(phSMAD2/3 (Cell Signaling) 1:1000, SMAD2/3 (Cell Signaling) 1:1000, TGFB Receptor | (EMD
Millipore), 1:500, Tubulin (Cell Signaling) 1:1000, Actin (Sigma Aldrich) 1:5000 and H3 (Cell
Signaling) 1:1000 followed by incubation with HRP conjugated secondary antibody and
chemiluminescence detection (Biorad) according to the manufacturer’s instruction. Tubulin was

used as a loading control.
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