
MIND Networks: Robust Estimation of
Structural Similarity from Brain MRI

Isaac Sebenius1,2*, Jakob Seidlitz3,4,5, Varun
Warrier6, Richard A I Bethlehem1,6, Aaron

Alexander-Bloch3,4,5, Travis T Mallard7,8, Rafael Romero
Garcia1,9, Edward T Bullmore1 and Sarah E Morgan2,1,10

1Department of Psychiatry, University of Cambridge, Cambridge,
United Kingdom.

2Department of Computer Science and Technology, University of
Cambridge, Cambridge, United Kingdom.

3Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA.

4Department of Child and Adolescent Psychiatry and Behavioral
Science, The Children’s Hospital of Philadelphia, Philadelphia,

PA, USA.
5Lifespan Brain Institute, The Children’s Hospital of

Philadelphia, Philadelphia, PA, USA.
6Autism Research Centre, Department of Psychiatry, University

of Cambridge, Cambridge, United Kingdom.
7Department of Psychiatry, Harvard Medical School, Boston MA,

USA.
8Psychiatric and Neurodevelopmental Genetics Unit, Center for
Genomic Medicine, Massachusetts General Hospital, Boston MA,

USA.
9Instituto de Biomedicina de Sevilla (IBiS)

HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto.
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Abstract

Structural similarity networks are a central focus of magnetic reso-

nance imaging (MRI) research into human brain connectomes in health

and disease. We present Morphometric INverse Divergence (MIND), a

robust method to estimate within-subject structural similarity between

cortical areas based on the Kullback-Leibler divergence between the

multivariate distributions of their structural features. Compared to

the prior approach of morphometric similarity networks (MSNs) on

N>10,000 data from the ABCD cohort, MIND networks were more

consistent with known cortical symmetry, cytoarchitecture, and (in

N=19 macaques) gold-standard tract-tracing connectivity, and were

more invariant to cortical parcellation. Importantly, MIND networks

were remarkably coupled with cortical gene co-expression, providing

fresh evidence for the unified architecture of brain structure and

transcription. Using kinship (N=1282) and genetic data (N=4085),

we characterized the heritability of MIND phenotypes, identifying

stronger genetic influence on the relationship between structurally

divergent regions compared to structurally similar regions. Overall,

MIND presents a biologically-validated lens for analyzing the structural

organization of the cortex using readily-available MRI measurements.

Keywords: Neuroimaging, T1-weighted MRI, network neuroscience,
connectivity, multi-modal, PRIME-IDE, genetics, connectomics, cross-species,
macaque, cortical structure

Introduction

A single structural MRI scan of a human brain contains an immense amount
of information. Standard MRI-based surface reconstructions of the cortex, for
example, are comprised of hundreds of thousands of vertices, each character-
ized by many parameters (Fischl, 2012). The challenging task of integrating
this wealth of information to model the structural architecture of the brain is
essential to better understand healthy and disordered brain development and
function.

Traditional, univariate studies of brain structure focus on changes in indi-
vidual structural features, such as cortical thickness and volume, with recent
large-scale research in this vein revealing the central role of MRI-derived brain
structural features to understanding development and disease (Bethlehem et al,
2022). However, brain regions do not function or develop in isolation but
instead form an integrated, genetically-coordinated network structure; accu-
rately modelling this architecture is crucial for understanding its putative
role across typical and atypical functioning and development (Bullmore and
Sporns, 2009; Warrier et al, 2022b; Taquet et al, 2020). Recently, the construc-
tion of structural similarity networks has emerged as a promising approach for
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integrating multiple structural MRI features into biologically-relevant single-
subject connectomes (Seidlitz et al, 2018; Li et al, 2017). Morphometric
similarity networks (MSNs), the prevailing such method, are constructed by
representing each brain region as a vector of several MRI features (for exam-
ple, the region’s mean cortical thickness) and using the pairwise correlation
of these (Z-scored) feature vectors as a measure of the structural similarity
between brain regions.

While simple in construction, MSNs have demonstrated the promise of
structural similarity networks to link macro-scale MRI phenotypes with their
neurobiological substrates. For example, MSNs recapitulated known brain
organizational principles and cortical cytoarchitectonic classes (von Economo
and Koskinas, 1925) more robustly than comparable networks derived from
tractography of di↵usion-weighted imaging (DWI) data, or from structural
covariance network analysis of cortical thickness, in N⇠300 healthy young
adults (Seidlitz et al, 2018). Moreover, MSNs from macaque MRI data were
positively correlated with gold-standard axonal connectivity measured by
tract-tracing (Seidlitz et al, 2018). Most promisingly, MSNs have provided a
useful bridge between brain structure, cortical gene expression, and genetics.
For example, by combining cortical transcriptomic data from the Allen Human
Brain Atlas (Hawrylycz et al, 2015) with structural MRI from subjects with
one of six di↵erent chromosomal copy number variation (CNV) disorders, Sei-
dlitz et al (2020) demonstrated that the changes in morphometric similarity
induced by each CNV closely resembled the spatial expression patterning of
genes from the a↵ected chromosome. Other studies have shown that changes
in morphometric similarity in psychotic disorders (Morgan et al, 2019), major
depressive disorder (Li et al, 2021), and Alzheimer’s disease (Zhang et al, 2021)
correspond to the cortical expression of disease-relevant genes.

Despite the promise of MSNs, one key limitation is that they reduce the
rich, vertex-level data from MRI-based cortical surface reconstructions to sin-
gle summary statistics for each feature per region. While other work has
explored structural similarity measured directly from vertex-level data, these
methods were limited to the use of a single structural feature such as corti-
cal thickness (Homan et al, 2019) or grey matter volume (Leming et al, 2021;
Kong et al, 2015).

Here, we propose Morphometric INverse Divergence (MIND) as a novel
method for e↵ectively estimating structural similarity in the brain. We first
characterize each brain region as a multidimensional distribution of a num-
ber of structural features at the vertex-level (e.g. vertex-wise cortical thickness
values). We then calculate the MIND structural similarity metric based on
the symmetric Kullback-Leibler (KL) divergence between the multivariate
distributions of each region pair.

In order to comparatively evaluate MSNs and MIND networks, we stud-
ied how accurately and consistently each type of network models a wide array
of known biological patterns of brain organization. In comparison to MSNs,
we show that MIND networks more accurately represented known cortical
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symmetry and cytoarchitecture, and mapped more closely onto axonal connec-
tivity from retrograde tract-tracing in macaques. MIND networks were also
highly consistent across cortical parcellations and between individuals, and
were more resilient to the inclusion of noisy features. Most importantly, MIND
networks showed a step-change increase in agreement with networks of cortical
gene co-expression compared to MSNs, providing fresh evidence of the uni-
fied structural and transcriptomic organization of the brain. Building on this
result, we estimated the patterns of twin-based and SNP-based heritability in
MIND networks and MSNs at multiple scales of network resolution, demon-
strating that MIND network phenotypes were systematically more heritable
than MSNs and exhibited similar heritability to other structural features such
as sulcal depth. We observed a stronger genetic influence on MIND similar-
ity between structurally divergent regions than between regions with similar
morphology, and that on average, areas of insular and primary sensory cortex
were more heritable than the MIND network hubs of the association cortex.

In sum, MIND presents a new, validated lens for understanding the orga-
nizing principles of cortical structure from a single T1w image. Code for MIND
calculation is publicly available at https://github.com/isebenius/MIND.

Results

Morphometric INverse Divergence: MIND estimator of

structural similarity

The pipeline for constructing MIND networks is shown in Figures 1 and S1. As
input, we used the mesh reconstructions of the cortical surface generated from
T1w images by Freesurfer’s recon-all command (Fischl et al, 1999). This
surface can be described by a set of vertices (163,842 vertices per hemisphere
for the fsaverage template (Fischl, 2012)). Each vertex is characterized by
multiple metrics derived from the reconstruction of the MRI image, such as
cortical thickness (CT) and sulcal depth (SD), among others. We refer to these
derived metrics as structural features.

To estimate MIND, we standardize each feature across all vertices, then
aggregate the vertices within each region to create a single distribution per
region, which is multidimensional due to the inclusion of several structural fea-
tures. We then compile a pairwise distance matrix by estimating the symmetric
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between the
multivariate distributions of each pair of cortical regions. Finally, given regions
a and b, we transform their corresponding divergence KL(a, b) as follows to
calculate the MIND metric of similarity, bounded between 0 and 1:

MIND(a, b) =
1

1 +KL(a, b)

A more rigorous definition of MIND as a similarity metric, in addition to a
description of the k -nearest neighbor algorithm used to estimate multivariate
KL divergence (Perez-Cruz, 2008), is provided in Methods.

https://github.com/isebenius/MIND
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Fig. 1 Estimation of Morphometric Inverse Divergence. The cortex is parcellated
into a set of predefined regions or areas, each of which comprises a set of vertices themselves
described by multiple structural features. Each cortical area is thus characterized by the
multidimensional distribution of the structural features measured at each of its constituent
vertices. Pairwise KL divergence between these regional multidimensional distributions is
estimated using k -nearest neighbor density estimation (Perez-Cruz, 2008), and the diver-
gence is then transformed into a similarity score, termed Morphometric Inverse Divergence,
0 < MIND  1, with higher scores indicating greater similarity. Illustrative distributions
for regions a and b are shown as scatterplot matrices, with diagonal panels showing the
marginal univariate distribution for five structural features and the o↵-diagonals showing
each pair-wise bivariate relationship. Bottom row: a visualization of a group-mean MIND
similarity matrix, and of the two main MIND network phenotypes (edges and weighted net-
work degrees, calculated as the average edge weight per region) on the brain. The top 2% of
MIND edges are shown for visibility. CT: cortical thickness, Vol: grey matter volume, SA:
surface area, MC: mean curvature, SD: sulcal depth.

Data and network construction

As our principal human MRI dataset, we used data from 10,367 individu-
als from the Adolescent Brain Cognitive Development (ABCD) study (Hagler
et al, 2019). For each subject, we constructed MSNs and MIND networks using
a symmetric subdivision of the Desikan-Killiany atlas (Desikan et al, 2006)
into 318 parcels of similar volume (unless otherwise noted), henceforth referred
to as DK-318 (Romero-Garcia et al, 2012). We used the five morphometric
features indicated in Fig. 1 for both MIND network and MSN construction:
cortical thickness (CT), mean curvature (MC), sulcal depth (SD), surface area
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Fig. 2 Comparing MIND networks and MSNs. A, B) Illustrative MIND network and
MSN from the same random subject in the ABCD cohort. C) Cortical maps of the group-
level MIND network and MSN weighted node degree. D) The positive correlation between
edge weights of the group level networks. E) The distribution of pairwise correlations of net-
work edges between subjects for MIND networks and MSNs, for all pairs of 10,367 subjects.
F) The correlation between MIND networks and MSNs with corresponding networks con-
structed using 1-5 additional random features of Gaussian noise (for 150 random subjects).
Shading represents the empirical 95% CI. G) The fraction of total inter-hemispheric con-
nections represented at di↵erent network densities for both types of group mean networks.
H) Parcellation consistency of MIND network phenotypes at nodal level (weighted degree)
and at edge level. The left plot shows the correlation between weighted degree estimated
by one of the possible pairs of parcellation templates: DK, DK-318, and HCP. To calculate
between-parcellation correlations, each vertex was assigned the weighted degree of the region
within which it fell, for each parcellation, and the correlation was calculated between the
resulting vectors of vertex-wise values. The right plot shows the correlation between 2278
network edges calculated using the 68-region Desikan-Killiany (DK) parcellation, or by using
the finer-grained DK-318 parcellation to estimate 50,403 edges and coarse-graining (DK-318
interp.) to match the number of edges in the original DK network. I) The fraction of edges
between two regional nodes of the same cytoarchitectonic class over a range of network den-
sities. In G) and I), shading represents a 95% CI determined by population bootstrapping.
In all panels except as noted in H), the DK-318 parcellation was used to define 318 cortical
regions of approximately equal volume.

(SA), and grey matter volume (Vol), which is estimated at the vertex level by
combining local measurements of thickness and area. We used these features as
they are readily available from standard MRI processing pipelines using T1w
images alone (Fischl, 2012); as such, we ensure that the method is applicable to
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most legacy structural data. However, MIND can be extended to include addi-
tional volumetric measurements of interest based on other imaging modalities
(e.g. such as fractional anisotropy) using volumetric registration and projection
onto the surface mesh; for example, using Freesurfer’s mri vol2surf command.

Network reliability

To compare the reliability of MIND networks and MSNs as measures of
brain network organization, we examined the consistency of edge weights
and nodal degrees in both types of structural similarity network, apply-
ing the same parcellation template to multiple individual scans to assess
between-subject consistency, and applying multiple parcellation templates to
the same set of scans to assess parcellation consistency. We also evaluated the
e↵ect of including uninformative (noise) features into both types of network
construction.

Between-subject consistency

The group-level MSN and MIND networks were correlated in terms of both
edge weights (r=0.48, Fig. 2D) and weighted nodal degrees (r=0.38). How-
ever, MIND networks were substantially more consistent across subjects (Fig.
2E), measured by pairwise correlation of edges (mean pairwise r=0.62 vs.
0.38) and degrees (mean pairwise r=0.73 vs. 0.45), suggesting that MIND net-
work construction may lead to less noisy estimates of a common structural
architecture.

Parcellation consistency

Brain network analysis assumes that major findings can be replicated across
cortical parcellations. We analyzed the consistency of group-level MSNs and
MIND networks across three commonly used cortical parcellations: the 68-
region Desikan-Killiany (DK) atlas (Desikan et al, 2006), the 318-region DK-
318 atlas derived by subdivision of DK areas (Romero-Garcia et al, 2012) (the
principal parcellation used for this study), and the 360-region HCP parcellation
(Glasser et al, 2016).

We examined edge-level consistency by leveraging the fact that DK-318
is a strict subdivision of the DK atlas, allowing us to compare the origi-
nal group DK networks with interpolated versions derived from the DK-318
group networks (see Methods). MIND networks showed markedly higher edge
consistency (Fig. 2H) in terms of the correlation between the original and
interpolated DK networks (r=0.70 vs. 0.39 for MSNs).

To calculate between-parcellation correlations, each vertex was labeled by
the weighted degree of the region to which it was assigned, for each parcel-
lation, and the correlation was estimated between these two identical-length
vectors of parcellation-specific degree projected to each vertex (Fig. 2H and
Fig. S4). MIND networks were strongly correlated across all (three) possible
pairs of the three parcellations, whereas MSN degree demonstrated limited
generalizability across parcellations. (e.g. r=0.59 vs. 0.18 for MIND networks
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and MSNs, respectively, when comparing weighted degree for DK and DK-318
atlases).

Resilience to noisy features

We studied the robustness of MIND networks and MSNs to the inclusion of
uninformative (noise) features. We created additional MIND networks and
MSNs with between one and five N (0, 1) noise features at each vertex (in addi-
tion to the five measured MRI features) for a random subset of 150 subjects.1

MIND networks constructed from these noisy data were almost perfectly cor-
related with MIND networks constructed from the measured features only,
without additional noise (Figure 2F); whereas MSN construction was signifi-
cantly degraded by the inclusion of noise features (e.g., mean r = 0.95 vs. 0.50
for MIND networks and MSNs with five noise features).

Validation by principles of cortical organization

We studied the extent to which each network type represented foundational
principles known to govern cortical organization. Specifically, we benchmarked
the biological validity of each type of structural similarity using the following
basic premises about three known principles of brain structure:

• Symmetry : the cortex is highly symmetric and homologous regions of right
and left hemispheres are reciprocally interconnected, so a valid measure of
structural similarity should have strong weights for inter-hemispheric edges.

• Cortical microstructure: cortical areas can be cytoarchitectonically classified
based on microstructural properties measured histologically, so a valid MRI
measure of structural similarity should have strong weights for edges between
cortical areas histologically assigned to the same cytoarchitectonic class (von
Economo and Koskinas, 1925).

• Axonal connectivity : cortical areas are inter-connected by white matter
tracts, and cytoarchitectonically similar regions are more likely to be axon-
ally inter-connected, so a valid measure of structural similarity should cor-
relate with axonal connectivity as measured by gold-standard tract-tracing
in non-human primates.

Symmetry and inter-hemispheric connections

Across a range of network densities, we measured how many bilateral connec-
tions were represented by each type of group mean network. Over all densities,
MIND networks comprised a substantially larger fraction of bilaterally sym-
metric connections than MSNs (Fig. 2G).

Cytoarchitectonics and within-class connections

Next, we analyzed the extent to which MIND networks and MSNs reca-
pitulated known patterns of cortical microstructure, as measured by higher

1Because we standardize each morphometric feature, the non-random, measured variables also
have mean=0 and variance=1.
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structural similarity between regions belonging to the same von Economo
cytoarchitectonic class (von Economo and Koskinas, 1925). MIND networks
demonstrated higher connectivity between regions of the same cytoarchitec-
tonic class across a range of network densities (Fig. 2I), indicating a closer
correspondence with known patterns of cytoarchitectonic similarity at the scale
of neuronal organization.

Fig. 3 Structural similarity from MRI compared to axonal connectivity from
tract-tracing in the macaque brain. A) Correlation between structural similarity edge
weights, in MIND networks or MSNs derived fromMRI, and axonal connectivity edge weights
derived from tract tracing in five connectomes: the {29 ⇥ 29}, {29 ⇥ 91}, {40 ⇥ 40}, and
{40 ⇥ 91} versions of the Markov parcellation, with the number of target and source regions,
respectively, indicated in each case (Markov et al, 2012; Froudist-Walsh et al, 2021), and
the whole cortex connectome based on the separate regional mapping (RM) parcellation
(Markov et al, 2012; Froudist-Walsh et al, 2021; Shen et al, 2019). Asterisks indicate signifi-
cantly increased correlation with tract tracing data for MIND networks compared to MSNs,
determined by bootstrapping the edge weights: *0.01 < P < 0.001, **P < 0.001. B) Cor-
relation between tract tracing {40 ⇥ 40} weights and MIND network or MSN edge weights
over a range of tract tracing network densities. C) Scatterplot of the correlations between
tract-tracing weights and MRI similarities for the set of edges connecting each regional node
to the rest of the connectomes; thus each point represents the correspondence between tract
tracing weights and structural similarity for each region in the {40 ⇥ 40} connectome (aver-
aged for a↵erent and e↵erent connections, see Methods for details). The dashed line y = x
highlights that similarities estimated by MIND were generally more strongly correlated with
tract-tracing weights (above the line of identity) than morphometric similarities. D) Radar
plots of the stability of the correlation between axonal connectivity, again from the {40 ⇥
40} connectome, and structural similarity from MSNs or MIND networks, estimated over all
possible input feature sets with one or two missing features. Missing features are noted at
each radial position, with the radius from the center indicating correlation with tract-tracing
weights. Best case correlations for each type of structural similarity network estimated using
all 6 MRI features are shown as dashed lines: SD, sulcal depth; MY, myelination (T1/T2
ratio); MC, mean curvature; SA, surface area; Vol, grey matter volume; CT, cortical thick-
ness. Shading for A-B represents 95% CI.
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Axonal connectivity and structural similarity

Previous work has shown that regions with similar cytoarchitecture are more
likely to be connected by axonal tracts than regions that are micro-structurally
dissimilar (Barbas, 2015; Goulas et al, 2016). We anticipated that more robust
estimation of structural similarity via MIND networks, compared to MSNs,
would result in stronger correlations with axonal connectivity measured by
retrograde tract tracing in the macaque monkey brain.

Using MRI data from 19 macaques (Xu et al, 2020; Milham et al, 2018),
we constructed group-level MSN and MIND networks using the same five
morphometric features as for human MRI analysis plus the T1/T2 ratio as
an estimate of intra-cortical myelination. We compared the correspondence
between axonal connectivity and structural similarity across five tract-tracing
connectomes (Fig. 3A, see Methods for details).

Replicating and extending the work by Seidlitz et al (2018), which used
a di↵erent macaque MRI dataset, we found that edge weights of axonal con-
nectivity estimated from tract-tracing data were positively correlated with the
corresponding edge weights of structural similarity estimated from MRI data
by MSN or MIND network analysis (Fig. 3A). Axonal connectivity weights
were significantly more positively correlated with MIND network edges than
with MSN edges across all five connectomes analyzed (P < 0.01 from edge
bootstrapping, Bonferroni-corrected). Using the {40 ⇥ 40} matrix (the largest
weighted connectome with complete source and target data), we recapitulated
this result over a range of tract-tracing network densities (Fig 3 B). More-
over, the degree to which regional profiles of MIND and MS corresponded to
a region’s tract tracing connections was highly correlated (r = 0.78), though
MIND showed a higher correspondence with regional tract-tracing for 85% of
regions (Fig. 3C).

To test the contribution of individual morphometric features, we recalcu-
lated the correlations between the {40 ⇥ 40} tract-tracing connectome and
structural similarity networks estimated with all possible subsets of four or
five (of the total set of six) MRI features. The greater positive correlation of
tract-tracing with MIND networks, compared to MSNs, was maintained across
all feature subsets (Fig. 3D).

Transcriptional similarity and structural similarity

networks

The finding that morphometric similarity networks are spatially co-located
with transcriptional similarity or gene co-expression networks (Seidlitz et al,
2018) has spurred subsequent research e↵orts to link MRI-derived connectomes
to underlying transcriptional patterns (Seidlitz et al, 2020; Morgan et al, 2019;
Zhang et al, 2021).

Following standardized processing protocols (Arnatkevic̆iūtė et al, 2019),
we combined high-resolution spatial gene expression data on six post-mortem
adult donors from the Allen Human Brain Atlas (AHBA) to generate an
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Fig. 4 Structural similarity and transcriptional co-expression networks. A) Gene
co-expression networks (upper triangles) compared to MIND networks and MSNs (lower tri-
angles). B-C) Correlation between the gene similarity network and the group MSN or MIND
network, at the level of B) edges and C) weighted regional degrees. Significance was mea-
sured using a ‘spin’ test to correct for spatial autocorrelation (see Methods). D) Stability
of the correlation between structural and transcriptomic networks constructed from subsets
of the 6 post-mortem brain gene expression datasets available. For each number of donors
included, all combinations of transcriptional networks were constructed (without gene fil-
tering) and the mean edge correlation was calculated. There were

�6
n

�
possible networks

created for n = 1, 2 . . . 6 included donors. Shading indicates the minimum and maximum
value of the association observed for each number of included donors. E) Cortical brain maps
of MIND weighted node degree beside a weighted gene expression map derived from par-
tial least squares analysis (PLS) of the covariation between degree, or “hubness”, of MIND
nodes and gene expression. The first PLS component (PLS1) explained a significant amount
of covariance (62%, Pspin = 0.01) between these two modalities. F) Cell-type enrichment
of the weighted, ranked gene list from PLS analysis of covariation between MIND degree
and gene expression, using the median loading rank within one of seven sets of genes, each
characteristic of a canonical class of cells in the central nervous system: excitatory neu-
rons (Neuro-Ex), inhibitory neurons (Neuro-In), endothelial cells (Endo), astroctyes (Astro),
microglia (Micro), oligodendrocytes (Oligo), and oligodendroglial precursor cells (OPC).
The zero position on the x-axis represents the median position of all 15,633 genes (position
7,816), with negative ranks indicating genes that have expression positively correlated with
MIND node degree, i.e., over-expressed at highly-connected MIND regions (“hubs”). Aster-
isk (*) indicates FDR-corrected P < 0.05 after a permutation test to correct for both spatial
autocorrelation in the brain and correlation structure in gene expression (see Methods).
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expression matrix for 15,633 genes in 34 regions from the left hemisphere of
the DK atlas (Hawrylycz et al, 2012, 2015; Markello et al, 2021). We then
calculated the pair-wise similarity of regional expression profiles to generate a
{34 ⇥ 34} matrix of transcriptional similarity.

MIND networks (parcellated in the DK template) demonstrated a remark-
ably strong correspondence with the brain transcriptomic co-expression net-
work (Figure 4). At the edge level, there was a greater than three-fold increase
in correlations between edge weights of transcriptional similarity and MIND
networks (Pearson’s r = 0.76, Spearman’s ⇢ = 0.81) compared to the equiva-
lent correlations for MSNs (r = 0.23, ⇢ = 0.23). At the nodal level, there was
an approximately two-fold increase in correlations between weighted degrees
of transcriptional similarity and MIND networks (r = 0.85, ⇢ = 0.88), com-
pared to the equivalent correlations for MSNs (r = 0.47, ⇢ = 0.30). A similar
result was obtained when including the mean regional grey matter volume as a
covariate (r = 0.75 for MIND networks, r = 0.5, for MSNs), suggesting results
were not driven by mean volume.

We test the robustness of the strong relationships between MIND measures
of structural similarity and transcriptional similarity through several sensi-
tivity analyses: (i) constructing di↵erent transcriptional similarity networks
based on all possible subsets of 6 donor brains (Fig. 4D, S6); (ii) changing
the gene inclusion criteria based on varying thresholds of di↵erential stabil-
ity (Hawrylycz et al, 2015); and (iii) replicating these analyses based on the
DK template with the finer-grained DK-318 cortical parcellation (Fig S7).
Under all conditions, we found that MIND network edge weights and weighted
degrees remained strongly correlated with edge weights and weighted degrees
of anatomically commensurate transcriptional similarity networks.

Cell-type specific transcriptional profiles and MIND network

degrees

To characterize the relationship between MIND degree and cell-typical gene
expression, we used partial least squares (PLS) to relate the {15,633 ⇥ 34}
matrix of regional gene expression with the {34 ⇥ 1} vector of group-averaged
MIND network weighted degree. The first PLS component (PLS1) explained a
significant amount of covariance (62% variance explained, Pspin = 0.01, using
a “spin” permutation test to correct for cortical spatial autocorrelation as per
Váša et al (2017)). Figure 4E shows the similarity between MIND degree and
the cortical map of PLS-aligned transcription, calculated by averaging the
spatial expression of all genes weighted by their PLS1 loadings.

Using published lists of genes specific to neuronal and glial cell types
(Seidlitz et al, 2020), we calculated the median rank of genes in the PLS1
loadings within each cell-typical gene set, in line with prior enrichment work
(Dorfschmidt et al, 2022; Seidlitz et al, 2020; Morgan et al, 2019). PLS1 was
positively enriched for neuronal genes and negatively enriched for glial genes,
with significant enrichment found for excitatory neurons and microglia (Figure.
4 F). The result that MIND network hubs were located in cortical areas with
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high levels of neuron-typical transcription was consistent with the observation
that MIND network degree was correlated with axonal connectivity in the
macaque brain, given existing work demonstrating both higher tract-tracing
connectivity between transcriptionally-similar brain regions in mice (French
and Pavlidis, 2011), and increased likelihood of connectivity between neurons
with similar transcriptional profiles in C. elegans (Arnatkevic̆iūtė et al, 2018).

Fig. 5 Estimating heritability, h2, of 5 regional MRI metrics and structural sim-
ilarity network phenotypes derived from them. A) Twin-based heritability (h2

twin) of
regional MRI metrics (SA, CT, Vol, MC, and SD) and of weighted nodal degree for MIND
networks and MSNs; each point represents one of 318 cortical areas. B) SNP-based heritabil-
ity (h2

SNP ) for weighted degree of MIND networks and MSNs. C) Scatterplot of twin-based
versus SNP-based h2 estimates for weighted degree of MIND networks and MSNs; each point
represents a regional node in the cortical network. D) Cortical map of the regional h2

twin
for MIND network degree. E-F) The strongest (E) and weakest (F) 1% of MIND edges and
their corresponding h2

twin estimates. G) Scatterplot of h2
twin versus MIND network edge

weights, with fitted line indicating significant negative correlation; each point is an edge in
the network. For A-B), confidence intervals indicate standard error of the mean.

Heritability of structural similarity network phenotypes

To characterize the extent of genetic influences on structural similarity net-
works, we first estimated the twin-based heritability (h2

twin) for each of the 5
MRI features measured at each region, and for each edge weight and weighted
degree of the MSNs and MIND networks derived from them. Using 641
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twin pairs (366 dizygotic, 275 monozygotic, total Ntwins = 1, 282) from the
ABCD cohort, we fitted a standard ACE model to estimate additive genetic
(A), shared environmental (C), and unique environmental (E) components of
variance and to estimate twin heritability for each phenotype (see Methods).

MIND demonstrated increased twin-based heritability compared to MSNs
in terms of both edge weights (mean h2

twin = 0.15 vs. 0.11, two-sided t-test,
P < 0.001) and weighted nodal degree (mean h2

twin = 0.21 vs. 0.15, two-
sided t-test, P < 0.001; Fig. 5A). To ensure the higher heritability of MIND
network phenotypes compared to MSNs was not due to di↵ering relationships
with brain size (see Figure S5 for details), we confirmed that MIND network
degree demonstrated increased twin-based heritability than MSN degree (two-
sided t-test, P<0.001) after controlling for estimated total intracranial volume
(eTIV).

The five regional MRI features had average twin-based heritabilities rang-
ing from h2

twin = 0.44 for surface area to h2
twin = 0.12 for mean curvature. The

average heritability MIND weighted degree was significantly higher than h2
twin

for regional mean curvature (two-sided t-test, P<0.001), comparable to the
h2
twin for regional estimates of mean sulcal depth (two-sided t-test, P>0.05),

and lower than the heritabilities of the three macro-structural MRI metrics
related to the size of each regional node of cortex (surface area, cortical thick-
ness, and volume; two-sided t-tests, all P < 0.001). The cortical maps of
regional MRI heritability for the di↵erent MRI features were positively cor-
related with each other (0.09 < r < 0.61; Fig S8). This result points to the
existence of a general anatomical gradient of the heritability of brain struc-
ture, where similar patterns of heritability are observed across di↵erent MRI
phenotypes.

SNP-based heritability

We estimated SNP-based heritability for weighted degree in MSN and MIND
networks using genetic data from 4,085 unrelated individuals of predominantly
European genetic ancestries from the ABCD cohort; and GCTA (Yang et al,
2011) software for genome-wide complex trait analysis.

SNP-based heritability for weighted degree of MIND networks (mean
h2
SNP = 0.064) was greater than for degree of MSNs (mean h2

SNP = 0.046), and
this di↵erence was significant (two-sided t-test P < 0.001; Fig. 5B). SNP-based
and twin-based heritabilities were positively correlated for weighted degree of
MIND networks (r = 0.22, Pspin < 0.001), but were not correlated for degree
of MSNs (r = 0.07, Pspin = 0.31; Fig. 5C). This demonstrates that common
genetic variants partly explain variance in MIND networks.

Increased heritability of MIND between structurally divergent

regions

Twin-based heritabilities for MIND network edges were robustly, negatively
correlated with edge weights (r = �0.37, Fig. 5G). This is visualized in
Fig. 5 E-F, where the highest MIND edges, between most similar areas of
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cortex, e.g. inter-hemispheric connections, have much lower heritability than
the lowest MIND edges, between most dissimilar areas of cortex, e.g., con-
nections between neocortical areas and areas of insular and limbic cortex.
We observed no correlation between Euclidean distance and edge heritabil-
ity (r = 0.02, Pspin = 0.66), despite an exponentially decaying relationship
between distance and MIND edge strength (Fig. S3).

MIND network weighted degree was also negatively correlated with heri-
tability (r = �0.24, Pspin = 0.02). When categorized by cytoarchitectonic class
(Fig. S8), weighted degree was more strongly heritable (mean h2

twin � 0.28)
for insular, primary sensory, and limbic cortex; and less strongly heritable for
primary motor, association and secondary sensory cortex (mean h2

twin  0.22).
The di↵erence in heritabilities between cytoarchitectonic classes was signifi-
cant (ANOVA, F6,311= 7.54; P < 0.001). Thus MIND network “hub” nodes
that have a high degree of similarity with many other nodes in the network,
and are typically located in motor and association cortices, were less strongly
heritable than “non-hub” nodes that have a high degree of dissimilarity with
many other cortical areas, and are typically located in insular, primary sensory,
and limbic cortex (Fig. S8).

Discussion

Here we introduced morphometric inverse divergence (MIND) as a novel met-
ric of structural similarity between cortical areas and showed that MIND
networks have greater reliability and biological validity compared to mor-
phometric similarity networks (MSNs) derived from the same set of MRI
features in a large sample. At a technical level, the relative superiority of
individual brain connectome mapping by MIND networks compared to MSNs
is simply explained. MIND measures similarity by the divergence between
multi-dimensional distributions with many degrees of freedom, whereas MSNs
are predicated on regional summary statistics of each MRI feature and are
therefore less e�ciently estimated on many fewer degrees of freedom.

This fundamental di↵erence between MIND and MSN estimators of struc-
tural similarity greatly enhanced the reliability and validity of the resulting
MIND networks. First, MIND network edge weights and nodal degrees were
more consistent between subjects, more resilient to the inclusion of noise
features, and more robust to di↵erent parcellation templates used to define
cortical nodes. The greater parcellation consistency of MIND networks makes
intuitive sense: if the boundaries of a particular region change slightly between
atlases, the multi-dimensional distribution of MRI features at the vertex-level
will remain relatively consistent, whereas MSNs are more sensitive to parcella-
tion di↵erences because even small shifts in areal boundaries will have marked
e↵ects on macro-structural metrics, such as volume or surface area, which
were included in the short feature vector used to estimate the morphometric
similarity between regions.
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Benchmarking both MIND networks and MSNs against prior principles
of cortical network organization (von Economo and Koskinas, 1925; Barbas,
2015; Goulas et al, 2016), we found that MIND networks were more repre-
sentative of symmetrical inter-hemispheric connections, connections between
areas belonging to the same cytoarchitectonic class, and between areas with
axonal inter-connectivity demonstrated by the gold standard of retrograde
tract-tracing in the macaque monkey. These results consistently indicate that
the connectomes rendered by MIND analysis of structural similarity are more
aligned with the principles that structural similarity between regions should
be greater for bilaterally homologous cortical areas, for cytoarchitectonically
homogenous areas, and for axonally connected areas.

Recent work has begun to establish another principle of brain network
organization, that structurally similar or axonally inter-connected regions will
typically have more similar profiles of gene transcription than cytoarchitec-
tonically dissimilar or unconnected pairs of regions (Arnatkevic̆iūtė et al,
2021). In short, the structural architecture of the connectome recapitulates the
organisation of the brain gene co-expression network. We therefore expected,
and confirmed, that the more reliable and valid connectomes produced by
MIND analysis should be more strongly correlated than MSNs with a gene
co-expression network derived from the Allen Human Brain Atlas. The signif-
icantly greater strength of association between transcriptional similarity and
structural similarity measured by MIND was clearly evident at the level of
both edges and nodes. Moreover, the high degree hubs of MIND networks were
significantly co-located with areas where neuron-specific genes were highly
expressed (Seidlitz et al, 2020). These results strongly support the preferred use
of MIND network analysis for future imaging studies designed to discover the
transcriptional mechanisms underpinning anatomical connectomes in health
and disease.

However, the causal relationship(s) between MIND metrics of structural
similarity and gene co-expression metrics of transcriptional similarity are not
resolved by these correlational results. Several causal pathways could explain
the strong coupling between MIND and transcriptional networks. Spatially
patterned and developmentally phased gene expression drives the expansion
and development of the human cortex (Geschwind and Rakic, 2013), so it is at
least plausible that the network organization of transcription is an important
driver or template of the network organization of the structural similarity and
axonal connectivity of the cortex.

To probe the biological drivers of MIND more directly, we took the first
steps towards a genetic analysis of MRI similarity network phenotypes. We
demonstrated that MIND network phenotypes have higher twin-based and
SNP-based heritabilities than comparable MSN phenotypes, further endors-
ing the biological validity of MIND networks compared to MSNs and setting
the scene for future, more detailed investigation of genetic e↵ects on MIND
network phenotypes.
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It is notable that the heritability of the MIND similarity between two
regions was found to be higher for edges between structurally dissimilar or
di↵erentiated regions, e.g., connecting limbic, insular or primary sensory cor-
tical areas to the rest of the network. Consequently, MIND network hubs in
motor and association cortex, with a high degree of similarity to many other
neocortical areas, were less genetically influenced than primary sensory, insu-
lar and limbic non-hub regions with more distinctive, less generally similar
cytoarchitecture. These results may reflect the notion that the heritability of
brain phenotypes is inversely related to plasticity (Vainik et al, 2020; Haak
and Beckmann, 2019), with decreased heritability reflecting increased plas-
ticity observed for motor and association areas rather than more conserved
primary sensory and allocortical regions. This interpretation is also consistent
with the finding of relaxed genetic control over cortical organization of recently-
evolved association cortex regions relative to other primates (Gómez-Robles
et al, 2015).

One limitation of MIND networks – shared by MSNs – is that they do
not currently include subcortical regions, which are not represented by sur-
face reconstructions. Moreover, while MIND networks are heritable and show
a strong relationship to transcriptional networks, it remains unclear whether
the genetic influence in MIND is mediated by changes in cortical gene expres-
sion. Future work in the form of a large-scale GWAS, perhaps complemented
with analysis of data containing both in vivo imaging and postmortem cortical
expression data (Bennett et al, 2018), will be necessary to identify the genetic
loci and genes associated with changes in MIND network phenotypes. Ulti-
mately, we expect the study of MIND networks to provide a new perspective
on the principles of cortical organization that reflect the genetic architecture
of the brain and which may underlie human brain development, aging, and
disease.

Methods

Data and code availability

Python code for MIND calculation using standard FreeSurfer outputs is
publicly available at: https://github.com/isebenius/MIND.

The preprocessed macaque data (Xu et al, 2020; Milham et al, 2018)
can be accessed at https://balsa.wustl.edu/reference/976nz. Tract-tracing con-
nectomes based on the Markov parcellation can be accessed through https:
//core-nets.org. The multimodal connectome using the RM parcellation (as
well as the RM atlas itself) can be accessed at https://zenodo.org/record/
1471588#.YqBt5S2ca U. Data from the ABCD cohort requires access to the
NIMH data archive (NDA) and can be applied for at https://nda.nih.gov/
abcd.

https://github.com/isebenius/MIND
https://balsa.wustl.edu/reference/976nz
https://core-nets.org
https://core-nets.org
https://zenodo.org/record/1471588#.YqBt5S2ca_U
https://zenodo.org/record/1471588#.YqBt5S2ca_U
https://nda.nih.gov/abcd
https://nda.nih.gov/abcd
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MIND estimation

Definition of the MIND similarity metric

Here we describe the definition of MIND as a statistical metric of struc-
tural similarity given a surface reconstruction of the cortex. This surface can
be described by a set of vertices vi 2 V, where each vi is a vector of d
structural features such as cortical thickness and sulcal depth. These fea-
tures (interchangeably described as structural and morphometric features) are
automatically generated at the vertex-level by FreeSurfer’s recon-all com-
mand. A cortical parcellation with R regions is a partition of V such that
V = {{V1}, ...{VR}}. For each region r, we let Pr be the true multivariate
distribution of structural features from which vi 2 Vr are observations.

For a given pair of regions a and b, we estimate DKL(PakPb), the Kullback
Leibler (KL) divergence between them. Because KL divergence is not symmet-
ric, we use a commonly-used symmetric version of the metric, computed as
follows and in line with previous work (Homan et al, 2019; Wang et al, 2016):

D(Pa, Pb) = DKL(PakPb) +DKL(PbkPa) (1)

We define the Morphometric Inverse Divergence (MIND) similarity metric,
bounded between 0 and 1, as follows:

MIND(a, b) =
1

1 +D(Pa, Pb)
(2)

Multivariate Kullback Leibler divergence estimation

One key challenge in calculating MIND networks is appropriately estimating
multivariate KL divergence. Traditionally, KL divergence between empirical
distributions is calculated by a two-step approach: i) non-parametric estima-
tion of the probability density functions (PDFs) of the observed data; and ii)
computing the divergence using the approximated PDFs. However, the initial
density estimation step of this approach is sensitive to many choices of param-
eters (Leming et al, 2021; Homan et al, 2019; Wang et al, 2016; Perez-Cruz,
2008). Extended to multiple dimensions, density estimation becomes especially
problematic; for multivariate data with as few as three dimensions, standard
non-parametric density estimators provide very poor results (Wang and Scott,
2019). While research into alternate methods for higher-dimensional density
estimation is actively ongoing, no consensus currently exists on an e↵ective,
e�cient method for this purpose (Wang and Scott, 2019).

Here, we circumvent the need to perform the di�cult first step of density
estimation by leveraging a k -nearest-neighbor approach (Perez-Cruz, 2008) for
calculating multivariate KL divergence directly from the observed vertex-level
data. This approach has significant advantages compared to explicit density
estimators: namely, it does not require the specification of any parameters and
it can be computed e�ciently (Brown, 2014).
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More formally, given regions a and b, vertices Va and Vb, with true mul-
tivariate distributions Pa and Pb, the KL divergence between Pa and Pb is
defined mathematically as follows:

DKL(PakPb) =

Z

Rd

pa(x) log
pa(x)

pb(x)
dx � 0 (3)

We used the k -NN divergence approximation by Perez-Cruz (2008) to
estimate DKL(PakPb):

bDKL(PakPb) = �
d

n

nX

i=1

log
rk (xi)

sk (xi)
+ log

m

n� 1
(4)

Here, d is the number of structural features used, n = kVak, m = kVbk,
and rk (xi) and sk (xi) are the Euclidean distances of xi to the k-th most
similar vertex in of xi in Va \ xi and Vb, respectively. We use k = 1 (nearest-
neighbor) in our analysis, and we calculate rk (xi) and sk (xi) e�ciently using
K-D trees, a method for data representation that enables the rapid lookup of
nearest neighbors.

To account for the unlikely but possible occurrence that the estimation
of KL is negative, we set the minimum value of bDk(PakPb) to be zero. A
symmetric measure of KL divergence was then given by:

bD(Pa, Pb) = max( bDKL(PakPb), 0) + max( bDKL(PbkPa), 0) (5)

And MIND was finally estimated by:

MIND(a, b) =
1

1 + bD(Pa, Pb)

Standardizing and filtering vertex-level data

Because each feature is measured on di↵erent scales, we standardize (Z-score)
each feature across all vertices in the brain before before parcellating the data
into vertex-level distributions and calculating MIND.

Additionally, structural vertex-level data can sometimes represent
biologically-unfeasible conditions; namely, when vertices have values of zero
for cortical thickness, volume, or surface area. For MIND estimation, we dis-
carded all such vertices. One result of this filtering step is that if a region is
left with zero or one vertices, a complete MIND network cannot be computed.
Thus, using parcellations of smaller parcel size will generally lead to higher
likelihood that one or more regions contains no vertices, and therefore fewer
networks that can be fully calculated. Removing the condition that all vertices
must have above-zero values of thickness, volume, and area will mitigate this,
though at the trade-o↵ of including vertices that correspond to potentially
unfeasible conditions.
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Computational costs of MIND network analysis

Construction of MIND networks can be completed at reasonable computa-
tional cost. Given d dimensions and n vertices, a K-D Tree can be constructed
in O(dn log n) – with more recent approaches further improving a worst-case
construction time to O(n(d + log n)) (Brown, 2014) – and can be queried in
O(log n) (Buitinck et al, 2013; Bentley, 1975). This computation is not a bot-
tleneck; in practice, we observed that the computational resources expended
during structural image (FreeSurfer) preprocessing far exceeded MIND net-
work computation. For reference, on consumer hardware, computation of a
single MIND network ranged from roughly 1 minute (68-ROI DK atlas) to
roughly 10 minutes (360-ROI HCP atlas).

MSN calculation

MSNs were computed as described in Seidlitz et al (2018). Specifically,
we considered the widely-used summary statistics computed by FreeSurfer’s
mris anatomical stats command to characterize each region. The five
summary statistics describing each region are the following:

• Mean sulcal depth
• Mean cortical thickness
• Total volume
• Total surface area
• Integrated rectified mean curvature

Each features was Z-scored, and the resulting MSN was defined as the pairwise
Pearson correlation between all vectors of the five standardized features. To
construct MSNs with N (0, 1) noise features (as in Fig. 2F), the Gaussian noise
columns were added as new features at each vertex, averaged within each
region, and Z-scored across regions before inclusion into the vector of structural
features.

Human MRI datasets

The Adolescent Brain Cognitive Development (ABCD) cohort currently com-
prises T1-weighted structural MRI data on 11,449 participants (including 697
twin pairs) aged 9-11 years at baseline scanning. Recruitment for the ABCD
study was intended to generate a diverse, representative sample (Garavan
et al, 2018) for the longitudinal study of brain development and cognition.
This work is registered as study #1796 on the NIMH data archive, DOI
10.15154/1528079. The number of subjects included for di↵erent analyses can
be visualized in Fig. S2. After data filtering and quality control (QC), this led
to to 10,367 subjects included in our principal dataset parcellated in DK-318
(N=10,353 for DK, and N=9,218 for HCP parcellation, with the di↵erence
between parcellation due to the vertex filtering step described above). Group-
level MIND networks and MSNs were constructed from these cohorts. These
10,367 subjects in DK-318 parcellation included 641 complete twin pairs (366
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dizygotic, 275 monozygotic), which served as the cohort for estimating twin-
based heritability. To estimate SNP-based heritability, we used a sample of
4,085 subjects, comprising unrelated participants of European ancestry with
MRI and genetic data that passed QC criteria. To study the e↵ect of includ-
ing varying numbers of noise columns (Fig. 2F), we used a random subset of
150 subjects to avoid the cost of constructing many network versions for all
10,367 individuals.

Extensive documentation of the scanner types and protocols used for MRI
in the ABCD study can be found in Hagler et al (2019); Casey et al (2018).
T1-weighted images were 1 mm isotropic, RF-spoiled gradient echo using
prospective motion correction if available, and from one of three (3T) scan-
ner models: Siemens (Prisma VE11B-C), Philips (Achieva dStream, Ingenia),
or GE (MR750, DV25-26) (Fischl et al, 1999; Hagler et al, 2019). The images
were processed using FreeSurfer Version 5.3.0.

MRI quality control

To ensure high quality of the included scans, we used the Euler number (Fischl,
2012), an index of scan quality generated automatically by FreeSurfer. Figure
S2 shows the distribution of Euler number in the entire ABCD cohort, with
some extreme outliers in the sample. To discard these scans, we used a cuto↵
threshold of -120 corresponding to a median absolute deviation (MAD) score
of �2.6.

Site-related batch e↵ects

ABCD is a multi-site study with well-known batch e↵ects due to scanning at
di↵erent sites (Nielson et al, 2018). To correct these site-related batch e↵ects in
quality-controlled data, prior to MIND analysis, we used NeuroCombat v0.2.12
(Fortin et al, 2018), an adaptation of the standard ComBat batch correction
tool (Johnson and Li, 2007) designed specifically for structural MRI brain data.
While adjusting for site-specific e↵ects in this manner, we included age (in
months) and sex to be biologically-relevant covariates (i.e. di↵erences in age
and sex distribution between sites were not considered site-specific e↵ects).

Cortical parcellation

We used the Desikan-Killiany (Desikan et al, 2006), DK-318 (Romero-Garcia
et al, 2012), and HCP (Glasser et al, 2016) parcellations in this work. To
compare edge-wise consistency between group-level DK and DK-318 atlases
(Figure 2H), we assumed that an edge between two regions in the DK atlas
should be comparable to that derived by averaging all edges between the sub-
divisions of the regions in the finer-grained DK-318 atlas. In this manner, we
interpolated the group DK-318 networks back to the original DK atlas, then
compared these recreated networks to those computed directly on the original
68-region DK parcellation. The correlation between the original DK and inter-
polated (DK-318 interp.) networks was used to measure edge-level parcellation
consistency.
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The mapping from each region in the 318-region subdivision of the Desikan
Killiany atlas (Fig. 2I) was based on the mapping used in Seidlitz et al (2018),
originally performed by Vértes et al (2016) and Whitaker et al (2017). These
prior studies used the closely related DK-308 parcellation (Romero-Garcia
et al, 2012), which is an asymmetric version of the DK-318 atlas. We used a
simple majority-voting procedure to translate the DK-308 parcellation to the
related DK-318 atlas.

Twin-based heritability

We used the umx package version 2.10.0 to implement a structural equation
model (SEM) of the ACE model to infer heritability estimates (Bates et al,
2019; Neale and Cardon, 1994). The ACE model estimates the contributions
to observed variance due to additive genetic (A) in the context of common (C)
and specific environmental (E) e↵ects on variance (Bates et al, 2019; Neale
and Cardon, 1994). We defined heritability (h2) as the proportion of variance
due to additive genetics contributions such that h2 = A

A+C+E (Verhulst et al,
2018).

The SEM model does not estimate A, C, and E directly, but rather esti-
mates path coe�cients a, c, and, e such that a2 = A, c2 =C, and e2 = E. These
path coe�cients are sometimes directly used as reports of heritability (e.g.
Bethlehem et al (2022)). To validate our processes for twin-based heritabil-
ity estimation, we replicated a previously reported estimate of h2

twin = 0.58
for whole-brain grey matter volume (GMV) in the ABCD cohort (Bethlehem
et al, 2022). A discussion comparing our work to previous heritability estimates
using path coe�cients can be found in the “Additional heritability analyses”
section of the Supplementary Materials.

Human genetic data QC and SNP-based heritability

Full details of genetic quality control procedures are provided by Warrier et al
(2021, 2022a). Briefly, we excluded SNPs with genotyping rate < 90%, and
individuals with genotyping rate < 95%, whose genetic sex did not match their
reported sex. We identified individuals of predominantly European genetic
ancestries using multidimensional scaling after including samples from the
1000 Genomes phase 3 data (Fairley et al, 2019). In the subset of individ-
uals of predominantly European ancestries, we further exlcuded SNPs not
in Hardy-Weinberg equilibrium (p < 1E � 6) and individuals with excessive
heterozygosity. Related individuals (> 5% identity by state) were excluded
using the Genome-wide Complex Trait Analysis Genome-based REstricted
Maximum Likelihood (GCTA-GREML) software (Yang et al, 2011) prior to
estimation of SNP-based heritabilities using a genetic relatedness matrix. The
genetic relatedness matrix was derived from genotyped samples after control-
ling for age, age2, age⇥sex, age2⇥sex, sex, imaging centre, mean framewise
displacement, maximum framewise displacement, Euler Index, and the first
ten genetic principal components as covariates.
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Macaque MRI and tract-tracing data

We used MRI data from 19 female rhesus macaque monkeys (Macaca mulatta;
aged 18.5-22.5 years) in the UC-Davis cohort provided by the PRIME-DE
resource (Milham et al, 2018). The animals were anesthetized and scanned on
a Siemens Skyra 3T MRI with a 4-channel clamshell coil with 0.3 isotropic
resolution (TR = 2500ms) (Milham et al, 2018). These data were pre-processed
using the HCP Non Human Primate (Autio et al, 2020) pipeline by Xu et al
(2020).

All individual scans were previously spatially coregistered with the group-
level Yerkes19 atlas (Donahue et al, 2016). On this basis, we constructed
group-level structural similarity networks by first averaging vertex-level fea-
tures and then constructing a MIND network and an MSN. We calculated
MSNs by manually generating the same output as performed by FreeSurfer’s
mris anatomical stats command used to calculate human MSNs. Specifi-
cally, within each region, vertex values of sulcal depth and thickness were
averaged, volume and surface area were summed, and mean curvature was
absolute-valued, multiplied by surface area, and summed (thus outputting
integrated rectified mean curvature).

We used four tract-tracing connectivity matrices based on the 91-region
Markov M132 parcellation of the left hemisphere (Markov et al, 2012): the
original and most widely used {29 ⇥ 29} complete connectivity matrix between
29 cortical areas used both as source and target regions in retrograde tract-
tracing experiments; the {29 ⇥ 91} matrix including all originally measured
source-target connections (Markov et al, 2012); and the corresponding {40 ⇥

40} and {40 ⇥ 91} matrices from a recently published extension of the original
Markov dataset which increased the number of target regions from 29 to 40
(Froudist-Walsh et al, 2021). For all these tract-tracing connectomes, we used
the log-transformed fraction of labeled neurons (log(FLNe)) as the measure of
axonal connectivity (Markov et al, 2012; Seidlitz et al, 2018). Additionally, we
used a bihemisperhic connectivity matrix based on the independent Regional
Mapping (RM) parcellation and estimated by using di↵usion weighted imaging
to infer the connectivity weights from categorical estimates derived from the
CoCoMac database (Shen et al, 2019; Bakker et al, 2012).

To study the relationship between structural similarity and regional connec-
tivity profiles, we generated two tract-tracing connectivity profiles per region
based on the vectors of a↵erent and e↵erent edges connected to a node. We cor-
related both of these vectors with the node’s (undirected) profile of structural
similarity (MIND or MS), Fisher transformed the two correlations, averaged,
and inverse transformed in order to calculate a final correlation between a
region’s tract-tracing connectivity and structural similarity (reported in Figure
3C).

To test for the di↵erence between the correlation between MIND networks
and tract-tracing versus that between MSNs and tract-tracing, we performed
edge-wise bootstrapping with the one-sided null hypothesis that MIND did
not have a greater correlation than MSNs with tract-tracing. Thus for each
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bootstrapped edge sample, we calculated the di↵erence between the tract-
tracing correlation for MIND and MSNs, then calculated the P value as the
fraction of samples for which this value fell below zero. We used a significance
threshold of ↵ = 0.01 corresponding to a Bonferroni correction for the five
connectomes used.

Gene expression analysis

Data and pre-processing

The Allen Human Brain Atlas (AHBA) contains high-resolution spatial
genome transcriptional data in the cortex from 6 post-mortem brains (male/fe-
male = 4/2, mean age = 45 years). We focused our analysis of the Allen Human
Brain Atlas on the Desikan-Killiany (DK) parcellation of human brain gene
expression maps, given prior work on standardizing the pre-processing pipeline
for this atlas (Arnatkevic̆iūtė et al (2019); Markello et al (2021); Hawrylycz
et al (2015)) and because the coarse-grained DK parcellation ensures high
donor coverage for all regions. Only 2 brains provided data from the right
hemisphere, so we focused on the left hemisphere only and we used the abagen
package (v0.1.3) developed by Markello et al (2021) with default settings to
fetch (the get expression data command) and manipulate the AHBA data.
These pre-processing steps included aggregating probes across all available
donors, selecting probes using an intensity-based filtering threshold of 0.5, nor-
malizing microarray expression values for each sample and donor using the
scaled robust sigmoid function, and combining gene probes for each region
within each donor before combining across donors.

Transcriptional similarity metric

We used an angular similarity metric based on cosine distance (rather than raw
cosine similarity or pearson correlation) to measure transcriptional similarity
between regions. If gx and gy are the vectors of gene expression for regions X
and Y , the transcriptional similarity between the two regions is defined as:

TranscriptionalSimilarity(gx, gy) =

✓
1� arccos

✓
gx · gy

kgxkkgyk

◆
/⇡

◆

The choice of this metric was informed by the prior finding (Cer et al, 2018)
that it more precisely measures di↵erences between high-dimensional vectors
with high average similarity, which is the case for regional transcription data.
In this formulation, the k · k operator represents the length of the vector (the
square root of the sum of squares of all elements). In the case of no gene
filtration, all 15,633 genes are used for each region.

Cell-type specific gene enrichment analysis

To perform enrichment analysis of the genes most highly co-located with MIND
degree, we first performed a partial least squares (PLS) regression between the

abagen
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{15,633 x 34} matrix of AHBA gene expression and the {34 x 1} vector of
MIND weighted node degree, then ranked each gene based on their position in
the list of PLS1 loadings, with lower rank corresponding to genes with higher
positive correlation with MIND degree. We then leveraged the extensive meta-
analysis performed by Seidlitz et al (2020) to assign 4,110 genes to one of
seven major classes of cells in the central nervous system: excitatory neurons,
inhibitory neurons, endothelial cells, astroctyes, microglia, oligodendrocytes,
and oligodendroglial precursor cells. To measure the cell-type enrichment in
the loadings of the first component of the PLS, we calculated the median rank
of each set of cell-typical genes. Then, we utilized a permutation test to account
for both the intrinsic correlation structure in the AHBA expression data as
well as spatial autocorrelation in the cortical map of MIND degree, detailed
below.

Spin permutation tests

We adopted the widely used ‘spin’ test to measure for significance of association
between two cortical maps while correcting for spatial autocorrelation (Váša
et al, 2017; Alexander-Bloch et al, 2018). This test uses the (x,y,z) coordinates
of each parcel to generate permutations of parcellated data that maintains
its spatial embedding. We used the implementation by the gen spinsamples
command from the netneurotools Python package with the parameter method
set to hungarian, which ensures that each index is used only once per per-
mutation and uses the Hungarian algorithm to minimize the global cost of
reassignment. The same spatial permutations were applied to the left and
right hemispheres in order to maintain bilateral symmetry. When testing for
significance between network edges (i.e. the relationship between MIND edge
heritability and mean edge strength), we used the same permutation scheme,
and simply applied spatial permutations to both node sources and targets (i.e.
the rows and columns of a connectivity matrix), thus in e↵ect rotating the
entire network. All such statistical tests used were two-sided, such that the null
hypothesis was that the variance explained (r2) between two cortical maps or
edges was not greater than the r2 expected by chance, accounting for spatial
autocorrelation. We used 1000 permutations for all tests.

In order to test for the significance of cell-typical gene set enrichment in the
loadings from the PLS component between gene expression and MIND degree,
we generated 1000 spin test permutations of the vector of MIND degrees,
while keeping the gene expression data intact. For each spatial permutation of
MIND degree, we fit a new PLS model and ensured that lower loading rank
corresponded with a positive correlation with the permuted brain map. For
each new model, we calculated the median gene rank within each set of cell-
type specific genes. The two-sided null hypothesis of our permutation test was
that the median gene rank of a cell-typical gene-set of was not significantly
di↵erent from the median position of all genes (rank 7,816). We thus calculated
the P-value as the fraction of all permutations for which each set of cell-typical
genes had a median rank farther away from rank 7,816 than the true median
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rank. We FDR-corrected the resulting seven P-values. In this scheme, gene
sets with median PLS rank significantly lower than the median position were
positively associated with MIND degree.
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