

1 An RNA modification enzyme directly senses reactive oxygen species for translational 2 regulation in *Enterococcus faecalis*

Wei Lin LEE¹, Ameya SINHA^{1,2,†}, Ling Ning LAM^{2,3,‡}, Hooi Linn LOO¹, Jiaqi LIANG^{1,‡},
Peiying HO¹, Liang CUI¹, Cheryl Siew Choo CHAN^{1,†}, Thomas BEGLEY⁴, Kimberly KLINE¹,
^{2,3,4} Peter DEDON^{1,5*}

¹ Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore

¹⁰ ² School of Biological Sciences, Nanyang Technological University, Singapore

11 ³ Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological
12 University, Singapore

13 ⁴ University at Albany, Department of Biological Sciences, Albany, NY 12222; and The RNA
14 Institute, University at Albany, Albany, NY 12222

¹⁵ ⁵ Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA

16 # Present address: Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany

18 * Present address: Department of Oral Biology, University of Florida College of Dentistry,
19 Gainesville, FL, USA.

[†] Present address: School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore

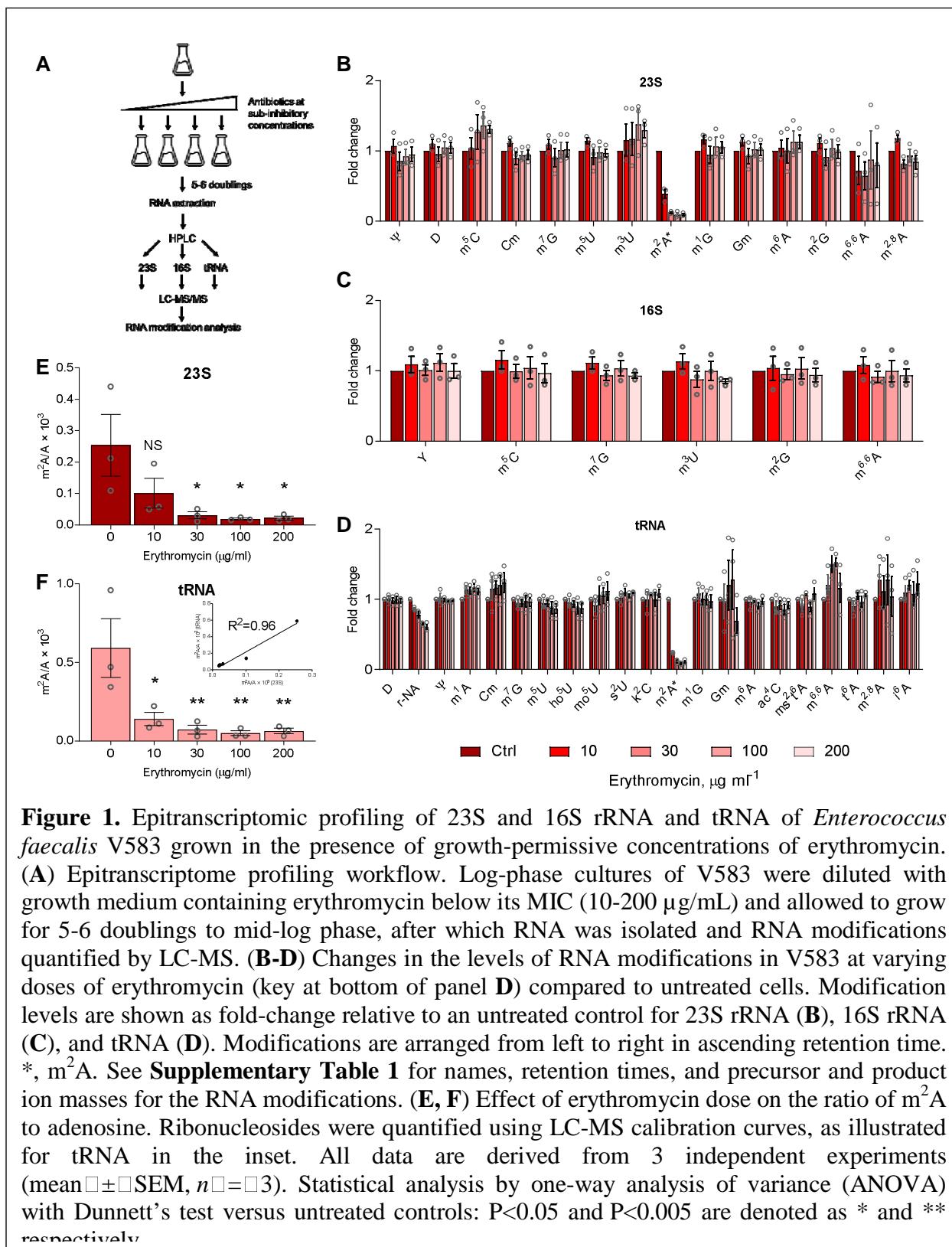
22 [†] Present address: Critical Analytics for Manufacturing Personalized-Medicine IRG, Singapore
23 MIT Alliance for Research and Technology, Singapore

24 [€] Present address: Department of Microbiology and Molecular Medicine, Faculty of Medicine,
25 University of Geneva, Switzerland

26 * Corresponding author: PCD, pcdedon@mit.edu.

27 **Abstract**

28 Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS)
29 arising from exposure to the mammalian immune system and environmental stresses. Here we
30 report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of
31 stress-response proteins in the gut commensal and opportunistic pathogen *Enterococcus faecalis*.
32 We analyzed the tRNA epitranscriptome of *E. faecalis* in response to reactive oxygen species
33 (ROS) or sublethal doses of ROS-inducing antibiotics and identified large decreases in N²-
34 methyladenosine (m²A) in both 23S ribosomal RNA and transfer RNA. This we determined to
35 be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN.
36 Genetic knockout of RlmN gave rise to a proteome that mimicked the oxidative stress response,
37 with increased levels of superoxide dismutase and decreased virulence proteins. While tRNA
38 modifications are established to be dynamic for fine-tuning translation, here we report the first
39 instance of a dynamically regulated, environmentally responsive rRNA modification. These
40 studies lead to model in which RlmN serves as a redox-sensitive molecular switch, directly
41 relaying oxidative stress to modulating translation through the rRNA and the tRNA
42 epitranscriptome, revealing a new paradigm for understanding direct regulation of the proteome
43 by RNA modifications.


44

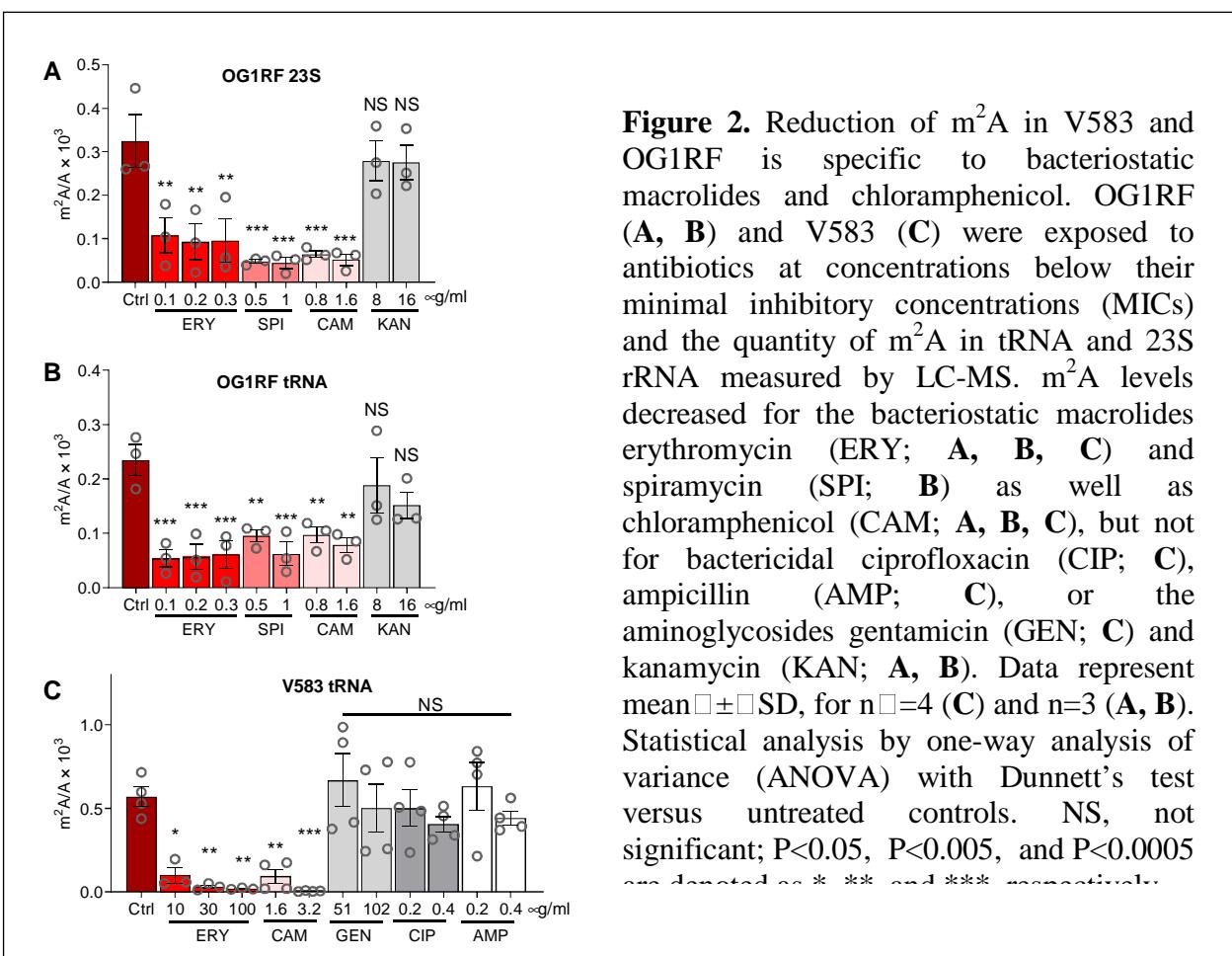
45 **Main Text**

46 Bacteria possess elaborate systems to manage reactive oxygen species (ROS) arising from
47 exposure to the mammalian immune system and environmental stresses. Here we report the

48 discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-
49 response proteins in the gut commensal and opportunistic pathogen *Enterococcus faecalis*.
50 Following exposure to the superoxide generator, menadione, or sublethal doses of ROS-inducing
51 erythromycin and chloramphenicol, analysis of 24 modified ribonucleosides of the
52 epitranscriptome revealed large decreases in N²-methyladenosine (m²A) in both 23S ribosomal
53 RNA and transfer RNA caused by ROS-mediated inactivation of the Fe-S cluster-containing
54 methyltransferase, RlmN. Loss of RlmN altered protein expression in a way that mimicked
55 menadione exposure, such as increased superoxide dismutase and decreased virulence proteins.
56 These studies suggest that RlmN acts as a redox-sensitive molecular switch that links
57 environmental and antibiotic-induced ROS exposure to epitranscriptome dynamics in ribosomal
58 and transfer RNA to effect translation of stress response proteins.

59
60 While transcriptional regulation in response to stress is well established in bacteria, translational
61 regulation is less well understood. We recently demonstrated that hypoxic stress in mycobacteria
62 caused reprogramming of dozens of RNA modifications in the tRNA epitranscriptome, which
63 was linked to codon-biased translation of stress response transcripts¹. Hypothesizing that the
64 same would be true for *Enterococcus faecalis*, we asked how the stress of antibiotic exposure
65 would alter the levels of 24 modifications in the rRNA and tRNA. Here we examined two *E.*
66 *faecalis* strains: OG1RF, a strain derived from the human commensal oral isolate OG1⁵, and
67 V583², a multidrug resistant clinical isolate. V583 possesses an erythromycin resistance
68 methyltransferase (ErmB) that methylates the N⁶-position of adenosine (m⁶A, m^{6,6}A) in 23S
69 rRNA at position 2058

71 (*Escherichia coli* numbering)³ and prevents binding of macrolides (e.g., erythromycin),
72 lincosamides, and streptogramin B (MLS)³, but only confers partial resistance to erythromycin⁴.
73 OG1RF lacks ErmB and is thus about 100-fold more sensitive to erythromycin than V583.


74

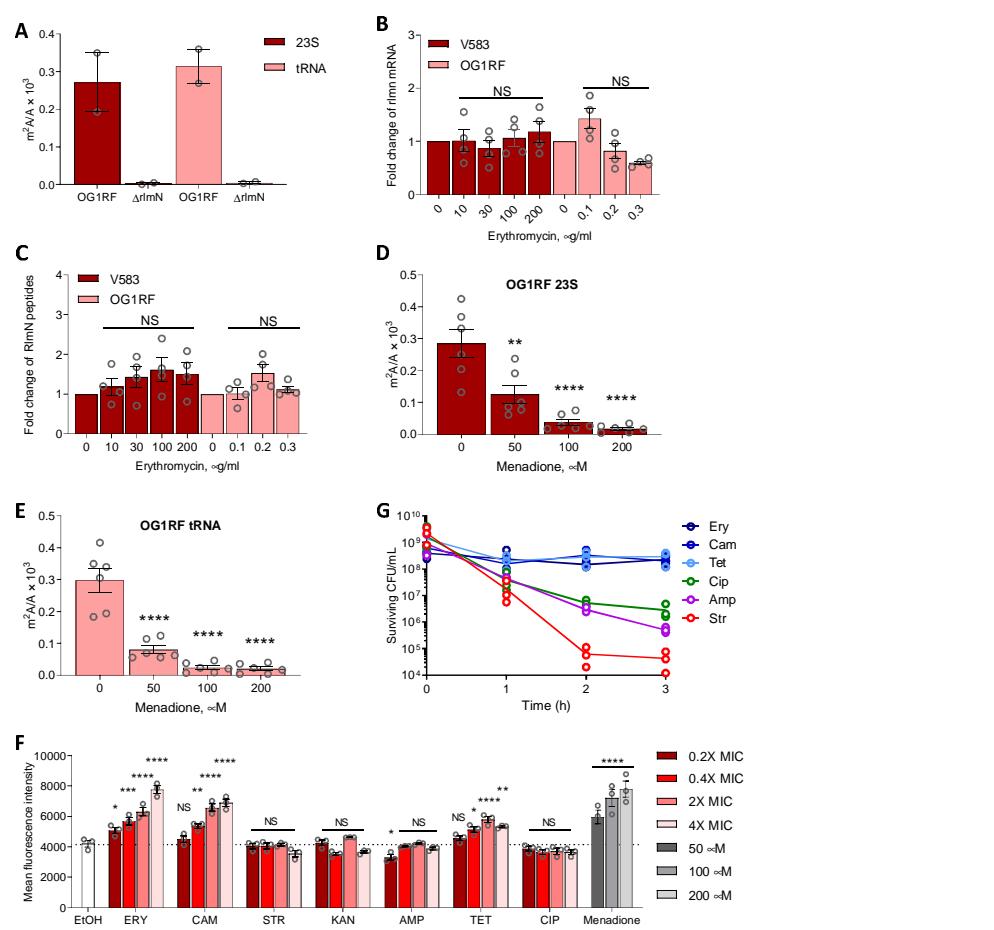
75 We first explored antibiotic effects on V583's epitranscriptome by growing cells in the presence
76 of sub-inhibitory concentrations of erythromycin (10-200 μ g/mL; **Fig. 1A**). Following
77 purification of 23S and 16S rRNAs and tRNA and hydrolysis to ribonucleosides, 24 modified
78 ribonucleosides were quantified by chromatography-coupled mass spectrometry (LC-MS) in
79 each type of RNA (**Fig. 1B-D, Supplementary Table 1**)¹. Neither m⁶A nor m^{6,6}A increased in
80 23S rRNA with erythromycin treatment, confirming that Erm expression in V583 is
81 constitutive⁴. While most of the monitored modifications remained relatively unchanged with
82 treatment, a striking reduction in 2-methyladenosine (m²A) in both 23S rRNA and tRNA was
83 observed for erythromycin exposure (**Fig. 1B-D**), with dose-dependency (**Fig. 1E, F**).

84

85 To assess if the m²A reduction was unique to V583, we repeated the study with *E. faecalis*
86 OG1RF at growth-permissive erythromycin concentrations (0.1-0.3 μ g/mL; **Supplementary**
87 **Table 2**). We again observed a significant concentration-dependent decrease in m²A in both 23S
88 rRNA and tRNA (**Fig. 2A, B**), with insignificant changes in the other 23 modifications
89 (**Supplementary Fig. 2**). We next asked if m²A reduction was unique to erythromycin or a
90 general response to all antibiotics. At 10-25% of the MICs of the different antibiotics
91 (**Supplementary Table 2**), m²A was reduced by macrolides erythromycin and spiramycin and
92 the phenicol antibiotic chloramphenicol, all of which are bacteriostatic, but not by the
93 bactericidal ciprofloxacin, ampicillin, or aminoglycosides kanamycin and gentamicin (**Fig. 2A-**

94 C). The only mechanistic commonality here involves macrolide and chloramphenicol binding to
 95 the large (50S) ribosomal subunit at the peptide exit tunnel and peptidyl transferase center,
 96 respectively, while aminoglycosides target the small (30S) ribosomal subunit. This ribosome
 97 commonality stands in contrast to ciprofloxacin and ampicillin as gyrase inhibitor and cell wall
 98 disruptor, respectively⁶. The antibiotic-induced reduction of m^2A is less in OG1RF compared to
 99 V583 (Fig. 2C), most likely due to the markedly lower concentrations of erythromycin and
 100 chloramphenicol used with OG1RF. So far, the data reveal that exposure of *E. faecalis* to sub-
 101 inhibitory concentrations of
 102 antibiotics that target the 50S ribosomal subunit selectively reduce m^2A in 23S rRNA and tRNA,
 103 which raises the question of the mechanistic basis for this epitranscriptome behavior.

104


105 In *Escherichia coli*, m²A formation is catalyzed by RNA methyltransferase RlmN, which
106 methylates A2503 in 23S rRNA at the peptidyl transferase center in the 50S ribosomal subunit
107 and A37 in the subset of tRNAs bearing adenine at this position in the anticodon stem loop³.
108 Since RlmN in *E. faecalis* has not been previously characterized, we analyzed m²A levels in a
109 *ΔrlmN* deletion mutant in OG1RF and found complete loss of the modification in 23S rRNA and
110 tRNA (**Fig. 3A**). We first asked if the reduction of m²A by macrolides and chloramphenicol
111 involved transcriptional or translational regulation of RlmN. Neither the level of *rlmN* mRNA
112 (qPCR) nor the level of RlmN protein (targeted proteomics) was affected significantly by
113 erythromycin treatment (**Fig. 3B, C**). These data suggested that the activity of RlmN was
114 regulated post-translationally by antibiotic exposure.

115

116 One possible mechanism for regulating RlmN activity involves antibiotic-induced oxidative
117 stress. RlmN is a radical S-adenosylmethionine (SAM) enzyme containing a [4Fe-4S] cluster
118 that is sensitive to disruption by reactive oxygen species (ROS)⁷. To test this model, we grew
119 OG1RF in the presence of the superoxide radical generator, menadione⁸, at sub-inhibitory
120 concentrations and then measured m²A in 23S rRNA and tRNA. Menadione treatment caused a
121 dose-dependent decrease in m²A in both rRNA and tRNA (**Fig. 3D-E**). This result implies that
122 the macrolides and chloramphenicol also induced ROS in OG1RF and V583, which we assessed
123 using the fluorogenic superoxide-specific probe CellROX Green to quantify antibiotic-induced
124 ROS levels in OG1RF⁹. As expected, both erythromycin and chloramphenicol increased
125 CellROX Green fluorescence at sub-inhibitory and higher concentrations (**Fig. 3F**), with analysis
126 of forward and side scatterplots suggesting that bacteria morphology remains unchanged, thus

127 ruling out artifacts known to confound the detection of antibiotic-induced ROS⁹

128 (**Supplementary Fig. 3**). Not all ribosome-

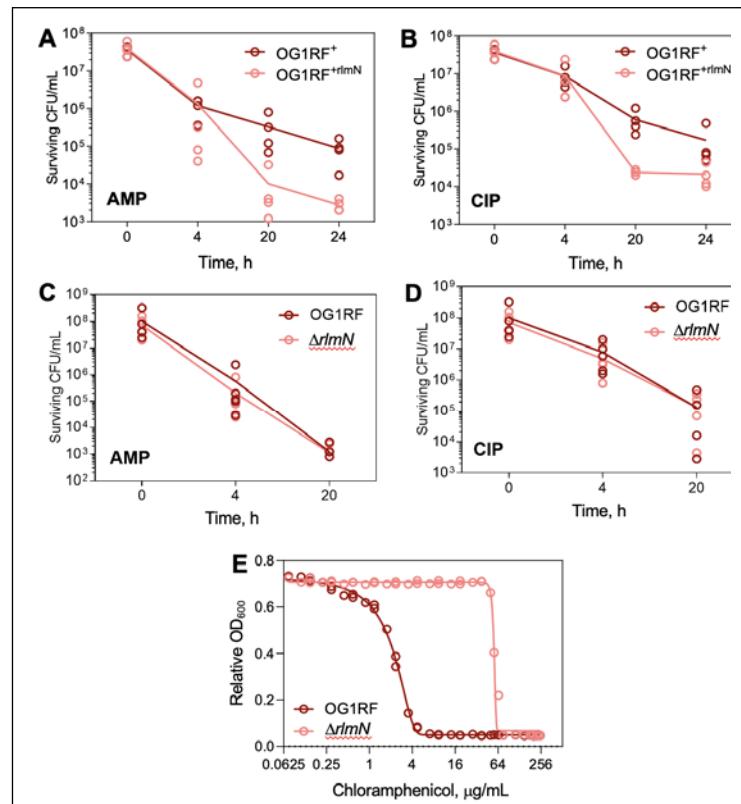


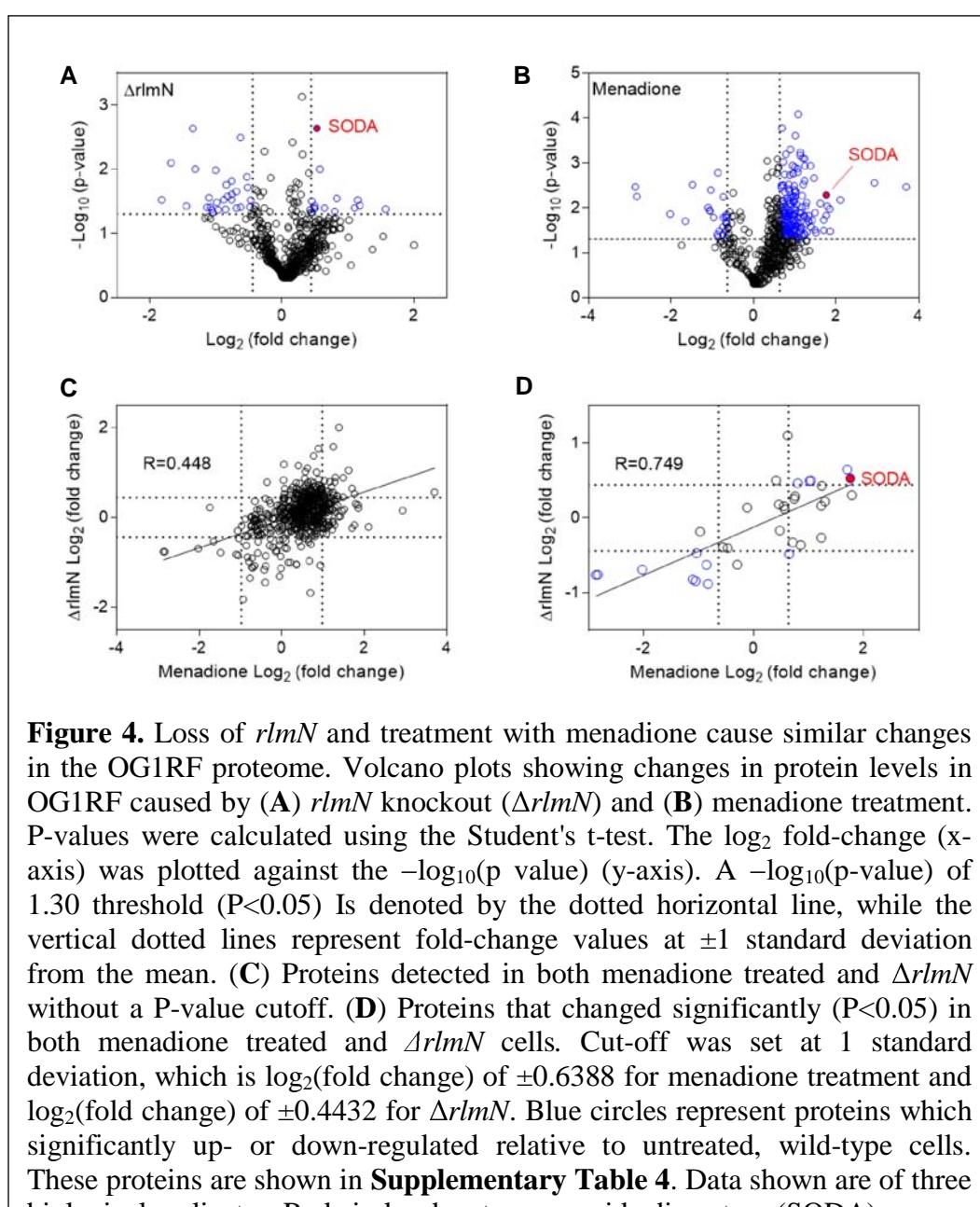
Figure 3. RlmN is regulated at the protein level by reactive oxygen species (ROS). **(A)** Loss of *rlmN* abolishes m^2A in OG1RF (mean \pm SEM deviation about the mean, $n=2$). **(B)** RT-qPCR of *rlmN* in OG1RF and V583 upon erythromycin treatment. Data represent mean \pm SEM for four experiments: duplicate analyses with two different primer sets. Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus untreated: NS, not significant. **(C)** Targeted proteomics of RlmN in OG1RF and V583 upon erythromycin treatment. Data represent mean \pm SEM for six experiments: three peptides monitored in two independent experiments. Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus untreated: NS, not significant. Ratio of m^2A to A in **(D)** 23S rRNA and **(E)** tRNA with menadione treatment. Data represent mean \pm SEM for three independent experiments performed with technical duplicates. Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus untreated: $P<0.005$ and $P<0.0001$ are denoted as ** and **** respectively. **(F)** Mean fluorescence intensity of CellROX Green Dye+ in OG1RF treated with various antibiotics at indicated concentrations above and below MICs. Data represent mean \pm SEM for three independent experiments. Statistical analysis by two-way analysis of variance (ANOVA) with Dunnett's test versus EtOH: NS, not significant; $P<0.05$, $P<0.005$, $P<0.0005$ and $P<0.0001$ are denoted as *, **, ***, and **** respectively. **(G)** Cell killing kinetics of various antibiotics at 10X MIC reveal that ROS-generating antibiotics are not bactericidal in OG1RF. Symbols represent individual data points for three independent experiments. Source data are provided as a **Source Data** file.

130 targeting antibiotics generate ROS in OG1RF. Sub- and supra-inhibitory concentrations of
131 tetracycline, which binds to the 30S subunit, induced an increase in CellROX Green fluorescence
132 whereas the aminoglycosides streptomycin and kanamycin did not (**Fig. 3F**). Further, the
133 mechanistically distinct ampicillin and ciprofloxacin also did not increase CellROX Green
134 fluorescence at both sub- or supra-inhibitory concentrations (**Fig. 3F**). These observations
135 contradict Léger *et al.*, who reported that the β -lactams amoxicillin and cefotaxime caused
136 superoxide production by reduction of demethylmenaquinone (DMK) in *E. faecalis*¹⁰. However,
137 *E. faecalis* is well established to produce high levels of extracellular superoxide by way of
138 externally-facing, membrane-bound DMK, but the superoxide is unable to diffuse through cell
139 walls and be detected as intracellular superoxide by CellRox and is also rapidly dismutated to
140 hydrogen peroxide outside the cell¹¹; Léger *et al.* measured extracellular hydrogen peroxide as
141 their surrogate for superoxide¹⁰. Along with the menadione data, our results establish that RlmN
142 is inactivated by intracellular superoxide resulting from exposure of *E. faecalis* to macrolides and
143 chloramphenicol.

144
145 Given the controversial model that bactericidal antibiotics share a common mechanism of
146 generating cytotoxic ROS^{9,12,13}, we tested antibiotics for their bactericidal and bacteriostatic
147 activity in *E. faecalis*. Erythromycin and chloramphenicol have been classified as
148 bacteriostatic¹⁴, with bactericidal activity at high concentrations against *Streptococcus*
149 *pneumoniae*¹⁴, while ciprofloxacin, ampicillin, and streptomycin are classified as bactericidal¹⁴.
150 However, our data show that erythromycin and chloramphenicol induce superoxide production at
151 low concentrations in OG1RF, while ciprofloxacin, ampicillin, and streptomycin do not. Léger *et*
152 *al.* observed ROS generation by the related β -lactam, amoxicillin, at supra-lethal concentrations,

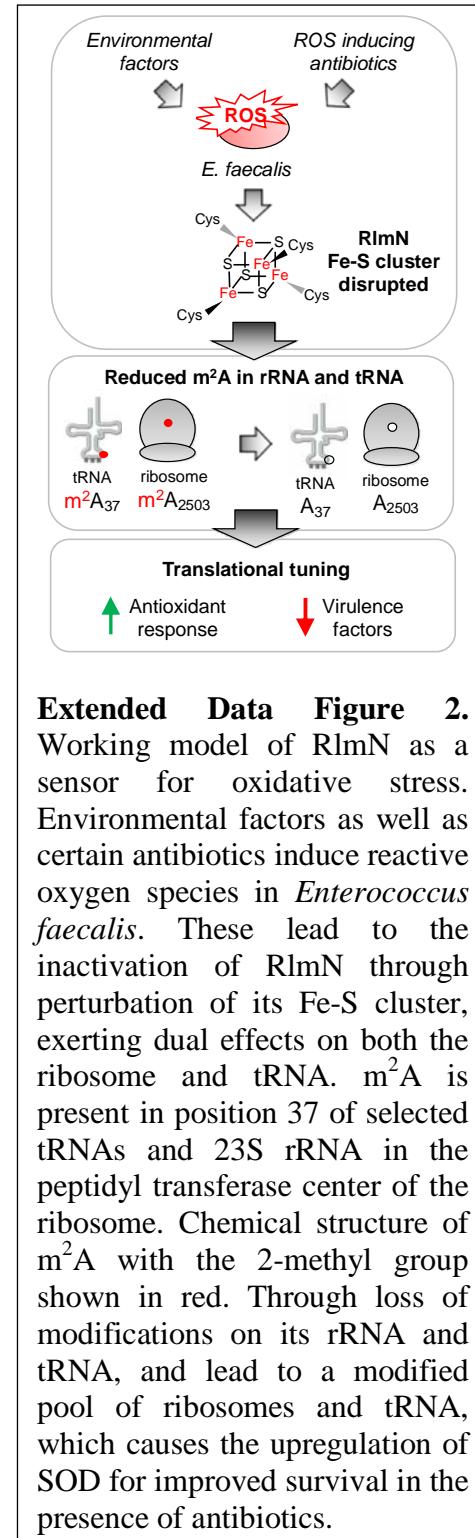
153 again by measuring hydrogen peroxide which was likely generated from superoxide produced
154 extracellularly. To establish
155 bactericidal activity, we performed
156 killing assays with OG1RF in the
157 presence of antibiotics at ten times
158 their MIC and found that antibiotics
159 that increase CellROX Green
160 fluorescence (*i.e.*, erythromycin,
161 chloramphenicol, tetracycline) are
162 bacteriostatic in OG1RF, while
163 ciprofloxacin, ampicillin, and
164 streptomycin, which do not induce
165 ROS, are bactericidal (Fig. 3G).
166 These data not only further disprove
167 the link between bactericidal
168 antibiotics, ROS, and cell death, but
169 also raise the question of the role of
170 RlmN in *E. faecalis* antibiotic
171 sensitivity.

Extended Data Figure 1. Phenotypic characterization of *rlmN* KO ($\Delta rlmN$) and over-expressed RlmN (OG1RFp*rlmN*). Kinetics of cell killing for OG1RFp*Empty* and OG1RFp*rlmN* grown with 5X MIC for (A) ampicillin (5 μ g/mL) and (B) 5 μ g/mL ciprofloxacin. Kinetics of cell killing for OG1RF and $\Delta rlmN$ grown with 5X MIC for (C) 10 μ g/mL erythromycin and (D) 5 μ g/mL ciprofloxacin. Graphs show individual data for 4 independent experiments. (E) Growth assay for minimum inhibitory concentration (MIC) of chloramphenicol with OG1RF and $\Delta rlmN$. The graph shows data


172
173 We next investigated the effect of RlmN activity on *E. faecalis* antibiotic sensitivity, using the
174 $\Delta rlmN$ deletion mutant and a strain over-expressing RlmN. Here we created a constitutive over-
175 expression mutant, OG1RFp*rlmN*, which carried an RlmN-expressing plasmid under the

176 constitutive Sortase A promoter in vector pGCP123¹⁵; a control strain, OG1RF*Empty*, carried
177 the same plasmid lacking the coding sequence for RlmN. Over-expression of RlmN did not
178 affect the MIC for erythromycin, streptomycin, kanamycin, ampicillin, tetracycline, or
179 ciprofloxacin (**Supplementary Table 2**), but did increase the sensitivity of OG1RF*prlmN* to
180 killing by the bactericidal antibiotics ampicillin and ciprofloxacin by 10-fold (**Extended Data**
181 **Fig. 1A, B**). Loss of RlmN however, had no effect on *E. faecalis* growth in the presence of up to
182 5-times the wild-type MIC for the five antibiotics (**Supplementary Table 2, Extended Data**
183 **Fig. 1C, D**), except for a 16-fold increase in MIC for chloramphenicol (**Extended Data Fig. 1E**,
184 **Supplementary Table 3**). Taken together, (1) over-expression of RlmN increases *E. faecalis*
185 sensitivity to ampicillin and ciprofloxacin and (2) loss of RlmN activity confers resistance to
186 chloramphenicol suggest that RlmN may play a role in phenotypic antimicrobial tolerance or
187 resistance.

188
189 We next defined the effects of RlmN activity on the cell proteome. Our results establish that
190 RlmN's methyltransferase activity is attenuated by superoxide, raising the possibility that RlmN
191 serves as a redox sensor that regulates cell stress response. To test this idea, we performed
192 quantitative proteomics using multiplexed isobaric Tandem Mass Tags (TMT) to identify
193 differentially expressed proteins between OG1RF, $\Delta rlmN$, and OG1RF grown in menadione
194 (**Fig. 4A, B; Supplementary Data 1**). Only a few proteins were upregulated in $\Delta rlmN$ as
195 compared to OG1RF treated with menadione, suggesting precision of RlmN as a molecular
196 switch. Indeed, we found a positive correlation of $R^2 = 0.749$ between statistically significant
197 ($p < 0.05$) protein changes in $\Delta rlmN$ and OG1RF treated with menadione (**Fig. 4D**). One of these
198 was the antioxidant defense enzyme, superoxide dismutase, for which there is a single gene
199 (*sodA*) in *E. faecalis*¹⁶. Of note, another well-known antioxidant defense enzyme, catalase

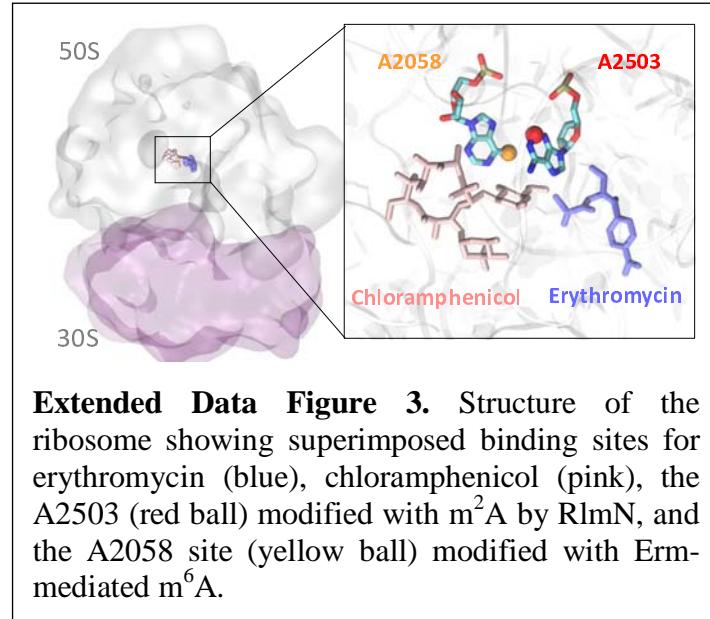

200 (KatA), was not consistently detected in the proteomic analyses (**Supplementary Data 1**).
201 Besides SodA, proteins with levels increasing in common (**Fig. 4C, Supplementary Table 4**)
202 between $\Delta rlmN$ and menadione-treated OG1RF include two ribosomal proteins (RpsI, RplE), a
203 DNA repair enzyme LigA, a tRNA-modifying enzyme MnmE, an oxidoreductase, and a
204 ribonucleotide reductase. While there is no obvious gene ontology link among the proteins
205 whose levels increased in $\Delta rlmN$ (**Supplementary Table 5**), DNA repair, tRNA modification
206 changes, and increases in the dNTP pool are common features of bacterial stress responses^{1,17}.

207

208 Interestingly, the common set of proteins which are downregulated in both datasets include
209 proteins associated with virulence. Pilus subunit proteins
210 EbpA and EbpB are major virulence factors in *E.*
211 *faecalis*, involved in biofilm formation, endocarditis, and
212 catheter-associated urinary tract infection¹⁸.
213 Phosphocarrier protein HPr, a component of the
214 phosphoenolpyruvate-dependent sugar
215 phosphotransferase system, has been found to contribute
216 to successful bacteremia of *Neisseria meningitidis* in a
217 mice infection model¹⁹, and activation of virulence in
218 *Listeria monocytogenes*²⁰. WxL domain-containing
219 proteins in *Enterococcus faecium* have been implicated in
220 survival in bile salt and the pathogenesis of
221 endocarditis²¹. Other proteins include a signal peptidase
222 and a CAAX amino protease family protein, of which
223 the latter is predicted to be involved in regulation of
224 transcription.

225
226 Based on the results presented here, we propose a
227 mechanism (**Extended Data Fig. 2**) in which RlmN
228 serves as a ROS-sensitive molecular switch that
229 modulates physiological responses to oxidative stress
230 and confers phenotypic resistance to environmental

Extended Data Figure 2. Working model of RlmN as a sensor for oxidative stress. Environmental factors as well as certain antibiotics induce reactive oxygen species in *Enterococcus faecalis*. These lead to the inactivation of RlmN through perturbation of its Fe-S cluster, exerting dual effects on both the ribosome and tRNA. m²A is present in position 37 of selected tRNAs and 23S rRNA in the peptidyl transferase center of the ribosome. Chemical structure of m²A with the 2-methyl group shown in red. Through loss of modifications on its rRNA and tRNA, and lead to a modified pool of ribosomes and tRNA, which causes the upregulation of SOD for improved survival in the presence of antibiotics.


231 stresses and antimicrobial agents. This is perhaps not surprising given the importance of other
232 Fe–S proteins, such as SoxR, Fnr, and aconitase, as ROS sensors linked to changes in gene
233 expression and cell phenotype²². RlmN and m²A are absent in eukaryotes and, within
234 prokaryotes, RlmN is the only enzyme that synthesizes m²A. The inertness of the C2 of
235 adenosine to electrophilic attack and the low acidity of the C2 proton requires a free radical SAM
236 intermediate unique to RlmN²³ and the chloramphenicol-florfenicol resistance methyltransferase
237 (Cfr)²⁴. Here we showed that RlmN activity is not only strongly dependent upon intracellular
238 superoxide levels but also regulates levels of SodA, which promotes antibiotic tolerance²⁵ and
239 facilitates survival in macrophages¹⁶ in *E. faecalis* and other bacteria.

240

241 So how does exposure of *E. faecalis* to ribosome-binding antibiotics lead to elevated superoxide
242 levels? While there is no universal mechanism by which antibiotic exposure causes increases in
243 ROS in bacteria, in spite of earlier claims¹³, there are numerous pathways for generating
244 superoxide and other ROS and for environmental exposure of bacteria to ROS⁷. *E. faecalis*
245 generates large amounts of extracellular superoxide¹¹, with Léger *et al.* showing that supra-lethal
246 ampicillin doses increase these levels¹⁰. While we did not measure extracellular ROS, superoxide
247 cannot diffuse through the bacterial cell wall and our results show that neither sub- nor supra-
248 lethal amoxicillin or other bactericidal antibiotics cause intracellular superoxide formation in *E.*
249 *faecalis* (**Fig. 3f**). How sublethal concentrations of erythromycin and chloramphenicol cause
250 superoxide levels to increase could relate to the cell stress caused by inhibition of translation or
251 by mistranslation, with the proteotoxic stress leading to increased reductive metabolism and thus
252 increases in superoxide. The mechanism of erythromycin-induced superoxide production awaits
253 further study.

254

255 How does RlmN-catalyzed m²A play a role in the phenotypic changes caused by loss of RlmN or
256 exposure to superoxide? Two possibilities come to mind based on RlmN activity on both rRNA
257 and tRNA. From the rRNA perspective, m²A might facilitate the ribosome stalling that leads to
258 ErmBL nascent peptide activation of
259 ErmB expression²⁶. RlmN catalyzes
260 m²A formation at A2503 of 23S rRNA,
261 a conserved nucleotide which resides in
262 the peptidyltransferase center (PTC) of
263 the ribosome near the entrance to the
264 exit channel for the nascent polypeptide
265 (**Extended Data Fig. 3**) and is involved
266 in fine-tuning ribosome–nascent
267 peptide interactions, relaying the

268 stalling signal to the PTC²⁷. A2503 is very close spatially to the erythromycin binding site²⁷, to
269 the ErmBL nascent peptide that activates ErmB expression upon antibiotic binding²⁸, and to the
270 A2058 that is modified with m⁶A by ErmB to prevent antibiotic binding (**Extended Data Fig.**
271 **3**). Though speculative, one hypothesis is that loss of RlmN activity reduces m²A₂₅₀₃ and thus
272 facilitates ErmBL-induced activation of ErmB synthesis.

273

274 From the tRNA perspective, RlmN is one of only two methyltransferases known to modify both
275 rRNA and tRNA³. In *E. coli*, m²A₃₇ occurs in six tRNAs: tRNA^{Arg}ICG, tRNA^{Asp}QUC,
276 tRNA^{Gln}cmnm⁵sUUG, tRNA^{Gln}CUG, tRNA^{Glu}mnm⁵s²UUC, and tRNA^{His}QUG²⁹. Modifications

277 at position 37 are important for maintaining the reading frame³⁰, while loss of RlmN increases
278 stop codon readthrough³¹. The latter is likely not relevant for synthesis of selenoproteins in *E.*
279 *faecalis* since there are no apparent genes encoding selenoproteins in the *E. faecalis* genome.³²
280 Further studies are underway to determine if *E. faecalis* uses tRNA reprogramming and codon-
281 biased translation to regulate expression of stress response genes as observed in mycobacteria¹.

282

283 Finally, our results raise the question of RlmN sensitivity to inactivation by superoxide: is RlmN
284 unique in its sensitivity compared to other Fe-S cluster-containing proteins in *E. faecalis*? *E.*
285 *faecalis* is unusual among human commensal and pathogenic bacteria in lacking many Fe-S
286 cluster proteins, such as fumarase, aconitase, isocitrate dehydrogenase, and succinate
287 dehydrogenase in the tricarboxylic acid cycle³³. This lack of a tricarboxylate cycle is shared by
288 *Listeria monocytogenes*, in which bactericidal antibiotics have also been shown not to produce
289 ROS³⁴. Other Fe-S cluster proteins absent in *E. faecalis* include the GrxD iron transport
290 regulator, 2 of 3 systems for Fe-S cluster biogenesis (NIF, ISC, and SUF; only SUF is present in
291 *E. faecalis*³⁵), and MiaB. The latter is corroborated by our inability to detect m²si⁶A in the
292 presence of i⁶A (**Fig. 1D**). However, *E. faecalis* possesses other Fe-S cluster proteins, including
293 QueE and QueG involved in queuosine (Q) biosynthesis³⁶. Clearly more work is needed to
294 determine the effect of superoxide and other ROS on the activities of different Fe-S cluster
295 proteins to determine if RlmN is uniquely sensitive as a potential redox signaling node in *E.*
296 *faecalis*.

297

298 In conclusion, we showed that RlmN activity is not only strongly dependent upon superoxide
299 levels but also regulates levels of SodA. In *E. faecalis* and other bacteria, SodA promotes

300 antibiotic tolerance²⁵ and facilitates survival in macrophages¹⁶. In all, RlmN, widely distributed
301 across bacteria genera,³⁷ may serve as a redox switch relaying redox sensing to both the rRNA
302 and tRNA epitranscriptome for direct modulation of translation for protective oxidative stress
303 response.

304 **Methods**

305

306 **Bacteria strains, plasmids, and growth conditions**

307 *Enterococcus faecalis* strains OG1RF and V583 are grown in tryptic soy broth (TSB) or plated
308 on tryptic soy agar under aerobic conditions at 37 °C. All mutant strains are derivatives of
309 OG1RF. The *rlmN* knock-out in OG1RF ($\Delta rlmN$) was generated by an in-frame deletion of *rlmN*
310 from OG1RF by allelic replacement using vector pGCP213¹⁵. RlmN over expressor,
311 OG1RFp*rlmN* was generated by the introduction of the gene coding for RlmN into the plasmid
312 pGCP123 under the constitutive sortase promoter¹⁵. OG1RFp*Empty* is OG1RF carrying the
313 plasmid pGCP123, but without introduction of the gene coding for RlmN. All the plasmids used
314 in this study are listed in **Supplementary Table 6**. All the oligos for making the mutant strains
315 are listed in **Supplementary Table 7**. All plasmid constructions are described in
316 **Supplementary Methods** and were verified by Sanger sequencing. MICs used for OG1RF are 1
317 µg/mL erythromycin, 1 µg/mL spiramycin, 4 µg/mL chloramphenicol, 64 µg/mL kanamycin,
318 128 µg/mL streptomycin, 1 µg/mL ampicillin, 0.5 µg/mL tetracycline and 1 µg/mL
319 ciprofloxacin. MICs used for V583 are >1024 µg/mL erythromycin, 8 µg/mL chloramphenicol,
320 256 µg/mL gentamicin, 1 µg/mL ampicillin and 1 µg/mL ciprofloxacin. OG1RFp*rlmN* and
321 OG1RFp*Empty* are grown in 500 µg/mL kanamycin to maintain the pGCP123 plasmid.

322

323 **Identification and quantification of RNA modifications**

324 An overnight culture was diluted 1:20 fold and then grown at 37 °C to reach mid-log phase. This
325 mid-log phase culture was then diluted 1:20 into media containing sub-lethal concentrations of
326 antibiotics and grown at 37 °C with shaking at 180 rpm. The cultures are harvested at an optical
327 density (OD₆₀₀) of ~0.6-0.8 after 4-5 doublings by centrifugation at 4,000 xg for 10 min at 4 °C.
328 RNA was extracted and purified following Hia *et al.*³⁸ Briefly, 100 mL of bacteria culture was
329 lysed in the presence of phenol:chloroform:isoamyl alcohol and 100 mM sodium acetate pH 5.0
330 by bead beating with 0.1-mm zirconia-silica beads using Qiagen TissueLyser II for 12 min at
331 30Hz. Large and small RNA species were differentially recovered using the PureLink miRNA
332 Isolation Kit (Invitrogen) with 35% ethanol and 70% ethanol respectively. 23S and 16S rRNA
333 are separately isolated to purity from the large RNA fraction following HPLC using the Bio
334 SEC-5 column (Agilent; 7.8 mm, length: 300 mm, particle size: 5 µm, pore size: 1000 Å); and
335 tRNA was isolated to purity from the small RNA fraction following HPLC on the Bio SEC-3
336 column (Agilent; 7.8 mm, length: 300 mm, particle size: 5 µm, pore size: 300 Å). All separations
337 were run with 100 mM ammonium acetate, at 60 °C with a flow rate of 0.5 mL/min.

338

339 Peaks corresponding to the right RNA populations are concentrated and subjected to buffer
340 exchange into 10 mM Ammonium Acetate using size exclusion filters (Millipore). RNA (5 µg)
341 was enzymatically hydrolyzed for 4 h at 37 °C with benzonase (99% purity, Novagen 70664),
342 bacterial phosphatase (ThermoFisher 18011015) and phosphodiesterase I (Sigma P3243), in the
343 presence of magnesium chloride, antioxidants and deaminase inhibitors including
344 desferroxamine (Sigma D9533), butylated hydroxytoluene (Sigma W218405), pentostatin

345 (Sigma SML0508), tetrahydouridine (Calbiochem 584222), and internal standard [¹⁵N]₅-
346 deoxyadenosine. Samples were cleaned up using a 10 kDa cut-off filter (Nanosep).

347

348 The ribonucleoside mixtures were separated on a Hypersil C18 analytical column (2.1x 100 mm,
349 1.8 mm; Agilent) on an Agilent 6490 QQQ triple-quadrupole LC mass spectrometer using
350 multiple reaction monitoring in positive-ion mode as previously described¹. The nucleosides
351 were identified using the retention time of the pure standards and the nucleoside to base ion mass
352 transitions involving loss of either ribose (136 *m/z*) or 2'-*O*-methyl-ribose (146 *m/z*)
353 (**Supplementary Table 1**). For relative quantitation of modifications among the same batch of
354 samples, the signal intensity is normalized against the combined intensity of the four canonical
355 ribonucleosides to correct for variation in RNA quantities. Spectral signals are also normalized
356 against spiked internal standard ([¹⁵N]₅-2'-deoxyadenosine) to adjust for variations in instrument
357 sensitivity. For absolute quantification of m²A and adenosine, a series of concentrations of
358 nucleoside standards for m²A and adenosine were run with every batch of samples to obtain
359 standard calibration curves. The concentrations of nucleosides were then obtained by fitting the
360 signal intensities onto the calibration curves, and these were then used to obtain the molar ratio
361 of m²A/A.

362

363 **Measurement of *rlmN* mRNA levels**

364 Total RNA (2 μ g) was subjected to DNA removal using the TURBO DNA-free kit (Ambion,
365 Life Technologies) following manufacturer's protocol. 600 ng in 15 μ L was used for reverse
366 transcription using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). The reverse
367 transcription program was run as follows: 25 °C for 5 min, 42 °C for 30 min and 85 °C for 5

368 min, followed by a cooling step at 4 °C. Two-step real-time quantitative polymerase chain
369 reaction (qPCR) was then performed using the BlitzAmp qPCR mastermix (MiRxes, Singapore).
370 Primer sequences can be found in **Supplementary Table 8**. The qPCR program was run as
371 follows: 95 °C for 5 min followed by 40 cycles of denaturation at 95 °C for 10 s and
372 annealing/extension at 60 °C for 30 s. A melting curve analysis consisting of 0.5 °C increments
373 from 65 to 95 °C was performed for all reactions to ascertain the specificity of the primers. RpoA
374 served as internal loading control.

375

376 **Measurement of RlmN protein levels**

377 Bacteria pellets from 10 mL of log phase culture of OG1RF and V583 were resuspended in 250
378 µL of 50 mM Hepes pH 8, 8 M urea, 1 mM DTT and homogenized by bead-beating followed by
379 clarification by centrifugation at 16,000 xg for 30 min at 4 °C. Following quantification of total
380 protein in the supernatant using the bicinchoninic acid protein assay (ThermoFisher Scientific),
381 50 µg of protein was mixed with SDS-PAGE loading dye and separated on a 14% SDS-PAGE
382 gel. Following staining and destaining, a gel slice corresponding to 30-45 kDa, encompassing
383 target protein RlmN 40.9 kDa and reference proteins RpoA 35.05 kda and Gap2 35.77 kDa, was
384 excised and cut into 1-2 mm pieces. The gel pieces were destained, reduced and alkylated
385 followed by overnight trypsin digestion and peptide extraction following manufacturer's
386 instructions (In-Gel Tryptic Digestion kit, ThermoFisher Scientific). Extracted peptides were
387 vacuum dried and redissolved in 2% acetonitrile in 0.1% formic acid in water.

388

389 Skyline (<http://proteome.gs.washington.edu/software/skyline>) was used to identify precursor
390 peptides and transitions to be used for the targeted quantification of RlmN and reference proteins

391 (Supplementary Table 3). Automated picking of precursor peptides and transitions was used
392 with filters set to select for singly charged, long (y3 and greater) y-ions with no *m/z* overlaps
393 with b-ions. Selected peptides were synthesized at 90% purity and analyzed on a Hypersil C18
394 analytical column (2.1x 100 mm, 1.8 mm; Agilent) on an Agilent 1290 infinity LC system
395 coupled to an Agilent 6490 QQQ spectrometer in positive ion mode. Agilent Automated MRM
396 Method Optimizer for Peptides was used to optimize collision energies and fragmentation
397 voltages for their MRM transitions and peptides were used at a concentration of 10 μ g/mL for
398 determination of retention times.

399
400 Reversed-phase chromatography was performed with a fixed flow rate of 0.25mL/min with a
401 gradient of water and acetonitrile (solvent B) acidified with 0.1% (v/v) formic acid. Gradients
402 used were as follow: 0-29% solvent B from 0-29 min, 29-90% from 29-30 min, 90% for 38 min,
403 90% to 0 % from 38-39 min, and 0% for 45 min. Source conditions: gas temperature 325 °C, gas
404 flow 10 L/min, nebulizer 32 psi, sheath gas temperature 300 °C, sheath gas flow 11 L/min,
405 capillary 2000 V, charging 500 V. Columns were incubated at 40 °C. The top two precursor
406 peptides by peak area and number of transitions (minimum 2) were selected as qualification and
407 quantification ions.

408
409 **Flow cytometry assays**
410 CellROX Green (ThermoFisher) is a proprietary oxidation-sensitive dye whose fluorescence at
411 500–550 nm after excitation at 488 nm increases substantially on oxidation in the presence of
412 dsDNA. Cellrox green reacts to hydroxyl radical and superoxide but not hydrogen peroxide⁹.
413 Log-phase cultures were diluted to OD₆₀₀ of 0.1 in 10% TSB in the presence of menadione or

414 antibiotics and incubated for 30 min at 37 °C followed by the addition of CellROX green (final
415 0.5 µM) for a further 30mins at 37 °C in the dark with shaking at 180 rpm. Samples were
416 analyzed using a HTS fluidics system and the flow rate was set to 3.0 mL/s with a 150 mL
417 injection volume, 100 mL mixing volume, 250 mL/s mixing speed, five mixes, and a wash
418 volume of 800 mL. Samples were analyzed on a custom LSR II flow cytometer (BD
419 Biosciences), detected with a 530/30 nm band-pass emission and recording 50,000 events. Data
420 were analyzed with FlowJo v10.0.6 (Tree Star, Inc.). Gating was set using unstained samples for
421 the bacterial population by forward-scatter (FSC; correlates with cell size) and side-scatter (SSC;
422 correlates with cell internal granularity) of light and to determine background fluorescence.

423

424 **Proteomics**

425 Fresh mid-log phase cultures (OD₆₀₀ of 0.6) were diluted 1:20 into TSB media with or without
426 sub-lethal concentrations of antibiotics or menadione and grown at 37 °C with shaking at 180
427 rpm. The cultures are harvested at an optical density (OD₆₀₀) of ~0.6-0.8 after 4-5 doublings by
428 centrifugation at 4,000 xg for 10 min at 4 °C. Bacterial pellets were resuspended in 250 µL of 50
429 mM Hepes pH 8, 8 M urea, 1 mM DTT, and homogenized by bead-beating followed by
430 clarification by centrifugation at 16,000 xg for 30 min at 4 °C. Following protein quantification
431 in the supernatant using the bicinchoninic acid protein assay (ThermoFisher Scientific), 200 µg
432 of protein was digested with trypsin after being reduced with DTT and alkylated with
433 iodoacetamide. After washing 3 times with 0.5 M TEAB followed by fractionation using the 10
434 kDa ultrafiltration system, ~100 µg of digested peptides from each group, including two
435 biological replicates, was labeled using the six-plex TMT isobaric and isotopic mass-tagging kit
436 (ThermoFisher Scientific), which was performed according to manufacturer's instructions.

437

438 Peptides were separated by reverse phase HPLC (Thermo Easy nLC1000) using a precolumn
439 (made in house, 6 cm of 10 μ m C18) and a self-pack 5 μ m tip analytical column (15 cm of 5 μ m
440 C18, New Objective) over a 150 min gradient before nanoelectrospray using a QExactive mass
441 spectrometer (ThermoFisher). The mass spectrometer was operated in a data-dependent mode.
442 The parameters for the full scan MS were as follow: resolution of 70,000 across 350-2000 *m/z*,
443 AGC 3e6, and maximum IT 50 ms. The full MS scan was followed by MS/MS for the top 15
444 precursor ions in each cycle with a NCE of 28 and dynamic exclusion of 30 s. Raw mass spectral
445 data files (.raw) were searched using Proteome Discoverer (ThermoFisher) and Sequest
446 (Reference). Search parameters were as follow: 10 ppm mass tolerance for precursor ions; 0.8Da
447 for fragment ion mass tolerance; 2 missed cleavages of trypsin; fixed modification was
448 carbamidomethylation of cysteine, and N-term and Lysine TMT-label; variable modifications
449 were methionine oxidation and serine, threonine and tyrosine phosphorylation. Only peptides
450 with a Scorer score ≥ 2 , reporter channel intensity > 500 and an isolation interference ≤ 30 were
451 included in the data analysis. Proteomics data are presented in **Supplementary Data 1**.

452

453 **Bactericidal activity analysis**

454 A log phase culture of OG1RF was diluted to a final concentration of 10^8 CFU/mL ($OD_{600} \sim 0.1$)
455 in Tryptic Soy Broth in the presence of antibiotics at 37 °C with shaking. Aliquots were drawn
456 from each respective tube at various time points and serially diluted until 10^{-8} -fold. An aliquot
457 (2.5 μ L) of each dilution was spotted onto TSB agar and incubated at 37 °C overnight, with
458 colonies counted 24 h after spotting.

459

460 **Determination of minimal inhibitory concentrations (MIC) of antibiotics**

461 Two-fold serial dilutions of antibiotics in TSB were performed in separate rows of a polystyrene
462 96-well plate (Corning) with each plate containing an inoculum of respective bacteria. The
463 inoculum was a 1:500 dilution from a culture at log phase ($OD_{600} = 0.5$) grown at 37 °C. The
464 plate was incubated with shaking at 37 °C and the optical density of each well was measured at a
465 wavelength of 600 nm (BIOTEK, Synergy 4). The MIC values were taken as the lowest
466 concentration for which no growth was discernible ($<0.05 OD_{600}$) after 24 h. All tests were
467 performed three times independently with two samples in each test. MIC data are presented in
468 **Supplementary Table 2.**

469

470 **Antibiotic killing assays**

471 The OG1RF strains were cultured aerobically in TSB 37°C for approximately 16 h with
472 shaking (180 rpm) followed by 1:20 dilution and cultured to mid-log growth. Strains
473 OG1RFpEmpty and OG1RFprlmN harboring pGCP123 plasmids were grown in 500 µg/mL
474 kanamycin. The mid-log culture was diluted to $OD_{600} \sim 0.06$ ($\sim 5 \times 10^7$ cfu/mL). An aliquot was
475 plated to enumerate the colony-forming units (cfu) (Time 0) before the addition of antibiotics
476 with final concentrations at 20 µg/mL ciprofloxacin and 20 µg/mL ampicillin. An aliquot was
477 removed at the indicated time points and washed with sterile PBS. The cells were serially diluted
478 and plated on tryptic soy agar to enumerate the survivors.

479

480 **Statistical analysis**

481 Statistical significance was assessed using appropriate tests using Prism 8 (GraphPad) software,
482 detailed in their respective figure legends. Asterisks indicate the level of statistical significance:

483 $*P < 0.05$, $**P < 0.01$, $***P < 0.001$ and $****P < 0.0001$. P values < 0.05 were
484 considered significant. Experiments were repeated at least three times.

485

486 **Data availability**

487 The raw mass spectrometry data are available at Chorus (chorusproject.org) under accession
488 number 1650. The source data used to generate plots are provided as a **Source Data** file. All
489 other data are available from the corresponding author on request.

490

491 **Acknowledgements**

492 The authors thank Dr. Michael DeMott for his assistance with the proteomics work. This
493 research was supported by the National Research Foundation of Singapore through the
494 Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance
495 Interdisciplinary Research Group. Contributions of LNL were supported by the National
496 Research Foundation and Ministry of Education Singapore under its Research Centre of
497 Excellence Programme at SCELSE. AS and JL acknowledge support from the Singapore-MIT
498 Alliance (SMA) Graduate Fellowship and MOE Tier 2 Grant MOE2018-T2-2-13. Proteomics
499 work was performed in part in the MIT Center for Environmental Health Sciences Bioanalytical
500 Core, which is supported by Center grant P30-ES002109 from the National Institute of
501 Environmental Health Sciences with the aid of Dr. Michael Demott.

502

503 **Author contributions**

504 WLL, KK and PD designed research; WLL, AS, LNL, HLL, JL, PH, LC and PD performed
505 research; CSCC contributed new reagents/analytic tools; WLL, AS, KK, PD analyzed data, all
506 authors participated in writing the manuscript.

507 The authors declare no competing interest.

508

509 **Conflict of interest:** The authors declare no conflicts of interest.

510

511 **Figure Legends**

512 **Figure 1.** Epitranscriptomic profiling of 23S and 16S rRNA and tRNA of *Enterococcus faecalis*
513 V583 grown in the presence of growth-permissive concentrations of erythromycin. **(A)**
514 Epitranscriptome profiling workflow. Log-phase cultures of V583 were diluted with growth
515 medium containing erythromycin below its MIC (10-200 μ g/mL) and allowed to grow for 5-6
516 doublings to mid-log phase, after which RNA was isolated and RNA modifications quantified by
517 LC-MS. **(B-D)** Changes in the levels of RNA modifications in V583 at varying doses of
518 erythromycin (key at bottom of panel **D**) compared to untreated cells. Modification levels are
519 shown as fold-change relative to an untreated control for 23S rRNA **(B)**, 16S rRNA **(C)**, and
520 tRNA **(D)**. Modifications are arranged from left to right in ascending retention time. *, m²A. See
521 **Supplementary Table 1** for names, retention times, and precursor and product ion masses for
522 the RNA modifications. **(E, F)** Effect of erythromycin dose on the ratio of m²A to adenosine.
523 Ribonucleosides were quantified using LC-MS calibration curves, as illustrated for tRNA in the
524 inset. All data are derived from 3 independent experiments (mean \pm SEM, $n = 3$). Statistical

525 analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus untreated
526 controls: P<0.05 and P<0.005 are denoted as * and ** respectively.

527

528 **Figure 2.** Reduction of m²A in V583 and OG1RF is specific to bacteriostatic macrolides and
529 chloramphenicol. OG1RF (**A, B**) and V583 (**C**) were exposed to antibiotics at concentrations
530 below their minimal inhibitory concentrations (MICs) and the quantity of m²A in tRNA and 23S
531 rRNA measured by LC-MS. m²A levels decreased for the bacteriostatic macrolides erythromycin
532 (ERY; **A, B, C**) and spiramycin (SPI; **B**) as well as chloramphenicol (CAM; **A, B, C**), but not for
533 bactericidal ciprofloxacin (CIP; **C**), ampicillin (AMP; **C**), or the aminoglycosides gentamicin
534 (GEN; **C**) and kanamycin (KAN; **A, B**). Data represent mean \pm SD, for n=4 (**C**) and n=3 (**A, B**).
535 Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus
536 untreated controls. NS, not significant; P<0.05, P<0.005, and P<0.0005 are denoted as *, **, and
537 ***, respectively.

538

539 **Figure 3.** RlmN is regulated at the protein level by reactive oxygen species (ROS). (**A**) Loss of
540 *rlmN* abolishes m²A in OG1RF (mean \pm deviation about the mean, n=2). (**B**) RT-qPCR of
541 *rlmN* in OG1RF and V583 upon erythromycin treatment. Data represent mean \pm SEM for four
542 experiments: duplicate analyses with two different primer sets. Statistical analysis by one-way
543 analysis of variance (ANOVA) with Dunnett's test versus untreated: NS, not significant. (**C**)
544 Targeted proteomics of RlmN in OG1RF and V583 upon erythromycin treatment. Data represent
545 mean \pm SEM for six experiments: three peptides monitored in two independent experiments.
546 Statistical analysis by one-way analysis of variance (ANOVA) with Dunnett's test versus

547 untreated: NS, not significant. Ratio of m^2A to A in (D) 23S rRNA and (E) tRNA with
548 menadione treatment. Data represent mean \pm SEM for three independent experiments performed
549 with technical duplicates. Statistical analysis by one-way analysis of variance (ANOVA) with
550 Dunnett's test versus untreated: $P<0.005$ and $P<0.0001$ are denoted as ** and **** respectively.
551 (F) Mean fluorescence intensity of CellROX Green Dye+ in OG1RF treated with various
552 antibiotics at indicated concentrations above and below MICs. Data represent mean \pm SEM for
553 three independent experiments. Statistical analysis by two-way analysis of variance (ANOVA)
554 with Dunnett's test versus EtOH: NS, not significant; $P<0.05$, $P<0.005$, $P<0.0005$ and $P<0.0001$
555 are denoted as *, **, *** and **** respectively. (G) Cell killing kinetics of various antibiotics at
556 10X MIC reveal that ROS-generating antibiotics are not bactericidal in OG1RF. Symbols
557 represent individual data points for three independent experiments. Source data are provided as a
558 **Source Data** file.

559

560 **Figure 4.** Loss of *rlmN* and treatment with menadione cause similar changes in the OG1RF
561 proteome. Volcano plots showing changes in protein levels in OG1RF caused by (A) *rlmN*
562 knockout ($\Delta rlmN$) and (B) menadione treatment. P-values were calculated using the Student's t-
563 test. The \log_2 fold-change (x-axis) was plotted against the $-\log_{10}(p\text{ value})$ (y-axis). A $-\log_{10}(p\text{-}$
564 value) of 1.30 threshold ($P<0.05$) is denoted by the dotted horizontal line, while the vertical
565 dotted lines represent fold-change values at ± 1 standard deviation from the mean. (C) Proteins
566 detected in both menadione treated and $\Delta rlmN$ without a P-value cutoff. (D) Proteins that
567 changed significantly ($P<0.05$) in both menadione treated and $\Delta rlmN$ cells. Cut-off was set at 1
568 standard deviation, which is $\log_2(\text{fold change})$ of ± 0.6388 for menadione treatment and $\log_2(\text{fold}$
569 change) of ± 0.4432 for $\Delta rlmN$. Blue circles represent proteins which significantly up- or down-

570 regulated relative to untreated, wild-type cells. These proteins are shown in **Supplementary**
571 **Table 4**. Data shown are of three biological replicates. Red circles denote superoxide dismutase
572 (SODA).

573

574 **Extended Data Figure 1.** Phenotypic characterization of *rlmN* KO ($\Delta rlmN$) and over-expressed
575 RlmN (OG1RF $p rlmN$). (A) Growth assay for minimum inhibitory concentration (MIC) of
576 chloramphenicol with OG1RF and $\Delta rlmN$. The graph shows data representative of four
577 independent experiments. Kinetics of cell killing for OG1RF $p Empty$ and OG1RF $p rlmN$ grown
578 with 5X MIC for (B) ampicillin (5 μ g/mL) and (C) 5 μ g/mL ciprofloxacin. Kinetics of cell
579 killing for OG1RF and $\Delta rlmN$ grown with 5X MIC for (D) 10 μ g/mL erythromycin and (E) 5
580 μ g/mL ciprofloxacin. Graphs show individual data for four biological replicates.

581

582 **Extended Data Figure 2.** Working model of RlmN as a sensor for oxidative stress.
583 Environmental factors as well as certain antibiotics induce reactive oxygen species in
584 *Enterococcus faecalis*. These lead to the inactivation of RlmN through perturbation of its Fe-S
585 cluster, exerting dual effects on both the ribosome and tRNA. m^2A is present in position 37 of
586 selected tRNAs and 23S rRNA in the peptidyl transferase center of the ribosome. Chemical
587 structure of m^2A with the 2-methyl group shown in red. Through loss of modifications on its
588 rRNA and tRNA, and lead to a modified pool of ribosomes and tRNA, which causes the
589 upregulation of SOD for improved survival in the presence of antibiotics.

590

591 **Extended Data Figure 3.** Structure of the ribosome showing superimposed binding sites for
592 erythromycin (blue), chloramphenicol (pink), the A2503 (red ball) modified with m²A by RlmN,
593 and the A2058 site (yellow ball) modified with Erm-mediated m⁶A.

594

595 **References**

596 1 Chionh, Y. H. *et al.* tRNA-mediated codon-biased translation in mycobacterial hypoxic
597 persistence. *Nat Commun* **7**, 13302, (2016).

598 2 Paulsen, I. T. *et al.* Role of mobile DNA in the evolution of vancomycin-resistant
599 *Enterococcus faecalis*. *Science* **299**, 2071-2074, (2003).

600 3 Vester, B. & Long, K. Antibiotic Resistance in Bacteria Caused by Modified Nucleosides
601 in 23S Ribosomal RNA. *Madame Curie Bioscience Database [Internet]* (2009).
602 <<https://www.ncbi.nlm.nih.gov/books/NBK6514/>>.

603 4 Aakra, A. *et al.* Transcriptional response of *Enterococcus faecalis* V583 to erythromycin.
604 *Antimicrob Agents Chemother* **49**, 2246-2259, (2005).

605 5 Bourgogne, A. *et al.* Large scale variation in *Enterococcus faecalis* illustrated by the
606 genome analysis of strain OG1RF. *Genome Biol* **9**, R110, (2008).

607 6 Golan, D., Armstrong, E. & Armstrong, A. *Principles of Pharmacology, The
608 Pathophysiology Basis of Drug Therapy*. 7 edn, (Wolters Kluwer, 2017).

609 7 Imlay, J. A. Where in the world do bacteria experience oxidative stress? *Environ
610 Microbiol* **21**, 521-530, (2019).

611 8 Iyanagi, T. On the mechanism of one-electron reduction of quinones by microsomal
612 flavin enzymes: the kinetic analysis between cytochrome B5 and menadione. *Free Radic
613 Res Commun* **8**, 259-268, (1990).

614 9 McBee, M. E. *et al.* Production of Superoxide in Bacteria Is Stress- and Cell State-
615 Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS
616 Measurement Artifacts with Fluorescent Dyes. *Front Microbiol* **8**, 459, (2017).

617 10 Leger, L. *et al.* beta-Lactam Exposure Triggers Reactive Oxygen Species Formation in
618 Enterococcus faecalis via the Respiratory Chain Component DMK. *Cell Rep* **29**, 2184-
619 2191 e2183, (2019).

620 11 Huycke, M. M. *et al.* Extracellular superoxide production by Enterococcus faecalis
621 requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases.
622 *Mol Microbiol* **42**, 729-740, (2001).

623 12 Van Acker, H. & Coenye, T. The Role of Reactive Oxygen Species in Antibiotic-
624 Mediated Killing of Bacteria. *Trends Microbiol* **25**, 456-466, (2017).

625 13 Dwyer, D. J., Kohanski, M. A. & Collins, J. J. Role of reactive oxygen species in
626 antibiotic action and resistance. *Curr Opin Microbiol* **12**, 482-489, (2009).

627 14 Pankey, G. A. & Sabath, L. D. Clinical relevance of bacteriostatic versus bactericidal
628 mechanisms of action in the treatment of Gram-positive bacterial infections. *Clin Infect
629 Dis* **38**, 864-870, (2004).

630 15 Nielsen, H. V. *et al.* The metal ion-dependent adhesion site motif of the Enterococcus
631 faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection.
632 *mBio* **3**, e00177-00112, (2012).

633 16 Peppoloni, S. *et al.* Role of the (Mn)superoxide dismutase of Enterococcus faecalis in the
634 in vitro interaction with microglia. *Microbiology (Reading)* **157**, 1816-1822, (2011).

635 17 Gon, S. & Beckwith, J. Ribonucleotide reductases: influence of environment on synthesis
636 and activity. *Antioxid Redox Signal* **8**, 773-780, (2006).

637 18 Sillanpaa, J. *et al.* Contribution of individual Ebp Pilus subunits of *Enterococcus faecalis*
638 OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. *PLoS One* **8**,
639 e68813, (2013).

640 19 Antunes, A. *et al.* The Phosphocarrier Protein HPr Contributes to Meningococcal
641 Survival during Infection. *PLoS ONE* **11**, e0162434, (2016).

642 20 Herro, R. *et al.* How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of
643 *Listeria monocytogenes* virulence genes. *J Mol Microbiol Biotechnol* **9**, 224-234, (2005).

644 21 Galloway-Peña Jessica, R. *et al.* The Identification and Functional Characterization of
645 WxL Proteins from *Enterococcus faecium* Reveal Surface Proteins Involved in
646 Extracellular Matrix Interactions. *J Bacteriol* **197**, 882-892, (2015).

647 22 Green, J. & Paget, M. S. Bacterial redox sensors. *Nat Rev Microbiol* **2**, 954-966, (2004).

648 23 Grove, T. L. *et al.* A radically different mechanism for S-adenosylmethionine-dependent
649 methyltransferases. *Science* **332**, 604-607, (2011).

650 24 Yan, F. & Fujimori, D. G. RNA methylation by radical SAM enzymes RlmN and Cfr
651 proceeds via methylene transfer and hydride shift. *Proc Natl Acad Sci U S A* **108**, 3930-
652 3934, (2011).

653 25 Bizzini, A., Zhao, C., Auffray, Y. & Hartke, A. The *Enterococcus faecalis* superoxide
654 dismutase is essential for its tolerance to vancomycin and penicillin. *J Antimicrob
655 Chemother* **64**, 1196-1202, (2009).

656 26 Weisblum, B. Erythromycin resistance by ribosome modification. *Antimicrob Agents
657 Chemother* **39**, 577-585, (1995).

658 27 Vázquez-Laslop, N., Ramu, H., Klepacki, D., Kannan, K. & Mankin, A. S. The key
659 function of a conserved and modified rRNA residue in the ribosomal response to the
660 nascent peptide. *EMBO J* **29**, 3108-3117, (2010).

661 28 Wang, S. *et al.* Translational Attenuation Mechanism of ErmB Induction by
662 Erythromycin Is Dependent on Two Leader Peptides. *Front Microbiol* **12**, 690744,
663 (2021).

664 29 Stojković, V., Chu, T., Therizols, G., Weinberg, D. E. & Fujimori, D. G. miCLIP-
665 MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating
666 Enzymes. *J Am Chem Soc* **140**, 7135-7143, (2018).

667 30 Urbonavicius, J., Qian, Q., Durand, J. M., Hagervall, T. G. & Björk, G. R. Improvement
668 of reading frame maintenance is a common function for several tRNA modifications.
669 *EMBO J* **20**, 4863-4873, (2001).

670 31 Benítez-Páez, A., Villarroya, M. & Armengod, M. E. The *Escherichia coli* RlmN
671 methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and
672 controls translational accuracy. *RNA* **18**, 1783-1795, (2012).

673 32 Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V. N. Dynamic evolution of
674 selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution
675 of selenocysteine from redox active cysteine residues. *Genome Biol* **7**, R94, (2006).

676 33 Ramsey, M., Hartke, A. & Huycke, M. in *Enterococci: From Commensals to Leading*
677 *Causes of Drug Resistant Infection* (eds. M. S. Gilmore, D. B. Clewell, Y. Ike, & N.
678 Shankar) (Massachusetts Eye and Ear Infirmary, 2014).

679 34 Feld, L., Knudsen, G. M. & Gram, L. Bactericidal antibiotics do not appear to cause
680 oxidative stress in *Listeria monocytogenes*. *Appl Environ Microbiol* **78**, 4353-4357,
681 (2012).

682 35 Riboldi, G. P., Larson, T. J. & Frazzon, J. *Enterococcus faecalis* sufCDSUB
683 complements *Escherichia coli* sufABCDSE. *FEMS Microbiol Lett* **320**, 15-24, (2011).

684 36 Hutinet, G., Swarjo, M. A. & de Crecy-Lagard, V. Deazaguanine derivatives, examples
685 of crosstalk between RNA and DNA modification pathways. *RNA Biol* **14**, 1175-1184,
686 (2017).

687 37 Atkinson, G. C. *et al.* Distinction between the Cfr Methyltransferase Conferring
688 Antibiotic Resistance and the Housekeeping RlmN Methyltransferase. *Antimicro Agents
689 Chemother* **57**, 4019-4026, (2013).

690 38 Hia, F. *et al.* Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity
691 isolation of 5S rRNA from *Mycobacterium bovis* BCG reveals novel post-transcriptional
692 processing and a complete spectrum of modified ribonucleosides. *Nucleic Acids Res* **43**,
693 e32, (2015).

694