

1 **Title:**

2 Rubber needs to be included in deforestation-free commodity legislation

4 **Authors:**

5 Eleanor Warren-Thomas^{*1,2}, Antje Ahrends³, Yunxia Wang³, Maria M H Wang⁴, Julia P G Jones^{1,5}

7 **Affiliations:**

8 ¹School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University;
9 Bangor, UK

10 ²International Institute for Applied Systems Analysis (IIASA); Laxenburg, Austria

11 ³Royal Botanic Garden Edinburgh; Edinburgh, UK

12 ⁴Grantham Centre for Sustainable Futures and School of Biosciences, University of Sheffield;
13 Sheffield, UK

14 ⁵Ecology and Biodiversity, Department of Biology; Utrecht University, Utrecht, Netherlands

16 **Keywords:**

17 supply chain; biodiversity; swidden; smallholder; climate change; disease; tropical forest;
18 sustainability

20 ***Corresponding author.**

21 School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University;
22 Bangor, UK. Email: e.warrenthomas@bangor.ac.uk. No phone number available.

23 **Abstract:**

24

25 Natural rubber production uses increasing amounts of land in the tropics and is linked to
26 deforestation. There is debate as to whether current legislative proposals to reduce the import of
27 deforestation-linked commodities into the EU, US and the UK will include rubber. Globally, sustained
28 growth in demand is chiefly driven by tyre production, linked to rising freight and passenger
29 transport flows. Yields of natural rubber remain static, meaning increased plantation area will be
30 required: 2.7 – 5.3 million ha of additional harvested area could be needed by 2030 to meet
31 demand. In order to prevent further deforestation and associated biodiversity loss, millions of
32 smallholder growers producing the majority of rubber globally need support to increase production
33 from existing plantations and close yield gaps, without undermining long-term sustainability through
34 soil or water degradation. Rubber should also be included in legislative proposals to reduce
35 deforestation in supply chains to avoid undermining the impact of these ambitious initiatives on
36 forest loss globally.

37

38

39 **Main text:**

40

41 Avoiding tropical deforestation is critical to protect biodiversity, address climate change, protect
42 ecosystem service delivery, and support indigenous peoples (Lyons-White et al., 2020). As
43 conversion to agricultural land is a key driver of forest loss, there are increasing initiatives to
44 eliminate deforestation from the supply chains of agricultural commodities (Lyons-White et al.,
45 2020; Seymour & Harris, 2019). Legislative proposals are currently under consideration in the EU
46 (Directorate-General for Environment, 2021b), the US (S.2950 - 117th Congress (2021-2022): FOREST
47 Act of 2021, 2021) and the UK (DEFRA, 2021) to regulate the import of deforestation-linked
48 commodities.

49

50 Natural rubber (*Hevea brasiliensis*) is essential for the manufacture of vehicle and airplane tyres
51 (comprising 70% of global natural rubber consumption (Laroche et al., 2022)), medical equipment,
52 prophylactics and sportswear (Warren-Thomas et al., 2015). Some tyre companies have made zero-
53 deforestation commitments, and a voluntary sustainability initiative, the Global Platform for
54 Sustainable Natural Rubber (GPSNR) works to address deforestation alongside other sustainability
55 concerns (<https://sustainablenaturalrubber.org>). However, only a small fraction of the rubber
56 industry has voluntarily committed to avoiding deforestation.

57

58 The EU proposal for a regulation on deforestation-free products will require businesses placing
59 goods containing specific named commodities on the EU market to show that products were not
60 produced on land deforested or degraded after 31 December 2020 (Directorate-General for
61 Environment, 2021b). Six commodities are currently included in the proposal (soy, leather, beef, oil
62 palm, cocoa, coffee; (Directorate-General for Environment, 2021a)), but while rubber was initially
63 assessed for inclusion, it was omitted based on an impact assessment (Directorate-General for
64 Environment, 2021c). This assessment re-analysed published estimates for embodied deforestation
65 risk in EU supply chains (Pendrill et al., 2019), but the authors of the original study found this to be
66 flawed, and concluded that there is no empirical basis to exclude rubber (Persson et al., 2021).
67 Similar legislative proposals under earlier stages of consideration in the US and the UK may or may
68 not include rubber. While the EU proposal is a very positive step, despite the known challenges of
69 meeting sustainability standards in smallholder-dominated supply chains (Grabs et al., 2021; Lyons-
70 White et al., 2020), omission of rubber, even if only in the near term, could risk undermining the
71 efficacy of these legislative efforts to avoid deforestation.

72

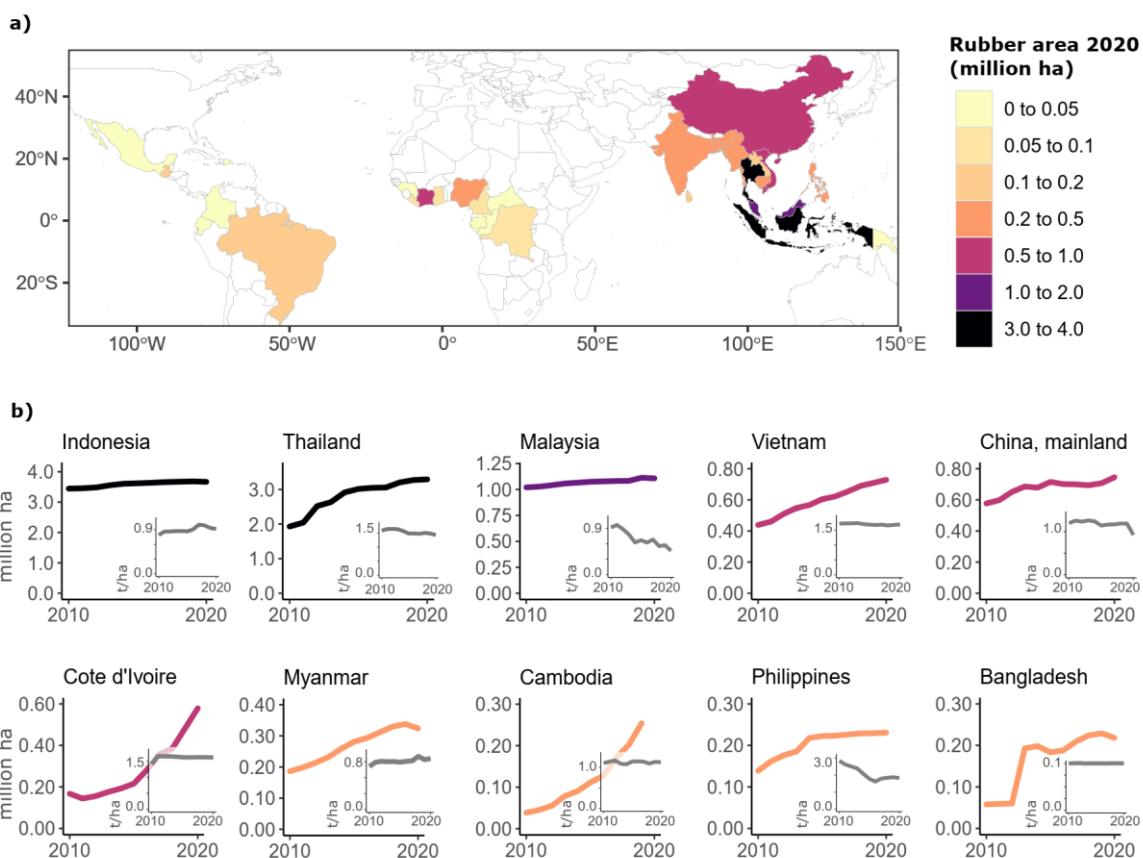
73 Here, we provide evidence that demand for rubber in the coming decade will likely lead to a further
74 expansion of plantation area, and that recent area expansion has been linked to deforestation in the
75 tropics. We argue that rubber should be included in the proposed EU regulation alongside other
76 forest-risk commodities, and that more support is needed for smallholder farmers already cultivating
77 rubber to sustainably improve their yields, to support livelihoods without increasing the global
78 footprint of rubber plantations.

79

80

81 **Increasing rubber demand was met by expansion of plantation area 2010-2020**

82
83 Global rubber production has increased steadily over the past decade, but as yields per hectare have
84 been mostly stable, this has been achieved through an increase in plantation area (FAO, 2022)
85 (**Figure 1, Figure S1, Supplementary Methods**). A series of feedback loops among drivers of demand,
86 supply, price, area expansion, crude oil price, and supply constraints together explain why rubber
87 area continues to increase despite relatively low prices, and reported problems for smallholder
88 profitability in some locations (Ali et al. 2021).


89
90 Global harvested area increased by 3.3 million ha between 2010 and 2020, bringing the total to 12.8
91 million ha (FAO, 2022). This falls at the higher end of expansion projections based on demand
92 increase between 2010 and 2018, under multiple assumptions of intensification, yields, and
93 displacement of rubber area with oil palm (0.9 – 4.2 million ha) (Warren-Thomas et al., 2015).

94
95 Most rubber-producing countries increased their harvested rubber area between 2010 and 2020
96 (FAO, 2022) (**Table S1**). The largest increases were in Thailand (1.4 million ha) and Cote D'Ivoire (0.41
97 million ha), followed by more than 0.2 million ha in Vietnam, Cambodia, and Indonesia, respectively.
98 Only one country reduced its rubber area (India). These data represent mature plantations, not total
99 planted area: as rubber takes 5-10 years to mature, this expansion only represents areas planted up
100 to 2015.

101

102

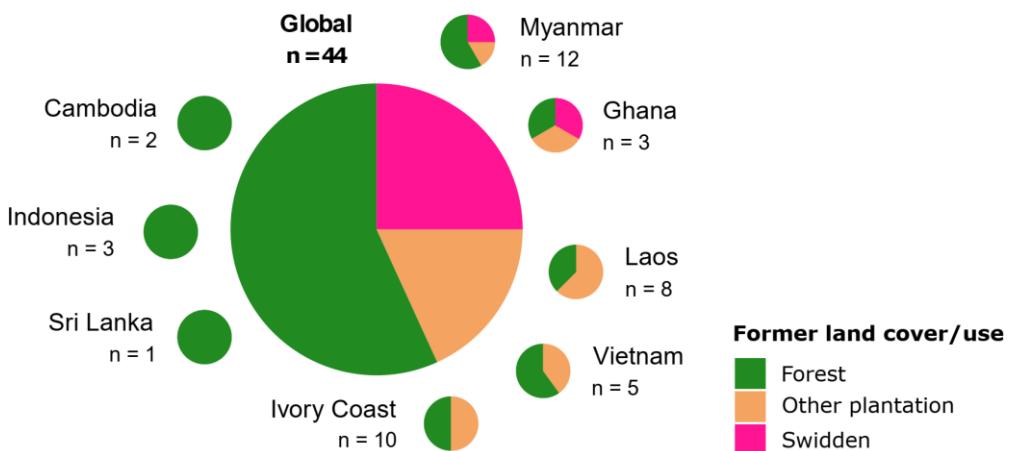
103

106 **Figure 1:** a) Harvested area of natural rubber per country in 2020. b) Harvested area of natural
107 rubber from 2010 to 2020 for the top ten countries for absolute rubber area increase over the same
108 period (colour of the main graph line reflects the 2020 total shown on the map, and the key per
109 country; subplots per country show yields in metric tons per hectare). All data from FAOSTAT, except
110 for government estimates reported for Lao PDR (Supplementary Methods).

111

112 **Rubber expansion has been linked to deforestation**

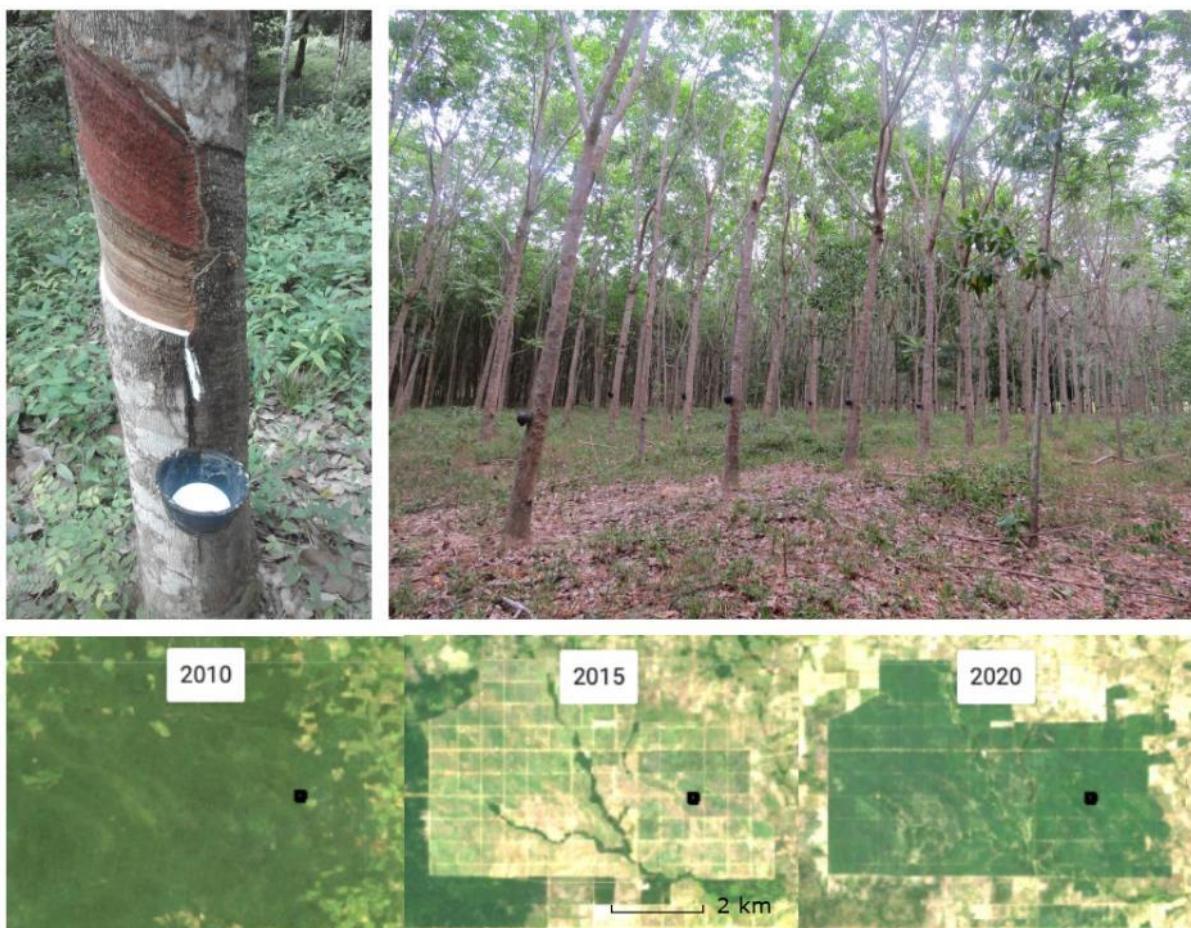
113


114 Globally, 80% of rubber is grown by smallholders (Laroche et al., 2022). Rubber plantations have
115 already been linked to deforestation in Southeast Asia, involving both smallholders and companies
116 operating larger industrial-scale estates (Warren-Thomas et al., 2015), with impacts on biodiversity,
117 carbon, and people (**Supplementary Text**). However, patterns of smallholder-driven land cover and
118 land use change to rubber are more complex than change for some other plantation crops, such as
119 oil palm, which tend to be established in larger contiguous blocks. This partly explains why detection
120 of rubber plantations from earth observation satellites is more challenging than for other tree
121 plantations (Ye et al., 2018), and no analysis has yet quantified deforestation for rubber at the global
122 scale. However, multiple sources of evidence show that a substantial proportion of recent rubber
123 area expansion has involved deforestation, particularly in Asia.

124

125 A recent regional-scale analysis of mainland Southeast Asia quantified forest conversion to rubber
126 up to 2014 using remote-sensing (Hurni & Fox, 2018). Data provided by the authors indicates that of
127 2.8 million ha of rubber area established between 2003 and 2014, 1.8 million ha replaced forest:
128 49% of this was in Cambodia, 18% in Vietnam, 15% in Laos, 8% in China, 6% in Vietnam, and 4% in
129 Thailand. The remainder was established on areas classed mostly as annual cereal crops, but also
130 grass and shrubs. Another regional assessment for seven countries in Asia, Africa and South America
131 overlaid rubber plantation outlines with tree loss and gain maps, and detected 2.1 million ha of
132 deforestation between 2001 and 2015 (Dow Goldman et al., 2020).

133


134 Local-scale case studies also describe land use and land cover change to rubber in the past decade
135 (44 published reports, **Figure 2, Data S1**). In some regions rubber is replacing swidden systems
136 (shifting cultivation), which include a mosaic of secondary forest patches that represent 'invisible'
137 reservoirs of biodiversity (Padoch & Pinedo-Vasquez, 2010). Where swidden agriculture for rice is
138 replaced with rubber, as has occurred in many parts of Southeast Asia, there is also a risk of food
139 crop displacement to forest frontiers, and impacts on food security. This has been shown in Laos,
140 where replacement of swidden with rubber displaced demand for food crops, leading to clearance of
141 intact forest (Hurni & Fox, 2018). In some parts of mainland Southeast Asia, insular Southeast Asia
142 and West Africa, old growth forests have been converted (**Figure 3**; in Cambodia, 20,000 - 100,000
143 ha of forest were converted to rubber each year 2010 – 2015; (Grogan et al., 2019); see also case
144 studies in **Data S1**), with well documented negative impacts on biodiversity (Gibson et al., 2011;
145 Prabowo et al., 2016). The introduction of agro-industrial rubber plantations into areas with
146 formerly low human population density also introduces a risk of associated deforestation through
147 increased food and fuel demand for plantation workers and their families (**Supplementary Text**).
148

149
150
151 **Figure 2:** Number of published case studies (2009 – 2022) reporting conversion of forest, swidden or
152 other plantation land to rubber plantations in the past decade (case study detail provided in **Data**
153 **S1**).

154
155
156 In West Africa, there is also a complex interaction with deforestation for cocoa, as rubber replaces
157 old cocoa, and cocoa is expanded into the forest frontier. Land cover and land use change for rubber
158 in West and Central Africa warrants particular attention, given that many nations still have high
159 forest cover (Lyons-White et al., 2020), and the EU increasingly seeks to source rubber from this
160 region ((Laroche et al., 2022) and **Supplementary Methods**).
161

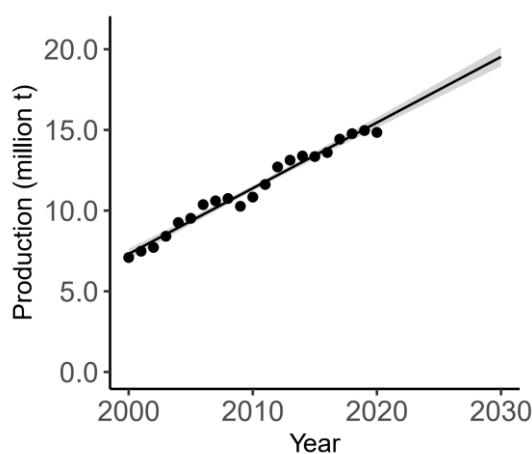
162 Finally, according to government statistics, forest cover loss and rubber area gain have often
163 coincided at the subnational level in the top two rubber-producing countries, indicating locations
164 where rubber may be associated with increased pressures on forest (**Supplementary Methods**). In
165 Indonesia, between 2014 and 2022, 10 of the 17 provinces where rubber area increased also had a
166 loss of forest area; this was concentrated on the islands of Sumatra and Borneo, where forest loss
167 was reported in five of five, and three of four provinces with rubber gains, respectively (**Data S2**). In
168 Thailand, between 2012 and 2018, rubber area increased in 46 provinces, of which 23 had forest
169 loss; this was particularly concentrated in the northeastern region, where all 20 provinces reported
170 rubber gains (**Data S3**).
171

172
173

174 **Figure 3.** Top left: tapping a rubber tree in Southern Thailand. Top right: smallholder rubber
175 plantation in Thailand (photograph credits: Eleanor Warren-Thomas). Bottom: Landsat true color
176 annual composite images (courtesy of the U.S. Geological Survey) of intact forest (in 2010, R/G/B =
177 Landsat-5 Band 3/2/1), forest clearance (by 2015, R/G/B = Landsat-8 Band 4/3/2) and rubber
178 plantations (by 2020, R/G/B = Landsat-8 Band 4/3/2) in Northern Cambodia (Oddar Meanchey
179 Province).

180

181 **Rubber demand will increase to 2030**


182

183 Globally, demand for natural rubber is likely to continue rising. Recent contractions in demand due
184 to a global semiconductor shortage and reduced vehicle sales during the COVID-19 pandemic are
185 likely to be of a short-term nature (World Bank Group, 2021). Global freight transport and passenger
186 flows are predicted to triple by 2050 (International Transport Forum, 2019). Interestingly,
187 sustainability concerns mean there are also industry efforts to increase the proportion of natural
188 rubber used in tire manufacturing: petroleum-based synthetic compounds are currently used in
189 combination with natural rubber (for example, passenger vehicle tires are <50% natural), but there
190 are now efforts to reduce reliance on synthetics (Laroche et al., 2022). Historical trends of
191 expansion, and static yields per unit area, mean increased demand is likely to be met with
192 expansion: so how much additional area could be needed to meet demand by 2030?

193

194 Estimates of future demand can be made using projections from rubber industry analysts (**Table S2**),
195 which indicate natural rubber demand would reach 17.2 million metric tons by 2030 (an increase of
196 4.6 million metric tons from 2020). An alternative approach is to project future production by
197 extrapolating historical trends over time using a simple linear model, based on observed data 2000-
198 2020 (FAO, 2022). Production in 2030 is then predicted to be 19.5 million metric tons (**Table S3**). The
199 additional harvested rubber area required to meet the projected 2030 demand can be estimated
200 using average yields for 2010 to 2020 from the highest yielding (Vietnam, 1.69 metric tons/ha) of the
201 top ten producing countries (by increase in absolute area 2010-2010), or the lowest yielding
202 (Indonesia, 0.89 metric tons/ha). This shows that meeting projected 2030 demand could require 2.7
203 – 5.3 million ha of additional harvested rubber area relative to 2020 (**Table S2, Table S3**). This
204 expansion is likely to come into direct conflict with priority areas for biodiversity conservation (Wang
205 et al., 2020).

206

207

208

209 **Figure 4.** Historical rubber production globally 2000-2020, with fitted linear model of production in
210 response to year, and model prediction to 2030. Data from FAOSTAT (model structure, code and full
211 references in Supplementary Materials)

212

213 Disease and climate change risk may further add to land demand for rubber by reducing productivity
214 of existing plantations: pathogens are an old problem in rubber plantations, but *Pestalotiopsis* is
215 currently reducing yields by 25% across ~0.4 million ha of rubber in Indonesia, and multiple leaf-fall
216 diseases are affecting China, Indonesia, Thailand, Malaysia, Sri Lanka and India (Pinizzotto et al.,
217 2021). Changing weather patterns are already impacting plantations across South and Southeast
218 Asia: prolonged dry seasons can reduce the risk of fungal disease but reduce rubber tree growth and
219 latex flow, warmer winters in China are linked to increased fungal damage, while intensified rainfall
220 reduces available tapping days and causes flooding that prevents harvest (**Supplementary Text**).
221 Moreover, many existing plantations have been established in sub-optimal locations prone to storm
222 and erosion risk, which are likely to become increasingly marginal as climate change progresses,
223 further limiting production from existing rubber area (Ahrends et al., 2015).

224

225 Sustainable intensification

226

227 Meeting natural rubber demand without incurring deforestation risk will require increased
228 production on the already-vast areas planted with rubber, without undermining long-term
229 sustainability through soil degradation or water pollution. Existing evidence shows constraining land
230 availability for agricultural expansion by strengthening voluntary and regulatory zero-deforestation
231 commitments can increase investment on existing cultivated land, and increase yields, by redirecting
232 investment from expansion to intensification (Lyons-White et al., 2020). However, smallholders can
233 be highly reliant on international supply chains but have limited capacity meet the demands of
234 sustainability initiatives (due to financial, land tenure and/or knowledge constraints); safeguards and
235 support are needed to ensure continued market access and avoid displacement by other actors
236 more able to adapt (Grabs et al., 2021). Volatility in rubber prices (**Figure S2**) makes it difficult for
237 smallholders to invest in increasing yields, while high labour costs or shortages can mean they switch
238 to alternative crops: price guarantees may help (**Supplementary Text**). Rubber smallholders also
239 need further technical support to increase yields within resilient production systems by adopting
240 climate- and disease-resilient rubber clones, and best management practices (Pinizzotto et al.,
241 2021). Further research and development of intercropping and agroforestry practices for rubber
242 could also offer multiple benefits, including improved water and soil management (Wang et al.,
243 2021), while also supporting some elements of biodiversity (Prabowo et al., 2016; Warren-Thomas et
244 al., 2019).

245

246 High rubber prices following supply constraints in 2011 were directly associated with industrial-scale
247 deforestation for rubber in Cambodia (**Figure S2; Figure 3**, (Grogan et al., 2019)). Meanwhile,
248 particularly in the expansion frontiers of Northern Laos and Central and West Africa, rubber remains
249 an attractive investment even when prices are relatively low. Deforestation regulations applied to
250 rubber could help prevent rapid expansion onto forests in response to high prices in future, if
251 sufficiently widespread (**Supplementary Text**).

252

253 Inclusion of rubber in zero-deforestation legislation

254

255 Among the many complex issues raised by zero-deforestation commitments (including what
256 constitutes forest, traceability and effective implementation; we highlight specific challenges for
257 rubber in the **Supplementary Text**), leakage across space, among ecosystems, and between
258 commodities is a particular challenge (Lyons-White et al., 2020). Land use change to rubber has
259 documented interactions with other forest-risk commodities, including cocoa (West Africa), oil palm
260 (insular and southern southeast Asia) and rice (northern mainland southeast Asia), as well as
261 increasing the total demand for land in the tropics. Together this means that rubber's exclusion from
262 zero-deforestation legislation increases the risk of between-commodity leakage effects and would
263 decrease overall efficacy of the regulations.

264

265 We recognize the potential risks for smallholder farmers posed by deforestation-free legislation, if

266 support and safeguards are not provided. Unintended consequences may arise, such as the
267 exclusion of smallholders and smaller businesses from markets and landscapes, and the placing of
268 additional challenges onto weaker economies with insufficient capacity provide evidence for
269 deforestation-free production (Grabs et al., 2021). Much more work needs to be done to realize
270 effective and equitable zero-deforestation commitments, particularly to understand the impact on
271 people dependent on agriculture in landscapes containing tropical forests (Lyons-White et al., 2020),
272 and to ensure that smallholder farmers are supported to find alternative strategies to forest
273 clearance (Seymour & Harris, 2019). However, the necessity of slowing deforestation is clear.
274 Omitting rubber from the deforestation-free commodity legislation risks undermining action on
275 forest loss globally, and should be reconsidered.
276

277 **Acknowledgments:** We thank Chris West for useful critical comments on a draft of this paper.

278

279 **Funding:**

280 Natural Environment Research Council NERC-IIASA Collaborative Fellowship NE/T009306/1 (EWT)

281 Global Challenges Research Fund Trade, Development and the Environment Hub project

282 (ES/S008160/1) (AA, YW)

283 The Royal Botanic Garden Edinburgh is supported by the Scottish Government's Rural and

284 Environment Science and Analytical Services Division (AA, YW)

285 Grantham Centre for Sustainable Futures PhD Scholarship (MMHW)

286

287 **Author contributions:**

288 Conceptualization: EWT

289 Data curation: EWT

290 Formal analysis: EWT

291 Methodology: EWT

292 Investigation: EWT, JPGJ, MMHW, AA, YW

293 Visualization: EWT, AA, YW

294 Project administration: EWT

295 Writing – original draft: EWT

296 Writing – review & editing: EWT, JPGJ, MMHW, AA, YW

297

298 **Competing interests:** Authors declare that they have no competing interests.

299

300 **Data and materials availability:** Data S1 to S4 are available on request from lead author.

301

302 **Supporting Information**

303 Supplementary Methods

304 Supplementary Text

305 Figures S1 to S2

306 Tables S1 to S3

307 Supplementary Code 1

308 Supplementary References

309

310 **References**

311

312 Ahrends, A., Hollingsworth, P. M., Ziegler, A. D., Fox, J. M., Chen, H., Su, Y., & Xu, J. (2015). Current
313 trends of rubber plantation expansion may threaten biodiversity and livelihoods. *Global
314 Environmental Change*, 34, 48–58. <https://doi.org/10.1016/j.gloenvcha.2015.06.002>

315 DEFRA. (2021). *Implementing due diligence on forest risk commodities*. Department for Environment
316 and Rural Affairs. <https://consult.defra.gov.uk/international-biodiversity-and->
317 climate/implementing-due-diligence-forest-risk-commodities/

318 Directorate-General for Environment. (2021a). *Annexes to the Proposal for a Regulation on
319 deforestation-free products*. European Commission.
320 <https://ec.europa.eu/environment/system/files/2021->
321 11/COM_2021_706_1_EN_annexe_proposition_part1_v4.pdf

322 Directorate-General for Environment. (2021b). *Proposal for a regulation on deforestation-free
323 products*. European Commission. <https://ec.europa.eu/environment/publications/proposal->
324 regulation-deforestation-free-products_en

325 Directorate-General for Environment. (2021c). *Staff Working Document – Impact Assessment
326 “Minimising the risk of deforestation and forest degradation associated with products placed
327 on the EU market” Part 1*. European Commission.
328 <https://ec.europa.eu/environment/system/files/2021->
329 11/SWD_2021_326_1_EN_impact_assessment_part1_v4.pdf

330 Dow Goldman, E., Weisse, M., Harris, N., & Schneider, M. (2020). Estimating the Role of Seven
331 Commodities in Agriculture-Linked Deforestation: Oil Palm, Soy, Cattle, Wood Fiber, Cocoa,
332 Coffee, and Rubber. *World Resources Institute*. <https://doi.org/10.46830/writn.na.00001>

333 FAO. (2022). *FAOSTAT Online Statistical Service*. United Nations Food and Agriculture Organization
334 (FAO), Rome. <http://faostat.fao.org>

335 Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J.
336 A. a., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable
337 for sustaining tropical biodiversity. *Nature*, 478(7369), 378–381.
338 <https://doi.org/10.1038/nature10425>

339 Grabs, J., Cammelli, F., Levy, S. A., & Garrett, R. D. (2021). Designing effective and equitable zero-
340 deforestation supply chain policies. *Global Environmental Change*, 70, 102357.
341 <https://doi.org/10.1016/j.gloenvcha.2021.102357>

342 Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O., & Fensholt, R. (2019). Unravelling the link
343 between global rubber price and tropical deforestation in Cambodia. *Nature Plants*, 5(1),
344 47–53. <https://doi.org/10.1038/s41477-018-0325-4>

345 Hurni, K., & Fox, J. (2018). The expansion of tree-based boom crops in mainland Southeast Asia: 2001
346 to 2014. *Journal of Land Use Science*, 13(1–2), 198–219.
347 <https://doi.org/10.1080/1747423X.2018.1499830>

348 International Transport Forum. (2019). *ITF Transport Outlook 2019*. OECD.
349 https://doi.org/10.1787/transp_outlook-en-2019-en

350 Laroche, P. C. S. J., Schulp, C. J. E., Kastner, T., & Verburg, P. H. (2022). Assessing the contribution of
351 mobility in the European Union to rubber expansion. *Ambio*, 51(3), 770–783.
352 <https://doi.org/10.1007/s13280-021-01579-x>

353 Lyons-White, J., Pollard, E. H. B., Catalano, A. S., & Knight, A. T. (2020). Rethinking zero deforestation
354 beyond 2020 to more equitably and effectively conserve tropical forests. *One Earth*, 3(6),
355 714–726. <https://doi.org/10.1016/j.oneear.2020.11.007>

356 Padoch, C., & Pinedo-Vasquez, M. (2010). Saving Slash-and-Burn to Save Biodiversity. *Biotropica*,
357 42(5), 550–552. <https://doi.org/10.1111/j.1744-7429.2010.00681.x>

358 Pendrill, F., Persson, U. M., Godar, J., & Kastner, T. (2019). Deforestation displaced: Trade in forest-
359 risk commodities and the prospects for a global forest transition. *Environmental Research
360 Letters*, 14(5), 055003. <https://doi.org/10.1088/1748-9326/ab0d41>

361 Persson, M., Kastner, T., & Pendrill, F. (2021). *Flawed numbers underpin recommendations to exclude
362 commodities from EU deforestation legislation*. Focali. www.focali.se

363 Pinizzotto, S., Aziz, A., Gitz, V., Sainte-Beuve, J., Nair, L., Gohet, E., Penot, E., & Meybeck, A. (2021).
364 *Natural rubber systems and climate change: Proceedings and extended abstracts from the
365 online workshop, 23–25 June 2020*. Center for International Forestry Research (CIFOR).
366 <https://doi.org/10.17528/cifor/008029>

367 Prabowo, W. E., Darras, K., Clough, Y., Toledo-Hernandez, M., Arlettaz, R., Mulyani, Y. A., &
368 Tscharntke, T. (2016). Bird responses to lowland rainforest conversion in Sumatran
369 smallholder landscapes, Indonesia. *PLoS ONE*, 11(5), 1–17.
370 <https://doi.org/10.1371/journal.pone.0154876>

371 S.2950—117th Congress (2021-2022): FOREST Act of 2021, S.2950, Senate, 117th Congress (2021-
372 2022) (2021). <https://www.congress.gov/bill/117th-congress/senate-bill/2950>

373 Seymour, F., & Harris, N. L. (2019). Reducing tropical deforestation. *Science*, 365(6455), 756–757.
374 <https://doi.org/10.1126/science.aax8546>

375 Wang, M. M. H., Carrasco, L. R., & Edwards, D. P. (2020). Reconciling Rubber Expansion with
376 Biodiversity Conservation. *Current Biology*, 30(19), 3825-3832.e4.
377 <https://doi.org/10.1016/j.cub.2020.07.014>

378 Wang, M. M. H., Warren-Thomas, E., & Wanger, T. C. (2021). *Rubber Agroforestry: Feasibility at Scale*
379 (p. 125). Mighty Earth.

380 Warren-Thomas, E., Dolman, P. M., & Edwards, D. P. (2015). Increasing demand for natural rubber
381 necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity.
382 *Conservation Letters*, 8(4), 230–241. <https://doi.org/10.1111/conl.12170>

383 Warren-Thomas, E., Nelson, L., Juthong, W., Bumrungsri, S., Brattström, O., Chambon, B., Stroesser,
384 L., Penot, É., Tongkaemkaew, U., Edwards, D. P., & Dolman, P. M. (2019). Rubber
385 agroforestry in Thailand provides biodiversity benefits without reducing yields. *Journal of
386 Applied Ecology*. <https://doi.org/10.1111/1365-2664.13530>

387 World Bank Group. (2021). *Commodity Markets Outlook: Urbanization and Commodity Demand,
388 October 2021*. World Bank.
389 <https://openknowledge.worldbank.org/bitstream/handle/10986/36350/CMO-October-2021.pdf>

391 Ye, S., Rogan, J., & Sangermano, F. (2018). Monitoring rubber plantation expansion using Landsat
392 data time series and a Shapelet-based approach. *ISPRS Journal of Photogrammetry and*
393 *Remote Sensing*, 136, 134–143. <https://doi.org/10.1016/j.isprsjprs.2018.01.002>
394
395

396

397 Supporting Information for

398

399 Rubber needs to be included in deforestation-free commodity legislation

400

401 Eleanor Warren-Thomas, Antje Ahrends, Yunxia Wang, Maria M H Wang, Julia P G Jones

402

403 Correspondence to: e.warrenthomas@bangor.ac.uk

404

405

406 **This PDF file includes:**

407

408 Supplementary Methods

409

Supplementary Text

410

Figures S1 to S2

411

Tables S1 to S3

412

Supplementary Code 1

413

Supplementary References

414

415 **Other Supplementary Materials for this manuscript available on request from lead author:**

416

417 Data S1: Case studies of land use and land cover change for natural rubber 2010 – 2020

418

419 Data S2: Sub-national data on rubber and forest area per province in Indonesia

420

421 Data S3: Sub-national data on rubber and forest area per province in Thailand

422

423 Data S4: FAOSTAT data on rubber area, production and yield used as input for Supplementary Code
424 1 to project rubber production to 2030

425

426

427

428

429

430 **Supplementary Methods**

431

432 Rubber consumption by sector and by EU

433

434 Estimates of the amount of natural rubber that is used for the tire manufacturing industry have been
435 made by the World Bank (“two-thirds”) (World Bank Group 2021) and the Rainforest Alliance (70%)
436 (Millard 2019).

437

438 The EU (including the UK) accounted for 9% of global natural rubber consumption in 2017, sourced
439 chiefly from Indonesia, Thailand and Cote D’Ivoire. In 2016, EU demand for tires was estimated to
440 require 0.59 million ha of harvested rubber area (5% of global total; range 0.34 and 1.4 million ha
441 due to uncertainty and opacity of trade flows) and formed a particularly high proportion of the total
442 harvested area grown in Cambodia, Cote D’Ivoire, Guinea and Cameroon, reflecting a policy to
443 increasingly source from the African continent (Laroche et al. 2022).

444

445 The European Tyre & Rubber Manufacturers’ Association (ETRMA) submitted evidence to the EU as
446 part of the consultation process for the proposed regulation, including statistics from the
447 International Rubber Study Group (IRSG) and Eurostat for the year 2017 (ETRMA 2019). On the EU’s
448 role in natural rubber consumption in 2017: the EU (EU28 including the UK) was responsible for 9%
449 of total global natural rubber consumption (China 37%, India 8%, US 7%, Japan 5%, Thailand 5%, rest
450 of the world 29%). EU imports were sourced from Indonesia (32%), Thailand (19%), Cote D’Ivoire
451 (19%), Malaysia (12%), Vietnam (8%), Cameroon (2%), and 8% from other countries. Imports from
452 Cote D’Ivoire are reported to be increasing. The statistics for 2020 had changed slightly, with EU and
453 UK combined consumption representing 8% of the global total, and China 43%; imports were
454 sourced from Indonesia (28%, a decrease), Thailand (21%, a decrease) and Cote D’Ivoire (23%, an
455 increase) (ETRMA 2021).

456

457 One study conducted detailed analysis of EU consumption of natural rubber for mobility (i.e. tires for
458 bicycles, motor vehicles and airplanes) by conducting input-output analysis of trade flows to track
459 tire demand to source countries for EU countries (including the United Kingdom) (Laroche et al.
460 2022). A matrix of EU natural rubber consumption (by weight, for mobility) by source country
461 showed that 26% of consumption was sourced from Indonesia and Thailand respectively, 14% from
462 Cote D’Ivoire, 6% from Malaysia, 11% from China and 7% from Vietnam. This rubber demand for EU
463 mobility then translated into a land footprint of 0.594 million ha total (5% of global area, but
464 uncertainty in some values and opacity of trade flows mean this value could be as low as 0.342
465 million ha, and as high as 1.6 million ha. The land footprint (area of harvested rubber) was
466 distributed among Indonesia (32%), Thailand (23%), Malaysia (11%), China (11%) and Cote D’Ivoire
467 (10%). As a proportion of the total harvested rubber area consumed per producer country, EU
468 consumption accounted for 25% of the total harvested area in Cambodia, and >15% in Cote D’Ivoire,
469 Guinea and Cameroon.

470

471

472 Data on rubber harvested area, production and yields

473

474 All data on rubber harvested area and production reported in the main text were downloaded from
475 FAO production statistics available via FAOSTAT (FAO 2022) in January 2022, using the item “Rubber,
476 natural”. We note the potential for data inaccuracies related to differences in methods and quality
477 of national reporting among countries of both rubber production and forest loss statistics to the
478 FAO. However, whilst the figures and their national disaggregation may be imprecise, the overall
479 trends are likely to be captured in these data given that the figures are corroborated by various
480 other national and regional studies and reports.

481

482 Projections of future rubber demand

483

484 Industry expert estimates of future rubber demand are published quarterly and annually by the IRSG
485 (IRSG 2022) and have been used in previous studies of rubber expansion (Wang, Carrasco, and
486 Edwards 2020; Warren-Thomas, Dolman, and Edwards 2015). The projections for 2021 onwards in
487 this study were taken from reporting of the IRSG’s headline findings by Tires & Parts News published
488 on January 19, 2022 (Tires & Parts News 2022). The IRSG predicted that after contraction from
489 2019-2020, total demand for both synthetic and natural rubber 2020-2021 was expected to increase
490 by 9.4% to reach 29.57 million t (metric tons) in 2021, of which natural rubber comprised 47%. Total
491 rubber demand was then predicted to increase by 3.6% 2021-2022, and subsequently by an average
492 2.3% year-on-year from 2023-2030. Assuming the proportion of total demand met by natural versus
493 synthetic rubber remains the same as in 2020, natural rubber demand to 2030 can be projected
494 (**Table S2**).

495

496 Historical trends in rubber production (2000 – 2020) were taken from FAOSTAT, and fitted against
497 year in a simple linear model (**Table S3**) using R (**Supplementary Code 1**), following the method used
498 by a previous study (Parra-Paitan and Verburg 2022).

499

500 Subnational rubber and forest area changes in Thailand and Indonesia

501

502 Subnational data on rubber plantation and forest area change for Thailand and Indonesia were taken
503 from government statistics. In Thailand, forest cover statistics for each province are published by the
504 Department of National Parks, Wildlife and Plant Conservation (Department of National Park,
505 Wildlife and Plant Conservation (DNP) 2022); data published in reports covering the years 2012-2013
506 and 2018-2019 were used for analysis. Rubber plantation area data are published in annual tables by
507 the Office of Agricultural Economics (Office of Agricultural Economics 2022); data for the years 2012
508 (the earliest available) and 2018 were used for analysis. In Indonesia, rubber plantation area data are
509 published by the Badan Pusat Statistik (Central Agency of Statistics) (Badan Pusat Statistik 2022) and
510 forest cover data tables per province are published by the Ministry of Environment in an annual
511 report (Ministry of Environment and Forestry 2021), for which data on all forest types (permanent
512 and conversion, secondary and primary) were included. Rubber area data for two provinces

513 (Kalimantan Timur, Kalimantan Utara) were combined (under Kalimantan Timur) to match forest
514 data.

515

516

517 **Supplementary Text**

518

519 Old-growth forest, secondary forest and swidden conversion to rubber: carbon, biodiversity, social
520 and economic outcomes

521

522 It is widely understood that intact forest ecosystems are essential for biodiversity conservation in
523 tropical regions, as many species are completely dependent on them, but secondary and logged
524 forests also support much greater biodiversity value than monocultural plantations, including rubber
525 (Barlow et al. 2007; Gibson et al. 2011; Prabowo et al. 2016). Simulations of rubber expansion to
526 2027, based on industry projections of future demand, found that if expansion takes place in the
527 most climatically suitable locations for rubber, 74 forest-dependent species could lose $\geq 10\%$ of
528 their range, and six species could lose $\geq 50\%$ of their range due to forest loss (Wang et al. 2020).
529 This does not account for interactions with other crops vying for space in the same bioclimatic zones,
530 such as oil palm (Warren-Thomas et al. 2015). Natural forest conversion to rubber also results in net
531 carbon emissions (Warren-Thomas et al. 2018).

532

533 Rubber expansion is still considered a major driver of deforestation in landscapes important for
534 biodiversity conservation in Southeast Asia, second only to rice: an expert opinion survey of
535 conservation managers looking after landscapes important for biodiversity globally (working for the
536 Wildlife Conservation Society, and managing not just protected areas but surrounding landscapes),
537 found that rubber was perceived as a driver of forest loss in six landscapes in Cambodia, Malaysia,
538 Myanmar, Thailand and India (Jayathilake et al. 2021). Given historical patterns of widespread rice
539 replacement with rubber in many countries in Asia (e.g., Thailand), these findings further highlight
540 the ongoing risk of food crop displacement to forest frontiers.

541

542 Where agro-industrial plantations have been developed in formerly forested landscapes with low
543 human population densities, a rapid increased in food and fuel demand to support plantation
544 workers and their families can impact surrounding landscapes beyond the boundaries of plantations.
545 This has been reported in eastern Cambodia (Fox et al. 2018) and raised as a concern for the
546 development of plantations in Central African countries (Cameroon, Gabon, Republic of Congo and
547 Democratic Republic of Congo), based on experiences with mining operations (Feintrenie 2014).

548

549 Swidden, or shifting agriculture, landscapes comprising mosaics of farmed areas, grazing, fallows of
550 variable age and secondary forest patches, represent ‘invisible’ reservoirs of biodiversity that are
551 often ignored in debates about biodiversity conservation (Padoch and Pinedo-Vasquez 2010). Forest
552 patches in swidden systems likely play a key role in supporting biodiversity at the landscape scale,
553 relative to conversion to rubber monoculture. The impact of conversion of swidden to rubber on
554 carbon emissions are complex and context dependent (Fox, Castella, and Ziegler 2013).

555

556 From a social and economic perspective, switching from subsistence agriculture to cultivating rubber
557 can bring huge economic benefits for farmers, but the transition to rubber plantations has also had
558 social repercussions in some places. Land tenure, exploitative contracts, and food security issues are

559 reported from parts of Asia and West Africa. Land tenure problems and exploitative contracts with
560 growers have been reported, for example in northern Vietnam (Dao 2018; van Vliet et al. 2012),
561 southern Laos (Kenney-Lazar 2012), Cambodia (Fox and Castella 2013), and Myanmar (Kenney-Lazar
562 et al. 2018). There are also concerns about rubber replacing food production, risking food security in
563 Cote D'Ivoire and Ghana (Akmel 2018; Owusu and Ruf 2015), as well as concerns from non-
564 governmental organizations about labor rights in some Asian and African countries (Aidenvironment
565 2020).

566
567 Agroforestry practices may improve biodiversity value of rubber plantations, whether complex
568 'jungle' systems that have very low rubber yields, or simple high-yielding systems that include
569 additional crops or have high levels of natural vegetation understory (Clough et al. 2016; Prabowo et
570 al. 2016; Warren-Thomas et al. 2020). Agroforestry, or diversified systems, can also provide multiple
571 benefits for soils and water management on rubber farms, alongside benefits for farmers (Wang,
572 Warren-Thomas, and Wanger 2021).

573
574 Disease and climate change risk in existing rubber plantations

575
576 Modelling of climate change impacts on rubber suitability in mainland Southeast Asia has indicated
577 an expanding area of suitability through climate warming and reduced risk of frosts (Golbon, Cotter,
578 and Sauerborn 2018). However, other climate risks to plantations (storm damage from typhoons,
579 soil erosion from intensified rainfall events, and water stress from drought) are predicted to
580 decrease the area of suitability in the same region (Ahrends et al. 2015). Disease risk response to
581 climate change has not yet been modelled.

582
583 Rubber plantation managers across Asia (Indonesia, Thailand, Malaysia, Sri Lanka, India) are
584 reporting increasing damage from fungal diseases, and some plantation managers are using
585 fungicidal fog treatments to reduce damage, with increased fungal infection linked to wetter rainy
586 seasons (Pinizzotto et al. 2021). Sulphur dust treatments are also commonly used; both treatments
587 cause environmental pollution (Liyanage et al. 2016). Work in China indicates that warmer winters
588 are associated with increased prevalence of powdery mildew disease due to changes in leaf
589 phenology (rubber trees drop their leaves during the winter/dry season) (Zhai and Xu 2022).
590 Meanwhile, a new fungal pathogen of rubber trees has recently been identified in Thailand
591 (Pornsuriya et al. 2020). Fungal pathogens can reduce rubber yields by 12 – 45% (Liyanage et al.
592 2016; Pinizzotto et al. 2021).

593
594 Sustainably increasing production on existing rubber farms/understanding continued expansion

595
596 Relatively low prices currently mean that despite net expansion of rubber area, some smallholders
597 are giving up cultivation, or struggling to afford necessary inputs to maintain yields. Farmer
598 responses to price fluctuations vary by location. In southern Myanmar, farmers reduce rubber
599 production but retain trees when prices are low (Vagneron et al. 2017). In contrast, smallholders in
600 Malaysia have felled rubber trees for timber value and switched to other crops (such as oil palm) or

601 off-farm activities (Ali et al. 2021).

602
603 In Cambodia (Grogan et al. 2019) and Vietnam (Kissinger 2020) expansion of rubber area is clearly
604 linked to international prices, with harvested area of rubber in Vietnam contracting following price
605 crashes in 2016, while Cambodian industrial plantations are required by law to keep planting, but
606 incorporate cashew and pepper to boost income (Hurni and Fox 2018).

607
608 In northern Laos, expansion of rubber showed characteristics of path-dependency or lock-in of land
609 use transitions beyond an initial trigger (such as temporarily high prices (Junquera et al. 2020)).
610 Here, differences in income between subsistence swidden cultivation and rubber are large, even
611 when rubber prices are low, and people perceived prices as likely to increase again in future. Rubber
612 was also perceived as a means to secure land tenure. In another main frontier of rubber area
613 increases, Cote D'Ivoire, rubber smallholders report steadier (monthly) and greater income from
614 rubber than from alternative plantation crops (coffee, cocoa, oil palm) following price declines for
615 coffee and cocoa (Akmel 2018).

616
617 The GPSNR is working towards improving many issues around smallholder profitability, yields and
618 vulnerability to price fluctuations through its capacity building workstream, which is focused on
619 reducing yield gaps due to poor management practices (Maria Wang personal observations after
620 attending GPSNR workshops). They are developing generalized “Good Agricultural Practices” to be
621 shared with smallholders through a mobile phone app, some of which are based on management
622 practices in Cote D'Ivoire (including reduced tapping intensity) which are contributing to relatively
623 high yields compared to other countries. Other GPSNR strategies include providing training, high-
624 yielding planting material and disease management resources in Indonesia, and expanding
625 agroforestry practices in Thailand.

626
627 Challenges for implementing zero-deforestation supply chains in the context of rubber

628
629 *Forest definitions and indirect land use change (iLUC)*

630
631 Forest definitions are a major sticking point for successful implementation of zero-deforestation:
632 definitions vary among international organizations, nations and even landscapes, while in high
633 forest-cover countries, there may be few options for agricultural development without forest
634 clearance (Lyons-White et al. 2020). Logged, degraded and regenerating secondary forests support
635 biodiversity and rapidly increasing carbon stocks, and form the majority of natural forest cover in
636 some major rubber-producing landscapes, especially Vietnam (Phuc and Nghi 2014). Meanwhile, the
637 definition of rubber plantations as planted forests or agriculture varies among countries: the FAO
638 Global Forest Resources Assessment includes rubber trees as (planted) forest cover, but some
639 countries count rubber plantations as an agricultural crop, and not all rubber-producing countries
640 reported their rubber plantation area (FAO 2020).

641
642 In Sumatra, clearance of logged forest for rubber was permissible within zero-deforestation

643 commitments made by Michelin, as forests were not classed as high conservation value or high
644 carbon stock, despite supporting large mammals such as Sumatran elephants, and being adjacent to
645 a national park (Otten et al. 2020). In Vietnam, most natural forest is secondary following
646 widespread deforestation during the 20th century: these naturally regenerating secondary forests
647 have considerable value for biodiversity (Meyfroidt and Lambin 2008) and rapidly increasing carbon
648 stocks, but can legally be converted to rubber (Phuc and Nghi 2014). To have maximum benefit, and
649 to be coherent with ambitious global forest restoration targets (secondary and logged forests are on
650 trajectories of recovery to fully functioning forest ecosystems), definitions of deforestation may
651 need to be broad, while forest cover loss within shifting agriculture (swidden) systems also needs
652 careful consideration.

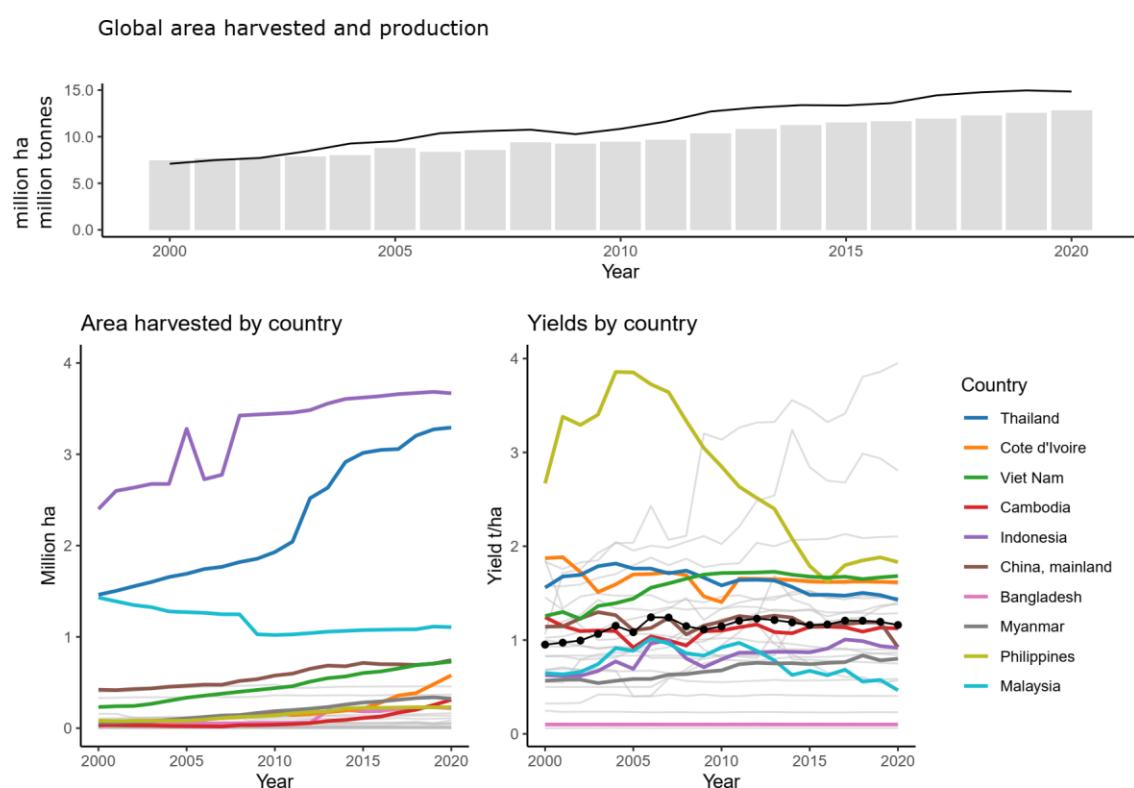
653

654 The role of rubber in indirect land use change, or leakage effects of eliminating deforestation from
655 the rubber supply chain, also need to be carefully considered when assessing deforestation risk.
656 Replacement of former cocoa plantations in Ivory Coast with rubber is linked to deforestation for
657 new cocoa plantations (Ruf 2015), while forest clearance for subsistence farming has been detected
658 following swidden conversion to rubber (Hurni and Fox 2018).

659

660

661


662 *Traceability and transparency*

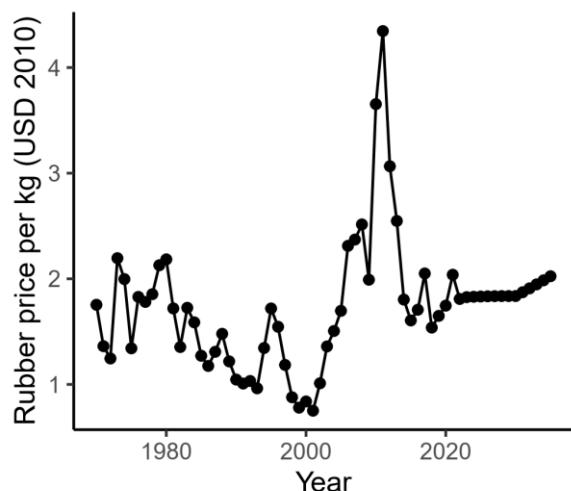
663

664 For companies to implement zero-deforestation, whether voluntarily or to meet the demands of
665 regulation, they need to be able to trace their source materials through complex supply chains. A
666 key challenge is that buyers often import partly or fully processed products (mostly from China),
667 rather than direct from source countries. For example, it is impossible to directly source rubber from
668 Vietnam as a foreign company (Kissinger, Brockhaus, and Bush 2021). The role of China as the
669 majority importer of natural rubber from southeast Asian growers is critical (China imports 40% of
670 Malaysia's rubber exports (Ali et al. 2021), and 40% of Vietnam's (Phuc and Nghi 2014). Work in Sri
671 Lanka, where 88% of domestic production is processed in-country, shows there is near-complete
672 opacity between farm gate and processors, making it impossible for importers to know if they are
673 linked to deforestation (Cho et al. 2022). These problems are magnified by the complexity of cross-
674 border trade. Traceability tools specifically for rubber, such as RubberWay (<https://rubberway.tech>)
675 have been developed to support voluntary private-sector supply chain tracing, while traceability and
676 transparency is a major workstream for the Global Platform for Sustainable Natural Rubber, which
677 has commissioned two reports identifying solution for the rubber sector (de Bonafos 2020; Cupit et
678 al. 2020). Regulation could make such efforts mainstream, as for FLEGT (Directorate-General for
679 Environment 2021).

680

Figure S1.

681


682 Global and national rubber area harvested (million hectares, bars), rubber production (million metric
683 tons, line), area harvested per country (highlighted in color for the top 10 countries based on
684 absolute area increase 2010–2020; million hectares; lines), and yields 2000 – 2020 (metrics tons per
685 hectare; lines). While production and area have steadily increased since 2000, yields have remained
686 relatively static (yields are calculated from harvested area and production by FAOSTAT). Yields above
687 two metric tons per hectare are likely the result of incomplete reporting of harvested rubber area or
688 production statistics (the two countries showing rapid increases from 2010 onwards are Guatemala
689 and Mexico, which also produce latex from alternative species, so may not solely represent *Hevea
690 brasiliensis*), while yields for Bangladesh of 0.1 metric tons per hectare are likely too low, and may
691 represent under-reporting of production, or over-reporting of harvested area. Data from FAOSTAT
692 (FAO 2022).

693

694

695

Figure S2.

696

697 Price data in standardized 2010 USD from the World Bank Commodity Outlook (World Bank Group
698 2021) (historical to 2020, projected to 2020-2030). The peak price in 2011 stimulated rubber
699 plantation expansion, but declining Chinese import volumes, production increases and falling crude
700 oil prices meant prices subsequently declined (Vagneron et al. 2017).
701

702

Table S1.

703

Country	Absolute change in harvested area 2010-2020 (million ha)
Thailand	1.36
Cote d'Ivoire	0.41
Viet Nam	0.29
Cambodia	0.27
Indonesia	0.22
China, mainland	0.17
Bangladesh	0.16
Myanmar	0.14
Philippines	0.092
Malaysia	0.086

704

705

706 Top ten countries for increase in absolute rubber harvested area 2010-2020 reported to FAOSTAT
707 (FAO 2022). Note: Lao PDR does not report data to the FAO, but government data indicates planted
708 rubber area increased from 0.14 million ha in 2008, to 0.26 million ha in 2018, of which 0.12 million
709 ha was being harvested (Smith et al. 2020).

710

711

712

Table S2.

713

Year	Observed natural rubber consumption (million metric tons)	Projected year-on-year consumption increase to following year (%)	Projected total natural rubber consumption (million metric tons)	Projected additional natural rubber consumption (million metric tons)	Min. additional area required *(million ha)	Max. additional area required **(million ha)
2020	12.7	9.4	12.7	0.0	0.0	0.0
2021	13.9	3.6	13.9	1.2	0.7	1.3
2022	-	2.3	14.4	1.7	1.0	1.9
2023	-	2.3	14.7	2.0	1.2	2.2
2024	-	2.3	15.0	2.4	1.4	2.6
2025	-	2.3	15.4	2.7	1.6	3.0
2026	-	2.3	15.7	3.1	1.8	3.4
2027	-	2.3	16.1	3.4	2.0	3.8
2028	-	2.3	16.5	3.8	2.2	4.2
2029	-	2.3	16.9	4.2	2.5	4.6
2030	-	-	17.2	4.6	2.7	5.1

714

715 Projections of the harvested rubber area increase required to meet the future demand projected by
716 the International Rubber Study Group (IRSG) (IRSG 2022) to 2030 and reported by Tires & Parts
717 News, January 19, 2022 (Tires & Parts News 2022). Assumes mean average yields between 2010 and
718 2020 from either Indonesia (0.89 t/ha) or Vietnam (1.69 t/ha) as reported in FAO statistics (FAO
719 2022). *Assuming yields of additional harvested area = 1.69 t/ha. **Assuming yields of additional
720 harvested area = 0.89 t/ha.

721

722

723

Table S3.

724

Observed production (million metric tons)	Year	Fitted value for production (million metric tons)	Lower 95% CI	Upper 95% CI	Projected additional natural rubber consumption (million t)	Min. additional area required *(million ha)	Max. additional area required **(million ha)
7.09	2000	7.3	7.0	7.6			
7.48	2001	7.7	7.4	8.0			
7.72	2002	8.1	7.9	8.4			
8.41	2003	8.5	8.3	8.8			
9.26	2004	8.9	8.7	9.2			
9.52	2005	9.4	9.1	9.6			
10.4	2006	9.8	9.6	10.0			
10.6	2007	10.2	10.0	10.4			
10.8	2008	10.6	10.4	10.8			
10.3	2009	11.0	10.8	11.2			
10.8	2010	11.4	11.2	11.6			
11.6	2011	11.8	11.6	12.0			
12.7	2012	12.2	12.0	12.4			
13.1	2013	12.6	12.4	12.8			
13.4	2014	13.0	12.8	13.2			
13.3	2015	13.4	13.2	13.6			
13.6	2016	13.8	13.6	14.1			
14.4	2017	14.2	14.0	14.5			
14.8	2018	14.6	14.4	14.9			
15.0	2019	15.1	14.7	15.4			
14.8	2020	15.5	15.1	15.8			
Predicted	2021	15.9	15.5	16.2	1.0	0.6	1.2
Predicted	2022	16.3	15.9	16.6	1.4	0.8	1.6
Predicted	2023	16.7	16.3	17.1	1.8	1.1	2.1
Predicted	2024	17.1	16.7	17.5	2.2	1.3	2.3
Predicted	2025	17.5	17.0	17.9	2.7	1.6	3.0
Predicted	2026	17.9	17.4	18.4	3.1	1.8	3.4
Predicted	2027	18.3	17.8	18.8	3.5	2.1	3.9
Predicted	2028	18.7	18.2	19.2	3.9	2.3	4.4
Predicted	2029	19.1	18.6	19.7	4.3	2.5	4.8
Predicted	2030	19.5	18.9	20.1	4.7	2.8	5.3

725

726 Projections of rubber production by 2030 using a simple linear model of production in response to
 727 year using FAOSTAT data for 2000 – 2020 ($p < 0.0001$, $F = 805$, d.f. = 19, adjusted r-squared = 0.98,
 728 beta = 407,046, meaning each year production increased by a predicted 407,046 metric tons).

729 Production is then converted to required additional plantation area using mean average yields
730 between 2010 and 2020 from either Indonesia (0.89 t/ha) or Vietnam (1.69 t/ha) as reported in FAO
731 statistics (FAO 2022). *Assuming yields of additional harvested area = 1.69 t/ha. **Assuming yields
732 of additional harvested area = 0.89 t/ha. Code available in Supplementary Code 1, and input data in
733 Data S4.

734

735

736 Supplementary Code 1

```
737
738 # linear projections of production to 2030 based on 2000-2015 data
739
740 library(tidyverse)
741
742 fao <- read_csv("FAOSTAT_data_1-18-2022.csv")
743 fao$Area <- as.factor(fao$Area)
744 fao$Year <- as.integer(fao$Year)
745 # replace oddly formatted Cote d'Ivoire accent letter
746 fao$Area <- str_replace(fao$Area, "[?]", "o")
747
748 unique(fao$Area)
749 unique(fao$Element)
750
751 # countries reporting to FAO
752 countrylist <- fao %>%
753   filter(Element == "Area harvested") %>%
754   filter(Area != "World")
755 countrylist <- as.data.frame(unique(countrylist$Area))
756 colnames(countrylist) <- "Country"
757
758 # 2000 - 2020 production ####
759
760 fao %>%
761   filter(Area == "World" & Element == "Production") %>%
762   ggplot(fao, mapping = aes(x = Year, y = Value)) +
763   #geom_bar(stat = "identity") +
764   geom_line() +
765   ylab("Production") +
766   ggtitle("World total - FAOSTAT") +
767   theme_bw()
768
769 faoprod <- fao %>%
770   filter(Area == "World" & Element == "Production") %>%
771   select(Value, Year)
772
773 modell <- lm(Value ~ Year, data = faoprod)
774 summary(modell)
775
776 predicted <- as.data.frame(
777   predict(lm(Value ~ Year, data = faoprod),
778         se.fit = T))
779
780 # extrapolate to 2030
781 to2030 <- faoprod
782 to2030 <- to2030 %>%
783   add_row(Value = NA, Year = 2021) %>%
784   add_row(Value = NA, Year = 2022) %>%
785   add_row(Value = NA, Year = 2023) %>%
786   add_row(Value = NA, Year = 2024) %>%
787   add_row(Value = NA, Year = 2025) %>%
788   add_row(Value = NA, Year = 2026) %>%
789   add_row(Value = NA, Year = 2027) %>%
790   add_row(Value = NA, Year = 2028) %>%
791   add_row(Value = NA, Year = 2029) %>%
792   add_row(Value = NA, Year = 2030)
793
794 predicted2030 <- as.data.frame(
```

```
795 predict(lm(Value ~ Year, data = faoprod),
796     newdata = to2030,
797     se.fit = T))
798
799 to2030_predicted <- cbind(to2030, predicted2030)
800 to2030_predicted$Low_CI = to2030_predicted$fit - (1.96 * to2030_predicted$se.fit)
801 to2030_predicted$Hig_CI = to2030_predicted$fit + (1.96 * to2030_predicted$se.fit)
802
803 to2030_predicted$Low_CI_mil = to2030_predicted$Low_CI/1000000
804 to2030_predicted$Hig_CI_mil = to2030_predicted$Hig_CI/1000000
805
806 # plot results with 95% CI
807 ggplot(to2030_predicted, aes(x = Year, y = (Value/1000000))) +
808     geom_ribbon(mapping = aes(x = Year, ymin = Low_CI_mil, ymax = Hig_CI_mil),
809                 alpha = 0.2) +
810     geom_line(mapping = aes(x = Year, y = (fit/1000000))) +
811     geom_point(size = 1.5) +
812     labs(y = "Production (million t)") +
813     scale_y_continuous(label=scales::comma, limits = c(0,21)) +
814     scale_x_continuous(limits = c(2000,2030)) +
815     theme_classic() +
816     theme(axis.text = element_text(size = 12))
817
818 # area predictions
819
820 # 2030 only
821 area_2030 <- to2030_predicted %>%
822     filter(Year == 2030)
823
824 fao20 <- fao %>%
825     filter(Year == 2020,
826             Area == "World",
827             Element == "Production")
828 prod_2020 = fao20$value
829
830 area_2030 <- area_2030 %>% # area needed
831     mutate(Prod_additional = fit - prod_2020,
832             Area_min_hiyield = Prod_additional / 1.69,
833             Area_mea_hiyield = Prod_additional / 1.37,
834             Area_max_loyield = Prod_additional/0.89,
835             hiyield = 1.69,
836             mnyield = 1.37,
837             loyield = 0.89
838     )
839
840 # all years
841
842 to2030_predicted_area <- to2030_predicted %>% # area needed
843     mutate(Prod_additional = fit - prod_2020,
844             Area_min_hiyield = Prod_additional / 1.69,
845             Area_mea_hiyield = Prod_additional / 1.37,
846             Area_max_loyield = Prod_additional/0.89,
847             hiyield = 1.69,
848             mnyield = 1.37,
849             loyield = 0.89
850     )
851
852 final_table <- to2030_predicted_area %>%
853     select(Value, Year, fit, Low_CI, Hig_CI, df, Prod_additional, Area_min_hiyield,
854     Area_max_loyield) %>%
855     mutate(Value = signif((Value / 1000000),3),
856             fit = signif((fit / 1000000),3),
857             Low_CI = signif((Low_CI / 1000000),3),
```

```
858     Hig_CI = signif((Hig_CI/ 1000000),3),
859     Prod_additional = round((Prod_additional / 1000000),2),
860     Area_min_hiyield = round((Area_min_hiyield / 1000000),2),
861     Area_max_loyield = round((Area_max_loyield / 1000000),2)
862   )
863   colnames(final_table) <- c("Observed production (metric tons)", "Year", "Fitted value for
864   production (metric tons)",
865   "Lower 95% CI", "Upper 95% CI", "Degrees of freedom", "Projected
866   additional natural rubber consumption (million t)",
867   "Min. additional area required *(million ha)", "Max. additional
868   area required **(million ha)")

869

870
```

871 **References**

872

873 Ahrends, Antje, Peter M. Hollingsworth, Alan D. Ziegler, Jefferson M. Fox, Huafang Chen, Yufang Su,
874 and Jianchu Xu. 2015. "Current Trends of Rubber Plantation Expansion May Threaten
875 Biodiversity and Livelihoods." *Global Environmental Change* 34:48–58. doi:
876 10.1016/j.gloenvcha.2015.06.002.

877 Aidenvironment. 2020. *Low Prices Drive Natural Rubber Producers into Poverty. An Overview of
878 Sustainability Issues and Solutions in the Rubber Sector*. Aidenvironment.

879 Akmel, M. S. 2018. "Enjeux socio-économiques de l'hévéaculture et risque d'insécurité alimentaire
880 en pays Odjukru dans la région de Dabou (Côte d'Ivoire)." *Tropicultura* 36(2):425–34.

881 Ali, Muhammad Fadzli, Md. Ali Akber, Carl Smith, and Ammar Abdul Aziz. 2021. "The Dynamics of
882 Rubber Production in Malaysia: Potential Impacts, Challenges and Proposed Interventions."
883 *Forest Policy and Economics* 127:102449. doi: 10.1016/j.forpol.2021.102449.

884 Badan Pusat Statistik. 2022. *Plantation Area by Province (Thousand Hectares)*. Jakarta, Indonesia:
885 Badan Pusat Statistik.

886 Barlow, J., TA Gardner, I. S. Araujo, T. C. Avila-Pires, A. B. Bonaldo, J. E. Costa, M. C. Esposito, L. V.
887 Ferreira, J. Hawes, M. I. M. Hernandez, M. S. Hoogmoed, R. N. Leite, N. F. Lo-Man-Hung, J. R.
888 Malcolm, M. B. Martins, L. A. M. Mestre, R. Miranda-Santos, A. L. Nunes-Gutjahr, W. L.
889 Overal, L. Parry, S. L. Peters, M. A. Ribeiro-Junior, M. N. F. da Silva, C. da Silva Motta, and C.
890 A. Peres. 2007. "Quantifying the Biodiversity Value of Tropical Primary, Secondary, and
891 Plantation Forests." *Proceedings of the National Academy of Sciences of the United States of
892 America* 104(47):18555–60. doi: 10.1073/pnas.0703333104.

893 de Bonafos, Hubert. 2020. *Review of Transparency & Traceability Tools and Solutions. Prepared for
894 the Global Platform for Sustainable Natural Rubber (GPSNR)*. e-Audit Hong-Kong Ltd.

895 Cho, Kimin, Benjamin Goldstein, Dimitrios Gounaris, and Joshua P. Newell. 2022. "Hidden Risks of
896 Deforestation in Global Supply Chains: A Study of Natural Rubber Flows from Sri Lanka to the
897 United States." *Journal of Cleaner Production* 131275. doi: 10.1016/j.jclepro.2022.131275.

898 Clough, Y., V. V. Krishna, M. D. Corre, K. Darras, L. H. Denmead, A. Meijide, S. Moser, O. Musshoff, S.
899 Steinebach, E. Veldkamp, K. Allen, A. D. Barnes, N. Breidenbach, U. Brose, D. Buchori, R.
900 Daniel, R. Finkeldey, I. Harahap, D. Hertel, A. M. Holtkamp, E. Hörndl, B. Irawan, I. N. S.
901 Jaya, M. Jochum, B. Klarner, A. Knohl, M. M. Kotowska, V. Krashevskaya, H. Kreft, S. Kurniawan,
902 C. Leuschner, M. Maraun, D. N. Melati, N. Opfermann, C. Pérez-Cruzado, W. E. Prabowo, K.
903 Rembold, A. Rizali, R. Rubiana, D. Schneider, S. S. Tjitosoedirdjo, A. Tjoa, T. Tscharntke, and
904 S. Scheu. 2016. "Land-Use Choices Follow Profitability at the Expense of Ecological Functions
905 in Indonesian Smallholder Landscapes." *Nature Communications* 7:13137. doi:
906 10.1038/ncomms13137.

907 Cupit, Oliver, Sam Ginger, Sophie Kirklin, and Indra Suryadi. 2020. *Executive Summary: Spatial Data
908 & Mapping Tools for Detecting Deforestation and Threats to HCV/S Areas in Rubber
909 Production Landscapes*. London: Zoological Society of London.

910 Dao, Nga. 2018. "Rubber Plantations and Their Implications on Gender Roles and Relations in
911 Northern Uplands Vietnam." *Gender, Place & Culture* 25(11):1579–1600. doi:
912 10.1080/0966369X.2018.1553851.

913 Department of National Park, Wildlife and Plant Conservation (DNP). 2022. *Statistical Data of*
914 *National Park, Wildlife and Plant Conservation - Forest Cover Data by Province*. Thailand:
915 Ministry of Natural Resources and Environment.

916 Directorate-General for Environment. 2021. "Proposal for a Regulation on Deforestation-Free
917 Products."

918 ETRMA. 2019. "Sustainable Natural Rubber & European Commission Deforestation Agenda."

919 ETRMA. 2021. "European Tyre & Rubber Industry Statistics Edition 2021."

920 FAO. 2020. *Global Forest Resources Assessment 2020*. FAO.

921 FAO. 2022. "FAOSTAT Online Statistical Service." Retrieved January 10, 2022 (<http://faostat.fao.org>).

922 Feintrenie, Laurène. 2014. "Agro-Industrial Plantations in Central Africa, Risks and Opportunities."
923 *Biodiversity and Conservation* 23(6):1577–89. doi: 10.1007/s10531-014-0687-5.

924 Fox, Jefferson, Jean Christophe Castella, and Alan D. Ziegler. 2013. "Swidden, Rubber and Carbon:
925 Can REDD+ Work for People and the Environment in Montane Mainland Southeast Asia?"
926 *Global Environmental Change* 29(9):318–26. doi: 10.1016/j.gloenvcha.2013.05.011.

927 Fox, Jefferson, and Jean-Christophe Castella. 2013. "Expansion of Rubber (*Hevea Brasiliensis*) in
928 Mainland Southeast Asia: What Are the Prospects for Smallholders?" *The Journal of Peasant
929 Studies* 40(1):155–70. doi: 10.1080/03066150.2012.750605.

930 Fox, Jefferson, Tuyen Nghiem, Ham Kimkong, Kaspar Hurni, and Ian Baird. 2018. "Large-Scale Land
931 Concessions, Migration, and Land Use: The Paradox of Industrial Estates in the Red River
932 Delta of Vietnam and Rubber Plantations of Northeast Cambodia." *Land* 7(2):77. doi:
933 10.3390/land7020077.

934 Gibson, Luke, Tien Ming Lee, Lian Pin Koh, Barry W. Brook, Toby A. Gardner, Jos Barlow, Carlos A.
935 Peres, Corey J. A. a. Bradshaw, William F. Laurance, Thomas E. Lovejoy, and Navjot S. Sodhi.
936 2011. "Primary Forests Are Irreplaceable for Sustaining Tropical Biodiversity." *Nature*
937 478(7369):378–81. doi: 10.1038/nature10425.

938 Golbon, Reza, Marc Cotter, and Joachim Sauerborn. 2018. "Climate Change Impact Assessment on
939 the Potential Rubber Cultivating Area in the Greater Mekong Subregion." *Environmental
940 Research Letters* 13(8):084002. doi: 10.1088/1748-9326/aad1d1.

941 Grogan, Kenneth, Dirk Pflugmacher, Patrick Hostert, Ole Mertz, and Rasmus Fensholt. 2019.
942 "Unravelling the Link between Global Rubber Price and Tropical Deforestation in Cambodia."
943 *Nature Plants* 5(1):47–53. doi: 10.1038/s41477-018-0325-4.

944 Hurni, Kaspar, and Jefferson Fox. 2018. "The Expansion of Tree-Based Boom Crops in Mainland
945 Southeast Asia: 2001 to 2014." *Journal of Land Use Science* 13(1–2):198–219. doi:
946 10.1080/1747423X.2018.1499830.

947 IRSG. 2022. "International Rubber Study Group - Reports."

948 Jayathilake, H. Manjari, Graham W. Prescott, L. Roman Carrasco, Madhu Rao, and William S. Symes.
949 2021. "Drivers of Deforestation and Degradation for 28 Tropical Conservation Landscapes."
950 *Ambio* 50(1):215–28. doi: 10.1007/s13280-020-01325-9.

951 Junquera, Victoria, Patrick Meyfroidt, Zhanli Sun, Phokham Latthachack, and Adrienne Grêt-
952 Regamey. 2020. "From Global Drivers to Local Land-Use Change: Understanding the
953 Northern Laos Rubber Boom." *Environmental Science & Policy* 109:103–15. doi:
954 10.1016/j.envsci.2020.04.013.

955 Kenney-Lazar, Miles. 2012. "Plantation Rubber, Land Grabbing and Social-Property Transformation in
956 Southern Laos." *The Journal of Peasant Studies* 39(3–4):1017–37. doi:
957 10.1080/03066150.2012.674942.

958 Kenney-Lazar, Miles, Grace Wong, Himlal Baral, and Aaron J. M. Russell. 2018. "Greening Rubber?
959 Political Ecologies of Plantation Sustainability in Laos and Myanmar." *Geoforum* 92:96–105.
960 doi: 10.1016/j.geoforum.2018.03.008.

961 Kissinger, Gabrielle. 2020. "Policy Responses to Direct and Underlying Drivers of Deforestation:
962 Examining Rubber and Coffee in the Central Highlands of Vietnam." *Forests* 11(7):733. doi:
963 10.3390/f11070733.

964 Kissinger, Gabrielle, Maria Brockhaus, and Simon R. Bush. 2021. "Policy Integration as a Means to
965 Address Policy Fragmentation: Assessing the Role of Vietnam's National REDD+ Action Plan
966 in the Central Highlands." *Environmental Science & Policy* 119:85–92. doi:
967 10.1016/j.envsci.2021.02.011.

968 Laroche, Perrine C. S. J., Catharina J. E. Schulp, Thomas Kastner, and Peter H. Verburg. 2022.
969 "Assessing the Contribution of Mobility in the European Union to Rubber Expansion." *Ambio*
970 51(3):770–83. doi: 10.1007/s13280-021-01579-x.

971 Liyanage, K. K., S. Khan, P. E. Mortimer, K. D. Hyde, J. Xu, S. Brooks, and Z. Ming. 2016. "Powdery
972 Mildew Disease of Rubber Tree" edited by T. Sieber. *Forest Pathology* 46(2):90–103. doi:
973 10.1111/efp.12271.

974 Lyons-White, Joss, Edward H. B. Pollard, Allison S. Catalano, and Andrew T. Knight. 2020. "Rethinking
975 Zero Deforestation beyond 2020 to More Equitably and Effectively Conserve Tropical
976 Forests." *One Earth* 3(6):714–26. doi: 10.1016/j.oneear.2020.11.007.

977 Meyfroidt, Patrick, and Eric F. Lambin. 2008. "Forest Transition in Vietnam and Its Environmental
978 Impacts." *Global Change Biology* 14(6):1319–36. doi: 10.1111/j.1365-2486.2008.01575.x.

979 Millard, Edward. 2019. "Recent Experiences from the Natural Rubber Industry and Its Movement
980 Towards Sustainability." Pp. 499–520 in *Sustainable Global Value Chains*, edited by M.
981 Schmidt, D. Giovannucci, D. Palekhov, and B. Hansmann. Cham: Springer International
982 Publishing.

983 Ministry of Environment and Forestry. 2021. *Rekalkulasi Penutupan Lahan Indonesia - Tahun 2020*
984 (*Indonesia's Land Cover Recalculation 2020*). Jakarta: Directorate General of Forestry
985 Planning and Environmental Management; Ministry of Environment and Forestry.

986 Office of Agricultural Economics. 2022. *Agricultural Economics - agricultural production data - Table*
987 *showing details of para rubber*. Thailand: Ministry of Agriculture and Cooperatives.

988 Otten, Fenna, Jonas Hein, Hannah Bondy, and Heiko Faust. 2020. "Deconstructing Sustainable
989 Rubber Production: Contesting Narratives in Rural Sumatra." *Journal of Land Use Science*
990 15(2–3):306–26. doi: 10.1080/1747423X.2019.1709225.

991 Owusu, Emmanuel Akwasi, and François Ruf. 2015. "From Firestone to Michelin, a History of Rubber
992 Cultivation in a Cocoa-Growing Country: Ghana." Pp. 179–99 in *Economics and Ecology of*
993 *Diversification: The Case of Tropical Tree Crops*, edited by F. Ruf and G. Schroth. Dordrecht:
994 Springer Netherlands.

995 Padoch, Christine, and Miguel Pinedo-Vasquez. 2010. "Saving Slash-and-Burn to Save Biodiversity."
996 *Biotropica* 42(5):550–52. doi: 10.1111/j.1744-7429.2010.00681.x.

997 Parra-Paitan, Claudia, and Peter H. Verburg. 2022. "Accounting for Land Use Changes beyond the
998 Farm-Level in Sustainability Assessments: The Impact of Cocoa Production." *Science of The*
999 *Total Environment* 825:154032. doi: 10.1016/j.scitotenv.2022.154032.

1000 Phuc, To Xuan, and Tran Huu Nghi. 2014. *Rubber Expansion and Forest Protection in Vietnam*. Hue
1001 city, Viet Nam: Tropenbos International Viet Nam and Forest Trends.

1002 Pinizzotto, S., A. Aziz, V. Gitz, J. Sainte-Beuve, L. Nair, E. Gohet, E. Penot, and A. Meybeck. 2021.
1003 *Natural Rubber Systems and Climate Change: Proceedings and Extended Abstracts from the*
1004 *Online Workshop, 23–25 June 2020*. Center for International Forestry Research (CIFOR).

1005 Pornsuriya, Chaninun, Thanunchanok Chairin, Narit Thaochan, and Anurag Sunpapao. 2020.
1006 "Identification and Characterization of *Neopestalotiopsis* Fungi Associated with a Novel Leaf
1007 Fall Disease of Rubber Trees (*Hevea Brasiliensis*) in Thailand." *Journal of Phytopathology*
1008 168(7–8):416–27. doi: 10.1111/jph.12906.

1009 Prabowo, Walesa Edho, Kevin Darras, Yann Clough, Manuel Toledo-Hernandez, Raphael Arlettaz,
1010 Yeni A. Mulyani, and Teja Tscharntke. 2016. "Bird Responses to Lowland Rainforest
1011 Conversion in Sumatran Smallholder Landscapes, Indonesia." *PLoS ONE* 11(5):1–17. doi:
1012 10.1371/journal.pone.0154876.

1013 Ruf, François. 2015. "Diversification of Cocoa Farms in Côte d'Ivoire: Complementarity of and
1014 Competition from Rubber Rent." Pp. 41–86 in *Economics and Ecology of Diversification: The*
1015 *Case of Tropical Tree Crops*, edited by F. Ruf and G. Schroth. Dordrecht: Springer
1016 Netherlands.

1017 Smith, Hilary, Juliet Lu, Phuc Xuan To, Sotyavanh Mienmany, and Khonethong Soukphaxay. 2020.
1018 "Rubber Plantation Value Chains in Laos: Opportunities and Constraints in Policy, Legality
1019 and Wood Processing." 99.

1020 Tires & Parts News. 2022. "Latest World Rubber Industry Outlook Now Available from IRSG." *Tires &*
1021 *Parts News Resource*. Retrieved February 20, 2022
1022 ([https://tiresandparts.net/interaction/latest-world-rubber-industry-outlook-now-available-
1023 from-irsg-2/](https://tiresandparts.net/interaction/latest-world-rubber-industry-outlook-now-available-from-irsg-2/)).

1024 Vagneron, Isabelle, Benedicte Chambon, Nay Myo Aung, and Saw Min Aung. 2017. *Rubber*
1025 *Production in Tanintharyi Region*. Yangon, Myanmar: WWF.

1026 van Vliet, Nathalie, Ole Mertz, Andreas Heinemann, Tobias Langanke, Unai Pascual, Birgit Schmook,
1027 Cristina Adams, Dietrich Schmidt-Vogt, Peter Messerli, Stephen Leisz, Jean-Christophe
1028 Castella, Lars Jørgensen, Torben Birch-Thomsen, Cornelia Hett, Thilde Bech-Bruun, Amy
1029 Ickowitz, Kim Chi Vu, Kono Yasuyuki, Jefferson Fox, Christine Padoch, Wolfram Dressler, and
1030 Alan D. Ziegler. 2012. "Trends, Drivers and Impacts of Changes in Swidden Cultivation in
1031 Tropical Forest-Agriculture Frontiers: A Global Assessment." *Global Environmental Change*
1032 22(2):418–29. doi: 10.1016/j.gloenvcha.2011.10.009.

1033 Wang, Maria M. H., L. Roman Carrasco, and David P. Edwards. 2020. "Reconciling Rubber Expansion
1034 with Biodiversity Conservation." *Current Biology* 30(19):3825–3832.e4. doi:
1035 10.1016/j.cub.2020.07.014.

1036 Wang, Maria Mei Hua, Eleanor Warren-Thomas, and Thomas Cherico Wanger. 2021. *Rubber*
1037 *Agroforestry: Feasibility at Scale*. Mighty Earth.

1038 Warren-Thomas, Eleanor, Paul M. Dolman, and David P. Edwards. 2015. "Increasing Demand for
1039 Natural Rubber Necessitates a Robust Sustainability Initiative to Mitigate Impacts on Tropical
1040 Biodiversity." *Conservation Letters* 8(4):230–41. doi: 10.1111/conl.12170.This.
1041 Warren-Thomas, Eleanor M., David P. Edwards, Daniel P. Bebber, Phourin Chhang, Alex N. Diment,
1042 Tom D. Evans, Frances H. Lambrick, James F. Maxwell, Menghor Nut, Hannah J. O'Kelly, Ida
1043 Theilade, Paul M. Dolman, Hannah J. O'Kelly, Ida Theilade, and Paul M. Dolman. 2018.
1044 "Protecting Tropical Forests from the Rapid Expansion of Rubber Using Carbon Payments."
1045 *Nature Communications* 9(1):911. doi: 10.1038/s41467-018-03287-9.
1046 Warren-Thomas, Eleanor, Luke Nelson, Watinee Juthong, Sara Bumrungsri, Oskar Brattström,
1047 Laetitia Stroesser, Bénédicte Chambon, Éric Penot, Uraiwan Tongkaemkaew, David P.
1048 Edwards, and Paul M. Dolman. 2020. "Rubber Agroforestry in Thailand Provides Some
1049 Biodiversity Benefits without Reducing Yields." *Journal of Applied Ecology* 57(1):17–30. doi:
1050 10.1111/1365-2664.13530.
1051 World Bank Group. 2021. *Commodity Markets Outlook: Urbanization and Commodity Demand,*
1052 *October 2021*. Washington, D.C.: World Bank.
1053 Zhai, De-Li, and Jian-Chu Xu. 2022. "The Legacy Effects of Rubber Defoliation Period on the
1054 Refoliation Phenology, Leaf Disease, and Latex Yield." *Plant Diversity* S2468265922000038.
1055 doi: 10.1016/j.pld.2022.01.003.
1056
1057