

1
2 **Humanized V(D)J-rearranging and TdT-expressing Mouse Vaccine Models with**
3 **Physiological HIV-1 Broadly Neutralizing Antibody Precursors**
4

5 Sai Luo^{1,2,13}, Changbin Jing^{1,2,13}, Adam Yongxin Ye^{1,2,13}, Sven Kratochvil³, Christopher A.
6 Cottrell^{4,5,6}, Ja-Hyun Koo³, Aimee Chapdelaine Williams^{1,2}, Lucas Vieira Francisco^{1,2}, Himanshu
7 Batra^{1,2}, Edward Lamperti³, Oleksandr Kalyuzhnny^{4,5,6}, Yuxiang Zhang^{1,2}, Alessandro Barbieri⁷,
8 John P. Manis⁷, Barton F. Haynes^{8,9,10}, William R. Schief^{3,4,5,6}, Facundo D. Batista^{3,11,12}, Ming
9 Tian^{1,2*} and Frederick W. Alt^{1,2*}

10
11 ¹Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston
12 Children's Hospital, Boston, MA 02115, USA.

13 ²Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

14 ³The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA

15 ⁴Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San
16 Diego, CA 92037, USA

17 ⁵IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA
18 92037, USA

19 ⁶Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego,
20 CA 92037, USA

21 ⁷Department of Laboratory Medicine, Boston Children's Hospital, Boston MA 02115, USA

22 ⁸Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.

23 ⁹Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.

24 ¹⁰Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.

25 ¹¹Department of Immunology, Harvard Medical School, Boston, MA 02115, USA

26 ¹²Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA

27 ¹³These authors contributed equally to this work.

28
29 *Correspondence: Frederick W. Alt or Ming Tian

30 Email: alt@enders.tch.harvard.edu or Ming.Tian@childrens.harvard.edu

32 **Author Contributions:** S.L., M.T., and F.W.A. designed the experiments. S.L. generated the
33 mouse model. M.T. and S.L. made the immunogens. S.L. and E.L. performed immunizations. C.J.,
34 S.L., S.K. and J.K. characterized antibodies. C.A.C. and O.K. expressed the antibodies and
35 measured the kinetics and affinity of antibodies to eOD-GT8. A.B., J.P.M. and Y.Z. isolated the
36 human tonsil naïve B cells and extracted genomic DNA. A.Y.Y. performed the bioinformatics
37 analyses for CDR3 diversity and microhomology-mediated end joining for all experiments shown.
38 A.C.W. performed ES cell injections. S.L., L.V.F., E.L. and H.B. performed mouse maintenance.
39 S.L., M.T., and F.W.A. designed figures and drafted the manuscript. B.F.H., W.R.S., C.J., A.Y.Y.
40 and F.D.B contributed to polishing the manuscript.

41

42 **Competing Interest Statement:** M.T. and F.W.A. are authors on a patent application that
43 describes the general type of mouse model used (US 16/973,125).

44

45 **Classification:** Biological Science, Immunology and Inflammation

46

47 **Keywords:** VRC01-class broadly neutralizing antibody, humanized mouse model, HIV-1 vaccine

48

49 **This PDF file includes:**

50 Main Text

51 Figures 1 to 4

52 **Abstract**

53 Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by
54 V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3
55 (CDR3), an antigen-contact region immensely diversified through non-templated nucleotide
56 additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies
57 seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-
58 binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs)
59 representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use
60 human HC V_H 1-2 and commonly use human LCs V_{κ} 3-20 or V_{κ} 1-33 associated with an
61 exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had non-physiological
62 precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging
63 mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement
64 of V_H 1-2, as well as V_{κ} 1-33 and/or V_{κ} 3-20 in association with diverse CDR3s. Human-like TdT
65 expression in mouse precursor B cells increased LC CDR3 length and diversity and also
66 promoted generation of shorter LC CDR3s via N-region suppression of dominant microhomology-
67 mediated V_{κ} -to- J_{κ} joins. Priming immunization with eOD-GT8 60mer, which strongly engages
68 VRC01 precursors, induced robust VRC01-class germinal center (GC) B cell responses. V_{κ} 3-20-
69 based responses were enhanced by N-region addition, which generates V_{κ} 3-20-to- J_{κ} junctional
70 sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-
71 class-rearranging models should facilitate further evaluation of VRC01-class prime and boost
72 immunogens. These new VRC01-class mouse models establish a prototype for generation of
73 vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.

74 **Significance Statement (50-120 words)**

75 Mouse models that express human precursors of HIV-1 broadly neutralizing antibodies
76 (bnAbs) are useful for evaluating vaccination strategies for eliciting such bnAbs in humans. Prior
77 models were handicapped by non-physiological frequency and/or diversity of B lymphocytes that
78 express the bnAb precursors. We describe a new class of mouse models in which the mice
79 express humanized bnAb precursors at a more physiologically relevant level through
80 developmental rearrangement of both antibody heavy and light chain gene segments that encode
81 the precursors. The model also incorporated a human enzyme that diversifies the rearranging
82 gene segments and promotes generation of certain variable region sequences needed for the
83 response. This new class of mouse models should facilitate preclinical evaluation of candidate
84 human HIV-1 vaccination strategies.

85

86 **Main Text**

87 **Introduction**

88 Diverse antibody variable region exons are assembled in developing B cells from
89 Immunoglobulin (Ig) HC V, D, and J gene segments and from Ig κ or Ig λ LC V and J segments
90 (1). In humans, there are 55 germline HC Vs (V_{HS}) and 70 Ig κ and Ig λ LC Vs. Vs encode most of
91 the HC and LC variable region, including the antigen contact CDR1 and CDR2 sequences that
92 vary among different HC and LC Vs. Ig HC V(D)J recombination occurs at the progenitor (Pro) B
93 cell developmental stage in the fetal liver and in the postnatal bone marrow (2, 3). Ig LC V to J
94 recombination takes place in the subsequent precursor (Pre) B cell developmental stage in these
95 same sites (1). T cell receptor variable region exon assembly also occurs in the fetal liver and
96 thymus and then in the postnatal thymus (4, 5). Mice also have similar sets of Ig HC and LC and
97 TCR variable region gene segments as those found in humans and, in general, assemble them
98 in the context of similar developmental processes (6, 7).

99 Primary BCR diversity is achieved, in part, by assorting HC and LC Vs along with each of
100 their distinct sets of CDR1 and 2 sequences. However, several V(D)J junctional diversification
101 mechanisms play an even greater role in V(D)J diversity generation (8). In this regard, TdT, a
102 DNA polymerase that adds nucleotides to 3'DNA ends without a template (9), plays a key role. In
103 this regard, V(D)J junctional diversity is immensely augmented by TdT-based non-templated
104 nucleotide additions, referred to as N regions (10), that are added to V(D)J junctions. While N-
105 region addition generates CDR3 length and sequence diversity, it also suppresses recurrent
106 CDR3s resulting from microhomology (MH)-mediated V(D)J joining (10-13). TdT expression is
107 absent during fetal B and T cell development, resulting in less diverse repertoires dominated by
108 variable region exons promoted by recurrent MH-mediated joins (14-21). In contrast, TDT
109 expression diversifies antigen receptor variable region repertoires generated in mouse and
110 human developing B and T cells that develop postnatally, with the notable exception of LC variable
111 region repertoires in mice (10, 22, 23). Thus, while TdT is expressed during LC V(D)J
112 recombination in postnatal human Pre-B cells (24), it is not expressed in postnatal mouse pre-B
113 cells (25, 26), leading to decreased junctional diversity and much more abundant MH-mediated
114 joins in primary mouse LC repertoires compared to those of humans (22, 23). Lack of TdT
115 expression in fetal repertoires also is known to promote recurrent MH-mediated V(D)J junctions,
116 that are not dominant in post-natal repertoires due to TdT expression. Some such recurrent MH-
117 mediated V(D)J joins in fetal T or B cell repertoires generate TCRs or BCRs critical for certain
118 physiological responses (13, 14, 27, 28). However, the potential role of TdT and N regions in
119 promoting specific responses has remained largely unaddressed.

120 VRC01-class bnAb HCs employ human V_H1-2, which encodes residues that contact the
121 HIV-1 envelope protein (Env) CD4 binding site (29-37). VRC01-class LC variable regions are

122 known to be encoded by several Vs; but all are associated with an exceptionally short 5 amino
123 acid (5-aa) CDR3, which avoids steric clash with Env and contributes to Env interaction (29-37).
124 As both requirements can be achieved by V(D)J recombination, they are predicted attributes of
125 primary VRC01-class precursor BCRs. However, inferred primary VRC01-class BCRs lack
126 detectable affinity for naïve Envs (38-41). In this regard, following BCR antigen-activation, primary
127 B cells are driven into GC reactions where they undergo rounds of variable region exon somatic
128 hyper-mutation (SHM) followed by selection of SHMs that increase BCR antigen-binding affinity.
129 This process ultimately leads to high-affinity antibody production. Correspondingly, a third
130 VRC01-class bnAb attribute is abundant variable region SHMs with only a subset contributing to
131 broad Env-binding and potent VRC01-class bnAb activity (37, 42), consistent with VRC01-class
132 bnAb evolution occurring over long HIV-1 infection times and many SHM/selection cycles.

133 To elicit VRC01-class bnAbs, sequential vaccine immunization approaches propose a
134 priming immunogen to drive precursors into GCs followed by boost immunogens designed to lead
135 them through rounds of SHM/affinity maturation. Based on a structurally designed eOD-GT8
136 immunogen that binds to the inferred VRC01 unmutated common ancestor (UCA) BCR, potential
137 human VRC01-like precursor B cell frequency was estimated to be 1 in 400,000 or fewer (43, 44).
138 To test priming and sequential immunogens that could elicit VRC01-class bnAbs in humans,
139 mouse models are needed that reflect as closely as possible the biology of human B cell
140 responses. Early models expressed knock-in V_H 1-2 HCs and, in some, VRC01-class LC Vs, both
141 with mature CDR3s (45-47). These models were non-physiologic as their BCR repertoire was
142 dominated by a single human HC/LC combination or a single human HC with diverse mouse LCs.
143 Mice with fully human HC and LC gene segment loci assembled by V(D)J recombination were
144 also tested; but precursor frequencies were 150- to 900-fold lower than that of humans (48), likely
145 due to inability to express immense human-like CDR3 repertoires in mice with orders of
146 magnitude fewer B cells. A V_H 1-2-rearranging mouse model generated diverse V_H 1-2 HC CDR3s,
147 but it employed a germline-reverted VRC01 precursor LC with a 5-aa CDR3 from mature VRC01
148 bnAb (49). While useful for HC maturation studies during sequential immunization, this model was
149 limited by over-abundance of VRC01 lineage LC precursors. More recently, B cells from
150 transgenic VRC01-class UCA or eOD-GT8-binding precursor knock-in mice were adoptively
151 transferred into congenic recipient mice at human-like frequencies (50-53). While this elegant
152 approach has been very useful, it still has certain limitations as it focused only on eOD-GT8-
153 priming and tested just a small subset of potential VRC01 lineage precursors (50-53).

154 **Results**

155 **Generation of mice with VRC01-class-rearranging human HC and LC Vs.**

156 To address issues of prior models, we developed complete VRC01 mouse models in
157 which individual B cells express one of a multitude of different VRC01 precursors at human-like

158 frequencies, based on enforced rearrangement of both V_H 1-2 and VRC01-class V_{κ} s (Fig. 1A). All
159 complete VRC01-class models employ our previously described V_H 1-2-rearranging HC allele in
160 which the most D proximal functional mouse V_H (V_H 81X) was replaced with human V_H 1-2 (49, 54).
161 The CTCF-binding site (CBE)-based IGCR1 element in the V_H to D interval is also inactivated on
162 this allele, which leads to dominant rearrangement of human V_H 1-2 in an otherwise intact
163 upstream mouse V_H locus (55). On this allele, high-level V_H 1-2 utilization in the absence of IGCR1
164 is mediated by its closely associated downstream CBE element (56). Our new models also use
165 a version of this rearranging HC allele in which the mouse J_H segments were replaced with human
166 J_H 2, which can contribute a tryptophan residue (Trp100B) conserved in the HC CDR3 of VRC01-
167 class bnAbs (54). We have retained mouse Ds in the model for reasons we have previously
168 described (57). On homozygous replacement alleles in our new VRC01-class models, V_H 1-2
169 rearrangements represent nearly 73.8% of primary V(D)J rearrangements (Fig. S1A, upper
170 panel). Due to counter selection of lower frequency upstream mouse V_H rearrangements, V_H 1-2
171 contribution to primary B cell BCR repertoires is reduced to 43% (Fig. S1A, bottom panel), with
172 immense CDR3 diversity (Fig. S1B). Such CDR3 diversity is critical, as V_H 1-2-encoded HC
173 CDR3s were implicated in Env recognition by precursor VRC01-class BCRs and also implicated
174 in maturation of VRC01-class bnAbs (58, 59).

175 To generate human V_{κ} -rearranging LC alleles, we used a strategy similar to that which
176 we used for V_H 1-2, as recently described (57). The CBE-based Cer/Sis element in the V_{κ} to J_{κ}
177 interval has been implicated in promoting distal versus proximal V_{κ} rearrangements (60). To test
178 Cer/Sis functions in more detail, we deleted this element from the wild-type mouse allele and
179 assessed impact on V_{κ} rearrangement via our high throughput HTGTS-Rep-seq method (Fig.
180 S2A). Homozygous Cer/Sis deletion substantially increased (up to 8-fold) the frequency of 7 of
181 the 11 the most J_{κ} -proximal V_{κ} s (Fig. S2B). Indeed, these 7 V_{κ} s contributed to the vast majority
182 of the primary BCR repertoire of these mice (Fig. S2C), as upstream V_{κ} rearrangements were
183 essentially abrogated in the absence of Cer/Sis. We note that V_{κ} 3-2 and V_{κ} 3-7 showed the
184 greatest increase in utilization in the absence of Cer/Sis. Our initial plan for our VRC01-
185 rearranging mouse models, analogous to our V_H 1-2 rearranging *Igh* allele (49), was to increase
186 utilization of human V_{κ} s in the model by introducing them into proximal positions on Cer/Sis-
187 deleted *Igk* alleles.

188 We replaced the V_{κ} 3-2 sequence encoding the leader-intron-V sequence with the
189 corresponding sequences of human V_{κ} 1-33 on a wild-type *Igk* allele (" V_{κ} 1-33-rearranging" allele)
190 and then also deleted Cer/Sis on that allele (" V_{κ} 1-33^{CSΔ}-rearranging" allele) (57). In these
191 replacement alleles, we maintained the mouse V_{κ} 3-2 sequence upstream of the ATG (including
192 the promoter) and the V_{κ} 3-2 downstream sequence starting at the V_{κ} 3-2 RSS. HTGTS-Rep-seq
193 revealed that, similarly to V_{κ} 3-2, human V_{κ} 1-33 on homozygous replacement alleles in our

194 VRC01-class models accounted for approximately 2% or 17% of primary $V\kappa$ rearrangements in
195 presence or absence of Cer/Sis element, respectively (Fig. S3A). $V\kappa$ 1-33 contributed to the
196 splenic BCR repertoire at similar frequencies (approximately 2% and 15%, respectively; Fig.
197 S3B). We also generated a " $V\kappa$ 3-20-rearranging allele" in which mouse proximal $V\kappa$ 3-7 was
198 replaced with human $V\kappa$ 3-20 (Fig. 1A; Fig. S3, C and D). When homozygous in mice, the $V\kappa$ 3-
199 20-rearranging allele contributed about 6% of primary $V\kappa$ rearrangements and contributed similar
200 frequencies in splenic BCR repertoires (Fig. S3E). We considered these levels sufficiently high to
201 leave Cer/Sis intact for initial experiments.

202 Based on studies of the *Igh* locus (56), we also inserted CBEs just downstream of the
203 RSSs of the inserted $V\kappa$ 1-33 and $V\kappa$ 3-20 gene segments (Fig. 1A) (57). However, we found that,
204 compared to the rearrangement frequencies of mouse $V\kappa$ s they replaced, inserted CBEs had no
205 measurable effect on $V\kappa$ 1-33 rearrangement either in the presence or absence of Cer/Sis
206 (Fig. S2C; Fig. S3, A and B) and only modestly increased $V\kappa$ 3-20 rearrangement in the presence
207 of Cer/Sis (Fig. S2C; Fig. S3E). These findings, particularly, the lack of the attached CBE to
208 dominantly increase $V\kappa$ 1-33 rearrangement in the absence of Cer/Sis, suggest that mechanisms
209 underlying CBE-enhanced dominant utilization of proximal V_H s in the absence of IGCR1 may not
210 be conserved in the context of Ig κ V(D)J recombination. This notion is consistent with recent findings,
211 published after these models were generated, that indicated mechanisms that promote long-
212 range V_H to DJ_H joining are, at least in part, distinct from those that promote long-range $V\kappa$ to $J\kappa$
213 joining (61).

214 We refer to these new VRC01-class mouse models with human V_H 1-2- and $V\kappa$ -
215 rearranging ("R") alleles as the V_H 1-2R^{JH2}/ $V\kappa$ 1-33R model, the V_H 1-2R^{JH2}/ $V\kappa$ 1-33R^{CSΔ} model ("CSΔ"
216 indicates Cer/Sis deletion), and the V_H 1-2R^{JH2}/ $V\kappa$ 3-20R model. Based on fluorescence-activated
217 cell sorting (FACS) analyses of cell surface markers, splenic B and T cell populations in all three
218 models were comparable to those of wild-type mice (Fig. S3F). During our studies of the V_H 1-
219 2R^{JH2}/ $V\kappa$ 3-20R model, we discovered that the inserted $V\kappa$ 3-20 sequence had acquired a single
220 in-frame point mutation in CDR1 that changes an S to I residue (AGT to ATT) (Fig. S4A). We then
221 corrected this mutation in the $V\kappa$ 3-20 allele, introduced it into all mouse models described, and
222 repeated all experiments originally performed with the mutated allele with mouse models
223 harboring the corrected allele. Based on fluorescence-activated cell sorting (FACS) analyses of
224 cell surface markers, splenic B and T cell populations in the $V\kappa$ 3-20 corrected model were also
225 comparable to those of wild-type mice and those of the mouse models harboring mutated $V\kappa$ 3-20
226 sequence (Fig. S3F). Indeed, in all experiments described below, mouse models harboring the
227 mutated and corrected $V\kappa$ 3-20 sequence gave very similar results with respect to $V\kappa$ 3-20-based

228 VRC01-class responses, which, for comparison, are included in all immunization experiments and
229 related figures described below.

230 **Enforced human TdT Expression diversifies LC repertoires**

231 VRC01-class bnAb LCs commonly have a LC 5-aa CDR3 with a relatively conserved
232 QQYEF amino acid sequence (32, 62). However, as compared to the frequency of LC 5-aa
233 CDR3s in human BCR repertoires, our initial VRC01-class mouse models had 20- to 50-fold lower
234 frequencies of LC 5-aa CDR3s (0.02%) in their mouse $V\kappa$ and human $V\kappa$ 1-33 or $V\kappa$ 3-20 LC BCR
235 repertoires (Fig. S5A) (48, 62). In this regard, approximately 80% of human LC 5-aa-CDR3s are
236 encoded by sequences with hTdT-generated N regions (Fig. S5B). Thus, to enforce more human-
237 like TdT expression in mouse bone marrow precursor B cells which normally lack TdT expression,
238 we targeted human hTdT into the *Rosa* locus of ES cells containing the $V\kappa$ 3-20R allele (Fig. 1A;
239 Fig. S5, C and D); as *Rosa* and *Igκ* both lie on chromosome 6, these two modifications are linked
240 in subsequent crosses. Mice harboring the resulting $V\kappa$ 3-20R^{hTdT} modified chromosome were
241 bred to homozygosity with the V_H 1-2R^{JH2} allele to create V_H 1-2R^{JH2}/ $V\kappa$ 3-20R^{hTdT} mice. The V_H 1-
242 2R^{JH2}/ $V\kappa$ 3-20R^{hTdT} mice indeed now expressed human TdT in their progenitor and precursor B
243 cell population (Fig. S5, E and F). HTGTS-Rep-seq revealed that enforced TdT expression
244 modestly increased $V\kappa$ 3-20 expression and had little impact on utilization of V_H 1-2 in splenic B
245 cell populations (Fig. 1B and Fig. S5G).

246 As compared to splenic B cells of V_H 1-2R^{JH2}/ $V\kappa$ 3-20R mice, those of V_H 1-2R^{JH2}/ $V\kappa$ 3-
247 20R^{hTdT} mice had markedly increased frequencies of N regions in both mouse $V\kappa$ to $J\kappa$ junctions
248 and human $V\kappa$ 3-20 to $J\kappa$ junctions (Fig. 1C), and, correspondingly, much more diverse CDR3s
249 (Fig. 1D). Notably, while enforced N region addition increased the proportion of longer LC CDR3s
250 (> 9-aa), it also increased, up to 5-fold, the proportion of short mouse and $V\kappa$ 3-20 LC CDR3s (<
251 7-aa), including 5-aa CDR3s (Fig. 1, E and F). Correspondingly, the proportion of N-regions in
252 short LC CDR3s was significantly increased (Fig. 1G) and the proportion of MH-mediated short
253 $V\kappa$ to $J\kappa$ joins (< 7-aa) was significantly reduced in splenic B cells of V_H 1-2R^{JH2}/ $V\kappa$ 3-20R^{hTdT} mice
254 as compared to those of V_H 1-2R^{JH2}/ $V\kappa$ 3-20R mice (Fig. 1H). In addition, we compared the LC
255 CDR3s in splenic B cells of V_H 1-2R^{JH2}/ $V\kappa$ 3-20R and V_H 1-2R^{JH2}/ $V\kappa$ 3-20R^{hTdT} mice to those in
256 human tonsil naïve B cells and found that enforced TdT expression in V_H 1-2R^{JH2}/ $V\kappa$ 3-20R^{hTdT}
257 mice yielded more human-like CDR3s (Fig. 1, C to E, G and H). As endogenous mouse TdT
258 expression is already robust in V_H 1-2R^{JH2}/ $V\kappa$ 3-20R progenitor-stage B cells that undergo HC locus
259 V(D)J recombination, human TdT expression had no obvious effect on HC CDR3 length and
260 diversity in V_H 1-2R^{JH2}/ $V\kappa$ 3-20R^{hTdT} mice (Fig. S5H).

261 We similarly introduced hTdT into the *Rosa* locus of V_H 1-2R^{JH2}/ $V\kappa$ 1-33R^{CSΔ} mice and
262 generated V_H 1-2R^{JH2}/ $V\kappa$ 1-33R^{CSΔ/hTdT} mice. Analyses of splenic B cells from these two models
263 revealed little effect of enforced hTdT expression on overall $V\kappa$ 1-33 utilization and V_H 1-2 utilization

264 in splenic B cell populations (Fig.S6A). However, as in the $V_{H1-2}R^{JH2}/V_{\kappa}3-20R^{hTdT}$ model, $V_{\kappa}1-33$
265 LC CDR3 diversity and the frequency of $V_{\kappa}1-33$ 5-aa CDR3s were significantly increased after
266 hTdT expression (Fig.S6, B and C).

267 **Human TdT enhanced VRC01-class GC responses induced by eOD-GT8**

268 To test if the human TdT expression affects the VRC01-class GC response, we immunized
269 $V_{H1-2}R^{JH2}/V_{\kappa}3-20R$, $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$, $V_{H1-2}R^{JH2}/V_{\kappa}3-20R^{hTdT}$ and $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta/hTdT}$
270 mice with eOD-GT8 60mer and poly I:C adjuvant (Fig.2A). All mice developed CD4-
271 binding site (CD4bs)-specific germinal center (GC) responses by day 8 post-immunization, as
272 demonstrated by the presence of GC B cells that bound eOD-GT8 but not Δ eOD-GT8 (which is a
273 VRC01-class epitope knockout variant) (Fig. S7, A to C). We flow-sorted eOD-GT-specific GC B
274 cells and sequenced their BCRs (Fig. 2B). We refer to B cells with VRC01-class BCRs (V_{H1-2}
275 HCs and LCs with 5-aa CDR3s) as VRC01/ $V_{\kappa}1-33$, VRC01/ $V_{\kappa}3-20$ and VRC01/m V_{κ} B cells,
276 according to the LC they express. At day 8, VRC01/ $V_{\kappa}3-20$ and VRC01/m V_{κ} represented 5% and
277 4%, respectively of CD4bs-specific GC B cells in $V_{H1-2}R^{JH2}/V_{\kappa}3-20R$ mice and 28% and 20%,
278 respectively in $V_{H1-2}R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice (Fig.2, B and C). Thus, enforced TdT expression in
279 $V_{H1-2}R^{JH2}/V_{\kappa}3-20R$ line increases frequency of VRC01-class GC B cells by approximately 5-fold.
280 At day 8, VRC01/ $V_{\kappa}1-33$ GC B cells represented up to 70% of CD4bs-specific GC B cells in both
281 $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$ and $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta/hTdT}$ mice but no mouse VRC01/m V_{κ} s B cells
282 were observed (Fig.2, B and C). The lack of mouse VRC01/m V_{κ} s B cells in the GCs of immunized
283 $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$, $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta/hTdT}$ mice probably results from domination of the
284 response by VRC01/ $V_{\kappa}1-33$ B cells.

285 On day 8 post-immunization, the Glu96 (E), a conserved residue in 5-aa LC CDR3s of
286 VRC01-class bnAbs, was dominantly selected by eOD-GT8 in VRC01-class 5-aa LC CDR3s from
287 $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$, $V_{H1-2}R^{JH2}/V_{\kappa}1-33R^{CS\Delta/hTdT}$ and $V_{H1-2}R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice, but not from
288 $V_{H1-2}R^{JH2}/V_{\kappa}3-20R$ mice (Fig.2D; Fig.S7D). This finding indicated that V_{κ} to J_{κ} joining events
289 involving $V_{\kappa}3-20$ or mouse V_{κ} s in the $V_{\kappa}3-20$ mice require N regions added by hTdT to generate
290 the critical E residue in the VRC01-class 5-aa CDR3. Examination of $V_{\kappa}3-20$ and mouse V_{κ}
291 sequences proved that this is the case (Fig.S7E). On the other hand, examination of the $V_{\kappa}1-33$
292 sequences confirm that they can directly form the E residue in the VRC01-class 5-aa CDR3 when
293 joined to mouse $J_{\kappa}1$ and human $J_{\kappa}1$ in the absence of hTdT activity (Fig.S7E). Lack of this E
294 residue in 5-aa mouse LC CDR3s in primary GCs that arose after a single eOD-GT8 immunization
295 was also noted in prior studies (46, 49, 63, 64). Thus, hTdT expression substantially enhanced
296 the VRC01/ $V_{\kappa}3-20$ and VRC01/m V_{κ} GC response to eOD-GT8 immunization by generating $V_{\kappa}3-20$ -based
297 VRC01-class 5-aa CDR3s that, as a result of N-region addition, have the capacity to
298 encode the critical CDR3 E residue.

299

300 **Generation of $V_H1-2^{JH2}/V\kappa1-33/V\kappa3-20^{hTdT}$ -rearranging mice**

301 We bred the $V_H1-2R^{JH2}/V\kappa1-33R^{CS\Delta/hTdT}$, $V_H1-2R^{JH2}/V\kappa3-20R^{hTdT}$ mouse lines together to
302 make an even more human-like model that rearranges both VRC01-class $V\kappa$ s. In this new V_H1-
303 $2R^{JH2}/V\kappa1-33R^{CS\Delta/hTdT}/V\kappa3-20R^{hTdT}$ mouse model, $V\kappa1-33$ and $V\kappa3-20$ LCs were expressed in
304 7.8% and 3.4% of splenic B cells, respectively (Fig.S8A). However, on day 8 post-immunization
305 with eOD-GT8 60mer, VRC01/ $V\kappa3-20$ GC B cells were outcompeted by VRC01/ $V\kappa1-33$ GC B
306 cells and were hardly represented in GCs, suggesting the frequency or affinity of responding
307 VRC01/ $V\kappa1-33$ precursors was much higher than that of VRC01/ $V\kappa3-20$ precursors in this model
308 (Fig.S8B). Thus, we further generated $V_H1-2R^{JH2}/V\kappa1-33R/V\kappa3-20R^{hTdT}$ model, in which Cer/Sis
309 is still present on the $V\kappa1-33$ allele, leading to a reduction in $V\kappa1-33$ LC-expressing splenic B cell
310 frequency to 0.74% (Fig.3, A and B). Indeed, the relative frequency of $V\kappa1-33$ versus $V\kappa3-20$
311 expressing splenic B cells in the $V_H1-2R^{JH2}/V\kappa1-33R/V\kappa3-20R^{hTdT}$ model are more comparable to
312 that of humans (65). To assess the frequency of VRC01-precursors, we sorted eOD-GT8-specific
313 naïve B cells and identified their BCR sequences (Fig. 3C and Fig. S8C). The frequency of eOD-
314 GT8-specific VRC01 precursors using $V\kappa1-33$ or $V\kappa3-20$ LCs in this mouse model was
315 approximately 1 in 230,000 (VRC01/ $V\kappa1-33$: 1 in 500,000; VRC01/ $V\kappa3-20$: 1 in 420,000) (Fig.
316 3D), which is comparable to approximately 1 in 400,000 frequency of eOD-GT8-specific VRC01
317 precursors measured in humans (44). We also estimated the VRC01-precursor based on HTGTS-
318 Rep-seq data by multiplying the frequency of V_H1-2 HCs by the frequency of $V\kappa1-33$ and $V\kappa3-20$
319 LCs with 5-aa CDR3s (Fig. 3E). The results suggest that only a small proportion of B cells
320 expressing V_H1-2 HCs and $V\kappa3-20$ LCs with 5-aa CDR3s bound to eOD-GT8.

321 **VRC01-class B cells develop SHM and affinity maturation in GCs induced by eOD-GT8
322 60mer.**

323 To test if $V_H1-2R^{JH2}/V\kappa1-33R/V\kappa3-20R^{hTdT}$ mice respond to the VRC01-class prime
324 immunogens and support affinity maturation of VRC01-class GC B cells at sufficient levels to
325 support future prime-boost studies, we immunized them with eOD-GT8 60mer and then boosted
326 them with eOD-GT8 60mer at day 28 (Fig.4A). VRC01/ $V\kappa1-33$, VRC01/ $V\kappa3-20$ and VRC01/m $V\kappa$
327 B cells were highly enriched in CD4bs-specific GC B cells at both 8 day and 36 day post-
328 immunization (Fig.4B; Fig.S9, A to C). Evaluation of GC responses at day 8 and day 36 revealed
329 that the frequencies of VRC01/ $V\kappa3-20$ GC B cells and VRC01/ $V\kappa1-33$ GC B cells were
330 comparable at day 8, but the frequencies of VRC01/ $V\kappa3-20$ GC B cells was higher than that of
331 VRC01/ $V\kappa1-33$ GC B cells at day 36 (Fig.4C). Sequencing analyses of VRC01-class antibodies
332 cloned from both day 8 and day 36 GCs revealed extensive SHM, with a maximum of 17 aa
333 mutations and a median of 9 aa mutations at day 36 (Fig.4D; Fig.S9, D and E), and wide ranges
334 of HC CDR3 length (Fig. S9F). To further analyze VRC01-class GC B cell sequence mutations,
335 we compared them to intrinsic mutation patterns generated from non-productive rearrangements

336 of GC B cells without affinity selection (Fig.4E; Fig.S9, G to I) (see Method) (66). The Q61R mutant
337 on the V_H 1-2 HC reported for VRC01-class bnAbs was significantly enriched in day 36 VRC01-
338 class antibodies (Fig.4F) (42). The Glu96 (E) residues in LC CDR3s were dominant in all types of
339 day 36 VRC01-class antibodies (Fig.4G). We expressed several VRC01-class antibodies with
340 different LCs cloned from day 8 and day 36 GCs. Antibodies from day 8 GCs showed a range of
341 binding affinities, with a median of 100nM K_D , to eOD-GT8 (Fig.4H). For the antibodies from day
342 36 GCs, about 50% showed much higher binding activities, below 1nM K_D , representing an
343 average affinity improvement of 100-fold (Fig.4H and Table S1). Altogether, our findings strongly
344 indicate that the V_H 1-2R^{JH2}/ $V\kappa$ 1-33R/ $V\kappa$ 3-20R^{hTdT} VRC01-class and related models will facilitate
345 testing prime-boost immunization strategies aimed to advance eOD-GT8-primed vaccination
346 studies to be used in human clinical trials.

347 Discussion

348 Many prior mouse models employed to test vaccine strategies designed to elicit VRC01-
349 class HIV-1 bnAbs had exceedingly high or extremely low levels of VRC01-class precursor B cells.
350 Other approaches to generate more physiological levels of VRC01 precursors in mouse models
351 were limited by being designed to test only the eOD-GT8 priming immunogen in the context of
352 very limited precursor diversity. We have now described more physiologically relevant VRC01-
353 class V(D)J-rearranging mouse models for testing priming and boosting strategies designed to
354 elicit VRC01-class bnAbs. These new VRC01-class rearranging mouse models rearrange both
355 human VRC01-class V_H 1-2 and $V\kappa$ 3-20 and/or $V\kappa$ 1-33 variable region gene segments, along with
356 mouse V_{HS} and $V\kappa$ s during normal B cell development. The various mouse lines generated to
357 make the VRC01-class rearranging models described here employ several different genetic
358 strategies that should allow titration of the expression level of diverse $V\kappa$ 3-20- and/or $V\kappa$ 1-33-
359 based variable region exons to establish mouse models that generate VRC01 precursor B cells
360 over a wide range of levels (Table S2). Of these models the V_H 1-2R^{JH2}/ $V\kappa$ 1-33R/ $V\kappa$ 3-20R^{hTdT}
361 model, described in depth in this report, generates a highly diverse set of potential VRC01-class
362 precursors in mouse repertoires at similar relative levels to those found in human B cell repertoires.
363 Importantly, the potential VRC01-class precursors with highly diverse CDR3s generated in the
364 VRC01-class rearranging models should not be biased with respect to evaluating the efficacy of
365 any particular VRC01-class priming immunogen (Fig. S9F).

366 In this initial study, we have tested the eOD-GT8 priming immunogen in several VRC01
367 class rearranging models, including the most human-like V_H 1-2R^{JH2}/ $V\kappa$ 1-33R/ $V\kappa$ 3-20R^{hTdT} model,
368 and found robust engagement of VRC01-class precursors into GCs where they generated equally
369 robust eOD-GT8-specific responses. Other types of priming immunogens that may not be as
370 robust in engaging VRC01-class precursors as eOD-GT8, such as 426c-degly3 Ferritin (40, 47)
371 or GT1 trimer (67), should also be able to be readily evaluated in our new models. Conceivably,

372 studies of some VRC01-class immunogens that have lower affinity for precursors may benefit
373 initially through the use of VRC01-class models that express higher levels of VRC01-class
374 precursors (Table S2). Also, as individual VRC01-class precursor B cells in these new VRC01-
375 class rearranging models express one of a multitude of different variations of the potential VRC01
376 precursor, they may, in theory, be useful for identifying new pathways that could lead to the
377 generation of potent VRC01-class bnAbs. For any tested priming immunogen that generates a
378 response, our new models could also be used to test sequential boost immunogens designed to
379 lead them through rounds of SHM/affinity maturation that drive responses towards the generation
380 of VRC01-class bnAbs as described for less diverse earlier versions of these models (49, 68).

381 A key feature of our new models is their ectopic TdT expression that forces their mouse
382 Pre-B cells to further diversify their mouse and human LC variable region repertoires and make
383 them more human-like both with respect to contributing N-region diversity and by dampening
384 recurrent MH-mediated join levels in their postnatal LC repertoires. As mentioned, absence of
385 TdT in fetal repertoires promotes recurrent MH-mediated junctions that lead to generation of
386 particular Ig or TCR variable region exon sequences (14-21). For example, generation of recurrent
387 "canonical" joins in fetal repertoires in the absence of TdT and N region additions underlies
388 generation of canonical junctions encoding recurrent γ/δ TCRs expressed on "innate-like"
389 intraepithelial γ/δ T cells that persist into adulthood in both mice and humans (69, 70). Notably,
390 enforced TdT expression during fetal lymphocyte development dampens some such responses
391 (13, 28). In this study, we found that enforced TdT expression in mouse Pre-B cells increased
392 the frequency of short 5-aa CDR3 sequences, such as those used in a VRC01-class response,
393 and promoted a specific $V\kappa 3-20$ -based eOD-GT8 primary response by generating N sequences
394 that contribute to encoding a critical VRC01 class 5-aa CDR3 residue. Analyses of human $V\kappa 3-$
395 20-based VRC01-class sequences indicate that this mechanism also operates in humans (e.g.
396 Fig. S7E). By extension, it is likely that postnatal TdT expression will similarly contributes to other
397 responses.

398 The strategies we employed for constructing the VRC01 rearranging mouse model can be
399 generally adopted for generating mouse models for other classes of anti-HIV-1 bnAbs. In this
400 regard, CDR3 diversification, including engineering the models to make very long human CDR3s,
401 will be especially relevant for testing immunogens for bnAbs that rely heavily on CDR3 to contact
402 Env epitopes, such as those of the V2 apex, V3 glycan and MPER classes (71). The limitations
403 with previously employed strategies to generate mouse models to test VRC01-class immunization
404 strategies outline above also will apply to mouse models designed to test immunogens in the
405 context of these other bnAb lineages. Beyond this, all straight precursor variable region knock-in
406 strategies are limited by difficulty in accurately inferring the CDR3 of the common unmutated
407 ancestor sequence of precursors, which may include contributions from both non-templated

408 nucleotides and somatic hypermutations (72). Second, due to the enormous CDR3 diversity in
409 human antibody repertoires, a specific bnAb precursor may not be present in all individuals. To
410 work at a population level, a vaccine should stimulate B cells expressing a range of related
411 precursors. Mouse models expressing a unique bnAb precursor cannot assess this critical
412 parameter. Also, expression of certain bnAb precursors HCs or LCs can interfere with B cell
413 development, leading to B cell deletion in bone marrow or anergy in peripheral lymphoid tissues
414 (71, 73-75). The prototype VRC01-class rearranging mouse model we have described here,
415 addresses these potential issues in the VRC01 lineage, as V(D)J recombination generates human
416 VRC01-class precursors that express highly diverse CDR3s, many of which may be compatible
417 with bnAb development. Thus, this type of mouse HIV-1 vaccine model does not depend on UCA
418 inference. Additionally, the CDR3 diversity in the model facilitates assessment of the ability of
419 immunogens to tolerate CDR3 flexibility and mobilize related precursors for bnAb development.
420 Finally, by generating diverse human primary BCR repertoires, rearranging mouse models can
421 provide precursors that support normal B cell development and, correspondingly, generate B cells
422 responsive to immunization.

423 **Materials and Methods**

424 **VRC01-rearranging mouse model and embryonic stem cells**

425 The genetic modifications in the *Igκ* locus were introduced into previously generated V_H1-
426 2 ES cells (129/Sv and C57BL/6 F1 hybrid background), using targeting strategies described
427 previously (49). The mouse V_κ3-7 segment was replaced with human V_κ3-20 segment with an
428 attached CTCF-binding element (CBE) (atccaggaccagcaggggcgccggagacaca) inserted 50 bp
429 downstream of human V_κ3-20 segment. The replacement was mediated by homologous
430 recombination using a PGKneolox2DTA.2 (Addgene #13449) construct and one guide RNA that
431 targeted the mouse V_κ3-7 segment. The human TdT cDNA was cloned into CTV (Addgene
432 #15912) construct in which the TdT expression was driven by CAG promotor and followed by a
433 EGFP expression that mediated by an internal ribosome entry site (IRES) (76). The TdT
434 expression cassette was inserted into the first intron of mouse Rosa26 gene which is on the same
435 chromosome 6 with *Igκ* locus by homologous recombination. The sequence of guide RNA used
436 for targeting were listed in Table S3. The ESCs were grown on a monolayer of mitotically
437 inactivated mouse embryonic fibroblasts (iMEF) in DMEM medium supplemented with 15%
438 bovine serum, 20mM HEPES, 1x MEM nonessential amino acids, 2mM Glutamine, 100 units of
439 Penicillin/Streptomycin, 100 mM b-mercaptoethanol, 500 units/ml Leukemia Inhibitory Factor
440 (LIF).

441 The V_H1-2^{JH2}/V_κ3-20^{hTdT} -rearranging mouse was generated by blastocyst injection of the
442 ES cells described above and several rounds of breeding to get germline transmission and
443 homozygous mice. The V_H1-2^{JH2}/V_κ1-33/V_κ3-20^{hTdT}-rearranging mouse was generated by cross
444 breeding of V_H1-2^{JH2}/V_κ3-20^{hTdT} and V_H1-2^{JH2}/V_κ1-33^{hTdT} mice. Thus, human V_κ1-33 and V_κ3-20
445 segments were used on separated alleles. All mouse experiments were performed under protocol
446 20-08-4242R approved by the Institutional Animal Care and Use Committee of Boston Children's
447 Hospital.

448 **Immunogen and Immunization**

449 Immunogen eOD-GT8 60mer was made as previously described (49). For immunization,
450 each 8-12 weeks old mouse was immunized with 200 ul mixture that contain 25 ug filter-sterilized
451 immunogen and 60 ug of poly I:C in PBS by intraperitoneal injection.

452 **Splenic B cell, GC B cell purification and Antigen-specific GC B Cell Sorting**

453 Splenic B cells used for HTGTS-Rep-seq were purified from unimmunized 5-8 weeks old
454 mice by MACS® Microbeads according to the manufacturer's protocol. In brief, spleens were
455 dissected out from unimmunized mice, prepared into single cell suspensions and stained with
456 anti-B220 Microbeads for 20 minutes at 4°C. The splenic B cells were collected using the LS
457 column and MACS™ Separator. GC B cells used for Rep-SHM-seq were purified from 8-12 weeks
458 old mice after eOD-GT8 60mer immunization. GC B cells were sorted for the phenotype B220⁺

459 (BV711: BioLegend 103255), CD95⁺ (PE-Cy7: eBioscience 557653) and GL7⁺ (PE: BioLegend
460 144607). CD4-binding site-specific GC B cells for single cell RT-PCR were further selected for
461 the phenotype eOD-GT8 Fc⁺ and ΔeOD-GT8 Fc⁻. The eOD-GT8 Fc was conjugated with Alexa
462 Fluor 647 fluorescence (Thermo Fisher Scientific A30009). The ΔeOD-GT8 Fc was conjugated
463 with Biotin (Thermo Fisher Scientific A30010) and then stained with BV605 (BioLegend 405229).

464 **Human tonsil mature naïve B cell isolation and genomic DNA extraction**

465 Human tonsils were obtained from discarded tissues as part of a routine tonsillectomy
466 from patients at Boston Children's Hospital. Human tissues were obtained under the IRB
467 approved protocol IRB-P00026526, to J.P.M. Tonsils were minced in RPMI 1640 with 10% FBS
468 and forced through a 45 µm mesh and washed twice with media. The single cell suspension was
469 stained with 7-AAD (Biolegend) for viability and antibodies directed against human CD19 (APC
470 clone SJ25-C1, Thermo Fisher Scientific), CD38 (PE-Cy7 clone HB-7, Biolegend), IgD (FITC
471 polyclonal, Thermo Fisher Scientific) and CD27 (APC-Cy7 clone M-T271, Biolegend). Live Naïve B
472 cells were obtained by sorting the stained cells using a FACS (fluorescence-activated cell sorting)
473 Aria (BD Biosciences) as 7-AAD⁻CD19⁺CD38⁻IgD⁺CD27⁻. Genomic DNA from sorted cells was
474 prepared using a DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer's protocol.

475 **HTGTS-Rep-seq and Rep-SHM-seq Analysis**

476 10 µg of DNA from purified splenic B cells was used for generating HTGTS-Rep-seq
477 libraries as previously described (77). 4 bait primers that target mouse Jκ1, Jκ2, Jκ4 and Jκ5
478 were mixed to capture all Igκ light chain repertoire in one library. One bait primer that targets
479 human J_H2 was used to capture heavy chain repertoire. The sequences of human J_H2 and mouse
480 Jκ primers were as same as the previously reported (54, 66). These HTGTS-Rep-seq libraries
481 were sequenced by Illumina NextSeq 2 x 150-bp paired end kit analyzed with the HTGTS-Rep-
482 seq pipeline (77). DNA from GC B cells was used for generating Rep-SHM-seq libraries as
483 previously described (66). To capture the full-length V(D)J sequence especially the CDR1 region
484 for intrinsic SHM analysis, we designed bait primers that target human V intron regions. The
485 primer sequences are in Table S3. These Rep-SHM-seq libraries were sequenced by Illumina
486 MiSeq 2 x 300-bp paired end kit analyzed with the Rep-SHM-seq pipeline, which uses IgBLAST
487 to annotate V, D, J and CDRs for each read (66).

488 **Single Cell RT-PCR and monoclonal antibody production**

489 Single cell RT-PCR were performed as described previously (57). In brief, single antigen-
490 specific GC B cells were sorted into 96-well plate that contain 5ul of lysis buffer in each well. After
491 sorting, we used primers mixture that specifically target C μ , C γ 1, C γ 2a and C κ to perform reverse
492 transcription and then two rounds of nested PCR to amplify the V(D)J sequences of V_H1-2 heavy
493 chain, mouse light chain, human V κ 3-20 and V κ 1-33 light chain. PCR products were run on
494 agarose gels and perform sanger sequencing to confirm their identity. The primer sequences for

495 V_{H1-2} HC, $V_{\kappa}3-20$ and $V_{\kappa}1-33$ LC amplification were in Table S3. The primer sequences for
496 mouse LC amplification were as same as previously reported (78). The antibody expression
497 constructs containing the heavy-chain and the light-chain variable region exons, with human
498 constant region sequences (IgG1, Ig κ) at the C terminus were made by Genscript. Monoclonal
499 antibodies were generated using the Expi293 expression system (Thermo Fisher Scientific) and
500 purified by high-performance liquid chromatography (HPLC) coupled with HiTrap Protein A HP
501 columns (Cytiva).

502 **Carterra Human IgG Capture**

503 Kinetics and affinity of antibody-antigen interactions were measured on Carterra LSA
504 using HC30M or CMDP Sensor Chip (Carterra) and 1x HBS-EP+ pH 7.4 running buffer (20x stock
505 from Teknova, Cat. No H8022) supplemented with BSA at 1mg/ml. Chip surfaces were prepared
506 for ligand capture following Carterra software instructions. In a typical experiment about 1000-
507 1700 RU of capture antibody (SouthernBiotech Cat no 2047-01) in 10 mM Sodium Acetate pH
508 4.5 was amine coupled. Phosphoric Acid 1.7% was our regeneration solution with 30 seconds
509 contact time and injected three times per each cycle. Solution concentration of ligands was above
510 10ug/ml and contact time was 10min. as per Carterra manual. Raw sensograms were analyzed
511 using Kinetics software (Carterra), interspot and blank double referencing, Langmuir model.
512 Analyte concentrations were quantified on NanoDrop 2000c Spectrophotometer using Absorption
513 signal at 280 nm.

514 **Analyses of CDR3 diversity and MH-mediated V(D)J recombination**

515 The lengths of insertion and MH for V_{κ} to J_{κ} rearrangement were annotated based on
516 HTGTS-Rep-seq results. Insertion nucleotides can be classified into P (palindromic) nucleotides
517 and N (non-template) nucleotides. For a read that can be aligned to the 3' end of V segment or 5'
518 end of J segment, the length of P nucleotides was determined by greedy alignment of read
519 sequence outside the V or J end to the reverse complimentary V or J sequence from the end. And
520 the remaining insertion nucleotides were classified as N nucleotides. The length of MH was
521 determined by the length of overlapping read sequence that could be aligned to both V and J
522 ($V_{end_on_read} - J_{start_on_read} + 1$) after greedy alignment to V and J. CDR3 diversity was
523 represented by the percentage of unique CDR3s for a series of downsampled read numbers (e.g.
524 20, 50, 100, 200), which could be viewed as rarefaction and estimated by R package
525 'iNEXT'. Welch's t-test was used to compare the percentage of unique CDR3s between groups.

526 **Statistical analysis**

527 Statistical tests with appropriate underlying assumptions on data distribution and variance
528 characteristics were used. t-test was used as indicated in the figure legends. Statistical analysis
529 was performed in Prism (v.8, GraphPad Software).

530 **Data and software availability**

531 All data needed to evaluate the conclusions of the paper are presented in the paper or
532 deposited on the online database. Nucleotide sequences have been deposited to GenBank
533 (accession Nos. OP598882 - OP599353). The next-generation sequencing data reported in this
534 paper have been deposited in the Gene Expression Omnibus (GEO) database under the
535 accession number GSE214884. The computational pipeline of Rep-SHM-Seq and the code for
536 statistical analysis tools used in this study are available at <https://github.com/Yyx2626/HTGTSrep>

537 **Acknowledgments**

538 We thank the F.W.A. laboratory members for discussions and comments, Hwei-Ling
539 Cheng for the advice about ES cell culture and Jianqiao Hu for the bioinformatics assistance. We
540 thank Tina-Marie Mullen for antibody production. This work was supported by the Bill & Melinda
541 Gates Foundation INV-021989 (F.W.A.) and R01 AI100887 (J.P.M.). F.W.A. is an Investigator of
542 the Howard Hughes Medical Institute.

543

544 **References**

545

- 546 1. F. W. Alt, Y. Zhang, F. L. Meng, C. Guo, B. Schwer, Mechanisms of programmed DNA
547 lesions and genomic instability in the immune system. *Cell* **152**, 417-429 (2013).
- 548 2. A. Rolink, F. Melchers, Molecular and cellular origins of B lymphocyte diversity. *Cell* **66**,
549 1081-1094 (1991).
- 550 3. T. K. Blackwell, F. W. Alt, Mechanism and developmental program of immunoglobulin
551 gene rearrangement in mammals. *Annu Rev Genet* **23**, 605-636 (1989).
- 552 4. J. P. Allison, L. L. Lanier, Structure, function, and serology of the T-cell antigen receptor
553 complex. *Annu Rev Immunol* **5**, 503-540 (1987).
- 554 5. D. H. Raulet, The structure, function, and molecular genetics of the gamma/delta T cell
555 receptor. *Annu Rev Immunol* **7**, 175-207 (1989).
- 556 6. T. W. LeBien, T. F. Tedder, B lymphocytes: how they develop and function. *Blood* **112**,
557 1570-1580 (2008).
- 558 7. W. E. Gathings, A. R. Lawton, M. D. Cooper, Immunofluorescent studies of the
559 development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in
560 humans. *Eur J Immunol* **7**, 804-810 (1977).
- 561 8. M. M. Davis, P. J. Bjorkman, T-cell antigen receptor genes and T-cell recognition. *Nature*
562 **334**, 395-402 (1988).
- 563 9. F. J. Bollum, Calf thymus polymerase. *J Biol Chem* **235**, 2399-2403 (1960).
- 564 10. F. W. Alt, D. Baltimore, Joining of immunoglobulin heavy chain gene segments:
565 implications from a chromosome with evidence of three D-JH fusions. *Proc Natl Acad Sci
566 U S A* **79**, 4118-4122 (1982).

567 11. S. Gilfillan, A. Dierich, M. Lemeur, C. Benoist, D. Mathis, Mice lacking TdT: mature animals
568 with an immature lymphocyte repertoire. *Science* **261**, 1175-1178 (1993).

569 12. T. Komori, A. Okada, V. Stewart, F. W. Alt, Lack of N regions in antigen receptor variable
570 region genes of TdT-deficient lymphocytes. *Science* **261**, 1171-1175 (1993).

571 13. Y. Zhang *et al.*, The role of short homology repeats and TdT in generation of the invariant
572 gamma delta antigen receptor repertoire in the fetal thymus. *Immunity* **3**, 439-447 (1995).

573 14. A. J. Feeney, Predominance of the prototypic T15 anti-phosphorylcholine junctional
574 sequence in neonatal pre-B cells. *J Immunol* **147**, 4343-4350 (1991).

575 15. A. J. Feeney, Predominance of VH-D-JH junctions occurring at sites of short sequence
576 homology results in limited junctional diversity in neonatal antibodies. *J Immunol* **149**, 222-
577 229 (1992).

578 16. H. Gu, I. Forster, K. Rajewsky, Sequence homologies, N sequence insertion and JH gene
579 utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic
580 timing of Ly1 B cell and B-CLL progenitor generation. *EMBO J* **9**, 2133-2140 (1990).

581 17. J. J. Lafaille, A. DeCloux, M. Bonneville, Y. Takagaki, S. Tonegawa, Junctional sequences
582 of T cell receptor gamma delta genes: implications for gamma delta T cell lineages and
583 for a novel intermediate of V-(D)-J joining. *Cell* **59**, 859-870 (1989).

584 18. L. K. Aguilar, J. W. Belmont, V gamma 3 T cell receptor rearrangement and expression in
585 the adult thymus. *J Immunol* **146**, 1348-1352 (1991).

586 19. J. F. Elliott, E. P. Rock, P. A. Patten, M. M. Davis, Y. H. Chien, The adult T-cell receptor
587 delta-chain is diverse and distinct from that of fetal thymocytes. *Nature* **331**, 627-631
588 (1988).

589 20. M. Bogue, S. Candeias, C. Benoist, D. Mathis, A special repertoire of alpha:beta T cells
590 in neonatal mice. *EMBO J* **10**, 3647-3654 (1991).

591 21. A. J. Feeney, Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J
592 junctional sequences. *J Exp Med* **172**, 1377-1390 (1990).

593 22. M. Heller, J. D. Owens, J. F. Mushinski, S. Rudikoff, Amino acids at the site of V kappa-J
594 kappa recombination not encoded by germline sequences. *J Exp Med* **166**, 637-646
595 (1987).

596 23. K. D. Victor, K. Vu, A. J. Feeney, Limited junctional diversity in kappa light chains.
597 Junctional sequences from CD43+B220+ early B cell progenitors resemble those from
598 peripheral B cells. *J Immunol* **152**, 3467-3475 (1994).

599 24. T. H. Thai, J. F. Kearney, Distinct and opposite activities of human terminal
600 deoxynucleotidyltransferase splice variants. *J Immunol* **173**, 4009-4019 (2004).

601 25. Y. S. Li, K. Hayakawa, R. R. Hardy, The regulated expression of B lineage associated
602 genes during B cell differentiation in bone marrow and fetal liver. *J Exp Med* **178**, 951-960
603 (1993).

604 26. T. H. Thai, M. M. Purugganan, D. B. Roth, J. F. Kearney, Distinct and opposite diversifying
605 activities of terminal transferase splice variants. *Nat Immunol* **3**, 457-462 (2002).

606 27. C. L. Benedict, J. F. Kearney, Increased junctional diversity in fetal B cells results in a loss
607 of protective anti-phosphorylcholine antibodies in adult mice. *Immunity* **10**, 607-617 (1999).

608 28. A. Aono *et al.*, Forced expression of terminal deoxynucleotidyl transferase in fetal thymus
609 resulted in a decrease in gammadelta T cells and random dissemination of
610 Vgamma3Vdelta1 T cells in skin of newborn but not adult mice. *Immunology* **99**, 489-497
611 (2000).

612 29. X. Wu *et al.*, Rational design of envelope identifies broadly neutralizing human monoclonal
613 antibodies to HIV-1. *Science* **329**, 856-861 (2010).

614 30. J. F. Scheid *et al.*, Sequence and structural convergence of broad and potent HIV
615 antibodies that mimic CD4 binding. *Science* **333**, 1633-1637 (2011).

616 31. X. Wu *et al.*, Focused evolution of HIV-1 neutralizing antibodies revealed by structures
617 and deep sequencing. *Science* **333**, 1593-1602 (2011).

618 32. T. Zhou *et al.*, Multidonor analysis reveals structural elements, genetic determinants, and
619 maturation pathway for HIV-1 neutralization by VRC01-class antibodies. *Immunity* **39**,
620 245-258 (2013).

621 33. I. S. Georgiev *et al.*, Delineating antibody recognition in polyclonal sera from patterns of
622 HIV-1 isolate neutralization. *Science* **340**, 751-756 (2013).

623 34. T. Zhou *et al.*, Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4
624 Supersite in 14 Donors. *Cell* **161**, 1280-1292 (2015).

625 35. X. Wu *et al.*, Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of
626 Chronic HIV-1 Infection. *Cell* **161**, 470-485 (2015).

627 36. J. Huang *et al.*, Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-
628 Pan Neutralization Breadth. *Immunity* **45**, 1108-1121 (2016).

629 37. J. Umotoy *et al.*, Rapid and Focused Maturation of a VRC01-Class HIV Broadly
630 Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-
631 Glycan. *Immunity* **51**, 141-154 e146 (2019).

632 38. S. Hoot *et al.*, Recombinant HIV envelope proteins fail to engage germline versions of
633 anti-CD4bs bNAbs. *PLoS Pathog* **9**, e1003106 (2013).

634 39. J. Jardine *et al.*, Rational HIV immunogen design to target specific germline B cell
635 receptors. *Science* **340**, 711-716 (2013).

636 40. A. T. McGuire *et al.*, Engineering HIV envelope protein to activate germline B cell receptors
637 of broadly neutralizing anti-CD4 binding site antibodies. *J Exp Med* **210**, 655-663 (2013).

638 41. T. Zhou *et al.*, Structural basis for broad and potent neutralization of HIV-1 by antibody
639 VRC01. *Science* **329**, 811-817 (2010).

640 42. J. G. Jardine *et al.*, Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide
641 Reductionist Vaccine Design. *PLoS Pathog* **12**, e1005815 (2016).

642 43. J. G. Jardine *et al.*, HIV-1 broadly neutralizing antibody precursor B cells revealed by
643 germline-targeting immunogen. *Science* **351**, 1458-1463 (2016).

644 44. C. Havenar-Daughton *et al.*, The human naive B cell repertoire contains distinct
645 subclasses for a germline-targeting HIV-1 vaccine immunogen. *Sci Transl Med* **10** (2018).

646 45. P. Dosenovic *et al.*, Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig
647 Knockin Mice. *Cell* **161**, 1505-1515 (2015).

648 46. J. G. Jardine *et al.*, HIV-1 VACCINES. Priming a broadly neutralizing antibody response
649 to HIV-1 using a germline-targeting immunogen. *Science* **349**, 156-161 (2015).

650 47. A. T. McGuire *et al.*, Specifically modified Env immunogens activate B-cell precursors of
651 broadly neutralizing HIV-1 antibodies in transgenic mice. *Nat Commun* **7**, 10618 (2016).

652 48. D. Sok *et al.*, Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci
653 transgenic mice. *Science* **353**, 1557-1560 (2016).

654 49. M. Tian *et al.*, Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse
655 Precursor Repertoires. *Cell* **166**, 1471-1484 e1418 (2016).

656 50. D. Huang *et al.*, B cells expressing authentic naive human VRC01-class BCRs can be
657 recruited to germinal centers and affinity mature in multiple independent mouse models.
658 *Proc Natl Acad Sci U S A* **117**, 22920-22931 (2020).

659 51. X. Wang *et al.*, Multiplexed CRISPR/CAS9-mediated engineering of pre-clinical mouse
660 models bearing native human B cell receptors. *EMBO J* **40**, e105926 (2021).

661 52. P. Dosenovic *et al.*, Anti-HIV-1 B cell responses are dependent on B cell precursor
662 frequency and antigen-binding affinity. *Proc Natl Acad Sci U S A* **115**, 4743-4748 (2018).

663 53. R. K. Abbott *et al.*, Precursor Frequency and Affinity Determine B Cell Competitive Fitness
664 in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens.
665 *Immunity* **48**, 133-146 e136 (2018).

666 54. T. Bradley *et al.*, Immune checkpoint modulation enhances HIV-1 antibody induction. *Nat
667 Commun* **11**, 948 (2020).

668 55. C. Guo *et al.*, CTCF-binding elements mediate control of V(D)J recombination. *Nature* **477**,
669 424-430 (2011).

670 56. S. Jain, Z. Ba, Y. Zhang, H. Q. Dai, F. W. Alt, CTCF-Binding Elements Mediate
671 Accessibility of RAG Substrates During Chromatin Scanning. *Cell* **174**, 102-116 e114
672 (2018).

673 57. S. Luo *et al.*, An Antibody from Single Human VH-rearranging Mouse Neutralizes All
674 SARS-CoV-2 Variants Through BA.5 by Inhibiting Membrane Fusion. *Sci Immunol*
675 10.1126/sciimmunol.add5446, eadd5446 (2022).

676 58. C. Yacoob *et al.*, Differences in Allelic Frequency and CDRH3 Region Limit the
677 Engagement of HIV Env Immunogens by Putative VRC01 Neutralizing Antibody
678 Precursors. *Cell Rep* **17**, 1560-1570 (2016).

679 59. M. Bonsignori *et al.*, Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common
680 Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. *Immunity* **49**,
681 1162-1174 e1168 (2018).

682 60. Y. Xiang, S. K. Park, W. T. Garrard, A major deletion in the Vkappa-Jkappa intervening
683 region results in hyperelevated transcription of proximal Vkappa genes and a severely
684 restricted repertoire. *J Immunol* **193**, 3746-3754 (2014).

685 61. H. Q. Dai *et al.*, Loop extrusion mediates physiological Ig locus contraction for RAG
686 scanning. *Nature* **590**, 338-343 (2021).

687 62. A. P. West, Jr., R. Diskin, M. C. Nussenzweig, P. J. Bjorkman, Structural basis for germ-
688 line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1
689 gp120. *Proc Natl Acad Sci U S A* **109**, E2083-2090 (2012).

690 63. B. Briney *et al.*, Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing
691 Antibodies. *Cell* **166**, 1459-1470 e1411 (2016).

692 64. Y. R. Lin *et al.*, HIV-1 VRC01 Germline-Targeting Immunogens Select Distinct Epitope-
693 Specific B Cell Receptors. *Immunity* **53**, 840-851 e846 (2020).

694 65. D. F. Robbiani *et al.*, Convergent antibody responses to SARS-CoV-2 in convalescent
695 individuals. *Nature* **584**, 437-442 (2020).

696 66. H. Chen *et al.*, BCR selection and affinity maturation in Peyer's patch germinal centres.
697 *Nature* **582**, 421-425 (2020).

698 67. M. Medina-Ramirez *et al.*, Design and crystal structure of a native-like HIV-1 envelope
699 trimer that engages multiple broadly neutralizing antibody precursors in vivo. *J Exp Med*
700 **214**, 2573-2590 (2017).

701 68. X. Chen *et al.*, Vaccination induces maturation in a mouse model of diverse unmutated
702 VRC01-class precursors to HIV-neutralizing antibodies with >50% breadth. *Immunity* **54**,
703 324-339 e328 (2021).

704 69. J. P. Allison, W. L. Havran, The immunobiology of T cells with invariant gamma delta
705 antigen receptors. *Annu Rev Immunol* **9**, 679-705 (1991).

706 70. D. H. Raulet *et al.*, Control of gamma delta T-cell development. *Immunol Rev* **120**, 185-
707 204 (1991).

708 71. B. F. Haynes *et al.*, Strategies for HIV-1 vaccines that induce broadly neutralizing
709 antibodies. *Nat Rev Immunol* 10.1038/s41577-022-00753-w (2022).

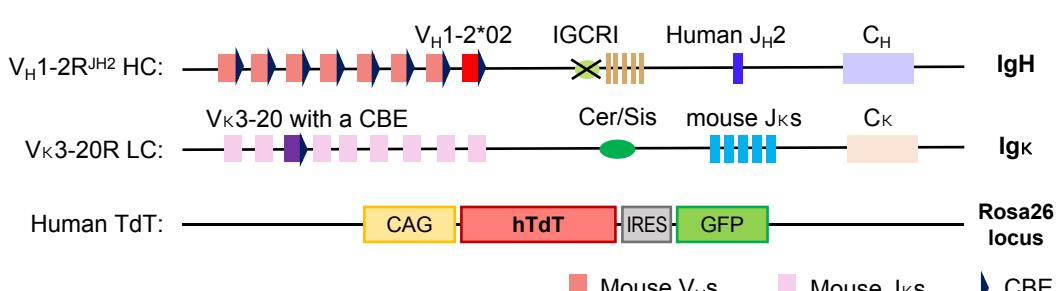
710 72. T. B. Kepler, Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved
711 ancestors. *F1000Res* **2**, 103 (2013).

712 73. L. Verkoczy *et al.*, Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable
713 region heavy chain induces immunologic tolerance. *Proc Natl Acad Sci U S A* **107**, 181-
714 186 (2010).

715 74. C. Doyle-Cooper *et al.*, Immune tolerance negatively regulates B cells in knock-in mice
716 expressing broadly neutralizing HIV antibody 4E10. *J Immunol* **191**, 3186-3191 (2013).

717 75. Y. Chen *et al.*, Common tolerance mechanisms, but distinct cross-reactivities associated
718 with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10.
719 *J Immunol* **191**, 1260-1275 (2013).

720 76. T. H. Thai *et al.*, Regulation of the germinal center response by microRNA-155. *Science*
721 **316**, 604-608 (2007).


722 77. S. G. Lin *et al.*, Highly sensitive and unbiased approach for elucidating antibody
723 repertoires. *Proc Natl Acad Sci U S A* **113**, 7846-7851 (2016).

724 78. T. Tiller, C. E. Busse, H. Wardemann, Cloning and expression of murine Ig genes from
725 single B cells. *J Immunol Methods* **350**, 183-193 (2009).

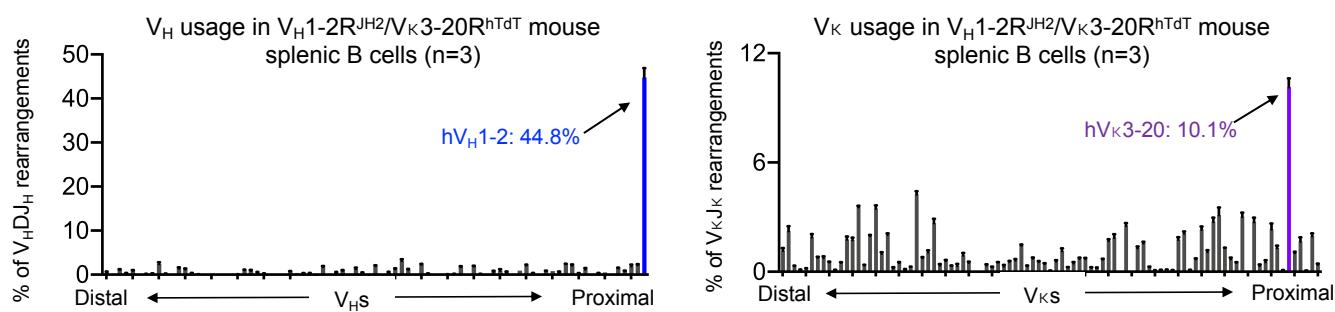
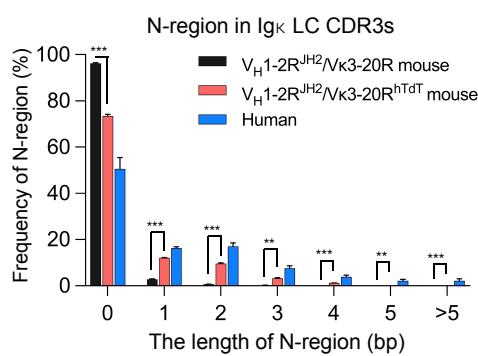
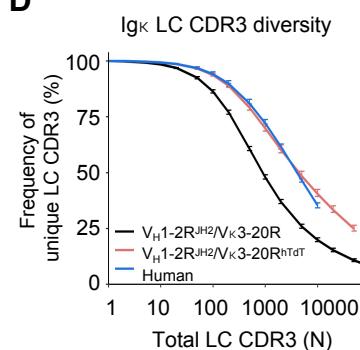
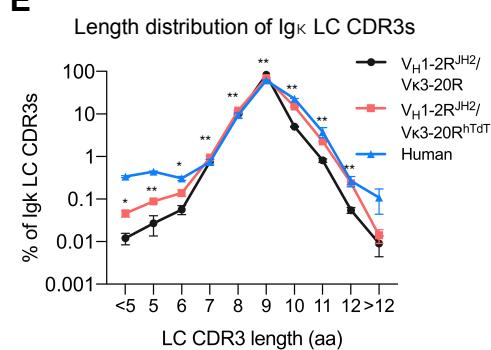
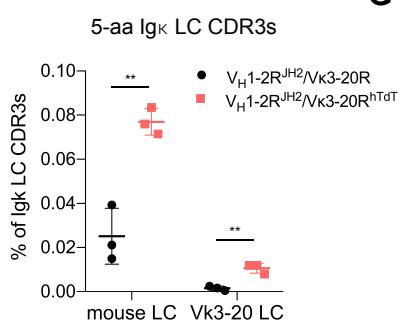

726

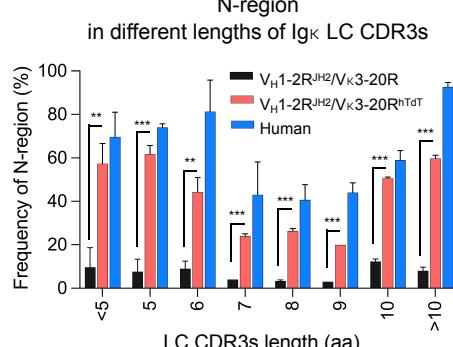
Figure 1

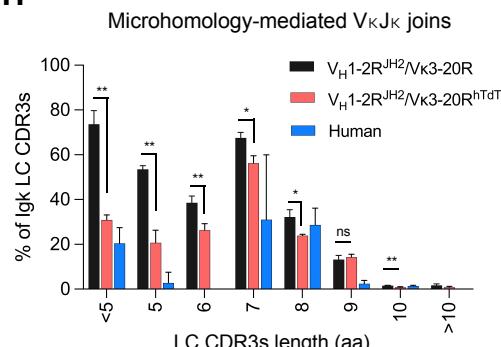

A


B


C


D


E


F

G

H

Figure 1. Generation and characterization of the $V_H1-2^{JH2}/V_{\kappa}3-20^{hTdT}$ -rearranging mouse models.

(A) Illustration of genetic modifications in the *lgh* and *lgκ* locus of $V_H1-2^{JH2}/V_{\kappa}3-20$ -rearranging mouse models. The most D_H -proximal functional mouse V_H (V_H81X) was replaced with the human V_H1-2 on an IGCR1-deleted allele. The mouse J_{HS} were replaced with the human J_H2 . The J_{κ} -proximal $V_{\kappa}3-7$ was replaced with human $V_{\kappa}3-20$ plus a CBE 50bp downstream of its RSS. Human *TdT* gene was knocked into mouse *Rosa* locus.

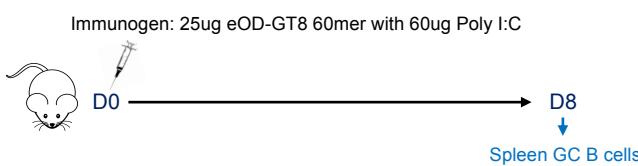
(B) HTGTSrep-seq analysis of V_H (upper panel) and V_{κ} (bottom panel) usage in $V_H1-2^{JH2}/V_{\kappa}3-20^{hTdT}$ -rearranging mouse splenic B cells. The x axis listed all functional V_{HS} or $V_{\kappa}s$ from the distal to the D - or J_{κ} -proximal end. The histogram displayed the percent usage of each V_H or $V_{\kappa}s$ among all productive V_HDJ_H or $V_{\kappa}J_{\kappa}$ rearrangements. The usage of human V_H1-2 and $V_{\kappa}3-20$ were shown in blue and purple, respectively.

(C) Length distribution of N regions in $V_{\kappa}J_{\kappa}$ junctions from human, $V_H1-2R^{JH2}/V_{\kappa}3-20R$ mouse and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells. The human naïve B cells were isolated from human tonsils using $CD19^+$, IgD^+ , $CD27^-$ and $CD38^-$.

(D) The diversity of Ig_{κ} LC CDR3s in human, $V_H1-2R^{JH2}/V_{\kappa}3-20R$ mouse and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells. The x axis represents the total Ig_{κ} LC CDR3 number (N). The y axis represents the frequency of unique Ig_{κ} LC CDR3s among total Ig_{κ} LC CDR3s. The differences of CDR3 diversities between $V_H1-2R^{JH2}/V_{\kappa}3-20R$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice are significant when the total CDR3 number is above 50 ($p<0.001$ for $N>=50$).

(E) Length distribution of Ig_{κ} LC CDR3s in human, $V_H1-2R^{JH2}/V_{\kappa}3-20R$ mouse and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells.

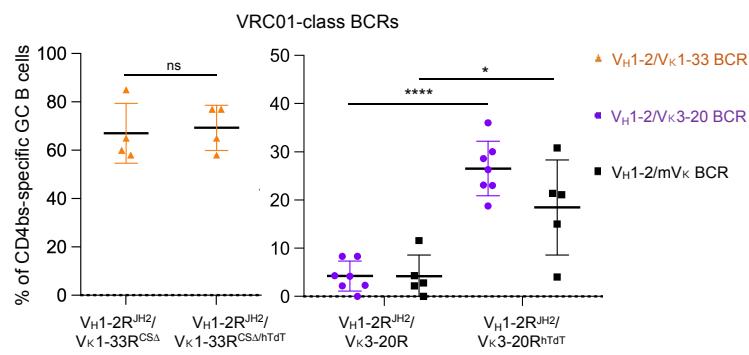
(F) The frequency of 5-aa LC CDR3 in $V_H1-2R^{JH2}/V_{\kappa}3-20R$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells.

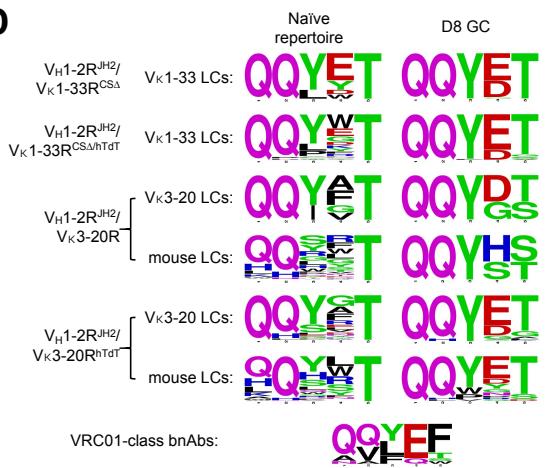

(G) Frequency of N regions in different length of Ig_{κ} LC CDR3s from human, $V_H1-2R^{JH2}/V_{\kappa}3-20R$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells.

(H) Frequency of MH-mediated $V_{\kappa}J_{\kappa}$ joins in Ig_{κ} LC CDR3s from human, $V_H1-2R^{JH2}/V_{\kappa}3-20$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse naïve B cells.

Data from (B), (C), (E), (F), (G) and (H) were mean \pm SD of three independent experiments. Statistical comparisons in (C), (E), (F), (G) and (H) were performed between $V_H1-2R^{JH2}/V_{\kappa}3-20R$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice using a two-tailed unpaired t test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Figure 2


A


B

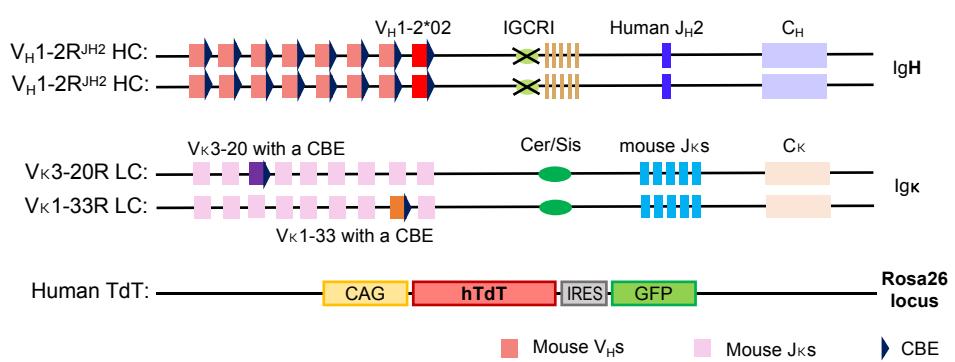
Mouse model	V _H 1-2R ^{JH2} /V _K 1-33R ^{CSΔ}				V _H 1-2R ^{JH2} /V _K 1-33R ^{CSΔ/htdT}				V _H 1-2R ^{JH2} /V _K 3-20R							V _H 1-2R ^{JH2} /V _K 3-20R ^{htdT}						
	#1	#2	#3	#4	#1	#2	#3	#4	#1*	#2*	#3*	#4*	#5*	#6	#7	#1*	#2*	#3*	#4*	#5*	#6	#7
mouse No.	#1	#2	#3	#4	#1	#2	#3	#4	#1*	#2*	#3*	#4*	#5*	#6	#7	#1*	#2*	#3*	#4*	#5*	#6	#7
CD4bs-specific GC B cells (sequenced)	48	48	48	48	48	48	48	48	36	43	48	46	46	48	48	25	40	38	39	42	48	48
V _H 1-2 HC	38	33	40	44	39	41	42	33	11	27	16	18	20	24	16	13	24	33	30	28	36	43
V _H 1-2/V _K 1-33 BCRs	31 (65%)	28 (58%)	29 (60%)	41 (85%)	37 (77%)	37 (77%)	31 (65%)	28 (58%)	-	-	-	-	-	-	-	-	-	-	-	-	-	
V _H 1-2/V _K 3-20 BCRs	-	-	-	-	-	-	-	-	3 (8%)	1 (2%)	4 (8%)	1 (2%)	2 (4%)	2 (4%)	0 (0%)	9 (36%)	12 (30%)	10 (26%)	9 (23%)	12 (29%)	9 (19%)	11 (23%)
V _H 1-2/mV _K BCRs	0	0	0	0	0	0	0	0	1 (3%)	5 (6%)	0 (0%)	1 (2%)	2 (4%)	-	-	1 (4%)	6 (15%)	8 (21%)	12 (31%)	9 (21%)	-	-

C

D

Figure 2. Enforced hTdT expression enhances the VRC01-class GC responses induced by eOD-GT8 60mer.

(A) Immunization scheme (see text for details).


(B) Summary of all VRC01-class BCR sequence information obtained from eOD-GT8 immunization in V_H -2R^{JH2}/ V_{κ} 1-33R^{CSΔ}, V_H 1-2R^{JH2}/ V_{κ} 1-33R^{CSΔ/hTdT}, V_H 1-2R^{JH2}/ V_{κ} 3-20R and V_H 1-2R^{JH2}/ V_{κ} 3-20R^{hTdT} mice. VRC01-class BCRs were defined by V_H 1-2 HCs pairing with V_{κ} 1-33/ V_{κ} 3-20/mouse LCs with 5-aa CDR3s. Statistical analyses are shown in (C). * indicates the mouse harboring a mutated V_{κ} 3-20 allele.

(C) The frequency of VRC01-class BCRs expressed in CD4bs-specific GC B cells from V_H 1-2R^{JH2}/ V_{κ} 1-33R^{CSΔ}, V_H 1-2R^{JH2}/ V_{κ} 1-33R^{CSΔ/hTdT}, V_H 1-2R^{JH2}/ V_{κ} 3-20R and V_H 1-2R^{JH2}/ V_{κ} 3-20R^{hTdT} mice. Each point represents one mouse. *p* values were calculated by unpaired, two-tail t-test. **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* < 0.0001

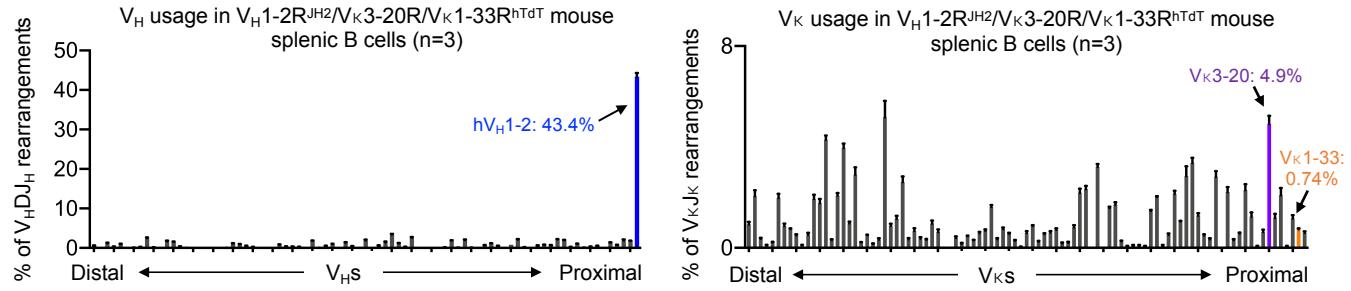
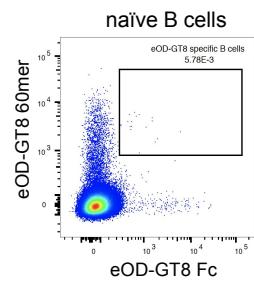
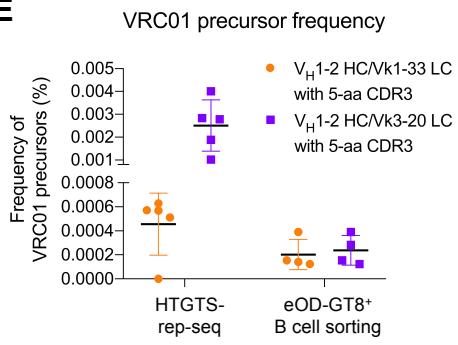

(D) 5-aa LC CDR3 sequence logos for V_{κ} 1-33, V_{κ} 3-20 and mouse LCs in naïve BCRs (left column) and eOD-GT8 60mer-induced VRC01-class BCRs at day 8 post-immunization (right column). The sequences of 5-aa LC CDR3s in naïve B cells were derived from HTGTS-rep-seq data shown in Fig.1B, Fig.S1, E and F, and Fig. S4A. The sequences of 5-aa LC CDRs in eOD-GT8 60mer-induced VRC01-class BCRs were recovered from V_H 1-2R^{JH2}/ V_{κ} 1-33R^{CSΔ}, V_H 1-2R^{JH2}/ V_{κ} 1-33R^{CSΔ/hTdT}, V_H 1-2R^{JH2}/ V_{κ} 3-20R and V_H 1-2R^{JH2}/ V_{κ} 3-20R^{hTdT} mice shown in (B). For comparison, the 5-aa LC CDR3 sequences for VRC01-class bnAbs were shown in bottom.

Figure 3


A

B


C

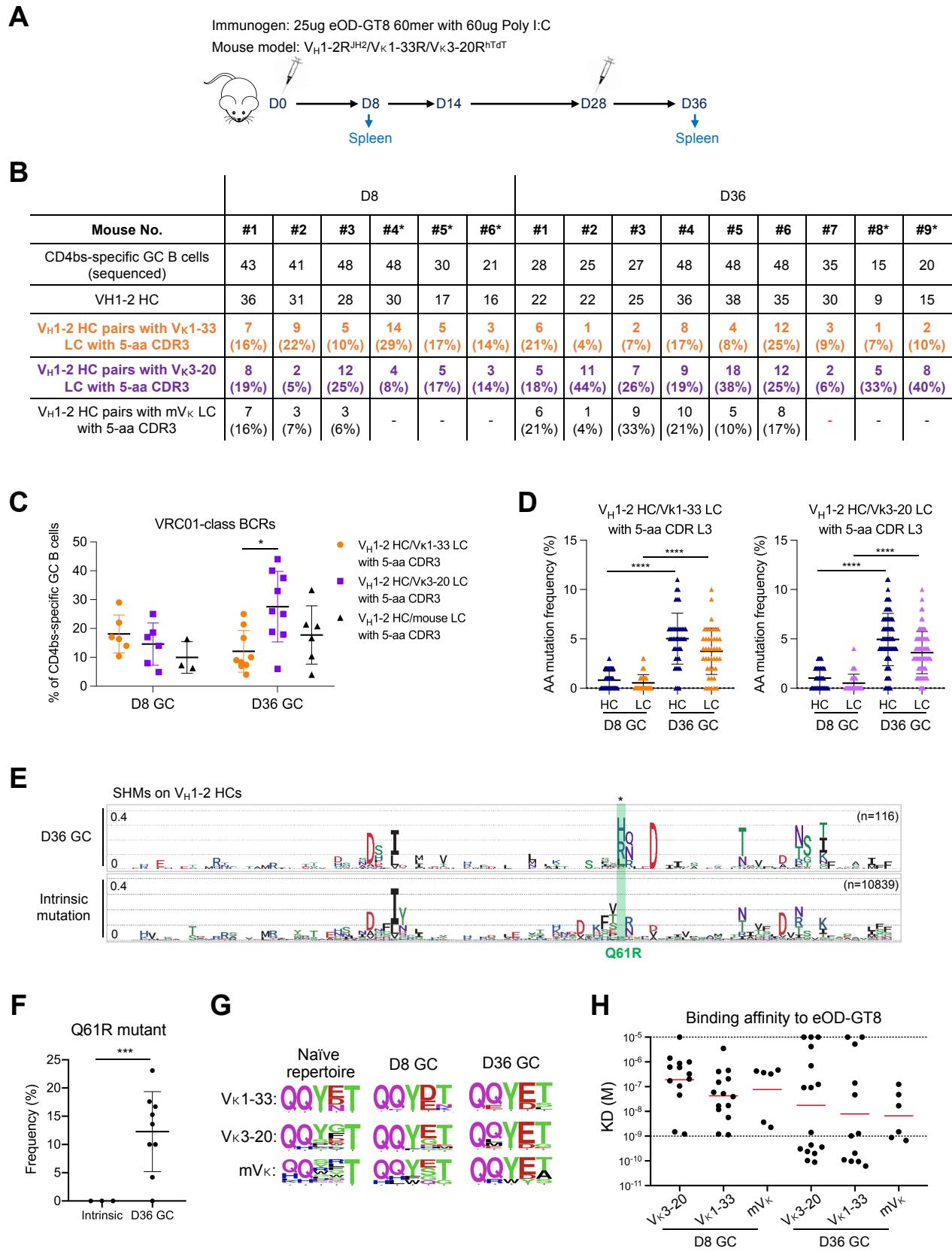
D

	Mouse #1	Mouse #2	Mouse #3	Mouse #4	Average
eOD-GT8+ B cells in naïve B cells (%)	0.0034 %	0.00755 %	0.00718 %	0.00578 %	
V _H 1-2 HC/V _k 1-33 LC with 5-aa CDR3 pairs in eOD-GT8+ B cells (%)	2/55 (3.64%)	1/49 (2.04%)	3/55 (5.45%)	1/41 (2.44%)	
V _H 1-2 HC/V _k 3-20 LC with 5-aa CDR3 pairs in eOD-GT8+ B cells (%)	2/55 (3.64%)	1/49 (2.04%)	3/55 (5.45%)	2/41 (4.88%)	
VRC01/V _k 1-33 precursors (eOD-GT8 ⁺) (%)	0.000124 %	0.000154 %	0.000391 %	0.000141 %	0.000203% (1 in 492,611)
VRC01/V _k 3-20 precursors (eOD-GT8 ⁺) (%)	0.000124 %	0.000154 %	0.000391 %	0.000282 %	0.000238% (1 in 420,168)

E

Figure 3. Generation and characterization of the $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse models.

(A) Illustration of genetic modifications in the IgH and Ig κ locus of $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse models. The J_{κ} -proximal $V_{\kappa}3-2$ was replaced with human $V_{\kappa}1-33$ plus a CBE 50bp downstream of its RSS.


(B) HTGTSrep-seq analysis of V_H (upper panel) and V_{κ} (bottom panel) usage in $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse splenic B cells. The x axis listed all functional V_H s or V_{κ} s from the distal to the D - or J_{κ} -proximal end. The histogram displayed the percent usage of each V_H or V_{κ} s among all productive V_H DJ_H or $V_{\kappa}J_{\kappa}$ rearrangements. The usage of human V_H1-2 , $V_{\kappa}1-33$ and $V_{\kappa}3-20$ were shown in blue, orange and purple, respectively. Data from (A) and (B) were mean \pm SD of five libraries from different mice.

(C) FACS analyses of eOD-GT8-specific naïve B cells in $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse. The boxed eOD-GT8-specific naïve B cells were sorted for single cell sequencing.

(D) Summary of VRC01 precursor sequence information obtained from naïve B cell repertoire. The eOD-GT8 specific B cells were defined by eOD-GT8 60mer $^+$ and eOD-GT8 Fc $^+$. The final frequency of VRC01 precursors in $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse models is 1 in 226,757, approximately.

(E) Frequency of VRC01 precursors in $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mice measured by HTGTSrep-seq or eOD-GT8-specific B cell sorting. The VRC01 precursors were defined by V_H1-2 HCs pairing with $V_{\kappa}1-33$ and $V_{\kappa}3-20$ LCs with 5-aa CDR3s.

Figure 4

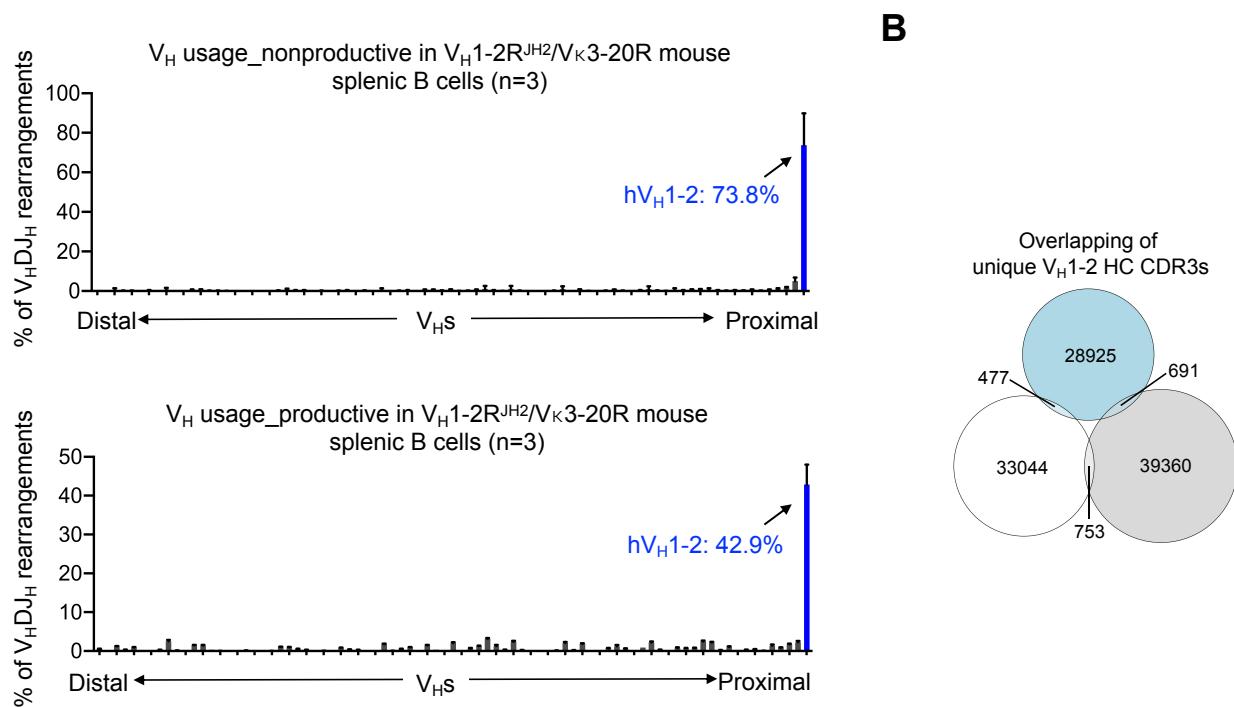
Figure 4. Strong VRC01-class GC responses induced by eOD-GT8 60mer in $V_H1-2^{JH2}/V_{\kappa}1-33/V_{\kappa}3-20^{hTdT}$ -rearranging mouse models

(A) Immunization scheme (see text for details).

(B) Summary of all VRC01-class BCR sequence information obtained from eOD-GT8 60mer immunization at day 8 and day 36. VRC01-class BCRs were defined by V_H1-2 HCs pairing with $V_{\kappa}1-33/V_{\kappa}3-20$ /mouse LCs with 5-aa CDR3s. Statistical analyses are shown in (C). * indicates the mouse harboring a mutated $V_{\kappa}3-20$ allele.

(C) The frequency of VRC01-class BCRs expressed in CD4bs-specific GC B cells from day 8 and day 36 GCs of $V_H1-2R^{JH2}/V_{\kappa}1-33R/V_{\kappa}3-20R^{hTdT}$ mice.

(D) Amino acid mutation frequency in VRC01-class antibodies cloned from day 8 and day 36 GCs of $V_H1-2R^{JH2}/V_{\kappa}1-33R/V_{\kappa}3-20R^{hTdT}$ mice. Each dot represents one HC or one LC. The median with interquartile range is plotted.

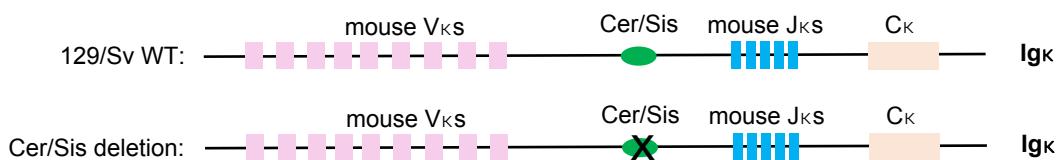

(E) Mutation frequency of each amino acid on germline-encoded V_H1-2 region of VRC01-class antibodies cloned from day 36 GCs shown in sequence logo profiles. For reference, the intrinsic mutation patterns from non-productive rearrangements are represented on the bottom (see method for details). The distance between dotted horizontal lines representing 0.1 (10%). The Q61R mutant is labeled in green.

(F) Frequency of Q61R mutant on day 36 V_H1-2 HC compared to that in intrinsic mutation patterns.

(G) 5-aa LC CDR3 sequences in naïve repertoire and VRC01-class antibodies cloned from day 8 and day 36 GCs induced by eOD-GT8 60mer. 5-aa LC CDR3 sequence logos for $V_{\kappa}1-33$, $V_{\kappa}3-20$ and mouse LCs in naïve BCRs (left column), 8-day GCs (middle column) and 36-day GCs (right column) induced by eOD-GT8 60mer.

(H) eOD-GT8 dissociation constants measured by surface plasmon resonance (SPR) for eOD-GT8 60mer elicited VRC01-class antibodies (see method and Supplementary Table for details). Data are shown for VRC01-class antibodies from 8-day and 36-day GCs. Bars represent geometric mean (red). Statistical comparisons in (C), (D) and (F) were performed using a two-tailed unpaired t test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$

Figure S1


Figure S1. Characterization of V_H1-2^{JH2} -rearranging heavy chain.

(A) HTGTSrep-seq analyses of V_H non-productive (upper panel) and productive (bottom panel) rearrangements in $V_H1-2^{JH2}/V_{\kappa}3-20$ -rearranging splenic B cells. The histogram displays the percent of nonproductive or productive rearrangements of each V_H among all V_HDJ_H nonproductive or productive rearrangements. The frequencies of V_H nonproductive rearrangements represent the V_H usages in primary V(D)J rearrangements, as the nonproductive allele was not under selection during B cell development. Data were average of 3 experimental repeats with error bars representing SDs.

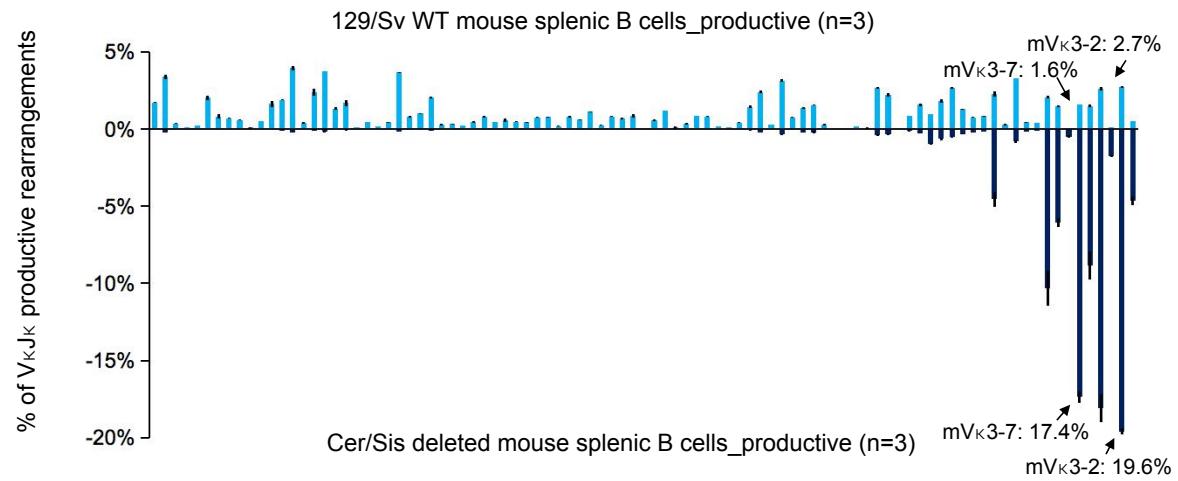
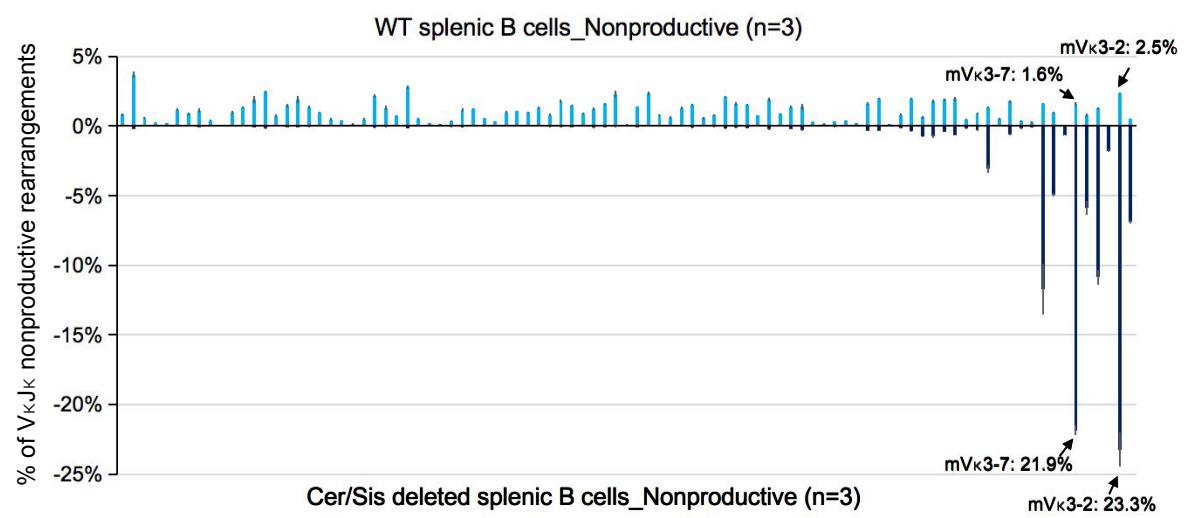

(B) Venn diagram showed the V_H1-2 HC CDR3 diversity. The unique reads derived from the same libraries in Fig. 1B.

Figure S2

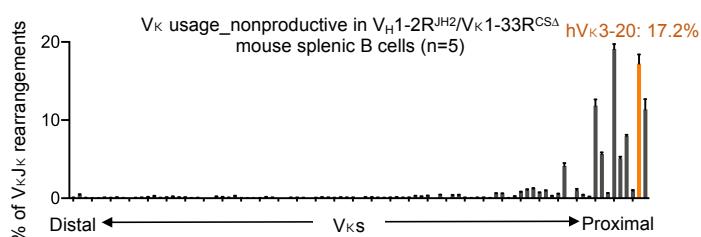
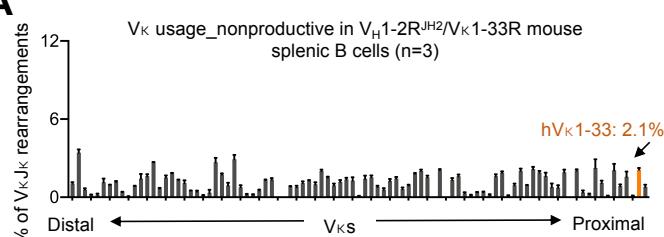

A

B

C

Figure S2. Cer/sis deletion in wild-type mice increased the utilizations of proximal V_K s, including V_K 3-2 and V_K 3-7.

(A) Illustration of Cer/sis deletion in the Ig_K locus. The strategy of Cer/sis deletion was the same as recently described (35).



(B) HTGTSrep-seq analyses of V_K usages in wild type (upper panel) and Cer/Sis deleted (lower panel) mouse splenic B cells. The x axis lists all functional V_K s from the distal to the J_K -proximal ends. The histogram displays the percent usage of each V_K among all productive V_KJ_K rearrangements. The productive V_K rearrangements in splenic B cells represent the V_K usage in the naïve BCR repertoire. The data in wild type mouse splenic B cells were derived from our recent study (35).

(C) HTGTSrep-seq analyses of V_K nonproductive rearrangements in wild type (upper panel) and Cer/sis deleted (bottom panel) splenic B cells. The histogram displays the percent of nonproductive rearrangements of each V_K among all nonproductive V_KJ_K rearrangements. The percentage of V_K segments in nonproductive rearrangements represents the V usage in primary V(D)J recombination. The data in wild type mouse splenic B cells were derived from our recent study (35).

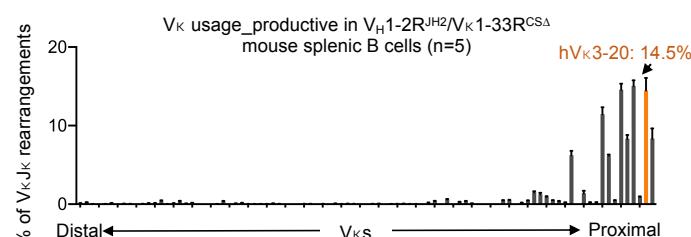
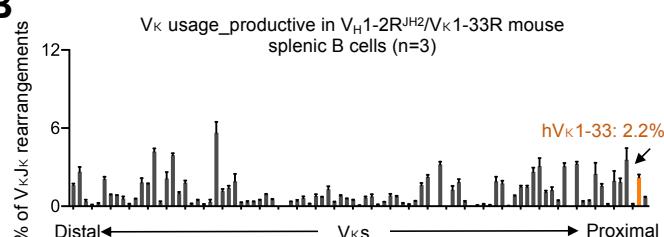
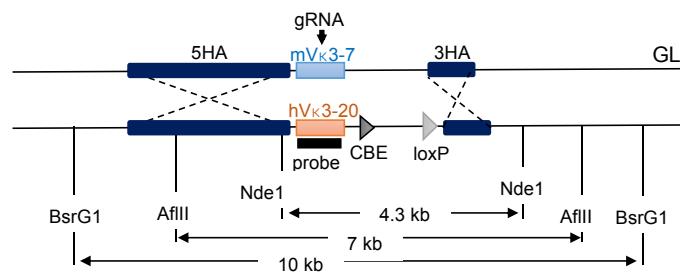
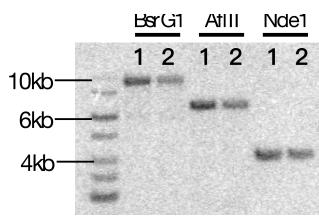
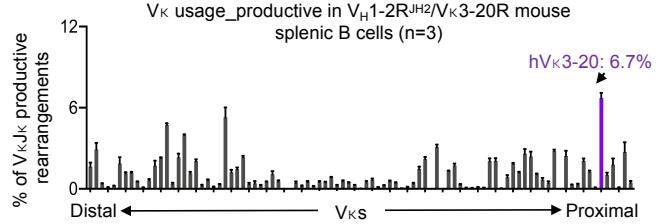
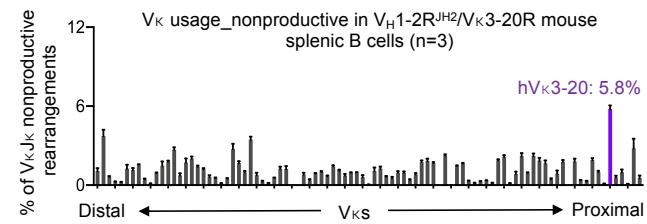
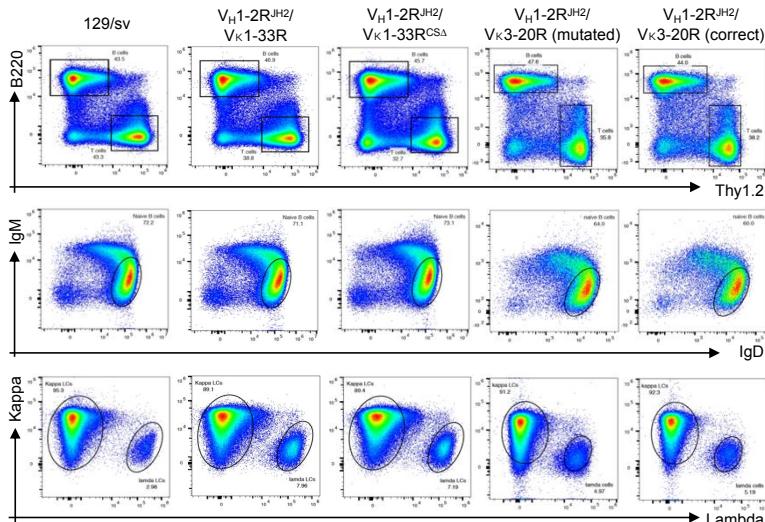


Data from (B) and (C) were average of 3 experimental repeats with error bars representing SDs.

Figure S3


A


B



C


D

E

F

Figure S3. Generation and characterization of the human V_{κ} -rearranging light chains.

(A) HTGTSrep-seq analyses of V_{κ} nonproductive rearrangements in $V_H1-2R^{JH2}/V_{\kappa}1-33R$ mouse splenic B cells (left) and $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$ mouse splenic B cells (right). The histogram displays the percent of nonproductive rearrangements of each V_{κ} among all nonproductive $V_{\kappa}J_{\kappa}$ rearrangements. The $V_{\kappa}1-33$ was labeled in orange. The percentage of V_{κ} segments in nonproductive rearrangements represents the V usage in primary V(D)J recombination.

(B) HTGTSrep-seq analyses of V_{κ} productive rearrangements in $V_H1-2R^{JH2}/V_{\kappa}1-33R$ mouse splenic B cells (left) and $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$ mouse splenic B cells (right). The histogram displays the percent of productive rearrangements of each V_{κ} among all productive $V_{\kappa}J_{\kappa}$ rearrangements. The $V_{\kappa}1-33$ was labeled in orange.

(C) The diagram, not drawn to scale, illustrates the restriction digests and Southern probe that were used to differentiate the region before (GL) and after $V_{\kappa}3-20$ replacement ($V_{\kappa}3-20$ -rearranging allele).

(D) Southern analysis of positive ES clones that showed in (C).

(E) HTGTSrep-seq analyses of V_{κ} nonproductive (left panel) or productive (right panel) rearrangements in $V_H1-2R^{JH2}/V_{\kappa}3-20$ -rearranging splenic B cells. The $V_{\kappa}3-20$ was labeled in purple.

(F) FACS analyses of splenic B cells from wild-type 129/Sv, $V_H1-2R^{JH2}/V_{\kappa}1-33R$, $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CS\Delta}$, $V_H1-2R^{JH2}/V_{\kappa}3-20R$ (mutated) and $V_H1-2R^{JH2}/V_{\kappa}3-20R$ (correct) mice. We repeated these analyses in 3 mice and they show similar results.

Data from (A), (B) and (E) were average of ≥ 3 experimental repeats with error bars representing SDs.

Figure S4

1~100nt

Vk3-20 DNA sequence (correct): GAAATTGTGTTGACGCAGTCTCCAGGCACCTGTCTTGTCTCCAGGGAAAGAGGCCACCCCTCTCTGCAGGGCCAGTCAGAGTGTTCAGCAGCTACT
Vk3-20 DNA sequence with a point mutation: GAAATTGTGTTGACCCAGTCTCCAGGCACCTGTCTTGTCTCCAGGGAAAGAGCCACCCCTCTCTGCAGGGCCAGTCAGA**T**TGTTACGACGACACTACT

101~200nt

Vk3-20 DNA sequence (correct): TAGCTTGGTACCGCAGAAACCTGGCCAGGCTCCAGGCCTCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATTCCAGACAGGTTAGTGGCAGTGG
Vk3-20 DNA sequence with a point mutation: TAGCTTGGTACCGCAGAAACCTGGCCAGGCTCCAGGCCTCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATTCCAGACAGGTTAGTGGCAGTGG

201~290nt

Vk3-20 DNA sequence (correct): GCTCTGGACAGACTTCACCTCACCATCAGCAGACTGGAGCCTGAAGATTTCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCTCC
Vk3-20 DNA sequence with a point mutation: GCTCTGGACAGACTTCACCTCACCATCAGCAGACTGGAGCCTGAAGATTTCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCTCC

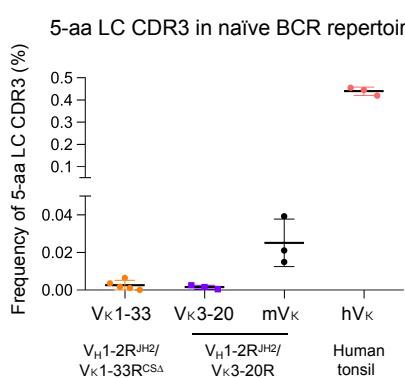

Vk3-20 amino acid sequence (correct): EIVLTQSPGTLSSLPGERATLSCRASQSVSSYLA^WQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFLTISRLEPEDFAVYYQQYGSSP
Vk3-20 amino acid sequence with a mutation: EIVLTQSPGTLSSLPGERATLSCRASQ**I**VSSSYLA^WQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFLTISRLEPEDFAVYYQQYGSSP

Figure S4. Mutation correction on the V_k3-20 allele.

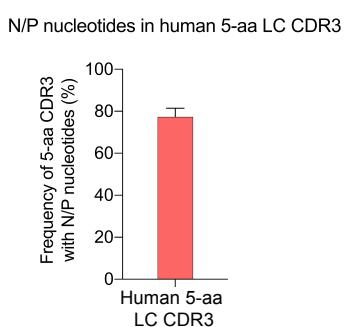
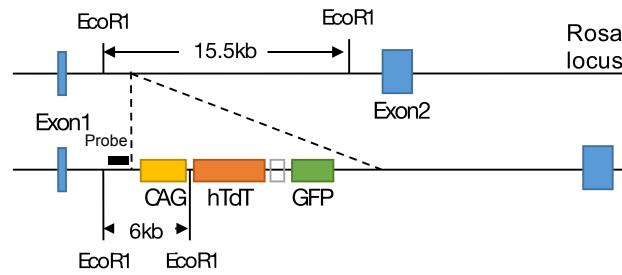
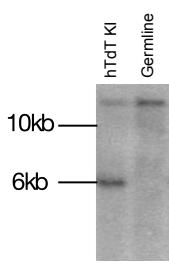
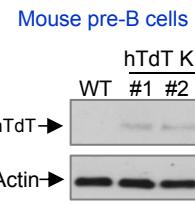
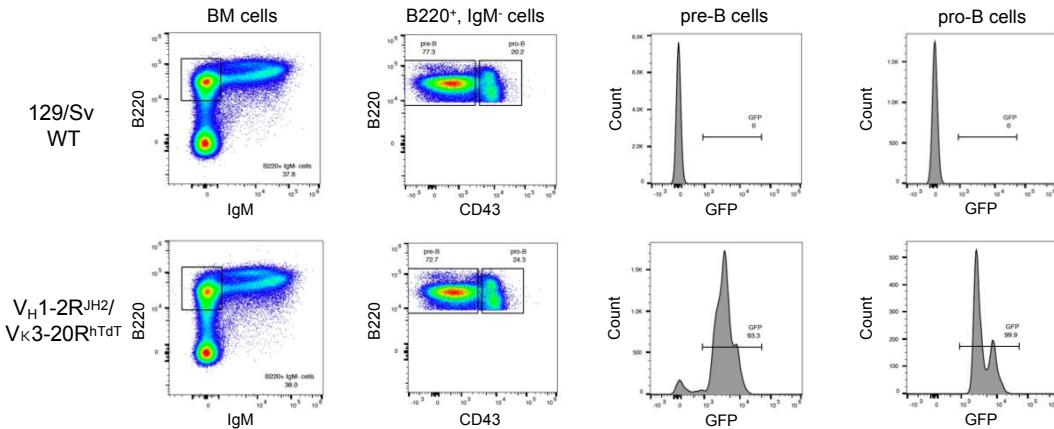

A point mutation labeled in red on the nucleotides (upper) and amino acid (bottom) sequences of V_k3-20 LC.

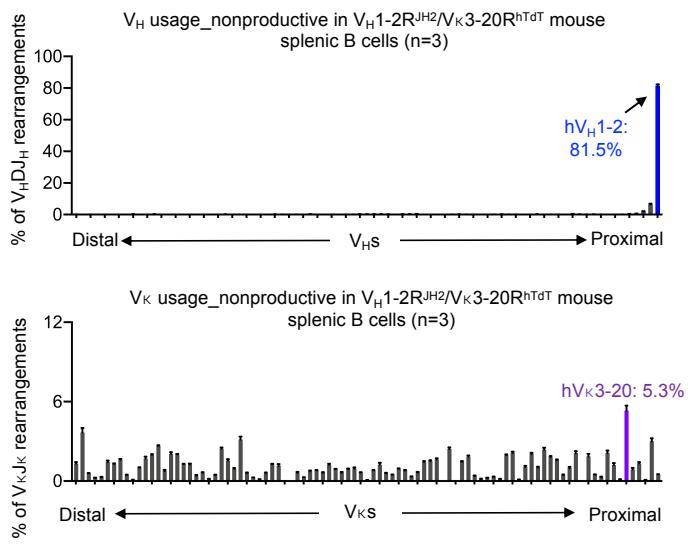
Figure S5

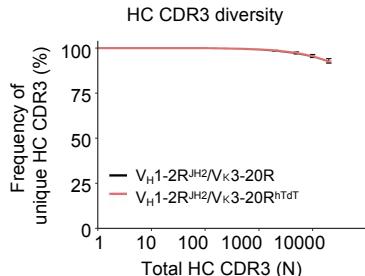

A

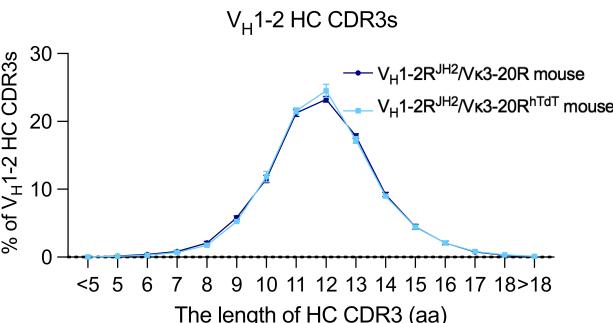

B


C


D


E


F


G

H

I

Figure S5. Enforced human TdT expression in the $V_H1-2^{JH2}/V_{\kappa}3-20$ -rearranging mouse models.

(A) Frequency of $V_{\kappa}3-20$, $V_{\kappa}1-33$, mouse Ig κ and human Ig κ LCs with 5-aa CDR3s in our VRC01-rearranging mouse splenic B cells and human tonsil naïve B cells.

(B) Distribution of N or P nucleotides in human naïve Ig κ LCs with 5-aa CDR3s.

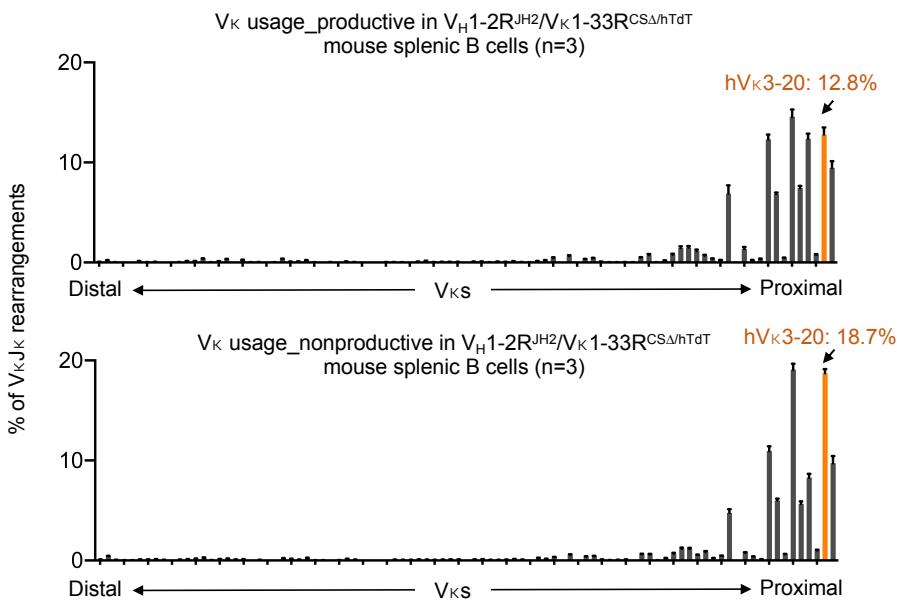
(C) The diagram illustrates the restriction digest and southern probe that were used to differentiate the region before and after human TdT knock-in.

(D) Southern analysis of ES clone with hTdT knock-in.

(E) Western Blot of TdT expression in mouse pre-B cells before and after hTdT knock-in. The TdT antibody can detect both human and mouse TdT.

(F) FACS analyses of bone marrow B cells from 129/Sv wild-type and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice. The pre-B cells were defined by B220 $^{+}$, IgM $^{-}$ and CD43 $^{-}$. The pro-B cells were defined by B220 $^{+}$, IgM $^{+}$ and CD43 $^{+}$. The GFP expression was linked with TdT expression as they shared a same promoter.

(G) HTGTSrep-seq analyses of nonproductive V_H (upper panel) or V_{κ} (bottom panel) usages in $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse splenic B cells. The x axis represented V_H or V_{κ} locus from the distal to the J -proximal ends. The histogram displays the percent of usage of each V_H or V_{κ} among all nonproductive $V_H(D)J_H$ or $V_{\kappa}J_{\kappa}$ rearrangements. The usage of human V_H1-2 was labeled in blue and the usage of human $V_{\kappa}3-20$ was labeled in purple.


(H) The diversity of HC CDR3s in $V_H1-2R^{JH2}/V_{\kappa}3-20R$ mouse and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse splenic B cells. The x axis represents the total HC CDR3 number (N). The y axis represents the frequency of unique HC CDR3s among total HC CDR3s. The differences of CDR3 diversities between $V_H1-2R^{JH2}/V_{\kappa}3-20R$ mouse and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ are not significant.

(I) Length distribution of HC CDR3s in $V_H1-2R^{JH2}/V_{\kappa}3-20R$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mouse splenic B cells. The differences measured by t-test were not significant.

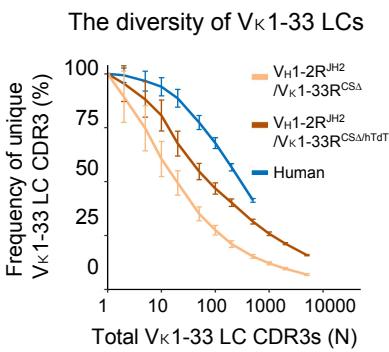
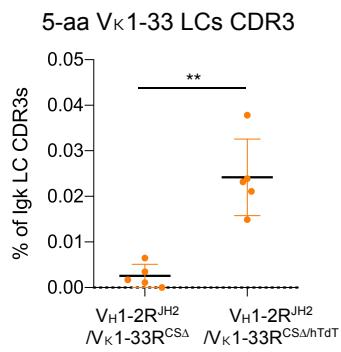

Data from (A), (B), (G) and (I) were mean \pm SD of ≥ 3 libraries from different mice.

Figure S6


A

B

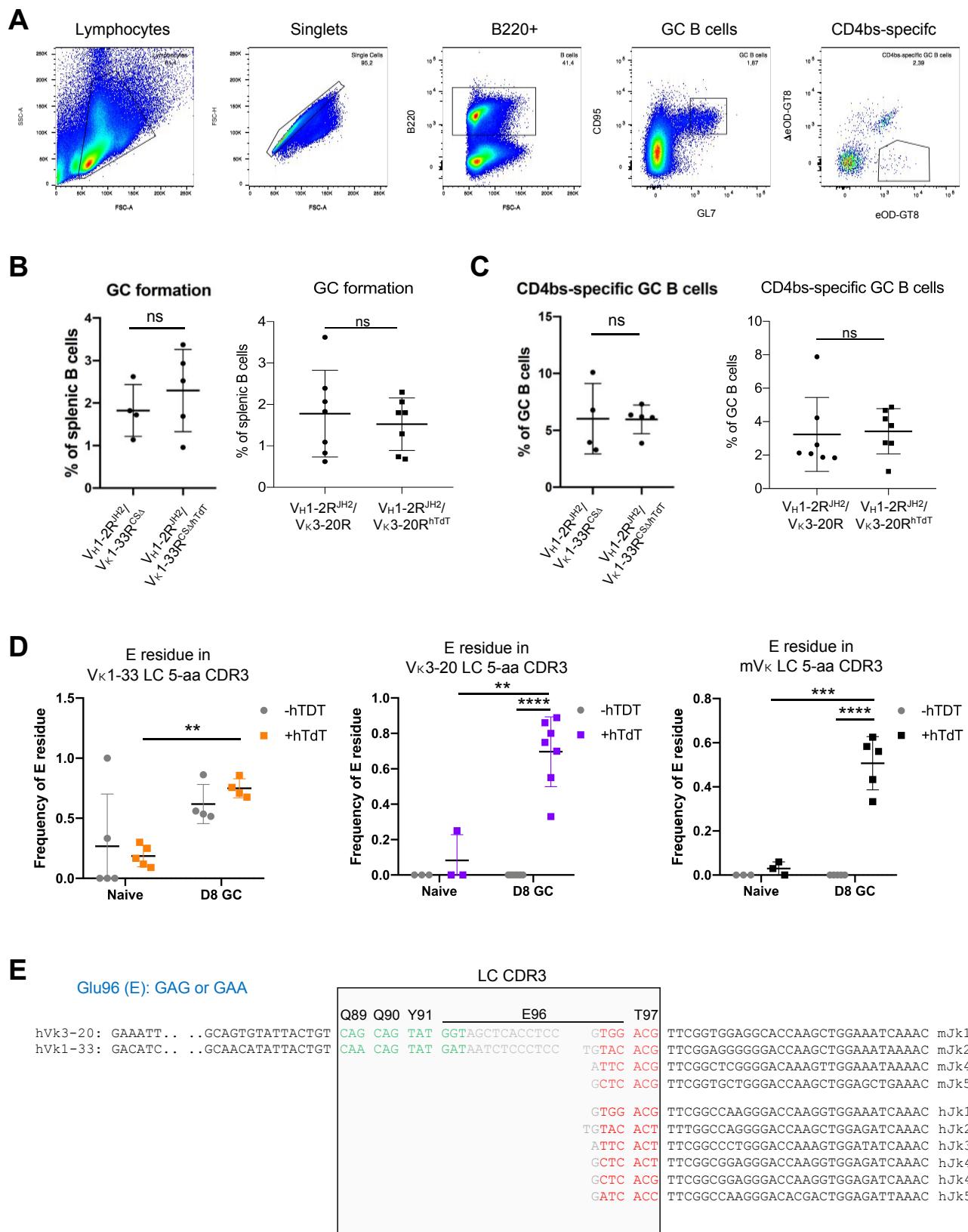

C

Figure S6. Enforced human TdT expression in the V_H1-2^{JH2}/V_κ1-33R^{CSΔ}-rearranging mouse models.

- (A) HTGTSrep-seq analysis of V_κ productive (upper panel) or nonproductive (bottom panel) rearrangements in V_H1-2^{JH2}/V_κ1-33R^{CSΔ/hTdT}-rearranging splenic B cells. The V_κ1-33 was labeled in orange. The percentage of V_κ segments in nonproductive rearrangements represents the V usage in primary V(D)J recombination.
- (B) The diversity of V_κ1-33 LC CDR3s in human, V_H1-2R^{JH2}/V_κ1-33R^{CSΔ} and V_H1-2R^{JH2}/V_κ1-33R^{CSΔ/hTdT} mouse naïve B cells. The differences of CDR3 diversities between V_H1-2R^{JH2}/V_κ1-33R^{CSΔ} and V_H1-2R^{JH2}/V_κ1-33R^{CSΔ/hTdT} mice are significant when the total CDR3 number is above 10 ($p<0.001$ for $N>10$).
- (C) The frequency of 5-aa V_κ1-33 LC CDR3s in V_H1-2R^{JH2}/V_κ1-33R^{CSΔ} and V_H1-2R^{JH2}/V_κ1-33R^{CSΔ/hTdT} mouse naïve B cells.

Figure S7

Glu96 (E): GAG or GAA

Q89	Q90	Y91	E96	T97
CAG	CAG	TAT	GGTAGCTCACCTCC	GTGG ACC
CAA	CAG	TAT	GATAATCTCCCTCC	TGTAC ACC
				ATTC ACC
				GCTC ACC
				GTGG ACC
				TGTAC ACT
				ATTC ACT
				GCTC ACT
				GCTC ACC
				GATC ACC

hV_k3-20: GAAATT...GCAGTGTATTACTGT
hV_k1-33: GACATC...GCAACATATTACTGT

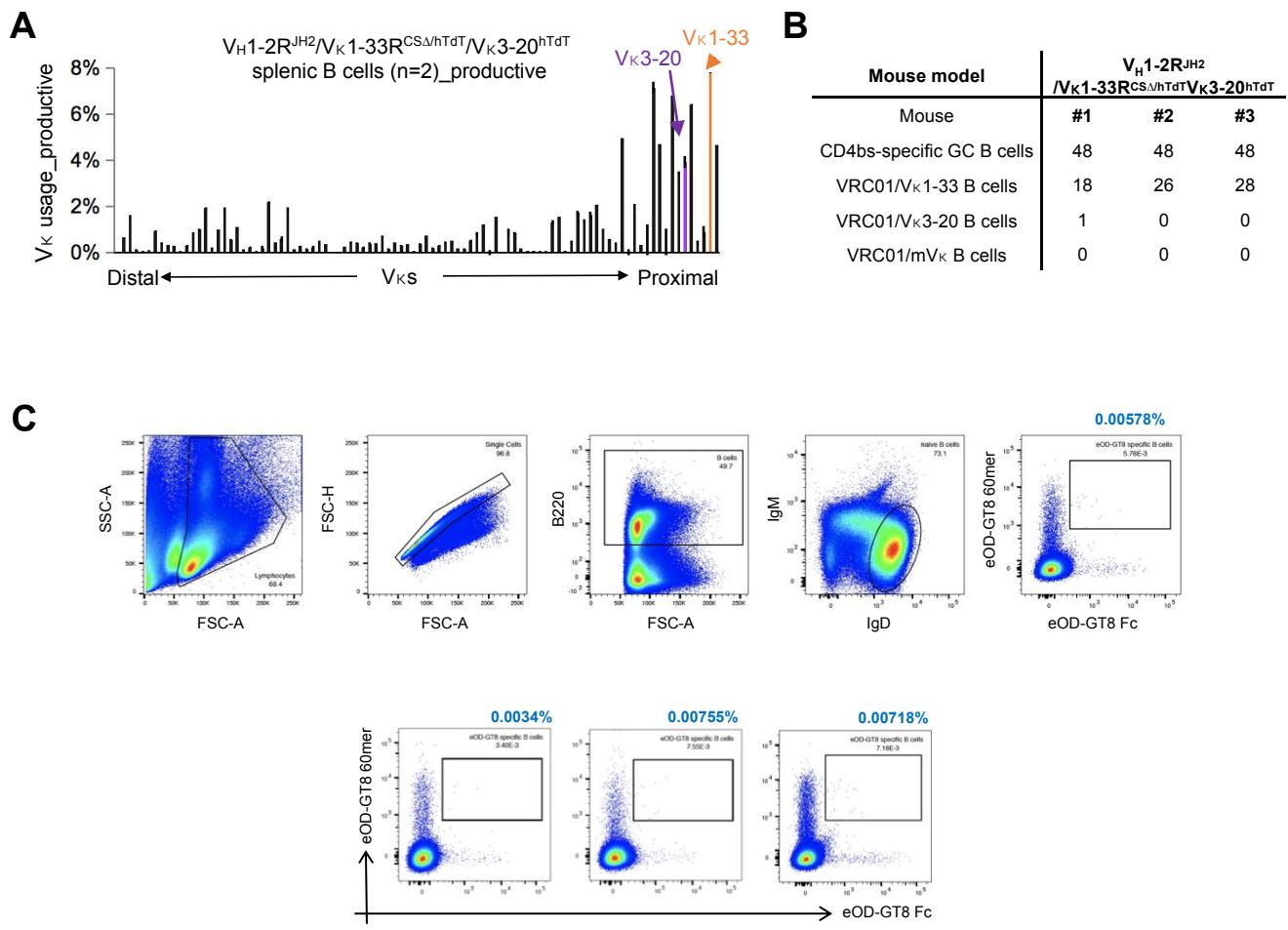
6	TTCGGTGGAGGCACCAAGCTGGAAATCAAAAC	mJk1
7	TTCGGAGGGGGGACCAAGCTGGAAATAAAC	mJk2
8	TTCGGCTCGGGGACCAAGTTGGAAATAAAC	mJk4
9	TTCGGTGCTGGGACCAAGCTGGAGCTGAAAC	mJk5
10	TTCGGCAAGGGACCAAGGTGAAATCAAAAC	hJk1
11	TTTGGCCAGGGGACCAAGCTGGAGATCAAAAC	hJk2
12	TTCGCCCTGGGACCAAAGTGGATATCAAAAC	hJk3
13	TTCGGGAGGGGACCAAGGTGGAGATCAAAAC	hJk4-
14	TTCGGGAGGGGACCAAGGTGGAGATCAAAAC	hJk5

```
Q89 Q90 Y91 E96 Y97
hvk1-33 to mJk1: GACATC...GCAACATATTACTGT CAA CAG TAT GAG ACG TTTCGGTGGAGGCACCAAGCTGGAAATCAAAC
hvk1-33 to hJk1: GACATC...GCAACATATTACTGT CAA CAG TAT GAG ACG TTTCGGCCAAGGGACCAAGGTGGAAATCAAAC
```

Figure S7. Human TdT enhanced VRC01-class GC responses induced by eOD-GT8 60mer, Related to Figure 2.

(A) Gating strategy for single cell sorting of eOD-GT8-specific germinal center B cells after eOD-GT8 60mer immunization.

(B) Proportion of GC B cells in $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CSA}$, $V_H1-2R^{JH2}/V_{\kappa}3-20R$, $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CSA/hTdT}$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice. Each point represented one mouse.


(C) Proportion of CD4bs-specific GC B cells in $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CSA}$, $V_H1-2R^{JH2}/V_{\kappa}3-20R$, $V_H1-2R^{JH2}/V_{\kappa}1-33R^{CSA/hTdT}$ and $V_H1-2R^{JH2}/V_{\kappa}3-20R^{hTdT}$ mice. Each dot represents one mouse.

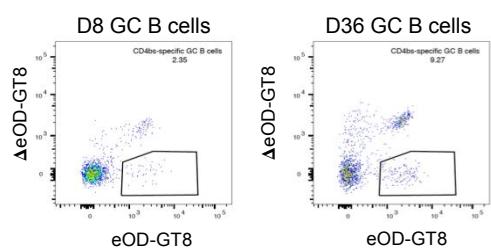
(D) The frequency of Glu96 (E) residue in 5-aa CDR3s of $V_{\kappa}1-33$, $V_{\kappa}3-20$ and mouse LCs before (naïve) and after eOD-GT8 60mer immunization (D8 GC). Each dot represents one mouse.

(E) The Glu96 (E) residue formation in 5-aa CDRs of $V_{\kappa}1-33$, $V_{\kappa}3-20$ and mouse LCs. The Glu (E) amino acid is encoded by GAA or GAG. Both $V_{\kappa}1-33$ and $V_{\kappa}3-20$ can provide the G at the first position, but only $V_{\kappa}1-33$ can provide the A at the second position. On the other side, both mouse and human $J_{\kappa}1$ s cannot provide the G and A at first and second positions, but mouse or human $J_{\kappa}1$ can provide G at the third position. Altogether, in the mouse pre-B cell lacking of TdT expression, the Glu96 (E) is formed when $V_{\kappa}1-33$ joins to mouse $J_{\kappa}1$. Other combinations failed to form the E residue. By examination of the mouse V_{κ} sequences, only $V_{\kappa}14-111$ can form the E residue in 5-aa LC CDR3 without N region added by TdT. But $V_{\kappa}14-111$ was not observed in the GCs induced by eOD-GT8, probably due to the low affinity of V region to eOD-GT8.

Statistical comparisons in (B), (C) and (D) were performed using unpaired, two-tail t-test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$

Figure S8

Figure S8. Generation and characterization of V_H1-2^{JH2}/V_κ1-33^{CSΔ/hTdT}/V_κ3-20^{hTdT} and V_H1-2^{JH2}/V_κ1-33/V_κ3-20^{hTdT}-rearranging mouse models.


(A) HTGTS-rep-seq analysis of V_κ usage in V_H1-2R^{JH2}/V_κ1-33R^{CSΔ/hTdT}/V_κ3-20^{hTdT} mouse splenic B cells. The usage of human V_κ1-33 is labeled in orange, and the usage of human V_κ3-20 is labeled in purple.

(B) Table shown the VRC01-class B cells elicited by eOD-GT8 60mer in V_H1-2R^{JH2}/V_κ1-33R^{CSΔ/hTdT}/V_κ3-20^{hTdT} mice. 48 CD4bs-specific GC B cells were sorted from each mice on day 8 GCs post-immunization. The VRC01-class BCRs were identified by single cell RT-PCR following sanger sequencing.

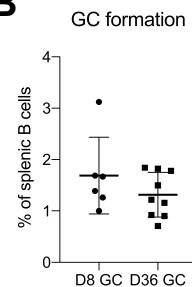
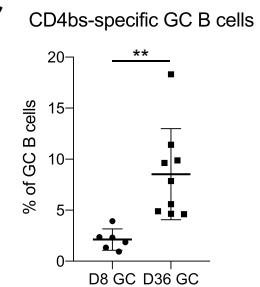
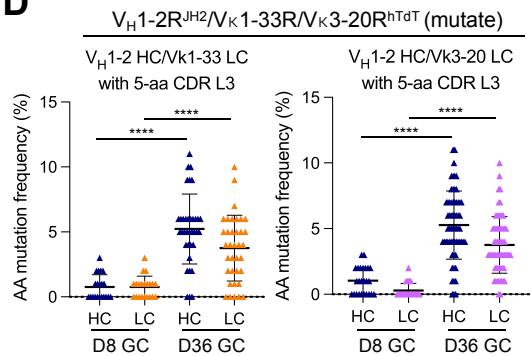
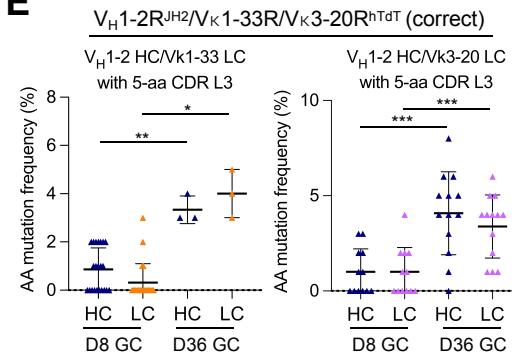
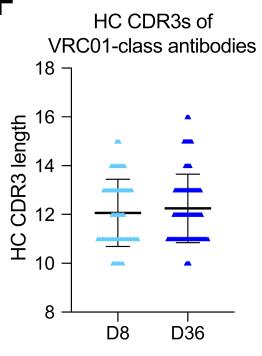

(C) Gating strategy for single cell sorting of eOD-GT8-specific naïve B cells in V_H1-2^{JH2}/V_κ1-33/V_κ3-20^{hTdT}-rearranging mouse models.

Figure S9

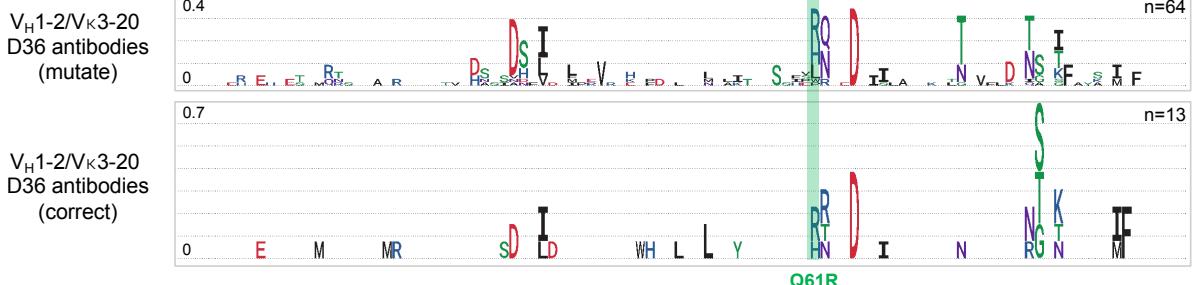

A


B

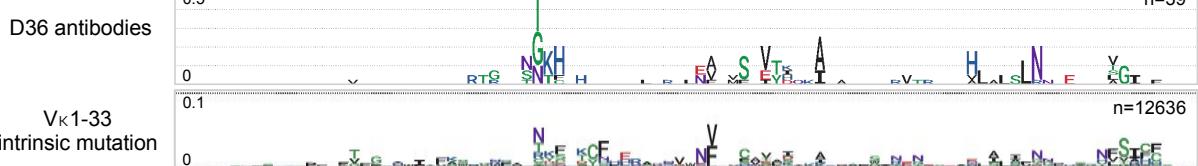

C


D

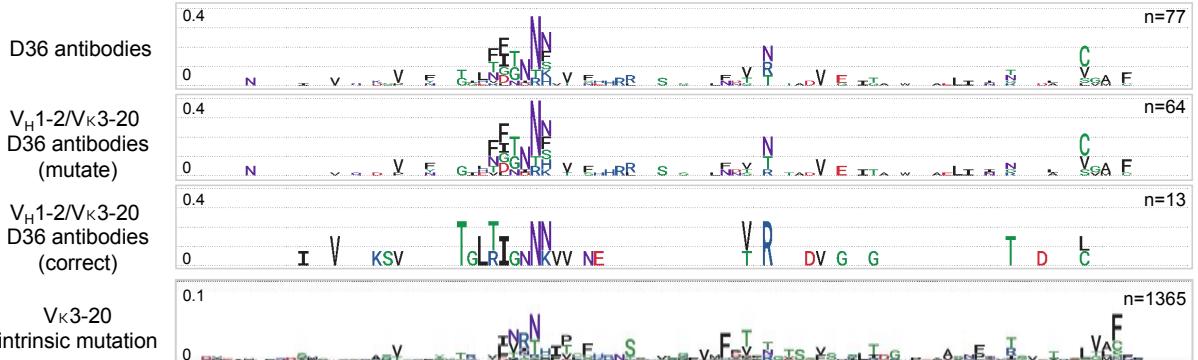
E



F


G

SHMs on V_H1-2 HC



H

SHMs on V_k1-33 LC

SHMs on V_k3-20 LC

Figure S9. VRC01-class antibodies develop SHM and affinity maturation in GCs induced by eOD-GT8 60mer.

(A) FACS analyses of GC B cells on both day 8 and day 36 post-immunization with eOD-GT8 60mer. The boxed CD4bs-specific GC B cells were sorted for single cell sequencing.

(B) The Proportion of GC B cells in $V_{H1}-2R^{JH2}/V_{K1}-33R/V_{K3}-20R^{hTdT}$ mice at day 8 and day 36 post-immunization.

(C) Proportion of CD4bs-specific GC B cells in $V_{H1}-2R^{JH2}/V_{K1}-33R/V_{K3}-20R^{hTdT}$ mice at day 8 and day 36 post-immunization.

(D) Amino acid mutation in VRC01-class antibodies cloned from day 8 and day 36 GCs in $V_{H1}-2R^{JH2}/V_{K1}-33R/V_{K3}-20R^{hTdT}$ mice with a germline mutation on $V_{K3}-20$ allele. Each dot represents one HC or one LC. The median with interquartile range is plotted.

(E) Amino acid mutation frequency in VRC01-class antibodies cloned from day 8 and day 36 GCs in $V_{H1}-2R^{JH2}/V_{K1}-33R/V_{K3}-20R^{hTdT}$ mice with a correct $V_{K3}-20$ allele.

(F) Length distribution of HC CDR3s in all VRC01-class antibodies cloned from day 8 and day 36 GCs.

(G) Mutation frequency of each amino acid on germline-encoded $V_{H1}-2$ region of $V_{H1}-2/V_{K3}-20$ antibodies with (upper) or without (bottom) a germline mutation that cloned from day 36 GCs shown in sequence logo profiles. The distance between dotted horizontal lines representing 0.1 (10%).

(H) Mutation frequency of each amino acid on germline-encoded $V_{K1}-33$ region of VRC01-class antibodies that cloned from day 36 GCs shown in sequence logo profiles. The distance between dotted horizontal lines representing 0.1 (10%). For reference, the intrinsic mutation patterns from non-productive rearrangements are represented below.

(I) Mutation frequency of each amino acid on germline-encoded $V_{K3}-20$ region of $V_{H1}-2/V_{K3}-20$ antibodies that cloned from day 36 GCs shown in sequence logo profiles. 4 panels from top to bottom showed all $V_{H1}-2/V_{K3}-20$ antibodies, $V_{H1}-2/V_{K3}-20$ antibodies with a germline mutation, $V_{H1}-2/V_{K3}-20$ antibodies with correct sequences, and nonproductive $V_{K3}-20$ sequences that represents the intrinsic mutation pattern. The distance between dotted horizontal lines representing 0.1 (10%).

Statistical comparisons in (C), (D) and (E) were performed using a two-tailed unpaired t test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$

Table S1. eOD-GT8 binding affinity of VRC01-class antibodies

VRC01-class antibodies	Affinity to eOD-GT8 (KD)
VRC01/VK1-33_D8_5924	1.1E-09
VRC01/VK1-33_D8_7341	1.2E-09
VRC01/VK1-33_D8_5982	5.7E-09
VRC01/VK1-33_D8_5341	1.2E-08
VRC01/VK1-33_D8_5953	1.7E-08
VRC01/VK1-33_D8_7340	1.7E-08
VRC01/VK1-33_D8_5976	3.9E-08
VRC01/VK1-33_D8_5926	5.2E-08
VRC01/VK1-33_D8_5903	5.9E-08
VRC01/VK1-33_D8_5340	1.5E-07
VRC01/VK1-33_D8_5959	2.1E-07
VRC01/VK1-33_D8_5969	4.1E-07
VRC01/VK1-33_D8_5345	4.5E-07
VRC01/VK1-33_D8_5922	3.5E-06
VRC01/VK3-20_D8_5342	2.0E-07
VRC01/VK3-20_D8_7342	1.2E-09
VRC01/VK3-20_D8_7338	1.5E-09
VRC01/VK3-20_D8_5934	4.5E-08
VRC01/VK3-20_D8_7336	1.1E-07
VRC01/VK3-20_D8_5950	1.7E-07
VRC01/VK3-20_D8_5937	3.3E-07
VRC01/VK3-20_D8_5344	6.0E-07
VRC01/VK3-20_D8_5942	6.2E-07
VRC01/VK3-20_D8_5990	8.8E-07
VRC01/VK3-20_D8_5921	1.0E-06
VRC01/VK3-20_D8_5936	1.4E-06
VRC01/VK3-20_D8_5949	no binding
VRC01/mV _k _D8_6517	2.3E-09
VRC01/mV _k _D8_5927	3.7E-09
VRC01/mV _k _D8_5943	3.3E-07
VRC01/mV _k _D8_6508	3.7E-07
VRC01/mV _k _D8_5952	4.3E-07
VRC01/mV _k _D8_5947	4.7E-07
VRC01/VK1-33_D36_6579	6.2E-11
VRC01/VK1-33_D36_6480	9.4E-11
VRC01/VK1-33_D36_6423	9.7E-11
VRC01/VK1-33_D36_6459	1.1E-10
VRC01/VK1-33_D36_6416	2.1E-10
VRC01/VK1-33_D36_6474	1.0E-09
VRC01/VK1-33_D36_6510	1.3E-09
VRC01/VK1-33_D36_6450	4.7E-08
VRC01/VK1-33_D36_6465	1.4E-07
VRC01/VK1-33_D36_5715	5.2E-06
VRC01/VK1-33_D36_6501	no binding
VRC01/VK1-33_D36_6448	no binding
VRC01/VK3-20_D36_6464	8.9E-11
VRC01/VK3-20_D36_6433	1.0E-10
VRC01/VK3-20_D36_6136	2.0E-10
VRC01/VK3-20_D36_6107	2.4E-10
VRC01/VK3-20_D36_6108	3.0E-10
VRC01/VK3-20_D36_6463	3.6E-10
VRC01/VK3-20_D36_6120	4.4E-10
VRC01/VK3-20_D36_6484	1.4E-09
VRC01/VK3-20_D36_6429	9.2E-08
VRC01/VK3-20_D36_6505	9.2E-08
VRC01/VK3-20_D36_6486	1.2E-07
VRC01/VK3-20_D36_6441	7.0E-07
VRC01/VK3-20_D36_6598	4.2E-06
VRC01/VK3-20_D36_6402	no binding
VRC01/VK3-20_D36_6430	no binding
VRC01/VK3-20_D36_6106	no binding
VRC01/mV _k _D36_6471	6.7E-10
VRC01/mV _k _D36_6455	8.8E-10
VRC01/mV _k _D36_6434	1.5E-09
VRC01/mV _k _D36_6460	1.7E-08
VRC01/mV _k _D36_6466	4.8E-08
VRC01/mV _k _D36_6458	1.2E-07

Table S2. VRC01-rearranging mouse model

Epitope	bnAb	Model	Human Ig segment	Other modification	hHC/LC %
CD4 binding site	VRC01	$V_H1-2R^{JH2}/V\kappa1-33R^{hTdT}$	hV _H 1-2, hJ _H 2, hV _{\kappa} 1-33	ΔIGCRI, hTdT	hHC(40%), hLC (2%)
		$V_H1-2R^{JH2}/V\kappa1-33R^{CS\Delta hTdT}$	hV _H 1-2, hJ _H 2, hV _{\kappa} 1-33	ΔIGCRI, ΔCer/Sis, hTdT	hHC(40%), hLC (13%)
		$V_H1-2R^{JH2}/V\kappa3-20R^{hTdT}$	hV _H 1-2, hJ _H 2, hV _{\kappa} 3-20	ΔIGCRI, hTdT	hHC(40%), hLC (9%)
		$V_H1-2R^{JH2}/V\kappa1-33R^{CS\Delta hTdT}/V\kappa3-20R^{hTdT}$	hV _H 1-2, hJ _H 2, hV _{\kappa} 3-20, hV _{\kappa} 1-33	ΔIGCRI, ΔCer/Sis, hTdT	hHC(40%), hLC (hV _{\kappa} 1-33: 7%; hV _{\kappa} 3-20: 4%)
		$V_H1-2R^{JH2}/V\kappa1-33R/V\kappa3-20R^{hTdT}$	hV _H 1-2, hJ _H 2, hV _{\kappa} 3-20, hV _{\kappa} 1-33	ΔIGCRI, hTdT	hHC(40%), hLC (hV _{\kappa} 1-33: 1%; hV _{\kappa} 3-20: 5%)

Table S3. Primer sequences

Method	name	sequence	paper
sgRNA	mV κ 3-2 sgRNA1	AGAGAAGCAGGACCCATAGC	Luo et al., 2022
	mV κ 3-2 sgRNA2	GTATTTCTGTCAGCAAAGTA	Luo et al., 2022
	mV κ 3-7 sgRNA	AGCTAGATGTACTGACACTT	This paper
	Cer/sis deletion-sgRNA1	TCAATACAGCTGCATTAATG	Luo et al., 2022
	Cer/sis deletion-sgRNA2	GAGGAATCTATGTCCTGGAT	Luo et al., 2022
HTGTS primers	mouse J κ 1-Bio	/5BiosG/TCCCCAGCTTGCTTACGGAG	Chen et al., 2020
	mouse J κ 2-Bio	/5BiosG/ATTCCAACCTCTTGAGGACAG	Chen et al., 2020
	mouse J κ 4-Bio	/5BiosG/CGCTCAGCTTCACACTGACTC	Chen et al., 2020
	mouse J κ 5-Bio	/5BiosG/GCCCTTAATCTCACTAGCTTGA	Chen et al., 2020
	mouse J κ 1-red	CAGACATAGACAACGGAAGAAAG	Chen et al., 2020
	mouse J κ 2-red	CAAGGTTAGACTTAGTGAACAAGAG	Chen et al., 2020
	mouse J κ 4-red	CAGAACCAAAACGTCACAAGTAA	Chen et al., 2020
	mouse J κ 5-red	CATGAAAACCTGTGCTTACACAT	Chen et al., 2020
	human JH2-Bio	/5BiosG/GCTGCAGACCCCAGATAACCT	Bradley et al., 2020
	human JH2-Red	TGGACAGAGAAGACTGGGAGG	Bradley et al., 2020
	human J κ 1-Bio	/5BiosG/TGTGCAATCAATTCTCGAGTTG	This paper
	human J κ 2-Bio	/5BiosG/TCCCTCTGTACCTAACCTGGGAAT	This paper
	human J κ 3-Bio	/5BiosG/CCCAATGATTGCTTATTGCTC	This paper
	human J κ 4-Bio	/5BiosG/CGCTTGCTGTTCTTAAGAT	This paper
	human J κ 5-Bio	/5BiosG/TTGCAACCCATGGCAAATCT	This paper
	human J κ 1-red	ACACAGGGAAACAGAAAGACACA	This paper
	human J κ 2-red	ATTAGCAACAGTGAAGAACATCAGTG	This paper
	human J κ 3-red	GATACAATGGCACTAAATCTCACG	This paper
	human J κ 4-red	CTCAAACACAAAAACGCTCCAA	This paper
	human J κ 5-red	GTCAATACTGGCCATCAGACC	This paper
single Cell RT-PCR	hVH1-2-bio	/5BiosG/TGGACCTGGAGGATCCTCTT	Bradley et al., 2020
	hVH1-2-red	GGGAGATCTCATCCACTTCTGT	Bradley et al., 2020
	hV κ 3-20-bio	/5BiosG/TCCTCCTGCTACTCTGGCT	This paper
	hV κ 3-20-red	CTGGCAACTCTGCTCAGTCAT	This paper
	hV κ 1-33-bio	/5BiosG/ATGGACATGAGGGTCCCTGC	This paper
	hV κ 1-33-red	TCCTGCTGCTCTGGCTCTCA	This paper
	Cmu RT primer	ACC TTC AAG GAT GCT CTT GG	Tian et al., 2016
	Cg1 and Cg2a RT primer	CAG CTG GGA AGG TGT GCA CA	Tian et al., 2016
	C κ RT primer	GCC TCA CAG GTA TAG CTG TT	Tian et al., 2016
	Cmu outer-R	CCT GGA TGA CTT CAG TGT TG	Tian et al., 2016
	Cg1 and Cg2a outer-R	AGG GAT CCA GAG TTC CAG GT	Tian et al., 2016
	C κ outer-R	GGA CGC CAT TTT GTC GTT CA	Tian et al., 2016
	Cmu inner-R	AGGGGGAAGACATTTGGGAAGGAC	Tian et al., 2016
	Cg1 inner-R	GCTCAGGGAAATAGCCCTTGAC	Tian et al., 2016
	Cg2a inner-R	ACTCAGGGAAAGTAGCCCTTGAC	Tian et al., 2016
	C κ inner-R	CTTGACATTGATGTCTTGGGGTAG	Luo et al., 2022
	VH1-2 primer-F	TGG ACC TGG AGG ATC CTC TT	Tian et al., 2016
	V κ 3-20 primer-F	TTC CTC CTG CTA CTC TGG CT	Tian et al., 2016
	V κ 1-33 primer-F	TCAGCTCCTGGGGCTCTGC	Luo et al., 2022