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Pitchers in baseball throw the ball with such
high velocity and varying movement that batters
only have a few hundred milliseconds to estimate
whether to swing and how high to swing. Slight de-
viations in the contact point on the ball can result
in weakly hit balls that do not result in opportuni-
ties for batters to score. Even before the pitcher
releases the ball, the batter has some belief (an
estimated distribution—a ‘prior’), of where the ball
may land in the strike zone. Batters will update
this prior belief with information from observing the
pitch (the ‘likelihood’) to calculate their final esti-
mate (the ‘posterior’). These models of behavior,
called Bayesian models within movement science,
predict that players will estimate a final ball posi-
tion by combining prior information with observa-
tion of the pitch in a way that weights each informa-
tion source relative to the uncertainty. Here we test
this model using data from more than a million sam-
ples from professional baseball. Moreover, as pre-
dicted by a Bayesian model, we show that a batter’s
estimate of where to swing is biased towards the
prior when prior information is available (‘pitch tip-
ping’), and biased towards the likelihood in the case
of pitches with high movement uncertainty. These
results demonstrate that Bayesian ideas are rele-
vant well beyond laboratory experiments and matter
for real-world movements.
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Introduction

You can’t think and hit the ball at the same
time

—Yogi Berra

It is remarkable that baseball batters can successfully
hit the ball so often despite the uncertainty in pitched
balls. Professional pitchers throw the ball at velocities
up to 105 mph' over a distance of 60.5 feet (Figure 1A),
leaving batters approximately 400 milliseconds to per-
ceive the ball, decide on an action, and swing®. With
such limited perceptual systems, batters can only ob-
serve the ball for a short period of time until the brain
needs to make a decision. It takes approximately 100-
ms to observe the ball and an additional 150-ms to
physically swing the bat?, leaving 150-250-ms for the

batter to decide whether or not to swing. When de-
ciding to swing, batters must account for uncertainty
about the specific trajectory of the pitched ball. A large
portion of this uncertainty is due to the pitcher vary-
ing the arm angle from which the ball is the thrown,
the velocity, and by spinning the ball in various ways
to introduce curved trajectories that are hard to predict
(i.e., different pitch types). Pitchers will often try to fur-
ther increase the challenge for the batter by ‘tunneling’
their pitches—a technique where they throw sequen-
tial pitches with varying velocity and spin profiles in a
way that their trajectories are nearly identical early in
their flight, but diverge sharply near the plate®™®°. Fi-
nally, a pitcher’s throwing mechanics, their height, arm
length, and stride during the throw can all impact the
ball’s ‘perceived* velocity, where balls released later in
the delivery and closer to the plate may appear faster
than the same pitch from a different pitcher with shorter
body proportions®’. Despite differences in movements
between pitchers, individual pitchers try to make distin-
guishing between these trajectories difficult by moving
their bodies in similar ways despite introducing multi-
ple sources of uncertainty (e.g., velocity, spin, location
thrown—Figure 1A-B).

At the moment when the ball leaves the pitcher’s hand,
the batter can at best estimate a probability distribution
of where the ball may end up. This distribution is called
the prior (Figure 1A, right, shown in blue) and is one of
the pieces of the problem of estimating where the ball
will land. The second part of the problem is extracting
information about where the ball will be thrown based
on observing the trajectory: the brain could form a dis-
tribution (Figure 1A, right, shown in grey) representing
how probable the observations of the pitched balls are
under which assumption of the thrown ball trajectory (ig-
noring the prior). While this information is noisy due to
perturbations on the thrown ball, information from see-
ing the ball is clearly useful and may be summarized by
the so-called likelihood function (Figure 1A, right, shown
in grey). This defines how compatible each observed
ball trajectory is with a potential height within the strike
zone. Despite all of these uncertainties, batters usually
make reasonable estimations of the ball’s trajectory and
are still able to achieve hits approximately 25% of the
time on average across all batters, with some excep-
tional players reaching rates of over 30%.

How can a batter predict a ball’s trajectory so well that
they contact the ball successfully? More generally,
we may ask how baseball batters estimate the pitched
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A. Typical "Plate Appearance” In Baseball
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B. The Estimation Problem: Where will the ball land in the strike zone?
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C. Bayes' Rule: A prior-likelihood integration model of estimating ball position
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Figure 1. Testing Bayesian ideas by analyzing Baseball data. A. Lead up to a typical plate appearance, a batter may form a prior over where the ball will land in
the strike zone. They will subsequently observe the ball’s trajectory and form a likelihood distribution for the final location, which represents the probability given the
observation of the pitch. B. A batter’s belief about where the ball will land is based on the pitcher’s unique pitch behavior, such as pitch selection, velocity, spin rate,
and movement. C. Bayes’ rule allows for the combination of prior knowledge with observations to make an estimate, called the posterior. D. Left: We test whether
batters behave in a Bayesian way by estimating the contact error on batted balls (hitting under/on top of ball). Right: Our theoretical model (simulated data) illustrates
a Bayesian solution (green line), a mostly likelihood model (solid line), and a mostly prior model (dashed line).
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ball’s trajectory if all they have is noisy prior informa-
tion and the noisy sensory information from watching
the pitched ball? Several hypotheses may explain how
batters deal with pitch uncertainty during batting. The
first is by only considering prior information. By gener-
ating a distribution over pitches, the batter might then
select some action (prior to the pitcher throwing the
ball) that maximizes the probability of contact under
this distribution. Importantly, this hypothesis assumes
that the batter makes no adjustments based on the ob-
servations of the thrown pitch. A second approach is
that they could rely exclusively on observable data from
each pitch without using any prior knowledge for their
batting estimate; however, this hypothesis is unlikely to
accurately describe a their behavior since it assumes
that batters do not make estimates about the visual un-
certainty based on prior information. A third strategy,
which follows Bayesian statistics, predicts that a bat-
ter will combine prior information with the observation
to make a prediction about the oncoming pitch. In the
language of Bayesian statistics, we might say that a
batter combines their prior beliefs about a pitch, P(A),
with the likelihood, or probability of the observed pitch
given that the belief is true, P(B|A). They then make a
prediction, P(A|B), which is the posterior probability of
the pitch after taking into account the observation of the
pitch (Figure 1C). Formally, we express this as

P(A|B) x P(B|A)-P(A).

The result is a situation where what we know from ob-
serving the pitcher (prior) and what we observed during
the ball’s flight (likelihood) are combined based on the
level of uncertainty in each. For example, when vision
of the ball is very good (e.g. because the ball is slow
or the spin pattern is clear), batters should rely mostly
on how they see the ball fly. On the other hand, when
the pitcher is more predictable, batters should rely more
on their prior knowledge. This approach is favorable in
that it allows for the use of prior information about pitch
behavior while permitting flexibility in the estimate by ac-
counting for uncertainty in both the prior and observa-
tion. Practically speaking, this is expected as we know
that batters study opposing pitchers in advance of the
game (prior information) and that batters often achieve
optimal outcomes despite the varying sources of uncer-
tainty on the pitch. To test Bayesian ideas we need to
know about

(1) the existence of the prior distribution (e.g. from the
distribution of heights of pitches within the strike
zone);

(2) the results of a perturbation (the final vertical posi-
tion of the ball); and, importantly,

(3) we need to know the error made for each estimate.

The first two can be directly measured, however, we
must make an approximation for the estimation error on
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batted balls.

A Bayesian approach to sensorimotor control has been
extensively documented through decades of laboratory
studies on movement and decision making®'%. A com-
mon experimental approach to test this hypothesis for
motor control is a 2-dimensional reaching task, e.g.,
using a robotic manipulandum, a tracking system, or
a computer cursor to capture the movement behavior,
where the subjects are asked to reach towards a target
while a perturbation is applied to the movement path.
The perturbations are drawn from some prior distribu-
tion and feedback with varying levels of uncertainty is
provided to the subjects about their action. Since the
correct path can only be noisily observed (through the
feedback with varying uncertainty), the subject should
theoretically alter their movement path to correctly exe-
cute the task based only on their prior information and
the noisy feedback. Indeed, subjects behave in a way
consistent with Bayes’ rule, where they rely more on
prior knowledge when observing feedback with high un-
certainty and rely more on the feedback when it contains
lower uncertainty. While these studies suggest that the
brain implements some form of Bayesian integration for
managing uncertainty, “Bayesian brain” behavior has
scarcely been documented in real world data. More-
over in addition to observing this behavior, we ask, does
Bayesian behavior matter for real world movements?
Here we use the batting behavior of professional base-
ball players to test if humans use Bayesian approaches
in the real world. Specifically, we hypothesize that bat-
ters combine prior information about the pitch with ob-
servations during each time they bat to achieve con-
tact, and that this behavior can be explained using a
Bayesian framework (simulated example in Figure 1D,
right). We find that the behavior observed in the base-
ball data is consistent with laboratory experiments and
implies that batters combine prior information with noisy
observations to manage pitch uncertainty in a way that
is consistent with Bayesian statistics. Furthermore,
when batters have prior information about the oncom-
ing pitch, our results show that they rely more on the
prior knowledge. Moreover, we show that for certain
pitch types with high probability yet high behavioral un-
certainty (that is, batters know what pitch is coming but
its movement is noisy), batters rely nearly completely
on observations about the oncoming pitch while ignor-
ing the uninformative prior knowledge associated with
the pitch type. These results demonstrate Bayesian be-
havior in a real world skilled movement task.

Results

We test if baseball batters employ a strategy for manag-
ing pitch uncertainty that can be explained by Bayesian
statistics. We gathered data from MLB’s publicly ac-
cessible data clearinghouse, Statcast'*, for MLB regu-
lar and postseason games from 2015-2023 (5,882,670
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Figure 2. batters combine prior information with noisy observations to manage pitch uncertainty. A. Distribution of vertical pitch location within the strike
zone for all 1 million pitches. B. Vertical contact error as a function of vertical plate position. The solid gray line indicates a mostly likelihood solution and the dotted
line indicates a mostly prior solution. The blue line indicates a Bayes-like solution across all pitch types. C. The slope of each pitch type. The terms sinker, cutter,
slider, sweeper, 4-seam fastball, split-finger, changeup, and curveball are all specific pitch types with varying speed and movement profiles that are likely to impact
how batter's employ a prior-likelihood integration strategy. Note: The reported slope is for the regression model when the vertical plate position is treated as the
explanatory variable and the contact error is the response. The axes are switched for visual clarity.

pitches before processing, 1,686,238 pitches retained
for analysis). Within this data set we can distinguish dif-
ferent pitch types, giving us variables that may affect the
prior uncertainty of pitches. With this, we can thus ap-
proach asking questions about uncertainty processing
by professional batters.

Estimating vertical pitch position is challenging for the
batter because it varies from pitch to pitch. We directly
have this information in our data since it is measured
for each thrown pitch. The overall distribution of the
vertical pitch position was roughly normally distributed,
N(p=0.46,0 = 0.33), with approximately 87% located
within the vertical limits of the strike zone (Figure 2A).
This distribution of vertical pitch position is crucial as it
defines the distribution of relevant variables to be esti-
mated. Pitchers use the entire strike zone, and even
beyond, to make the estimation task difficult for the bat-
ter.

Brantley & Kérding | Bayesian Behavior in Baseball

The basic prediction of Bayesian statistics is that the
further up the ball is within the strike zone, the more
strongly the batter should estimate a position biased
downward and vice versa. We can test this idea by plot-
ting the inferred error as a function of the position within
the strike zone. We computed the estimate of the er-
ror as the difference between the “ideal” contact point
on the ball (i.e., the point on the ball that results in a
launch angle that maximizes the probability of a home
run) and the observed contact point (example shown in
Figure 1D). Indeed, we find a systematic correlation be-
tween position and error as predicted by the theory (Fig-
ure 2B), suggesting a Bayesian strategy for integration
where both prior and likelihood are used for estimation.
Additionally, we find that the level of reliance on each
varies by pitch type.
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A. Pitch tipping influences batting estimates

Pitch tipping typically occurs during
setup or delivery, but before release.
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Figure 3. Pitch tipping results in a batting estimate biased toward the prior. A. In the timeline of a single plate appearance, pitch tipping occurs before ball
release, either during the setup or during the wind-up. This results in pitchers having prior knowledge about the oncoming pitch. The error between the posterior
estimate and the actual ball position is lower when the correct prior is chosen (simulation). B. Left: In some cases, the posture of a pitcher may give away the planned
pitch. Here, when the glove is high, the pitcher is throwing a 4-seam fastball and when it is lower, the oncoming pitch is a curveball. In this case, we should find more

reliance on the now improved prior. Right: As predicted, we find that the slope is higher and thus that the batters rely more on the prior.

There is no evidence of learning effects

Itis commonly thought that batters are able to learn over
the course of a single plate appearance after seeing
several pitches in a row. We used our model to look at
consecutive pitches within the same plate appearance
(i.e., same pitcher, batter, game, and inning) in which
contact was made on each of those sequential pitches.
We hypothesized that if batters learn from consecutive
pitches, our model would reveal a systematic relation-
ship between the contact error at time, ¢ (current pitch),
and the vertical plate position of prior pitches. We find
that the location in the strike zone on the two previous
pitches has no impact on the error for the current pitch
(Figure S1), implying that batters are unable or choose
not to learn from consecutive pitches. In addition to
learning, we observe that batters are slightly correlated
in the error on consecutive batted balls (Figure S2). This
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effect is very weak and is likely attributable to internal er-
ror processes, such as motor error or changes in strat-
egy. These results make sense for professional base-
ball; if batters tried to learn from consecutive pitches,
pitchers could easily exploit the known temporal depen-
dency in their batting strategy.

External cues impact the strength of the prior

Most major league pitchers throw an average of 4-5
pitches, usually with varying movement patterns and ve-
locities to maximize uncertainty when sequencing pitch
types. However, pitchers usually rely on some pitches
more than others (particularly depending on the hand-
edness of the batter). Information about a pitcher’s pitch
usage (and related pitch behavior) is readily available to
teams and players, who presumably can then use this
information to generate some form of a prior for each
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pitcher. However, there are cases in which external in-
formation can be relayed to the batters about oncom-
ing pitches (e.g., pitch tipping, decoding of signs, and
cheating), thus influencing the prior. In this study, we
consider a specific case in which the decoding scheme
is known.

In a game on October 10, 20197, Tyler Glasnow, an elite
pitcher for the Tampa Bay Rays, was purportedly tip-
ping his pitches based on how he positioned his glove
along the length of his torso. In 2019, Tyler Glasnow
threw three pitch types: the 4-seam fastball (67%, 96.9
=+ 0.4 mph), a curveball (29.3%, 83.5 £ 0.2 mph), and
a changeup (3.5%, 92.9 + 0.9 mph); thus, there is
a relatively strong prior indicating that two pitches are
more probable. However, due to the significantly varying
behavior of the 4-seam fastball and curveball, batters
struggled to hit well against his pitches. In this particular
game, it became quickly apparent that batters were able
to predict which pitch was being thrown simply based
on the position of the glove along his torso (Figure 3B).
When the glove was high (in line with his neck), he was
planning to throw a 4-seam fastball, whereas when the
glove was lower (around the logo on his jersey) he was
planning to throw a curveball. When comparing the data
from this particular game to all other games throughout
the 2019 season, batters relied significantly more on the
prior when making predictions as indicated by the slope
in Figure 3B (right). Thus, these data suggest that ex-
ternal information (pitch tipping) influences the weight
that batters place on the prior and likelihood when mak-
ing inferences. In addition to the above example, we
have included a second example of pitch tipping in the
supplementary materials to further strengthen our claim
that pitch tipping biases batters toward the prior (Figure
S3).

Pitches with weak priors but high movement uncer-
tainty facilitate dependence on the likelihood

Knuckleball pitch behavior is characterized by erratic
and unpredictable movements that make it challenging
to predict the ball trajectory due to high movement un-
certainty (a phenomenon observed in many ball sports).
In the years 2015-2021, there were a total of 3,054
knuckleballs thrown across 8 pitchers. Among these
pitchers, two pitchers account for 97.6% of all knuck-
leballs thrown, with one pitcher throwing knuckleballs
83.3% of the time (R.A. Dickey'®; 2492 total pitches)
and the other throwing them 74.7% (Steven Wright'’;
1210 total pitches). Thus, when either of these pitch-
ers was throwing the ball, there was a strong prior for
what pitch the batter was likely to see. However, due
to the highly erratic behavior of the knuckleballs, the
high movement uncertainty renders the prior very weak.
As shown in Figure 4D, the knuckleball results in a
slope that trends towards zero, indicating a high reliance
on the likelihood, despite the potentially strong prior of
knowing that the particular pitch type will be thrown. In

*Game 5, American League Division Series (ALDS)'®
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laboratory settings, this pitch is analogous to a condi-
tion in which both the behavior prior and likelihood are
drawn from a wide distribution, or a distribution with high
uncertainty. In this case, the “weak” prior knowledge
(due to high movement uncertainty) results in a poste-
rior estimate having greater reliance on the more “re-
liable” observed information, despite also being drawn
from a wide distribution. This can either be interpreted
as the batter ignoring the prior altogether, or simply as-
suming a flat prior with uniform probability for any loca-
tion within the strike zone.

Pitches with weak priors but low movement uncer-
tainty facilitate dependence on the likelihood

Another unusual, yet interesting baseball pitch is the ee-
phus, which is a slow, often looping, curveball that is
thrown at a much lower velocity than all other pitches.
The eephus is a rare pitch, thus resulting in a weak prior
for batters when predicting a pitch type (although some
pitchers are known for throwing them at a higher rate,
it is still uncommon). How then do batters make infer-
ences on a pitch that is so rarely seen? Two distinct
traits about the eephus make it an “easy” pitch to hit: the
flight path of an eephus curveball tends to follow an arc
trajectory and the velocity of the eephus ranges from the
low 50 mph to high 60 mph range—velocities otherwise
commonly seen by youth players. In sensorimotor ex-
periments, this pitch is analogous to the case of a wide
prior and a narrow likelihood and results in subjects re-
lying on the feedback, or likelihood. As expected, our
results reveal a slope close to zero (Figure 4D), indi-
cating almost complete reliance on the likelihood due to
the weak prior and low observation uncertainty. In other
words, the slow velocity and arcing movement allow for
significantly more time to observe the pitch and thus a
near complete reliance on the observation.

Discussion

Here we asked if professional baseball batters use a
Bayesian approach when hitting a pitched baseball. We
used over 1 million pitches from Major League Baseball
games to estimate the error on batted balls and their
dependence on the pitch. We found a systematic de-
pendence of contact errors on pitch position within the
zone, with each pitch type being accompanied by its
own level of uncertainty. Moreover, we found that this
is strongly interacting with pitch tipping, where pitcher
behavior gives batters better priors. We also observed
that when facing highly uncertain or uncommon pitches,
the priors are largely ignored resulting in a posterior
estimate approximately at the maximum likelihood es-
timate. These effects are well predicted by a concep-
tual Bayesian prior-likelihood integration model. Our re-
sults suggest that batters rely on prior knowledge and
real-time observations (likelihood) when making predic-
tions for batting. In laboratory studies, the observed er-
ror, or deviation, can be related back to the true shift
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A. Knuckleball and Eephus pitches in a standard plate appearance
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B. Knuckleballs have erratic movement resulting in a wide prior and likelihood
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Figure 4. Pitches with weak priors facilitate dependence on the likelihood. A. The movement path of the knuckleball (shown in black) is highly erratic leading to
high uncertainty. The eephus has a slow arcing movement profile (shown in light blue) and occurs very rarely in professional games. B. Knuckleballs have a noisy
likelihood but a noisier prior, thus it cannot be predicted easily. The posterior estimate is theorized to be approximately the maximum likelihood solution. C. The
Eephus is a slow pitch and thus easily observable, however, the prior is weak since it is an uncommon pitch. D. Left: Vertical contact error as a function of vertical
plate position. The solid gray line indicates a mostly likelihood solution, the black dotted line indicates a mostly prior solution, and the black line is for all pitches. The
orange and pink represent the knuckleball and eephus, respectively. Right: The slope and bias of each pitch type. Note: The reported slope is for the regression
model when the vertical plate position is treated as the explanatory variable and the contact error is the response. The axes are switched for visual clarity.
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imposed by experimenters. When the batter sees the
pitcher prior to the throw, they can form an expectation
of where the ball will land, e.g. by looking at the pitcher,
thus drawing from a distribution known as the prior in
Bayesian terms. However, this prior will be different
from trial to trial and it cannot be measured directly. The
batter’s estimate of where the ball will land can then be
seen as a way of improving the estimate based on see-
ing the ball’s trajectory. However, we can not measure
this prior distribution since it largely depends on what is
going on in the batter’s brain. But, any ball’s position can
be seen as traveling towards the mean of the prior and
then having an error relative to that. This error is what
Bayesian statistics operates upon. As such, we cannot
predict the exact dependence of batting errors on the
pitched ball trajectories. However, what we can predict
is the trend coming from Bayesian statistics: a ball land-
ing lower should lead to an error further up on the ball.
This dependence should be represented by a steeper
slope if the prior information is better and shallower if
the likelihood information is better. For our analysis we
have to approximate the calculation of batting contact
error, which we consider to be the deviation from the
“true shift”. Our analysis uses a simple 1D geometrical
model that estimates the deviation in the vertical axis
based on the launch angle off of the bat. This model
does not account for the tilt or fan of the bat, which will
have an impact on the contact point on the ball. Addi-
tionally, we assume that the attack angle of the bat and
the center-line angle of the ball are aligned such that
the contact is purely normal to the bat surface. Due to
the limitations of our data, we are not able to explicitly
address these assumptions in our model; however, we
believe that this model is a fair first-order approximation
of the bat-ball contact and that the behavior observed in
our data is persistent across the millions of pitches in-
corporated in our analysis. There is no reason to believe
that the relevant angles would systematically depend
on factors expected to influence the prior. As track-
ing technology continues to advance, future research
can use a full calculation based on precise tracking of
the ball and bat. One important question to consider is
whether biomechanics alone can explain the results of
our analysis. Could it be that our finding that error is
related to height within the zone is simply explained by
the swing starting at a point where the batter does not
have enough time to raise or lower the bat sufficiently?
That interpretation seems unlikely to us based on both
existing knowledge and our data. It is well established
that batters are still able to achieve hits, including home
runs, when facing extremely high velocity pitches, even
when the ball is high or low. At these fast pitch veloc-
ities, the necessary bat velocity required to hit the ball
is far too high if the batter waits until the pitch has been
fully perceived. In order to hit the ball, the batter must
initiate the swing prior to recognizing the ball by relying
on some prior belief about the pitch. Moreover, the as-
sumption of the effect being entirely biomechanical can
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neither explain why tipping leads to what appears to be
stronger priors. The effect of a more localized prior is
similar to the effect of a batter being weaker, in that both
effects predict that larger deviations of ball positions are
associated with larger errors. However, the explanation
in terms of priors naturally predicts that a) tipping pro-
duces a stronger prior and thus larger deviations, and
b) that knuckleballs are weakly represented in the prior
and thus smaller deviations. The biomechanical expla-
nation seems unlikely: Why would batters be weaker in
the case of tipping and stronger for knuckleballs? As
such, the most parsimonious explanation of our data
remains the Bayesian one. We do not know precisely
what batters are actually trying to do. For example, bat-
ters behave differently based on external factors, such
as the pitch count, the score, the number of outs, or
based on directions provided by the coaches (e.g., “do
not swing at the first pitch”). Nonetheless, we believe
that these external considerations do not strongly im-
pact the prior or the batter’s behavior of integrating the
prior and likelihood in a Bayesian manner. Instead, this
is likely to only impact the batters interpretation of “op-
timal” for that specific scenario. For example, a batter
attempting to either simply get on base (e.g., hit a sin-
gle) or to hit a sacrifice fly to score a runner both result
in optimal launch angles not equal to the optimal launch
angle for hitting a home run. While situational batting
is important, we do not see how it could explain our
data. Explaining baseball behavior in terms of proba-
bilistic ideas has received some attention in the sports
science literature. The idea that ball trajectory estima-
tion requires priors and likelihoods has been discussed
as parts of the process of batting’®~>' and sports more
generally?>. Our results empirically demonstrate that
batters rely on both prior information and observable in-
formation when hitting and that the reliability of these
information sources can be weighed by their relative
uncertainty. Laboratory studies have also shown that
the various sources of information that we discuss em-
pirically matter to athletes'®2%23-28 The contribution
of our study was testing this set of ideas directly on a
large database of professional batting in major league
baseball games. In the space of sensorimotor integra-
tion and motor control, it has been well observed that
subjects use priors and noisy feedback based on their
respective uncertainties in a way that is consistent with
Bayesian statistics. This type of experimental approach,
which is typically conducted by introducing some type of
visuomotor or dynamic perturbation to a simple move-
ment task, has been iterated in a number of environ-
ments, such as in force estimation, cue combination,
motor adaptation, and a coin splash game in children.
We were inspired by these studies to study baseball to
see if this behavior can be observed in the real world.
The location where the pitch lands in the strike zone in
a way fulfills a similar role to the perturbation in the lab
based studies. Just like in lab based studies, there is a
prior distribution, with the slight difference that it is not
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entirely observable for us. In addition, there are factors
that influence priors, for example, the case of knuckle-
balls (relatively flat prior) and tipped pitches (relatively
narrow prior) in our study. Moreover, the ball’s angle im-
plicitly reveals the estimated position, in the same way
as movement patterns reveal implied estimates in lab
experiments. With this design we were able to find evi-
dence of Bayesian behavior in professional sports. Our
study brings Bayesian movement science into the real
world. It opens the path towards computational mo-
tor control with big data from other professional sports,
such as tennis®?, penalty-kicks in soccer®’, or squash®'.
The emergence of the technology of video based pose-
tracking could help to strengthen and enable such anal-
yses. More generally, these findings allow us to ob-
serve movements with high quality in the real world.
This promises to allow us to bring lab based ideas with
their conceptual sophistication to the real world and, ul-
timately, impart movement science with high ecological
validity. The field of motor control needs to bring model
based thinking to the real world, and maybe, Bayesian
movement control, a large and active field largely con-
fined to laboratories today, will improve athletic perfor-
mance.

Methods

Data Acquisition

Our analysis was conducted using Python 3.10. All
code used for data acquisition and analysis have been
made openly available. We used the pybaseball li-
brary (https://github.com/jldbc/pybaseball) to
obtain publicly accessible data from MLB’s data
clearinghouse'*. The on-field data are obtained through
an acquisition tool known as Statcast®?, which employs
high-accuracy, high-speed cameras and radar to track
the ball within the field of play, including pitch release
velocity, pitch spin rate, ball position within the strike
zone, and launch angle (among 91 features returned
for each pitch®®). Our initial query returned a total
5,882,670 pitches for the 2015-2023 seasons. We pro-
ceeded to exclude games from Spring training or exhibi-
tion games since these games are often used for play-
ers and teams to experiment with new strategies (e.g., a
pitcher exploring a new pitch type, players at new posi-
tions, altered mechanics of the swing) and for teams to
re-acclimate to playing after the off-season. We then re-
moved pitches in which no contact was made between
the bat and ball, including no swing or where the batter
would swing and miss. Our resulting dataset included
1,686,238 pitches that were retained for analysis.

Estimation of Bayesian Behavior

For our analysis, we used the final vertical position
within the strike zone as the representation of the “true
shift”, or the perturbation drawn from the prior distribu-
tion, which we computed by normalizing the true vertical
height of the ball (measured in feet) by the height of the
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strike zone for the batter (computed per pitch). In a lab-
oratory experiment, we would draw the “true shift” from
a known prior distribution and then directly measure the
deviation from that value based on the error in the bat-
ter's estimate. However, since we do not have data that
directly track the bat, we infer the contact point based
on the launch angle of the batted ball. There are sev-
eral factors that impact the launch angle of the batted
ball, namely the center line angle of the ball and the
attack angle, fan, and tilt of the bat®*. Due to our inabil-
ity to track the bat, we therefore assume that contact is
purely normal such that there is no fan or tilt and the
attack angle and the center line angle of the ball are
aligned at contact. We assume a simple geometrical
model, where the contact error, econtact, iS computed as:

€contact = —Tbaseball X (Sinwoptimal) - Sin(gcontact))a

where rpasenail = 1.45-inches, Ooptimal = 25°, and Ocontact
is the launch angle observed when the bat contacts the
ball. We then performed a final cleaning by removing
extreme outliers in the data resulting from tracking er-
rors. The data were binned into by discretizing the ver-
tical position within the strike zone into 9 bins. We fit
an ordinary least squares (OLS) model to fit the error
on the batted ball as a function of the position within the
strike zone for the aggregate pitch data (all pitch types)
as well as for each unique pitch type (minimum number
of pitches = 10,000). According to Bayesian statistics,
we assume that a slope closer to zero indicates more
reliance on the likelihood and an increasing slope indi-
cates more reliance on the prior (Figure 1D). We per-
formed this same analysis for the cases of knuckleballs
and eephus pitches for the available number of pitches
within the dataset.

Pitch Tipping

For the case of pitch tipping we specifically identified
pitches from the game during which the tipping occurred
(November 10, 2019) as well as all other pitches thrown
by Tyler Glasnow during the 2018-2020 seasons. We
followed the same procedure as before by fitting an OLS
model for each of the two conditions and used a t-test to
determine the statistical significance of the slope during
tipping compared to all other pitch appearances.

Data/Code Availability

All code used for data acquisition, data analysis, and
figure generating have been made available at https:
//github.com/Kordinglab/Bayesball
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Supplementary Information

No evidence of learning - supplementary figures

Contact error vs Position in Strike Zone

Mostly likelihood
Mostly Prior

z(t) vs error(t)
z(t-1) vs error(t)
z(t-2) vs error(t)

Vertical plate position (% strike zone)
Knees (0 %) 50 % Chest (100 %)

T T
-0.05 0 0.05 0.1
Vertical contact error (% strike zone)

Figure S1. Vertical contact error as a function of vertical plate position at time t (current pitch), t-1 (previous pitch), and t-2 (two

pitches previous). These results indicate that there is no evidence on learning over consecutive pitches.

=== error(t-1) vs error(t); slope: 0.055
== error(t-2) vs error(t); slope: 0.0497

0.1

0.05 -

Error two previous pitch

-0.05 -

T T
-0.05 0 0.05 0.1
Error current pitch

Figure S2. Error on batted ball at time t (current pitch) vs error at time t-1 (previous pitch) and t-2 (two pitches previous). These
results suggest that there is a small amount of error between consecutive pitches that may arise from internal processes, such
as motor error or changes in strategy.
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Additional example of pitch tipping

In our study, we consider the case of pitch tipping as an example of when batters are biased towards the prior, i.e.,
they know what is coming. To someone who is not a fan of the game, it can be challenging to believe that batters
are capable to detecting such subtle queues by the pitcher that indicate what pitch might come next. While there are
many documented examples in the past, we chose to highlight a second one that occurred within the time frame of
our data. Additionally, the team who was batting (i.e., identifying the pitcher’s tips) is the same batting team as the
example in the paper.

In a game on October 29, 2019 (game 6 of the World Series), Stephen Strasburg, an elite pitcher from the Washing-
ton Nationals, was the starting pitcher of the game. Similar to the first example, consecutive batters were achieving
hits off of difficult to hit pitches. One of the key indicators of batters being able to identify pitches in advance is how
well they time their swing and the quality of the contact (i.e., well struck balls). In this game, it was revealed that
the pitchers hand movements in the glove were reveling what pitch he planned to throw. Importantly, this was an
issue that he had had in the past and thus the coaches were able to identify the issue and help him better disguise
his pitches for the remainder of the game. After the game, the pitcher acknowledged that he was indeed tipping his
pitches, which further reinforces this idea that pitch tipping is a real and highly consequential phenomenon. In the
following figure, we see that the same pattern of batters being biased toward the prior is observed for this case of
tipping.

=== Mostly likelihood —— No Tipping
=nn  Mostly Prior —— Tipping

Contact error vs Position in Strike Zone

50 % Chest (100 %)
*
*

Vertical plate position (% strike zone)
Knees (0 %)
1

-0.05 0 0.05 0.1
Vertical contact error (% strike zone)

Figure S3. Pitch tipping results in a batting estimate biased toward the prior - Stephen Strasburg example

This incident is further discussed in these articles and videos:
(1) https://www.youtube.com/watch?v=aI52FQ23SW0
(2) https://wuw.nbcsports.com/mlb/news/stephen-strasburg-says-he-was-tipping-pitches-in-first-inning-o

(3) https://www.si.com/mlb/2019/10/30/stephen-strasburg-nationals-saved-season-world-series-game-6

Tipping in other sports

The act of tipping can occur in many sports, such as,
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+ a baseball pitcher indicating which pitch he will throw,

* a soccer player indicating which direction they will kick the ball (e.g., during a free kick or penalty kick), or

« atennis player indicating which way they will serve the ball.

For example, in 2017, the legendary tennis player, Andre Agassi, reveled that he had learned to defeat Boris Becker
by watching his tongue. After studying Becker’s serve through film, he observed that Becker would unintentionally
move his tongue in the direction that he planned to serve the ball. While we do not examine this example in our
analysis, it serves as a strong example of when tipping occurs outside of the realm of baseball. This incident is well

documented in the following resources:

* https://www.facebook.com/playerstribunefootball/videos/andre-agassi-how-i-beat-boris-becker/
1249137535168463/

* https://www.businessinsider.com/andre-agassi-beat-boris-becker-watching-tongue-serves-2021-4
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Overview of Baseball

Baseball is a game played between two teams. The team playing in its home ballpark, or stadium, is called the home
team, while the opposing team is the visiting, or away team. Baseball is played in turns, with each team alternating
between offense and defense. The game takes place on a large field that resembles a triangle or diamond shape
extending outward from a point known as home plate. Home plate is where batters stand to hit the ball.

There are three additional bases—first, second, and third—that form a diamond within the field. The area that
includes the bases and extends inward toward home plate is known as the infield, while the area beyond the infield
and within the two foul lines is known as the outfield. The main objective in baseball is for the offensive team (the
batting team) to hit the ball and run around the bases to score runs. The defensive team tries to prevent this by
getting the offensive team “out.” These terms will be discussed in more detail herein.

The game begins with the home team “on the field,” or playing defense. The team on the field is allowed nine players
to defend against hit balls: the pitcher, the catcher, four infielders (first baseman, second baseman, shortstop, and
third baseman), and three outfielders (left fielder, center fielder, and right fielder). The pitcher’s role is to throw the
ball in a way that entices the batter to swing but makes it difficult for them to make good contact with the ball—or to
hit it at all.

The batter’s job is to make contact with the ball as well as possible, aiming to hit it in a way that makes it challenging
for the defensive players to stop it before the batter can reach base. If a batter strikes the ball with the optimal
combination of launch angle and exit velocity, they increase the probability of hitting it over the back fence for a
home run, which is one of the most desirable outcomes. Although not every batter is specifically aiming for a home
run, batters generally strive to make hard contact. On average, a home run represents the best possible result of a
well-hit ball.

The game is divided into innings, with each inning providing both teams a chance to hit (offense) and play in the field
(defense). When the visiting team is hitting, it is referred to as the first half of the inning, or the top of the inning.
When the teams switch, they enter the second half, or the bottom of the inning. The teams switch roles after the
defensive team achieves three “outs.”

While this summary provides a short explanation for the game of baseball, the reader is encouraged to watch the
following video for a more thorough visual explanation of the game:
https://www.youtube.com/watch?v=tEckJtLgPIs

Key Terms

batter Player on offense who hits the ball with the bat.

estimation error We define estimation error as the vertical error between the bat and the ‘optimal’ contact point on
the ball to achieve a home run. The ‘optimal’ point is defined in the paper. The term ‘estimation error’ is
not to be confused with an error in baseball, which specifically refers to a failed play that is deemed to be
a misplay by the official scorer.

hit In baseball, a hit is a specific term that indicates that a batter made contact and was able to reach a base (or
home run) without getting out. In this paper, when the bat and ball meet, we refer to this as ‘contact’ to
distinguish from a formal ‘hit’ in baseball.

inning An inning is a subset of a full game of baseball that describes a one instance of both having a turn batting
(offense) and playing in the field (defense; includes pitcher). A half-inning describes one of the teams
taking a turn batting. A half-inning is over when the batting team gets three outs. A full inning is completed
when each team has completed their half-inning. There are nine innings in a single game.

pitch type Pitchers vary the velocity, spin rate, and spin axis when they throw the ball to create curved trajectories.
While behavior within a pitch type can vary from pitcher to pitcher, there certain velocity and movement
that are characteristic of each pitch type.

Helpful videos summarizing pitch types:
https://www.youtube.com/watch?v=0DFYJkneoMo
https://www.youtube.com/watch?v=1FTFWzcgjHE

4-seam fastball A 4-seam fastball (or four-seamer) is the canonical ‘fastball’ in baseball. It is thrown in a way
that minimizes movement and maximizes velocity, thus usally allowing pitchers to be more accurate with
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this pitch than most others. Four-seam fastballs usually have pure back spin, which can have the effect of
fighting gravity over the flight path. A four-seam fastball thrown with very high rates of backspin can have
the illusion of rising, making the pitch very difficult to hit.

changeup A changeup is a pitch that is designed to look like a fastball when gripped, but arrives to the plate
with much slower velocity. The changeup is considered a deception pitch, where pitchers try to fool batters
by throwing some combination of a fastball and changeup back to back.

curveball A curveball is a pitch that is usually thrown with signficant top spin, causing the ball to significantly
drop in height as the ball reaches the batter. A well thrown curveball is often thrown following a fastball,
where the curveball starts at with a similar flight path as a fastball, but arrives much slower and much lower
in the zone

cutter A cutter is a variation of a fastball that is designed to have 'glove side run’, meaning the ball will move
left when thrown by a right handed pitcher and move right when thrown by a left handed pitcher

eephus An eephus, or eephus curveball, is a very rare pitch that is usually thrown in a high arcing path with
low velocity. While few pitchers use an eephus regularly, several pitchers have used it as a tool in their
pitch arsenal as a way to surprise batters
https://www.youtube.com/watch?v=Y7kJQrGK1l-s
https://www.youtube.com/watch?v=ikL1RT2j7EQ
https://www.youtube.com/watch?v=xy5L4L5Q0nY

knuckleball A knuckleball is a pitch that is thrown in a way to minimize the spin to
as near to zero spin as possible. This results in a flight path with erratic move-
ments that makes the ball's location unpredictable, making the ball difficult to hit
https://www.youtube.com/watch?v=qusYTWQFIF8
https://www.youtube.com/watch?v=35Sb5Jdtzz8
https://www.youtube.com/watch?v=__e_Lhx2mfQ

sinker A sinker is a variation of a two-seam baseball that has late vertical movement or ’arm side’ movement
(moves right for right-handed pitcher and moves left for left-handed pitcher) or both movement profiles.

slider A slider has a similar 'glove side’ run to a cutter, but is usually thrown with lower velocity and move vertical
movement downwards. A slider is usually thrown with higher velocity and less vertical movement than a
curveball.

split-finger A split-finger, sometimes called a splitter or split-finger fastball, typically has lower velocity than
a four-seam fastball and significant downward movement late in the flight path. The splitter is wedged
between two fingers on the throwing hand (creating a v-shape), which causes the ball to slide out of the
hand with a lower velocity and low spin rate.

sweeper A sweeper, or sweeping slider, is a variation of a slider that has dramatic horizontal movement, usually
moving 15" or more in the horizontal plane. The term, sweeper, is a relatively new term that was created
to distinguish between a more traditional slider and the slider variation with huge horizontal movement.
https://www.youtube.com/watch?v=z47hUrPKDG4

pitched ball In the context of this paper, we refer to any ball thrown by the pitcher to the batter as a pitched ball.

pitcher Defensive player who throws the ball to the batter. In the context of this paper, we refer to any ball thrown by
the pitcher to the batter as a pitched ball.

plate appearance A plate appearance is any instance of a batter going up to bat, regardless of the outcome. This
is in contrast to an ’at-bat’, which is only counted in the score book when a plate appearance results in an
out (including fielders choice), a hit, a strikeout, or fielding error

statcast Statcast is a camera and radar-based tracking system that is used for tracking players and the ball in many
sports, including baseball and tennis. Statcast is used by MLB to track pitches (including velocity, spin rate,
movement) and hitting (e.g., exit velocity, launch angle, batted ball distances). The data used in our paper
are recorded using the Statcast system.

strike zone The space in front of the batter from approximately the knees to the sternum and the width of home
plate.
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