

1 **Title**

2

3 Chromosome-level genome assembly of *Euphorbia peplus*, a model system for plant latex, reveals that
4 relative lack of Ty3 transposons contributed to its small genome size

5

6

7 **Authors and affiliations**

8

9 Arielle R. Johnson¹, Yuanzheng Yue^{1,2}, Sarah B. Carey³, Se Jin Park^{1,4}, Lars H. Kruse^{1,5}, Ashley Bao¹,
10 Alex Harkess³, Asher Pasha⁶, Nicholas J. Provart⁶, Gaurav D. Moghe^{1*}, Margaret H. Frank^{1*}

11 ¹Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.

12 ²Current address: Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape
13 Architecture, Nanjing Forestry University, Nanjing, PR China.

14 ³HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.

15 ⁴Current address: School of Pharmacy, University of Southern California, Los Angeles, CA, USA.

16 ⁵Current address: Michael Smith Laboratories, University of British Columbia, Vancouver, British
17 Columbia, Canada.

18 ⁶Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.

19

20 *Co-Corresponding Authors:

21

22 Gaurav D. Moghe, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca,
23 NY, gdm67@cornell.edu (ORCID: 0000-0002-8761-064X)

24

25 Margaret H. Frank, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca,
26 NY, mhf47@cornell.edu

27

28

29 **Abstract**

30

31 *Euphorbia peplus* (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a
32 naturalized weed in North America and Australia. *E. peplus* is not only medicinally valuable, serving as a
33 source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex
34 production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle.

35 To help establish *E. peplus* as a new model, we generated a 267.2 Mb HiC-anchored PacBio HiFi nuclear
36 genome assembly with an embryophyta BUSCO score of 98.5%, a genome annotation based on RNA-seq
37 data from six tissues, and publicly accessible tools including a genome browser and an interactive organ-
38 specific expression atlas. Chromosome number is highly variable across *Euphorbia* species. Using a
39 comparative analysis of our newly sequenced *E. peplus* genome with other Euphorbiaceae genomes, we
40 show that variation in *Euphorbia* chromosome number is likely due to fragmentation and rearrangement
41 rather than aneuploidy. Moreover, we found that the *E. peplus* genome is relatively compact compared to
42 related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally,
43 we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol
44 mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The
45 genomic resources we have created for *E. peplus* will help advance research on latex production and
46 ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.

47

48

49 **Keywords**

50

51 *Euphorbia*, spurge, latex, Ty3, diterpenoids, gene cluster

52

53

54 **Significance statement**

55

56 *Euphorbia* is one of the five largest genera in the plant kingdom. Despite an impressive phenotypic and
57 metabolic diversity in this genus, only one *Euphorbia* genome has been sequenced so far, restricting
58 insights into *Euphorbia* biology. *Euphorbia peplus* has excellent potential as a model species due to its
59 latex production, fast growth rate and production of the anticancer drug ingenol mebutate. Here, we
60 present a chromosome-level *E. peplus* genome assembly and publicly accessible resources to support
61 molecular research for this unique species and the broader genus. We also provide an explanation of one
62 reason the genome is so small, and identify more candidate genes for the anticancer drug and related
63 compounds.

64

65

66 **Introduction**

67

68 The Euphorbiaceae is a large plant family with over 6,000 species. Almost all Euphorbiaceae species
69 produce a milky terpenoid-rich substance called latex, which is contained in specialized cells and exudes
70 from damaged tissue. Euphorbiaceae latex is used for producing natural rubber (e.g. *Hevea brasiliensis*,
71 Pará rubber tree)(Yamashita & Takahashi 2020), is a carbon source for biofuels (e.g. *Euphorbia lathyris*,
72 caper spurge)(Pan et al. 2022), and contains unique biosynthetic pathways that support the production of
73 medically-relevant compounds(Yang Xu et al. 2021). Latex from *Euphorbia peplus* (commonly known
74 as ‘petty spurge’ and ‘cancer weed’) contains a diterpenoid compound called ingenol mebutate that is
75 used in pharmaceutical treatments for skin cancer(Lebwohl et al. 2012), making this species particularly
76 valuable. While parts of the biosynthetic pathway for ingenol mebutate have recently been
77 identified(Czechowski et al. 2022), the full pathway has yet to be elucidated, and pharmaceutical
78 production is currently limited to natural extraction from *E. peplus*.

79

80 Several economically valuable Euphorbiaceae crop plants have extensive genome resources, including
81 *Hevea brasiliensis* (Pará rubber tree), *Manihot esculenta* (cassava), *Jatropha curcas* (physic nut), and
82 *Ricinus communis* (castor oil plant), but these are physically large crop species that are not ideal for
83 laboratory work. The cells that produce and contain latex, laticifers, are not developmentally well
84 characterized; understanding this network of living tubes will require a model species that is easy to
85 manipulate (Johnson et al. 2021). A smaller model species that can be grown in the lab, *Euphorbia*
86 *lathyris* (caper spurge), was developed as a model system for latex in the Euphorbiaceae, and the
87 generation of *Euphorbia lathyris* mutants that produce more or less latex than wild-type plants has
88 produced insights into latex development(Castelblanque et al. 2016, 2018, 2021). The *Euphorbia lathyris*
89 genome was also recently published(Mingcheng Wang et al. 2021). However, *Euphorbia lathyris* is not
90 suitable for some experiments because of its biennial life cycle and large stature (>1 meter at maturity).

91

92

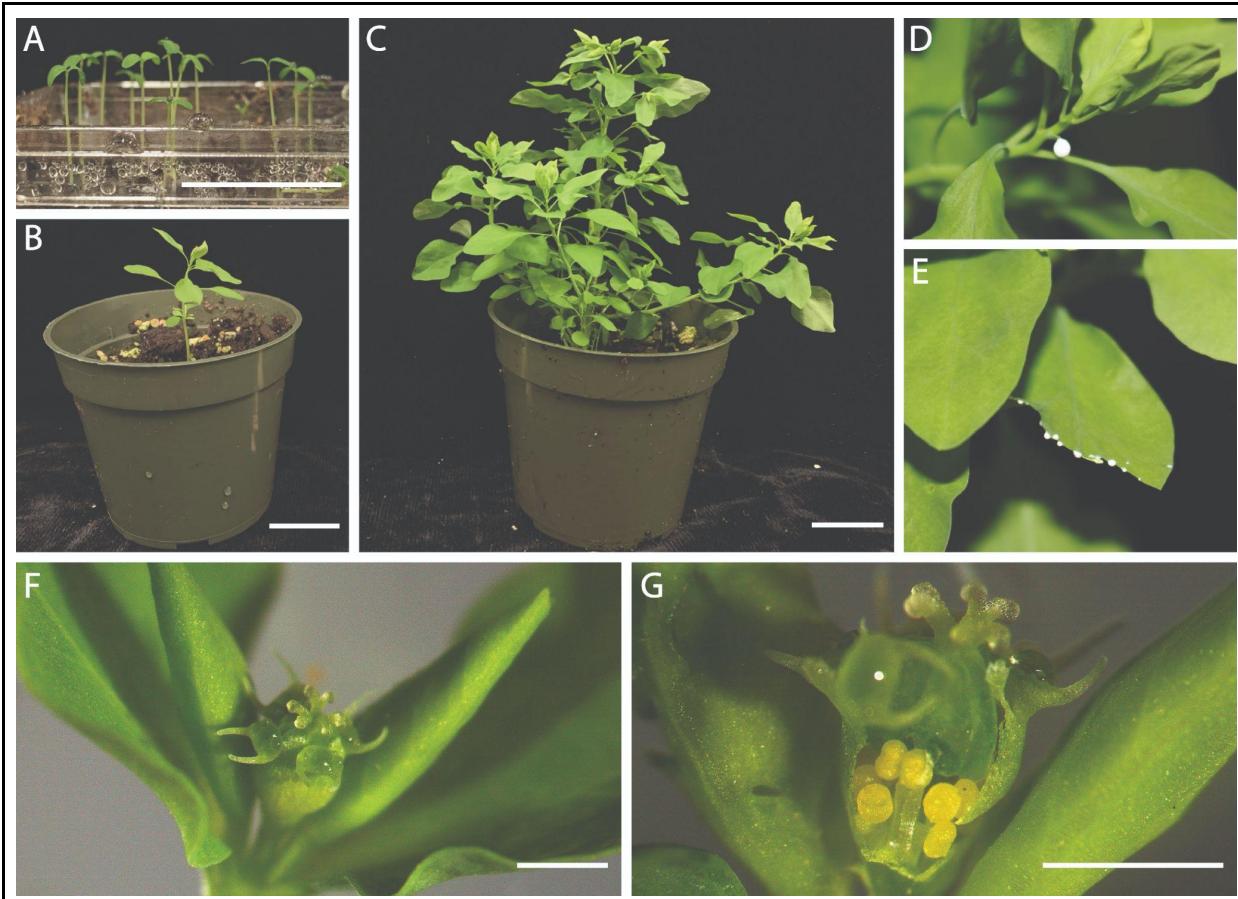


Figure 1: *Euphorbia peplus* is a small, rapidly-maturing plant that produces latex. Scale in A, B, and C is 30mm; scale in F and G is 1mm. A. 1-week-old seedlings; lid of tray removed for photo. B. 3-week-old plant with vegetative growth only. C. 5.5-week-old plant that is reproductively mature. D. Cut petiole exuding latex. E. Cut leaf exuding latex. F. Exterior view of inflorescence showing stigmas and nectaries; rolled bracts to the left and right conceal developing inflorescences. G. Inflorescence is cut to reveal staminate flowers.

93

94

95 We have developed genomic resources for *E. peplus* as a complementary model system to *Euphorbia*
96 *lathyris* to study latex development in the Euphorbiaceae. *E. peplus* and *E. lathyris* are in the same
97 subgenus, *Esula*; *E. peplus* is in section *Tithymalus* while *E. lathyris* is in section *Lathyris*, the earliest
98 diverging section within *Esula*, so the two species' lineages diverged approximately 40 million years
99 ago(Riina et al. 2013; Anest et al. 2021). *E. peplus* has a relatively small genome size of <300 Mb, is an
100 annual plant with a short life cycle of ~6 weeks post-germination to flowering, and is only ~30 cm tall at
101 maturity, allowing it to be grown in relatively large quantities in growth chambers (**Figure 1**). Virus-
102 induced gene silencing (VIGS) has been successfully performed in this species(Czechowski et al. 2022),
103 making it a good candidate to identify and functionally test developmental and biochemical genes of
104 interest.

105
106 This paper presents the nuclear genome of *E. peplus*, puts the genome into an evolutionary context using
107 other published Euphorbiaceae genomes, examines why the *E. peplus* genome is uniquely small, and
108 provides new hypotheses regarding the evolution of a valuable diterpene biosynthetic pathway in this
109 species. In addition, introduction of this new genome expands the resources available for genomic studies
110 of the phenotypically diverse *Euphorbia* genus.

111
112

113 **Results**

114
115 *A chromosome-scale assembly of the Euphorbia peplus genome*
116
117 To build a nuclear genome assembly for *E. peplus*, we first generated 22.7 Gb of PacBio HiFi Circular
118 Consensus Sequence (CCS) reads and 48.4 Gb of paired-end 150 nt Phase Genomics Hi-C reads. K-mer
119 based analysis of the raw HiFi reads suggests that the genome size of the accession is 252.2 Mb
120 (**Supplementary Figure 1**) and that the genome is highly homozygous (99.9%), consistent with the fact

121 that *E. peplus* is a self-compatible plant which typically self-fertilizes(Asenbaum et al. 2021). An initial
122 PacBio HiFi assembly resulted in a nuclear assembly size of 327.6 Mb assembled into 1210 contigs with
123 a contig N50 of 23.9 Mb and a L50 count of n=6 contigs. After Hi-C scaffolding and manual editing, our
124 final assembly comprises 330.5 Mb assembled into 1242 scaffolds with a scaffold N50 of 31.0 Mb and
125 L50 count of n=5 scaffolds (**Supplementary Table 1**). After selecting the chromosomes only, our final
126 chromosomal assembly consists of 8 chromosomes of >20Mb each, totaling 267.2 Mb, in agreement with
127 previous chromosome squashes and previous flow cytometry analyses(Fasihi et al.; Loureiro et al. 2007)
128 (**Figure 2A**). Benchmarking of universal, single-copy orthologs (BUSCO) analysis of those
129 chromosomes indicated a mostly complete assembly with 98.5% of Embryophyta BUSCO orthologs
130 identified, most of which (95.5%) were single-copy (**Supplementary Table 2**). The chromosomal
131 genome assembly size, 267.2 Mb, is only 6% larger than our 21-mer genome size estimate, 252.2 Mb, and
132 the chromosomes constitute a 98.9% complete genome according to a Merqury kmer completeness
133 analysis (**Supplementary Table 3**). The 63.3 Mb of non-chromosome scaffolds do not contain any
134 BUSCO orthologs, most of the annotated genes appear to be chloroplastic based on their human-readable
135 descriptions, the Extensive de novo TE Annotator (EDTA) only annotated 0.97% of the sequences as
136 repetitive elements (**Supplementary Table 4**), and alignment of the raw Hi-C data against the non-
137 chromosomal scaffolds only results in 3.52% uniquely mapped reads compared with 42.20% uniquely
138 mapped reads when mapped against the chromosomes. This combination of evidence leads us to
139 conclude that the non-chromosomal scaffolds are mostly not nuclear DNA, and the chromosomal
140 assembly is likely close to the actual genome size.

141
142 *The Euphorbia peplus genome annotation includes human-readable descriptions and GO terms*
143
144 We masked repeats in the genome using RepeatModeler and RepeatMasker, which led to masking of
145 57.66% of the nucleotides in all scaffolds and 48.55% of the nucleotides in the assembled chromosomes.
146 The most common retroelements by far were Ty1/Copia, comprising 14.73% of the chromosomes, and

147 Ty3, comprising 4.76% of the chromosomes. (Ty3 is the family previously referred to as “Gypsy” in
148 some publications; the transposon family name has been reconsidered because it is insensitive to people
149 of Romani heritage(Wei et al. 2022).) The most common DNA transposon, Harbinger, comprised 0.31%
150 of the chromosomes. We then used the BRAKER pipeline to predict protein coding genes using both
151 homology with proteins from the OrthoDB v10 plant database and short-read RNAseq evidence from six
152 tissue types (**Supplementary Table 5, Supplementary Figure 2**). This analysis generated 27,228 total
153 gene annotations: 25,471 primary gene transcripts and 1,757 alternate transcripts. For these gene models,
154 99.0% of Embryophyta BUSCO orthologs were identified and 90.1% were single-copy (**Supplementary**
155 **Table 6**). Next, we used Automatic assignment of Human Readable Descriptions (AHRD) to produce
156 20,929 human-readable gene names for these annotations, 17,639 of which were highest-quality. Using
157 BLAST2GO, we assigned functional labels to 84% of the annotations. A partial centromeric repeat was
158 determined by taking the top result from Tandem Repeats Finder. As expected, we found that gene
159 density declines near the centromere locations of the chromosomes (**Figure 2B**). We also created a
160 genome browser using the JBrowse platform and an interactive expression atlas using the eFP browser to
161 make the genome annotation readily accessible online(Buels et al. 2016; Sullivan et al. 2019).
162

163 *Differences in genome architecture between E. peplus and E. lathyris are not due to aneuploidy*
164
165 The genus *Euphorbia* has a highly variable chromosome count, with base numbers ranging from n=6 to
166 n=10,(Wurdack et al. 2005) despite the fact that there is no evidence for a whole-genome duplication
167 event in the *Euphorbia* lineage(Mingcheng Wang et al. 2021). One hypothesis is that this variation was
168 driven by aneuploidy (i.e. offspring inheriting an extra chromosome or a missing chromosome)(Hans
169 1973). To investigate the conservation of chromosomal architecture, we visualized the macrosynteny
170 between the *E. peplus* genome and the other publicly-available chromosome-level Euphorbiaceae genome
171 assemblies, namely *Euphorbia lathyris*, *Manihot esculenta*, *Hevea brasiliensis*, and *Ricinus communis*.
172 Based on our results, aneuploidy is not responsible for the difference in chromosome number between the

173 8 chromosomes in *E. peplus* and the 10 chromosomes in *E. lathyris*. If chromosomes had been
174 duplicated, we would observe macrosynteny between an entire *E. peplus* chromosome and multiple entire
175 *E. lathyris* chromosomes. Instead, multiple chromosomal fragmentation and rearrangement events seem
176 to have contributed to the difference in chromosome number (**Figure 3**). For example, large parts of *E.*
177 *peplus* chromosome 6 are homologous to large parts of *E. lathyris* chromosome 2 and *E. lathyris*
178 chromosome 5, but *E. lathyris* chromosome 2 also has large parts that are homologous to parts of *E.*
179 *peplus* chromosome 3 and *E. lathyris* chromosome 5 also has large parts that are homologous to parts of
180 *E. peplus* chromosome 5. This suggests that the chromosomes were most likely fragmented rather than
181 duplicated.

182

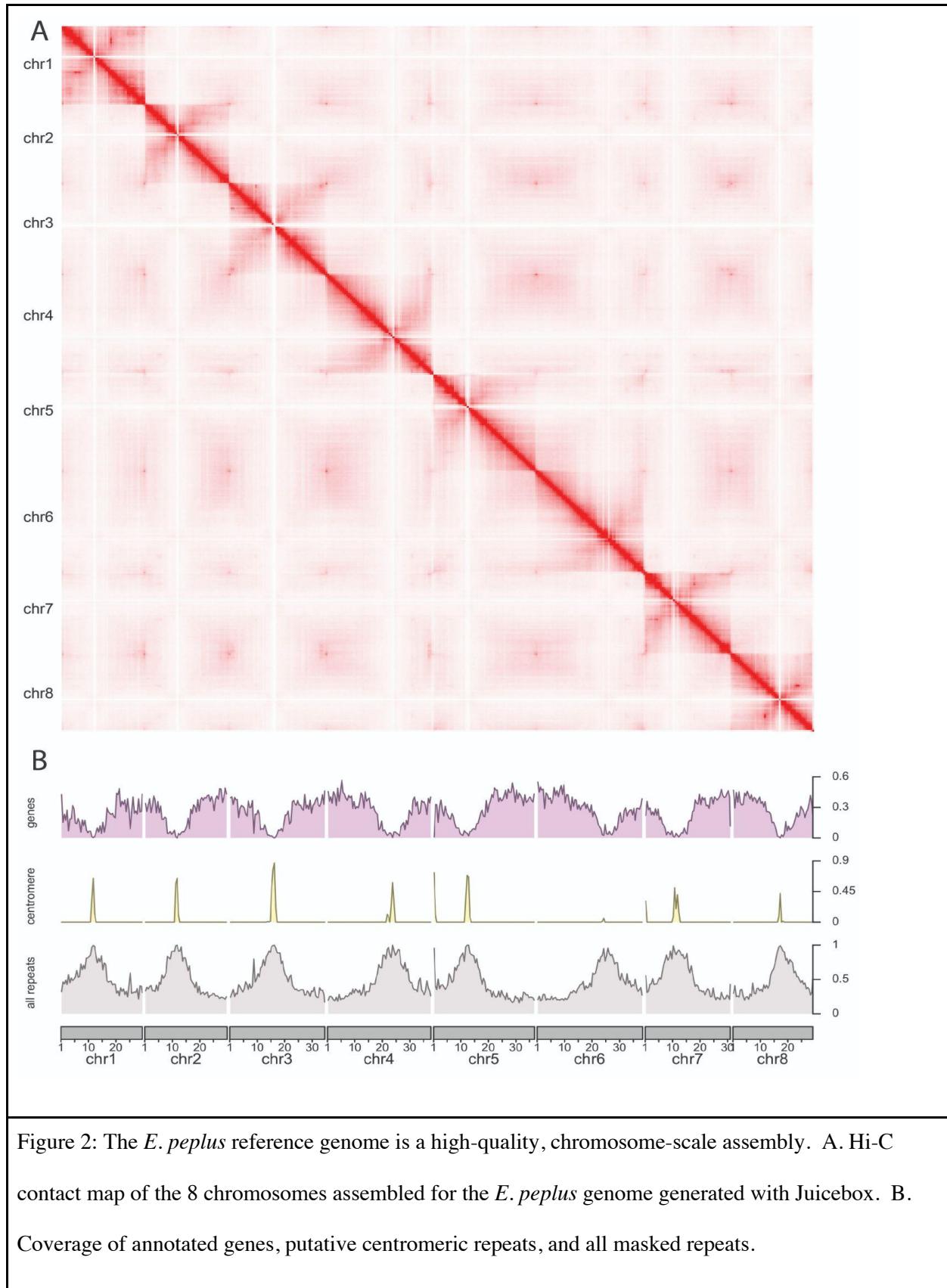
183 *Difference in genome size between E. peplus and E. lathyris is largely explained by relative lack of TEs,*
184 *especially Ty3, in E. peplus*

185

186 Differences in plant genome size are thought to arise largely through differential accumulation of
187 transposable elements (TEs) and through whole genome duplication events (Michael 2014; Dandan Wang
188 et al. 2021). Therefore, in order to investigate why the *E. peplus* genome is so small compared to that of
189 *E. lathyris* despite no evidence of recent whole-genome duplication in *E. lathyris*, we compared the TE
190 composition between the *E. peplus* genome and the other available chromosome-level Euphorbiaceae
191 genomes. For the five Euphorbiaceae species, the species with the larger chromosomal genomes also
192 generally had a higher proportion of repetitive elements in their genome, supporting the idea that TE
193 content is largely responsible for fluctuations in genome size for this family (**Figure 4A**). Compared with
194 the other species, *E. peplus* has a much lower proportion of Ty3 TEs (**Figure 4B**): For example, *E. peplus*
195 has 12.7Mb of Ty3 sequence whereas *E. lathyris* has 205.5Mb of Ty3 sequence, over 16x as much Ty3
196 sequence as *E. peplus*. The most parsimonious explanation for this observation is that Ty3 elements have
197 remained suppressed over time in *E. peplus*, although sequencing more taxa and inferring the ancestral
198 state of the *Esula* subgenus may be required to detect the actual mechanisms leading to genome size

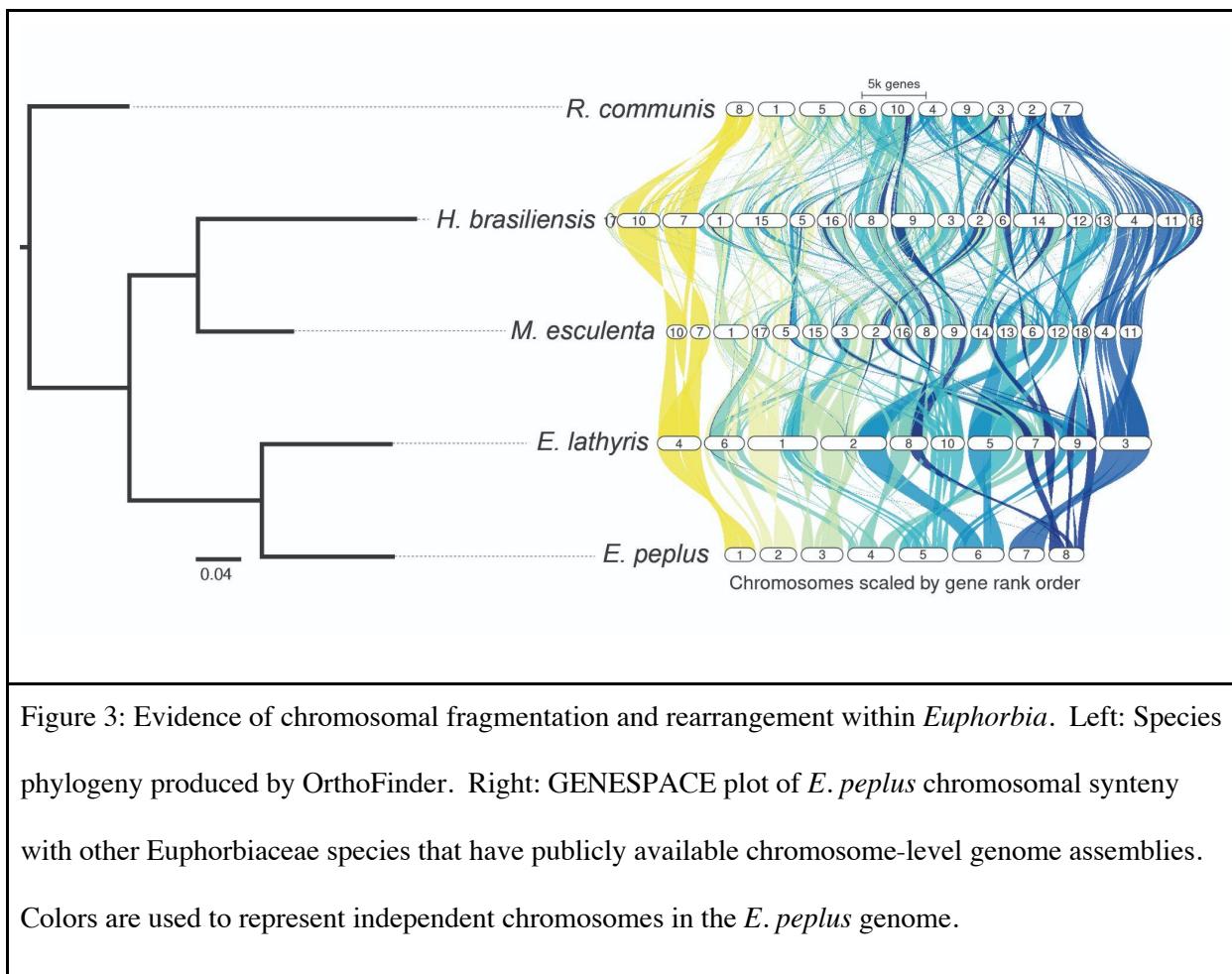
199 differences. Nonetheless, this lack of Ty3 accounts for the most substantial difference in overall TE
200 abundance between *E. peplus* and the other Euphorbiaceae genomes. A difference for Copia also exists
201 but is less stark. *E. peplus* has 39.3Mb of Copia sequence, while *E. lathyris* has 253.1Mb of Copia
202 sequence, around 6.5 times as much Copia sequence as *E. peplus*. *E. peplus*' total repetitive sequences
203 are 129.7Mb while the total in *E. lathyris* is 766.9Mb, while the non-repetitive content is 137.5Mb in *E.*
204 *peplus* and 219.9Mb in *E. lathyris*. Put differently, if *E. peplus* had the same absolute quantity of
205 repetitive sequences as *E. lathyris* added to its existing non-repetitive sequences, its chromosomes would
206 be 904.4Mb (close to *E. lathyris*' 986.8Mb) rather than 267.2Mb, again suggesting that TEs make up
207 most of the difference in genome size between these two species.

208


209 We also examined the age of the Copia and Ty3 repeats in the *E. peplus* and *E. lathyris* genomes by
210 calculating the Kimura distance: the number of substitutions between each instance of a certain repeat in
211 the genome and that repeat family's consensus sequence (an approximation of the ancestral progenitor's
212 sequence, created by taking the most common nucleotide at each site across a multiple alignment of the
213 copies of the repeat). Kimura distance serves as a proxy for the history of the expansion of TE families,
214 as younger elements are expected to be similar to the consensus sequences whereas older elements are
215 thought to have accumulated more mutations over time (Kimura 1980). It appears that there have been no
216 major changes in Ty3 abundance over evolutionary time in *E. peplus*, whereas a substantially increased
217 abundance of Ty3 elements is seen in *E. lathyris*, with its maximum at a Kimura substitution level of 8
218 (**Figure 4C and 4D**). Both *E. peplus* and *E. lathyris* have a peak of Copia expansion, but the *E. lathyris*
219 peak is older, with a maximum at a Kimura substitution level of 8, whereas the *E. peplus* peak is much
220 younger and narrower and has a maximum at a Kimura substitution level of 3. Note that *E. peplus* has a
221 shorter generation time than *E. lathyris*, as *E. peplus* is an annual plant while *E. lathyris* is biennial;
222 however, shorter generation time would theoretically lead to the accumulation of more mutations so our
223 observation that the *E. peplus* peak is younger remains valid. We also examined the distribution of Ty3
224 and Copia TEs abundance across the length of the chromosomes in *E. peplus* and *E. lathyris*.

225 Interestingly, both Ty3 and Copia decrease in abundance with distance from the centromere more
226 drastically in *E. peplus* than they do in *E. lathyris* (**Figure 4E and 4F**); however, the significance of this
227 differential distribution is not clear.

228


229 RNA polymerase V subunit NRPE1 has been shown to regulate TE abundance in Arabidopsis. NRPE1 is
230 the largest subunit of plant RNA polymerase V, which helps produce the RNA scaffolds necessary for the
231 RNA-directed DNA methylation that causes transgenerational suppression of TE activity(Matzke &
232 Mosher 2014). NRPE1 has been identified through genome wide association studies (GWAS) as a major
233 determinant of genome-wide CHH methylation patterns and specifically, of CHH methylation of TEs in
234 Arabidopsis(Sasaki et al. 2019). It is plausible that a duplicate of NRPE1 could be functional in *E. peplus*
235 given that a similar example of NRPE1 duplication-neofunctionalization exists in the grasses
236 (Poaceae)(Trujillo et al. 2018). To examine a potential role for NRPE1 in the regulation of Ty3 copy
237 number in *E. peplus*, we produced orthologous groups containing proteins from *E. peplus* and the other
238 four Euphorbiaceae genomes used in this paper (**Supplementary Figure 3**), and examined the
239 orthologous groups containing genes that are known to regulate TE abundance (**Supplementary Table 7**,
240 **Supplementary File 4**). In our results, the NRPE1 orthogroup showed a *E. peplus*-specific duplication
241 and was not duplicated in any other species, although one of its two *E. peplus* copies was broken into
242 multiple gene models, indicating that it may be a pseudogene; low levels of expression were present
243 (**Supplementary Figure 4-6**). Whether the additional NRPE1 copy in *E. peplus* is, or was, functional
244 and could explain the suppression of Ty3 requires further investigation.

245

246

247

248

249

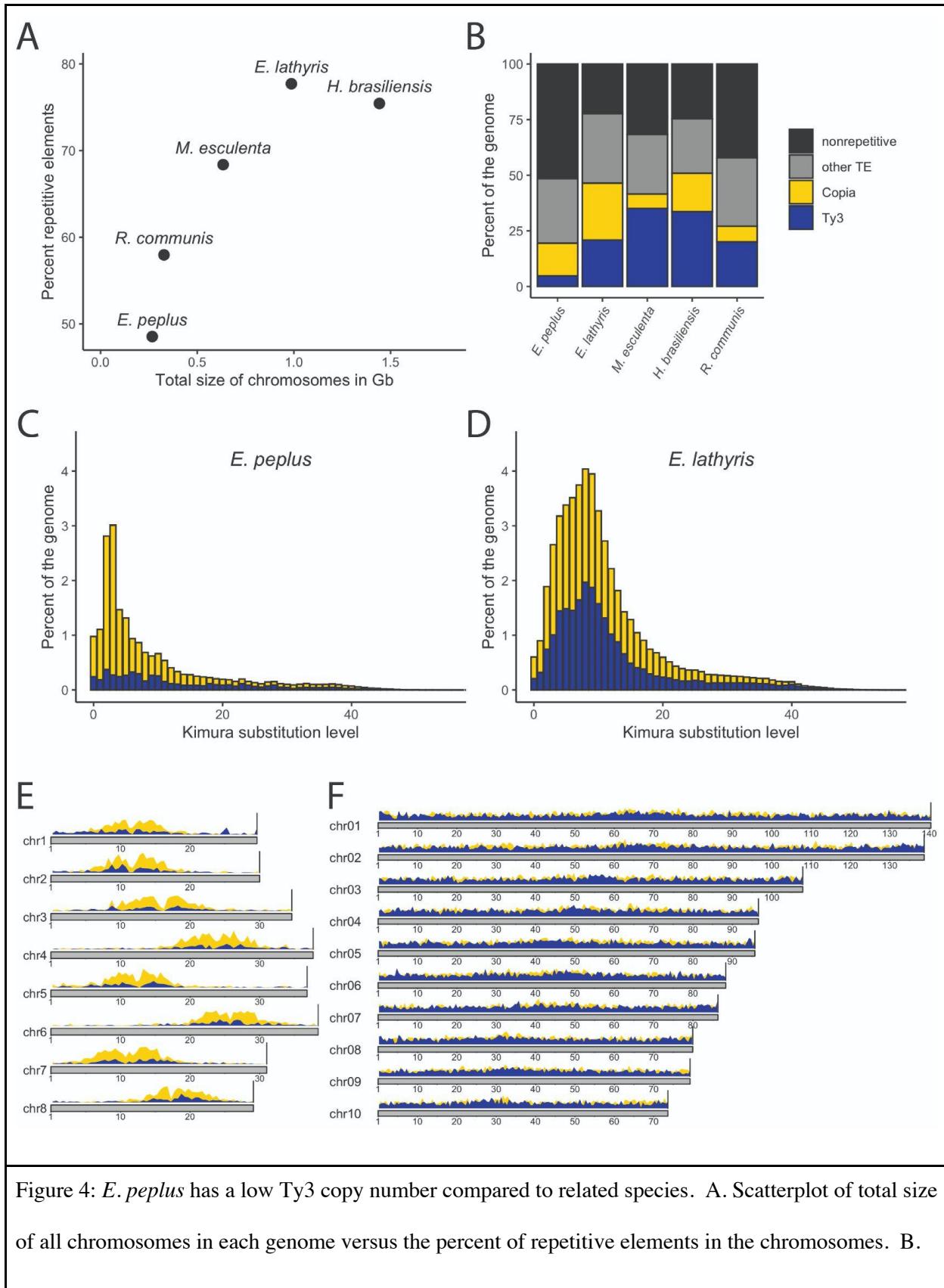
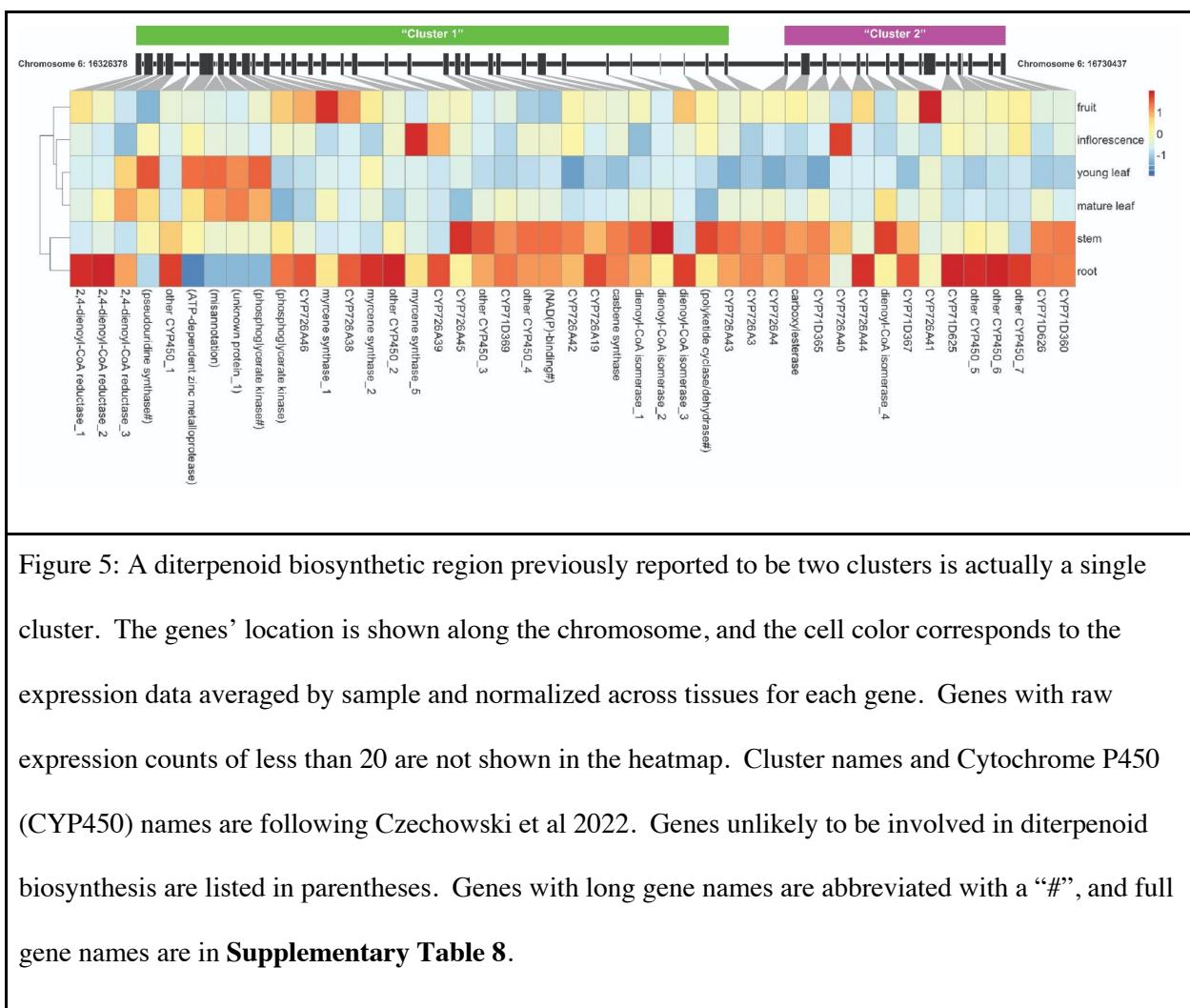


Figure 4: *E. peplus* has a low Ty3 copy number compared to related species. A. Scatterplot of total size of all chromosomes in each genome versus the percent of repetitive elements in the chromosomes. B.

Percentages of all chromosomes masked for Ty3, Copia, and all other TEs. C. Stacked Kimura distance plot for *E. peplus* showing Ty3 (dark blue) and Copia (yellow). D. Stacked Kimura distance plot for *E. lathyris* showing Ty3 (dark blue) and Copia (yellow). E. KaryoPlotR density plot of Ty3 (dark blue) and Copia (yellow) across *E. peplus* chromosomes; y-axis bar to right of each plot is 0.7. F. Coverage plot of Ty3 (dark blue) and Copia (yellow) across *E. lathyris* chromosomes; y-axis bar to right of each plot is 0.7.


250

251

252 *Diterpenoid biosynthetic gene candidates previously thought to be localized to two clusters actually*
253 *constitute a single cluster*

254

255 Elucidating the biosynthetic pathway of ingenol mebutate and other diterpenoids of medical relevance is a
256 research priority in *Euphorbia*(*Bergman et al. 2019; Ricigliano et al. 2020; Forestier et al. 2021*).
257 Ingenol mebutate has a 5/7/7/3 carbon ring system. In the first step of the proposed pathway for ingenol
258 mebutate biosynthesis, casbene synthase cyclizes geranylgeranyl diphosphate and removes its phosphate
259 groups, producing casbene, which contains the 3-carbon ring(*Luo et al. 2016*). Then multiple
260 Cytochrome P450 (CYP450) enzymes add three hydroxyl groups to the molecule, and the
261 dehydrogenation of those hydroxyl groups by an alcohol dehydrogenase sets off a spontaneous
262 intramolecular aldol reaction that forms the 5-carbon ring and produces the intermediate Jolkinol C
263 (*Wong et al. 2018; Forestier et al. 2021*). The subsequent steps that convert Jolkinol C to ingenanes
264 including ingenol mebutate are not currently clear (**Supplementary Figure 7**). A recent publication
265 described two putative diterpenoid biosynthetic gene clusters in *E. peplus* based on a bacterial artificial
266 chromosome library(*Czechowski et al. 2022*). One cluster contained casbene synthase, casbene 5-oxidase
267 (CYP726A19) and an alcohol dehydrogenase, and the other contained casbene 5-oxidase (CYP726A4)
268 and casbene-9-oxidase (CYP71D365). Based on our genome assembly and annotation, these are actually
269 one contiguous biosynthetic gene cluster spanning ~0.6 Mb, containing most of the currently functionally
270 characterized members of the pathway (**Figure 5, Supplementary Table 8**). The only functionally
271 characterized putative ingenol mebutate biosynthetic gene that is not present in this cluster is the specific
272 alcohol dehydrogenase functionally characterized in *Luo et al 2016*; its top BLAST hit in our genome is
273 on another chromosome. However, given that in yeast, using an *E. lathyris* alcohol dehydrogenase versus
274 a *Jatropha curcas* alcohol dehydrogenase does not produce statistically different levels of Jolkinol
275 C(*Wong et al. 2018*), it is possible that a different enzyme could be used interchangeably in this pathway.
276

277

278

279 **Discussion**

280

281 This paper introduces a new high-quality nuclear genome assembly and annotation for *E. peplus*, and
282 examines the evolution of its karyotype, TE landscape, and diterpenoid biosynthesis. Based on the two
283 currently available *Euphorbia* genomes, chromosome fragmentation and fusion appear to drive
284 chromosome count variation in the genus. As more Euphorbiaceae and *Euphorbia* genomes are released,
285 especially those of species that diverged more recently in evolutionary time, we will get closer to
286 understanding the evolutionary history of this genus and why its karyotype varies so dramatically. It
287 would be interesting to investigate whether chromosome fragmentation events are adaptively neutral or
288 whether they have helped enable innovations such as the repeated evolution of carbon concentrating
289 mechanisms that have allowed *Euphorbia* species to occupy an extremely wide range of habitats(Horn et
290 al. 2014).

291

292 Our analysis shows that ~89% of the size difference between the *E. peplus* and *E. lathyris* genomes could
293 be due to differences in TE abundance, in agreement with other recent studies that have emphasized the
294 importance of TEs in genome size evolution(Dandan Wang et al. 2021; Akakpo et al. 2020). Differential
295 accumulation of Ty3 specifically has been shown to affect genome size in other species — for example,
296 in the Brassicaceae, Ty3 is linked to the increased genome size in *Arabis alpina* compared with
297 *Arabidopsis thaliana*(Willing et al. 2015). Moreover, studies in *Arabidopsis thaliana* show that Ty3
298 transposons were more frequently deleted than other classes of transposons across a panel of 216
299 *Arabidopsis thaliana* accessions(Stuart et al. 2016), suggesting genetic lability of the Ty3 family in
300 particular. Further research examining the role of CHH methylation in suppressing Ty3 propagation and
301 the propagation of other TEs may help explain why *E. peplus* has retained a relatively compact genome.
302 Toward that end, the extra NRPE1 paralog in *E. peplus* could be further investigated; the fact that Copia
303 TEs peaked only recently in *E. peplus* could be consistent with a recent pseudogenization event of a
304 previously functional NRPE1 homolog. It would also be interesting to investigate whether *E. peplus*'

305 mating system plays a role, as *E. peplus*' inflorescences self-fertilize whereas *E. lathyris* requires
306 pollinators. Mathematical modeling predicts a lower abundance of TEs in populations with more selfing
307 because selfing makes it more difficult for new TE copies to invade the genome and be transmitted at
308 non-Mendelian frequencies(Boutin et al. 2012); however, in empirical studies TE dynamics have been
309 shown to vary by species in ways that do not simply reflect their mating strategy(Agren et al. 2014;
310 Legrand et al. 2019).

311
312 In this paper we show that many of the putative biosynthetic pathway genes for important diterpenoids are
313 highly expressed in *E. peplus* stems and roots, which is where *Euphorbia* diterpenoids are generally
314 concentrated(Ernst et al. 2019). However, ingenol mebutate itself is most abundant in the stem latex, not
315 in the roots(Czechowski et al. 2022). Perhaps the biosynthesis of ingenol mebutate takes place across
316 multiple cell types, as with morphine biosynthesis in opium poppies where only the final steps occur in
317 laticifers (the cells that contain latex)(Onoyovwe et al. 2013). It is also interesting that so many of the
318 putative diterpenoid biosynthetic genes form a cohesive cluster. Plant biosynthetic gene clusters for
319 specialized metabolites have been found across multiple species(Nützmann et al. 2018; Polturak &
320 Osbourn 2021). A diterpenoid cluster in the Euphorbiaceae had previously been hypothesized and
321 detected by long-distance PCR(King et al. 2014); this paper corroborates those previous findings and
322 provides the greatest evidence to date of a diterpenoid biosynthetic cluster in this family. In addition to
323 functionally characterizing more candidate biosynthetic genes, future studies could examine whether the
324 tight clustering of putative diterpenoid biosynthetic genes easily enables the plant to regulate transcription
325 of that pathway, or whether the clustering enables the biosynthetic enzymes to form a metabolon, a
326 noncovalent interaction of sequential enzymes in a pathway in physical space that functions like an
327 “assembly line”(Nützmann et al. 2016).

328
329 In conclusion, our *E. peplus* genome assembly provides insights into the large variation in chromosome
330 number, variation in genome size, and unique chemistry of the Euphorbiaceae. This genome resource

331 will be useful for identifying candidate genes for further elucidation of diterpenoid biosynthesis in this
332 species, including the synthesis of ingenol mebutate and other compounds of clinical relevance.
333 Moreover, this assembly makes *E. peplus* an ideal complementary model system to *Euphorbia lathyris*
334 for studying latex development in the Euphorbiaceae. We are releasing our assembly with web-accessible
335 tools including a genome browser and interactive expression atlas. This assembly is especially important
336 for the study of the *Euphorbia* genus, given that it is one of the largest genera of flowering plants with
337 >2000 species are documented(Esser et al. 2009), and only one other chromosome-level genome has been
338 published. It is our goal to advance our understanding of the unique evolutionary and metabolic biology
339 of the Euphorbiaceae by releasing this high-quality genomic resource.

340

341

342 **Materials and methods**

343

344 **Plant materials and growth conditions**

345 *E. peplus* plants were obtained from the Cornell Botanical Gardens area: seeds set by the wild *E. peplus*
346 plants were collected. The taxonomic identity of *E. peplus* was verified by sequencing a diagnostic region
347 of the *matK* gene using the following primers (Forward: 5'-CCC CAT CCA TCT CGA AAA ATT GG-
348 3'; Reverse: 5'-ATA CGC GCA AAT TGG TCG AT-3'), and through morphological characterization.

349 The *matK* sequences obtained via Sanger sequencing (**Supplementary File 1**) were validated as

350 belonging to *E. peplus* using the NCBI blastn tool, using the nr database as query. For initial DNA and
351 RNA experiments, *E. peplus* seeds were cleaned using 10% trisodium phosphate solution and germinated
352 on filter paper in petri dishes, moistened with 1 ml of 200uM Gibberellic acid 3 to promote germination.

353 Organs for genome sequencing and RNA-seq were sampled from mature flowering stage plants. For
354 subsequent experiments including imaging, seeds were germinated without pretreatment in closed
355 Phytatrays (P5929,Sigma-Aldrich, Saint Louis, MO, U.S.A.) in Cornell soil mix(-Boodley & Sheldrake)
356 or LM 1-1-1 soil mix. Plants were then transplanted to 4-inch pots containing Cornell soil mix or LM 1-

357 1-1 soil mix and grown under long day conditions in 25 C day/16 C night conditions until flowering.
358 Seeds were collected by placing mature plants in 12x16 organza party favor bags (QIANHAILIZZ,
359 Amazon.com) and allowing them to dry for 3-4 days; plants were then composted and the contents of the
360 bags collected. Seeds were then separated from chaff by rolling bag contents on a sheet of paper (round
361 seeds are more mobile than chaff).

362

363 Organ harvesting, RNA extraction, Illumina RNA-seq library prep, and sequencing

364 To generate an expression atlas and annotate the *E. peplus* genome, three biological replicates of the
365 following organs were harvested from mature *E. peplus* plants: immature fruit, flowers, whole root, stem,
366 young leaves, and mature leaves. Organs were flash frozen in liquid nitrogen immediately after
367 harvesting, ground into a fine powder, and then processed for RNA extraction using a combined TRI
368 Reagent (Sigma-Aldrich, Saint Louis, MO, U.S.A.) and Monarch Total RNA Miniprep Kit (New England
369 Biolabs, Ipswich, MA, U.S.A.) protocol. One ml of TRI Reagent was added to approximately 50 mg of
370 ground tissue, the samples were vortexed for 30 seconds, and then 200 μ l of Chloroform was added. The
371 samples were vortexed 3 x 30 seconds, left to sit at room temperature (RT) for 5 minutes, centrifuged at
372 12,000 G for 15 minutes at 4 °C, and then the aqueous phase (the top layer) was transferred into a one-to-
373 one mix with 25 Phenol:24 Chloroform:1 Isoamyl Alcohol (77617, Sigma-Aldrich, Saint Louis, MO,
374 U.S.A.). The samples were vortexed for 30 seconds, and then centrifuged at 21,000 G for 10 minutes at 4
375 °C. The top layer was transferred directly onto gDNA removal columns provided by the NEB Monarch
376 Total RNA Miniprep Kit, and manufacturer guidelines were followed for Part 2 (RNA binding and
377 elution) of the Monarch prep kit. RNA quality and quantity were accessed using a DeNovix DS-11 FX+
378 spectrophotometer (DeNovix Inc., Wilmington, DE, U.S.A.).

379

380 To construct RNA-seq libraries for Illumina sequencing, mRNA was isolated from 1,000 ng of total RNA
381 using a NEBNext Poly(A) mRNA Isolation Module (E7490, New England Biolabs, Ipswich, MA, U.S.A.),
382 followed directly by library construction using a NEBNext Ultra Directional RNA Library Prep Kit for

383 Illumina (E7420). The libraries were barcoded with NEBNext Multiplex Oligos for Illumina Set 1
384 #E7335. The libraries were submitted to the Cornell Institute for Biotechnology Genomics Center, where
385 they were quantified using qRT-PCR, quality checked on a Bioanalyzer (Agilent, Santa Clara, CA,
386 U.S.A.), and pooled in equimolar ratios for 12-plex sequencing on a NextSeq 500 (Illumina, Hayward,
387 CA, U.S.A.) 2x150 paired-end run.

388

389 RNAseq read processing

390 In order to improve RNAseq data quality, raw RNAseq data was assessed for quality with
391 FastQC(Andrews & Others 2010). RNAseq data was trimmed with Trimmomatic using the parameters
392 SLIDINGWINDOW:5:20 MINLEN:90(Bolger et al. 2014). The RNAseq data was aligned to the genome
393 assembly using STAR using its basic 2-pass mapping mode and default parameters(Dobin et al. 2013).

394

395 DNA extraction and sequencing

396 In order to produce accurate long reads, plant tissue was ground in liquid nitrogen with a mortar and
397 pestle and transferred to 2mL microcentrifuge tubes. A cetyl trimethylammonium bromide (CTAB)
398 extraction method using chloroform:isoamyl alcohol 24:1, including treatment with Proteinase K and
399 RNase A, was used to extract the DNA(Fulton et al. 1995). DNA samples were sent to HudsonAlpha
400 Institute for Biotechnology for PacBio HiFi circular consensus sequencing (CCS), where they were
401 sheared with a Diagenode Megaruptor, size selected for 18kb fragments on the SageELF electrophoresis
402 system and sequenced on a PacBio Sequel-II sequencer. A total of 1.3 million filtered CCS reads were
403 generated, spanning 22.7 Gb or ~90x genome coverage (based on the GenomeScope kmer genome size
404 estimate of 252.2 Mb).

405

406 HiC protocol and sequencing

407 In order to generate proximity ligation data, genomic DNA for HiC sequencing was crosslinked,
408 fragmented, and purified from young leaf tissue from the same original plant as was used for DNA

409 sequencing, using the Phase Genomics HiC Plant Kit version 4.0 (CITE). Samples were sent to the
410 Cornell Biotechnology Resource Center Genomics Facility for 2x150 Paired End sequencing on an
411 Illumina NextSeq 500 instrument. A total of 48.4 Gb of data was generated. The quality control script
412 provided by Phase Genomics was used to assess the HiC data quality.

413

414 Genome size estimate

415 To generate a histogram of k-mers, Jellyfish version 2.3.0 was used to count all canonical (-C) 21-mers (-
416 m 21) from the PacBio HiFi reads using the command `jellyfish count`, and a histogram was output using
417 the command `jellyfish hist`(Marçais & Kingsford 2011). The histogram was fed into the online interface
418 of GenomeScope 2.0 to generate a genome size estimate(Ranallo-Benavidez et al. 2020). A 21-mer was
419 the kmer length recommended for use with the GenomeScope 2.0 program and was not adjusted because
420 we had high coverage and a low error rate.

421

422 Genome assembly

423 To generate an initial assembly, PacBio CCS Hifi reads were assembled using the *de novo* assembler
424 `hifiasm` using default parameters(Cheng et al. 2021). Then, in order to improve the genome using
425 proximity information, the HiC data was used to edit the `hifiasm` assembly using the Juicebox Assembly
426 Tools pipeline(Dudchenko et al.; Durand et al. 2016) with the following steps: (1) the HiC data was
427 aligned to the existing assembly using `juicer`, (2) the assembly was reordered based on the HiC data using
428 3D-DNA, and (3) the pseudochromosome boundaries and scaffold orientations were manually edited in
429 Juicebox according to the HiC contact map: regions with inversion errors with “bowtie” motifs were
430 flipped to create a continuous bright band of high contact frequency along the diagonal, and the
431 pseudochromosome boundaries were edited to conform to very clear visually apparent boundaries.
432 BUSCO using the OrthoDB v10 embryophyta dataset was used to assess genome quality (Manni et al.
433 2021; Kriventseva et al. 2019). A ~10Mb pseudochromosome containing a large number of putative
434 centromeric repeats and chloroplastic sequences and no BUSCO gene content was assigned a “debris”

435 label (scaffold 1242). The 8 chromosomes were much larger than all other scaffolds and were visually
436 clear in the HiC contact map; these were designated as the chromosomal assembly.

437

438 Genome completeness estimate

439 In order to assess the completeness of the chromosomal assembly and rule out the possibility of an
440 important quantity of nuclear genome sequence in the remaining scaffolds, we performed a Merqury
441 completeness analysis. First, we ran the included Merqury script best_k.sh to find the best kmer size,
442 which was k=19. Then, in order to generate kmer counts from our PacBio CCS data, we ran meryl v1.3
443 using the command: meryl count k=19 PacBio.fastq.gz output pacbio.meryl. We then ran the
444 completeness analysis using Merqury v1.3 using the pacbio.meryl file and default parameters.

445

446 Repeat assessment of non-chromosomal sequence

447 In order to further confirm that the non-chromosomal sequence did not include chromosomal repeats that
448 were excluded from the chromosomal assembly, we ran the Extensive de novo TE Annotator (EDTA) on
449 the data using the parameter “--anno 1” and all default parameters otherwise(Ou et al. 2019).

450

451 Raw Hi-C alignment to non-chromosomal and chromosomal sequence

452 In order to further confirm that the non-chromosomal sequence did not contain high nuclear DNA
453 content, the raw Hi-C data was aligned to the chromosomal and the non-chromosomal scaffold separately
454 using STAR version 2.7.5a (Dobin et al. 2013). Separate indices were created for the chromosomal
455 scaffolds and the non-chromosomal scaffolds using ‘mode --genomeGenerate’ with default parameters,
456 then STAR was run using parameters ‘--twopassMode Basic --limitOutSJcollapsed 5000000 --
457 limitSjdbInsertNsj 2000000’.

458

459 Genome annotation

460 A repeat library was made using RepeatModeler with option -LTRStruct(Flynn et al. 2020). Then reads
461 were softmasked using RepeatMasker with option -nolow(SMIT A. F. A 2004) (**Supplementary Table**
462 **9**). BRAKER2 version 2.1.6 was run twice, first with protein hints using the OrthoDB v10 plant database
463 as evidence, and then with RNAseq data aligned using STAR version 2.7.5a with ‘--twopassMode Basic’
464 and default parameters(Brůna et al. 2021; Hoff et al. 2019; Brůna et al. 2020; Buchfink et al. 2015; Iwata
465 & Gotoh 2012). The outputs from the two BRAKER runs were combined using TSEBRA(Gabriel et al.
466 2021). BUSCO using the OrthoDB v10 embryophyta dataset was used to assess annotation quality
467 (Manni et al. 2021; Kriventseva et al. 2019).

468

469 In order to get human-readable gene names, AHRD version 3.3.3 was run on the putative protein
470 sequences using default parameters(Boecker). In order to generate GO terms, InterProScan version 5.55-
471 88.0 was run on the putative protein sequences with the options -f XML --goterms --pathways --iprlookup
472 -t p(Jones et al. 2014). The putative protein sequences were also aligned to the UniRef90 database using
473 Diamond(Buchfink et al. 2021). The XML outputs from InterProScan and Diamond were then fed into
474 BLAST2GO using the options -properties annotation.prop -useobo go.obo -loadblast blastresults.xml -
475 loadips50 ipsout.xml -mapping -annotation -statistics all, which generated GO terms(Götz et al. 2008).

476

477 In order to find centromeric repeats, Tandem Repeats Finder was run using the parameters “2 7 7 80 10
478 50 2000 -h” and the most abundant repeat was assumed to be a partial centromeric repeat. The sequence
479 of the partial centromeric repeat is included in supplementary information (**Supplementary File 2**).

480

481 False “annotations” that were annotated by BRAKER from the centromeric repeats near the center of
482 chromosome 4 were manually removed from the dataset by performing a BLAST of the repeat sequence
483 against the amino acid sequences of the annotation, then using seqtk to remove the sequences that came
484 up as BLAST hits. These 221 removed “annotations” did not have BLAST2GO GO terms, and AHRD

485 either marked them as “Unknown protein” or they were missing from the dataset. A full list of the
486 removed sequences is included in supplementary information (**Supplementary File 3**).
487

488 Genome visualization

489 In order to visualize the distribution of features across the length of the chromosomes, KaryoPloteR was
490 used in R; gff files containing the locations of TEs, centromeric repeats, and gene models were converted
491 to densities using the gffToGRanges() function(Gel & Serra 2017). The HiC contact map was visualized
492 in the Juicebox desktop application version 1.11.08 at the default resolution(Durand et al. 2016).
493

494 Other genome assemblies used for comparative genomics

495 The Wang et al *Euphorbia lathyris* genome assembly and annotation was accessed through
496 figshare(Mingcheng Wang et al. 2021): https://figshare.com/articles/dataset/High-quality_genome_assembly_of_the_biodiesel_plant_Euphorbia_lathyris/14909913/1 The Liu et al *Hevea
497 brasiliensis* (rubber tree) assembly and annotation was accessed through NCBI(Liu et al. 2020):
498 https://www.ncbi.nlm.nih.gov/assembly/GCA_010458925.1/ The Xu et al wild *Ricinus communis*
500 genome was accessed through oilplantDB(Wei Xu et al. 2021):
501 http://oilplants.iflora.cn/Download/castor_download.html The Bredeson et al *Manihot esculenta* v8.1
502 genome was accessed through Phytozome: https://phytozome-next.jgi.doe.gov/info/Mesculenta_v8_1
503

504 Macrosynteny analysis

505 In order to make a multi-genome graphical comparison of synteny, we ran the default version 0.9.3
506 GENESPACE pipeline, which uses MCScanX and OrthoFinder to get orthogroups within syntenic
507 regions and then projects the position of every orthogroup in the dataset against a single genome(Lovell et
508 al.; Emms & Kelly 2019; Wang et al. 2012).
509

510 Multi-species TE analysis

511 In order to produce comparable transposable element data across different Euphorbiaceae species'
512 genomes, we selected only the chromosomes for each species and modeled repeats using an identical
513 pipeline. For each species, a repeat library was made using RepeatModeler with option -LTRStruct(Flynn
514 et al. 2020). Then reads were softmasked using RepeatMasker with default options(SMIT A. F. A 2004)
515 (**Supplementary Tables 10-14**). The TETools script calcDivergenceFromAlign.pl was used to generate
516 the Kimura matrix for each species, then the results of that pipeline were visualized in R using
517 ggplot2(Wickham 2016; Ripley 2001).

518

519 Identifying orthologous genes of interest

520 In order to produce orthologous groups, we ran OrthoFinder version 2.5.1 using the defaults, including
521 Diamond as the sequence search program, on the protein files from *E. peplus* and the other publicly
522 retrieved Euphorbiaceae genome assemblies(Emms & Kelly 2019; Buchfink et al. 2021). The
523 OrthoFinder species tree was visualized using FigTree v1.4.4. We retrieved the sequences of genes of
524 interest from NCBI and TAIR and ran blastp or tblastn as appropriate with our *E. peplus* proteins file as
525 the query and the parameters -qcov_hsp_perc 80 -evalue 1e-10(Camacho et al. 2009). For our BLAST
526 search for NRPE1, we also ran a BLAST using NRPD1 because the two proteins share a functional
527 domain and we wanted to ensure that we did not misidentify NRPD1 paralogs as a NRPE1 duplication;
528 our NRPE1 paralogs were not a BLAST hit for NRPD1 as a subject. The NRPE1s were aligned using
529 MAFFT v7.453 using the parameters --maxiterate 1000 --localpair and visualized in UniPro
530 UGENE(Katoh & Standley 2013; Okonechnikov et al. 2012). The FastTree NRPE1 phylogeny produced
531 by OrthoFinder was visualized using FigTree v1.4.4.

532

533 Differential gene expression

534 In order to evaluate differential gene expression between tissues, the results from the STAR alignment
535 were used with the htseq-count script from the HTSeq package to get raw read counts for each RNAseq
536 sample(Anders et al. 2014). Using the DESeq2 package in R, the data with summed counts less than 20

537 across samples was eliminated, then the DESeq default differential expression analysis was run(Love et
538 al. 2014). A variance stabilizing transformation was applied to the data for PCA visualization. After an
539 initial PCA visualization of all data, one degraded root sample with low read counts was removed and the
540 analysis was re-run (**Supplementary Figure 2, Supplementary Table 3**). Regularized log-scaled counts
541 of genes of interest were plotted using pheatmap (Kolde).

542

543 eFP Browser

544 In order to generate an interactive visualization of gene expression across different organs, we first
545 generated transcripts per million (TPM) data from our raw RNAseq reads. GTFTools with argument -l
546 was used to calculate gene length(Li 2018). TPM was then calculated manually in R by dividing the gene
547 length over 1000 to get the length in kb, then dividing the read counts by that number to get reads per
548 kilobase (RPK), then using the prop.table() function to calculate the value of each RPK value as a
549 proportion of the total sum of all RPK values then multiplying by 1,000,000 to get transcripts per million
550 (TPM). A drawing of a *E. peplus* plant including different organs was created in Adobe Illustrator.
551 These data were databased to the Bio-Analytic Resource for Plant Biology (BAR) website as a novel
552 electronic Fluorescent Pictograph (eFP) browser (modified based on code from Winter et al. 2007) where
553 each gene's TPM can be visualized in each of the six sampled *E. peplus* organs(Winter et al. 2007;
554 Sullivan et al. 2019). The resource is publicly available at https://bar.utoronto.ca/efp_euphorbia/cgi-bin/efpWeb.cgi

556

557 JBrowse

558 In order to make a publicly accessible visualization of the genome annotation, we implemented a genome
559 web browser in JBrowse version 1.16.11(Buels et al. 2016). The website was certified through Let's
560 Encrypt(Aas et al. 2019). The resource is publicly available at
561 <https://euphorbgenomes.biohpc.cornell.edu/>.

562

563 Imaging

564 Overview plant images were taken with an iPhone 10R. Images of latex dripping were taken with a
565 Canon EOS 80D. Dissecting microscopy images were taken with a Leica M205 FCA stereo microscope
566 with a DMC6200 camera.

567

568

569 Data availability statement

570

571 All sequence data and the completed genome are available through NCBI PRJNA837952 “Euphorbia
572 peplus Genome sequencing and assembly”. All scripts used in the analysis are available on a public
573 Github repository: <https://github.com/ariellerjohnson/Euphorbia-peplus-genome-project> A plant grown
574 from a seed of the sequenced plant was deposited as a herbarium voucher in the L. H. Bailey Hortorium
575 Herbarium at Cornell University, collection number Ashley Bao AB001. A JBrowse instance of the
576 genome assembly and annotation is publicly available at <https://euphorbgenomes.biohpc.cornell.edu/>. An
577 eFP Browser instance showing organ-specific gene expression levels is available at
578 https://bar.utoronto.ca/efp_euphorbia/cgi-bin/efpWeb.cgi

579

580

581 Acknowledgements

582

583 We would like to thank Qi Sun of the Cornell University Institute of Biotechnology BioHPC for his
584 generous help with JBrowse and with the BioHPC Docker system. We would like to acknowledge the
585 staff of the Weill Hall growth chambers and the Purple Greenhouse at Cornell for their important
586 assistance with watering and pest maintenance. We would like to thank Peter Fraissinet of the L.H.
587 Bailey Hortorium Herbarium for his generous assistance with the herbarium voucher preparation. We
588 would also like to thank the members of the Frank Lab for helpful comments on this manuscript, as well

589 as Alexandra Bennett of the Moghe Lab for helping with the foundational metabolomic and germplasm
590 sampling work on this project. This work was supported by a Cornell Institute of Biotechnology Seed
591 Grant to G.M. and M.H.F., National Science Foundation Integrative Organismal Systems (NSF IOS)
592 award 1942437 to M.H.F., and Frank lab and Moghe lab startup funds from the College of Agriculture
593 and Life Sciences at Cornell University.

594

595

596 **References**

597

598 Aas J et al. 2019. Let's Encrypt: An Automated Certificate Authority to Encrypt the Entire Web. In:
599 Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security.CCS '19
600 Association for Computing Machinery: New York, NY, USA pp. 2473–2487.

601 Agren JÅ et al. 2014. Mating system shifts and transposable element evolution in the plant genus
602 *Capsella*. *BMC Genomics*. 15:602.

603 Akakpo R, Carpentier M-C, Ie Hsing Y, Panaud O. 2020. The impact of transposable elements on the
604 structure, evolution and function of the rice genome. *New Phytol*. 226:44–49.

605 Anders S, Pyl PT, Huber W. 2014. HTSeq—a Python framework to work with high-throughput
606 sequencing data. *Bioinformatics*. 31:166–169.

607 Andrews S, Others. 2010. FastQC: a quality control tool for high throughput sequence data.

608 Anest A et al. 2021. Evolving the structure: climatic and developmental constraints on the evolution of
609 plant architecture. A case study in *Euphorbia*. *New Phytol*. 231:1278–1295.

610 Asenbaum J et al. 2021. Comparative Pollination Ecology of Five European *Euphorbia* Species.

611 International Journal of Plant Sciences. 182:763–777. doi: 10.1086/715759.

612 Bergman ME, Davis B, Phillips MA. 2019. Medically Useful Plant Terpenoids: Biosynthesis,
613 Occurrence, and Mechanism of Action. *Molecules*. 24. doi: 10.3390/molecules24213961.

614 Boecker F. AHRD: Automatically Annotate Proteins with Human Readable Descriptions and Gene
615 Ontology Terms Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-
616 Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von.
617 <https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/handle/20.500.11811/9344/6314.pdf?sequence=1&isAllowed=y> (Accessed
619 August 15, 2022).

620 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
621 *Bioinformatics*. 30:2114–2120.

622 Boodley JW, Sheldrake R. Cornell peat-lite mixes for commercial plant growing.
623 <https://ecommons.cornell.edu/bitstream/handle/1813/39084/1972%20Info%20Bulletin%2043.pdf?sequence=2&isAllowed=y> (Accessed August 15, 2022).

625 Boutin TS, Le Rouzic A, Capy P. 2012. How does selfing affect the dynamics of selfish transposable
626 elements? *Mob. DNA*. 3:5.

627 Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. 2021. BRAKER2: automatic eukaryotic
628 genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. *NAR Genom
629 Bioinform.* 3:lqaa108.

630 Brůna T, Lomsadze A, Borodovsky M. 2020. GeneMark-EP : eukaryotic gene prediction with self-
631 training in the space of genes and proteins. *NAR Genomics and Bioinformatics*. 2. doi:
632 10.1093/nargab/lqaa026.

633 Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at tree-of-life scale using
634 DIAMOND. *Nat. Methods.* 18:366–368.

635 Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. *Nat.*
636 *Methods.* 12:59–60.

637 Buels R et al. 2016. JBrowse: a dynamic web platform for genome visualization and analysis. *Genome*
638 *Biol.* 17:66.

639 Camacho C et al. 2009. BLAST+: architecture and applications. *BMC Bioinformatics.* 10:421.

640 Castelblanque L et al. 2016. Novel insights into the organization of laticifer cells: a cell comprising a
641 unified whole system. *Plant Physiol.* 172:1032–1044.

642 Castelblanque L et al. 2021. Opposing roles of plant laticifer cells in the resistance to insect herbivores
643 and fungal pathogens. *Plant Communications.* 2:100112. doi: 10.1016/j.xplc.2020.100112.

644 Castelblanque L, Balaguer B, Marti C, Orozco M, Vera P. 2018. LOL2 and LOL5 loci control latex
645 production by laticifer cells in *Euphorbia lathyris*. *New Phytol.* 219:1467–1479.

646 Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using
647 phased assembly graphs with hifiasm. *Nat. Methods.* 18:170–175.

648 Czechowski T et al. 2022. Gene discovery and virus-induced gene silencing reveal branched pathways to
649 major classes of bioactive diterpenoids in *Euphorbia peplus*. *Proc. Natl. Acad. Sci. U. S. A.*
650 119:e2203890119.

651 Dobin A et al. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics.* 29:15–21.

652 Dudchenko O et al. The Juicebox Assembly Tools module facilitates *de novo* assembly of mammalian
653 genomes with chromosome-length scaffolds for under \$1000. doi: 10.1101/254797.

654 Durand NC et al. 2016. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited
655 Zoom. *Cell Syst.* 3:99–101.

656 Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics.
657 *Genome Biol.* 20:238.

658 Ernst M et al. 2019. Assessing Specialized Metabolite Diversity in the Cosmopolitan Plant Genus
659 *Euphorbia* L. *Front. Plant Sci.* 10:846.

660 Esser H-J, Berry PE, Riina R. 2009. EuphORBia: a global inventory of the spurges. *Blumea -*
661 *Biodiversity, Evolution and Biogeography of Plants.* 54:11–12.

662 Fasihi, Zarre, Azani, Salmaki. Karyotype Analysis and New Chromosome Numbers of Some Species of
663 *Euphorbia* L. (Euphorbiaceae) in Iran. *Iran. J. Bot.* https://ijb.areeo.ac.ir/article_106637.html?lang=en.

664 Flynn JM et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element
665 families. *Proc. Natl. Acad. Sci. U. S. A.* 117:9451–9457.

666 Forestier ECF et al. 2021. Developing a *Nicotiana benthamiana* transgenic platform for high-value
667 diterpene production and candidate gene evaluation. *Plant Biotechnol. J.* 19:1614–1623.

668 Fulton TM, Chunwongse J, Tanksley SD. 1995. Microprep protocol for extraction of DNA from tomato
669 and other herbaceous plants. *Plant Mol. Biol. Rep.* 13:207–209.

670 Gabriel L, Hoff KJ, Brůna T, Borodovsky M, Stanke M. 2021. TSEBRA: transcript selector for
671 BRAKER. *BMC Bioinformatics.* 22:566.

672 Gel B, Serra E. 2017. karyoplotR: an R/Bioconductor package to plot customizable genomes displaying
673 arbitrary data. *Bioinformatics.* 33:3088–3090.

674 Götz S et al. 2008. High-throughput functional annotation and data mining with the Blast2GO suite.

675 Nucleic Acids Res. 36:3420–3435.

676 Hans AS. 1973. Chromosomal conspectus of the Euphorbiaceae. Taxon. 22:591–636.

677 Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. 2019. Whole-Genome Annotation with BRAKER. In:

678 Gene Prediction: Methods and Protocols. Kollmar, M, editor. Springer New York: New York, NY pp.

679 65–95.

680 Horn JW et al. 2014. Evolutionary bursts in *Euphorbia* (Euphorbiaceae) are linked with photosynthetic

681 pathway. Evolution. 68:3485–3504.

682 Iwata H, Gotoh O. 2012. Benchmarking spliced alignment programs including Spaln2, an extended

683 version of Spaln that incorporates additional species-specific features. Nucleic Acids Res. 40:e161.

684 Johnson AR, Moghe GD, Frank MH. 2021. Growing a glue factory: Open questions in laticifer

685 development. Curr. Opin. Plant Biol. 64:102096.

686 Jones P et al. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics.

687 30:1236–1240.

688 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in

689 performance and usability. Mol. Biol. Evol. 30:772–780.

690 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through

691 comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120.

692 King AJ, Brown GD, Gilday AD, Larson TR, Graham IA. 2014. Production of bioactive diterpenoids in

693 the euphorbiaceae depends on evolutionarily conserved gene clusters. Plant Cell. 26:3286–3298.

694 Kolde. Pheatmap: pretty heatmaps. R package version.

695 Kriventseva EV et al. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,

696 bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res.

697 47:D807–D811.

698 Lebwohl M et al. 2012. Ingenol mebutate gel for actinic keratosis. N. Engl. J. Med. 366:1010–1019.

699 Legrand S et al. 2019. Differential retention of transposable element-derived sequences in outcrossing

700 *Arabidopsis* genomes. Mob. DNA. 10:30.

701 Li H-D. 2018. GTFtools: a Python package for analyzing various modes of gene models. bioRxiv.

702 263517. doi: 10.1101/263517.

703 Liu J et al. 2020. The Chromosome-Based Rubber Tree Genome Provides New Insights into Spurge

704 Genome Evolution and Rubber Biosynthesis. Mol. Plant. 13:336–350.

705 Loureiro J, Rodriguez E, Dolezel J, Santos C. 2007. Two new nuclear isolation buffers for plant DNA

706 flow cytometry: a test with 37 species. Ann. Bot. 100:875–888.

707 Lovell JT et al. GENESPACE: syntenic pan-genome annotations for eukaryotes. doi:

708 10.1101/2022.03.09.483468.

709 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq

710 data with DESeq2. Genome Biol. 15:550.

711 Luo D et al. 2016. Oxidation and cyclization of casbene in the biosynthesis of *Euphorbia* factors from

712 mature seeds of *Euphorbia lathyris* L. Proc. Natl. Acad. Sci. U. S. A. 113:E5082–9.

713 Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: Novel and

714 Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of

715 Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 38:4647–4654.

716 Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of

717 k-mers. *Bioinformatics*. 27:764–770.

718 Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing
719 complexity. *Nat. Rev. Genet.* 15:394–408.

720 Michael TP. 2014. Plant genome size variation: bloating and purging DNA. *Briefings in Functional
721 Genomics*. 13:308–317. doi: 10.1093/bfgp/elu005.

722 Nützmann H-W, Huang A, Osbourn A. 2016. Plant metabolic clusters – from genetics to genomics. *New
723 Phytol.* 211:771–789.

724 Nützmann H-W, Scazzocchio C, Osbourn A. 2018. Metabolic Gene Clusters in Eukaryotes. *Annu. Rev.
725 Genet.* 52:159–183.

726 Okonechnikov K, Golosova O, Fursov M, UGENE team. 2012. Unipro UGENE: a unified bioinformatics
727 toolkit. *Bioinformatics*. 28:1166–1167.

728 Onoyovwe A et al. 2013. Morphine biosynthesis in opium poppy involves two cell types: sieve elements
729 and laticifers. *Plant Cell*. 25:4110–4122.

730 Ou S et al. 2019. Benchmarking transposable element annotation methods for creation of a streamlined,
731 comprehensive pipeline. *Genome Biol.* 20:275.

732 Pan H et al. 2022. Direct production of biodiesel from crude *Euphorbia lathyris* L. Oil catalyzed by
733 multifunctional mesoporous composite materials. *Fuel*. 309:122172.

734 Polturak G, Osbourn A. 2021. The emerging role of biosynthetic gene clusters in plant defense and plant
735 interactions. *PLoS Pathog.* 17:e1009698.

736 Ranallo-Benavidez TR, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and Smudgeplot for reference-
737 free profiling of polyploid genomes. *Nat. Commun.* 11:1432.

738 Ricigliano VA et al. 2020. Bioactive diterpenoid metabolism and cytotoxic activities of genetically
739 transformed *Euphorbia lathyris* roots. *Phytochemistry*. 179:112504.

740 Riina R et al. 2013. A worldwide molecular phylogeny and classification of the leafy spurge, *Euphorbia*
741 subgenus *Esula* (Euphorbiaceae). *Taxon*. 62:316–342.

742 Ripley BD. 2001. The R project in statistical computing. *MSOR Connections*. The newsletter of the
743 LTSN Maths. <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.6899&rep=rep1&type=pdf>.

744 Sasaki E, Kawakatsu T, Ecker JR, Nordborg M. 2019. Common alleles of CMT2 and NRPE1 are major
745 determinants of CHH methylation variation in *Arabidopsis thaliana*. *PLOS Genetics*. 15:e1008492. doi:
746 10.1371/journal.pgen.1008492.

747 SMIT A. F. A. 2004. Repeat-Masker Open-3.0. <http://www.repeatmasker.org>.
748 <https://ci.nii.ac.jp/naid/10029514778/> (Accessed May 11, 2022).

749 Stuart T et al. 2016. Population scale mapping of transposable element diversity reveals links to gene
750 regulation and epigenomic variation. *Elife*. 5. doi: 10.7554/eLife.20777.

751 Sullivan A et al. 2019. An ‘eFP-Seq Browser’ for visualizing and exploring RNA sequencing data. *Plant*
752 *J.* 100:641–654.

753 Trujillo JT, Seetharam AS, Hufford MB, Beilstein MA, Mosher RA. 2018. Evidence for a Unique DNA-
754 Dependent RNA Polymerase in Cereal Crops. *Mol. Biol. Evol.* 35:2454–2462.

755 Wang D et al. 2021. Which factors contribute most to genome size variation within angiosperms? *Ecol.*
756 *Evol.* 11:2660–2668.

757 Wang M, Gu Z, Fu Z, Jiang D. 2021. High-quality genome assembly of an important biodiesel plant,
758 *Euphorbia lathyris* L. *DNA Res.* 28. doi: 10.1093/dnares/dsab022.

759 Wang Y et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and
760 collinearity. *Nucleic Acids Res.* 40:e49.

761 Wei K et al. 2022. Rethinking the ‘gypsy’ retrotransposon: A roadmap for community-driven
762 reconsideration of problematic gene names. doi: 10.31219/osf.io/fma57.

763 Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer International Publishing.

764 Willing E-M et al. 2015. Genome expansion of *Arabis alpina* linked with retrotransposition and reduced
765 symmetric DNA methylation. *Nat Plants*. 1:14023.

766 Winter D et al. 2007. An ‘Electronic Fluorescent Pictograph’ Browser for Exploring and Analyzing
767 Large-Scale Biological Data Sets. *PLoS One*. 2:e718.

768 Wong J et al. 2018. High-titer production of lathyrane diterpenoids from sugar by engineered
769 *Saccharomyces cerevisiae*. *Metab. Eng.* 45:142–148.

770 Wurdack KJ, Hoffmann P, Chase MW. 2005. Molecular phylogenetic analysis of uniovulate
771 Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. *Am. J.*
772 *Bot.* 92:1397–1420.

773 Xu W et al. 2021. Genomic insights into the origin, domestication and genetic basis of agronomic traits of
774 castor bean. *Genome Biol.* 22:113.

775 Xu Y et al. 2021. Diterpenoids from the genus *Euphorbia*: Structure and biological activity (2013–2019).
776 *Phytochemistry*. 190:112846.

777 Yamashita S, Takahashi S. 2020. Molecular Mechanisms of Natural Rubber Biosynthesis. *Annu. Rev.*
778 *Biochem.* 89:821–851.

779 FigTree. <http://tree.bio.ed.ac.uk/software/figtree/> (Accessed September 6, 2022a).

780 *hic_qc: A (very) simple script to QC Hi-C data.* Github https://github.com/phasegenomics/hic_qc

781 (Accessed June 29, 2022b).

782 Phytozome v13. https://phytozome-next.jgi.doe.gov/info/Mesculenta_v8_1 (Accessed October 12,

783 2022c).