

1 Born with intronless ERF transcriptional factors: C₄ photosynthesis 2 inherits a legacy dating back 450 million years

3 Ming-Ju Amy Lyu^{1,8}, HuiLong Du^{2,3,8}, Hongyan Yao^{4,8}, Zhiguo Zhang^{5,8}, Genyun Chen¹,
4 Faming Chen¹, Yong-Yao Zhao¹, Qiming Tang¹, Fenfen Miao¹, Yanjie Wang¹, Yuhui
5 Zhao², Hongwei Lu², Lu Fang², QiangGao², Yiying Qi⁶, QingZhang⁶, Jisen Zhang⁶,
6 Tao Yang⁷, Xuean Cui⁵, Chengzhi Liang^{2,3\$}, Tiegang Lu^{5\$}, Xin-Guang Zhu^{1,9\$}

7

8 1. State Key Laboratory of Plant Molecular Genetics, Center of Excellence for
9 Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China, 200032

10 2. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental
11 Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing,
12 China;

13 3. University of Chinese Academy of Sciences, Beijing, China; School of Life Sciences,
14 Institute of Life Sciences and Green Development, Hebei University, Baoding, China.

15 4. State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan
16 University, Shanghai 200438, China

17 5. Biotechnology Research Institute/National Key Facility for Gene Resources and
18 Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081,
19 China

20 6. Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia
21 Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic
22 Breeding, National Engineering Research Center for Sugarcane, College of Life
23 Sciences, Fujian Agriculture and Forestry University, Fuzhou, China

24 7. China National GeneBank, Shenzhen, 518120, China.

25 8. These authors contributed equally

26 9. Lead Contact

27 * Correspondence: zhuxg@cemps.ac.cn (X.G.Z), lutiegang@caas.cn (L.T.),
28 cliang@genetics.ac.cn (C.L.)

29

30

31 **Summary**

32 The genus *Flaveria*, containing species at different evolutionary stages of the
33 progression from C₃ to C₄ photosynthesis, is used as a model system to study the
34 evolution of C₄ photosynthesis. Here, we report chromosome-scale genome sequences
35 for five *Flaveria* species, including C₃, C₄, and intermediate species. Our analyses
36 revealed that both acquiring additional gene copies and recruiting ethylene responsive
37 factor (ERF) *cis*-regulatory elements (CREs) contributed to the emergence of C₄
38 photosynthesis. ERF transcriptional factors (TFs), especially intronless ERF TFs, were
39 co-opted in dicotyledonous C₄ species and monocotyledonous C₄ species in parallel.
40 These C₄ species co-opted intronless ERF TFs originated from the Late Ordovician
41 mass extinction that occurred ~450 million years ago in coping with environmental
42 stress. Therefore, this study demonstrated that intronless ERF TFs were acquired during
43 the early evolution of plants and provided the molecular toolbox facilitating multiple
44 subsequent independent evolutions of C₄ photosynthesis.

45

46 **Key words:** *Flaveria* genome, C₄ photosynthesis, Tandem duplication, Intronless ERF
47 TFs

48

49

50

51 **Introduction**

52 C₄ photosynthesis is a complex trait that evolved from ancestral C₃ types in the
53 last 35 million years (Sage, 2004; Sage et al., 2012). With high light, water, and nitrogen
54 use efficiencies (Vogan and Sage, 2011; Zhu et al., 2008), C₄ photosynthesis is an ideal
55 target to be engineered into C₃ crops to increase crop yield (Long et al., 2015; Maurino
56 and Weber, 2013; Zhu et al., 2010). Compared to C₃ photosynthesis, C₄ photosynthesis
57 dedicates more genes to carbon fixation, and these genes are compartmentalized either
58 in mesophyll cells (MCs) or in bundle sheath cells (BSCs) (Hatch, 1987; Slack and
59 Hatch, 1967). These MCs and BSCs form the specialized C₄ “Kranz anatomy” (Hatch,
60 1987). Therefore, the evolution of C₄ photosynthesis requires modifications of both
61 metabolism and leaf anatomy in C₃ ancestors. Though complex, C₄ photosynthesis has
62 evolved independently more than 70 times in angiosperms, making it an excellent
63 example of convergent evolution of a complex trait (Sage, 2016). How such a complex
64 trait emerges repeatedly remains an unresolved question in biological research.

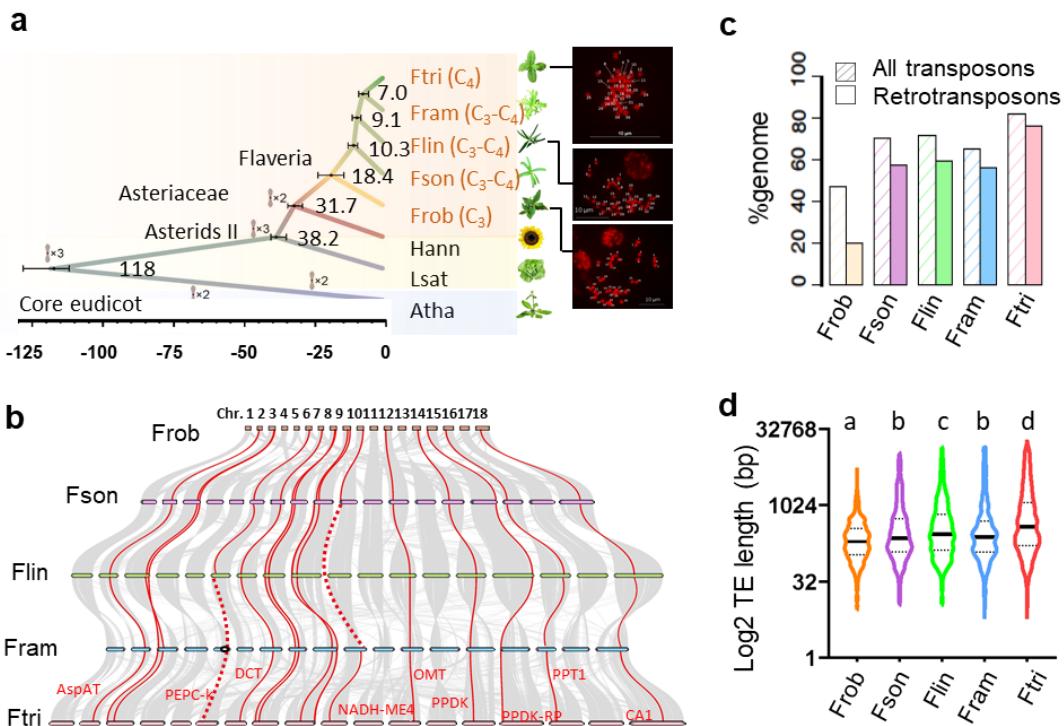
65 All genes that function in C₄ photosynthesis have counterparts in C₃ species
66 (Christin et al., 2013; Christin et al., 2009; Moreno-Villena et al., 2018; Williams et al.,
67 2012). The same C₄ orthologous genes that show relatively high transcript abundances
68 were co-opted in different C₄ lineages in parallel (Emms et al., 2016; Moreno-Villena
69 et al., 2018). Moreover, the recruited C₄ genes often adopt pre-existing regulatory
70 mechanisms of photosynthesis (Burgess et al., 2016), which enables the coordinated
71 expression of C₄ cycle genes with other photosynthesis-related genes. This recruitment
72 of pre-existing elements provides a mechanism for the repeated emergence of C₄
73 photosynthesis in independent lineages. In available genome sequences, conserved *cis*-
74 regulatory elements (CREs) as well as transcription factors (TFs) have been identified
75 that control the MCs or BSCs specificity of C₄ genes in different monocotyledonous C₄
76 lineages (Burgess et al., 2019; Gupta et al., 2020; John et al., 2014). Moreover,
77 conserved TFs controlling MCs and BSCs specificity of gene expression were also
78 identified between monocotyledonous and dicotyledonous C₄ species (Aubry et al.,

79 2014). These observations nevertheless raise the questions of when and how these
80 shared regulatory mechanisms were co-opted into the different C₄ species that diverged
81 160 million years ago (mya) (Kumar et al., 2017), which is much earlier than the
82 emergence of C₄ photosynthesis, *i.e.*, 35 mya (Sage et al., 2011).

83 Among the dicotyledonous model systems for C₄ photosynthesis, the genus
84 *Flaveria* is remarkable because it contains C₃, C₄, and many intermediate species
85 (Powell, 1978). During the last decades, studies based on this genus have contributed
86 to our current understanding of the evolution of C₄ photosynthesis (Gowik and Westhoff,
87 2011; Powell, 1978; Sage et al., 2013). However, due to a lack of genome reference,
88 current knowledge of the regulation of photosynthesis genes in this genus is still very
89 limited. The first version of *Flaveria* genome references, including four species, were
90 published recently (Taniguchi et al., 2021), and provide valuable resources for protein
91 coding gene predictions for this genus. However, as these genomes were generated
92 using short-read whole genome-sequencing, the assembled genomes are fragmented,
93 which compromises their potential application (Taniguchi et al., 2021). Taking
94 advantage of long-read genome sequencing technology, here we reported chromosome-
95 scale genome references of five *Flaveria* species, with which we conducted a
96 systematic study of CREs and TFs during the evolution of C₄ photosynthesis. We found
97 that ethylene responsive factor (ERF) CREs were recruited by C₄ photosynthesis during
98 evolution. Moreover, intronless ERF TFs that originated 450 mya to cope with
99 environmental stress were recruited into different C₄ lineages; furthermore, our study
100 highlighted the role of intronless ERF TFs in the evolution and regulation of C₄
101 photosynthesis, and provided a mechanism underlying the repeated evolution of C₄
102 photosynthesis.

103 **Results**

104 **Analysis of five *Flaveria* genome assemblies showed that transposable elements**
105 **were more abundant in the C₄ species than other species**


106 The genome sequences of five *Flaveria* species, *i.e.*, *F. robusta* (Frob, C₃), *F.*
107 *sonorensis* (Fson, C₃-C₄), *F. linearis* (Flin, C₃-C₄), *F. ramosissima* (Fram, C₃-C₄) and
108 *F. trinervia* (Ftri, C₄) were obtained with PacBio RSII single-molecule real-time
109 (SMRT) sequencing technology (Figure 1a). The assembled genome size was
110 gradually increased during the evolution of C₄ photosynthesis in this genus, from 0.55
111 Gb in the C₃ species Frob, to 1.26~1.66 in the C₃-C₄ species, and to 1.8 Gb in the C₄
112 species Ftri (Table S1), and these data were consistent with the analysis based on flow
113 cytometry (Supplemental Note 1). Based on chromatin conformation capture (Hi-C
114 seq), 98% to 99% of the assembled genome sequences were anchored to 18 pseudo-
115 chromosomes (Figure S1 and Supplemental Note 2), which was supported by
116 fluorescence *in situ* hybridization (FISH) results in Frob, Flin, and Ftri (Figure 1a).
117 This was consistent with the reported chromosome number of 36 (2n) in these five
118 *Flaveria* species (Powell, 1978). Genome completeness was estimated using
119 Benchmarking Universal Single-Copy Orthologues (BUSCO) genes and resulted in
120 coverage from 92.5% to 99.2% of the BUSCO genes. Additionally, an average RNA-
121 seq reads mapping rate of 94.3% (from 86.7 to 97.3%) was obtained (Supplemental
122 Note 3), suggesting completeness and high quality of genome assemblies for the five
123 *Flaveria* species.

124 Although genome size was tripled in the C₄ species Ftri compared to the C₃ species
125 Frob, the number of protein coding genes was comparable between the C₃ and C₄
126 species, with 35,875 (Frob) and 32,915 (Ftri) respectively, and 37,028 to 38,652 protein
127 coding genes were predicted in the C₃-C₄ species (Table S1). We compared the
128 predicted protein coding genes from our assembly with those from Taniguchi's
129 assembly (Taniguchi et al., 2021), we found that around 96% protein coding genes were

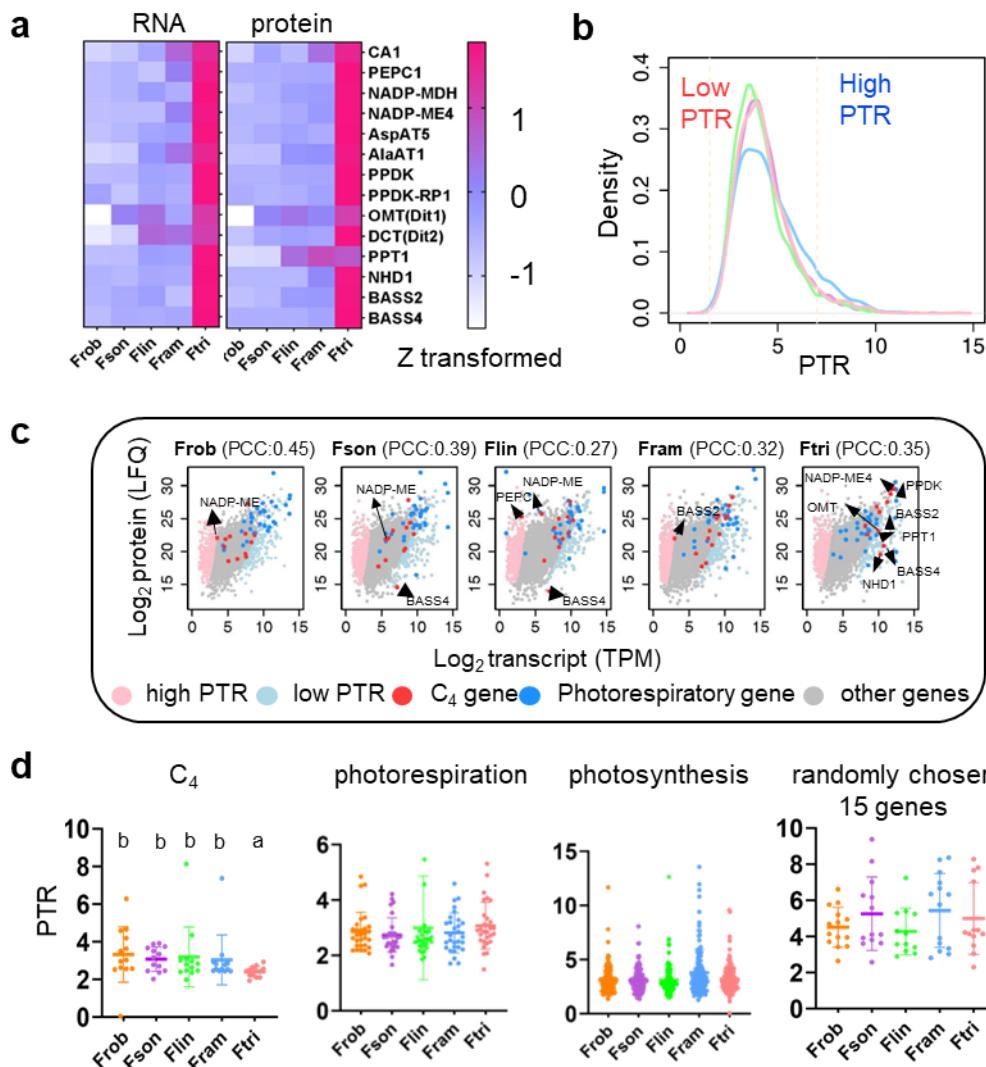
130 overlapped between our assembly and Taniguchi's assembly (Taniguchi et al., 2021)
131 (Supplemental Note 4). Therefore, the annotated protein-coding genes in this study can
132 be considered reliable.

133 The chromosome-scale assembly of genome sequences and reliable gene
134 annotations allowed us to study the evolution of known C₄ enzymes and C₄ transporters
135 (termed as C₄ genes) on location on the chromosomes. We identified eight enzymes and
136 seven transporters as C₄ versions by combining the gene phylogenetic tree and
137 transcript abundances (Supplemental Note 5). As C₄ versions of C₄ genes, but not their
138 orthologs, were reported to be induced by light in C₃ species, we thus verified the C₄
139 version of the C₄ enzymes by examining their responsiveness to light. The C₄ versions
140 of C₄ genes appeared quickly (after 2 hours) and were up-regulated after 4 hours in C₄
141 species after being illuminated, and such light responses were intermediate in the C₃-
142 C₄ species (Figure S2), which suggested the accuracy of identification of the C₄ versions
143 of C₄ genes, and also revealed a gradual gain of light responsiveness during C₄
144 evolution. The synteny of the 18 chromosomes was conserved in the five *Flaveria*
145 species; from 50% to 75% of protein coding genes were colinear between Frob and the
146 other species (Figure 1b and Supplemental Note 2). Notably, the chromosome locations
147 of all 15 C₄ version of C₄ genes were conserved during evolution (Figure 1b).

148 Transposable elements (TEs) showed the highest abundance in the C₄ species,
149 where they accounted for 82% of the total genome, followed by C₃-C₄ species (from
150 65.6% to 71.8%), whereas that percentage in the C₃ species was 47.1% (Figure 1c and
151 Supplemental Note 6). In all five species, long terminal repeat retrotransposons (LTR-
152 RTs) comprised the majority of the TEs, accounting for an average 76% of the total TEs
153 (from 42% to 91%) (Figure 1c). C₄ genes had longer TEs on the promoter regions in
154 the C₄ species than their counterparts in C₃ and C₃-C₄ species do (Figure 1d).

Figure 1. Transposon elements contributed to enlargement of genome size and promoters of C4 genes during *Flaveria* evolution.

(a) Summary of phylogeny and timescale of the five *Flaveria* species and the three indicated outgroup species. Bars represent 95% confidence intervals of the estimated divergence time. Whole genome duplications are shown at the corresponding node/branch. Panels at the right display fluorescence *in situ* hybridization images to assess the chromosome numbers in *Ftri*, *Flin*, and *Frob*. (b) Collinearity of chromosomes among *Flaveria* species. *C4* genes are drawn in red line. Dashed lines represent either failure in anchoring to chromosome (NADP-ME in *Flin*) or a deletion from the genome (PEPC-k in *Fram*). (c) Proportions of transposon elements, relative to the whole genome by length. (d) Assessment of 15 *C4* genes (from panel c), showing that the *C4* species *Ftri* has relatively longer TEs in the promoter region (3 kb upstream of start codon at the 5' end) of these loci. (Abbreviations: *Frob*: *F. robusta*, *Fson*: *F. sonorensis*, *Flin*: *F. linearis*, *Fram*: *F. ramosissima*, *Ftri*: *F. trinervia*.)


170

171 **C4 genes acquired elevated protein levels during evolution, which were regulated**
 172 **mainly at transcriptional levels**

173 The transcript and protein abundances of *C4* genes were generally higher in *C4*
 174 species than in *C3* and *C3-C4* species (Figure 2a). To study whether transcriptional or

175 translational regulation is primarily responsible for the observed difference in protein
176 abundance between species with different photosynthetic types, we compared the
177 protein-to-mRNA ratios (PTR) between genes in five *Flaveria* species. Low PTR
178 genes and high PTR genes were defined as genes with PTR less than the mean PTR
179 minus standard deviation (SD) and higher than the mean PTR plus SD, respectively
180 (Figure 2b), and the remaining genes were defined as moderate PTR genes. In
181 general, there was a positive correlation between mRNA and protein levels, with
182 Pearson correlations ranging from 0.27 to 0.45, and most genes had moderate PTRs
183 (Figure 2c). An average of 166 low PTR genes (from 121 to 201) and 395 high PTR
184 genes (from 375 to 462) were obtained in the five species (Supplemental Notes 7~9).
185 In the C₄ species, seven C₄ genes were characterized as low PTR genes, whereas three
186 or fewer C₄ orthologous genes were low PTR genes in the C₃ and C₃-C₄ species.

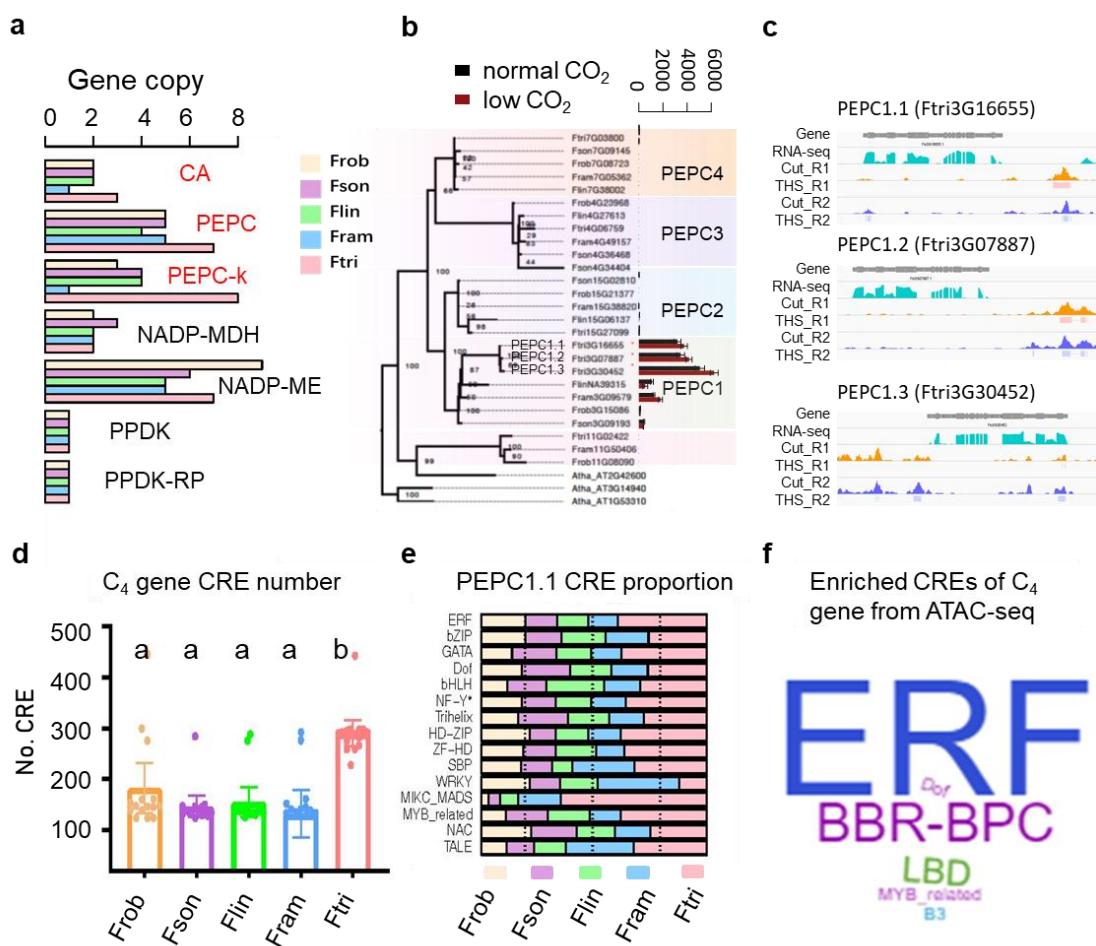
187 The low PTR genes were enriched in gene ontology (GO) of photosynthesis and
188 photosynthesis related GO terms, including chloroplast, PSII, and others
189 (Supplemental Note 9), consistent with an early study in *Arabidopsis thaliana* (Atha),
190 which showed that the photosynthesis related genes had significantly lower PTRs than
191 other genes in photosynthetic functional leaf tissues (Mergner et al., 2020)
192 (Supplemental Note 9). C₄ genes showed significantly lower PTRs in the C₄ species
193 than their orthologs in the C₃ and C₃-C₄ species did (Figure 2d), whereas
194 photorespiratory genes or photosynthesis genes (not including C₄ genes) showed
195 comparable PTRs across the five *Flaveria* species. Therefore, during the evolution of
196 C₄ photosynthesis, C₄ species acquired elevated protein levels for C₄ genes, which
197 were regulated mainly at transcriptional levels.

198

199 **Figure 2. The C₄ species had increased transcript abundances of C₄ genes.**

200 (a) RNA-seq and proteomics data for the C₄ genes in the five *Flaveria* species show
201 increased transcript and protein abundances of C₄ genes in the C₄ species Ftri. (b) The
202 protein-to-mRNA ratio (PTR) distribution of genes from the five *Flaveria* species. High
203 PTR and low PTR genes are defined as genes with PTR higher than the mean plus one
204 standard deviation (SD) and with PTR values lower than the mean minus one SD
205 respectively. (c) Scatter plot of protein versus transcript abundance of the five *Flaveria*
206 species. low PTR and high PRT C₄ genes were labeled with arrows. Note the trend
207 towards lower PTR for the C₄ gene set in Ftri, as compared to the C₃ Frob and the three
208 intermediate *Flaveria* species. In contrast, there is no apparent shift in PTR for
209 photorespiratory genes. (d) PTR values for the C₄ gene set in the five *Flaveria* species,
210 showing that C₄ genes have significantly lower PTR in C₄ species Ftri than in the C₃
211 Frob or the three intermediate species. Note that no such decrease is showed for
212 photorespiratory genes, photosynthesis genes and randomly chosen genes.
213 (Abbreviations for proteins see Supplemental Note 8, Figure S14.)

214


215 **Tandem duplication and recruitment of ERF *cis*-regulatory elements contributed
216 to the increased transcript abundances of C₄ genes**

217 We then analyzed what contributed to the increased transcript abundance of C₄
218 genes in the C₄ species. Carbonic anhydrase (CA), phosphoenolpyruvate carboxylase
219 (PEPC), and PEPC kinase (PEPC-k) showed extra copies in C₄ species, which were
220 derived from tandem duplications (Figure 3a and Figure S3). For example, the C₄
221 version of PEPC, termed PEPC1 because it showed the highest transcript abundance
222 among the other paralogs in C₄ species, had three copies in the C₄ species Ftri, and
223 only one copy in the other species. The three paralogs of PEPC1 in Ftri, termed as
224 PEPC1.1, PEPC1.2, and PEPC1.3, were located on the same chromosome (Chr3)
225 (Figure 3b). The existence of the three PEPC1 paralogs on the chromosome was
226 further verified by PCR (Supplemental Note 10). In Ftri, all three PEPC1s had
227 comparable transcript abundances, which were higher than those in the other four
228 species (Figure 3b). Additionally, they were all upregulated under long-term low CO₂
229 treatment (100 ppm) compared to normal CO₂ conditions (380 ppm), suggesting that
230 these triplets hosted shared regulatory mechanisms. Indeed, all three paralogs
231 harbored the mesophyll expression module 1 (MEM1) CRE (Akyildiz et al., 2007)
232 (Supplemental Note 10); moreover, the three paralogs showed similar signatures of
233 chromatin accessibility through transposase-accessible chromatin using sequencing
234 (ATAC-seq) (Figure 3c and Supplemental Note 11).

235 We further characterized the distribution of CREs on the promoter regions of C₄
236 genes. Ftri (C₄) showed significantly more CREs for C₄ genes than the other species
237 did ($p < 0.001$, *t*-test) (Figure 3d). Notably, when the total numbers of CREs of each
238 gene in the five species were compared, ERF CREs were the most abundant of all
239 examined C₄ genes (Figure 3e and Supplemental Note 12). For example, for PEPC1
240 (PEPC1.1 from Ftri), there were 89 predicted ERF CREs from 5 species, followed by
241 bZIP (54 CREs) and GATA (51 CREs).

242 To examine whether the ERF CREs were localized in the accessible chromatin
243 regions (ACRs) in the C₄ species, we analyzed the enriched CREs in the ACRs (ACR-
244 CREs) obtained from two biological ATAC-seq (Supplemental Note 11). We
245 categorized genes associated with ACRs-CREs into three types according to their
246 distance to the nearest gene, *i.e.*, genic (gACR-CREs; overlapping a gene), upstream
247 (upACR-CREs; within 3 kb upstream of the start codon of a gene) or downstream
248 (downACRs-CREs; within 3 kb downstream of the stop codon of a gene). We then
249 calculated enriched CREs in ACR-CREs. Across all three types of ACR-CREs, ERF
250 CREs had the highest abundance among enriched CREs. Moreover, ERF dominated
251 the enriched ACR-CREs of C₄ genes, as well as in photosynthetic and
252 photorespiratory genes (Figure 3f and Figure S4).

253 Taken together, our results suggested possible roles of both tandem duplications
254 and recruitment of ERF CREs in the elevation of transcript abundances of C₄ genes in
255 the C₄ species Ftri.

256

257 **Figure 3. Tandem duplications and recruitments of ERF cis-regulatory elements**
258 **contributed to the increased transcript abundances of C₄ genes in the C₄ species**
259 **Ftri**

260 (a) Copy number of the C₄ version of C₄ enzymes in five *Flaveria* species. Note that
261 CA, PEPC, and PEPC-K have more copies in the C₄ species Ftri than other *Flaveria*
262 species. (b) Gene tree of PEPC orthologs, PEPCs from *Arabidopsis thaliana* (Atha) are
263 used as outgroups. PEPCs in *Flaveria* species are categorized into four groups, and
264 PEPC1 is the C₄ version according to the highest expression levels among all PEPCs.
265 PEPC1 has three copies in the C₄ species Ftri, showing comparable transcript
266 abundances in leaves and uniform upregulation when plants were grown under low CO₂
267 conditions (100 ppm) compared to normal CO₂ conditions (380 ppm). (c) Integrated
268 Genome Viewer (IGV) of RNA-seq reads and ATAC-seq reads of three PEPC1 in Ftri.
269 Tn5 cuts and transposase hypersensitive sites (THS) from two biological replicates
270 show that the three PEPC1 have shared chromatin accessibility upstream of their coding
271 region. (d) Bar plots show the number of predicted cis-regulatory elements (CREs) from
272 the promoter region (3kb upstream of start codon) of all C₄ genes in the five *Flaveria*
273 species. (e) An example of the distribution of the top 15 CREs in C₄ genes, noting that
274 Ftri has more CREs in PEPC1.1 than other species. CREs of the 3kb of the 5'-flank
275 regions of C₄ genes were predicted applying the online tool Plantpan3.0 (score \geq 0.99).

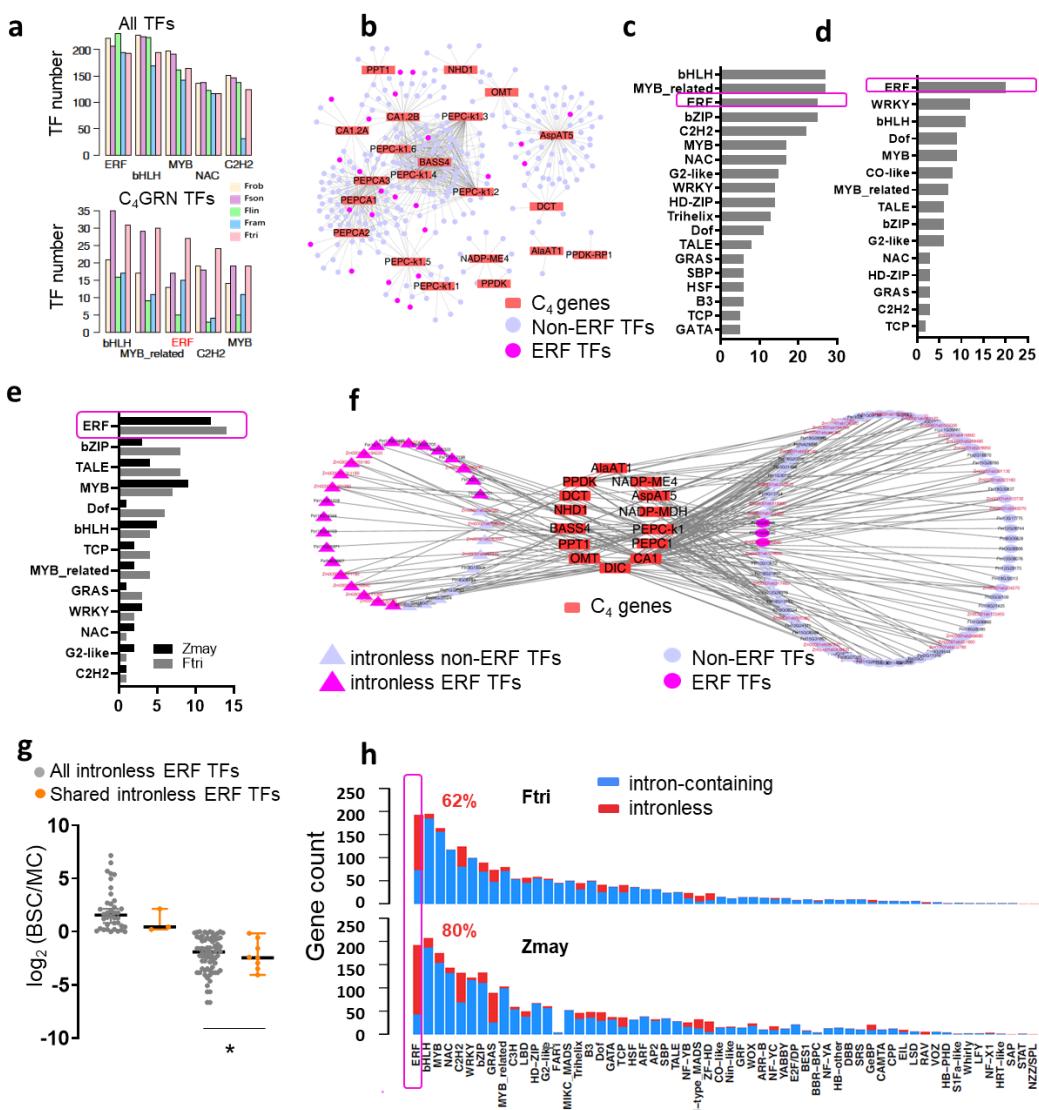
276 The TF families from top to bottom are ordered in a decreasing rank of total number of
277 CREs from the five *Flaveria* species. (f) Word cloud represents the enriched CREs
278 associated with C₄ genes in the C₄ species Ftri based on ATAC-seq, including those
279 within 3kb upstream of start codon, within 3kb downstream of the stop codon and
280 within the gene body.

281

282 **Intronless ERF transcriptional factors were recruited in parallel in different C₄**
283 **species**

284 Given that many ERF CREs were recruited by C₄ genes in Ftri (C₄), we tested
285 whether cognate ERF TFs were recruited in the same manner by C₄ photosynthesis. We
286 constructed a genome-wide co-regulatory network (GRN) of the five *Flaveria* species
287 based on the gene expression profiles of at least 18 RNA-seq datasets either from a
288 previous work (Zhu, 2020) or generated in the current study (Supplemental Note 13).
289 We then obtained the sub GRN comprising C₄ genes and their co-regulated TFs
290 (C₄GRN). TFs that had no predicted cognate CREs within 3 kb upstream of the start
291 codon were filtered out. ERF, bHLH, MYB, NAC, and C2H2 were the top five most
292 abundant TF families in the C₄GRN of the five *Flaveria* species (Figure 4a and Figure
293 S5). In the C₄ species Ftri, 324 TFs were predicted to be co-regulated with C₄ genes
294 (Figure 4b), among which bHLH was the most prevalent TFs, with 29 genes, followed
295 by the MYB related and ERF TF families, with 27 and 26 genes respectively (Figure
296 4c). Notably, ERF TFs were much more abundant in the C₄GRN of the C₄ species than
297 in other species, though the number of predicted ERF TFs were comparable in all five
298 *Flaveria* species (Figure 4a and Supplemental Note 13), suggesting that ERF TFs were
299 preferentially recruited by C₄ genes during evolution.

300 C₄ photosynthesis has appeared in more than 65 evolutionary independent lineages
301 (Sage et al., 2012), and ERF CREs were previously found abundant in other C₄ lineages,
302 including *Zea mays* (corn; herein Zmay), *Setaria italica* (foxtail millet), and *Sorghum*
303 *bicolor* (sorghum) (Supplemental Note 12) (Burgess et al., 2019; Marand et al., 2021).
304 We investigated whether ERF TFs were also convergently recruited in other C₄ lineages.


305 We used Zmay, a model species for C₄ research, for this test. Specifically, we analyzed
306 a recently published leaf GRN for this species, which was constructed based on a
307 combination of Chip-seq data, gene co-expression data, and a machine-learning based
308 co-localization model(Tu et al., 2020). This genomic scale GRN included 1,475 TFs
309 from 54 TF families, in which bHLH was the most prevalent family, with 138 genes,
310 followed by ERF and MYB, with 136 and 108 genes, respectively (Tu et al., 2020)
311 (Figure S6a). The C₄GRN included 108 TFs from 15 TF families (Figure S6b), in which
312 ERF TFs was the most prevalent ones, with 20 genes, followed by the WRKY and
313 bHLH families, with 12 and 11 genes, respectively (Figure 4d). Therefore, ERF TFs
314 were convergently recruited in both Ftri and Zmay, whose last common ancestor
315 diverged around 160 mya (Kumar et al., 2017).

316 We further identified the shared TFs between Ftri and Zmay, *i.e.*, those recruited
317 by both species and found in the same orthologous group based on Orthofinder's
318 analysis (Methods). Shared TFs were not required to regulate the same C₄ genes in the
319 two species. Our analysis found shared TFs from 27 orthologous groups which included
320 63 TFs from Ftri and 47 TFs from Zmay respectively. Again, the ERF TFs were the
321 most abundant families in both species, including 14 (22.2%) and 12 (25.5%) of shared
322 TFs in Ftri and Zmay, respectively (Figure 4e), and the targeted genes of these shared
323 TFs covered 14 of the 15 C₄ genes (Figure 4f). Notably, among the shared ERF TFs, 12
324 out of the 14 in Ftri and 11 out of 12 in Zmay were intronless genes, which account for
325 66.7% and 73.3% of total shared intronless TFs in Ftri (18 intronless TFs) and Zmay
326 (15 intronless TFs), respectively (Figure 4f). Compared to other intronless ERF TFs in
327 Zmay, the shared intronless ERFs showed more MC preferential expression (Figure 4g).

328 We further investigated the portion of intronless genes in each of the TF families
329 in Ftri and Zmay. Intronless genes showed the most occurrences in ERF families, in
330 which, 62% and 80% of ERF TFs were intronless in Ftri and Zmay respectively,
331 accounting for 35.2% and 26.3% of the total intronless TFs in these species (Figure 4h).
332 ERF TFs were also the most abundant intronless TF family in other land plant species,

333 regardless of whether they are monocotyledonous or dicotyledonous, C₃ or C₄ species
334 (Figure S7). These intronless ERFs showed greater changes in transcript abundances in
335 response to low CO₂ stress compared to intron-containing ERFs in the C₄ species Ftri
336 but not in other non-C₄ *Flaveria* species. Similarly, intronless ERF TFs exhibited rapid
337 and increased changes in gene expression in response to light induction in the C₄ species
338 Zmay but not in the C₃ species *Oryza sativa*, *i.e.*, rice ($P < 0.05$, Wilcoxon.test, Figure
339 S8). These properties of intronless ERF TFs, including MC preferential expression
340 (Figure 4g) and greater responses to low CO₂ and light, might have contributed to their
341 role in C₄ photosynthesis.

342 We further analyzed the properties of one shared intronless ERF TF, *i.e.*, EREB34
343 (Figure S9a) between the Ftri C₄GRN and Zmay C₄GRN. EREB34 showed conserved
344 expression profiles along the leaf developmental gradient or leaf age between C₃ and
345 C₄ species. However, EREB34 showed significantly higher transcript abundance in the
346 C₄ species than in C₃ species, which was shown both when we compared the
347 evolutionarily close C₃ and C₄ species pairs individually (Figure S9b), and when we
348 compared 30 C₄ and 17 C₃ species representing 18 independent lineages of C₄ evolution
349 (Steven Kelly, 2018) (Figure S9c). EREB34 also showed MC preferential expression
350 in C₄ species (Figure S9d). All these results suggested that EREB34 may play a role in
351 the evolution of C₄ photosynthesis.

352

353

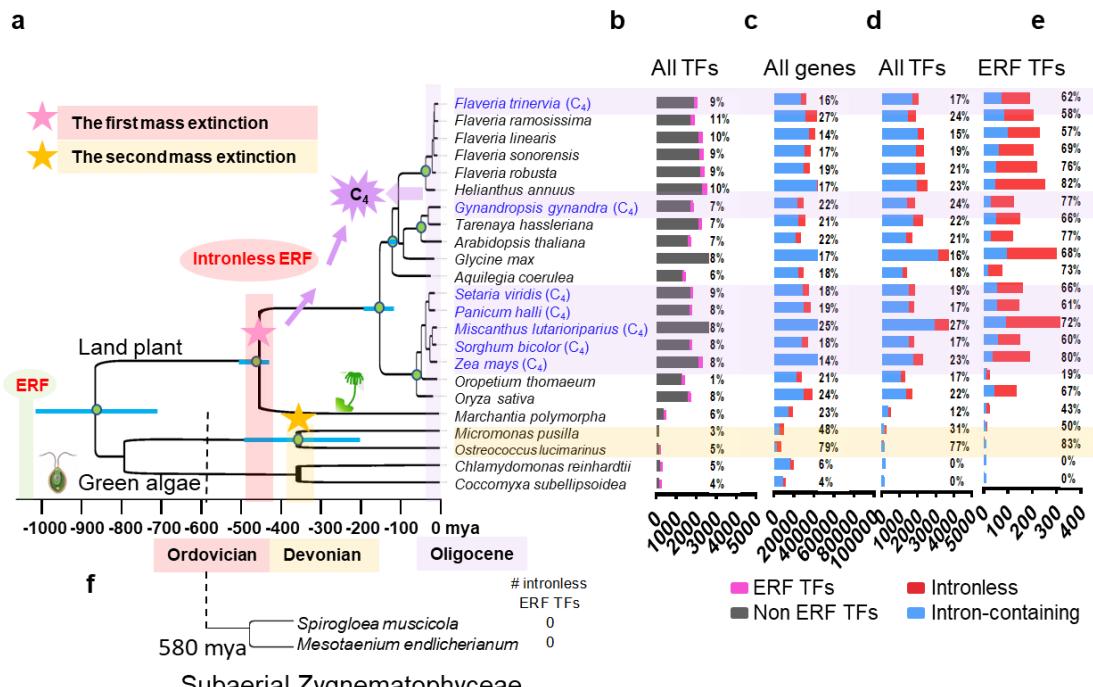
Figure 4. Intronless ERF were recruited by C₄ genes in different C₄ lineages

354 (a) The Top five most abundant TF families of all annotated TFs (top panel) and TFs
 355 that are co-regulated with C₄ genes (bottom panel) (a) The network of C₄ genes and TFs,
 356 which is termed as C₄GRN in Ftri. (b) Families of TFs from C₄GRN of Ftri. (c) Families
 357 of TFs from C₄GRN of Zmay. Zmay C₄GRN is extracted from published gene
 358 regulatory network in Tu et. al, 2019. (d) Orthologous TFs from C₄GRN of Ftri and
 359 Zmay and their distribution in TF families. Orthologous groups were predicted with
 360 Orthofinder, and orthologous TFs between Ftri and Zmay, termed as shared TFs, are
 361 those from the same orthologous groups. (e) Regulatory network of shared TFs and C₄
 362 genes in Ftri and Zmay. Note that among the shared ERF TFs, 12 of 14 in Ftri and 11
 363 of 12 in Zmay are intronless genes. (f) Bundle sheath cell (BSC) and mesophyll cell
 364 (MC) preferential expression of all intronless ERF TFs and shared intronless ERF TFs
 365 in Zmay. Y-axis shows log₂ ratio of transcript abundance of each gene in BSC to that
 366 in MC. (g) Number of intronless genes in each TF family. (Abbreviations: GRN: gene
 367 co-regulatory network, MC: mesophyll cell, BSC: bundle sheath cell, Ftri: *Flaveria*
 368 *trinervia*, Zmay: *Zea mays*.)

369 **Intronless ERF TFs recruited by C₄ photosynthesis originated in the Late**
370 **Ordovician around 450 million years ago**

371 ERF TFs belong to the AP2/ERF superfamily, which is one of the largest families
372 of plant-specific TFs, and play vital roles in responses to various biotic and abiotic
373 stresses (Feng et al., 2020; Gu et al., 2017; Xie et al., 2019). Our data showed that
374 intronless ERF TFs were recruited as major regulators of C₄ photosynthesis in both
375 monocots and dicots. Considering that monocots and dicots diverged ~160 mya (Kumar
376 et al., 2017), while C₄ photosynthesis emerged ~ 35 mya (Sage et al., 2011), elements
377 shared between the monocotyledonous and dicotyledonous C₄ species were likely
378 recruited before the divergence of monocots and dicots. We hence examined the origin
379 of the intronless ERF TFs in plants. Specifically, we first surveyed the distribution of
380 intronless genes in all annotated TF families based on the plantTFDB online tool (Jin
381 et al., 2017) in 23 species spanning a wide spectrum of Viridiplantae (green plants),
382 including four species from Chlorophyta, *Marchantia polymorpha* (Mploy, liverwort),
383 which is regarded as one of the earliest land species (Delaux et al., 2019), seven
384 monocotyledonous species, and 11 dicotyledonous species including the five *Flaveria*
385 species sequenced here (Figure 5a). We included five and two C₄ species from
386 monocots and dicots, respectively.

387 We found that ERF TFs were present in all Viridiplantae, accounting for 7% of
388 total TFs on average (Figure 5b). Furthermore, intronless genes were also present in all
389 Viridiplantae, accounting for 22% of total annotated genes on average (Figure 5c).
390 Intronless ERF TFs were found in all land plants and in the clade of Chlorophyta that
391 includes *Micromonas pusilla* (Mpus), termed Mpus clade hereafter, but not the clade
392 that includes *Chlamydomonas reinhardtii* (Crei), termed Crei clade hereafter (Figure 5d
393 and Figure 5e). To determine whether the intronless ERF were specifically absent from
394 the two species in the Crei clade or from the whole clade, we examined the other two
395 species from the Crei clade with genome sequences available in the Phytozome


396 database (<https://phytozome-next.jgi.doe.gov>), *i.e.*, *Dunaliella salina* and *Volvox*
397 *carteri*. We found that intronless ERF TFs were not present in those two species either
398 (Supplemental Note 14), implying that intronless ERF were absent from the Crei clade.

399 We then asked whether intronless ERF TFs were lost in Crei clade specifically or
400 if there were two independent gains of intronless ERF TFs in the plant kingdom. We
401 studied two species from Zygnematophyceae, which is the closest extant sister branch
402 of land plants and evolved 580 mya (Gitzendanner et al., 2018), *i.e.*, *Spirogloea*
403 *muscicola* and *Mesotaenium endlicherianum* (Cheng et al., 2019). Intronless ERF TFs
404 were also absent in these two species (Figure 5f), suggesting that intronless ERF TFs
405 in land plants and aquatic algae (Mpus clade) emerged from two independent
406 evolutionary events. As further evidence, intronless ERF TFs from the Mpus clade
407 showed nearly no orthologs in land plant species (Supplemental Note 14). Therefore,
408 there were two independent gains of intronless ERF TFs during the evolution of
409 Viridiplantae, and those evolved from the common ancestor of land plant species were
410 recruited in C₄ photosynthesis.

411 What might have promoted the emergence of intronless ERF TFs recruited to
412 support C₄ photosynthesis during the evolution of plants? To study this, we examined
413 the recorded extreme climatic events around the period of the two independent
414 occurrences of intronless ERF TFs in Viridiplantae. The first occurrence of intronless
415 ERF TFs is around 450 mya when the land plants diverged from aquatic algae
416 (Sanderson et al., 2004). This period coincided with the time of the Earth's first mass
417 extinction, around 447~444 mya during the Late Ordovician (Finnegan et al., 2012;
418 Sheehan, 2001). The second appearance of intronless ERF TFs, observed in the Mpus
419 clade, occurred around 380 mya, which coincided with the time of the second mass
420 extinction, around 372 mya during the Late Devonian (Da Silva et al., 2020; De
421 Vleeschouwer et al., 2017) (Figure 5). Dramatic climate changes such as low
422 temperature and oxygen deprivation have been proposed to underlie these two mass
423 extinctions^{17,19}. Therefore, intronless ERF TFs might be the products of ancestral plants

424 coping with extreme climate events. Long after the first emergence of these intronless
 425 ERF TFs in land species, around 35 mya (Sage et al., 2011), some of those TFs,
 426 especially those with strong cell specific expression patterns (Figure 4g) were recruited
 427 in C₄ photosynthesis.

428

429

Figure 5. Intronless ERF TFs that were recruited in C₄ photosynthesis emerged much earlier than C₄ photosynthesis did

430 (a) Phylogenetic relationships of 23 species. C₄ species are labeled in blue. The
 431 divergence time of each node is referenced from Timetree (<http://timetree.org/>). Two
 432 independent evolutionary origins of intronless ERF TFs are proposed, the occurrences
 433 of which coincide with the first mass extinction during the Late Ordovician (~482 mya,
 434 pink bar) and the second mass extinction during the Late Devonian (~358 mya, yellow
 435 bar), respectively. A star represents an independent evolutionary origin of intronless
 436 ERF TFs (b) Proportions of ERF TFs to total TFs. (c) Proportions of intronless gene to
 437 total protein coding genes. (d) Proportions of intronless TFs to total TFs. (e) Proportions
 438 of intronless ERF TFs to total ERF TFs. (f) The number of intronless ERF TFs in the
 439 two subaerial species from Zygnetophyceae, which is the sister branch of land plants
 440 and split from land plants ~580 mya. (Abbreviation: ERF: ethylene responsive factor,
 441 mya: million years ago.)

444

445 Discussion

446 Identifying key regulators of C₄ photosynthesis is a major task required for C₄
447 engineering (Cui, 2021; Hibberd and Covshoff, 2010; Schluter and Weber, 2020;
448 Westhoff and Gowik, 2010). The high-quality genome sequences of five *Flaveria*
449 species offered a rich resource to support evolutionary and regulatory study of C₄
450 photosynthesis. With this resource, we showed that intronless ethylene responsive
451 factors (ERF) transcription factors (TF), a class of TFs involving in stress responses in
452 plants (Christin et al., 2008; Ehleringer et al., 1991; Sage et al., 2011; Sage et al., 2012),
453 played a role during the evolution of C₄ photosynthesis. These intronless ERF TFs,
454 originating from ~450 mya (Sanderson et al., 2004) (Figure 5), have been repetitively
455 recruited by different C₄ lineages during evolution. Therefore, our results provided a
456 molecular mechanism underlying shared TFs and *cis*-regulatory elements (CREs)
457 between monocotyledonous and dicotyledonous C₄ species that diverged 160 mya
458 (Kumar et al., 2017), though the first C₄ plants emerged ~35 mya (Sage et al., 2011).
459 The parallel recruitment of intronless ERF TFs implied that they may be used as targets
460 during the current efforts in C₄ engineering.

461 Why intronless ERF TFs? Intronless genes, featuring short mRNA length and lower
462 transcript abundances compared to intron-containing genes (Shabalina et al., 2010)
463 (Supplemental Note 15), play roles in plant responses to drought and salt stress (Liu et
464 al., 2021). Intronless genes, regardless of being TF or not, showed more changes than
465 intron-containing genes to low CO₂ stress in all five *Flaveria* species, and greater and
466 faster changes to light induction in both C₃ and C₄ species at the transcriptional level
467 (Supplemental Note 15). Ethylene, an ancient plant hormone (Ju et al., 2015), bridges
468 plant developmental adaptation and a changing environment (Merchante et al., 2013).
469 ERF TFs, the last step of the ethylene signaling pathway, regulate the response of plants
470 to environmental changes (Xie et al., 2019). Recently, one intronless ERF TF was
471 reported to simultaneously modulate photosynthesis and nitrogen utilization in rice
472 (Wei et al., 2022). ERF TFs showed remarkable changes to low CO₂ stress in all five

473 *Flaveria* species (Supplemental Note 15). Being evolutionary old and functioning in
474 responding to environmental changes may underlie the observation that around 70% of
475 ERF TFs evolved to be intronless genes in land plant species (Figure S7). In addition,
476 ERF TFs existed widely across the plant kingdom, with a large presence of cognate
477 CREs in plant genomes (Supplemental Note 12). The abundance of intronless ERF TFs
478 and cognate CREs provided molecular resources for the evolution of C₄ photosynthesis
479 in coping with environmental stressors, such as low CO₂, drought, and high light and
480 high temperature conditions (Christin et al., 2008; Ehleringer et al., 1991; Sage et al.,
481 2011; Sage et al., 2012) .

482 Intronless genes are also present in animals and fungi (see database:
483 <http://v2.sinex.cl/>) (Jorquera et al., 2021). The ancient origin of intronless genes has
484 been reported from animals. For example, intronless type I interferon (INF) in animals
485 evolved from intron-containing type I INF in fish and amphibians around 350 mya
486 during the Devonian (Gan et al., 2017), coinciding with the time when intronless ERF
487 TFs originated in the Mpus algae clade. This suggested that environmental
488 perturbations during the Devonian triggered the birth of new classes of intronless
489 genes in both animals and plants. Interestingly, in humans, the counterpart of plant
490 ERF TFs is the G-protein-coupled receptors (GPCRs). Around 50% of GPCRs are
491 intronless genes, accounting for 53% of total human intronless genes (Gentles and
492 Karlin, 1999; Grzybowska, 2012), compared to 70% ERF TFs that are intronless
493 genes, accounting for around 30% of total plant intronless genes (Figure 5). Notably,
494 ERFs in plants and GPCRs in humans have analogous functions in receiving and
495 transducing signals from the external environment (Grzybowska, 2012; Xie et al.,
496 2019). Therefore, particular types of intronless genes were retained for evolutionary
497 adaptions in both the plant and animal kingdoms (Grzybowska, 2012; Xie et al.,
498 2019).
499

500 **Acknowledgements**

501 We appreciate Prof. Rowan F. Sage and Prof. Peter Westhoff for sharing us
502 *Flaveria* materials. The work is funded by Strategic Priority Research Program of the
503 Chinese Academy of Sciences (grant number: XDB27020105), the general program of
504 National Science Foundation of China (31870214) and the National Key Research and
505 Development Program of China (2020YFA0907603).

506

507 **Authors' contributions**

508 XGZ, TL, CL and MJAL designed the study and wrote the paper. HD and ZG
509 performed genome assembly and annotation, MJAL performed genome comparison
510 analysis, qRT-PCR and RNA-seq analysis, HY conducted proteomics analysis, GC
511 wrote the paper, FC performed gene regulatory network construction, YYZ performed
512 PCR verification of the three paralogs of PEPC1s in Ftri, QT performed Ka/Ks analysis,
513 FM and YW performed plasmodesmata analysis, CX performed transcriptional factor
514 prediction, YZ and HL performed genome annotation of Fram, YT constructed *Flaveria*
515 workspace in China National GeneBank (CNGB), LF and QG performed genome
516 assembly of Fram, YQ performed transposon analysis, QZ and JZ performed syntenic
517 analysis.

518

519 **Competing interests**

520 The authors declare no conflict of interests.

521 **Figure legends**

522 **Figure 1. Transposon elements contributed to enlargement of genome size and**
523 **promoters of C₄ genes during *Flaveria* evolution.**

524 (a) Summary of phylogeny and timescale of the five *Flaveria* species and the three

525 indicated outgroup species. Bars represent 95% confidence intervals of the estimated
526 divergence time. Whole genome duplications are shown at the corresponding
527 node/branch. Panels at the right display fluorescence *in situ* hybridization images to
528 assess the chromosome numbers in Ftri, Flin, and Frob. (c) Collinearity of
529 chromosomes among *Flaveria* species. C₄ genes are drawn in red line. Dashed lines
530 represent either failure in anchoring to chromosome (NADP-ME in Flin) or a deletion
531 from the genome (PEPC-k in Fram). (b) Proportions of transposon elements, relative to
532 the whole genome by length. (d) Assessment of 15 C₄ genes (from panel c), showing
533 that the C₄ species Ftri has relatively longer TEs in the promoter region (3 kb upstream
534 of start codon at the 5' end) of these loci. (Abbreviations: Frob: *F. robusta*, Fson: *F.*
535 *sonorensis*, Flin: *F. linearis*, Fram: *F. ramosissima*, Ftri: *F. trinervia*.)

536 **Figure 2. The C₄ species had increased transcript abundances of C₄ genes.**

537 (a) RNA-seq and proteomics data for the C₄ genes in the five *Flaveria* species show
538 increased transcript and protein abundances of C₄ genes in the C₄ species Ftri. (b) The
539 protein-to-mRNA ratio (PTR) distribution of genes from the five *Flaveria* species. High
540 PTR and low PTR genes are defined as genes with PTR higher than the mean plus one
541 standard deviation (SD) and with PTR values lower than the mean minus one SD
542 respectively. (c) Scatter plot of protein versus transcript abundance of the five *Flaveria*
543 species. low PTR and high PRT C₄ genes were labeled with arrows. Note the trend
544 towards lower PTR for the C₄ gene set in Ftri, as compared to the C₃ Frob and the three
545 intermediate *Flaveria* species. In contrast, there is no apparent shift in PTR for
546 photorespiratory genes. (d) PTR values for the C₄ gene set in the five *Flaveria* species,
547 showing that C₄ genes have significantly lower PTR in C₄ species Ftri than in the C₃
548 Frob or the three intermediate species. Note that no such decrease is showed for
549 photorespiratory genes, photosynthesis genes and randomly chosen genes.
550 (Abbreviations for proteins see Supplemental Note 8, Figure S14.)

551 **Figure 3. Tandem duplications and recruitments of ERF *cis*-regulatory elements**
552 **contributed to the increased transcript abundances of C₄ genes in the C₄ species**

553 **Ftri**

554 (a) Copy number of the C₄ version of C₄ enzymes in five *Flaveria* species. Note that
555 CA, PEPC, and PEPC-K have more copies in the C₄ species Ftri than other *Flaveria*
556 species. (b) Gene tree of PEPC orthologs, PEPCs from *Arabidopsis thaliana* (Atha) are
557 used as outgroups. PEPCs in *Flaveria* species are categorized into four groups, and
558 PEPC1 is the C₄ version according to the highest expression levels among all PEPCs.
559 PEPC1 has three copies in the C₄ species Ftri, showing comparable transcript
560 abundances in leaves and uniform upregulation when plants were grown under low CO₂
561 conditions (100 ppm) compared to normal CO₂ conditions (380 ppm). (c) Integrated
562 Genome Viewer (IGV) of RNA-seq reads and ATAC-seq reads of three PEPC1 in Ftri.
563 Tn5 cuts and transposase hypersensitive sites (THS) from two biological replicates
564 show that the three PEPC1 have shared chromatin accessibility upstream of their coding
565 region. (d) Bar plots show the number of predicted *cis*-regulatory elements (CREs) from
566 the promoter region (3kb upstream of start codon) of all C₄ genes in the five *Flaveria*
567 species. (e) An example of the distribution of the top 15 CREs in C₄ genes, noting that
568 Ftri has more CREs in PEPC1.1 than other species. CREs of the 3kb of the 5'-flank
569 regions of C₄ genes were predicted applying the online tool Plantpan3.0 (score \geq 0.99).
570 The TF families from top to bottom are ordered in a decreasing rank of total number of
571 CREs from the five *Flaveria* species. (f) Word cloud represents the enriched CREs
572 associated with C₄ genes in the C₄ species Ftri based on ATAC-seq, including those
573 within 3kb upstream of start codon, within 3kb downstream of the stop codon and
574 within the gene body.

575 **Figure 4. Intronless ERF were recruited by C₄ genes in different C₄ lineages**

576 (a) The Top five most abundant TF families of all annotated TFs (top panel) and TFs
577 that are co-regulated with C₄ genes (bottom panel) (a) The network of C₄ genes and TFs,
578 which is termed as C₄GRN in Ftri. (b) Families of TFs from C₄GRN of Ftri. (c) Families
579 of TFs from C₄GRN of Zmay. Zmay C₄GRN is extracted from published gene
580 regulatory network in Tu et. al, 2019. (d) Orthologous TFs from C₄GRN of Ftri and

581 Zmay and their distribution in TF families. Orthologous groups were predicted with
582 Orthofinder, and orthologous TFs between Ftri and Zmay, termed as shared TFs, are
583 those from the same orthologous groups. (e) Regulatory network of shared TFs and C₄
584 genes in Ftri and Zmay. Note that among the shared ERF TFs, 12 of 14 in Ftri and 11
585 of 12 in Zmay are intronless genes. (f) Bundle sheath cell (BSC) and mesophyll cell
586 (MC) preferential expression of all intronless ERF TFs and shared intronless ERF TFs
587 in Zmay. Y-axis shows log₂ ratio of transcript abundance of each gene in BSC to that
588 in MC. (g) Number of intronless genes in each TF family. (Abbreviations: GRN: gene
589 co-regulatory network, MC: mesophyll cell, BSC: bundle sheath cell, Ftri: *Flaveria*
590 *trinervia*, Zmay: *Zea mays*.)

591 **Figure 5. Intronless ERF TFs that were recruited in C₄ photosynthesis emerged**
592 **much earlier than C₄ photosynthesis did**

593 (a) Phylogenetic relationships of 23 species. C₄ species are labeled in blue. The
594 divergence time of each node is referenced from Timetree (<http://timetree.org/>). Two
595 independent evolutionary origins of intronless ERF TFs are proposed, the occurrences
596 of which coincide with the first mass extinction during the Late Ordovician (~482 mya,
597 pink bar) and the second mass extinction during the Late Devonian (~358 mya, yellow
598 bar), respectively. A star represents an independent evolutionary origin of intronless
599 ERF TFs (b) Proportions of ERF TFs to total TFs. (c) Proportions of intronless gene to
600 total protein coding genes. (d) Proportions of intronless TFs to total TFs. (e) Proportions
601 of intronless ERF TFs to total ERF TFs. (f) The number of intronless ERF TFs in the
602 two subaerial species from Zygnematophyceae, which is the sister branch of land plants
603 and split from land plants ~580 mya. (Abbreviation: ERF: ethylene responsive factor,
604 mya: million years ago.)

605

606 **Methods**

607 **Plant materials and fluorescence in situ hybridization assay**

608 *F. robusta* (Frob, C₃) and *F. ramosissima* (Fram, C₃-C₄) were provided by Prof.
609 Peter Westhoff (Heinrich Heine University, Germany). Seeds of *F. sonorensis* (Fson,
610 C₃-C₄), *F. linearis* (Flin, C₃-C₄) and *F. trinervia* (Ftri, C₄) were obtained from Prof.
611 Rowan F. Sage (University of Toronto, Canada). Plants were grown in soil in green
612 house as depicted in (Lyu et al., 2020).

613 The chromosome numbers of Frob, Flin and Ftri were investigated applying
614 fluorescence in situ hybridization assay (FISH). Mitotic metaphase spreads of
615 meristem root tip cells were prepared following (Deng et al., 2012). FISH was
616 performed following (Li et al., 2019) with slight modifications, which is briefly
617 depicted in Supplemental Note 2.

618 **Genome sequencing**

619 Total DNA was extracted from young leaves. PacBio sequencing libraries were
620 constructed following the tips of Pacific Biosciences (USA). DNA fragments of 0.5-
621 18kb were chosen using BluePippin electrophoresis (Sage Science, USA). Libraries
622 were then sequenced on the PacBio Sequel platform (PacBio, USA). The N50 of
623 PacBio reads were from 16.4 to 21.9 kbp. Around 120 GB data were produced for
624 each species on average. Genome coverage is from 66.9-fold (Ftri) to 232.2-fold
625 (Frob). Besides, short reads were sequenced in Illumina X Ten platform in paired-end
626 150 bp mode. Around 200 million short reads were obtained for each species, which
627 were used for genome assembly polishing as well as genome assembly completeness
628 estimation. Hi-C libraries were constructed following (Mascher et al., 2017). Two Hi-
629 C libraries were constructed for each species, with an inserted size of ~350 bp,
630 libraries were sequenced in Illumina X Ten platform. From 291Gb to 325Gb 150-bp
631 paired-ended cleans data were generated for each species.

632 **De novo assembly**

633 *Flaveria* nuclear genome sequences were assembled into 18
634 pseudochromosomes in a step-wise way. Sequencing adaptors were removed, and
635 reads with low quality and short length were filtered applying PacBio SMRT Analysis
636 package with following parameters: readScore, 0.75; minSubReadLength 50. The
637 remained high-quality PacBio subreads were then corrected and contigs were
638 assembled using Canu (v1.8) (Koren et al., 2017) with following parameters: useGrid
639 = true, minThreads=4, genomeSize=1200m, minOverlapLength = 500,
640 minReadLength = 1000. For contig polishing, the Illumina paired-end reads were
641 mapped to assembled contigs applying bwa mem (bwa v0.7.17) (Li and Durbin,
642 2009), low qualified mapped reads were filtered off applying samtools (v1.11) (Li et
643 al., 2009) with q30 setting. Pilon (v1.22) (Walker et al., 2014) were applied to polish
644 with the following parameters: --mindepth 10 --changes --fix bases.

645 For Fram specifically, the BioNano next-generation mapping system was used to
646 help high-quality genome assembly. DNA was labelled at Nt.BspQI sites applying the
647 IrysPrep kit (BioNano Genomics, USA). Molecules collected from BioNano chips
648 (BioNano Genomics, USA) were de novo assembled applying RefAligne and
649 Assembler offered on the BioNano (Pendleton et al., 2015) using following
650 parameters: -U -d -T 20 -j 4 -N 10 -i 5, which resulted in the optical genome maps.
651 Next, genome assembly resulting from Pilon (v1.22) (Walker et al., 2014) mentioned
652 above were then evaluated and corrected by aligning with the optical genome maps.
653 Corrected contigs and optical genome maps were aligned and merged applying
654 hybridScaffold.pl (Pendleton et al., 2015) which resulted in hybrid scaffolds. Next,
655 HERA(Du and Liang, 2019) was used to fill gaps of obtained hybrid scaffold in
656 following parameters: InterIncluded_Side=30000, InterIncluded_Identity=99,
657 InterIncluded_Coverage=99, MinIdentity=97, MinCoverage=90, MinLength=5000,
658 MinIdentity_Overlap=97, MinOverlap_Overlap=1000, MaxOverhang_Overlap=100,
659 MinExtend_Overlap=500. Obtained hybrid scaffolds were then used for following

660 assembly.

661 Followed, assembled genome sequences were improved using Hi-C data in two
662 steps. First, contigs were corrected using Hi-C data. Briefly, low-quality Hi-C data
663 (over 10% N base pairs or Q10 < 50%) were removed, and remained reads were
664 mapped to assembled contigs applying bwa (v0.7.17) (Li and Durbin, 2009) with ‘aln’
665 settings and other parameters were in default. Only uniquely mapped reads were used
666 to perform re-assembly. Invalid mapping was filtered off applying HiC-Pro (v2.11.1)
667 (Servant et al., 2015) with following settings: mapped_2hic_fragments.py -v -S -s 100
668 -l 1000 -a -f -r -o. Next, corrected contigs were re-assembled into scaffold applying
669 LACHESIS(Burton et al., 2013) with following parameters: CLUSTER MIN RE
670 SITES = 770, CLUSTER MAX LINK DENSITY=2, CLUSTER
671 NONINFORMATIVE RATIO = 2, ORDER MIN N RES IN TRUNK=578, ORDER
672 MIN N RES IN SHREDS=593.

673 **Annotation of transposable elements**

674 To predict transposable elements (TEs), whole genome sequences of the five
675 *Flaveria* species were searched for repetitive sequences individually. A de novo repeat
676 sequence library was constructed by RepeatModeler (RepeatModeler-Open-1.0.5) with
677 the following parameters: RepeatModeler -database database_name -engine ncbi -pa
678 [int]. Then, we used RepeatMasker (RepeatMasker-Open-4.1.0) to search for similar
679 TEs against the de novo library with the following parameters: RepeatMasker
680 genome.fa -lib de_novo_library -nolow -no_is -q -engine rmblast -pa [int] -norna.
681 Intact long terminal repeat retrotransposons (LTR-RTs) were identified using
682 LTR_FINDER (v1.07) (Xu and Wang, 2007) and LTRharvest (v1.5.10) (Ellinghaus et
683 al., 2008) with the default parameters. And Then LTR_Retriever (v2.9.0) (Ou and Jiang,
684 2018) was used to merge the above results with the parameters: LTR_retriever -genome
685 genome.fa -inharvest species.harvest.scn -infinder species.finder.scn -nonTGCA
686 species.harvest.nonTGCA.scn. The insertion time of intact LTR-RT was extracted from
687 LTR-Retriever analysis.

688 **Annotation of protein coding genes**

689 Gene models were predicted by combining de novo prediction, homology-based
690 and transcriptome-based strategies. Briefly, Augustus (v2.4) (Stanke and
691 Morgenstern, 2005), GlimmerHMM (v3.0.4) (Majoros et al., 2004), GeneID (v1.4)
692 (Parra et al., 2000) and Genscan (<http://genes.mit.edu/GENSCAN.html>) were used in
693 combination for de novo prediction. GeMoMa (v1.3.1) (Keilwagen et al., 2019) was used for
694 homology-based prediction. To facilitate gene annotation, from 18 to 32 Illumina
695 RNA-seq datasets were generated either in this study (for Flin, as depicted below) or
696 generated in our previous work (Zhu, 2020). Clean RNA-seq reads were mapped to
697 genome applying Hisat2 (v2.0.4) (Kim et al., 2019) and genome-based transcript
698 assembly was performed applying StringTie (v1.2.3) (Pertea et al., 2015) in default
699 parameters. Besides, de novo transcript assembly was conducted based on RNA-seq
700 data applying PASA (v2.0.2) (Haas et al., 2003) in default parameters. All predicted
701 gene structures were integrated into consensus gene models using EVidenceModeler
702 (v1.1.1) (Haas et al., 2008), and pseudo genes were predicted applying GeneWise
703 (v2.4.1) (Birney et al., 2004). Coding sequence (CDS) failed to be translated either lacking
704 an open reading frame (ORF) or having premature stop codons were removed.

705 The completeness of protein repertoire was estimated in different aspects: 1) using
706 BUSCO (v3.0.2) (Seppey et al., 2019) against to viridiplantae reference, 2) RNA-seq
707 reads mapping to genome applying STAR (v2.7.3a) (Dobin et al., 2013), and 3) 150-bp
708 paired-ended DNA sequencing reads mapping to genome apply bowtie2 (v2.3.4.3)
709 (Langmead and Salzberg, 2012) (Supplemental Note 3).

710 Putative gene functions were assigned using the best match to GO, KEGG,
711 Swiss-Prot, TrEMBL and a non-redundant protein database (NR) using BLASTP
712 (v2.2.31+) (Camacho et al., 2009) with the E value threshold of 1e-5.

713 Transcriptional Factors were predicted using online website PlantTFDB (v5.0) (Jin
714 et al., 2017; Tian et al., 2020) (<http://planttfdb.gao-lab.org/prediction.php>). *Cis*-
715 regulatory elements (CREs) of promoter regions (3kb upstream of the start codon) were

716 predicted using Plantpan (v3.0) (Chow et al., 2019) with a score threshold of 0.99.

717 Orthologous genes prediction and gene evolution

718 To predict orthologous groups, protein coding genes from the five *Flaveria* species,
719 *Arabidopsis thaliana* (Atha), *Helianthus annuus* (Hann, sun flower), and *Lactuca sativa*
720 (Lsat, lettuce) were predicted applying Orthofinder (v2.3.11) (Emms and Kelly, 2019)
721 using default parameters. The protein sequences of Atha (TAIR10), Hann (v1.0) and
722 Lsat (v7) were downloaded from Phytozome (v13)
723 (<https://phytozome.jgi.doe.gov/pz/portal.html>). In case where there were multiple
724 alternative transcripts, the longest one was kept to represent the protein-coding gene.

725 Phylogeny and divergence time analysis

726 To construct the phylogenetic tree, CDS sequences of 1:1 orthologous genes were
727 aligned applying MUSCLE (v3.8.31) (Edgar, 2004) in default parameters. Alignments
728 of all the CDS were linked to make a super matrix, and RAxML (v7.9.3) (Stamatakis,
729 2006) was then applied for inferring phylogenetic tree using the following model: GTR
730 (General Time Reversible nucleotide substitution model) + GAMMA (variations in
731 sites follow GAMMA distribution) + I (a portion of Invariant sites in a sequence). To
732 calibrated the evolutionary time, CDS were aligned codon-wisely guided by protein
733 alignment using pal2nal (v14) (Suyama et al., 2006). The evolutionary time was
734 calibrated applying mcmctree in PAML package (v4.9) (Yang, 2007) using the
735 following parameters: seqtype=0 (nucleotides), clock=2 (independent), model = 0
736 (JC69). The reported fossil time between Hann and Lsat, *i.e.*, 34~40 million years as
737 inferred from timetree (<http://timetree.org/>) was used for calibration. The phylogenetic
738 tree and calibrated evolutionary time were displayed using FigTree
739 (<http://tree.bio.ed.ac.uk/software/Figuretree/>).

740 Synteny analysis between *Flaveria* species

741 To identify syntenic gene blocks in each species and between Frob with other

742 four species, all-against-all BLASTP (E value < 1e-10, top five matches) (v2.2.31+)
743 (Camacho et al., 2009) was performed for protein coding genes for each genome
744 pairs. Syntenic blocks were determined according to the presence of at least five
745 synteny gene pairs applying MCScanX (v0.8) (Wang et al., 2012) with default
746 parameters. Colinearity of the five species were drawn with JCVI
747 (<https://github.com/tanghaibao/jcvi>). Circular graphic was plotted using Circos (v0.69-
748 5).

749 **Investigation of light responsiveness of C₄ genes using qRT-PCR**

750 Consider that C₄ genes showed fast light responsiveness in C₄ species but not in
751 C₃ species (Burgess et al., 2016; Lyu et al., 2020), to verify the identified C₄ version
752 of C₄ genes, we investigated the changes of gene expression in response to light
753 induction using quantitative real time PCR (qRT-PCR). *Flaveria* species were put to
754 dark room at 6:00 pm. The dark-adapted plants were illuminated at 9:00 am the next
755 day. Fully expanded leaves, usually the 2nd or 3rd leaf pair counted from the top, were
756 cut after the leaves were illuminated for different time periods, *i.e.*, 0, 2, and 4 h, and
757 then flashed into liquid nitrogen. Samples were stored at -80°C before processing.
758 RNA isolation and qRT-PCR were performed as described earlier in (Lyu et al., 2020).
759 Relative transcript abundances were calculated by comparing to ACTIN7, the primers
760 used here were as depicted in our previous work (Zhu, 2020) .

761 **RNA-seq and transcriptional quantification for *Flaveria* species**

762 RNA-seq data of Flin were obtained from plant grown under low CO₂ (100 ppm)
763 vs normal CO₂ (380 ppm) for two weeks and four weeks respectively, and plant grown
764 under high light (with PPFD of 1400 $\mu\text{mol m}^{-2} \text{s}^{-1}$) vs control light condition (500 μmol
765 $\text{m}^{-2} \text{s}^{-1}$) were sequenced independently. Growth conditions were as depicted in (Zhu,
766 2020). For RNA extraction, the young fully expanded leaf usually situated on the 2nd or
767 3rd pair of leaves counting started from the top was used. The chosen leaves were cut
768 and immediately frozen into liquid nitrogen and stored thereafter at -80 °C until further

769 processing. Total RNA was then isolated following the protocol of the PureLinkTM RNA
770 kit (ThermoFisher Scientific, USA). The RNA-sequencing was performed in the
771 Illumina platform in the paired-end mode with a read length of 150 bp. RNA-seq data
772 of other four species were from our previous work (Zhu, 2020).

773 To quantify the expression level of *Flaveria* genes, raw reads were trimmed
774 applying fastp (v0.20.0) (Chen et al., 2018) using default parameters. Transcript
775 abundance of gene were calculated by mapping RNA-seq reads to assembly genome
776 sequence of corresponding species using RSEM (v1.3.3) (Li and Dewey, 2011) in
777 default parameters, where STAR (v2.7.3a) (Dobin et al., 2013) was selected as the
778 mapping tool.

779 **Proteomics**

780 Mature leaves were cut from one-month old plant as depicted above, and leaves
781 were put into liquid nitrogen quickly. Frozen leaf samples were grinded thoroughly and
782 then incubated in lysis buffer (50 mM ammonium bicarbonate, 8M urea, 1mM DTT,
783 complete EDTA-free protease inhibitor cocktail (PIC) (Roche)). Samples were
784 centrifuged at 14,000g for 10 min at 4 °C. The supernatant was kept for total protein
785 samples. Total protein concentration was measured with a Bradford assay (Bradford,
786 1976).

787 The process of protein digestion, HPLC Fractionation, LC-MS/MS analysis and
788 data processing were detailed in Supplemental Note 8. Briefly, to generate data
789 dependent acquisition (DDA) library, peptides were prefractionated. Fractionated
790 peptides were mixed from all the 30 samples (a total of 200 µg). The mixture was
791 separated by a linear gradient, and finally, 30 fractions were mixed into 15
792 components. Raw data from each species were used to construct library based on
793 protein sequence from such species. As a result, five peptide libraries were obtained
794 with one for each species. Finally, data independent acquisition (DIA) was performed
795 using Spectronaut (version 14.7, Biognosys, Zurich, Switzerland). Default settings for

796 quantification at MS1 level were employed for quantification. The mass spectrometry
797 proteomics data have been deposited to the PRteomics IDEntifications Database
798 (PRIDE).

799 **ATAC-seq for the C₄ species Ftri**

800 To isolate nuclei from C₄ species Ftri, fully expanded mature leaves were harvest
801 at 1:00 pm. Around 3g fresh leaves from 5 plants were used for each of the two
802 biological replicates. Leaf materials were grinded in ice in 10 ml 4xNE buffer (40 mM
803 MES -KOH, PH5.4, 40 mM NaCl, 40 mM KCl, 10mM EDTA, 1M Sucrose, 0.1 mM
804 spermidine, 0.5mM spermine and 1mM DTT). Next, the debris was removed by
805 sieving through two layers of 70 µm nylon cell strainer into precooled flasks and then
806 the fluid were centrifuged at 200g at 4 °C for 3min to further remove debris. The
807 supernatant was centrifuged at 2000g at 4 °C for 5min to spin down Nuclei. Nuclei
808 were lysed by adding 1X NE buffer, 0.1% (v/v) NP40 and 0.1 (v/v) Tween-20 and
809 incubated on ice for 3 min. Nuclei were pelleted by centrifugation at 2000g at 4°C for
810 5 min. Pellets were then incubated in RS buffer (Tn5 mix, 10 mM Tris-HCL, PH 7.4,
811 10 mM NaCl, 3mM MgCl₂, 0.01% digitonin, 0.1% OM and 0.1% Tween-20) at 37 °C
812 for 30 min. The Tn5 tagmentation was then terminated under 95 °C for 2 min. DNA
813 was purified using a spin column (Qiagen, Germany) and then amplified using index
814 primers matching the Illumina Nextra adapter.

815 ATAC-seq libraries containing DNA insert between 50 and 150 bp were gel
816 purified and sequenced in Illumina X Ten platform in paired-end 150 bp mode. Raw
817 reads were trimmed using fastp (v0.20.0) (Chen et al., 2018) in default parameters.
818 Sequencing reads were mapped to genome sequence of Ftri (C₄) using bowtie2
819 (v2.3.4.3) (Langmead and Salzberg, 2012) in default parameters. Mapping result were
820 sorted using “sort” function in samtools (v1.11) (Li et al., 2009), and mapping with low
821 quality was filtered off using “view” function in samtools with -q=10. Duplicated
822 mapped reads were removed using “rmdup” function in samtools. Mapping peaks were

823 then called using macs2 (v2.2.7.1) (Zhang et al., 2008) using the following parameters:
824 -f BAMPE, -g 1.7e9 -q 0.05, --broad --nomodel --min-length 50. The parameter “broad”
825 was used to allow closed peaks merging into a broad peak. We referred peaks predicted
826 in this study as Tn5 hyper sensitive site (THS).

827 Peaks associated genes were assessed using “closest” function in bedtools (v2.29.2)
828 (Quinlan and Hall, 2010) with -k 2, considering the closest two genes (both upstream
829 and downstream). The distribution of THS relative to genome feature were assessed
830 using “computeMatrix” function in deeptools (v3.5.0) (Ramirez et al., 2014) with the
831 following parameters: --skipZeros –reference Point TSS -a 3000 -b 3000, the result was
832 then plotted using “plotHeatmap” in the same tool. To predict known motif of the THS,
833 the function fimo within meme package (v5.0.2) (Grant et al., 2011) was applied to scan
834 known motifs annotated in Plantpan 3.0 (Chow et al., 2019) through the sequences of
835 THS with default parameters.

836 **Comparison of intron-containing and intronless genes in *Flaveria* and other
837 species**

838 To calculate proportions of intronless genes in different species, we classified
839 intronless genes in different species based on gene annotations. A gene was classified
840 as intronless gene if all of its transcriptional isoforms contains exact one exon. For non-
841 *Flaveria* species studied here, genome sequences, gene annotation files and protein
842 sequences were downloaded from accessible databases. Briefly, those of *Zea mays* (v5)
843 were downloaded from Maize GDB (<https://maizegdb.org/>), those of *Spirogloea*
844 *muscicola* and *Mesotaenium endlicherianum* were downloaded from figshare
845 (figshare.com) referencing from (Cheng et al., 2019), and those of *Misanthus*
846 *lutarioriparius* (Mlut) was downloaded from figshare referencing from (Miao et al.,
847 2021), and those of the rest species were downloaded from Phytozome (v13)
848 (<https://phytozome-next.jgi.doe.gov/>), with genome versions as following: *Atha*
849 (*TAIR10*), *Hann* (v1.2), *Glycine max* (v2.0), *Aquilegia coerulea* (v3.1), *Oropetium*

850 *thomaeum* (v1), *Setaris viridis* (Svir, v2.1), *Panicum Hallii* (Phal, v2.1), *Sorghum*
851 *bicolor* (Sbic, v3.1.1), *Osat* (v7), *Marchantia polymorpha* (v3.1), *Panicum halli* (v2.0),
852 *Chlamydomonas reinhardtii* (Crei, v5.5), *Micromonas pusilla* (v3.0), *Coccomyxa*
853 *subellipsoidea* (v2.0), *Dunaliella salina* (v1.0), *Ostreococcus lucimarinus* (v2.0) and
854 *Volvox carteri* (v2.1).

855 To compare the transcript abundance of intron-containing and intronless genes for
856 non-*Flaveria* species, and to compare the expressional preferences of intron-containing
857 and intronless genes in mesophyll cells, we either inferred transcript abundances of
858 genes from published references or calculated gene expression levels based on
859 published RNA-seq datasets as detailed in Supplemental note 14. Specifically, we thank
860 Eric Schranz (Wageningen University), Andreas Weber (Heinrich Heine University)
861 and Julian Hibberd (Cambridge University) for access to the *Ggyn* genome sequence
862 and the updated *Thas* genome assembly (Cheng et al., 2013) for classifying intronless
863 genes and performing the RNA-seq quantification.

864 **Data availability.**

865 The genome assemblies, gene annotations, transcriptome data, proteomics data
866 and raw reads are available at China National GeneBank (CNGB)
867 (https://db.cngb.org/codeplot/datasets/public_dataset?id=flaveria) with project ID of
868 CPN0003058. The genome assemblies, gene annotations, transcriptome data,
869 proteomics data are also available at figshare
870 (<https://figshare.com/account/home#/projects/114567>). The genome assemblies are
871 also available at National Center for Biotechnology Information (NCBI) with accession
872 number SAMN14943594 for *F. robusta*, SAMN14943595 for *F. sonorensis*,
873 SAMN14943597 for *F. linearis*, SAMN14943596 for *F. ramosissima* and
874 SAMN14943598 for *F. trinervia*. The mass spectrometry proteomics data were
875 submitted to PRoteomics IDEntifications Database (PRIDE) with accession number
876 PXD024720 (username: reviewer_pxd024720@ebi.ac.uk, password: M6E7WzLM).

877 RNA-seq data of Flin were submitted to Gene Expression Omnibus (GEO) in the NCBI
878 database available with accession number: PRJNA827625. RNA-seq data of Frob, Fson,
879 Fram and Ftri are from published data with project accession PRJNA600545.

880

881 **Supplemental information**

882 1. **Supplemental Notes:** including supplemental note 1 ~ supplemental note 20, which
883 contain methods and results that support the main conclusion of the work.
884 2. **Supplemental Table and Figures:** including Table S1 and Figure S1 ~ Figure S9.
885

886 **References**

887 Akyildiz, M., Gowik, U., Engelmann, S., Koczor, M., Streubel, M., and Westhoff, P.
888 (2007). Evolution and function of a cis-regulatory module for mesophyll-specific gene
889 expression in the C₄ dicot Flaveria trinervia. *Plant Cell* *19*, 3391-3402.

890 Aubry, S., Kelly, S., Kumpers, B.M., Smith-Unna, R.D., and Hibberd, J.M. (2014).
891 Deep evolutionary comparison of gene expression identifies parallel recruitment of
892 trans-factors in two independent origins of C₄ photosynthesis. *PLoS genetics* *10*,
893 e1004365.

894 Billakurthi., K., Wrobel., T.J., Bräutigam., A., Weber., A.P.M., Westhoff., P., and Gowik.,
895 U. (2020). Transcriptome dynamics in developing leaves from C₃ and C₄ Flaveria
896 species reveal determinants of Kranz anatomy. *BioRxiv*.

897 Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. *Genome*
898 research *14*, 988-995.

899 Bradford, M.M. (1976). Rapid and Sensitive Method for Quantitation of Microgram
900 Quantities of Protein Utilizing Principle of Protein-Dye Binding. *Analytical*
901 *Biochemistry* *72*, 248-254.

902 Burgess, S.J., Granero-Moya, I., Grange-Guermente, M.J., Boursnell, C., Terry, M.J.,
903 and Hibberd, J.M. (2016). Ancestral light and chloroplast regulation form the
904 foundations for C₄ gene expression. *Nat Plants* *2*, 16161.

905 Burgess, S.J., Reyna-Llorens, I., Stevenson, S.R., Singh, P., Jaeger, K., and Hibberd,
906 J.M. (2019). Genome-Wide Transcription Factor Binding in Leaves from C₃ and C₄
907 Grasses. *Plant Cell* *31*, 2297-2314.

908 Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J.
909 (2013). Chromosome-scale scaffolding of de novo genome assemblies based on
910 chromatin interactions. *Nature biotechnology* *31*, 1119-1125.

911 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and
912 Madden, T.L. (2009). BLAST plus : architecture and applications. *BMC bioinformatics*
913 *10*.

914 Chang, Y.M., Liu, W.Y., Shih, A.C., Shen, M.N., Lu, C.H., Lu, M.Y., Yang, H.W., Wang,
915 T.Y., Chen, S.C., Chen, S.M., *et al.* (2012). Characterizing regulatory and functional
916 differentiation between maize mesophyll and bundle sheath cells by transcriptomic
917 analysis. *Plant physiology* *160*, 165-177.

918 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
919 preprocessor. *Bioinformatics* *34*, i884-i890.

920 Cheng, S., van den Bergh, E., Zeng, P., Zhong, X., Xu, J., Liu, X., Hofberger, J., de
921 Bruijn, S., Bhide, A.S., Kuelahoglu, C., *et al.* (2013). The Tarenaya hassleriana genome
922 provides insight into reproductive trait and genome evolution of crucifers. *Plant Cell*
923 *25*, 2813-2830.

924 Cheng, S.F., Xian, W.F., Fu, Y., Marin, B., Keller, J., Wu, T., Sun, W.J., Li, X.L., Xu,
925 Y., Zhang, Y., *et al.* (2019). Genomes of Subaerial Zygnematophyceae Provide Insights
926 into Land Plant Evolution. *Cell* *179*, 1057-+.

927 Chow, C.N., Lee, T.Y., Hung, Y.C., Li, G.Z., Tseng, K.C., Liu, Y.H., Kuo, P.L., Zheng,
928 H.Q., and Chang, W.C. (2019). PlantPAN3.0: a new and updated resource for
929 reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
930 Nucleic acids research 47, D1155-D1163.

931 Christin, P.A., Besnard, G., Samaritani, E., Duvall, M.R., Hodkinson, T.R., Savolainen,
932 V., and Salamin, N. (2008). Oligocene CO₂ decline promoted C4 photosynthesis in
933 grasses. Current biology : CB 18, 37-43.

934 Christin, P.A., Boxall, S.F., Gregory, R., Edwards, E.J., Hartwell, J., and Osborne, C.P.
935 (2013). Parallel recruitment of multiple genes into C4 photosynthesis. Genome Biol
936 Evol 5, 2174-2187.

937 Christin, P.A., Petitpierre, B., Salamin, N., Buchi, L., and Besnard, G. (2009). Evolution
938 of C₄ phosphoenolpyruvate carboxykinase in Grasses, from genotype to phenotype.
939 Mol Biol Evol 26, 357-365.

940 Cui, H. (2021). Challenges and Approaches to Crop Improvement Through C3-to-C4
941 Engineering. Frontiers in plant science 12, 715391.

942 Da Silva, A.C., Sinnesael, M., Claeys, P., Davies, J., de Winter, N.J., Percival, L.M.E.,
943 Schaltegger, U., and De Vleeschouwer, D. (2020). Anchoring the Late Devonian mass
944 extinction in absolute time by integrating climatic controls and radio-isotopic dating.
945 Sci Rep 10, 12940.

946 De Vleeschouwer, D., Da Silva, A.C., Sinnesael, M., Chen, D., Day, J.E., Whalen, M.T.,
947 Guo, Z., and Claeys, P. (2017). Timing and pacing of the Late Devonian mass extinction
948 event regulated by eccentricity and obliquity. Nature communications 8, 2268.

949 Delaux, P.M., Hetherington, A.J., Coudert, Y., Delwiche, C., Dunand, C., Gould, S.,
950 Kenrick, P., Li, F.W., Philippe, H., Rensing, S.A., *et al.* (2019). Reconstructing trait
951 evolution in plant evo-devo studies. Current biology : CB 29, R1110-R1118.

952 Deng, C.L., Qin, R.Y., Gao, J., Cao, Y., Li, S.F., Gao, W.J., and Lu, L.D. (2012).
953 Identification of sex chromosome of spinach by physical mapping of 45s rDNAs by
954 FISH. Caryologia 65, 322-327.

955 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
956 Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner.
957 Bioinformatics 29, 15-21.

958 Du, H., and Liang, C. (2019). Assembly of chromosome-scale contigs by efficiently
959 resolving repetitive sequences with long reads. Nature communications 10, 5360.

960 Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and
961 high throughput. Nucleic acids research 32, 1792-1797.

962 Ehleringer, J.R., Sage, R.F., Flanagan, L.B., and Pearcy, R.W. (1991). Climate Change
963 and the Evolution of C4 Photosynthesis. Trends Ecol Evol 6, 95-99.

964 Ellinghaus, D., Kurtz, S., and Willhoeft, U. (2008). LTRharvest, an efficient and flexible
965 software for de novo detection of LTR retrotransposons. BMC bioinformatics 9, 18.

966 Emms, D.M., Covshoff, S., Hibberd, J.M., and Kelly, S. (2016). Independent and
967 Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4
968 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4

969 Species. *Mol Biol Evol* 33, 1796-1806.

970 Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
971 comparative genomics. *Genome biology* 20, 238.

972 Feng, K., Hou, X.L., Xing, G.M., Liu, J.X., Duan, A.Q., Xu, Z.S., Li, M.Y., Zhuang, J.,
973 and Xiong, A.S. (2020). Advances in AP2/ERF super-family transcription factors in
974 plant. *Crit Rev Biotechnol* 40, 750-776.

975 Finnegan, S., Heim, N.A., Peters, S.E., and Fischer, W.W. (2012). Climate change and
976 the selective signature of the Late Ordovician mass extinction. *Proceedings of the*
977 *National Academy of Sciences of the United States of America* 109, 6829-6834.

978 Gan, Z., Chen, S.N., Huang, B., Hou, J., and Nie, P. (2017). Intronless and intron-
979 containing type I IFN genes coexist in amphibian *Xenopus tropicalis*: Insights into the
980 origin and evolution of type I IFNs in vertebrates. *Dev Comp Immunol* 67, 166-176.

981 Gentles, A.J., and Karlin, S. (1999). Why are human G-protein-coupled receptors
982 predominantly intronless? *Trends in genetics : TIG* 15, 47-49.

983 Gitzendanner, M.A., Soltis, P.S., Wong, G.K., Ruhfel, B.R., and Soltis, D.E. (2018).
984 Plastid phylogenomic analysis of green plants: A billion years of evolutionary history.
985 *Am J Bot* 105, 291-301.

986 Gowik, U., and Westhoff, P. (2011). The path from C₃ to C₄ photosynthesis. *Plant*
987 *physiology* 155, 56-63.

988 Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of
989 a given motif. *Bioinformatics* 27, 1017-1018.

990 Grzybowska, E.A. (2012). Human intronless genes: functional groups, associated
991 diseases, evolution, and mRNA processing in absence of splicing. *Biochem Biophys*
992 *Res Commun* 424, 1-6.

993 Gu, C., Guo, Z.H., Hao, P.P., Wang, G.M., Jin, Z.M., and Zhang, S.L. (2017). Multiple
994 regulatory roles of AP2/ERF transcription factor in angiosperm. *Bot Stud* 58, 6.

995 Gupta, S.D., Levey, M., Schulze, S., Karki, S., Emmerling, J., Streubel, M., Gowik, U.,
996 Paul Quick, W., and Westhoff, P. (2020). The C₄ Ppc promoters of many C₄ grass species
997 share a common regulatory mechanism for gene expression in the mesophyll cell. *The*
998 *Plant journal : for cell and molecular biology* 101, 204-216.

999 Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr., Hannick, L.I.,
1000 Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., *et al.* (2003). Improving the
1001 *Arabidopsis* genome annotation using maximal transcript alignment assemblies.
1002 *Nucleic acids research* 31, 5654-5666.

1003 Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell,
1004 C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using
1005 EVidenceModeler and the program to assemble spliced alignments. *Genome biology* 9.

1006 Hatch, M.D. (1987). C₄ photosynthesis - a unique blend of modified biochemistry,
1007 anatomy and ultrastructure. *Biochimica Et Biophysica Acta* 895, 81-106.

1008 Hibberd, J.M., and Covshoff, S. (2010). The regulation of gene expression required for
1009 C₄ photosynthesis. *Annual review of plant biology* 61, 181-207.

1010 Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G. (2017).

1011 PlantTFDB 4.0: toward a central hub for transcription factors and regulatory
1012 interactions in plants. *Nucleic acids research* 45, D1040-D1045.

1013 John, C.R., Smith-Unna, R.D., Woodfield, H., Covshoff, S., and Hibberd, J.M. (2014).
1014 Evolutionary convergence of cell-specific gene expression in independent lineages of
1015 C₄ grasses. *Plant physiology* 165, 62-75.

1016 Jorquera, R., Gonzalez, C., Clausen, P., Petersen, B., and Holmes, D.S. (2021). SinEx
1017 DB 2.0 update 2020: database for eukaryotic single-exon coding sequences. *Database*
1018 (Oxford) 2021.

1019 Ju, C.L., Van de Poel, B., Cooper, E.D., Thierer, J.H., Gibbons, T.R., Delwiche, C.F.,
1020 and Chang, C.R. (2015). Conservation of ethylene as a plant hormone over 450 million
1021 years of evolution. *Nature Plants* 1.

1022 Keilwagen, J., Hartung, F., and Grau, J. (2019). GeMoMa: Homology-Based Gene
1023 Prediction Utilizing Intron Position Conservation and RNA-seq Data. *Methods Mol
1024 Biol* 1962, 161-177.

1025 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based
1026 genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
1027 biotechnology* 37, 907-915.

1028 Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M.
1029 (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting
1030 and repeat separation. *Genome research* 27, 722-736.

1031 Kulahoglu, C., Denton, A.K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T.J.,
1032 Berckmans, B., Gongora-Castillo, E., Buell, C.R., Simon, R., *et al.* (2014).
1033 Comparative transcriptome atlases reveal altered gene expression modules between two
1034 Cleomaceae C3 and C4 plant species. *Plant Cell* 26, 3243-3260.

1035 Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: A Resource
1036 for Timelines, Timetrees, and Divergence Times. *Mol Biol Evol* 34, 1812-1819.

1037 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
1038 *Nature Methods* 9, 357-U354.

1039 Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-
1040 Seq data with or without a reference genome. *BMC bioinformatics* 12, 323.

1041 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
1042 Wheeler transform. *Bioinformatics* 25, 1754-1760.

1043 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
1044 Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The
1045 Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078-2079.

1046 Li, S.F., Guo, Y.J., Li, J.R., Zhang, D.X., Wang, B.X., Li, N., Deng, C.L., and Gao, W.J.
1047 (2019). The landscape of transposable elements and satellite DNAs in the genome of a
1048 dioecious plant spinach (*Spinacia oleracea* L.). *Mob DNA* 10, 3.

1049 Liu, H., Lyu, H.M., Zhu, K., Van de Peer, Y., and Max Cheng, Z.M. (2021). The
1050 emergence and evolution of intron-poor and intronless genes in intron-rich plant gene
1051 families. *The Plant journal : for cell and molecular biology* 105, 1072-1082.

1052 Long, S.P., Marshall-Colon, A., and Zhu, X.G. (2015). Meeting the global food demand

1053 of the future by engineering crop photosynthesis and yield potential. *Cell* *161*, 56-66.
1054 Lyu, M.J., Wang, Y., Jiang, J., Liu, X., Chen, G., and Zhu, X.G. (2020). What Matters
1055 for C4 Transporters: Evolutionary Changes of Phosphoenolpyruvate Transporter for C4
1056 Photosynthesis. *Frontiers in plant science* *11*, 935.
1057 Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM:
1058 two open source ab initio eukaryotic gene-finders. *Bioinformatics* *20*, 2878-2879.
1059 Marand, A.P., Chen, Z.L., Gallavotti, A., and Schmitz, R.J. (2021). A cis-regulatory
1060 atlas in maize at single-cell resolution. *Cell* *184*, 3041-+.
1061 Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker, T.,
1062 Radchuk, V., Dockter, C., Hedley, P.E., Russell, J., *et al.* (2017). A chromosome
1063 conformation capture ordered sequence of the barley genome. *Nature* *544*, 427-433.
1064 Maurino, V.G., and Weber, A.P. (2013). Engineering photosynthesis in plants and
1065 synthetic microorganisms. *J Exp Bot* *64*, 743-751.
1066 Merchant, C., Alonso, J.M., and Stepanova, A.N. (2013). Ethylene signaling: simple
1067 ligand, complex regulation. *Current opinion in plant biology* *16*, 554-560.
1068 Mergner, J., Frejno, M., List, M., Papacek, M., Chen, X., Chaudhary, A., Samaras, P.,
1069 Richter, S., Shikata, H., Messerer, M., *et al.* (2020). Mass-spectrometry-based draft of
1070 the *Arabidopsis* proteome. *Nature* *579*, 409-414.
1071 Miao, J., Feng, Q., Li, Y., Zhao, Q., Zhou, C., Lu, H., Fan, D., Yan, J., Lu, Y., Tian, Q.,
1072 *et al.* (2021). Chromosome-scale assembly and analysis of biomass crop *Miscanthus*
1073 *lutetioriparius* genome. *Nature communications* *12*, 2458.
1074 Moreno-Villena, J.J., Dunning, L.T., Osborne, C.P., and Christin, P.A. (2018). Highly
1075 Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. *Mol Biol Evol*
1076 *35*, 94-106.
1077 Ou, S., and Jiang, N. (2018). LTR_retriever: A Highly Accurate and Sensitive Program
1078 for Identification of Long Terminal Repeat Retrotransposons. *Plant physiology* *176*,
1079 1410-1422.
1080 Parra, G., Blanco, E., and Guigo, R. (2000). GeneID in *Drosophila*. *Genome research*
1081 *10*, 511-515.
1082 Pendleton, M., Sebra, R., Pang, A.W., Ummat, A., Franzen, O., Rausch, T., Stutz, A.M.,
1083 Stedman, W., Anantharaman, T., Hastie, A., *et al.* (2015). Assembly and diploid
1084 architecture of an individual human genome via single-molecule technologies. *Nat*
1085 *Methods* *12*, 780-786.
1086 Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg,
1087 S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-
1088 seq reads. *Nature biotechnology* *33*, 290-295.
1089 Powell, A.M. (1978). Systematics of *Flaveria* (Flaveriinae Asteraceae). *Ann Mo Bot*
1090 *Gard* *65*, 590-636.
1091 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for
1092 comparing genomic features. *Bioinformatics* *26*, 841-842.
1093 Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A., and Manke, T. (2014). deepTools: a
1094 flexible platform for exploring deep-sequencing data. *Nucleic acids research* *42*, W187-

1095 191.

1096 Sage, R.F. (2004). The evolution of C4 photosynthesis. *New Phytologist*, 341-370.

1097 Sage, R.F. (2016). A portrait of the C4 photosynthetic family on the 50th anniversary
1098 of its discovery: species number, evolutionary lineages, and Hall of Fame. *J Exp Bot*
1099 67, 4039-4056.

1100 Sage, R.F., Christin, P.A., and Edwards, E.J. (2011). The C4 plant lineages of planet
1101 Earth. *J Exp Bot* 62, 3155-3169.

1102 Sage, R.F., Sage, T.L., and Kocacinar, F. (2012). Photorespiration and evolution of C₄
1103 photosynthesis. *Annual Review of Plant Biologist* 63, 19-47.

1104 Sage, T.L., Busch, F.A., Johnson, D.C., Friesen, P.C., Stinson, C.R., Stata, M.,
1105 Sultmanis, S., Rahman, B.A., Rawsthorne, S., and Sage, R.F. (2013). Initial events
1106 during the evolution of C₄ photosynthesis in C₃ species of *Flaveria*. *Plant physiology*
1107 163, 1266-1276.

1108 Sanderson, M.J., Thorne, J.L., Wikstrom, N., and Bremer, K. (2004). Molecular
1109 evidence on plant divergence times. *American Journal of Botany* 91, 1656-1665.

1110 Schluter, U., and Weber, A.P.M. (2020). Regulation and Evolution of C₄ Photosynthesis.
1111 *Annual review of plant biology* 71, 183-215.

1112 Seppey, M., Manni, M., and Zdobnov, E.M. (2019). BUSCO: Assessing Genome
1113 Assembly and Annotation Completeness. *Methods Mol Biol* 1962, 227-245.

1114 Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E.,
1115 Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-
1116 C data processing. *Genome biology* 16, 259.

1117 Shabalina, S.A., Ogurtsov, A.Y., Spiridonov, A.N., Novichkov, P.S., Spiridonov, N.A.,
1118 and Koonin, E.V. (2010). Distinct patterns of expression and evolution of intronless and
1119 intron-containing mammalian genes. *Mol Biol Evol* 27, 1745-1749.

1120 Sheehan, P.M. (2001). The Late Ordovician mass extinction. *Annual Review of Earth
1121 and Planetary Sciences* 29, 331-364.

1122 Slack, C.R., and Hatch, M.D. (1967). Comparative studies on the activity of
1123 carboxylases and other enzymes in relation to the new pathway of photosynthetic
1124 carbon dioxide fixation in tropical grasses. *The Biochemical journal* 103, 660-665.

1125 Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic
1126 analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688-2690.

1127 Stanke, M., and Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction
1128 in eukaryotes that allows user-defined constraints. *Nucleic acids research* 33, W465-
1129 467.

1130 Steven Kelly, S.C., Samart Wanchana, Vivek Thakur, W. Paul Quick, Yu Wang, Martha
1131 Ludwig, Richard Bruskiewich, Alisdair R. Fernie, Rowan F. Sage8, Zhi Jian
1132 Tian, Zixiang Yan, Jun Wang, Yong Zhang, Xin-Guang Zhu, Gane Ka-Shu Wong, Julian
1133 M. Hibberd (2018). Wide sampling of natural diversity identifies novel molecular
1134 signatures of C₄ photosynthesis **BioRxiv**.

1135 Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: robust conversion of protein
1136 sequence alignments into the corresponding codon alignments. *Nucleic acids research*

1137 34, W609-612.

1138 Taniguchi, Y.Y., Gowik, U., Kinoshita, Y., Kishizaki, R., Ono, N., Yokota, A., Westhoff, P., and Munekage, Y.N. (2021). Dynamic changes of genome sizes and gradual gain of cell-specific distribution of C4 enzymes during C4 evolution in genus Flaveria. *Plant Genome*, e20095.

1142 Tian, F., Yang, D.C., Meng, Y.Q., Jin, J., and Gao, G. (2020). PlantRegMap: charting functional regulatory maps in plants. *Nucleic acids research* 48, D1104-D1113.

1144 Tu, X., Mejia-Guerra, M.K., Valdes Franco, J.A., Tzeng, D., Chu, P.Y., Shen, W., Wei, Y., Dai, X., Li, P., Buckler, E.S., *et al.* (2020). Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. *Nature communications* 11, 5089.

1148 Vogan, P.J., and Sage, R.F. (2011). Water-use efficiency and nitrogen-use efficiency of C₃ -C₄ intermediate species of Flaveria Juss. (Asteraceae). *Plant, cell & environment* 34, 1415-1430.

1151 Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelli, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., *et al.* (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 9, e112963.

1155 Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., *et al.* (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic acids research* 40, e49.

1158 Wei, S., Li, X., Lu, Z., Zhang, H., Ye, X., Zhou, Y., Li, J., Yan, Y., Pei, H., Duan, F., *et al.* (2022). A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. *Science* 377, eabi8455.

1161 Westhoff, P., and Gowik, U. (2010). Evolution of C4 photosynthesis--looking for the master switch. *Plant physiology* 154, 598-601.

1163 Williams, B.P., Aubry, S., and Hibberd, J.M. (2012). Molecular evolution of genes recruited into C4 photosynthesis. *Trends in plant science* 17, 213-220.

1165 Xie, Z., Nolan, T.M., Jiang, H., and Yin, Y. (2019). AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in *Arabidopsis*. *Frontiers in plant science* 10, 228.

1168 Xu, J., Brautigam, A., Weber, A.P., and Zhu, X.G. (2016). Systems analysis of cis-regulatory motifs in C₄ photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. *J Exp Bot* 67, 5105-5117.

1171 Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. *Nucleic acids research* 35, W265-W268.

1173 Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24, 1586-1591.

1175 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., *et al.* (2008). Model-based analysis of ChIP-Seq (MACS). *Genome biology* 9, R137.

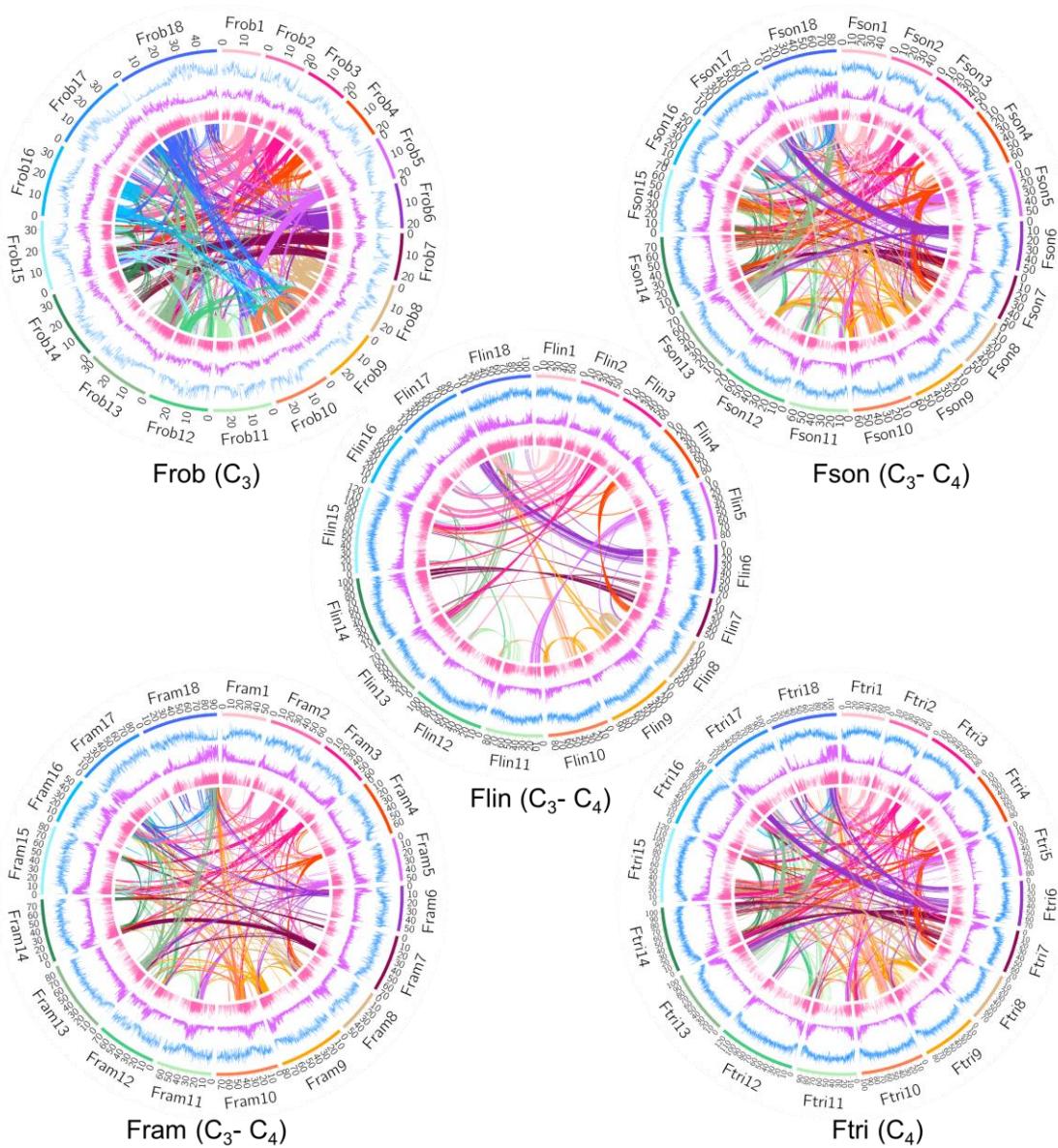
1178 Zhu, M.-J.A.L.J.E.F.C.G.C.X.-G. (2020). Evolution of co-regulatory network of C₄

1179 metabolic genes and TFs in the genus *Flaveria*: go anear or away in the intermediate
1180 species? *BioRxiv*.

1181 Zhu, X.-G., Shan, L., Wang, Y., and Quick, W.P. (2010). C₄ Rice - an ideal arena for
1182 systems biology research. *Journal of Integrative Plant Biology* *52*, 762-770.

1183 Zhu, X.G., Long, S.P., and Ort, D.R. (2008). What is the maximum efficiency with
1184 which photosynthesis can convert solar energy into biomass? *Current opinion in
1185 biotechnology* *19*, 153-159.

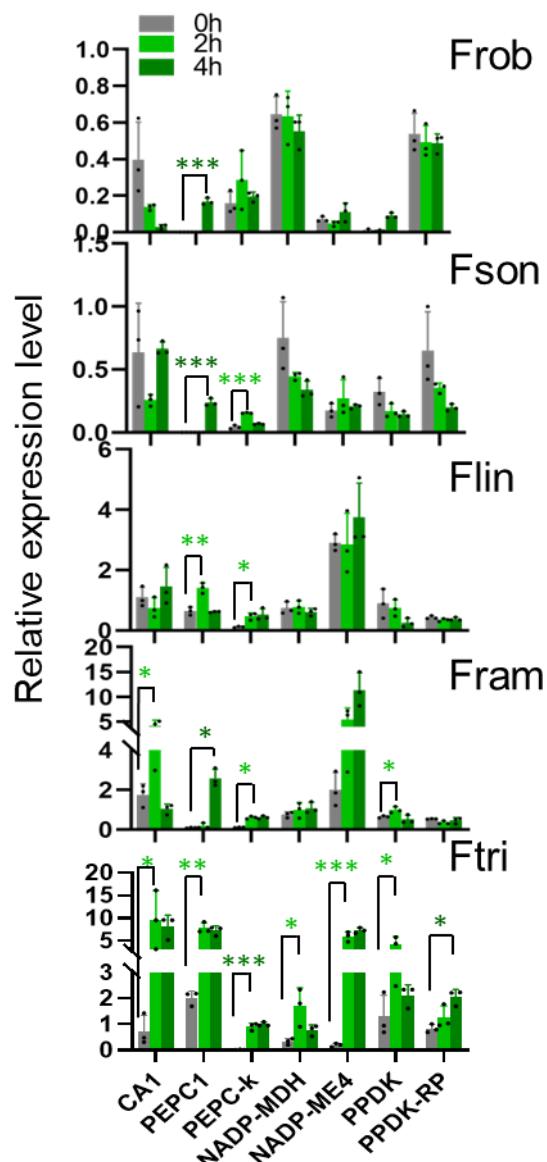
1186


1187

1188 **Supplemental Table and Figures**

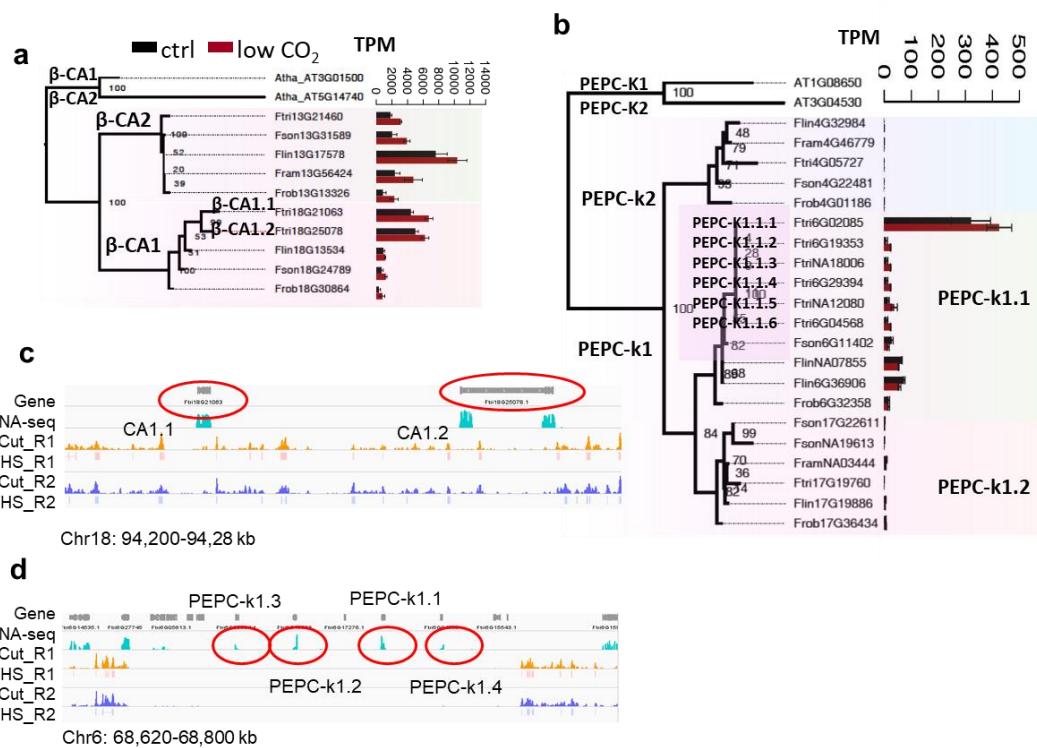
1189 **Table S1. Statistics of genome assemblies and annotations**

Species	<i>F. robusta</i>	<i>F. sonorensis</i>	<i>F. linearis</i>	<i>F. ramosissima</i>	<i>F. trinervia</i>
Photosynthetic type	C ₃	C ₃ -C ₄	C ₃ -C ₄	C ₃ -C ₄	C ₄
Genome size (GB)	0.55	1.26	1.66	1.42	1.8
Genome size estimated by flow cytometry (GB)	0.45	1.2	1.86	1.62	1.65
anchored to chromosome (%)	92.2	92	91.2	94.3	93.4
Contig N50 (MB)	7.9	1.8	1.2	0.76	1.6
GC content (%)	32.87	36.06	37.45	37.3	37.85
BUSCO%	99.2	98.1	92.5	97	95.1
Gene number	35,875	37,028	38,652	34,029	32,915
Average gene length (bp, intron+exon)	3564.67	3670.95	3973.67	3971.15	3555.47
Average Exons number per gene	5.53	5.54	5.44	5.93	5.66

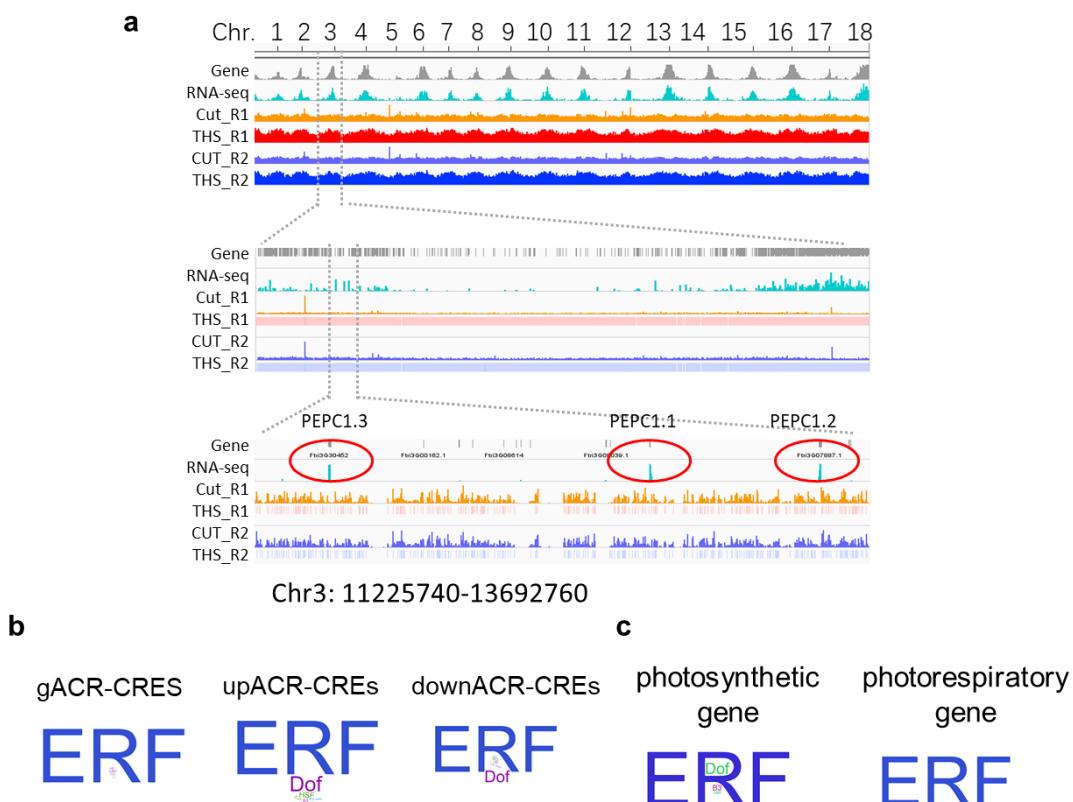

1190

1191

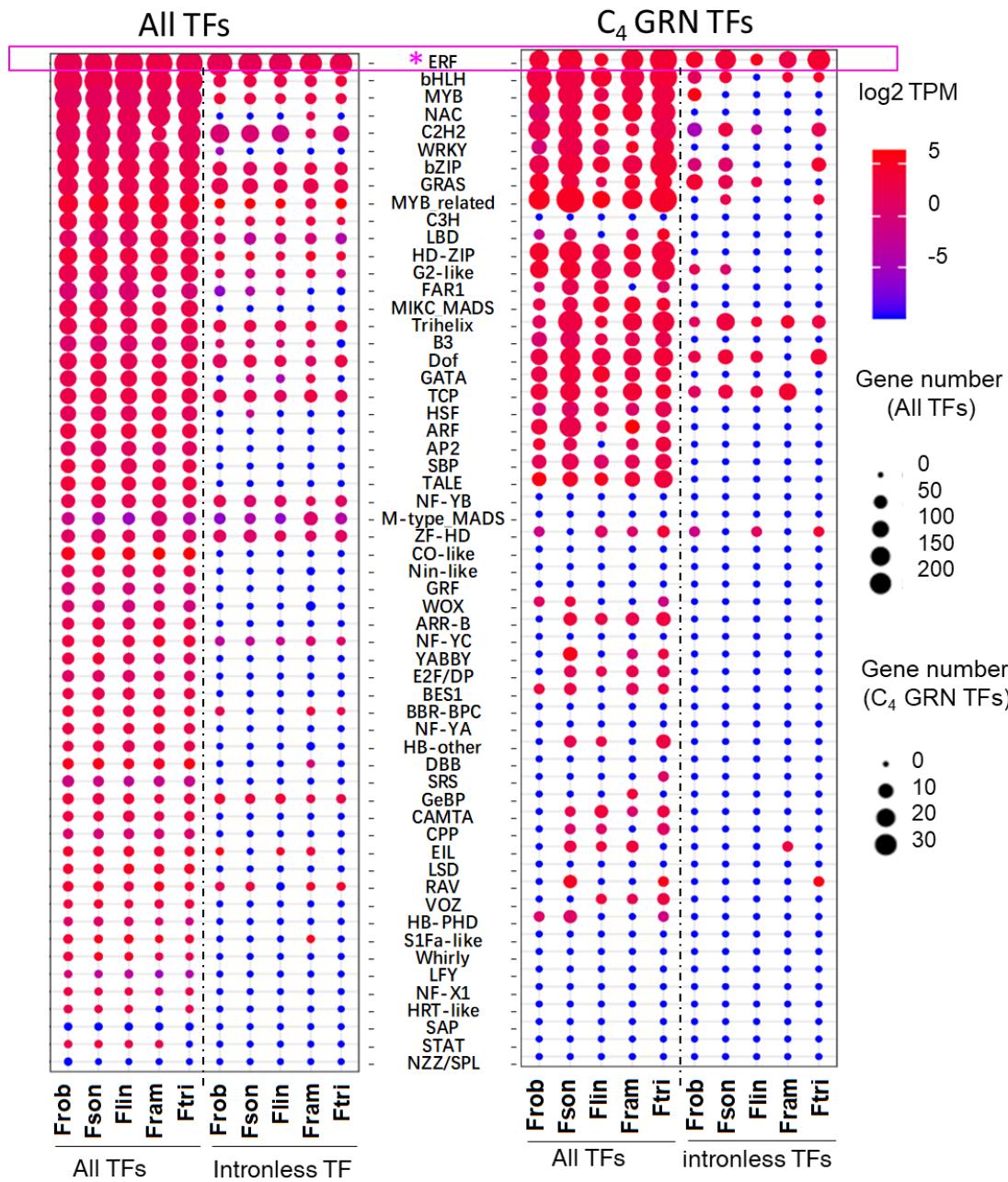
1192 **Figure S1. Genome features of five *Flaveria* species**


1193 The circular representation of pseudochromosomes. From outer to inner side: blue: LTR
1194 density per million base pair (Mb), purple: exon density per Mb, pink: transcript
1195 abundance per gene in log10 TPM (transcript per million mapped reads). Lines in the
1196 inner circle represent links between synteny-selected paralogs. (Abbreviations: Frob: *F.*
1197 *robusta*, Fson: *F. sonorensis*, Flin: *F. linearis*, Fram: *F. ramosissima*, Ftri: *F. trinervia*)
1198

1199


1200 **Figure S2. C₄ gene gradually gained light responses during evolution**

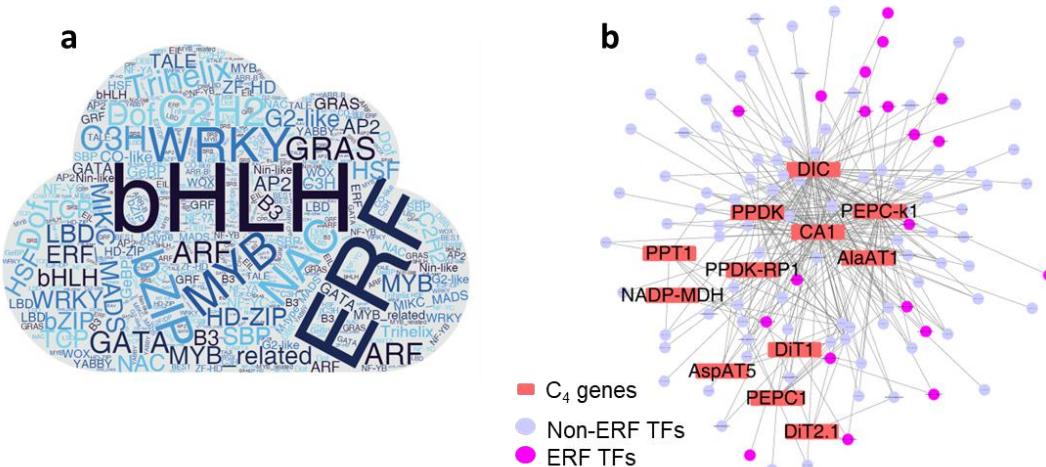
1201 Real-time quantitative (qRT)-PCR was used to quantify the transcript abundance of C₄
1202 enzymes in mature leaves after 0, 2 and 4h upon illumination. significance levels were
1203 calculated using *t*-test. (*: 0.05–0.01, **: 0.01–0.001, ***: < 0.001) (Abbreviations:
1204 CA1, carbonic anhydrase 1; PEPC1, phosphoenolpyruvate carboxylase 1; PEPC-k:
1205 PEPC kinase; NADP-MDH, NADP-dependent malate dehydrogenase; NADP-ME4,
1206 NADP-dependent malic enzyme 4; PPDK, pyruvate/orthophosphate dikinase; PPDK-
1207 RP, PPDK regulatory protein)


Figure S3. C₄ version of CA and PEPC-k show more copies in the C₄ species Ftri resulting from tandem duplication

(a) and (b) illustrate the gene tree of CA and PEPC-k respectively. Gene tree were constructed based alignment of protein sequences. Bootstrap scores were from 100 bootstrap samplings. Bars show gene expressions of leaves from two-month-old plants grown in low CO_2 condition (100 ppm) vs normal CO_2 condition (380 ppm) for four weeks. Three biological replicates were performed for each condition. (c) and (d) Integrated Genome Viewer (IGV) of RNA-seq reads and ATAC-seq reads of two copies of CA1 and four copies of PEPC-k1 anchored to chromosomes in Ftri respectively. Tn5 cuts and transposase hypersensitive sites (THS) from two biological replicates are showed. (Abbreviations: CA1: carbonic anhydrase1; PEPC-k1: phosphoenolpyruvate carboxylase kinase1.)

1223
1224 **Figure S4. Predicted *cis*-regulatory elements in the C₄ species Ftri by applying**
1225 **ATAC-seq**

1226 (a) Integrated Genome Viewer (IGV) of RNA-seq reads and two-biological replicates
1227 of ATAC-seq reads in Ftri are showed in three spatial resolutions, *i.e.*, genome scale
1228 with chromosome number and location indicated (top), chromosomal scale (middle),
1229 and million-base genomic region including PEPC1. (b) Enriched *cis*-regulatory
1230 elements (CREs) in three types of accessible chromatin regions (ACR-CREs), *i.e.*,
1231 genic (gACR-CREs: overlapping a gene), upstream (upACR-CREs: within 3kb
1232 upstream of the start codon of a gene) and downstream (down ACRs-CRES: within 3kb
1233 downstream of the stop codon of a gene). (c) Enriched ACR-CREs associated with
1234 photosynthetic genes and photorespiratory genes. (Abbreviations: ATAC-seq:
1235 transposase-accessible chromatin using sequencing; ACR: accessible chromatin
1236 regions; CREs: *cis*-regulatory elements)

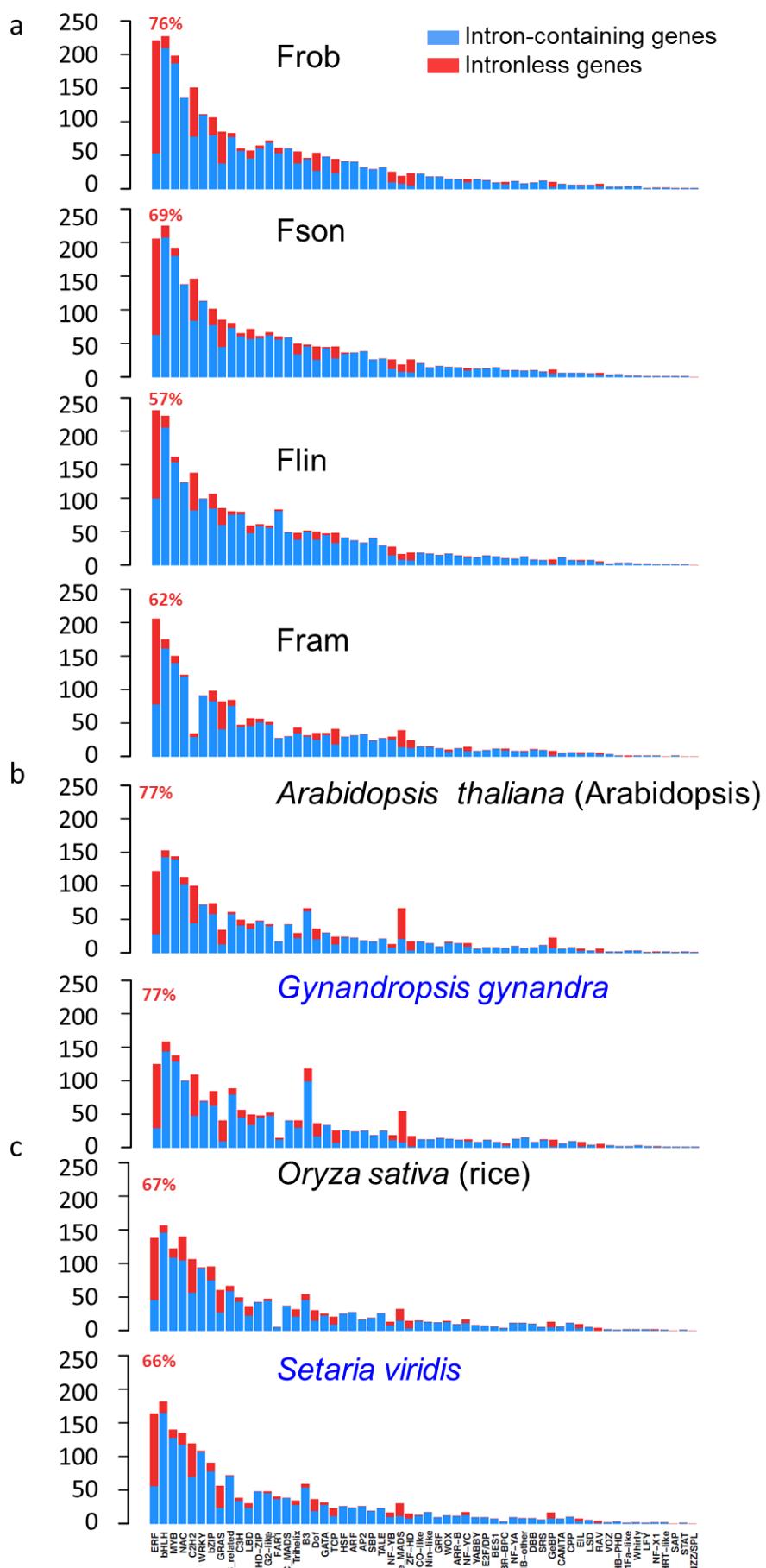

1237

1238 **Figure S5. The number and transcript abundances of intron-containing and intronless**
 1239 **genes in each TF family**

1240 Heat maps show the gene number and transcript abundance of genes in each TF family from
 1241 all the annotated TFs (left panel) and from C₄GRN (right panel). The size of circle represents
 1242 the number of genes, and the color represents the log₂ transformed transcript abundances in
 1243 transcript per million mapped reads (TPM).

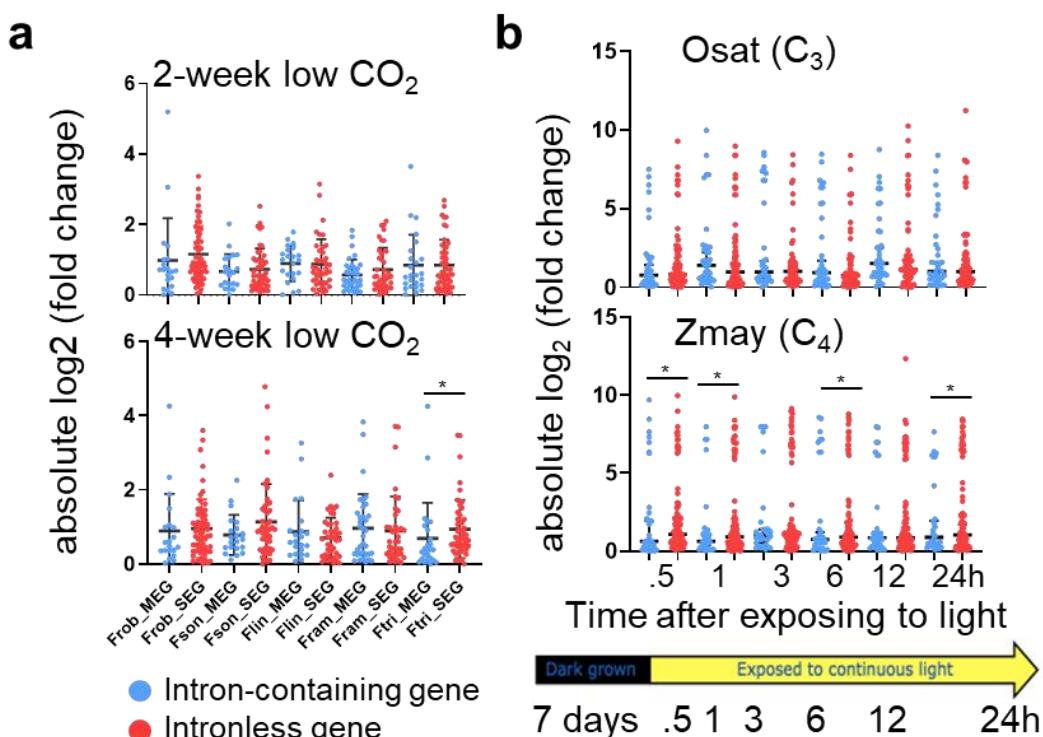
1244

1245



1246

1247 **Figure S6. ERF TFs were recruited by C₄ genes in *Zea mays***


1248 (a) Word cloud shows the frequencies of TFs in each TF families in the leaf gene
1249 regulatory network (GRN) of *Zea mays* (Zmay, corn) from (Tu et al., 2020). In the
1250 whole leaf GRN, bHLH is the most prevalent TFs with 138 genes. (b) The C₄GRN in
1251 Zmay that includes C₄ genes and their regulatory TFs. ERF is the most abundant TFs
1252 in the C₄GRN as showed in purple circle. 12 C₄ gene are included within the whole leaf
1253 GRN. (Abbreviation: Zmay: *Zea mays*)

1254

1256 **Figure S7. The number of intronless genes in each TF family in different species**

1257 The number of intronless gene and intron-contain genes are showed in each TF family
1258 from (a) four *Flaveria* species, (b) two dicotyledonous species and (c) two
1259 monocotyledonous species. C₄ species are labeled in blue font. Proportions of intronless
1260 genes in ERF TF family are showed in red font for each species.
1261

Figure S8. The response of intronless and intron-containing ERF TFs to environmental changes

(a) The changes on transcript abundances of intronless and intron-containing ERF TFs in five *Flaveria* species in response to low CO_2 (100 ppm) compared to normal CO_2 (380 ppm). RNA-seq data of both low CO_2 and normal CO_2 grown plants were taken from leaves after plants being grown under each condition for two weeks and four weeks respectively. (b) The response of transcript abundances of intronless and intron-containing ERF TFs in *Oryza sativa* (Osat, C_3) and *Zea mays* (Zmay, C_4) under light induction. The gene expression data of Osat and Zmay are from (Xu et al., 2016). Seeds of both species were germinated and grown under dark for 7 days. RNA-seq data of leaves were taken before light, 0.5h, 1, 3h, 6h, 12h and 24h after light respectively. The fold change of each time point was calculated as the ratio of gene expression level of this time point to that of the prior time point. Gene expression levels for all analysis was showed in transcript per million mapped reads (TPM). (Abbreviations: MEG: multi-exon genes, *i.e.*, intron-containing genes; SEG: single exon genes, *i.e.*, intronless genes; Osat: *Oryza sativa*; Zmay: *Zea mays*.)

1262

1263

1264

1265

1266

1267

1268

1269

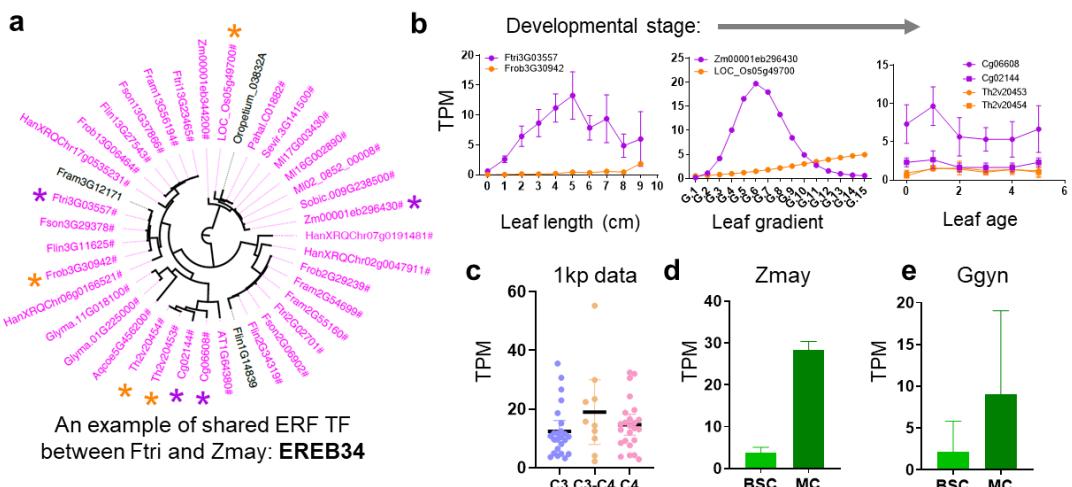
1270

1271

1272

1273

1274


1275

1276

1277

1278

1279

1280

1281 **Figure S9. An example of intronless ERF TF that was recruited to regulate C₄ 1282 genes in both Ftri and Zmay**

1283 (a) Gene tree of EREB34. Intronless genes are labeled in purple. EREB34 orthologous 1284 genes among 23 species (see Figure5) were predicted applying Orthofiner. EREB34 1285 present in higher plants but not in algae or liverwort. Genes marked with orange and 1286 purple stars are from C₃ and C₄ plants that compared in transcript abundances in (b). 1287 (b) Comparisons of EREB34 in transcript abundances between Frob (C₃) vs Ftri (C₄) 1288 (lef), *Oryza sativa* (Osat, C₃) vs *Zea mays* (Zmay, C₄) (middle), and *Tarenaya 1289 hassleriana* (Thas, C₃) vs *Gynandropsis gynandra* (Ggyn, C₄) (right) along leaf 1290 developmental gradient. Genes from C₃ species are labeled in orange, and those from 1291 C₄ species are in purple. RNA-seq data of these species are from published sources, *i.e.*, 1292 data of Frob and Ftri are from (Billakurthi. et al., 2020), data of Osat and Zmay are 1293 from (Xu et al., 2016), data of Thas and Ggyn are from (Kulahoglu et al., 2014) . The 1294 first points in Frob and Ftri (0) represent meristem. Leaf ages of Thas and Ggyn are as 1295 following: **0**: 0-2 days (d); **1**: 2-4 d; **2**: 4-6 d; **3**: 6-8 d; **4**: 8-10 d and **5**: 10-12 d. (c) 1296 Transcript abundances of EREB34 in C₃, C₃-C₄ and C₄ species from one thousand 1297 plants (1kp) project, covering 18 independent C₄ lineages. RNA-seq data are from 1298 (Steven Kelly, 2018). (d) Transcript abundance of EREB34 in Zmay bundle sheath cell 1299 (BSC) and mesophyll cell (MC). Expressional data are from (Chang et al., 2012). (e) 1300 Transcript abundances of EREB34 in Ggyn BSC and MC. Expressional data are from 1301 (Aubry et al., 2014). (Abbreviations: MC: mesophyll cell; BSC: bundle sheath cell.) 1302 1303