

1 ***Candida albicans* promotes neutrophil extracellular trap formation and leukotoxic
2 hypercitrullination via the peptide toxin candidalysin**

3
4 Lucas Unger^{1,2*}, Emelie Backman^{1,2}, Borko Amulic³, Fernando M. Ponce-Garcia³, Sujan Yellagunda^{1,2},
5 Renate Krüger⁴, Horst von Bernuth^{4,5,6,7}, Johan Bylund⁸, Bernhard Hube^{9,10}, Julian R. Naglik¹¹,
6 Constantin F. Urban^{1,2,*}

7
8 **Affiliations**

9 ¹Department of Clinical Microbiology and ²Umeå Centre for Microbial Research (UCMR), Umeå
10 University, Umeå, Sweden

11 ³School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK

12 ⁴Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité –
13 Universitätsmedizin Berlin, Berlin, Germany

14 ⁵Labor Berlin Labor Berlin – Charité Vivantes GmbH, Department of Immunology, Berlin, Germany

15 ⁶Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany

16 ⁷Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-
17 Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative
18 Therapies (BCRT), Berlin, Germany

19 ⁸Department of Oral Microbiology & Immunology, Institute of Odontology, Sahlgrenska academy at
20 University of Gothenburg, Gothenburg, Sweden

21 ⁹Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research
22 and Infection Biology - Hans-Knoell-Institute, Jena, Germany

23 ¹⁰Friedrich Schiller University, Jena, Germany

24 ¹¹Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's
25 College London, London, United Kingdom

26
27 **Corresponding authors***

28 Correspondence to Constantin F. Urban (constantin.urban@umu.se) and Lucas Unger
29 (l.unger@aston.ac.uk).

31 **Funding**

32 CFU acknowledges funding from the Swedish research council VR-MH 2018-05909 and VR-MH 2020-
33 01764, from the Kempe Foundation JCK-2033, U16 and from the SSAC Foundation SLS-935916. JRN is
34 supported by the Wellcome Trust (214229_Z_18_Z), National Institutes of Health (DE022550), and
35 the NIH Research at Guys and St. Thomas's NHS Foundation Trust and the King's College London
36 Biomedical Research Centre (IS-BRC-1215-20006). BH is supported by the German Research
37 Foundation (Deutsche Forschungsgemeinschaft, DFG) Priority Programme 2225 "Exit strategies of
38 intracellular pathogens" and within the Cluster of Excellence "Balance of the Microverse", under
39 Germany's Excellence Strategy – EXC 2051 – Project-ID 390713860. BJ is supported by the Swedish
40 Research Council (2019-01123), the Swedish Heart-Lung Foundation (20180218), King Gustaf V's 80-
41 year foundation, and grants from TUA Research Funding; The Sahlgrenska Academy at University of
42 Gothenburg / Region Västra Götaland, Sweden (TUAGBG-917531).

43

44 **Competing interests**

45 The authors declare no competing interests.

46

47 **Author contributions**

48 L.U., S.Y., and E.B. conducted experiments to characterize and quantify NET/NLS responses in human
49 neutrophils upon *C. albicans* infection and stimulation with synthetic candidalysin peptide.. R.K. and
50 H.v.B. supervised and gave permission to receive blood samples from CGD patients currently under
51 their clinical supervision. B.A. and FMPG performed experiment with CGD patient neutrophils to
52 show ROS involvement in clinical context and studied cell cycle activation (lamin A/C
53 phosphorylation). J.B. assisted in the discussion of calcium influx and ROS investigation.. L.U. and
54 C.F.U wrote the manuscript and reviewed and edited the text together with J.R.N., B.H. and J.B..
55 C.F.U., B.H. and J.R.N.supervised the project.

56

57 Abstract

58 The cytolytic peptide toxin candidalysin is secreted by the invasive, hyphal form of the human fungal
59 pathogen, *Candida albicans*. Candidalysin is essential for inducing host cell damage during mucosal
60 and systemic *C. albicans* infections, resulting in neutrophil recruitment. Neutrophil influx to *C.*
61 *albicans*-infected tissue is critical for limiting fungal growth and preventing the fungal dissemination.
62 Here, we demonstrate that candidalysin secreted by hyphae promotes the stimulation of neutrophil
63 extracellular traps (NETs), while synthetic candidalysin triggers a distinct mechanism for NET-like
64 structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin
65 activates NADPH oxidase and calcium influx, with both processes contributing to morphological
66 changes in neutrophils resulting in NLS formation. NLS are induced by leukotoxic hypercitrullination,
67 which is governed by protein arginine deiminase 4 activation via calcium influx and initiation of
68 intracellular signalling events. However, activation of signalling by candidalysin does not suffice to
69 trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C
70 phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET
71 release. Interestingly, exposure to candidalysin does not immediately restrict the capability of
72 neutrophils to produce reactive oxygen species (ROS), nor to phagocytose particles. Instead,
73 candidalysin triggers ROS production, calcium influx and subsequent activation of downstream
74 signalling that drive morphological alteration and the formation of NLS in a dose- and time-
75 dependent manner. Notably, candidalysin-triggered NLS demonstrate anti-*Candida* activity, which is
76 resistant to nuclease treatment and dependent on the deprivation of Zn²⁺. This study reveals that *C.*
77 *albicans* hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together
78 form a fibrous sticky network that entangles *C. albicans* hyphae and inhibits their growth.
79 Importantly, this explains discrepancies of previous studies demonstrating that neutrophil-derived
80 extracellular chromatin structures triggered by *C. albicans* can be both dependent and independent
81 of ROS. Our data also demonstrate that while candidalysin hampers neutrophil function, the toxin

82 also increases the capability of neutrophils to entangle hyphae and to restrict their growth, reflecting
83 the importance of human neutrophils in controlling the dissemination of *C. albicans*.

84

85 **Keywords:** *Candida albicans*, candidalysin, PAD4 citrullination, ROS, NETs, chronic granulomatous
86 disease, fungal immunology

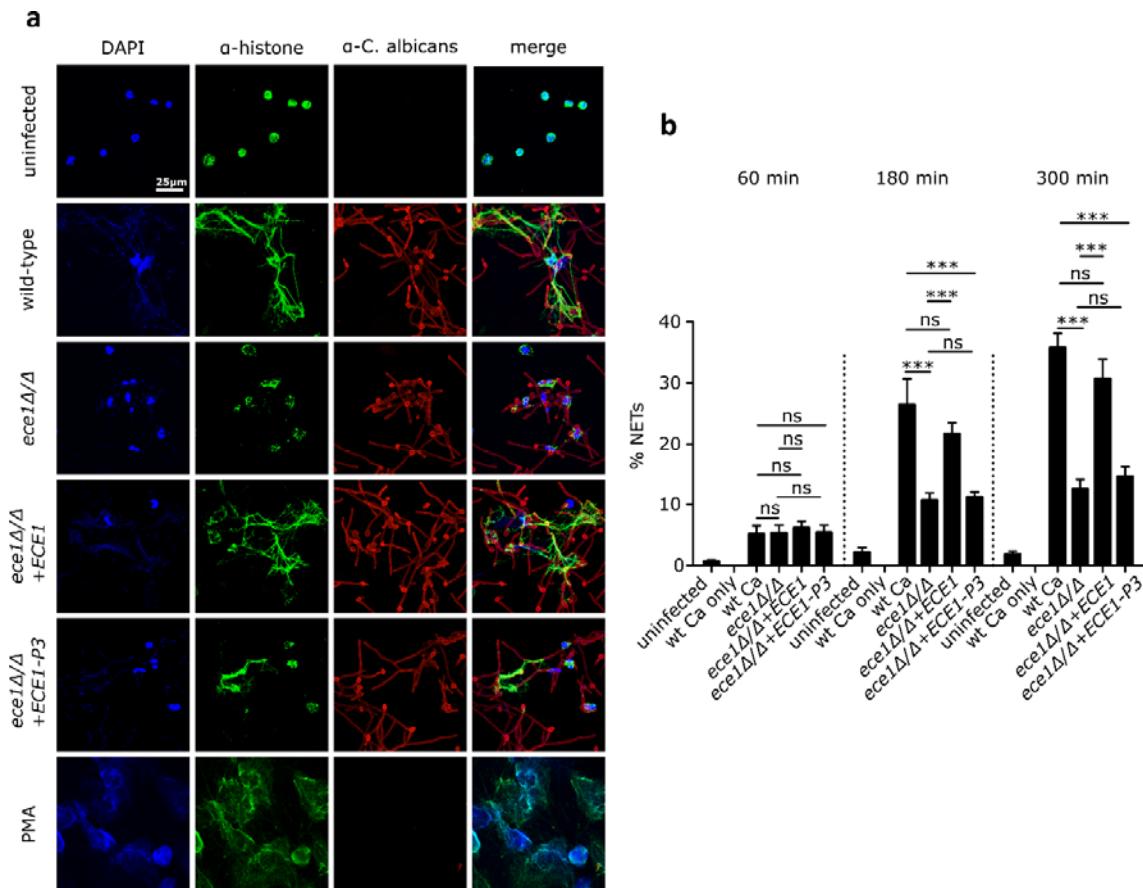
87

88 **Introduction**

89 Neutrophils are important innate immune cells that play a pivotal role in preventing fungal infections
90 ¹. In addition to engulfing and eradicating microbes by phagocytosis, extracellular mechanisms
91 involving the release of neutrophil extracellular traps (NETs) and granular vesicles have been
92 described ²⁻⁴. As pathogenic fungi can grow as a network of filamentous hyphae, phagocytic killing by
93 neutrophils is often insufficient, thus extracellular mechanisms, such as NET formation, are required
94 for efficient eradication. NETs have been reported to restrict fungal growth and to corroborate
95 inflammatory responses during mycoses ^{1,5,6}. Pathogenic fungi trigger NETs in an NADPH oxidase-
96 dependent manner involving activation of cyclin-dependent kinases 4 and 6 (CDK4/6) ⁷. Several
97 studies indicate that if NET release is not properly balanced, NETs may also have harmful effects on
98 the host, mainly due to their pro-inflammatory function ⁸. Notably, microbial toxins can trigger
99 leukotoxic hypercitrullination of histones in neutrophils resulting in similar extracellular structures,
100 termed NET-like structures (NLS) ^{9,10}. NLS are less fibrous and more compact than canonical NETs and
101 are triggered in an NADPH oxidase-independent fashion. Similar to NETs, NLS can induce pro-
102 inflammatory effects with potentially hazardous consequences for the host ¹⁰⁻¹².

103 The human fungal pathogen, *Candida albicans*, is a dimorphic yeast with the ability to
104 form invasive, filamentous hyphae ¹³. The yeast-hyphal transition, in combination with the
105 expression of hypha-associated factors, is critical for *C. albicans* virulence ^{14,15}. Invasive *C. albicans*
106 hyphae are controlled by human neutrophils, thereby preventing dissemination and exacerbation of
107 disease in otherwise healthy patients ¹⁶. A critical factor for the invasive and inflammatory potential
108 of *C. albicans* hyphae is the recently discovered peptide toxin candidalysin ^{17,18}. Candidalysin is
109 released from the polyprotein Ece1p via a sequential proteolytic cleavage by the proteases Kex2p
110 and Kex1p ¹⁹. The corresponding *ECE1* gene is exclusively expressed by the hyphal morphology of *C.*
111 *albicans* ²⁰ and belongs to the hyphal core response genes consisting of eight hyphal-associated
112 genes expressed under a variety of hyphal inducing conditions ²¹. *C. albicans* hyphae deficient in
113 candidalysin are unable to damage epithelial cells or activate key signalling mechanisms that result in

114 alarmin release and inflammatory responses and the recruitment of neutrophils²²⁻²⁴. Consequently,
115 neutrophil recruitment is severely impaired in models of mucosal and systemic candidiasis in
116 response to candidalysin-deficient mutant strains²⁵⁻²⁸. Thus, we investigated whether candidalysin
117 can directly act on neutrophils and whether the toxin shapes neutrophil responses, which in turn
118 may impact the outcome of invasive candidiasis.

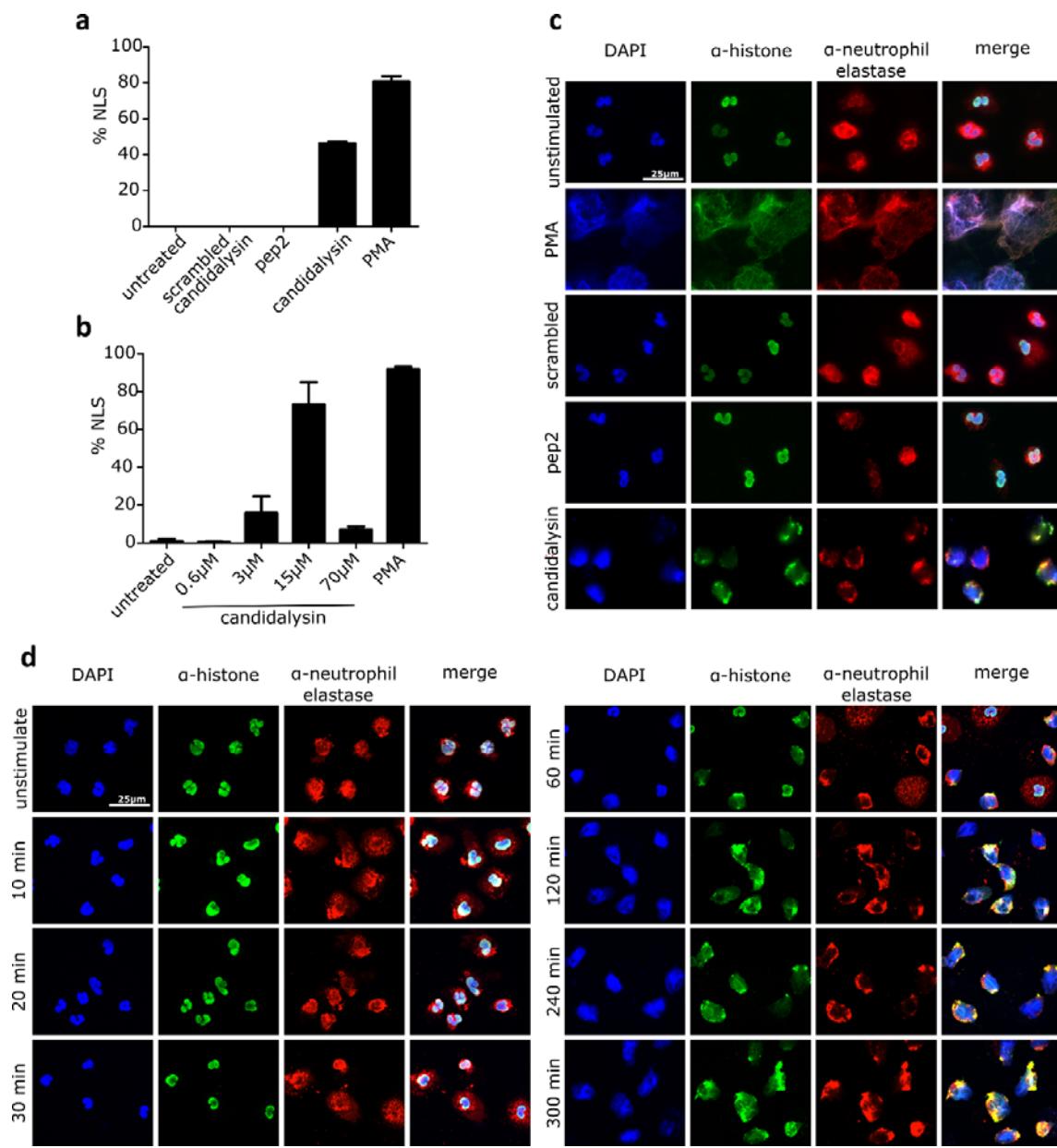

119 We found that candidalysin-expressing *C. albicans* strains induce more NETs than
120 candidalysin-deficient strains, indicating that candidalysin contributes to NET formation. Notably,
121 synthetic candidalysin induces leukotoxic hypercitrullination and the release of NLS. NLS were
122 dependent on NADPH oxidase-mediated reactive oxygen species (ROS) production and PAD4-
123 mediated histone citrullination, but candidalysin did not induce cell cycle activation as indicated by
124 lack of lamin A/C phosphorylation. Our data reveal that candidalysin is a critical virulence factor
125 shaping neutrophil responses, which are essential for antifungal immunity.

126

127 **Results**

128 **Candidalysin contributes to *C. albicans* induced NET formation**

129 Neutrophils release NETs as a defense mechanism in response to *C. albicans* infections, particularly
130 to control filamentous hyphae that are difficult to phagocytose^{2,5,29}. To investigate the impact of
131 candidalysin on the neutrophil immune response towards *C. albicans*, we infected neutrophils with
132 wild-type *C. albicans*, *ECE1*-deficient (*ece1ΔΔ*), and corresponding revertant (*ece1ΔΔ+ECE1*) strains,
133 and a strain only lacking the candidalysin-coding sequence (P3) within the *ECE1* gene (*ece1ΔΔ+ECE1-*
134 P3). After 4 h of infection, samples were prepared for indirect immunofluorescence microscopy to
135 visualize extracellular trap events using decondensed neutrophil chromatin (DNA and α-histone) as
136 marker (Fig. 1). Whereas wild-type and the revertant strain induced comparable amounts of NETs,
137 the *ECE1*- and candidalysin-deficient strains triggered reduced levels (Fig. 1a). Based on previously
138 published image-based quantitative analysis of NET formation^{30,31}, each DAPI-stained event
139 exceeding 100 μm² was considered a NET. The quantification revealed that both toxin-deleted
140 strains induced significantly less NETs compared to toxin-expressing strains, with ~60% decreased
141 levels after 3 and 5 h compared with the wild type (Fig. 1b). Notably, the scrutinized image-based
142 quantification excluded background noise potentially derived from cell debris as confirmed by
143 unstimulated control samples which were incubated in the same manner as stimulated samples (Fig.
144 1b). In conclusion, the data demonstrates that candidalysin contributes to NET formation triggered
145 by *C. albicans* hyphae.



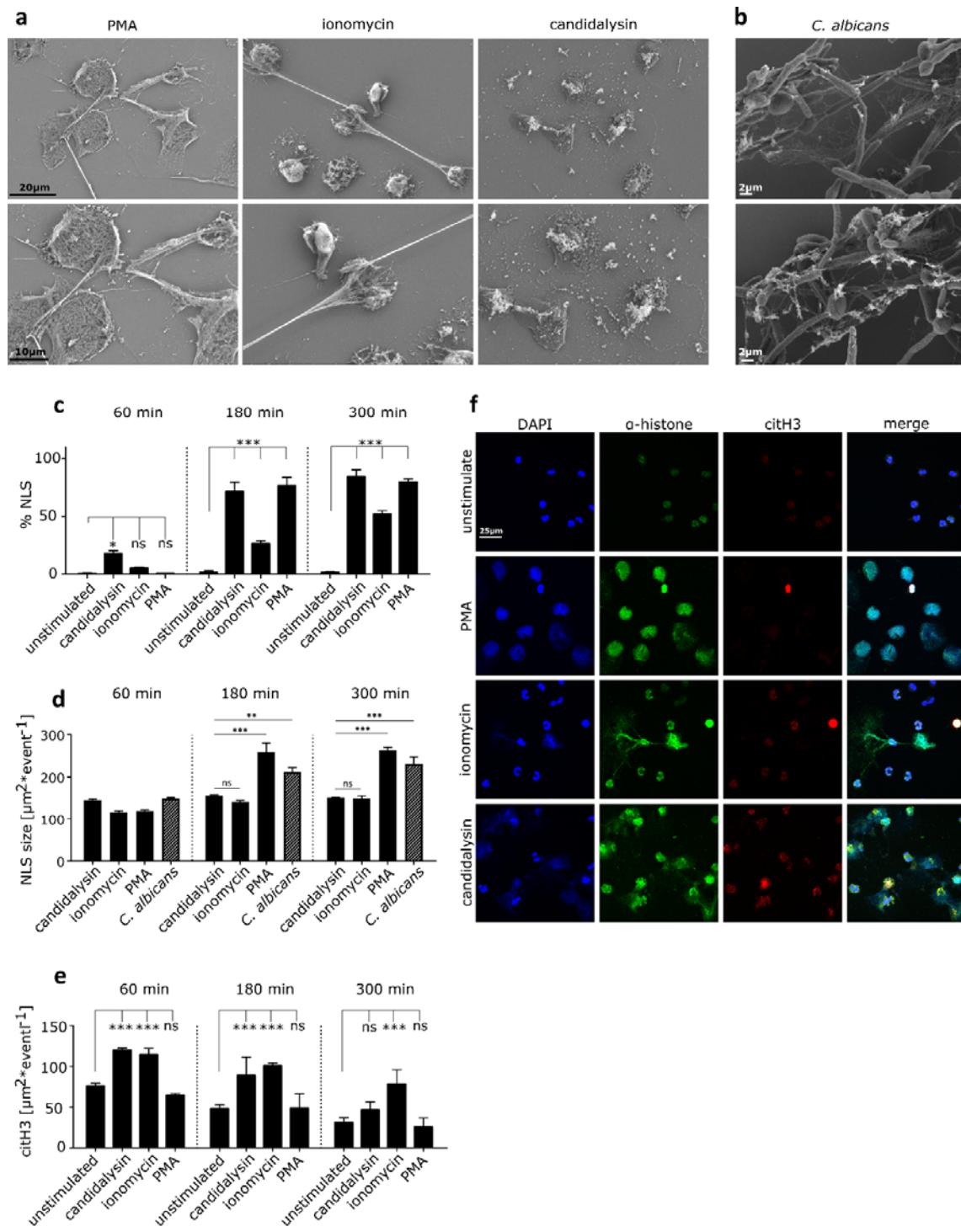
146
147 **Fig. 1. Candidalysin promotes NET formation.** (a) Representative microscopic images (60X) of indirect
148 immunofluorescence of human neutrophils 4 h after infection with wild-type and candidalysin deleted *C.*
149 *albicans* strains (*ece1Δ/Δ* and *ece1Δ/Δ+ECE1-P3*). Lack of Ece1p/candidalysin production led to reduced NET
150 formation as visualised by chromatin staining. Visual impression was corroborated with (b) quantitative image
151 analysis of a time series experiment using ImageJ (n = 4, mean ± SEM). Each DAPI-stained event exceeding
152 100 μm² was considered a NET. Statistical analysis conducted with two-way ANOVA with Bonferroni post-hoc
153 test. Microscopic images are not obtained from the same experiment conducted for quantification due to
154 different immunostaining procedures.
155

156 Synthetic candidalysin induces NET-like structures

157 As candidalysin-expressing *C. albicans* strains induced more NETs, we aimed to investigate the
158 potential of the toxin alone to stimulate neutrophils. Exposure of neutrophils to synthetic
159 candidalysin was sufficient to trigger morphological changes (chromatin decondensation) in 46.3 ±
160 0.8% of cells after 4 h compared to 80.7 ± 3.2% after exposure to PMA, a well-known inducer of NETs
161 (Fig. 2a). Neither scrambled candidalysin nor Ece1p peptide 2 (one of eight different Ece1p-derived
162 peptides) affected neutrophil morphology, confirming specificity to candidalysin. Notably, the
163 outspread structures in response to candidalysin were more compact, less fibrous and patchier
164 compared to canonical NETs released upon stimulation with PMA or *C. albicans* hyphae (compare Fig.

165 2d with c and Figure 1a wild type, respectively). Hence, we concluded that synthetic candidalysin
166 does not stimulate canonical NETs, but rather more compact DNA structures, resembling NLS that
167 may be the result of leukotoxic hypercitrullination^{12,32}. Moreover, candidalysin demonstrated a dose-
168 dependent effect with increased NLS formation from 3 μ M to 15 μ M. However, reduced NLS
169 formation was observed at 70 μ M (Fig. 2b), which can be explained by neutrophil cell death induced
170 by the toxin as determined by a DNA Sytox Green assay (Fig. S1a). The structures induced by
171 synthetic candidalysin were morphologically different from canonical NETs. However, the time
172 course of morphological changes occurring during exposure to candidalysin was similar to the
173 dynamics of morphological alterations during PMA-induced or *C. albicans* hypha-induced NET
174 formation (Fig. S1b and Fig. 1a). In both cases, nuclear decondensation commenced at ~60 min and
175 mixing of granular and nuclear components at ~120 min after stimulation (Fig. 2d and Fig. S2). In
176 summary, synthetic candidalysin triggers morphologically distinct NLS in a time- and dose-dependent
177 manner, whereas candidalysin-producing *C. albicans* hyphae induce canonical NETs (Fig. 1a).

178
179 **Fig. 2. Synthetic candidalysin induces NLS in human neutrophils.** Candidalysin, but not scrambled candidalysin
180 or pep2, another Ece1p-derived peptide (all 15 μ M), induce (a) DNA decondensation in human neutrophils
181 after 4 h ($n = 4$) in a (b) dose-dependent manner ($n = 3$). NLS were quantified with the same criteria as previous
182 described for NETs. Data shown as mean \pm SEM. Confocal images (c) of immunostained cells display
183 morphological changes involving nuclear and granular proteins after 4 h compared to unstimulated cells, or
184 cells exposed to scrambled candidalysin and pep2. Time-dependent progression of morphological changes (d)
185 in neutrophils induced by candidalysin over the course of 5 h (all images are with 60X magnification).


186
187 **Candidalysin-induced NET-like structures differ morphologically from NETs induced by various**
188 **stimuli**
189 To investigate candidalysin-triggered NLS further, we used scanning electron microscopy (SEM) that
190 allows a more detailed view of the neutrophil-derived structures (Error! Reference source not

191 **found.a).** To categorize the morphological alterations upon candidalysin stimulation, we compared
192 the alterations with canonical ROS-dependent NETs triggered by PMA and NLS upon exposure to the
193 bacterial peptide toxin ionomycin. Ionomycin has been previously reported to induce NLS, also
194 referred to as leukotoxic hypercitrullination ^{12,32}. Both, PMA and ionomycin generated widespread
195 chromatin fibers in the extracellular space (Fig. 3a, left and middle panels). In contrast, fibrous, web-
196 like structures were absent in candidalysin-treated neutrophil samples (Fig. 3a right panels, for 7 h
197 treatment see Fig. S2). In addition, *C. albicans* hyphae induced NETs with observable fibers and
198 threads similar to PMA- and ionomycin-stimulated neutrophils (Fig. 3b).

199 Image-based quantification of NLS events (candidalysin and ionomycin) and NETs (PMA and *C.*
200 *albicans* hyphae) revealed that although candidalysin-triggered NLS appeared slightly earlier (after
201 1 h $17.9 \pm 2.6\%$ NLS), time dependency and quantity was similar compared to PMA-induced NETs
202 (Fig. 3c). Ionomycin-induced changes, however, were more delayed with $26.5 \pm 2.6\%$ and $51.9 \pm 3.1\%$
203 NLS after 3 h and 5 h, respectively, and led to overall fewer NLS events. This was confirmed by an
204 area-based analysis of the events (Fig. 3d). The average area per event exceeding $100 \mu\text{m}^2$ was
205 determined using the images from the DNA stain. The frequency of extended threads was low for
206 ionomycin-treated samples and the average area was significantly smaller for ionomycin-induced NLS
207 (149.3 ± 6.21 after 3 h) than it was for PMA-induced (262 ± 8.43 after 3 h) and *C. albicans* hyphae-
208 triggered NETs (231.34 ± 16.68 after 3 h). Lacking any recognizable fibers and threads candidalysin-
209 triggered NLS displayed a lower average area per event (151.53 ± 0.62 after 3 h) comparable to
210 ionomycin-triggered NLS (Fig. 3d).

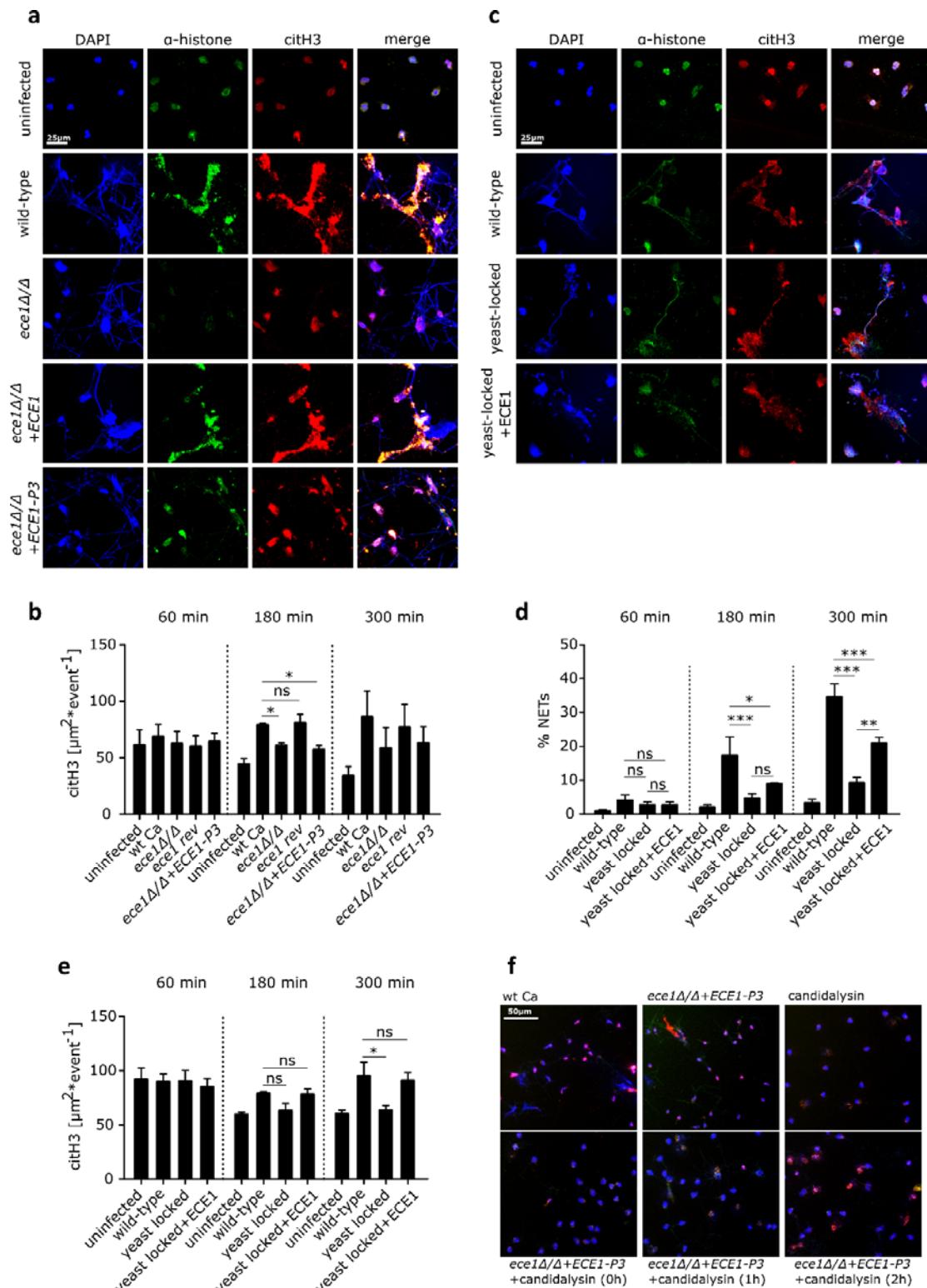
211 The post-translational protein modification (PTM) of histones, in which arginine residues are
212 enzymatically converted into peptidylcitrulline, was analysed since PTM is a driver of chromatin
213 decondensation ¹². The process of the PTM is called deamination or citrullination. Calcium influx
214 activates protein arginine deiminase 4 (PAD4) and the enzyme subsequently facilitates histone
215 citrullination (citH), which contributes to chromatin decondensation and eventually chromatin
216 release. PAD4 activation has been reported for ionomycin ³² and nicotine ³¹. Thus, we assessed

217 whether candidalysin induced histone citrullination in neutrophils. Indeed, like ionomycin,
218 candidalysin increased histone citrullination in neutrophils above basal levels (**Error! Reference**
219 **source not found.e**). Image quantification of histone citrullination using an antibody directed against
220 citrullinated histone H3 (citH3), demonstrated that citH3 in candidalysin-stimulated neutrophils
221 appeared more distributed than ionomycin-stimulated neutrophils, which remained concentrated in
222 compact nuclei (Fig. 3f). Notably, we observed ~1.5-fold increased citH3 levels with ionomycin and
223 candidalysin compared to unstimulated neutrophils and no increased citH3 levels with PMA (Fig. 3e).
224 While citrullination levels decreased over time, ionomycin sustained high levels over 5 h. These data
225 strongly suggest that candidalysin induces histone hypercitrullination in neutrophils, which likely
226 promotes chromatin de-condensation.

227

228 **Fig. 3. Morphological alterations triggered by candidalysin.** (a) Scanning electron microscope images of
229 candidalysin and ionomycin stimulated neutrophils after 3 h show differences in structural alterations
230 compared to PMA-induced canonical NETs and (b) NETs induced by *C. albicans* hyphae (magnification (a) 3.00
231 KX on top, 5.00 KX at bottom and (b) 4.00 KX top, 3.00 KX bottom). Microscopic images were analysed by (c)
232 amount of NLS formation (DNA decondensation), (d) average NLS size (only DNA-stained area > 100 μm^2
233 considered) and (e) average histone citrullination level per event ($n = 3$, *C. albicans* $n = 4$). Data shown as mean
234 \pm SEM and statistical analysis conducted with two-way ANOVA with Bonferroni post-hoc test. (f) Representative

235 immunofluorescence images 3 h after neutrophil stimulation support visually the quantitative data (60X
236 magnification).


237

238 **Candidalysin-expressing strains induce more NETs and higher citrullination levels than**
239 **candidalysin-deficient strains**

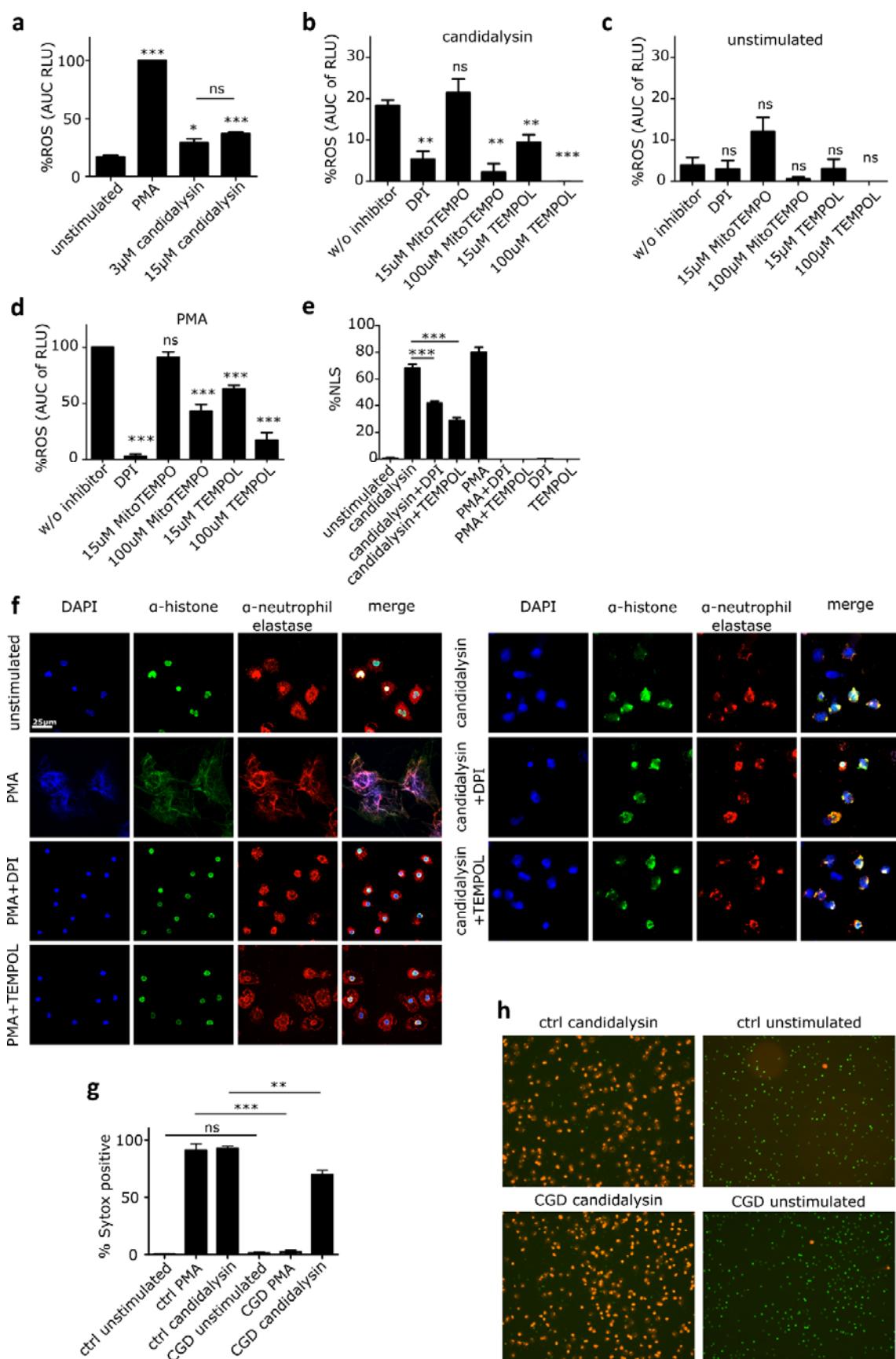
240 Since candidalysin contributed to the ability of *C. albicans* to induce NETs (Fig. 1) and synthetic
241 candidalysin strongly stimulated histone citrullination, we investigated citrullination events when
242 neutrophils were exposed to candidalysin-producing and candidalysin-deficient *C. albicans* strains. To
243 assess this, neutrophils were stained with citrullination-specific antibodies (**Error! Reference source**
244 **not found.**). Candidalysin-producing strains induced far more NETs than candidalysin-deficient strains
245 (Fig. 4a). Image-based quantification corroborated the visual analysis and confirmed that
246 candidalysin-producing *C. albicans* hyphae promote histone citrullination in neutrophils (Fig. 4b). As
247 synthetic candidalysin only induces NLS, we concluded that candidalysin augments NET release when
248 the toxin is secreted by *C. albicans* hyphae. Thus, we propose that the combination of candidalysin
249 activity and fungal recognition via pattern recognition receptors ³³ is required to fully trigger NET
250 formation when neutrophils are exposed to *C. albicans* *in vivo*.

251 To test this proposition, neutrophils were infected with a yeast-locked (*cph1ΔΔ/efg1ΔΔ*) strain and
252 an *ECE1*-overexpressing strain of the same genetic background (*cph1ΔΔ/efg1ΔΔ-ECE1*) (Fig. 4c). As
253 expected, the yeast-locked mutant induced significantly fewer NETs than wild-type *C. albicans*
254 hyphae. Notably, the *ECE1*-overexpressing yeast-locked mutant, was partly restored in its ability to
255 induce NET release, with 2-fold increased levels after 5 h compared to the yeast-locked mutant and
256 over 60% of WT strain (Fig. 4d). This confirmed that candidalysin promotes *C. albicans*-triggered NET
257 release. This was further confirmed by elevated citrullination patterns in presence of candidalysin
258 (Fig. 4e). However, *ECE1*-overexpressing yeast-locked mutants were delayed in their ability to induce
259 NET release and citrullination, which only emerged after 5 h of stimulation. Finally, we aimed to
260 determine whether synthetic candidalysin could rescue NET formation when neutrophils were
261 infected with a candidalysin-deficient strain (Fig. 4f). Interestingly, the addition of synthetic

262 candidalysin resulted in a shift to NLS, irrespective of the time of addition, 1 h or 2 h post infection.
 263 The data suggest that candidalysin is the key driver of histone citrullination in neutrophils infected
 264 with *C. albicans*.

265

266 **Fig. 4. Candidalysin enhances NET formation through histone citrullination.** (a) Representative immunofluorescence images (60X) of neutrophils infected with *C. albicans* wild-type and mutant strains after 3 h
267 identified candidalysin as a major inducer of histone citrullination in human neutrophils with (b) significant
268 decreased levels of citH3 in candidalysin-deficient strains ($n = 4$, mean \pm SEM, statistical analysis with one-way
269 ANOVA with Dunnett's multiple comparison post-hoc test). (c, d) Although the yeast-locked mutant stimulated
270 fewer NETs, *ECE1* overexpression partially recovered the potency (demonstrated by 40X microscopic images
271 and image-based analysis) along with (e) increased histone citrullination. (d, e) Data of 4 donors shown as
272 mean \pm SEM and statistically analyses with one-way ANOVA with Bonferroni post-hoc test. (f) External addition
273 of synthetic candidalysin resulted in a shift to NLS structures rather than NETs as visualized by microscopy after
274 5 h incubation (20X).

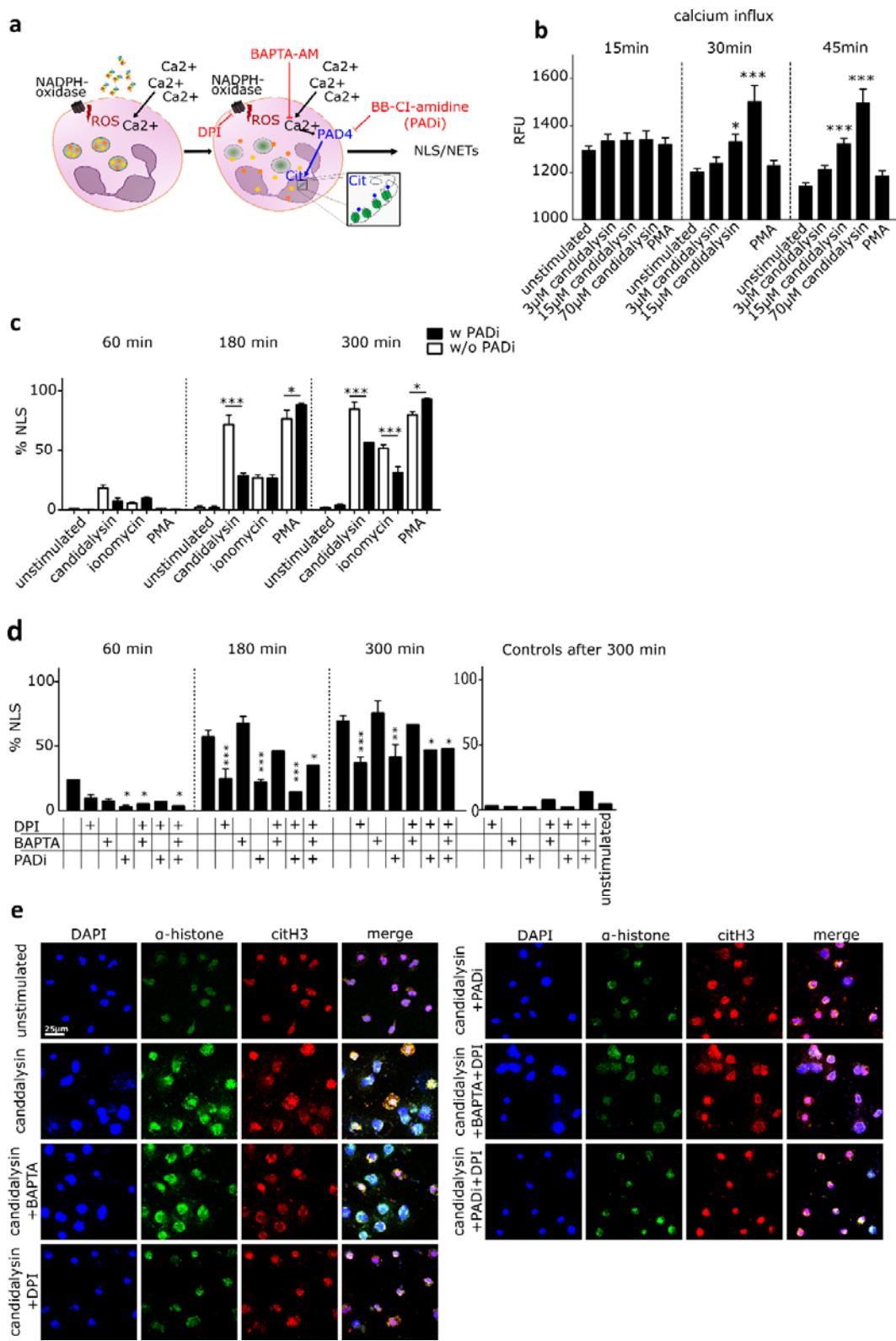

275

276

277 **NADPH oxidase enhances candidalysin-triggered NLS formation**

278 As other peptide toxins can induce NETs independent of NADPH oxidase³⁴, we investigated the role
279 for ROS in the induction of NLS by candidalysin. Treatment of neutrophils with synthetic candidalysin
280 induced low levels of ROS, but significantly more than untreated neutrophils (Fig. 5a). In the strain
281 context we observed lower ROS levels in the *ece1Δ/Δ* strain compared to its revertant strain,
282 however, not to a significant extend (Fig. S3). Next, we assessed whether NADPH oxidase dependent
283 ROS or mitochondrial ROS was induced by candidalysin using a luminol-based assay. Notably,
284 candidalysin-induced ROS production was blocked by diphenyliodonium (DPI), a specific NADPH
285 oxidase inhibitor, and by Tempol, a ROS scavenger. ROS inhibition was also observed with
286 MitoTempo, a scavenger targeting mitochondrial ROS (Fig. 5b). The inhibitors alone had no
287 significant effect on neutrophils (Fig. 5c). A similar pattern was observed in response to PMA (Fig.
288 5d). PMA activates protein kinase C (PKC) and the subsequent assembly and activation of NADPH
289 oxidase³⁵. Thus, we concluded that candidalysin predominantly triggers NADPH oxidase to produce
290 ROS but also moderate amounts of mitochondrial ROS. Next, we analysed how inhibition of ROS
291 influenced the release of NLS triggered by candidalysin. Both, DPI and Tempol blocked candidalysin-
292 induced ROS by 40-50%, while PMA-induced ROS production was totally blocked by DPI and Tempol
293 (Fig. 5e). The data were confirmed by immunofluorescence where neutrophils were stained for DNA,
294 histone, and elastase (Fig. 5f). Importantly, using NADPH oxidase-deficient neutrophils isolated from
295 chronic granulomatous disease (CGD) patients ($n = 3$), we observed a reduction of candidalysin
296 triggered NLS (30-40%) that was comparable to the effect of the ROS inhibitors (Fig. 5g and 5h).

297 Together, the data confirm that candidalysin induces NLS in part in a NADPH oxidase-dependent
298 fashion.


300 **Fig. 5. NLS induction by candidalysin is partially ROS-dependent.** ROS response was measured in neutrophils
301 upon stimulation with PMA and candidalysin (a) without and (b-d) in presence of a general ROS scavenger
302 (TEMPOL), NADPH oxidase inhibitor (DPI) and a mitochondrial ROS inhibitor (MitoTEMPO) with a luminol-based
303 assay. Data is presented as normalized area under the curve over 4 h treatment time (n = 3). The impact of
304 stimulus-triggered ROS response on NLS formation was studied after 4.5 h incubation time with
305 immunofluorescence microscopy with (e) image-based quantification (n = 3) and (f) a selection of
306 representative images (60X magnification). (g) Sytox-positive cells after 4 h treatment. Candidalysin and PMA
307 showed significantly decreased effects on neutrophils from CGD patients, as compared to neutrophils from
308 healthy donors (n = 3). NLS responses were quantified using microscopic images of parallel staining using cell-
309 impermeable Sytox Orange DNA dye (1 μ M) to detect NETs/NLS and cell-permeable Sytox Green DNA dye (250
310 nM) to determine the total number of cells. (h) Representative images of the analysis are shown. Data shown
311 as mean \pm SEM and statistical analysis performed with One-way ANOVA with Bonferroni post-hoc test.

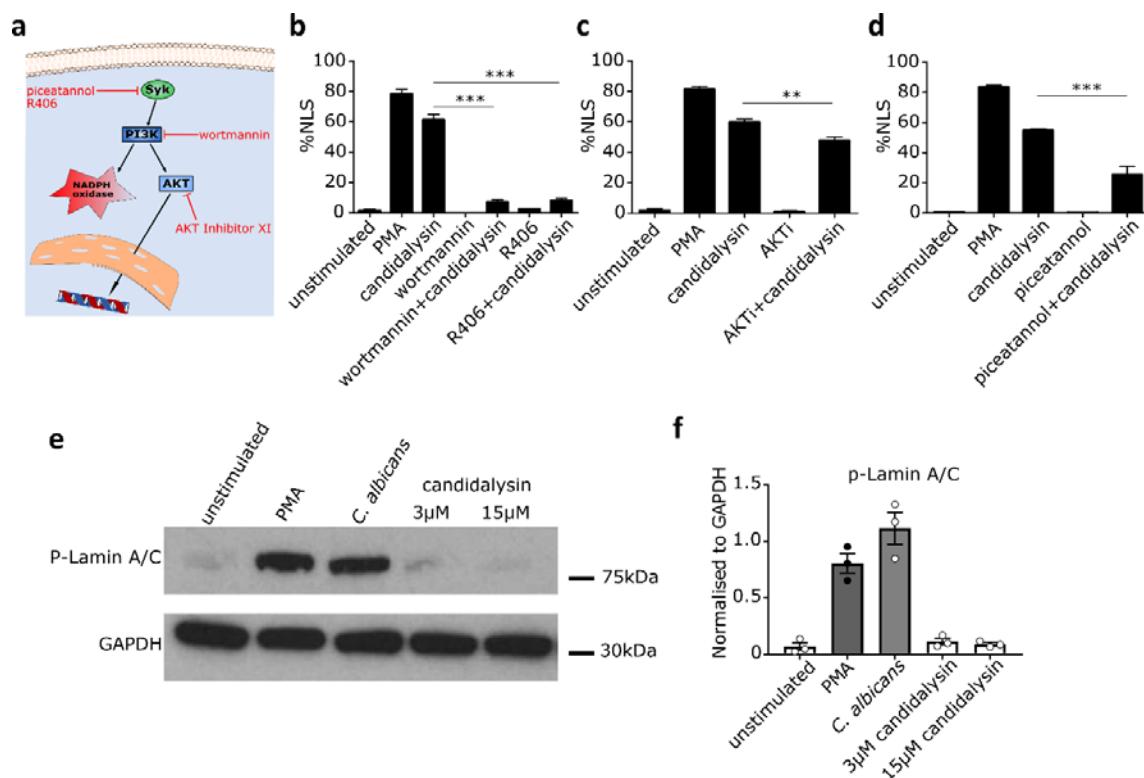
312

313 **Calcium influx and PAD4 activity contribute to candidalysin-triggered NLS**

314 Cytoplasmic calcium (Ca^{2+}) influx is required to stimulate PAD4¹¹, which is responsible for histone
315 citrullination and chromatin de-condensation during ionomycin-induced hypercitrullination. Since
316 candidalysin also led to increased citrullination of histones in neutrophils, we aimed to elucidate the
317 role of Ca^{2+} during candidalysin neutrophil interaction (Fig. 6). Candidalysin had a clear dose-
318 dependent effect on intracellular Ca^{2+} influx (Fig. 6b). In contrast to Ca^{2+} spikes characteristic for
319 chemokine receptor signalling, candidalysin-induced Ca^{2+} influx was not instantaneous (Fig. 6b and
320 Suppl. Fig. S4) but started around 30 min post stimulation (Fig. 6b). This indicates that candidalysin
321 most probably causes Ca^{2+} influx via pore formation and not via direct receptor stimulation. The PAD
322 inhibitor Cl-amidine (PADI) reduced candidalysin-induced NLS formation by 70% after 180 min and by
323 50 % after 300 min, as quantified by microscopic analysis (Fig. 6c). Also, the cell-permeable calcium-
324 chelator BAPTA-AM blocked candidalysin-induced NLS after 60 min (Fig. 6d). At later time points,
325 BAPTA-AM led to an increase in NLS, probably due to toxic effects as indicated by higher background
326 levels of NLS formation in non-stimulated, BAPTA-AM-treated neutrophils (Fig. 6d). We thus
327 hypothesized that it may be possible to fully block candidalysin-induced NLS using a combination of
328 PADI and the NADPH oxidase inhibitor DPI, since this combination would target both the ROS-
329 dependent and -independent axis (Fig. 6a). At 180 min, the combination of PADI and DPI abrogated
330 candidalysin-induced NLS slightly more than the individual inhibitors alone but not beyond the
331 individual inhibitor effect at 300 min. Nevertheless, quantitative image analysis confirmed that PADI

332 and DPI together blocked most NLS formation. For this purpose, neutrophils were stained with
333 antibodies directed against histone H1, citrullinated histone H3, and with DNA dye DAPI. The analysis
334 revealed that the treatment with DPI and PAD4 reduced the amount of patchy areas representing NLS
335 after 300 min to almost background levels (Fig. 6e). Taken together, this suggests that candidalysin-
336 induced NLS formation depends in part on both, ROS and PAD4.

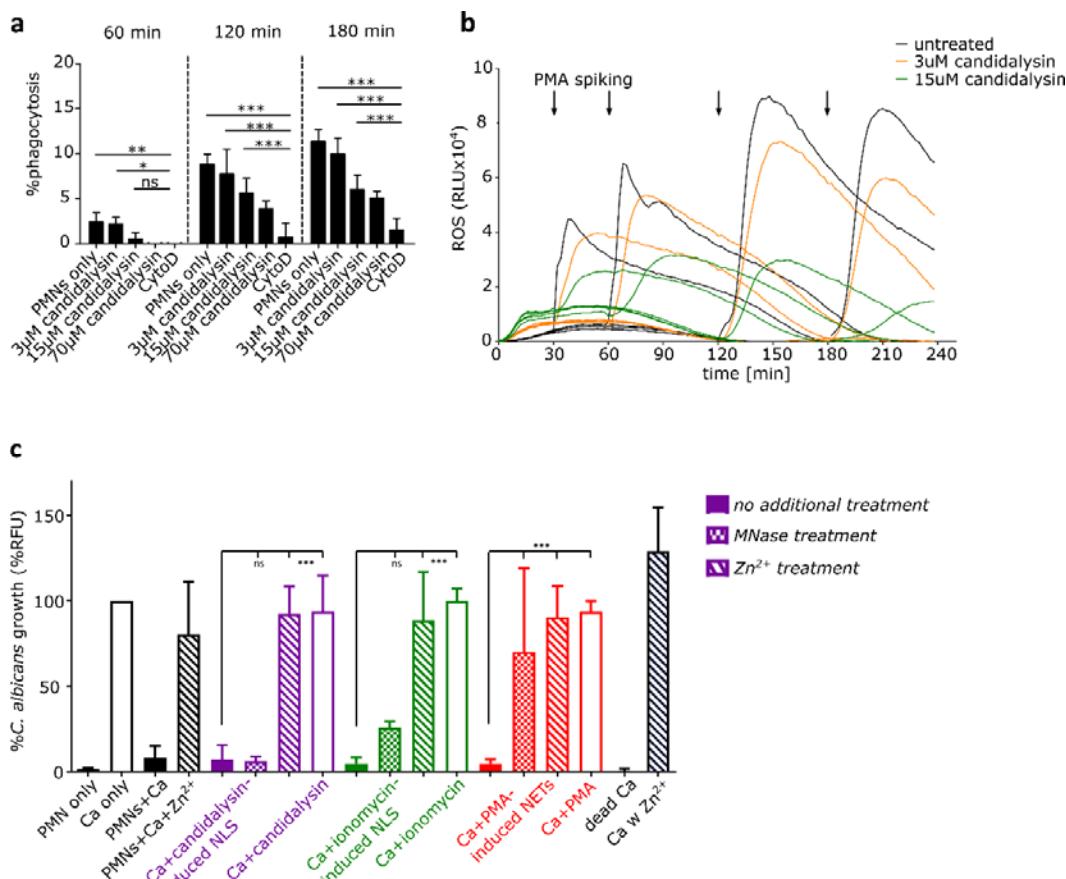
337


338 **Fig. 6. Candidalysin induces NLS via Ca^{2+} - and ROS-dependent pathways.** (a) Schematic image illustrating the
339 suggested mechanisms by which candidalysin induces NLS in neutrophils. Both downstream effects of ROS and
340 calcium-dependent PAD4 activation lead to chromatin decondensation. Inhibitors targeting NADPH oxidase
341 (DPI) and PAD activation (BB-Cl-amidine, PADi) as well as calcium chelation (BAPTA) show effects. (b) Dose- and

342 time-dependent calcium influx in neutrophils through candidalysin was measured with Fluo-8 AM (n = 4) and
343 image-based quantification verified PAD-dependency of NLS formation via ionomycin and candidalysin (n = 3,
344 data taken from same experiment as *Error! Reference source not found.*). (c-e) Combination treatment (DPI
345 and PADI) blocking NADPH oxidase-dependent ROS and PAD-activation significantly reduced NLS formation
346 through candidalysin (n = 3-4). Data shown as mean ± SEM and all statistical analysis performed with two-way
347 ANOVA with Bonferroni post-hoc test. (e) Representative microscopic images (60X) demonstrate decreased
348 morphological alterations through ROS and PAD blockage.
349
350

351 **Candidalysin initiates signalling pathways involved in NET formation**

352 Our data show that candidalysin induced Ca^{2+} influx in neutrophils, which in turn activates PAD4^{11,36}
353 leading to chromatin decondensation. Next, we investigated whether additional signalling pathways
354 were involved in candidalysin induction of NLS (Fig. 7a). Phosphoinositide-3 kinase (PI3K) is a
355 signalling molecule upstream of protein kinase B (Akt). PI3K and Akt are known molecular switches
356 for neutrophil apoptosis or NET formation³⁷. The spleen tyrosine kinase (SYK), an important
357 signalling protein involved in fungal detection, acts upstream of PI3K³⁸. In agreement, SYK signalling
358 contributes to the regulation of NET formation triggered by *C. albicans*³⁹. As *C. albicans* hyphae bind
359 to pathogen recognition receptors (PRRs), activate neutrophils and ultimately promote the release of
360 NETs, we aimed to elucidate whether candidalysin alone leads to the activation of similar pathways
361 in neutrophils. Hence, we stimulated neutrophils with candidalysin in the presence or absence of
362 specific inhibitors for SYK, PI3K, and Akt. Interestingly, SYK blockade with R406 and PI3K blockade
363 with wortmannin reduced NLS formation by candidalysin almost to background levels (Fig. 7b). The
364 inhibitor piceatannol, which blocks both SYK and PI3K, also blocked NLS formation (Fig. 7d). In
365 contrast, Akt blockade with AKT inhibitor XI only partially blocked candidalysin-induced NLS
366 formation (Fig. 7c). This was expected, since Akt signals towards a ROS-dependent mechanism in
367 neutrophils³⁷, which is not critical for NLS induction by candidalysin. In contrast, candidalysin
368 stimulation of neutrophils induces Ca^{2+} influx, which leads to PAD4 activation (Fig. 6c). Candidalysin
369 has been reported to induce inflammasome activation via NOD-like receptor family pyrin domain
370 containing 3 (NLRP3)¹⁸. However, NLRP3 activation seems to be dispensable for NLS induction (Fig.
371 S5). Cell cycle molecules are also activated in the latter stages of NET formation and a hallmark of cell


372 cycle induction is the phosphorylation of lamin A/C ⁷. However, unlike *C. albicans*, synthetic
373 candidalysin did not trigger the phosphorylation of lamin A/C (Fig. 7e, f). Thus, we conclude that
374 pathways involved in NET formation are triggered by candidalysin but these pathways cannot be fully
375 sustained, thus NLS are formed rather than NETs. It is likely that a combination of candidalysin
376 activity and hyphal recognition is required for sustained signalling, which will lead to complete
377 chromatin decondensation and expulsion of NET fibers. This notion is confirmed by lack of
378 downstream activation of the cell cycle proteins by synthetic candidalysin (Fig. 7c).

379
380 **Fig. 7. Candidalysin triggers signalling pathways involved in NET formation.** (a) Schematic image shows the
381 pathways involved in NET formation and inhibitors used to obtain mechanistic insights. (b-d) Blocking main
382 kinases involved in NET formation with 15 μ M R406 (SYK), 12.5 μ M piceatannol (SYK), 15 μ M wortmannin
383 (PI3K) and 2.5 μ M AKT inhibitor XI decreased NLS formation upon candidalysin stimulation in human
384 neutrophils from healthy volunteers analysed using image analysis (n = 3, mean \pm SEM, statistical analysed with
385 one-way ANOVA with Bonferroni post-hoc test). (e) Western blot and (f) quantitative analysis (n = 3) did not
386 show phospho-Lamin A/C activation by candidalysin.

387
388 **Neutrophils remain functional in the presence of candidalysin**
389 Next, we investigated whether neutrophils exposed to candidalysin retain essential antimicrobial
390 function, such as ROS production and phagocytosis. Although cellular death, as assessed using Sytox

391 Green cell-impermeable DNA dye, occurs in increasing rates in candidalysin-treated neutrophils in a
392 dose-dependent manner (Fig. S1a), neutrophils generally retained their functionality. Neutrophils
393 were able to phagocytose beads in the presence of candidalysin (Fig. 8a), which was confirmed by
394 time-lapse video (Movie S1), indicating that both Sytox-negative and Sytox-positive neutrophils
395 remained functional. Candidalysin-treated neutrophils were tested for their capacity to mount ROS
396 using PMA as a stimulant. Production of ROS was evident, even 1 or 2 h after candidalysin treatment
397 (Fig. 8b). Untreated neutrophils, which were allowed to rest for the times indicated between 30 min
398 and 3 h, showed increased ROS responses upon PMA stimulation (Fig. 8b). Notably, even after 2 h
399 treatment with 15 μ M candidalysin, neutrophils remained responsive, with ~40-50% of the ROS
400 generated by PMA-stimulated neutrophils in the absence of candidalysin. The data indicates that the
401 majority of neutrophils do not die upon exposure to 15 μ M candidalysin. Finally, ionomycin-treated
402 cells showed a minor ROS response and were subsequently unable to produce ROS in response to
403 PMA (Fig. S6).

404
405 **Fig. 8. Candidalysin does not abrogate neutrophil functionality and NLS suppress fungal growth.** (a) Despite
406 cytotoxic effect of candidalysin on neutrophils, the immune cells were still able to phagocytose pre-opsonized
407 zymosan-coated beads in presence of candidalysin, with significant higher levels compared to CytoD treated
408 cells (one representative of 4 donors shown, statistical analysis performed with two-way ANOVA with
409 Bonferroni post-hoc test). (b) The ability of ROS production in candidalysin-treated neutrophils was assessed
410 over time through PMA spiking (one representative of 3 donors shown). (c) The antimicrobial activity assay
411 revealed a similar fungal growth inhibition of NET-like structures induced by candidalysin and ionomycin as
412 canonical PMA-NETs. *C. albicans* (Ca) growth on pre-induced NLS/NETs was measured with Calcofluor White
413 staining after 16 h. The addition of Zn²⁺ to candidalysin-induced NLS before adding *C. albicans* negated the
414 antimicrobial effect in opposite to no response to MNase exposure (n = 4, with following exception: n = 4 for
415 MNase and Zn²⁺ treatment and only 2 donors for Zn²⁺ treatment on IOM-induced NLS).

416
417
418 **Candidalysin-triggered NLS inhibit *C. albicans* growth**

419 As NETs inhibit the growth of *C. albicans*^{29,40}, we investigated whether candidalysin-induced NLS
420 harbored antifungal activity. Thus, we designed an image-based assay to assess *C. albicans* growth by
421 quantifying calcofluor white staining in the presence of neutrophils that had been stimulated by
422 candidalysin. Most importantly, the NLS triggered by candidalysin showed a strong anti-*Candida*
423 effect (Fig. 8c). Optical density (OD) measurements were used to quantify biomass increase of *C.*
424 *albicans* (Fig. S6). This confirmed that synthetic candidalysin did not suppress *C. albicans* growth,

425 thus this effect was solely due to the candidalysin-induced NLS (Fig. S6). In addition, the *C. albicans*
426 growth suppression could be reverted by addition of excess Zn²⁺ but not by micrococcal nuclease
427 (MNase) (Fig. 8c). This confirms that, in contrast to canonical NETs, candidalysin-triggered NLS cannot
428 be dismantled and removed by nuclease treatment, probably because NLS are considerably more
429 compact than NETs. Therefore, NLS possessed antimicrobial effects even after nuclease treatment.
430 The anti-*Candida* effect is most probably exerted via the zinc binding protein, calprotectin, as
431 supplementation with excess Zn²⁺ blocked the antimicrobial effect of candidalysin-triggered NLS⁵.

432

433 Discussion

434 Candidalysin is the first fungal peptide toxin identified in any human fungal pathogen¹⁷ and is critical
435 for initiating inflammatory responses that trigger neutrophil recruitment during mucosal and
436 systemic experimental candidiasis^{18,25-28}. As candidalysin is only produced by *C. albicans* hyphae⁴¹,
437 we investigated neutrophils response when these phagocytes encounter candidalysin-expressing *C.*
438 *albicans* hyphae or synthetic candidalysin. Hyphae of candidalysin-expressing strains induced more
439 NETs than *ECE1*-deficient and candidalysin-deficient strains (Fig. 1), indicating that candidalysin
440 promotes NET formation. However, incubation of neutrophils with synthetic candidalysin was not
441 sufficient to induce NETs (Fig. 2). Rather, stimulation with candidalysin led to citrullination of
442 histones via PAD4, leukotoxic hypercitrullination, and the release of NLS. In contrast to canonical
443 NETs, NLS are more compact and patchier with fewer clear fibers and threads (Fig. 3). Nevertheless,
444 candidalysin-induced NLS did not occur instantaneously. Morphological changes were visible after
445 30-60 min exposure to candidalysin and intracellular mixing of granular and nuclear material was
446 observed after ~120 min. After 300 min, ~80% of the neutrophil stimulated with candidalysin
447 released NLS (Fig. 3). The role of candidalysin to promote canonical NET release was confirmed using
448 a yeast-locked strain overexpressing *ECE1* (Fig. 4). While this overexpression construct did not reach
449 the *ECE1* expression levels driven by the endogenous *ECE1* promoter, it nevertheless secreted
450 significant level of candidalysin as described previously⁴².

451 Interestingly, candidalysin induced low activity of NADPH oxidase and consequently ROS production.

452 In CGD patient neutrophils, candidalysin-induced NLS were significantly reduced compared to control

453 neutrophils; however, 60% of the CGD neutrophils were still able to release NLS (Fig. 5). Hence, while

454 NADPH oxidase activity promotes candidalysin-induced NLS, it is not essential for NLS formation. This

455 notion is clinically confirmed by the observation that CGD patients very rarely acquire *C. albicans*

456 infections ⁴³. In addition to ROS effects, candidalysin also induces the influx of calcium ions into the

457 cytosol of neutrophils. Calcium influx is a known inducer of PAD4, the enzyme responsible for histone

458 citrullination ³². We show that PAD4 is also required for histone decondensation during candidalysin-

459 induced NLS formation (Fig. 6). It is unlikely that calcium influx in neutrophils is due to candidalysin

460 directly triggering chemokine receptors, since calcium influx is slow and over time, and not in a pulse-

461 like fashion.

462 High concentrations of candidalysin (70 μ M) lyse human neutrophils more rapidly than lower

463 concentrations (15 μ M and 3 μ M). Rapid lysis does not allow for regulated cellular processes to be

464 induced within neutrophils. However, at lower concentrations (15 μ M), the neutrophils encountering

465 the toxin were still functional (ROS, phagocytosis) and mount a specific response leading to ROS

466 production, PAD4 activation and the release of NLS. Signalling pathways involved in NET formation

467 were also triggered by candidalysin (Fig. 7). Notably, SYK and PI3K inhibition significantly reduced the

468 amount of candidalysin-triggered NLS; both signalling molecules are also inducers of NADPH oxidase

469 ^{37,39}. While chelation of calcium ions and PAD4 inhibition also reduced NLS formation, cell cycle

470 processes such as the phosphorylation of lamin A/C, which is essential for the release of *C. albicans*-

471 induced canonical NETs ⁷, were not activated by synthetic candidalysin. This indicates that

472 candidalysin activates NET signalling pathways but these are not sustained or sufficient to induce the

473 release of canonical NETs (Fig. 7). This notion is consistent with previous findings describing that

474 PAD4 is dispensable for NET formation induced by *C. albicans* hyphae ⁴⁴. Our data demonstrates that

475 candidalysin is the main driver of histone citrullination in neutrophils infected with *C. albicans*. Lack

476 of candidalysin production in *C. albicans* results in significantly reduced histone citrullination,

477 accompanied with decreased NET formation. However, citrullination is not required for NET release,
478 but rather governs the formation of NLS, which is dominant when candidalysin is added exogenously.
479 With regard to *C. albicans* hyphae secreting candidalysin, it may be difficult to discriminate NLS from
480 NETs, as both will be induced concurrently¹⁰. It seems logical that the pore-forming activity of
481 candidalysin augments the release of NET fibers during *C. albicans* infection, where PRRs will
482 additionally be triggered on neutrophils, resulting in combinatorial activation of downstream
483 pathways. In line with this notion, candidalysin drives histone citrullination, which contributes to
484 chromatin decondensation. On the contrary, when neutrophils are exposed to synthetic candidalysin,
485 the activation of pathways involved in NET formation are insufficiently sustained, resulting in the
486 emergence of NLS. Importantly, our discovery that hyphae induce NETs and candidalysin induces
487 NLS, provides an explanation for why opsonized *C. albicans* induce NETs in a ROS-dependent fashion,
488 whereas un-opsonized *C. albicans* induce NETs in an ROS-independent fashion⁴⁵. As such, it appears
489 that candidalysin has a more dominant effect in experimental settings without serum opsonization
490 and a less dominant effect in the presence of serum opsonization.

491 It is noteworthy that candidalysin-induced NLS displayed anti-*Candida* activity. While some reports
492 describe NLS as having no antimicrobial activity¹⁰, we clearly see an anti-*Candida* effect by
493 candidalysin-triggered NLS. As epithelial cells are able to expunge candidalysin for protection while
494 *C. albicans* hyphae remain adherent⁴⁶, recruited neutrophils may encounter candidalysin before
495 direct contact with hyphae. In addition, neutrophil recruitment is virtually absent in mucosal and
496 systemic models of candidiasis in response to candidalysin-deficient strains²⁵⁻²⁸. Hence, we chose to
497 delineate the capacity of candidalysin-exposed neutrophils to kill *C. albicans*. Interestingly,
498 candidalysin-triggered NLS are resistant to nuclease treatment but the resulting anti-*Candida* effect
499 was Zn²⁺-dependent, indicating that growth inhibition of *C. albicans* by NLS relies on the presence of
500 S100A8/A9 (calprotectin)⁵ and potentially other Zn²⁺-binding neutrophil proteins. Given that NLS are
501 morphologically distinct from NETs, being more compact and lacking threads, this likely explains why
502 NLS are more resistant to nucleases. In context of *C. albicans* infection, candidalysin-induced

503 permeabilization of the plasma membrane will result in large amounts of S100A8/A9 to be released,
504 which will entangle in the structures. Further studies will be required to elucidate the key factors
505 contributing to the anti-*Candida* effect of candidalysin-induced NLS.
506 In summary, this study shows that candidalysin promotes NET formation during *C. albicans* infection
507 and NLS formation when present alone. During *C. albicans* infection, candidalysin drives the release
508 of extracellular chromatin structures in both ROS-dependent and ROS-independent mechanisms,
509 providing a possible rationale for the virtual absence of severe *C. albicans* infection in CGD patients.
510 Importantly, neutrophils remain functional in the presence of candidalysin as both NETs and NLS
511 display anti-*Candida* activity. Our findings serve as good starting point to further unravel the
512 complexity of NET induction triggered by *C. albicans* and indicate that a combination of
513 candidalysin(this study)and hyphal recognition ^{2,3,33,47} drive NET formation during *C. albicans*
514 infection.

515

516 **Methods**

517 **Fungal strain culture**

518 The *Candida albicans* strains used in this study are listed in Table 1. In all cases, *C. albicans* was
519 incubated in synthetic complete dropout medium (SC medium) for 16 h at 30°C. If not otherwise
520 stated, a fresh subculture was inoculated in SC medium for 3 h before finally being washed three
521 times with PBS, counted and adjusted according to each experimental protocol.

522

523 Table 1. Overview of *Candida albicans* strains used in this study. Fungal strains are described with parental cell
524 line and genetic background.

Fungal strain	Parental strain	Description	Genotype	Reference
SC5314		<i>Candida albicans</i>		⁴⁸

		standard wild-type strain		
<i>BWP17+Clp30</i>		Wild-type strain	ura3::λimm434/ura3::λimm434 arg4::hisG/arg4::hisG his1::hisG/his1::hisG + Cip30	⁴⁹
<i>ece1ΔΔ</i>	<i>BWP17+CiP30</i>	<i>ECE1</i> knockout	<i>ece1::HIS1/ece1::ARG4</i> <i>RPS1/rps1::URA3</i>	¹⁷
<i>ece1ΔΔ + ECE1</i>	<i>BWP17+CiP30</i>	<i>ece1Δ</i> revertant	<i>ece1::HIS1/ece1::ARG4</i> <i>RPS1/rps1::(URA3 ECE1)</i>	¹⁷
<i>ece1ΔΔ + ECE1ΔIII</i>	<i>BWP17+CiP30</i>	<i>C. albicans</i> <i>BWP17-Clp30</i> with candidalysin knockout	<i>ece1::HIS1/ece1::ARG4</i> <i>RPS1/rps1::(URA3 ECE1Δ₁₈₄₋₂₇₉)</i>	¹⁷
<i>cph1ΔΔ</i> <i>/efg1ΔΔ</i>	<i>CAI4+CiP10</i>	<i>C. albicans</i> yeast-locked mutant strain	<i>cph1::hisG/cph1::hisG</i> <i>efg1::hisG/efg1::hisG-URA3-hisG</i>	⁵⁰
<i>cph1/efg1</i> <i>ECE1</i> Overexpression	<i>CAI4+CiP10</i>	<i>C. albicans</i> yeast-locked mutant strain with <i>ECE1</i> overexpression	<i>cph1/efg1 pENO1_ECE1</i>	^{42,51}

525

526 **Isolation of human polymorphonuclear neutrophils (PMNs)**

527 Blood sampling for research purposes was conducted in accordance with the principles stated in the

528 Declaration of Helsinki, and with agreement with the blood-central of the University Hospital of

529 Umeå. CGD patient blood collection was approved by the ethical committee of Charité University

530 Hospital, Berlin, Germany. Venous blood samples were drawn from healthy volunteers and CGD

531 patients in EDTA tubes and neutrophils isolated as previously described ⁵². In brief, the neutrophil
532 fraction was obtained using density centrifugation in Histopaque 1119 (Sigma-Aldrich) to separate
533 granulocytes followed by a discontinuous Percoll (GE Healthcare Life Sciences) gradient to isolate
534 neutrophils. After RBC lysis (RBC lysis buffer, BioLegend) the cells were resuspended in RPMI 1640
535 media (Lonza, supplemented with 5% HEPES) and counted. Only neutrophils with the viability above
536 90% were selected for further experimentation.

537

538 **Neutrophil stimulation**

539 Neutrophils were seeded on glass cover slips coated with 0.001% poly-L-lysine (Sigma-Aldrich) with a
540 concentration of 1×10^5 cells per well if not stated otherwise. PMNs were stimulated with 4 μ M
541 ionomycin (free acid, Sigma-Aldrich), 100 nM Phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich),
542 15 μ M Ece1 peptides including candidalysin (if not otherwise stated) or infected with *C. albicans*
543 yeast (MOI 2) for a defined time period, following fixed using 2% paraformaldehyde (PFA) and stored
544 at 4°C. In the infection experiments, the fungus was added to 1×10^4 PMNs 1 h after the cells were
545 seeded.

546 For the pathway studies neutrophils were incubated for 30 min before stimulation with 10 μ M BB-Cl-
547 amidine (PADI, Cayman Chemicals), 15 μ M Diphenyleneiodonium (DPI, Sigma-Aldrich), 15 μ M 4-Hydroxy-
548 TEMPO (TEMPOL, Sigma-Aldrich), 10/20 μ M BAPTA-AM (Abcam), SYK inhibitors R406 (15 μ M,
549 InvivoGen) and piceatannol (12.5 μ M, InvivoGen), 15 μ M PI3K blocker wortmannin (InvivoGen),
550 2.5 μ M AKT inhibitor XI (InvivoGen) or NLRP3 blockage using compound MCC950 (1 μ M, InvivoGen).

551

552 **Immunostaining, Microscopy and Quantification**

553 For immune staining the cover slips were washed with PBS, cells permeabilized with 0.5% TritonX-
554 100 (company) for 1 min and then blocked at room temperature for 30 min in 3% bovine serum
555 albumin (Sigma-Aldrich) buffer. Antibodies directed against histone H1 (final 1 μ g/mL, #BM465, Acris)
556 and citrullinated histone H3 (citrulline R2+R8+R17, 1 μ g/mL, ab5103, Abcam) were applied and

557 incubated for 1 h at 37°C following by secondary antibodies conjugated with Alexa Fluor dyes 488
558 and 568 (10 µg/mL, Thermo Fisher). DNA was stained with DAPI (1 µg/mL, Sigma-Aldrich). Prolong
559 Diamond Antifade Mountant (Invitrogen) was used for mounting. For visualization and quantification
560 10 to 14 images per condition with around 50 to 150 cells were randomly taken with 20X
561 magnification (Nikon Eclipse 90i fluorescence microscope with NIS Elements software) and the
562 analysis performed with ImageJ.

563 For quantification of NETs and NET-like structures (NLS) (modified accordingly ^{30,31}), DAPI stained
564 events with an area over 15 µm² were measured and nuclei exceeding 100 µm² were counted. For
565 quantification of citrullinated histone the Alexa Fluor 568 total stained area was measured and
566 further normalized as signal per cell based on the event count of the DNA staining. NETs are
567 characterized as web-like structures with threads spanning over several dozens of micro meter,
568 whereas NLS are more compact, patchy and without longer threads.

569 Confocal images were taken with Nikon A1R confocal (LSM) controlled by Nikon NIS Elements
570 interface with a Nikon Eclipse Ti-E inverted microscope using 60X magnification.

571 To quantify NLS from CGD patient neutrophils in comparison to neutrophils from healthy
572 individualss, cells were seeded in a concentration of 1 x 10⁵cells per well in 24-well plates in RPMI
573 medium. Neutrophils were stained using cell-impermeable Sytox Orange DNA dye (1 µM, Thermo
574 Fisher) to detect NETs and cell-permeable DNA dye Sytox Green (250 nM, Thermo Fisher) to
575 determine the total number of cells. NETs/NLS were imaged at 4 h post stimulation using 20X
576 magnification on a EVOS FL Auto Microscope (Thermo Scientific).

577

578 **Scanning Electron Microscopy**

579 Neutrophils were stimulated as described above. After fixation, the cells were washed with PBS and
580 subsequently dehydrated in a series of graded ethanol (70, 80, 90, 95 and 100%). After critical point
581 drying with Leica EM CPD300, the cover slips were coated with a 2 nm platinum layer (Quorum
582 Q150T-ES Sputter Coater). Representative images were acquired using field-emission scanning

583 electron microscopy (SEM, Carl Zeiss Merlin) with secondary electron detector at accelerating
584 voltage of 4 kV, probe current of 120 pA and a working distance of 5.1 mm.

585

586 **Western Blot**

587 2×10^6 neutrophils were stimulated with 100 nM PMA, opsonised *C. albicans* (MOI 5) or candidalysin
588 (3 μ M and 15 μ M) for 90 min in tubes, followed by centrifugation at 400 x g for 5 min. Neutrophils
589 were then resuspend in 40 μ l PBS supplemented with 1x Protease and phosphatase inhibitor
590 (Thermo Fisher) and placed on ice for 10 min. Subsequently, SDS was added, samples were boiled at
591 100°C for 10 min, sonicated with 3 pulses of 15 s at 100% power (QSonica) and stored at -20°C. 10 μ l
592 of sample were loaded in a 4-12% Bis-Tris pre-cast gel (Invitrogen). Gel was transferred to a PVDF
593 membrane and blocked in 1% BSA (Fisher) in TBST, followed by blotting with anti-phospho-lamin A/C
594 (1:1000, Cell Signaling #13448) and anti-GAPDH (1:1000, Cell Signaling #2118).

595

596 **Cell Death Assay**

597 Neutrophil cell death or the presence of extracellular DNA was quantified using a Sytox Green-based
598 (Invitrogen) fluorescence assay similar to previous descriptions ^{2,35}. Briefly, cells were seeded in a
599 black 96 well plate with a concentration of 5×10^4 cells per well. Subsequently, Sytox Green, a
600 membrane-impermeable DNA dye, was added to a final concentration of 5 μ M, before cells were
601 stimulated. The fluorescence signal was measured in a plate-based fluorescence spectrophotometer
602 (Fluostar Omega, BMG) at 37°C and 5% CO₂ for 10 h in intervals of 10 min. The percentage of dead
603 cells was calculated using TritonX-100 lysed neutrophils as 100% control. Each experiment was
604 performed in 4 replicates.

605

606 **ROS measurement**

607 The induction of ROS was measured by oxidation of luminol and determined in Varioskan Flash
608 reader (Thermo Fisher Scientific) at 37°C. 5×10^4 PMNs per well were seeded into black 96 well plates

609 and incubated in media containing 50 mM luminol (Sigma-Aldrich), 1.2 U/well HRP (Sigma-Aldrich)
610 and different inhibitors for 30 min at 37°C and 5% CO₂. After stimulation or infection with *C. albicans*
611 (MOI 2), the luminescence measurement was started and data was obtained every 2 min. Each
612 experiment was performed in 4 replicates.

613 For ROS inhibition TEMPOL, MitoTEMPO and DPI (all from Sigma-Aldrich) were used at a
614 concentration of 15 or 100 mM. For the functional assessment 100 nM PMA (Sigma-Aldrich) was
615 added to previously stimulated neutrophils after 30, 60 or 120 min.

616

617 **Phagocytosis Assay**

618 Neutrophils (5 x 10⁴ cells/well) were seeded into a black 96 well plate and stimulated with different
619 concentrations of candidalysin. After 30 min incubation time, 25 µg/well opsonized pHrodo Red
620 Zymosan bioparticle conjugates for phagocytosis (Thermo Fisher) were added and the fluorescence
621 intensity of the beads (excitation 560/emission 585 nm) was measured with Fluostar Omega plate
622 reader (BMG). Acidized beads (phthalate buffer [100 mM; pH 4]) and PMNs with the blocked
623 cytoskeleton (12.5 µM cytochalasin D) served as 100% and 0% control, respectively. Each experiment
624 was performed in 4 replicates. Bead opsonization was performed with 60% human serum for 30 min
625 and the control cells were incubated with CytoD for 80 min.

626 The time-lapse imaging (video attached) was performed with pHrodo Red *S. aureus* bioparticle
627 conjugates for phagocytosis (Thermo Fisher) as described above in addition of final 5 µM Sytox
628 Green. The video shows neutrophils 30 min after 15 µM candidalysin treatment.

629

630 **Antimicrobial Activity Assay**

631 The growth inhibition of candidalysin pre-treated neutrophils on *C. albicans* was assessed with an
632 end-point chitin staining with Calcofluor White (Sigma-Aldrich). Neutrophils (1 x 10⁵ cells/well) were
633 seeded in a poly-L-lysine (Sigma-Aldrich) pre-coated 96 well plate and after 30 min incubation time
634 stimulated with 15 µM candidalysin, 4 µM ionomycin or 100 nM PMA for 5 h. After treating

635 designated wells with 10 U/mL MNase, the total well volume was removed and *C. albicans* in a
636 concentration of 5×10^4 cells/well (MOI 0.5) added. Thimerosal (Sigma-Aldrich) -killed *Candida*
637 served as a control. Designated wells were supplemented with 5 μM ZnSO₄ (Sigma-Aldrich) as a Zink
638 source. The plate was incubated for 16 h at 37°C and 5% CO₂, MNase added to wells previously not
639 treated and subsequently the cells were fixed with 4% PFA for 20 min at room temperature. After
640 Calcofluor White staining (0.1 mg/mL for 10 min), images were acquired with Cytation 5 Cell Imaging
641 Reader (BioTek) and a cell number representative fluorescence signal obtained. Each experiment was
642 performed in 4 replicates. To exclude an inhibitory effect of the toxins itself on *C. albicans*, wells
643 were treated in absence of neutrophils and then infected with the fungus.

644

645 **Growth curve**

646 To study the growth of *C. albicans* in presence of candidalysin, a measurement of optical density
647 ($\lambda=600$) was performed. 15 μM candidalysin was added to a poly-L-lysine pre-coated 96 well plate as
648 described, before being washed and infected with different concentrations of *C. albicans*, or directly
649 added to the well together with the fungus. Data was obtained with Fluostar Omega plate reader
650 (BMG) over 16 h with an interval of 1 h at 37°C and 5% CO₂. Each experiment was performed in 4
651 replicates.

652

653 **Calcium influx**

654 The measurement of calcium influx into cells was adapted from ⁵³. After neutrophil isolation, the cells
655 were resuspended in HBSS without Calcium and Magnesium (Lonza). 5 μM Fluo-8 AM (Abcam) was
656 added to PMNs at 37°C for 90 min. Cells were washed once and resuspended in RPMI 1640. In a total
657 reaction volume of 120 μl , 1×10^5 cells were seeded into a black 96 well plate and stimulated with
658 70, 15, 3 and 0.56 μM candidalysin. After 10 min incubation, the fluorescence was measured
659 (Ex490/Em520) for 60 min with Fluostar Omega plate reader (BMG). Each experiment was performed
660 in triplicates.

661

662 **Statistical analysis**

663 For all calculations and analyses GraphPad Prism Software 5.0 (GraphPad Software) was used. Bars

664 represent 95% CI and p value significance is shown as following: *p < 0.05, **p < 0.01, ***p < 0.001.

665 Numbers of biological replicates using independent neutrophil donors (n) are indicated in the figure

666 label.

667

668 References

669 1 Bianchi, M. *et al.* Restoration of NET formation by gene therapy in CGD controls aspergillosis.
670 *Blood* **114**, 2619-2622, doi:10.1182/blood-2009-05-221606 (2009).

671 2 Ermert, D. *et al.* Mouse neutrophil extracellular traps in microbial infections. *J Innate Immun*
672 **1**, 181-193, doi:10.1159/000205281 (2009).

673 3 Branzk, N. *et al.* Neutrophils sense microbe size and selectively release neutrophil
674 extracellular traps in response to large pathogens. *Nat Immunol* **15**, 1017-1025,
675 doi:10.1038/ni.2987 (2014).

676 4 Shopova, I. A. *et al.* Human Neutrophils Produce Antifungal Extracellular Vesicles against
677 *Aspergillus fumigatus*. *mBio* **11**, doi:10.1128/mBio.00596-20 (2020).

678 5 Urban, C. F. *et al.* Neutrophil extracellular traps contain calprotectin, a cytosolic protein
679 complex involved in host defense against *Candida albicans*. *PLoS Pathog* **5**, e1000639,
680 doi:10.1371/journal.ppat.1000639 (2009).

681 6 Khandagale, A. *et al.* JAGN1 is required for fungal killing in neutrophil extracellular traps:
682 Implications for severe congenital neutropenia. *J Leukoc Biol* **104**, 1199-1213,
683 doi:10.1002/jlb.4A0118-030RR (2018).

684 7 Amulic, B. *et al.* Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. *Dev
685 Cell* **43**, 449-462 e445, doi:10.1016/j.devcel.2017.10.013 (2017).

686 8 Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second
687 function of chromatin? *J Cell Biol* **198**, 773-783, doi:10.1083/jcb.201203170 (2012).

688 9 Bjornsdottir, H. *et al.* Phenol-Soluble Modulin alpha Peptide Toxins from Aggressive
689 *Staphylococcus aureus* Induce Rapid Formation of Neutrophil Extracellular Traps through a
690 Reactive Oxygen Species-Independent Pathway. *Front Immunol* **8**, 257,
691 doi:10.3389/fimmu.2017.00257 (2017).

692 10 Konig, M. F. & Andrade, F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis
693 Mimics Based on Differential Requirements for Protein Citrullination. *Front Immunol* **7**, 461,
694 doi:10.3389/fimmu.2016.00461 (2016).

695 11 Neeli, I., Khan, S. N. & Radic, M. Histone deimination as a response to inflammatory stimuli in
696 neutrophils. *J Immunol* **180**, 1895-1902, doi:10.4049/jimmunol.180.3.1895 (2008).

697 12 Wang, Y. *et al.* Histone hypercitrullination mediates chromatin decondensation and
698 neutrophil extracellular trap formation. *J Cell Biol* **184**, 205-213, doi:10.1083/jcb.200806072
699 (2009).

700 13 Chow, E. W. L., Pang, L. M. & Wang, Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of
701 *Candida albicans*. *Pathogens* **10**, doi:10.3390/pathogens10070859 (2021).

702 14 Mayer, F. L., Wilson, D. & Hube, B. *Candida albicans* pathogenicity mechanisms. *Virulence* **4**,
703 119-128, doi:10.4161/viru.22913 (2013).

704 15 Jacobsen, I. D. *et al.* *Candida albicans* dimorphism as a therapeutic target. *Expert Rev Anti
705 Infect Ther* **10**, 85-93, doi:10.1586/eri.11.152 (2012).

706 16 Ermert, D. *et al.* *Candida albicans* escapes from mouse neutrophils. *J Leukoc Biol* **94**, 223-236,
707 doi:10.1189/jlb.0213063 (2013).

708 17 Moyes, D. L. *et al.* Candidalysin is a fungal peptide toxin critical for mucosal infection. *Nature*
709 **532**, 64-68, doi:10.1038/nature17625 (2016).

710 18 Kasper, L. *et al.* The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome
711 and causes cytosis in mononuclear phagocytes. *Nat Commun* **9**, 4260, doi:10.1038/s41467-
712 018-06607-1 (2018).

713 19 Bader, O., Krauke, Y. & Hube, B. Processing of predicted substrates of fungal Kex2
714 proteinases from *Candida albicans*, *C. glabrata*, *Saccharomyces cerevisiae* and *Pichia pastoris*.
715 *BMC Microbiol* **8**, 116, doi:10.1186/1471-2180-8-116 (2008).

716 20 Birse, C. E., Irwin, M. Y., Fonzi, W. A. & Sypherd, P. S. Cloning and characterization of ECE1, a
717 gene expressed in association with cell elongation of the dimorphic pathogen *Candida
718 albicans*. *Infect Immun* **61**, 3648-3655, doi:10.1128/iai.61.9.3648-3655.1993 (1993).

719 21 Martin, R. *et al.* A core filamentation response network in *Candida albicans* is restricted to
720 eight genes. *PLoS One* **8**, e58613, doi:10.1371/journal.pone.0058613 (2013).

721 22 Moyes, D. L. *et al.* Protection against epithelial damage during *Candida albicans* infection is
722 mediated by PI3K/Akt and mammalian target of rapamycin signaling. *J Infect Dis* **209**, 1816-
723 1826, doi:10.1093/infdis/jit824 (2014).

724 23 Ho, J. *et al.* Candidalysin activates innate epithelial immune responses via epidermal growth
725 factor receptor. *Nat Commun* **10**, 2297, doi:10.1038/s41467-019-09915-2 (2019).

726 24 Moyes, D. L. *et al.* A biphasic innate immune MAPK response discriminates between the
727 yeast and hyphal forms of *Candida albicans* in epithelial cells. *Cell Host Microbe* **8**, 225-235,
728 doi:10.1016/j.chom.2010.08.002 (2010).

729 25 Verma, A. H. *et al.* Oral epithelial cells orchestrate innate type 17 responses to *Candida*
730 *albicans* through the virulence factor candidalysin. *Sci Immunol* **2**,
731 doi:10.1126/sciimmunol.aam8834 (2017).

732 26 Richardson, J. P. *et al.* Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and
733 Immunopathology at the Vaginal Mucosa. *Infect Immun* **86**, doi:10.1128/IAI.00645-17 (2018).

734 27 Drummond, R. A. *et al.* CARD9(+) microglia promote antifungal immunity via IL-1beta- and
735 CXCL1-mediated neutrophil recruitment. *Nat Immunol* **20**, 559-570, doi:10.1038/s41590-019-
736 0377-2 (2019).

737 28 Swidergall, M. *et al.* Candidalysin Is Required for Neutrophil Recruitment and Virulence
738 During Systemic *Candida albicans* Infection. *J Infect Dis* **220**, 1477-1488,
739 doi:10.1093/infdis/jiz322 (2019).

740 29 Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps
741 capture and kill *Candida albicans* yeast and hyphal forms. *Cell Microbiol* **8**, 668-676,
742 doi:10.1111/j.1462-5822.2005.00659.x (2006).

743 30 Hosseinzadeh, A., Messer, P. K. & Urban, C. F. Stable Redox-Cycling Tempol Inhibits
744 NET Formation. *Front Immunol* **3**, 391, doi:10.3389/fimmu.2012.00391 (2012).

745 31 Hosseinzadeh, A., Thompson, P. R., Segal, B. H. & Urban, C. F. Nicotine induces neutrophil
746 extracellular traps. *J Leukoc Biol* **100**, 1105-1112, doi:10.1189/jlb.3AB0815-379RR (2016).

747 32 Neeli, I. & Radic, M. Opposition between PKC isoforms regulates histone deimination and
748 neutrophil extracellular chromatin release. *Front Immunol* **4**, 38,
749 doi:10.3389/fimmu.2013.00038 (2013).

750 33 Zawrotniak, M. *et al.* Aspartic Proteases and Major Cell Wall Components in *Candida albicans*
751 Trigger the Release of Neutrophil Extracellular Traps. *Front Cell Infect Microbiol* **7**, 414,
752 doi:10.3389/fcimb.2017.00414 (2017).

753 34 Douda, D. N., Khan, M. A., Grasemann, H. & Palaniyar, N. SK3 channel and mitochondrial ROS
754 mediate NADPH oxidase-independent NETosis induced by calcium influx. *Proc Natl Acad Sci U*
755 *S A* **112**, 2817-2822, doi:10.1073/pnas.1414055112 (2015).

756 35 Fuchs, T. A. *et al.* Novel cell death program leads to neutrophil extracellular traps. *J Cell Biol*
757 **176**, 231-241, doi:10.1083/jcb.200606027 (2007).

758 36 Gupta, A. K. *et al.* Activated endothelial cells induce neutrophil extracellular traps and are
759 susceptible to NETosis-mediated cell death. *FEBS Lett* **584**, 3193-3197,
760 doi:10.1016/j.febslet.2010.06.006 (2010).

761 37 Douda, D. N., Yip, L., Khan, M. A., Grasemann, H. & Palaniyar, N. Akt is essential to induce
762 NADPH-dependent NETosis and to switch the neutrophil death to apoptosis. *Blood* **123**, 597-
763 600, doi:10.1182/blood-2013-09-526707 (2014).

764 38 Urban, C. F. & Backman, E. Eradicating, retaining, balancing, swarming, shuttling and
765 dumping: a myriad of tasks for neutrophils during fungal infection. *Curr Opin Microbiol* **58**,
766 106-115, doi:10.1016/j.mib.2020.09.011 (2020).

767 39 Negoro, P. E. *et al.* Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to
768 *Candida* Species. *mBio* **11**, doi:10.1128/mBio.02043-19 (2020).

769 40 Johnson, C. J. *et al.* The Extracellular Matrix of *Candida albicans* Biofilms Impairs Formation of
770 Neutrophil Extracellular Traps. *PLoS Pathog* **12**, e1005884, doi:10.1371/journal.ppat.1005884
771 (2016).

772 41 Wilson, D., Naglik, J. R. & Hube, B. The Missing Link between *Candida albicans* Hyphal
773 Morphogenesis and Host Cell Damage. *PLoS Pathog* **12**, e1005867,
774 doi:10.1371/journal.ppat.1005867 (2016).

775 42 Mogavero, S. *et al.* Candidalysin delivery to the invasion pocket is critical for host epithelial
776 damage induced by *Candida albicans*. *Cell Microbiol* **23**, e13378, doi:10.1111/cmi.13378
777 (2021).

778 43 Marciano, B. E. *et al.* Common severe infections in chronic granulomatous disease. *Clin Infect
779 Dis* **60**, 1176-1183, doi:10.1093/cid/ciu1154 (2015).

780 44 Guiducci, E. *et al.* *Candida albicans*-Induced NETosis Is Independent of Peptidylarginine
781 Deiminase 4. *Front Immunol* **9**, 1573, doi:10.3389/fimmu.2018.01573 (2018).

782 45 Wu, S. Y. *et al.* *Candida albicans* triggers NADPH oxidase-independent neutrophil
783 extracellular traps through dectin-2. *PLoS Pathog* **15**, e1008096,
784 doi:10.1371/journal.ppat.1008096 (2019).

785 46 Westman, J. *et al.* Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain
786 epithelial integrity during *Candida albicans* invasion. *Cell Rep* **38**, 110187,
787 doi:10.1016/j.celrep.2021.110187 (2022).

788 47 Byrd, A. S., O'Brien, X. M., Johnson, C. M., Lavigne, L. M. & Reichner, J. S. An extracellular
789 matrix-based mechanism of rapid neutrophil extracellular trap formation in response to
790 *Candida albicans*. *J Immunol* **190**, 4136-4148, doi:10.4049/jimmunol.1202671 (2013).

791 48 Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. Isolation of the *Candida albicans* gene for orotidine-
792 5'-phosphate decarboxylase by complementation of *S. cerevisiae* *ura3* and *E. coli* *pyrF*
793 mutations. *Mol Gen Genet* **198**, 179-182, doi:10.1007/bf00328721 (1984).

794 49 Zakikhany, K. *et al.* In vivo transcript profiling of *Candida albicans* identifies a gene essential
795 for interepithelial dissemination. *Cellular Microbiology* **9**, 2938-2954, doi:10.1111/j.1462-
796 5822.2007.01009.x (2007).

797 50 Lo, H. J. *et al.* Nonfilamentous *C. albicans* mutants are avirulent. *Cell* **90**, 939-949,
798 doi:10.1016/s0092-8674(00)80358-x (1997).

799 51 Westman, J., Moran, G., Mogavero, S., Hube, B. & Grinstein, S. *Candida albicans* Hyphal
800 Expansion Causes Phagosomal Membrane Damage and Luminal Alkalinization. *mBio* **9**,
801 doi:10.1128/mBio.01226-18 (2018).

802 52 Thunstrom Salzer, A. *et al.* Assessment of Neutrophil Chemotaxis Upon G-CSF Treatment of
803 Healthy Stem Cell Donors and in Allogeneic Transplant Recipients. *Front Immunol* **9**, 1968,
804 doi:10.3389/fimmu.2018.01968 (2018).

805 53 Schaff, U. Y. *et al.* Calcium flux in neutrophils synchronizes beta2 integrin adhesive and
806 signaling events that guide inflammatory recruitment. *Ann Biomed Eng* **36**, 632-646,
807 doi:10.1007/s10439-008-9453-8 (2008).

808

809

810 **Fig. 9. Candidalysin promotes NET formation.** (A) Representative microscopic images (60X) of indirect
811 immunofluorescence of human neutrophils 4 h after infection with wild-type and candidalysin deleted *C.*
812 *albicans* strains (*ece1Δ/Δ* and *ece1Δ/Δ+ECE1-P3*). Lack of Ece1p/candidalysin production led to reduced NET
813 formation as visualised by chromatin staining. Visual impression was corroborated with (B) quantitative image
814 analysis of a time series experiment using ImageJ (n = 4, mean ± SEM). Each DAPI-stained event exceeding
815 100 μm^2 was considered a NET. Statistical analysis conducted with two-way ANOVA with Bonferroni post-hoc
816 test. Microscopic images are not obtained from the same experiment conducted for quantification due to
817 different immunostaining procedures.

818 **Fig. 10. Synthetic candidalysin induces NET-like structures in human neutrophils.** Candidalysin, but not
819 scrambled candidalysin or pep2, another Ece1p-derived peptide (all 15 μM), induce (A) DNA decondensation in
820 human neutrophils after 4 h (n = 4) in a (B) dose-dependent manner (n = 3). NLS were quantified with the same
821 criteria as previous described for NETs. Data shown as mean ± SEM. Confocal images (C) of immunostained
822 cells display morphological changes involving nuclear and granular proteins after 4 h compared to unstimulated
823 cells, or cells exposed to scrambled candidalysin and pep2. Time-dependent progression of morphological
824 changes (D) in neutrophils induced by candidalysin over the course of 5 h (all images are with 60X
825 magnification).

826 **Fig. 11. Morphological alterations triggered by candidalysin.** (A) Scanning electron microscope images of
827 candidalysin and ionomycin stimulated neutrophils after 3 h show differences in structural alterations
828 compared to PMA-induced canonical NETs and (B) NETs induced by *C. albicans* hyphae (magnification (A) 3.00
829 KX on top, 5.00 KX at bottom and (B) 4.00 KX top, 3.00 KX bottom). Microscopic images were analysed by (C)
830 amount of NLS formation (DNA decondensation), (D) average NLS size (only DNA-stained area > 100 μm^2
831 considered) and (E) average histone citrullination level per event (n = 3, *C. albicans* n = 4). Data shown as mean
832 ± SEM and statistical analysis conducted with two-way ANOVA with Bonferroni post-hoc test. (F)
833 Representative immunofluorescence images 3 h after neutrophil stimulation support visually the quantitative
834 data (60X magnification).

835 **Fig. 12. Candidalysin enhances NET formation through histone citrullination.** (A) Representative immuno-
836 fluorescence images (60X) of neutrophils infected with *C. albicans* wild-type and mutant strains after 3 h

837 identified candidalysin as a major inducer of histone citrullination in human neutrophils with (B) significant
838 decreased levels of citH3 in candidalysin-deficient strains ($n = 4$, mean \pm SEM, statistical analysis with one-way
839 ANOVA with Dunnett's multiple comparison post-hoc test). (C, D) Although the yeast-locked mutant stimulated
840 fewer NETs, *ECE1* overexpression partially recovered the potency (demonstrated by 40X microscopic images
841 and image-based analysis) along with (E) increased histone citrullination. (D, E) Data of 4 donors shown as
842 mean \pm SEM and statistically analyses with one-way ANOVA with Bonferroni post-hoc test. (F) External addition
843 of synthetic candidalysin resulted in a shift to NLS structures rather than NETs as visualized by microscopy after
844 5 h incubation (20X).

845 **Fig. 13. NLS induction by candidalysin is partially ROS-dependent.** ROS response was measured in neutrophils
846 upon stimulation with PMA and candidalysin (A) without and (B-D) in presence of a general ROS scavenger
847 (TEMPOL), NADPH oxidase inhibitor (DPI) and a mitochondrial ROS inhibitor (MitoTEMPO) with a luminol-based
848 assay. Data is presented as normalized area under the curve over 4 h treatment time ($n = 3$). The impact of
849 stimulus-triggered ROS response on NLS formation was studied after 4.5 h incubation time with
850 immunofluorescence microscopy with (E) image-based quantification ($n = 3$) and (F) a selection of
851 representative images. (G) Sytox-positive cells after 4 h treatment. Candidalysin and PMA showed significantly
852 decreased effects on neutrophils from CGD patients, as compared to neutrophils from healthy donors ($n = 3$).
853 NLS responses were quantified using microscopic images of parallel staining using cell-impermeable Sytox
854 Orange DNA dye (1 μ M) to detect NETs/NLS and cell-permeable Sytox Green DNA dye (250 nM) to determine
855 the total number of cells. (H) Representative images of the analysis are shown. Data shown as mean \pm SEM and
856 statistical analysis performed with One-way ANOVA with Bonferroni post-hoc test.

857 **Fig. 14. Candidalysin induces NLS via Ca^{2+} - and ROS-dependent pathways.** (A) Schematic image illustrating the
858 suggested mechanisms by which candidalysin induces NLS in neutrophils. Both downstream effects of ROS and
859 calcium-dependent PAD4 activation lead to chromatin decondensation. Inhibitors targeting NADPH oxidase
860 (DPI) and PAD activation (BB-Cl-amidine, PADi) as well as calcium chelation (BAPTA) show effects. (B) Dose- and
861 time-dependent calcium influx in neutrophils through candidalysin was measured with Fluo-8 AM ($n = 4$) and
862 image-based quantification verified PAD-dependency of NLS formation via ionomycin and candidalysin ($n = 3$,
863 data taken from same experiment as *Error! Reference source not found.*C-E). Combination treatment (DPI and
864 PADi) blocking NADPH oxidase-dependent ROS and PAD-activation significantly reduced NLS formation through

865 candidalysin ($n = 3-4$). Data shown as mean \pm SEM and all statistical analysis performed with two-way ANOVA
866 with Bonferroni post-hoc test. (E) Representative microscopic images (60X) demonstrate decreased
867 morphological alterations through ROS and PAD blockage.

868

869 **Fig. 15. Candidalysin triggers signalling pathways involved in NET formation.** (A) Schematic image shows the
870 pathways involved in NET formation and inhibitors used to obtain mechanistic insights. (B-D) Blocking main
871 kinases involved in NET formation with 15 μ M R406 (SYK), 12.5 μ M piceatannol (SYK), 15 μ M wortmannin
872 (PI3K) and 2.5 μ M AKT inhibitor XI decreased NLS formation upon candidalysin stimulation in human
873 neutrophils from healthy volunteers analysed using image analysis ($n = 3$, mean \pm SEM, statistical analysed with
874 one-way ANOVA with Bonferroni post-hoc test). (E) Western blot and (F) quantitative analysis ($n = 3$) did not
875 show phospho-Lamin A/C activation by candidalysin.

876 **Fig. 16. Candidalysin does not abrogate neutrophil functionality and NLS suppress fungal growth.** (A) Despite
877 cytotoxic effect of candidalysin on neutrophils, the immune cells were still able to phagocytose pre-opsonized
878 zymosan-coated beads in presence of candidalysin, with significant higher levels compared to CytoD treated
879 cells (one representative of 4 donors shown, statistical analysis performed with two-way ANOVA with
880 Bonferroni post-hoc test). (B) The ability of ROS production in candidalysin-treated neutrophils was assessed
881 over time through PMA spiking (one representative of 3 donors shown). (C) The antimicrobial activity assay
882 revealed a similar fungal growth inhibition of NET-like structures induced by candidalysin and ionomycin as
883 canonical PMA-NETs. *C. albicans* (Ca) growth on pre-induced NLS/NETs was measured with Calcofluor White
884 staining after 16 h. The addition of Zn^{2+} to candidalysin-induced NLS before adding *C. albicans* negated the
885 antimicrobial effect in opposite to no response to MNase exposure ($n = 4$, with following exception: $n = 4$ for
886 MNase and Zn^{2+} treatment and only 2 donors for Zn^{2+} treatment on IOM-induced NLS).