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Abstract 

Summary: Large-scale and whole-cell modeling has multiple challenges, including scalable model 

building and module communication bottlenecks (e.g. between metabolism, gene expression, 

signaling, etc). We previously developed an open-source, scalable format for a large-scale 

mechanistic model of proliferation and death signaling dynamics, but communication bottlenecks 

between gene expression and protein biochemistry modules remained. Here, we developed two 

solutions to communication bottlenecks that speed up simulation by ~4-fold for hybrid stochastic-

deterministic simulations and by over 100-fold for fully deterministic simulations. 

Availability and Implementation: Source code is freely available at 

https://github.com/birtwistlelab/SPARCED/releases/tag/v1.1.0 implemented in python, and 

supported on Linux, Windows, and MacOS (via Docker). 
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Text 

Recapitulating the behavior of single cells in silico is a grand challenge not only for systems 

biology, but also for biology in general. Such an accomplishment would imply that we have a 

thorough understanding of all the cellular and sub-cellular processes that give rise to relevant 

phenotypes. Such models could enable rational engineering for biotechnology applications, or 

forward predictions in precision medicine (Ahn-Horst et al., 2022; Mardinoglu et al., 2017; Spann 

et al., 2018; Uhlen et al., 2017). Large-scale and whole-cell modeling is a suitable foundation for 

meeting such challenges (Purcell et al., 2013; Macklin et al., 2014; Goldberg et al., 2018). The 

first such efforts focused on genome-scale metabolic modeling in multiple organisms (Patil and 

Nielsen, 2005; Thiele and Palsson, 2010). Subsequent efforts focused on integrating multiple 

“modules” in addition to metabolism (e.g. gene expression, signaling, etc.) in single-celled 

organisms such as M. genitalium, E. coli, S. cerevisiae, (Covert et al., 2008; Karr et al., 2012; Ye 

et al., 2020; Münzner et al., 2019) and a minimal lab-generated cell (Thornburg et al., 2022), but 

the lack of dedicated tools specifically for large-scale / whole-cell models presented roadblocks 

for reuse. Algorithmic developments included rule-based modeling to specify reactions more 

compactly (Faeder et al., 2009), and model composition tools, (Lopez et al., 2013; Gyori et al., 

2017; Hoops et al., 2006; Somogyi et al., 2015) but large-scale models often still presented 

challenges. More recent work has provided such tools like AMICI that enables SBML-specified 

models to be simulated quickly, PEtab (Stapor et al., 2018; Schmiester et al., 2021) and Datanator 

(Roth et al., 2021) that specifies data formats for parameter estimation, formalisms that can help 

with unambiguous species naming, (Lang et al., 2020) and composition approaches such as ours 

that simplify model aggregation and expansion in ways that are compatible with efficient large-

scale simulation algorithms and easy to reuse (Erdem et al., 2022). Not unexpectedly, however, 

there remains much work to be done to even technically enable large-scale and whole-cell 

modeling.  

Here, we focused on improving communication between different modules as a major 

impediment for computation speed in large-scale modeling (Fig. 1). We used our recently 

published SPARCED model as a test case, a large-scale mechanistic model of proliferation and 

death signaling in single mammalian cells. This model consists of 141 genes, and 1196 unique 

biochemical species. It is built by translating a simple set of structured input text files into an 

SBML-compliant module that captures “protein biochemistry” (signaling) and is simulated using 

AMICI, and a module that captures “gene expression” using python. It can be simulated in a 

stochastic/deterministic mode, where gene expression dynamics follow Poisson-like processes, or 

a fully deterministic mode.  

As is typical for large-scale models, communication between modules was done at 

specified simulation time steps, in our case every 30 simulated seconds. Using Python code 

profilers [cProfile, line_profiler], we identified communication between AMICI and python as rate 

limiting for simulation speed (Fig. 1A—Focus 1). Specifically, during each 30 second time step, 

results from the “protein biochemistry” module are saved in a “results” object defined within the 

AMICI library. However, accessing the state matrix via the Python object interface incurred 

expensive reconstructions of the full NumPy array from AMICI-managed memory. These 
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overheads could be largely avoided, since only the last column of the state matrix (corresponding 

to the most recent timestep) was needed at each iteration. By using direct access to the SWIG 

pointer referencing these state variables, we were able to avoid re-reading state data, yielding a 3-

4-fold simulation speedup (Fig. 1C—Focus 1). 

However, we reasoned that a potentially better solution to improving module 

communication was to eliminate it altogether. This required a reformulation of the SPARCED 

model building scripts that translate the text input files into formats required for simulation, such 

that now a single SBML file was generated that can be simulated completely using AMICI (Fig. 

1B—Focus 2). The drawback to this is that no efficient numerical solvers yet exist to perform 

stochastic simulations on such large models. Nevertheless, fully deterministic simulations are still 

of use in certain situations (e.g. during model initialization by which we convert the cellular 

context of the model using multi-omics data) (Bouhaddou et al., 2018; Barrette et al., 2018). After 

implementing this change, an over 100-fold computational speed-up was observed (Fig. 1C—

Focus 2). We verified that simulation results obtained with this “integrated” model were identical 

to the original model to ensure that the reformulation of the model and its build process had not 

introduced any errors (Fig. 1D-E). 

In conclusion, here we provide code that speeds up simulation of a large-scale model of 

cell behavior by ~4-fold for stochastic simulations and ~100-fold for deterministic simulations, by 

focusing on improving or eliminating communication between modules. We expect this to be 

impactful as a general strategy to further enable large-scale and whole-cell modeling, and also spur 

the development of simulation algorithms such as those that can perform stochastic simulations 

using an integrated formulation.  
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Figure 1. Computational speedup of the SPARCED model. A. Simulation workflow of the original

SPARCED model highlighting the bottleneck of communication between the gene expression module and the

protein biochemistry module. One speedup reported here targets that bottleneck for faster stochastic

simulations. B. A new simulation workflow reported here that integrates the gene expression module with the

protein biochemistry module using SBML, enabling large computational speed up for deterministic simulations.

No solvers yet exist for stochastic simulations at this scale. C. Computation speed-up enabled by improving

communication between modules (denoted by *; Focus 1) and by integrated SBML of the gene expression

module with the protein biochemistry module (Integrated; Focus 2). Improving communication (Focus 1) yields

3-4 fold speed-up, and eliminating communication (Focus 2) yields ~100-fold speed-up. A relative speed of 1

corresponds to 658 seconds. Error bars are from 10 replicate simulations. Simulations were performed on

Palmetto (Clemson's HPC resource—Intel Xeon CPU 2.5 GHz). D. Area-under-curve for the dynamics of all

model species in the original modular deterministic formulation and the integrated formulation. Simulated

serum-starved MCF10A cells were treated with 1 nM EGF and 0.005 nM HGF and observed for 72 hours. E. An

example trajectory for a biochemical correlate of cell division events from the simulations in D for both models,

showing good agreement.
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