bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.511990; this version posted October 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Effects of Neurofeedback training on performance in laboratory tasks: A
systematic review

Payton Chiasson’, Maeve R. Boylan®, Mina Elhamiasl*, Joseph M. Pruitt', Saurabh
Ranjan', Kierstin Riels®, Ashish K. Sahoo®, Arash Mirifar* & Andreas Keil*

'Department of Psychology University of Florida, Gainesville, FL, USA
*Technical University Munich, Munich, Germany

Address correspondence to

Andreas Keil, PhD

Department of Psychology

and

Center for the Study of Emotion & Attention
University of Florida

PO Box 112766

Gainesville, FL 32611

Phone: (352) 392-2439
e-mail: akeil@ufl.edu


https://doi.org/10.1101/2022.10.14.511990
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.511990; this version posted October 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Neurofeedback procedures are attracting increasing attention in the neuroscience
community. Based on the principle that participants, through suitable feedback, may learn to
affect specific aspects of their brain activity, neurofeedback has been applied to basic research,
translational, and clinical science alike. A large segment of the extant empirical research as well
as review articles have focused on the extent to which neurofeedback interventions affect
mental health outcomes, cognitive capacity, aging, and other complex behaviors. Another
segment has aimed to characterize the extent to which neurofeedback affects the targeted
neural processes. At this time, there is no current systematic review of the effects of
neurofeedback on healthy participants’ performance in experimental tasks. Such a review is
relevant in this rapidly evolving field because changes in experimental task performance are
traditionally considered a hallmark of changing neurocognitive processes, often established in
neurotypical individuals. This systematic review addresses this gap in the literature using the
PRISMA method, building on earlier reviews on the same topic. Empirical studies using EEG or
fMRI to alter brain processes linked to established, well-defined cognitive and affective
laboratory tasks were reviewed. Substantial variability was found regarding the nature of the
control for placebo effects, the implementation of the feedback, and the neural targets of
feedback. Importantly, only a minority of the studies reported statistically meaningful effects of
neurofeedback on performance in cognitive and affective tasks. Examining effect sizes and p-
values in a subset of studies found no evidence for reporting bias, while also not finding
systematic relations between study characteristics such as sample size or experimental control
on the one hand and efficacy on the other. Implications for future work are discussed.
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Introduction

Neuroimaging techniques such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) have provided key contributions to understanding
neural processes in the human brain associated with specific aspects of behavior and
experience. Increasingly, imaging techniques are also used in the context of
intervention, often taking the form of neurofeedback training (NFT; Rogala et al., 2016;
Thibault et al., 2018). This technique, also referred to as closed-loop training, relies on
training participants to modulate their brain activity. To this end, NFT involves three
steps: (i) measuring the targeted brain activity, (ii) presenting an index of the targeted
brain activity to the participant (feedback), and (iii) enabling the participant to attain
operant control over the measured activity through a suitable training regimen (Viviani &
Vallesi, 2021). Despite these shared principles, studies using NFT vary strongly
concerning how the three steps are implemented. Strong variability also exists
regarding how the effects of NFT interventions are controlled through appropriate study
designs, and regarding the goals of the NFT (Mirifar et al., 2022). Furthermore,
pronounced inter-individual variability exists between participants, with significant
proportions of non-responders frequently reported (Alkoby et al., 2018; Weber et al.,
2020).

Paralleling neuroimaging techniques more broadly, NFT in particular, is used in
basic research as well as in clinical and translational research (Sitaram et al., 2017).
The majority of published research with NFT examines the effects of modulating one’s
brain activity on clinical outcomes such as mental health challenges or neurological
diagnoses (Arns et al., 2017; Begemann et al., 2016). However, basic science studies
with healthy adults, targeting behavior as measured in well-established standardized
tasks, are widely considered a gold standard for establishing the validity of
psychological or neural interventions (Morris et al., 2022). Accordingly, establishing the
specific mechanism of action and the nature of the evidence supporting an intervention
technique will typically precede its clinical application.

Since its inception, questions have been raised regarding NFT’s efficacy and
effectiveness (Schabus, 2017). A hallmark of an intervention being effective is its causal
impact on its treatment target. In the case of basic science NFT studies, the goal of the
intervention is not to improve symptoms in clinical groups, but to improve behavioral
performance in non-clinical, healthy, samples (Gruzelier, 2014a). Often, these studies
aim to test mechanistic hypotheses by means of using NFT to establish causal effects
of certain brain processes concerning specific behaviors. For example, if down-
regulating alpha power heightens the attentive selection accuracy for targets among
distractors, this supports the hypothesis that EEG alpha power is part of a causal nexus
linked to selective attention. Consequently, an obvious criterion of the effectiveness of
NFT procedures is the extent to which NFT alters the target behavior, operationalized
as performance in a defined laboratory task. A sizable body of previous empirical work
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and several review articles have examined this question (Mirifar et al., 2022; Sitaram et
al., 2017). Collectively, this work however has not identified robust evidence for NFT’s
effectiveness, sometimes concluding that NFT does not affect performance in
psychological tasks (e.g., Rogala et al., 2016). Other authors however have reported
robust outcomes, based on selective reviews of the literature (e.g., Gruzelier, 2014).

Previous review articles have also discussed several conceptual and
methodological issues that vary widely in the published literature, including the number
of training sessions, the usage of suitable control conditions, and the neuro-mechanistic
framework used for deriving hypotheses (Gruzelier, 2014b; Rogala et al., 2016). More
recent work has attempted to address these challenges and has increasingly used more
sophisticated methods both in the implementation of NFT as well as in the experimental
control of NFT (Watanabe et al., 2017). For example, multivariate analysis methods,
often based on computational tools such as pattern classifiers or decoders, have
become more widely used (Taschereau-Dumouchel et al., 2021).

Several questions however remain: (i) Across studies in non-clinical samples, is
there evidence today for robust effects of NFT on performance indices of laboratory
tasks? (ii) Is there a difference in outcomes between fMRI-based compared to EEG-
based NFT methods? (iii) Is there a relation between finding evidence for altered
performance and factors such as the brain imaging methods used (here: EEG vs. fMRI),
the sample size, number of training sessions, or the targeted brain process?

The present review of the NFT literature published in the past 10 years examines
these questions using the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) approach. This approach ensures a systematic inclusion of
published works to remove potential selection biases.

Methods
Study inclusion and PRISMA protocol.

As shown in the PRISMA flow chart (Figure 1), a primary search was conducted
on PubMed, complemented by additional searches on Google Scholar and Psychinfo.
The following PubMed search terms and their equivalent on the other databases were
used; For EEG-based NFT studies:

(((neurofeedback) AND (EEG)) AND (Task) AND (("2012/01/01"[Date -
Publication] : "3000"[Date - Publication]))) NOT Anxiety[Title] NOT Depression[Title]
NOT Therapy[Title] NOT Disorders[Title] NOT psychiatric[Title] NOT treatment[Title]
NOT review([Title]).

For fMRI-based NFT studies:

(((neurofeedback) AND (fMRI)) AND (Task) AND (("2012/01/01"[Date -
Publication] : "3000"[Date - Publication]))) NOT Anxiety[Title] NOT Depression[Title]
NOT Therapy[Title] NOT Disorders[Title] NOT psychiatric[Title] NOT treatment[Title]
NOT review[Title]).
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These search terms aimed at identifying basic science studies (instead of studies
targeting clinical diagnoses), which included psychological tasks, while avoiding review
papers. The present review focused on published papers from the past 10 years (2012
to 2022) to capture studies with improved methodological standards such as the usage
of appropriate control groups as recommended in seminal review papers published prior
to and during the present inclusion period (e.g., Gruzelier, 2014b; Vernon, 2005). The
initial search resulted in a total of 351 papers, including papers that were obtained from
screening the reference sections of the search results.

These records were then screened by at least two reviewers, and excluded if
they met the following exclusion criteria: (1) Exclude Reviews that do not present any
new data; (2) Exclude Papers that have neuro-atypical population; (3) Exclude
papers about developmental populations (children and older adults); (4) Exclude
papers without a behavioral measure/outcome/metric; (5) Exclude papers with no
control condition/ group; (6) Exclude papers published before 2012; (7) Exclude
papers that do not perform NFT. Papers using a version of Brain-Computer Interfacing
(BCI) with a robotic device were included if they involved a training phase in which
feedback was given and a behavioral outcome was measured while meeting all the
inclusion criteria above. Reviewer conflicts were resolved by adding at least one
additional reviewer, followed by discussion, and vote.

Upon assessment and resolution of reviewer conflicts, this step resulted in a total
pool of 87 published reports, 22 EEG fMRI, and 65 with EEG. These publications were
then submitted to a systematic extraction process. In the process, it was found that a
subset of the studies did not report inferential or descriptive statistics for the behavioral
outcome. These studies were removed. Also removed were studies that reported
inferential statistics such as ANOVA or t-tests with cells of N < 4. After this step, there
were 48 studies with EEG and 16 studies with fMRI, included in the present report.

Extraction of information from included papers

We extracted the information as shown in Tables 1 and 2 from each manuscript
that entered the final sample. Specifically included were the type of experimental task
used to measure behavioral outcomes, sample size, targeted brain response, age of the
sample if indicated, type of feedback display, group design used for control, effect size,
and the extent to which the main behavioral outcome variable(s) displayed a significant
effect of NFT. This latter point proved challenging because many included studies
provided incomplete or selective reports of statistical descriptors of behavioral outcome
measures, as well as including several behavioral outcomes, quantified with several
different indices each (e.g., response time, accuracy, d’, etc.). These cases were scored
using the overall outcome utilizing the main variable mentioned in the introduction or by
counting the number of significant versus null effects on relevant tests. Additional pieces
of information that were often not reported in the original manuscript were participants’
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handedness and duration of the experimental session. The nature of the control group
or control condition were also extracted and categorized, combining active conditions
(e.g., sham stimulation, yoked designs, feedback from control regions, or feedback from
control EEG frequencies) and contrasting them with passive conditions (behavioral
training only, waiting list).

Many of the included manuscripts did not report all statistical information needed
to estimate the effect size. Where this information was available, the algorithm proposed
by Rosnow et al. (1996) was utilized to determine the effect size measured as
standardized mean differences, i.e., as Cohen’s D. This method can be used on t-tests,
means, and standard deviations, as well as F-tests with 1 degree of freedom. As
previously noted in the review by Rogala et al. (2016), statistical models for establishing
outcomes of NFT vary. Some include (1) mixed model ANOVA, comparing active and
control groups at pre- and post-intervention, with an interaction between group and pre-
post a hallmark of effects of NFT on behavior; (2) between-group t-tests at post; (3)
within-participants t-tests within active and control group, and interpreting significant
effects in active versus control as evidence of NFT having an effect. Many journal
guidelines recommend not to use strategy (3) for defining a group by treatment
interaction (Cumming, 2013), but for the present review, these were included for papers
using strategy (3), while also calculating effects sizes based on the active-group’s pre to
post comparison.

As mentioned above, where multiple dependent variables for a given task were
reported, or where multiple tasks existed, the most widely used index of that task (e.g.,
response time in a response time task) was selected for reporting in Tables 1 and 2, but
all tasks and indices entered the descriptive statistical analysis and effect size
calculations. Effect sizes were not examined in a meta-analysis because the studies
showed a large degree of heterogeneity in terms of paradigm, analyses, and
concept/behavioral targets. Effect size distributions and other descriptive statistics are
presented instead to characterize central tendencies within subsets of the literature that
allow such descriptive comparisons.
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Identification of fMRI Neurofeedback studies via PubMed

Records identified (n = 130)

v

Records screened and Records excluded for:
reviewer conflicts resolved (1) No neurofeedback task
(n=23) (2) No behavioral outcome
(3) No control group or
condition
(4) Review

(5) Clinical or develop-
mental population

il (n = 107)
Reports assessed for Reports excluded for:
eligibilty and data extracted —» (1) N < 4
(n=17) (2) Statistical values not
reported
(n =6)
Total studies included in
review
(n=17)

Identification of EEG Neurofeedback studies via PubMed

Records identified (n = 198)

Identification of EEG Neurofeedback studies via
other methods
r

A

Records screened and Records excluded for: Records identified from:
reviewer conflicts resolved (1) No neurofeedback task PsychlInfo, Google Scholar
(n = 42) (2) No behavioral outcome (n =23)
(3) No control group or
condition
(4) Review

(5) Clinical or develop-
mental population

(n = 156)

v v
Reports assessed for Reports excluded for: Reports assessed for Reports excluded for:
eligibilty and data extracted —» (1) N < 4 eligibilty and data extracted —» (1) N <3
(n=36) (2) Statistical values not (n=12) (2) Statistical values not

reported reported

l (n=7) (n=11)
Total studies included in
review <
(n = 48)

Figure 1. PRISMA review process of neurofeedback papers included/excluded for analyses. Top panel:
PRISMA process for fMRI studies; Bottom panel: PRISMA process for EEG studies.

Results

Search Results

An initial search for neurofeedback articles retrieved 328 records from PubMed
and 23 records from the two other databases. Of these, 264 (108 fMRI and 156 EEG)
articles were excluded due to (1) No neurofeedback task (e.g., BCI study), (2) No
behavioral outcome, (3) No control group or control condition, (4) A review study, and/or
(5) Clinical or developmental populations. Further, 23 (6 fMRI and 17 EEG) articles
were excluded due to small sample size (N < 4) and/or a lack of reporting any statistical
information on the behavioral outcomes. The final set of studies included in the present
report in Tables 1 and 2 comprised 16 studies with fMRI and 48 with EEG. Figure 2
shows their distribution across publication years illustrating a recent trend toward seeing
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more studies measuring behavioral outcomes. This may be a consequence of an
increasing base rate of published NFT studies as noted in recent review papers
(Rogala et al., 2016).

Neurofeedback Publications

B MRI B EEG
12
10
Ly
8 8
(1]
T 6
G
2 4
E
-
= 2
0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Publication Year

Figure 2. Count of studies, by publication year, for fMRI and EEG neurofeedback studies included in this
PRISMA review.

Sample Size

Studies varied widely in terms of targeted neural processes, behaviors, study
design, and analytical models. This includes substantial variability in terms of sample
size. Studies with very small samples were excluded from this review, but many of the
included studies would likely still be seen as based on an insufficient number of
observations by many statisticians (Brysbaert, 2019). Figure 3 shows the frequency of
different sample sizes being used across all included studies. The included studies are
summarized in Tables 1 and 2, separately for fMRI (n = 16 studies) and EEG (n =49
studies).

Across all studies selected, sample size (see Figure 3) was below recommended
standards for human fMRI or EEG studies (Desmond & Glover, 2002; Keil et al., 2014),
given previously reported effect sizes (Gruzelier, 2014a; Rogala et al., 2016). While
EEG studies indicated approximately 42% of studies with a total sample size of n > 30,
29% of fMRI studies reported an n > 30, often split between more than two groups of
participants. In a similar vein, 46.7% of fMRI studies and 31.3% of EEG studies had
sample sizes below 20%.
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Sample Size

fMRI - 17 studies
n>50

13.3% 4.2%

30<n<=50

13.3% n<=20 30<n<=50
46.7%  37.5%

Sample Size

EEG - 49 studies
n>50

20<n<=30

20<n<=30

Figure 3. Proportions of studies with different sample sizes for both fMRI and EEG studies included in
the present analyses. Note that most studies used samples of 30 participants or less.

Study Design

Across all 65 articles selected, about 50 studies chose an active control group
and condition design (sham stimulation, yoked to another participant, etc.) over a
passive control (e.g., waiting list, behavioral training only). The sensory modality of the
feedback representing the targeted brain activity was mostly visual (53.6%). A minority
of studies employed a combination of modalities (5.4%).

EEG NFT targets: Electrode location and frequency

Across all 49 EEG studies selected, researchers focused on analyzing activity at
central electrodes. Specifically, sensors C3, Cz, and C4 were most frequently used,
reflective of significant interest in NFT on motor behaviors seen across many studies

included in this review.

Electrode Region

Parietal
18.2%

All electrodes
2.3%

Frontal
18.2%

Central
38.6%

Multiple
22.7%

Figure 4. Proportions of studies targeting different aspects of brain activity in EEG-based NFT.
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In terms of EEG band power frequency, as shown in Figure 5, brain activity in the
canonical alpha frequency band (8 — 13 Hz) was most frequently targeted (34.9%).
Brain activity in the Gamma frequency band (> 20 Hz) was the least frequently used
(2.3%). For NFT on ratios between two frequency bands, theta and beta rhythms
tended to be used the most (i.e., theta/beta ratio).

EEG Target

Gamma
2.3%
Other
11.6%

Theta
14.0%

Alpha
34.9%

Beta
14.0%

Ratio
23.3%

Figure 5. Proportion of NFT studies targeting different canonical frequency bands.

Effect Size and Frequency of Significant Effects of NFT on behavioral outcomes

When considering the p-values of all statistical tests reported on all behavioral
outcomes, across all fMRI and EEG NFT studies, only 44% of these tests reported a
significant effect. As shown in Figure 6, the same overall pattern emerges when
considering the effects at the study level rather than at the level of individual tests
across all studies: Because many of the included studies employed multiple tasks and,
therefore, reported multiple p-values, results were counted significant if at least 50% of
p-values for each task showed significance, as defined liberally (p<.05). When this
guantification was applied, 58.8% studies with fMRI and 47.9% of studies with EEG
reported a preponderance of absence of effects.

Significant Effect Significant Effect

fMRI EEG

Not Significant
47.9% Significant
52.1%

Significant
41.2%

Not Significant
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Figure 6. Pie charts of significant and non-significant reported p-values for fMRI and EEG studies

included in analyses, quantified at the level of study. In cases where more than one dependent variable
was reported without the original authors denoting a particular variable as the central outcome, a result
was counted as “significant” in which most outcomes showed statistically significant (p<0.05) results.

Effect sizes (Cohen’s d, Rosnow et al., 1996) were available or could be
estimated for 13 (out of 16) fMRI studies and 40 (out of 48) EEG studies. Effect size
analyses mirrored the results of the thresholded outcome analysis above. As illustrated
in the histograms in Figure 7, although several studies reported medium to large effects,
most reported small and medium effects. Median estimated effect size, unweighted by
sample size was .54 for fMRI, and .43 for EEG, consistent with medium-sized effects
(Rosnow et al., 2000). However, when linear weighting was applied by the sample size,
weighted mean effect size values were reduced (.27 for fMRI and .32 for EEG). Effects
in the opposite direction as expected were briefly mentioned in several studies but
tended to be unaccompanied by statistical indices. Thus, these effects are not included
here. In summary, although there was a substantial subset of studies with what
appeared to be robust effects of NFT on behavioral outcomes, most studies showed
very small or absent effects. To explore predictors of effect size, non-parametric
(Spearman’s rho) correlations were calculated between effect size estimates and
several potential predictors, including sample size and number of training sessions.
Across all studies with effect sizes, there was no relation between training session count
and effect size (rho = -.24, p = .10) but there was a strong negative relation between
sample size and effect size (rho =-.39, p =.005). Finally, crosstabulation analyses
linking significant/non-significant outcomes to targeted frequencies (x?[5] = 5.27, p =
.39), and to the type of control condition or control group (x*[1] = 0.022, p = .88),
showed no such association. Rates of significant findings were not more likely in EEG
than in fMRI studies (x*[1] = 1.02, p = .31).

Effect Size Effect Size
fMRI EEG

6 15

'S
S

o

N
Frequency

Frequency

0.00 0.26 0.52 0.78 1.04 1.3( 0.00 0.26 0.52 0.78 1.04 1.30

Effect Size Effect Size

Figure 7. Histograms of the effect sizes for both fMRI (left panel) and EEG studies (right panel) included
in analyses. Note that effect sizes were not available for all studies included but only for a subset of
studies.
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Discussion

The aim of this systematic review was to examine the effects of a wide range of
NFT interventions on outcomes in experimental tasks with dependent variables
operationally defined by a task, such as accuracy or response time, in non-clinical
individuals. Clearly defined affective outcomes such as evaluative ratings of valence
and arousal were also included. Considering studies using both fMRI and EEG, overall
weak evidence for NFT’s effect on task performance was found.

Regarding NFT's effectiveness on outcomes in experimental tasks, results show
that less than 50% of studies reported performance improvement with NFT. Pooled and
weighted effect sizes of Cohen’s ds (.27 for fMRI and .32 for EEG respectively) also
suggest that although several studies reported strong effects, the entirety of studies
considered here did not show strong effects of NFT on task performance. As did prior
reviews with conclusions similar to ours (Rogala et al., 2016), the present findings differ
from the more positive assessment of effect sizes as given in earlier reviews targeting
healthy populations, for example in Gruzelier (2014a, b) and in a recent systematic
review and meta-analysis focusing on athletes’ decision making and reaction times by
Brito et al. (2022). One source of discrepancy between the present and earlier findings
may be rooted in the many reviews, discussions, and recommendation articles that
have been published in recent years (Arns et al., 2017; Schabus, 2017; Taschereau-
Dumouchel et al., 2021), and which may have changed practice in the field. For
example, prior recommendations to use active control groups may have impacted the
field and thus may have led to more robust estimations of small effects, compared to
earlier work with less appropriate experimental control (Rogala et al., 2016). In addition,
the disposition of authors and journals towards publishing null or negative findings has
changed in the past decade, even though present analyses did not reveal any
registered reports and few preregistrations among the studies included in this review.
The difference between present findings and those of Brito et al. may be attributed to
the different studies included in their meta-analysis, compared to the present review.

Overall, paralleling earlier review articles, present results show that studies
varied widely in sample size, data processing, artifact control, and, importantly, research
design. Despite earlier recommendations, several studies used passive control
conditions discouraged in previous review papers (Rogala et al., 2016), and only a
minority used double-blind randomized cross-over designs, often considered the most
appropriate research design for studying intervention effects (Schabus, 2017).
Furthermore, reporting of statistical indices needed for meta-analytical evaluation is
variable in this literature. Future work may wish to report means and variability for each
condition and group, along with full inference statistics. Sample sizes were overall
smaller than widely recommended in studies addressing cognitive neuroscience
questions, with many studies featuring cell sizes of 15 and below. Given the intervention
character of NFT studies, basing sample sizes on suitable power analyses, including
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simulations that include trial counts (Boudewyn et al., 2018; Gibney et al., 2020), may
provide an avenue toward more robust, converging findings. Notably, there was a
negative correlation between effect size and sample size, suggesting that small-sample
studies overestimate effect sizes, a known issue that has been widely discussed in
biobehavioral research (Begley, 2013; Halsey et al., 2015; Larson, 2020). There was no
association between finding a significant effect of NFT and NFT modality (EEG, fMRI),
targeted brain process, or study design. The lack of behavioral outcomes in many
studies may also inform other procedures used in NFT research: Many studies use a
brain-behavior metric, sometimes based on correlating changes in the brain with
changes in behavior. If there is a null effect of NFT on behavior however, any NFT-
related differences observed on these measures might be driven by differences in brain
activity only. In a similar vein, many of the NFT research papers considered here did not
specify whether the goal of the intervention is to prompt behavior change, or brain
activity change, or change in various combined brain-behavior metrics. Future work may
use systematic manipulation and more refined meta-analytic categorization to examine
potential effects of different experimental paradigms and different analytical approaches
on NFT efficiency.

Given the strong reliance of EEG-NFT on band power measures derived through
spectral analysis, authors working in NFT research may wish to consider recent
developments in spectral decomposition of neural time series (Donoghue et al., 2020;
He, 2014). These advancements have led the field to consider problematic the process
of extracting band power averages from spectra without considering potential changes
or group differences in the overall spectral shape (Keil et al., 2022). Many suitable
algorithms are available for avoiding confounds of specific activity in a given frequency
band and overall spectral shape (Barry & Blasio, 2021; Donoghue et al., 2020; Hughes
et al., 2012). NFT researchers may wish to examine the value of these approaches for
heightening internal and external validity of EEG-based NFT. In a similar vein, fMRI-
based NFT has increasingly relied on multivariate decoding methods (Taschereau-
Dumouchel et al., 2021), and the potential of these advanced methods has shown
promise for basic science and applied research alike (Cortese et al., 2021; Z. Wang et
al., 2021a).

Finally, how long the effect of NFT remains, at both neural and behavioral levels,
after terminating an intervention is also a topic for future investigation. NFT studies are
often designed and tested with immediate post-test in mind. Potential advantages of
including short-term and even long-term follow-up measurements in NFT studies are: a)
the ability to examine the temporal evolution and persistence of effects; b) the ability to
quantify the reliability and variability of effects over time; and c) the ability to quantify
lasting real-world benefits of the intervention.
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In summary, the present PRISMA review converges with earlier reports (Rogala
et al., 2016), showing that NFT research in normative, healthy samples is heterogenous
regarding key methodological issues. Substantial variability was found in terms of
sample size, experimental control, data processing, targeted brain processes, and
statistical methods, among other criteria. Much of this variability likely contributed to
variability in outcomes, with only a minority reporting significant effects of NFT on task
performance. The present study does not suggest that there are no effects of NFT on
behavioral performance in experimental tasks. Instead, paralleling earlier reviews of this
literature (Rogala et al., 2016), the present analysis suggests that future reports in NFT
research may wish to emphasize power analyses, pre-registration, and registered
reports, as well as fully and carefully reporting statistical metrics needed for assessing
the robustness of findings. Bayesian statistical approaches may also be helpful when
aiming to quantify the meaningfulness of null findings. Lastly, NFT studies will be more
persuasive once researchers more widely engage in direct replication research and
include long-term follow-up in their study designs.
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Table 1. fMRI Neurofeedback Studies Included in the Present Review.

Reference

Habes et al.,
2016

deBettencourt
etal., 2019

Oblak et al.,
2021

Scheinost et
al., 2020

Herwig et al.,
2019

Cortese et al.,
2017

Al-Wasity et
al., 2021

Scharnowski
et al., 2015

Task

binocular rivalry: two
tasks categorization
task and rivalry task

Memory recall

postneurofeedback
motor task

not-XCPT/SART;

AXCPT; VSTM;
MOT

stimulation with
emotional pictures

motion discrimination

task

Go/No-Go

Reaction time test,
word memory task

Sample size

17

24 (n_eff = 18)
14 (n_eff = 10)

25 (n_eff = 20)

40 (24/15 nft, 16/11
control)

17 (n_eff=10)

20 (t=

10/5f(26.10+015.1years);

c=
10/3f(23.271+M2.6Tyears)
)

fMRI target

parahippocampal
place area (PPA)
over the fusiform
face area (FFA

Based on two
localizer runs,
viewing blocks of
scene, face, and
object images.

motor cortex,
primary
sensorimotor cortex
(M1 + S1)

connectome

amygdala with the
anterior cingulate
cortex,
hippocampus, and
distinct prefrontal
areas

inferior parietal
lobule (IPL),
inferior frontal
sulcus (IFS),
middle frontal
sulcus (MFS), and
the middle frontal
gyrus (MFG)

SMA (NF task:
User's choice MI of
own execution of
complex actions)

Supplementary
motor area and
parahippocampal
cortex

Feedback

Age display

thermometer™

M =20.9

M =255,
SD1=r15.2

grey disk
M =215

gas gauge

control M
=273,
SD=7.3,
nft M=
26.7,SD =
4.8

for 10
participants
-M=24.2,
SD=32

thermometer

Range -
23-26y

continuously
updated
yellow curve

Significant
Effect

Design/contr ol

no-NFT group in

mock scanner no
Expl: Feedback

based on valid vs
invalid/ Exp2: NF
group vs youked

controls yes
Within, baseline

versus two feedback
methods (ring vs

middle) yes

yoked control*sham no

the control group
also trained emotion
regulation but
without obtaining
feedback

for MVPA: motion
discrimination task
with 2-alternative
forced choice
discrimination, for
NF training down-
up group (first
induce low, then
high confidence)
and vice-versa (up-
down)

yes

yes

true Nf vs sham NF  yes

no control, three
volunteers were
trained to up-
regulate in
regulation blocks
1,3, and 5, whereas
four volunteers up-
regulated in
regulation blocks
2,4, and 6. Also the
type of feedback
signal was pseudo-
randomized: Three
volunteers were
trained to control
the SMA-PHC
feedback signal,
and four volunteers
were trained to
control the PHC- no
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Wang et al.,
2020

Marins et al.,
2019

Paret et al.,
2016
Kimetal.,
2019

Chiew et al.,
2012

Hui et al.,
2014

Lietal., 2016
deBettencourt
et al., 2015
Wang et al.,
2020
Table 2.
Reference

Li et al.,2021
Sidhu &
Cooke., 2021
Hsueh et al.,
2016
Changetal.,

available under aCC-BY-NC-ND 4.0 International license.

PANAS

a motor imagery task,
with no overt
movement

32 (16 exp, 16 control)
subjective (affective)
ratings of images

questionnaire data
18 (13 exp, 5 control)

RT

28 (15 exp, 13 control)
finger tapping
accuracy

23 (12 exp, 11 control)
PANAS

80 (32 in fMRI NFT, 48 in

behav control)
identification/attention
task

feedback signal
based of the left
amygdala (recalling
past positive or

SMA feedback
signal.

EEG Neurofeedback Studies Included in the Present Review.

Task Sample size
laprosocopy 20
walking, serial sevens 25
working and epsiodic

memory tasks 50
auditory 12

pleasant events) thermometer  true NF vs sham NF no
fractional
anisotropy (FA) in
the sensorimotor
segment of corpus
callosum and
connectivity of the
sensorimotor randomized,
resting state double-blind and
network sham-controlled no
24.56 sham group,
amygdala or control (3.91) thermometer  feedback from non-
region (continuously) amygdala region no
60 frontoparietal 25.1(2.9)
network, default sham group,
mode network, feedback from other
salience network thermometer  person no
27 (3) exp,
24 (3)
R&L M1 control vertical bar | yoke sham group no
22(1.6) continuously
exp, displayed
23(1.7) feedback,
PMA (pre-motor) control green bar control group no
23.8(1.4)
exp, 23.1
(1.3)
whole brain control thermometer | control group no
uni: FFA, PPA; 20.3
multi: "perceptual
and attentional yoked control
networks" none groups yes
18 234+24
V1/Vv2 years yes
Feedback Significant
EEG target Age display Design/control Effect
posterior electrode sphere*visua
cluster | no-NFT group* yes
tone crossover, up, down,
pitch*auditor ' sham*crossover
Cz y design yes
(NF: M=
20.96, SD
=285)/
(Ctr: M=
21.6, SD = horizontal
C3,C4,and Cz 2.40) bar sham no
frontopolar midline disk around  yolked control yes
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2021 discrimination and fixation
recognition tasks point

(NF: M =

29.75, SD

=4.91) showed the
Fz, C3, Cz, C4, P3, (Ctrl: M = identified

Arvaneh et al., random dot motion Pz, P4, and Oz(all 25.57,SD letterina

2019 task 28 channels) =3.50) text box no-NFT group yes
backward digit span

Wei et al., task and word-pair M =26, SD horizontal

2017 test 30 C3 =3 bar sham yes

unimanual button
pressing task (but
didn't report
handedness, only used

Power etal.,  left-hand for button M =22, SD
2020 pressing) 28 C3andC4 =7 bar yolked control yes
color of task | no-task, continuous
display NFT, event-related
Karran., 2019  business task (stock) 30 all electrodes 18-43, n 24 frame NFT no
Eschmann & active control group
Mecklinger.,  delayed match t samp, 35 (17 active 18 20-30, (random frequency
2020 stroop controls) Fz 23.99 NFT) no
Berger &
Davelaar., 35.2, SD = floating 2-D VR and 3-D VR,
2018 stroop 22 (11 in each group) Fp2 8.8 object no other control no
Nan et al., Continuous tracking 23 (12, 11 in each 25.48 + NFT versus sham
2020 task group) C3 3.62 years  bird chirps  control no
Mishra et al., feature-based 48 (32, NFT, 16 fonto-posterior source scale with
2021 attention sham) space 25.5+0.3  plus signs NFT vs Sham no
Kimetal., speech in noise Fz,FCz, FC1,FC2,  23.2years;
2021 detection 20 and Cz SD=1.33 plussign Placebo no
He et al., 2020 ' cued pinch movement 20 C3C4 18-21 basketball sham yes
mean 33.3
Grosselin et range 18-
al., 2021 relax VAS 48 (25, 23) RMS 60 tone volume sham no
21.10 natural
80 (40 alpha, 40 Beta, years, SD = picture
Agnoli et al., ineach 20 sham20  CP2,CP4,CP6and  2.12;(19to stream
2018 alternative use task NFT) P4 27 years)  progress sham no
mind-wandering
Ros et al., question, RT, and 32.6, SD:  dynamic bar
2013 auditory oddball RT 34 Pz 10.7 graph sham no
32.06; 440 Hz tone,
Ozgaetal, 19-channels (all used  SD[=[17.6 an intensity
2019 mental rotation 33 for NFT) 7 of 73dB SP  no NFT no
start/stop
Ros et al., sequence response 35.7, SD: movement of no NFT crossover 7
2013 time 10 C4 12.7 games days apart yes
Salari et al., object detection and 29,range  numbers and
2014 spatial att 24 PO7/PO8 25-35 ball game sham control yes
Enriquez-
Geppert etal., task switch; 3-back; display color
2014 stop signal; stroop 31 Fz 25 +-3 -> red sham control no
Enriquez-
Geppert et al., task switch; 3-back; display color

2014 stop signal; stroop 40 Fz 24.8+-3.3 ->red sham control yes
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Xiong et al.,
2014

Boe et al.,
2014

Zich et al.,
2017

Gordon., 2020

Renton et al.,
2021

Yunetal.,
2020

Parsons &
Faubert., 2021

Faller et al.,
2019

Gongalves et
al., 2018

Reiner et al.,
2018

Naros et al.,
2016

Holger
Gevenslebenl
etal., 2014

Escolano et
al., 2012

Schneider et
al., 2019

Reiner et al.,
2014

Kober et al.,
2015

Eschmann et
al., 2021

WM task

sequential button
press paradigm

thumb of finger pinch

movement (RT)
packmen and ball
filling

perceived average
motion direction

controlling’ the level

of spontaneous audio-

visual alpha band
cortical connectivity.

3D-MOT

boundary avoidance
task (virtual flight)

Attention Network
Task (ANT), WM:
hought Identification
Task (TIT), Content

of WM: Resting State

Questionnaire
(ReSQ), MW
Intentionality: Mind

Wandering Deliberate

and Spontaneous
Scales (MW-D/S)

finger sequence task
(average speed)

continuous
performance
task/target detection

mental rotation task,
psych battery, stroop,
trail making test

validity effect (VE)

finger tapping

they learned to
voluntarily increase
SMR

finger tapping

48 (12 per group)
18
20
140
30
16 (22-40y)
40 (m=22.89)
20
30 (1810 32)
45
20

19 (10 NF, 9 sham)

14

38

20

46

Fz, FCz, Cz, Cl and
Cc2

motor cortex (MEG)
motor cortex (C3 or
C4)

Pz

occipitoparietal

temporal and occipital

Pz

Cz

Pz

Cz

P3, Pz, P4, O1 and
02

PO7 and PO8

Pz

P3

central sites, Fz,

not
reported

24.7+3.8

M =20.7,
SD =37

28.26, s.d.
4.81

Exp: 23.2
(2.91)
Placebo:
22.9 (2.98)

NF 25.8 +
4.07,
Control
24.3+3.67

23+152

25-35

M =24.40
yrs., SE =
1.85 yrs.
Mage =
22.44,
range = 18-
30 years

totating
sphere and
thermometer

2 bar graphs
(ILR)

basketball

thermometer

motion
coherence

bar graph
sphere/color
saturation

loudness of
audio of a
constant-rate
heart-beat.

bar graph

bar graph

ball ona
computer
screen

red or blue
square

colored
circles with
an inscribed
Cross

car
acceleration

scatter plots

bar charts

only behav training,
no trialing, sham

no NFT (fixation)
control

no training, sham

silent control, active
control

illusion (perceiving
two flash) vs
nonillusion
(perceiving one flash)
trials

non-active control,
sham neurofeedback

sham, silence

SMR1NThetal Vs
ThetatSMRU

theta NFT, beta NFT,
noNF

sham group

yoked sham

repeated randomly
assigned sham/NF
training

silent control
(watched movies)

received sham
feedback

nonresponders were
control (poor control)

yes

no

yes

no

no

yes

yes

no

yes

no

no

no

yes

yes

yes
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Eschmann et
al., 2020

Maszczyk et
al., 2020

Nan et al.,
2013

Mikicin et al.,
2015

Jurewicz et
al., 2018

Studer et al.,
2014

Mirifar et al.,
2019

Tseng et al.,
2021

Ghaziri et al.,
2013

Chengetal.,
2015

source memory for
words

simple and complex
reaction time

peripheral visual
feature conjunction
detection

AAT - anticipatory
attention test

attention network test

simple and choice RT

episodic and semantic
memory encoding adn
recall

“attentional
performance” via the
Integrated Visual
Auditory (IVA)
continuous
performance test

putting performance
(distance from hole in
cm)

36

12

30

35

32

55

38

27

30 (12 exp, 12 sham,
6 control)

16 (8 exp, 8 sham)

central sites, Fz,

C3

Cz

C3 and C4 electrodes

F3, F4, P3, and P4

Cz

Cz

Fz

F4, P4

Cz

23

22-25

19-33

18-25 yrs

2234+
1.18

19-31

16.8 (SD
2.47)

21.6 years,
SDO=04.1
5

22 (2.4)

exp: 22.3
(2.07),
sham: 20.6
(1.59)

rollercoaster
animation,

airplane
flying with
sound

sphere and
cube size and
color

move points
to center of
target

changing
bars, ball
position

light bulb,
with score
and beeps

pitch of a
tone

2 columns,
green when
above thres,
red when
below

graphical
feedback
representatio
ns including
the low-
frequency
audio-
feedback
tone by
acoustic bass

active control
(random frequency)

sham

passive (no training)
control

up versus
downregulation

two feedback groups
plus control cognitive
training (not sham)

two feedback groups
plus sham control

group

no-NFT passive
control

sham with feedback
from exp group, and
control with no
training

sham group

no

yes

yes

yes

no

no

yes

yes

yes
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