
Effects of Neurofeedback training on performance in laboratory tasks: A 
systematic review 
 
Payton Chiasson1, Maeve R. Boylan1, Mina Elhamiasl1, Joseph M. Pruitt1, Saurabh 
Ranjan1, Kierstin Riels1, Ashish K. Sahoo1, Arash Mirifar2 & Andreas Keil1 
 
1Department of Psychology University of Florida, Gainesville, FL, USA 
2Technical University Munich, Munich, Germany 
 
 
Address correspondence to 
Andreas Keil, PhD 
Department of Psychology  
and 
Center for the Study of Emotion & Attention 
University of Florida  
PO Box 112766   
Gainesville, FL  32611           
     
Phone: (352) 392-2439 
e-mail: akeil@ufl.edu 
 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2022. ; https://doi.org/10.1101/2022.10.14.511990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.511990
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
Neurofeedback procedures are attracting increasing attention in the neuroscience 

community. Based on the principle that participants, through suitable feedback, may learn to 
affect specific aspects of their brain activity, neurofeedback has been applied to basic research, 
translational, and clinical science alike. A large segment of the extant empirical research as well 
as review articles have focused on the extent to which neurofeedback interventions affect 
mental health outcomes, cognitive capacity, aging, and other complex behaviors. Another 
segment has aimed to characterize the extent to which neurofeedback affects the targeted 
neural processes. At this time, there is no current systematic review of the effects of 
neurofeedback on healthy participants’ performance in experimental tasks. Such a review is 
relevant in this rapidly evolving field because changes in experimental task performance are 
traditionally considered a hallmark of changing neurocognitive processes, often established in 
neurotypical individuals. This systematic review addresses this gap in the literature using the 
PRISMA method, building on earlier reviews on the same topic. Empirical studies using EEG or 
fMRI to alter brain processes linked to established, well-defined cognitive and affective 
laboratory tasks were reviewed. Substantial variability was found regarding the nature of the 
control for placebo effects, the implementation of the feedback, and the neural targets of 
feedback. Importantly, only a minority of the studies reported statistically meaningful effects of 
neurofeedback on performance in cognitive and affective tasks. Examining effect sizes and p-
values in a subset of studies found no evidence for reporting bias, while also not finding 
systematic relations between study characteristics such as sample size or experimental control 
on the one hand and efficacy on the other. Implications for future work are discussed.  
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Introduction 
Neuroimaging techniques such as electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI) have provided key contributions to understanding 
neural processes in the human brain associated with specific aspects of behavior and 
experience. Increasingly, imaging techniques are also used in the context of 
intervention, often taking the form of neurofeedback training (NFT; Rogala et al., 2016; 
Thibault et al., 2018). This technique, also referred to as closed-loop training, relies on 
training participants to modulate their brain activity. To this end, NFT involves three 
steps: (i) measuring the targeted brain activity, (ii) presenting an index of the targeted 
brain activity to the participant (feedback), and (iii) enabling the participant to attain 
operant control over the measured activity through a suitable training regimen (Viviani & 
Vallesi, 2021). Despite these shared principles, studies using NFT vary strongly 
concerning how the three steps are implemented. Strong variability also exists 
regarding how the effects of NFT interventions are controlled through appropriate study 
designs, and regarding the goals of the NFT (Mirifar et al., 2022). Furthermore, 
pronounced inter-individual variability exists between participants, with significant 
proportions of non-responders frequently reported (Alkoby et al., 2018; Weber et al., 
2020).  

Paralleling neuroimaging techniques more broadly, NFT in particular, is used in 
basic research as well as in clinical and translational research (Sitaram et al., 2017). 
The majority of published research with NFT examines the effects of modulating one’s 
brain activity on clinical outcomes such as mental health challenges or neurological 
diagnoses (Arns et al., 2017; Begemann et al., 2016). However, basic science studies 
with healthy adults, targeting behavior as measured in well-established standardized 
tasks, are widely considered a gold standard for establishing the validity of 
psychological or neural interventions (Morris et al., 2022). Accordingly, establishing the 
specific mechanism of action and the nature of the evidence supporting an intervention 
technique will typically precede its clinical application. 

Since its inception, questions have been raised regarding NFT’s efficacy and 
effectiveness (Schabus, 2017). A hallmark of an intervention being effective is its causal 
impact on its treatment target. In the case of basic science NFT studies, the goal of the 
intervention is not to improve symptoms in clinical groups, but to improve behavioral 
performance in non-clinical, healthy, samples (Gruzelier, 2014a). Often, these studies 
aim to test mechanistic hypotheses by means of using NFT to establish causal effects 
of certain brain processes concerning specific behaviors. For example, if down-
regulating alpha power heightens the attentive selection accuracy for targets among 
distractors, this supports the hypothesis that EEG alpha power is part of a causal nexus 
linked to selective attention. Consequently, an obvious criterion of the effectiveness of 
NFT procedures is the extent to which NFT alters the target behavior, operationalized 
as performance in a defined laboratory task. A sizable body of previous empirical work 
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and several review articles have examined this question (Mirifar et al., 2022; Sitaram et 
al., 2017). Collectively, this work however has not identified robust evidence for NFT’s 
effectiveness, sometimes concluding that NFT does not affect performance in 
psychological tasks (e.g., Rogala et al., 2016). Other authors however have reported 
robust outcomes, based on selective reviews of the literature (e.g., Gruzelier, 2014).  

Previous review articles have also discussed several conceptual and 
methodological issues that vary widely in the published literature, including the number 
of training sessions, the usage of suitable control conditions, and the neuro-mechanistic 
framework used for deriving hypotheses (Gruzelier, 2014b; Rogala et al., 2016). More 
recent work has attempted to address these challenges and has increasingly used more 
sophisticated methods both in the implementation of NFT as well as in the experimental 
control of NFT (Watanabe et al., 2017). For example, multivariate analysis methods, 
often based on computational tools such as pattern classifiers or decoders, have 
become more widely used (Taschereau-Dumouchel et al., 2021).  

Several questions however remain: (i) Across studies in non-clinical samples, is 
there evidence today for robust effects of NFT on performance indices of laboratory 
tasks? (ii) Is there a difference in outcomes between fMRI-based compared to EEG-
based NFT methods? (iii) Is there a relation between finding evidence for altered 
performance and factors such as the brain imaging methods used (here: EEG vs. fMRI), 
the sample size, number of training sessions, or the targeted brain process?  

The present review of the NFT literature published in the past 10 years examines 
these questions using the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) approach. This approach ensures a systematic inclusion of 
published works to remove potential selection biases.  
  

Methods 
Study inclusion and PRISMA protocol.  

As shown in the PRISMA flow chart (Figure 1), a primary search was conducted 
on PubMed, complemented by additional searches on Google Scholar and PsychInfo. 
The following PubMed search terms and their equivalent on the other databases were 
used; For EEG-based NFT studies:  

(((neurofeedback) AND (EEG)) AND (Task) AND (("2012/01/01"[Date - 
Publication] : "3000"[Date - Publication]))) NOT Anxiety[Title] NOT Depression[Title] 
NOT Therapy[Title] NOT Disorders[Title] NOT psychiatric[Title] NOT treatment[Title] 
NOT review[Title]).  

For fMRI-based NFT studies:  
(((neurofeedback) AND (fMRI)) AND (Task) AND (("2012/01/01"[Date - 

Publication] : "3000"[Date - Publication]))) NOT Anxiety[Title] NOT Depression[Title] 
NOT Therapy[Title] NOT Disorders[Title] NOT psychiatric[Title] NOT treatment[Title] 
NOT review[Title]).  
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These search terms aimed at identifying basic science studies (instead of studies 
targeting clinical diagnoses), which included psychological tasks, while avoiding review 
papers. The present review focused on published papers from the past 10 years (2012 
to 2022) to capture studies with improved methodological standards such as the usage 
of appropriate control groups as recommended in seminal review papers published prior 
to and during the present inclusion period (e.g., Gruzelier, 2014b; Vernon, 2005). The 
initial search resulted in a total of 351 papers, including papers that were obtained from 
screening the reference sections of the search results.  

These records were then screened by at least two reviewers, and excluded if 
they met the following exclusion criteria: (1) Exclude Reviews that do not present any 
new data; (2) Exclude Papers that have neuro-atypical population; (3) Exclude 
papers about developmental populations (children and older adults); (4) Exclude 
papers without a behavioral measure/outcome/metric; (5) Exclude papers with no 
control condition/ group; (6) Exclude papers published before 2012; (7) Exclude 
papers that do not perform NFT. Papers using a version of Brain-Computer Interfacing 
(BCI) with a robotic device were included if they involved a training phase in which 
feedback was given and a behavioral outcome was measured while meeting all the 
inclusion criteria above. Reviewer conflicts were resolved by adding at least one 
additional reviewer, followed by discussion, and vote.  

Upon assessment and resolution of reviewer conflicts, this step resulted in a total 
pool of 87 published reports, 22 EEG fMRI, and 65 with EEG. These publications were 
then submitted to a systematic extraction process. In the process, it was found that a 
subset of the studies did not report inferential or descriptive statistics for the behavioral 
outcome. These studies were removed. Also removed were studies that reported 
inferential statistics such as ANOVA or t-tests with cells of N < 4. After this step, there 
were 48 studies with EEG and 16 studies with fMRI, included in the present report.  
 
Extraction of information from included papers 

We extracted the information as shown in Tables 1 and 2 from each manuscript 
that entered the final sample. Specifically included were the type of experimental task 
used to measure behavioral outcomes, sample size, targeted brain response, age of the 
sample if indicated, type of feedback display, group design used for control, effect size, 
and the extent to which the main behavioral outcome variable(s) displayed a significant 
effect of NFT. This latter point proved challenging because many included studies 
provided incomplete or selective reports of statistical descriptors of behavioral outcome 
measures, as well as including several behavioral outcomes, quantified with several 
different indices each (e.g., response time, accuracy, d’, etc.). These cases were scored 
using the overall outcome utilizing the main variable mentioned in the introduction or by 
counting the number of significant versus null effects on relevant tests. Additional pieces 
of information that were often not reported in the original manuscript were participants’ 
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handedness and duration of the experimental session. The nature of the control group 
or control condition were also extracted and categorized, combining active conditions 
(e.g., sham stimulation, yoked designs, feedback from control regions, or feedback from 
control EEG frequencies) and contrasting them with passive conditions (behavioral 
training only, waiting list).  

Many of the included manuscripts did not report all statistical information needed 
to estimate the effect size. Where this information was available, the algorithm proposed 
by Rosnow et al. (1996) was utilized to determine the effect size measured as 
standardized mean differences, i.e., as Cohen’s D. This method can be used on t-tests, 
means, and standard deviations, as well as F-tests with 1 degree of freedom. As 
previously noted in the review by Rogala et al. (2016), statistical models for establishing 
outcomes of NFT vary. Some include (1) mixed model ANOVA, comparing active and 
control groups at pre- and post-intervention, with an interaction between group and pre-
post a hallmark of effects of NFT on behavior; (2) between-group t-tests at post; (3) 
within-participants t-tests within active and control group, and interpreting significant 
effects in active versus control as evidence of NFT having an effect. Many journal 
guidelines recommend not to use strategy (3) for defining a group by treatment 
interaction (Cumming, 2013), but for the present review, these were included for papers 
using strategy (3), while also calculating effects sizes based on the active-group’s pre to 
post comparison.  

As mentioned above, where multiple dependent variables for a given task were 
reported, or where multiple tasks existed, the most widely used index of that task (e.g., 
response time in a response time task) was selected for reporting in Tables 1 and 2, but 
all tasks and indices entered the descriptive statistical analysis and effect size 
calculations. Effect sizes were not examined in a meta-analysis because the studies 
showed a large degree of heterogeneity in terms of paradigm, analyses, and 
concept/behavioral targets. Effect size distributions and other descriptive statistics are 
presented instead to characterize central tendencies within subsets of the literature that 
allow such descriptive comparisons.  
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Figure 1. PRISMA review process of neurofeedback papers included/excluded for analyses. Top panel: 
PRISMA process for fMRI studies; Bottom panel: PRISMA process for EEG studies.  
 

Results 
Search Results 

An initial search for neurofeedback articles retrieved 328 records from PubMed 
and 23 records from the two other databases. Of these, 264 (108 fMRI and 156 EEG) 
articles were excluded due to (1) No neurofeedback task (e.g., BCI study), (2) No 
behavioral outcome, (3) No control group or control condition, (4) A review study, and/or 
(5) Clinical or developmental populations. Further, 23 (6 fMRI and 17 EEG) articles 
were excluded due to small sample size (N < 4) and/or a lack of reporting any statistical 
information on the behavioral outcomes. The final set of studies included in the present 
report in Tables 1 and 2 comprised 16 studies with fMRI and 48 with EEG. Figure 2 
shows their distribution across publication years illustrating a recent trend toward seeing 
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more studies measuring behavioral outcomes. This may be a consequence of an 
increasing base rate of published  NFT studies as noted in recent review papers 
(Rogala et al., 2016).  

 
Figure 2. Count of studies, by publication year, for fMRI and EEG neurofeedback studies included in this 
PRISMA review. 
 
Sample Size 

Studies varied widely in terms of targeted neural processes, behaviors, study 
design, and analytical models. This includes substantial variability in terms of sample 
size. Studies with very small samples were excluded from this review, but many of the 
included studies would likely still be seen as based on an insufficient number of 
observations by many statisticians (Brysbaert, 2019). Figure 3 shows the frequency of 
different sample sizes being used across all included studies. The included studies are 
summarized in Tables 1 and 2, separately for fMRI (n = 16 studies) and EEG (n = 49 
studies).  
 Across all studies selected, sample size (see Figure 3) was below recommended 
standards for human fMRI or EEG studies (Desmond & Glover, 2002; Keil et al., 2014), 
given previously reported effect sizes (Gruzelier, 2014a; Rogala et al., 2016). While 
EEG studies indicated approximately 42% of studies with a total sample size of n > 30, 
29% of fMRI studies reported an n > 30, often split between more than two groups of 
participants. In a similar vein, 46.7% of fMRI studies and 31.3% of EEG studies had 
sample sizes below 20%.  
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Figure 3. Proportions of studies with different sample sizes for both fMRI and EEG studies included in 
the present analyses. Note that most studies used samples of 30 participants or less.  
 

Study Design 
 Across all 65 articles selected, about 50 studies chose an active control group 
and condition design (sham stimulation, yoked to another participant, etc.) over a 
passive control (e.g., waiting list, behavioral training only). The sensory modality of the 
feedback representing the targeted brain activity was mostly visual (53.6%). A minority 
of studies employed a combination of modalities (5.4%).  
 

EEG NFT targets: Electrode location and frequency 
Across all 49 EEG studies selected, researchers focused on analyzing activity at 

central electrodes. Specifically, sensors C3, Cz, and C4 were most frequently used, 
reflective of significant interest in NFT on motor behaviors seen across many studies 
included in this review.  
 

 
Figure 4. Proportions of studies targeting different aspects of brain activity in EEG-based NFT.  
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In terms of EEG band power frequency, as shown in Figure 5, brain activity in the
canonical alpha frequency band (8 – 13 Hz) was most frequently targeted (34.9%).
Brain activity in the Gamma frequency band (> 20 Hz) was the least frequently used
(2.3%). For NFT on ratios between two frequency bands, theta and beta rhythms
tended to be used the most (i.e., theta/beta ratio).  

 
Figure 5. Proportion of NFT studies targeting different canonical frequency bands.  
 
Effect Size and Frequency of Significant Effects of NFT on behavioral outcomes 

When considering the p-values of all statistical tests reported on all behavioral 
outcomes, across all fMRI and EEG NFT studies, only 44% of these tests reported a 
significant effect. As shown in Figure 6, the same overall pattern emerges when 
considering the effects at the study level rather than at the level of individual tests 
across all studies: Because many of the included studies employed multiple tasks and, 
therefore, reported multiple p-values, results were counted significant if at least 50% of 
p-values for each task showed significance, as defined liberally (p<.05). When this 
quantification was applied, 58.8% studies with fMRI and 47.9% of studies with EEG 
reported a preponderance of absence of effects.  
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Figure 6. Pie charts of significant and non-significant reported p-values for fMRI and EEG studies 
included in analyses, quantified at the level of study. In cases where more than one dependent variable 
was reported without the original authors denoting a particular variable as the central outcome, a result 
was counted as “significant” in which most outcomes showed statistically significant (p<0.05) results.  

 
Effect sizes (Cohen’s d, Rosnow et al., 1996) were available or could be 

estimated for 13 (out of 16) fMRI studies and 40 (out of 48) EEG studies. Effect size 
analyses mirrored the results of the thresholded outcome analysis above. As illustrated 
in the histograms in Figure 7, although several studies reported medium to large effects, 
most reported small and medium effects. Median estimated effect size, unweighted by 
sample size was .54 for fMRI, and .43 for EEG, consistent with medium-sized effects 
(Rosnow et al., 2000). However, when linear weighting was applied by the sample size, 
weighted mean effect size values were reduced (.27 for fMRI and .32 for EEG). Effects 
in the opposite direction as expected were briefly mentioned in several studies but 
tended to be unaccompanied by statistical indices. Thus, these effects are not included 
here. In summary, although there was a substantial subset of studies with what 
appeared to be robust effects of NFT on behavioral outcomes, most studies showed 
very small or absent effects. To explore predictors of effect size, non-parametric 
(Spearman’s rho) correlations were calculated between effect size estimates and 
several potential predictors, including sample size and number of training sessions. 
Across all studies with effect sizes, there was no relation between training session count
and effect size (rho = -.24, p = .10) but there was a strong negative relation between 
sample size and effect size (rho = -.39, p = .005). Finally, crosstabulation analyses 
linking significant/non-significant outcomes to targeted frequencies (χ2[5] = 5.27, p = 
.39), and to the type of control condition or control group (χ2[1] = 0.022, p = .88), 
showed no such association. Rates of significant findings were not more likely in EEG 
than in fMRI studies (χ2[1] = 1.02, p = .31).  
 

 
Figure 7. Histograms of the effect sizes for both fMRI (left panel) and EEG studies (right panel) included 
in analyses. Note that effect sizes were not available for all studies included but only for a subset of 
studies.  
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Discussion 
The aim of this systematic review was to examine the effects of a wide range of 

NFT interventions on outcomes in experimental tasks with dependent variables 
operationally defined by a task, such as accuracy or response time, in non-clinical 
individuals. Clearly defined affective outcomes such as evaluative ratings of valence 
and arousal were also included. Considering studies using both fMRI and EEG, overall 
weak evidence for NFT’s effect on task performance was found.  

Regarding NFT’s effectiveness on outcomes in experimental tasks, results show 
that less than 50% of studies reported performance improvement with NFT. Pooled and 
weighted effect sizes of Cohen’s ds (.27 for fMRI and .32 for EEG respectively) also 
suggest that although several studies reported strong effects, the entirety of studies 
considered here did not show strong effects of NFT on task performance. As did prior 
reviews with conclusions similar to ours (Rogala et al., 2016), the present findings differ 
from the more positive assessment of effect sizes as given in earlier reviews targeting 
healthy populations, for example in Gruzelier (2014a, b) and in a recent systematic 
review and meta-analysis focusing on athletes’ decision making and reaction times by 
Brito et al. (2022). One source of discrepancy between the present and earlier findings 
may be rooted in the many reviews, discussions, and recommendation articles that 
have been published in recent years (Arns et al., 2017; Schabus, 2017; Taschereau-
Dumouchel et al., 2021), and which may have changed practice in the field. For 
example, prior recommendations to use active control groups may have impacted the 
field and thus may have led to more robust estimations of small effects, compared to 
earlier work with less appropriate experimental control (Rogala et al., 2016). In addition, 
the disposition of authors and journals towards publishing null or negative findings has 
changed in the past decade, even though present analyses did not reveal any 
registered reports and few preregistrations among the studies included in this review. 
The difference between present findings and those of Brito et al. may be attributed to 
the different studies included in their meta-analysis, compared to the present review.   

Overall, paralleling earlier review articles, present results show that studies 
varied widely in sample size, data processing, artifact control, and, importantly, research 
design. Despite earlier recommendations, several studies used passive control 
conditions discouraged in previous review papers (Rogala et al., 2016), and only a 
minority used double-blind randomized cross-over designs, often considered the most 
appropriate research design for studying intervention effects (Schabus, 2017). 
Furthermore, reporting of statistical indices needed for meta-analytical evaluation is 
variable in this literature. Future work may wish to report means and variability for each 
condition and group, along with full inference statistics. Sample sizes were overall 
smaller than widely recommended in studies addressing cognitive neuroscience 
questions, with many studies featuring cell sizes of 15 and below. Given the intervention 
character of NFT studies, basing sample sizes on suitable power analyses, including 
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simulations that include trial counts (Boudewyn et al., 2018; Gibney et al., 2020), may 
provide an avenue toward more robust, converging findings. Notably, there was a 
negative correlation between effect size and sample size, suggesting that small-sample 
studies overestimate effect sizes, a known issue that has been widely discussed in 
biobehavioral research (Begley, 2013; Halsey et al., 2015; Larson, 2020). There was no 
association between finding a significant effect of NFT and NFT modality (EEG, fMRI), 
targeted brain process, or study design. The lack of behavioral outcomes in many 
studies may also inform other procedures used in NFT research: Many studies use a 
brain-behavior metric, sometimes based on correlating changes in the brain with 
changes in behavior. If there is a null effect of NFT on behavior however, any NFT-
related differences observed on these measures might be driven by differences in brain 
activity only. In a similar vein, many of the NFT research papers considered here did not 
specify whether the goal of the intervention is to prompt behavior change, or brain 
activity change, or change in various combined brain-behavior metrics. Future work may 
use systematic manipulation and more refined meta-analytic categorization to examine 
potential effects of different experimental paradigms and different analytical approaches 
on NFT efficiency.  

Given the strong reliance of EEG-NFT on band power measures derived through 
spectral analysis, authors working in NFT research may wish to consider recent 
developments in spectral decomposition of neural time series (Donoghue et al., 2020; 
He, 2014). These advancements have led the field to consider problematic the process 
of extracting band power averages from spectra without considering potential changes 
or group differences in the overall spectral shape (Keil et al., 2022). Many suitable 
algorithms are available for avoiding confounds of specific activity in a given frequency 
band and overall spectral shape (Barry & Blasio, 2021; Donoghue et al., 2020; Hughes 
et al., 2012). NFT researchers may wish to examine the value of these approaches for 
heightening internal and external validity of EEG-based NFT. In a similar vein, fMRI-
based NFT has increasingly relied on multivariate decoding methods (Taschereau-
Dumouchel et al., 2021), and the potential of these advanced methods has shown 
promise for basic science and applied research alike (Cortese et al., 2021; Z. Wang et 
al., 2021a).  

Finally, how long the effect of NFT remains, at both neural and behavioral levels, 
after terminating an intervention is also a topic for future investigation. NFT studies are 
often designed and tested with immediate post-test in mind. Potential advantages of 
including short-term and even long-term follow-up measurements in NFT studies are: a) 
the ability to examine the temporal evolution and persistence of effects; b) the ability to 
quantify the reliability and variability of effects over time; and c) the ability to quantify 
lasting real-world benefits of the intervention.  
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In summary, the present PRISMA review converges with earlier reports (Rogala 
et al., 2016), showing that NFT research in normative, healthy samples is heterogenous 
regarding key methodological issues. Substantial variability was found in terms of 
sample size, experimental control, data processing, targeted brain processes, and 
statistical methods, among other criteria. Much of this variability likely contributed to 
variability in outcomes, with only a minority reporting significant effects of NFT on task 
performance. The present study does not suggest that there are no effects of NFT on 
behavioral performance in experimental tasks. Instead, paralleling earlier reviews of this 
literature (Rogala et al., 2016), the present analysis suggests that future reports in NFT 
research may wish to emphasize power analyses, pre-registration, and registered 
reports, as well as fully and carefully reporting statistical metrics needed for assessing 
the robustness of findings. Bayesian statistical approaches may also be helpful when 
aiming to quantify the meaningfulness of null findings. Lastly, NFT studies will be more 
persuasive once researchers more widely engage in direct replication research and 
include long-term follow-up in their study designs.  
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Table 1. fMRI Neurofeedback Studies Included in the Present Review. 

Reference Task Sample size fMRI target Age 
Feedback 
display Design/control  

Significant 
Effect 

Habes et al., 
2016 binocular rivalry: two 

tasks categorization 
task and rivalry task 17 

parahippocampal 
place area (PPA) 
over the fusiform 
face area (FFA thermometer* 

no-NFT group in 
mock scanner no 

deBettencourt 
et al., 2019 

Memory recall 24 (n_eff = 18) 

Based on two 
localizer runs, 
viewing blocks of 
scene, face, and 
object images. M = 20.9 

Exp1: Feedback 
based on valid vs 
invalid/ Exp2: NF 
group vs youked 
controls yes 

Oblak et al., 
2021 

postneurofeedback 
motor task 

14 (n_eff = 10) motor cortex, 
primary 
sensorimotor cortex 
(M1 + S1) 

M = 25.5, 
SD�=�5.2 

grey disk 

Within, baseline 
versus two feedback 
methods (ring vs 
middle) yes 

Scheinost et 
al., 2020 

not-XCPT/SART; 
AXCPT; VSTM; 
MOT 

25 (n_eff = 20) 

connectome  

M = 21.5 

gas gauge yoked control*sham no 

Herwig et al., 
2019 

stimulation with 
emotional pictures 

40 (24/15 nft, 16/11 
control) 

amygdala with the 
anterior cingulate 
cortex, 
hippocampus, and 
distinct prefrontal 
areas 

control M 
= 27.3, 
SD= 7.3, 
nft M = 
26.7, SD = 
4.8 

the control group 
also trained emotion 
regulation but 
without obtaining 
feedback yes 

Cortese et al., 
2017 

motion discrimination 
task 

17 (n_eff=10) 

inferior parietal 
lobule (IPL), 
inferior frontal 
sulcus (IFS), 
middle frontal 
sulcus (MFS), and 
the middle frontal 
gyrus (MFG) 

for 10 
participants 
- M = 24.2, 
SD = 3.2 

for MVPA: motion 
discrimination task 
with 2-alternative 
forced choice 
discrimination, for 
NF training down-
up group (first 
induce low, then 
high confidence) 
and vice-versa (up-
down) yes 

Al-Wasity et 
al., 2021 

Go/No-Go 

20 (t= 
10/5f(26.1�±�5.1�years); 
c = 
10/3f(23.2�±�2.6�years) 
) 

SMA (NF task: 
User's choice MI of 
own execution of 
complex actions) 

 

thermometer true Nf vs sham NF yes 

Scharnowski 
et al., 2015 

Reaction time test, 
word memory task 

7 

Supplementary 
motor area and 
parahippocampal 
cortex 

Range - 
23-26y 

continuously 
updated 
yellow curve 

no control, three 
volunteers were 
trained to up-
regulate in 
regulation blocks 
1,3, and 5, whereas 
four volunteers up-
regulated in 
regulation blocks 
2,4, and 6. Also the 
type of feedback 
signal was pseudo-
randomized: Three 
volunteers were 
trained to control 
the SMA-PHC 
feedback signal, 
and four volunteers 
were trained to 
control the PHC- no 
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SMA feedback 
signal. 

Wang et al., 
2020 

PANAS 

 feedback signal 
based of the left 
amygdala (recalling 
past positive or 
pleasant events) 

 

thermometer true NF vs sham NF no 

Marins et al., 
2019 

a motor imagery task, 
with no overt 
movement 

 fractional 
anisotropy (FA) in 
the sensorimotor 
segment of corpus 
callosum and 
connectivity of the 
sensorimotor 
resting state 
network 

 

randomized, 
double-blind and 
sham-controlled no 

Paret et al., 
2016 subjective (affective) 

ratings of images 

32 (16 exp, 16 control) 
amygdala or control 
region 

24.56 
(3.91) thermometer 

(continuously) 

sham group, 
feedback from non-
amygdala region no 

Kim et al., 
2019 

questionnaire data 

60 frontoparietal 
network, default 
mode network, 
salience network 

25.1 (2.9) 

thermometer 

sham group, 
feedback from other 
person no 

Chiew et al., 
2012 

RT 

18 (13 exp, 5 control) 

R & L M1 

27 (3) exp, 
24 (3) 
control vertical bar yoke sham group no 

Hui et al., 
2014 

finger tapping 
accuracy 

28 (15 exp, 13 control) 

PMA (pre-motor) 

22(1.6) 
exp, 

23(1.7) 
control 

continuously 
displayed 
feedback, 
green bar control group no 

Li et al., 2016 

PANAS  

23 (12 exp, 11 control)  

whole brain 

23.8 (1.4) 
exp, 23.1 
(1.3) 
control thermometer control group no 

deBettencourt 
et al., 2015 

identification/attention 
task 

80 (32 in fMRI NFT, 48 in 
behav control) 

uni: FFA, PPA; 
multi: "perceptual 
and attentional 
networks" 

20.3 

none 
yoked control 
groups yes 

Wang et al., 
2020 

18 
V1/V2 

23.4 ± 2.4 
years yes 

 
Table 2. EEG Neurofeedback Studies Included in the Present Review. 
 

Reference Task Sample size EEG target Age 
Feedback 
display Design/control  

Significant 
Effect 

Li et al.,2021 laprosocopy 20 
posterior electrode 
cluster 

sphere*visua
l no-NFT group* yes 

Sidhu & 
Cooke., 2021 walking, serial sevens 25 Cz 

tone 
pitch*auditor
y 

crossover, up, down, 
sham*crossover 
design yes 

Hsueh et al., 
2016 

working and epsiodic 
memory tasks 50 C3, C4, and Cz 

( NF: M = 
20.96, SD 
= 2.85) / 
(Ctrl: M = 
21.6, SD = 
2.40) 

horizontal 
bar sham no 

Chang et al., auditory 12 frontopolar midline disk around yolked control yes 
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2021 discrimination and 
recognition tasks 

fixation 
point 

Arvaneh et al., 
2019 

random dot motion 
task 28 

Fz, C3, Cz, C4, P3, 
Pz, P4, and Oz(all 
channels) 

(NF: M = 
29.75, SD 
= 4.91) 
(Ctrl: M = 
25.57, SD 
= 3.50) 

showed the 
identified 
letter in a 
text box no-NFT group yes 

Wei et al., 
2017 

backward digit span 
task and word-pair 
test 30 C3  

M = 26, SD 
= 3 

horizontal 
bar sham yes 

Power et al., 
2020 

unimanual button 
pressing task (but 
didn't report 
handedness, only used 
left-hand for button 
pressing) 28 C3 and C4 

M = 22, SD 
= 7 bar yolked control yes 

Karran., 2019 business task (stock) 30 all electrodes 18–43, μ 24 

color of task 
display 
frame 

no-task, continuous 
NFT, event-related 
NFT no 

Eschmann & 
Mecklinger., 
2020 

delayed match t samp, 
stroop 

35 (17 active 18 
controls) Fz 

20-30, µ 
23.99 

active control group 
(random frequency 
NFT)  no 

Berger & 
Davelaar., 
2018 stroop 22 (11 in each group) Fp2 

35.2, SD = 
8.8 

floating 
object 

2-D VR and 3-D VR, 
no other control no 

Nan et al., 
2020 

Continuous tracking 
task 

23 (12, 11 in each 
group)  C3  

25.48 ± 
3.62 years bird chirps 

NFT versus sham 
control no 

Mishra et al., 
2021 

feature-based 
attention 

48 (32, NFT, 16 
sham) 

fonto-posterior source 
space 25.5±0.3 

scale with 
plus signs NFT vs Sham no 

Kim et al., 
2021 

speech in noise 
detection 20 

Fz, FCz, FC1, FC2, 
and Cz 

23.2 years; 
SD = 1.33 plus sign Placebo no 

He et al., 2020 cued pinch movement 20 C3 C4  18-21 basketball sham  yes 

Grosselin et 
al., 2021 relax VAS 48 (25, 23)  RMS 

mean 33.3 
range 18-
60  tone volume sham  no 

Agnoli et al., 
2018 alternative use task 

80 (40 alpha, 40 Beta, 
in each 20 sham 20 
NFT) 

CP2, CP4, CP6 and 
P4  

21.10 
years, SD = 
2.12;(19 to 
27 years) 

natural 
picture 
stream 
progress sham  no 

Ros et al., 
2013 

mind-wandering 
question, RT, and 
auditory oddball RT 34 Pz 

32.6, SD: 
10.7 

dynamic bar 
graph sham  no 

Ozga et al., 
2019 mental rotation 33 

19-channels (all used 
for NFT) 

32.06; 
SD�=�7.6
7 

440 Hz tone, 
an intensity 
of 73 dB SP no NFT no 

Ros et al., 
2013 

sequence response 
time 10 C4 

35.7, SD: 
12.7 

start/stop 
movement of 
games 

no NFT crossover 7 
days apart yes 

Salari et al., 
2014 

object detection and 
spatial att 24 PO7/PO8 

29, range 
25–35 

numbers and 
ball game sham control yes 

Enriquez-
Geppert et al., 
2014 

task switch; 3-back; 
stop signal; stroop 31 Fz 25 +-3 

display color 
-> red sham control no 

Enriquez-
Geppert et al., 
2014 

task switch; 3-back; 
stop signal; stroop 40 Fz 24.8 +-3.3 

display color 
-> red sham control yes 
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Xiong et al., 
2014 WM task 48 (12 per group) 

Fz, FCz, Cz, C1 and 
C2 

not 
reported 

totating 
sphere and 
thermometer 

only behav training, 
no trialing, sham  yes 

Boe et al., 
2014 

sequential button 
press paradigm  18 motor cortex (MEG)  24.7 ± 3.8 

2 bar graphs 
(l,R) 

no NFT (fixation) 
control no 

Zich et al., 
2017 

thumb of finger pinch 
movement (RT) 20 

motor cortex (C3 or 
C4) basketball no training, sham yes 

Gordon., 2020 
packmen and ball 
filling 140 Pz thermometer 

silent control, active 
control no 

Renton et al., 
2021 

perceived average 
motion direction 30 occipitoparietal 

motion 
coherence no 

Yun et al., 
2020 

controlling’ the level 
of spontaneous audio-
visual alpha band 
cortical connectivity. 16 (22-40y) temporal and occipital bar graph 

illusion (perceiving 
two flash) vs 
nonillusion 
(perceiving one flash) 
trials yes 

Parsons & 
Faubert., 2021 3D-MOT 40 (m=22.89) Pz 

sphere/color 
saturation 

non-active control, 
sham neurofeedback yes 

Faller et al., 
2019 

boundary avoidance 
task (virtual flight) 20 

loudness of 
audio of a 
constant-rate 
heart-beat. sham, silence 

Gonçalves et 
al., 2018 

Attention Network 
Task (ANT), WM: 
hought Identification 
Task (TIT), Content 
of WM: Resting State 
Questionnaire 
(ReSQ), MW 
Intentionality: Mind 
Wandering Deliberate 
and Spontaneous 
Scales (MW-D/S) 30 (18 to 32) Cz 

M = 20.7, 
SD = 3.7 bar graph 

SMR⇑Theta⇓ Vs 
Theta⇑SMR⇓ no 

Reiner et al., 
2018 

finger sequence task 
(average speed) 45 Pz 

28.26, s.d. 
4.81 bar graph 

theta NFT, beta NFT, 
noNF yes 

Naros et al., 
2016 no 

Holger 
Gevensleben1 
et al., 2014 

continuous 
performance 
task/target detection 20 Cz 

Exp: 23.2 
(2.91) 
Placebo: 
22.9 (2.98) 

ball on a 
computer 
screen sham group no 

Escolano et 
al., 2012 

mental rotation task, 
psych battery, stroop, 
trail making test 19 (10 NF, 9 sham) 

P3, Pz, P4, O1 and 
O2 

NF 25.8 ± 
4.07; 
Control 
24.3±3.67 

red or blue 
square yoked sham  no 

Schneider et 
al., 2019 validity effect (VE) 14 PO7 and PO8 23 ± 1.52 

colored 
circles with 
an inscribed 
cross 

repeated randomly 
assigned sham/NF 
training yes 

Reiner et al., 
2014 finger tapping 38 Pz 25-35 

car 
acceleration 

silent control 
(watched movies) yes 

Kober et al., 
2015 

they learned to 
voluntarily increase 
SMR 20 P3 

M = 24.40 
yrs., SE = 
1.85 yrs. scatter plots 

received sham 
feedback yes 

Eschmann et 
al., 2021 finger tapping 46 central sites, Fz,  

Mage = 
22.44, 
range = 18-
30 years bar charts 

nonresponders were 
control (poor control) yes 
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Eschmann et 
al., 2020 

source memory for 
words 36 central sites, Fz,  23 

rollercoaster 
animation, 

active control 
(random frequency) no 

Maszczyk et 
al., 2020 

simple and complex 
reaction time  12 C3 22-25 

airplane 
flying with 
sound sham yes 

Nan et al., 
2013 

peripheral visual 
feature conjunction 
detection 30 Cz 19–33 

sphere and 
cube size and 
color 

passive (no training) 
control yes 

Mikicin et al., 
2015 35 C3 and C4 electrodes 18-25 yrs yes 

Jurewicz et 
al., 2018 

AAT – anticipatory 
attention test 32 F3, F4, P3, and P4 

22.34 ± 
1.18 

move points 
to center of 
target 

up versus 
downregulation no 

Studer et al., 
2014 attention network test 55 Cz 19-31 

changing 
bars, ball 
position 

two feedback groups 
plus control cognitive 
training (not sham) no 

Mirifar et al., 
2019 simple and choice RT 38 Cz 

16.8 (SD 
2.47) 

light bulb, 
with score 
and beeps 

two feedback groups 
plus sham control 
group no 

Tseng et al., 
2021 

episodic and semantic 
memory encoding adn 
recall 27 Fz 

21.6 years, 
SD�=�4.1
5 

pitch of a 
tone 

no-NFT passive 
control yes 

Ghaziri et al., 
2013 

“attentional 
performance” via the 
Integrated Visual 
Auditory (IVA) 
continuous 
performance test 

30 (12 exp, 12 sham, 
6 control) F4, P4 22 (2.4) 

2 columns, 
green when 
above thres, 
red when 
below 

sham with feedback 
from exp group, and 
control with no 
training  yes 

Cheng et al., 
2015 

putting performance 
(distance from hole in 
cm) 16 (8 exp, 8 sham) Cz 

exp: 22.3 
(2.07), 
sham: 20.6 
(1.59)  

graphical 
feedback 
representatio
ns including 
the low-
frequency 
audio-
feedback 
tone by 
acoustic bass sham group yes 
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