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Abstract

The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the
filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria
from antibiotics, and modulate animal immune responses in ways that promote
infection. Furthermore, strains cured of their Pf4 infection (APf4) are less virulent in
animal models of infection. Consistently, we find that strain APf4 is less virulent in a
Caenorhabditis elegans nematode infection model. However, our data indicate that
PQS quorum sensing is activated and production of the pigment pyocyanin, a potent
virulence factor, is enhanced in strain APf4. The reduced virulence of APf4 despite high
levels of pyocyanin production may be explained by our finding that C. elegans mutants
unable to sense bacterial pigments through the aryl hydrocarbon receptor are more
susceptible to APf4 infection compared to wild-type C. elegans. Collectively, our data
support a model where suppression of quorum-regulated virulence factors by Pf4 allows
P. aeruginosa to evade detection by innate host immune responses.

Author Summary

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that infects
wounds, lungs, and medical hardware. P. aeruginosa strains are often themselves
infected by a filamentous virus (phage) called Pf. At sites of infection, filamentous Pf
virions are produced that promote bacterial colonization and virulence. Here, we report
that strains of P. aeruginosa cured of their Pf infection are less virulent in a
Caenorhabditis elegans nematode infection model. We also report that PQS quorum
sensing and production of the virulence factor pyocyanin are enhanced in P. aeruginosa
strains cured of their Pf infection. Compared to wild-type C. elegans, nematodes unable
to detect bacterial pigments via the aryl hydrocarbon receptor AhR were more
susceptible to infection by Pf-free P. aeruginosa strains that over-produce pyocyanin.
Collectively, this study supports a model where Pf phage suppress P. aeruginosa PQS
quorum sensing and reduce pyocyanin production, allowing P. aeruginosa to evade
AhR-mediated immune responses in C. elegans.
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Introduction

Filamentous bacteriophages (phages) of the Inoviridae family infect diverse
bacterial hosts [1, 2]. In contrast to other phage families, Inoviruses can establish
chronic infections where filamentous virions are produced without killing the bacterial
host [3-5], which may allow a more symbiotic relationship between filamentous phages
and the bacterial host to evolve. Indeed, filamentous phages are often associated with
enhanced virulence potential in pathogenic bacteria. For example, the filamentous
phage CTX¢ encodes the cholera toxin genes that convert non-pathogenic Vibrio
cholerae into toxigenic strains [6], the MDA¢ Inovirus that infects Neisseria gonorrhoeae
acts as a colonization factor and enhances bacterial adhesion to host tissues [7], and
the filamentous phage $RSS1 increases extracellular polysaccharide production and
invasive twitching motility in the plant pathogen Ralstonia solanacearum [8].

The filamentous phage Pf4 that infects Pseudomonas aeruginosa strain PAO1
enhances bacterial virulence in murine lung [9] and wound [10] infection models.
Oxidative stress induces the Pf4 prophage [11] and filamentous virions are produced at
high titers, up to 10" virions per mL [12, 13]. Pf4 virions serve as structural components
of biofilm matrices that protect bacteria from antibiotics and desiccation [9, 14, 15]. Pf4
virions also engage immune receptors on macrophages to decrease phagocytic uptake
[10, 16] and inhibit CXCL1 signaling in keratinocytes, which interferes with wound re-
epithelialization [17]. These observations outline the diverse ways that Pf4 virions
promote the initiation and maintenance of P. aeruginosa infections. However, how Pf4
phages modulate bacterial virulence behaviors are poorly understood.

P. aeruginosa regulates the production of a variety of secreted virulence factors
using a cell-to-cell communication system called quorum sensing (QS). As bacterial
populations grow, concentrations of QS signaling molecules called autoinducers
increase as a function of population density [18]. When autoinducer concentrations
become sufficiently high, they bind to and activate their cognate receptors, allowing
bacterial populations to coordinate gene expression [19, 20]. P. aeruginosa PAO1 has
three QS systems, Las, Rhl, and PQS. Las and Rhl QS systems recognize acyl-
homoserine lactone signals while the PQS system recognizes quinolone signals.

In this study, we demonstrate that deleting the Pf4 prophage from P. aeruginosa
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73  PAO1 (APf4) activates PQS quorum sensing and increases production of the pigment
74  pyocyanin, a potent virulence factor. However, like observations in vertebrate infection
75 models [9, 10], the virulence potential of APf4 is reduced compared to PAO1 in a

76  Caenorhabditis elegans nematode infection model. We resolve this apparent

77  controversy and report that C. elegans strains lacking the ability to sense bacterial

78  pigments through the aryl hydrocarbon receptor (AhR) are more susceptible to APf4
79 infection compared to wild-type C. elegans capable of detecting bacterial pigments.
80 Collectively, our data support a model where Pf4 suppresses the production of quorum-
81 regulated pigments, allowing P. aeruginosa to evade detection by host immune

82  responses.

83

84 Results

85 Pf4 protect P. aeruginosa from Caenorhabditis elegans predation

86 Prior work demonstrates that Pf4 enhances P. aeruginosa PAO1 virulence
87  potential in mouse models of infection by modulating innate immune responses [9, 10,
88 16]. Because central components of animal innate immune systems are conserved, we
89 hypothesized that Pf4 would affect P. aeruginosa virulence in other animals such as
90 bacterivorous nematodes. To test this hypothesis, we used Caenorhabditis elegans
91 nematodes in a slow-killing P. aeruginosa infection model were nematodes are
92 maintained on minimal NNGM agar with a bacterial food source for several days [21].
93 We first confirmed that PAO1 and APf4 grew equally well on NNGM agar without
94 C. elegans (Fig 1A) by homogenizing and resuspending three-day-old bacterial lawns in
95 saline and measuring colony forming units (CFUs) by drop-plate. Resuspended cells were
96 then pelleted by centrifugation and Pf4 virions in supernatants were measured by plaque
97 assay. In the absence of C. elegans, neither PAO1 nor Pf4 produced any detectable Pf4
98 virions (Fig 1B).
99 Subsequently, we tested the effect of C. elegans grazing on PAO1 and APf4.
100 Young adult N2 C. elegans were plated onto 24-hour old bacterial lawns and incubated
101 for an additional 48 hours. In the presence of C. elegans, PAO1 CFUs were comparable
102  to PAO1 CFUs recovered from lawns grown without C. elegans at approximately 10'°
103 CFUs/mL (Fig 1C, black bar, compare to Fig 1A). CFUs recovered from APf4 lawns
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104 exposed to C. elegans were ~100-fold lower than APf4 lawns grown without C. elegans
105 (Fig 1C), indicating that Pf4 protects P. aeruginosa from C. elegans predation.

106 We did not detect Pf4 virions in APf4 lawns exposed to C. elegans (Fig 1D), but
107  we did recover ~1 x 108 Pf4 plaque forming units (PFUs) from PAO1 lawns exposed to
108 C. elegans (Fig 1D, black bar). These results indicate that C. elegans induce Pf4 virion
109 replication.

110 When filamentous Pf4 virions accumulate in the environment, they enhance P.
111  aeruginosa adhesion to mucus and promote biofilm formation [14, 16]. Because P.

112 aeruginosa colonization of the C. elegans digestive track is a primary cause of death in
113  the slow killing model [21], we hypothesized that Pf4 virions may accumulate in the C.
114  elegans digestive track. To test this hypothesis, we topically applied 1x10° fluorescently
115 labeled Pf4 virions to bacterial lawns and imaged C. elegans by fluorescence

116  microscopy after 24 hours of grazing. Escherichia coli OP50 were used for these

117  experiments to avoid Pf4 replication and any potential bacterial lysis (Pf4 cannot E. coli
118 hosts). After 24 hours, Pf4 virions accumulated in the upper intestine of C. elegans (Fig
119 1E), raising the possibility that Pf4 virions physically block the digestive track, which
120 could increase C. elegans killing by P. aeruginosa.

121 When C. elegans was challenged with PAO1 in the slow killing model, nematode
122 killing was complete after five days (Fig 1F black line) whereas complete C. elegans
123  killing took eight days when challenged with APf4 (Fig 1F green line), indicating that Pf4
124  enhances the virulence potential of P. aeruginosa, consistent with prior work in mice [9,
125 10, 16]. Collectively, these results indicate that C. elegans induces Pf4 replication and
126  that Pf4 protects P. aeruginosa from C. elegans predation.

127
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130 Figure 1. C. elegans predation induces Pf4 replication and enhances P. aeruginosa
131  virulence. (A-D) Bacterial CFUs and Pf4 PFUs were enumerated after three days in the absence
132 (A-B) or presence (C-D) of C. elegans. nd, not detected (below detection limit of 333 PFU/mL
133  indicated by dashed line). Results are the mean +SD of three experiments, **P<0.01, Student’s
134  t-test. (E) Wild-type N2 C. elegans were maintained on lawns of 1) E. coli OP50 (non-pathogenic
135 nematode food) or 2) OP50 supplemented with 10° Pf4 virions labeled with Alexa-fluor 488
136  (green). Representative brightfield and fluorescent images after 24 hours are shown. (F) Kaplan-
137  Meier survival curve analysis of C. elegans exposed to P. aeruginosa. N=90 worms per condition
138  (three replicate experiments of 30 worms each). The mean survival of C. elegans maintained on
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139 lawns of PAO1 was four days compared to seven days for nematodes maintained on lawns of
140  APf4 (dashed gray lines). Note that worms that may have escaped the dish rather than died were
141  withdrawn from the study, explaining why the black PAO1 line does not reach zero percent
142 survival.

143

144 PQS quorum sensing is activated and pyocyanin production enhanced in APf4

145 During routine propagation of P. aeruginosa, we noted that production of the

146  green pigment pyocyanin (Fig 2A) was significantly (P<0.003) higher in APf4 compared
147  to PAO1 (Fig 2B and C). Pyocyanin is a redox-active phenazine that shuttles electrons
148  to distal electron acceptors, which enhances ATP production and generates proton-
149  motive force in P. aeruginosa cells living in anoxic environments [22, 23]. The redox
150 activity of pyocyanin also makes it a potent virulence factor that passively diffuses into
151  phagocytes and kills them by redox cycling with NAD(H) to generate reactive oxygen
152  species that indiscriminately oxidize cellular structures [24].

153
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155 Figure 2. Pyocyanin production is enhanced in APf4 compared to PAO1. (A) The structure
156 of pyocyanin, a redox-active green pigment produced by P. aeruginosa. (B) Representative
157 images of PAO1 and APf4 growing on NNGM agar plates after 24 hours at 37°C. (C) Pyocyanin
158 was chloroform-acid extracted from NNGM agar plates, absorbance measured (520 nm), and
159  values converted to uyg/mL. Data are the mean +SEM of six replicate experiments. ***P<0.003,
160  Student’s t-test.

161

162 Expression of many P. aeruginosa virulence genes, including the phenazine

163  biosynthesis genes responsible for pyocyanin production, are regulated by quorum

164  sensing [25-32]. We used fluorescent transcriptional reporters to measure Las

165  (Prsa::gfp), Rhl (Prmiaz:gfp), and PQS (Ppgsa::gfp) quorum sensing [33-35]. In APf4,

166 regulation of Las and Rhl gene targets was not significantly differentfrom PAO1 after 18
167  hours of growth (Fig 3A and B). However, PQS activity in APf4 was significantly

168 (P<0.001) higher compared to PAO1 after 18 hours (Fig 3C). Fluorescence was not
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169 detected in empty vector controls (Fig 3D). These results suggest that loss of the Pf4
170  prophage upregulates PQS quorum sensing, causing pyocyanin to be overproduced.

171
A rsal trascription B rhiA transcription C PgsA transcription D Empty Vector Control

80000 - ns 60000 25000 - *k 25000
[ @ i @ a
S 60000~ | o g S 20000 00 S 20000
g - g r
® hd g 40000 % 15000 2 % 15000
& 40000 - g g . 8 g
2 3 2 10000 ° 2 10000
& 20000 5 o 20000 o o
L n T8 L
& % G 5000 G 5000
0- T 0- 0- T 0-
PAO1 APf4 PAO1 APf4 PAO1 APf4 PAO1  APf4
Strain Strain Strain Strain

172
173  Figure 3. PQS quorum sensing is upregulated in P. aeruginosa APf4. GFP fluorescence from

174  the transcriptional reporters (A) Prsaui-gfp, (B) Pmia-gfp, (C) Ppgsa-gfp and (D) Pempy-gfp was
175 measured in PAO1 (black) or APf4 (green) at 18 hours in cultures growing in lysogeny broth. For
176  each measurement, GFP fluorescence was corrected for bacterial growth (ODsoo). Data are the
177  mean +SEM of six replicates. **P<0.001, Student’s t-test.

178

179  Quantitative proteomics analysis of C. elegans exposed to PAO1 or APf4

180 To gain insight into how Pf4 might affect C. elegans responses to P. aeruginosa,
181 we performed mass spectrometry-based quantitative proteomics on C. elegans. To

182  avoid progeny contamination, we used the rrf-3(-); fem-1(-) genetic background that is
183  sterile at temperatures above 25°C [36]. Like wild-type N2 nematodes, PAO1 killed the
184  rrf-3(-); fem-1(-) strain significantly (P<0.001) faster than APf4 in the slow killing model
185 (Fig S1). Nematodes were maintained for two days on lawns of PAO1 or APf4. This

186 timepoint was selected because most C. elegans were still alive in both groups (Fig 1E;
187  Fig S1). Whole nematodes were collected (~320 per replicate, N=4), washed, and

188  proteins purified (Methods). Proteins were digested with trypsin and tandem mass tags
189  were used to uniquely label peptides from each biological replicate, allowing all samples
190 to be pooled, fractionated, and analyzed by mass spectrometry in a single run. This

191  approach allows direct and quantitative comparisons between groups.

192
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194  Figure S1. Survival analysis of sterile rrf-3(-); fem-1(-) C. elegans challenged with P.
195 aeruginosa PAO1 or APf4. Kaplan—Meier survival analysis of N=90 worms per condition (three
196 replicate experiments of 30 worms each) were monitored daily for death. The mean survival of
197  nf-3(-); fem-1(-) C. elegans maintained on lawns of PAO1 was six days compared to nine days
198 for nematodes maintained on lawns of APf4 (dashed gray lines).

199

200 We identified 410 proteins that were significantly (P<0.05) up or down regulated
201  at least 1.5-fold (log2 fold change >0.58) in C. elegans exposed to APf4 compared to
202 PAO1 (Fig 4A, Supplemental Table S1). Enrichment analysis revealed proteins

203  associated with mitochondrial respiration and electron transport were significantly

204 (FDR<0.002) enriched in upregulated proteins (Fig 4B). As pyocyanin is a redox-active
205 virulence factor known to interfere with mitochondrial respiration [37, 38], these results
206  suggest that respiration is perturbed in C. elegans grazing on APf4 lawns that over-

207  produce pyocyanin.

208 In C. elegans exposed to APf4, proteins associated with the extracellular matrix
209 (e.g., collagen) were also significantly enriched (Fig 4A, dark blue symbols; Fig 4C).
210  The tough extracellular cuticle of C. elegans is composed predominantly of cross-linked
211  collagen [39]. Because PAO1 kills C. elegans faster than APf4 (Fig 1E), lower collagen
212 abundance in PAO1-exposed C. elegans may be an indication of compromised cuticle
213  integrity.

214 We also noted that proteins associated with muscle cell differentiation and

215 organization were enriched in C. elegans challenged with APf4 (Fig 4D), which could be
216 related to a decline in motility observed in C. elegans as they begin to succumb to P.
217  aeruginosa infection [21].

218
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219
220 Figure 4. Pf4 modulates expression of C. elegans proteins associated with respiration, the

221  extracellular matrix, and motility. (A) Volcano plot showing differentially expressed proteins in
222 C. elegans maintained on lawns of APf4 compared to C. elegans maintained on lawns of PAO1
223  for three days. The dashed lines indicate proteins with expression levels greater than +1.5-fold
224  and afalse discovery rate (FDR) <0.05. Results are representative of quadruplicate experiments.
225 (B-D) Enrichment analysis of significant upregulated proteins shown in (A). Fold enrichment of
226  observed proteins associated with specific Gene Ontology (GO) terms each had an FDR of
227  <0.002.

228

229 C. elegans aryl hydrocarbon receptor signaling regulates antibacterial defense

230 Compared to PAO1, APf4 produces more of the virulence factor pyocyanin (and
231 likely other quorum-regulated virulence factors). However, APf4 is less virulent in mouse
232 lung [9], wound [10], and C. elegans infection models (Fig 1). How is it that the APf4
233 strain that produces more virulence factor is less virulent in animal models of infection?
234 Prior work demonstrates that vertebrate immune systems can sense P.

235  aeruginosa aromatic pigments such as pyocyanin via the aryl hydrocarbon receptor
236  (AhR) pathway [40, 41]. AhR is a highly conserved eukaryotic transcription factor that
237  binds a variety of aromatic hydrocarbons and regulates metabolic processes that

238 degrade xenobiotics and coordinate immune responses [40, 41]. In vertebrates, AhR’s
239  ability to detect pyocyanin and other bacterial pigments provides the host a way to

240  monitor bacterial burden and mount appropriate immune countermeasures [41, 42].
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241 Furthermore, AhR regulates the expression of numerous cytochrome P450

242 (CYP) enzymes in both vertebrates [43] and in C. elegans [44] that participate in

243 xenobiotic degradation. In our proteomics dataset, we identified five CYP proteins

244 (CYP-29a2, CYP-25a2, CYP-14a5, CYP-37a1, and CYP-35b1) that were significantly
245 upregulated in C. elegans exposed to APf4 (Fig 4A, yellow symbols).

246 Based on these observations, we hypothesized that AhR signaling would

247 increase C. elegans fitness against the pyocyanin over-producing APf4 strain. To test
248  this, we challenged wild-type N2 C. elegans or an AhR-null mutant (ahr-1(ia3)) with
249  PAO1 or APf4 in the slow killing model. In wild-type nematodes, PAO1 was more

250 virulent than APf4 (Fig 5A, solid lines), consistent with results shown in Figure 1E.
251  Survival curves of wild-type and ahr-1(ia3) C. elegans challenged with PAO1 were not
252 significantly different (Fig 5B, P=0.5664) and both had a median survival of four days
253  (Fig 5C, black bars). However, survival curves of wild-type and ahr-1(ia3) nematodes
254  challenged with APf4 were significantly different (Fig 5A, dashed lines, P<0.0001) and
255 the median survival of wild-type verses ahr-1(ia3) decreased from seven to five days,
256  respectively (Fig 5C, green bars). These results indicate that C. elegans sensitivity to
257 infection by APf4 is partially restored when AhR signaling is disabled.

258
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261  Figure 5. Inactivation of AhR signaling in C. elegans enhances APf4 virulence. (A) Kaplan-

262  Meier survival curve analysis (Log-rank) of wild-type N2 or isogenic ahr-1(ia3) C. elegans
263  maintained on lawns of P. aeruginosa PAO1 or APf4 for the indicated times. N=3 groups of 90
264  animals per condition (270 animals total per condition). Error bars represent standard error of the
265 mean. (B) P-values of pairwise log-rank survival curve analyses are shown. (C) The median
266  survival of C. elegans in days was plotted for each group.

267

268 Discussion

269 Here, we characterize tripartite interactions between filamentous phage,

270  pathogenic bacteria, and bacterivorous nematodes. Our work supports a model where
271  Pf4 phage suppress P. aeruginosa PQS quorum sensing and reduce pyocyanin

272 production, allowing P. aeruginosa to evade detection by AhR (Fig 6).
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PAO1 APf4

Pf4 prophage
Chromosome

- AhR activation

Host defenses not activated Host defenses activated
Enhanced C. elegans killing Reduced C. elegans killing

Figure 6. Proposed model. Pf4 suppresses the production of quorum-regulated pigments by P.
aeruginosa allowing bacteria to evade AhR-mediated immune responses in C. elegans.

Many phages modulate bacterial quorum sensing systems [45, 46]. Examples in
P. aeruginosa include phage DMS3, which encodes a quorum-sensing anti-activator
protein called Ags1 that binds to and inhibits LasR [47]. Another P. aeruginosa phage
called LUZ19 encodes Qst, a protein that inhibits PQS signaling [48]. In both cases, it is
thought that inhibition of P. aeruginosa quorum sensing makes the bacterial host more
susceptible to phage infection.

Our finding that PQS signaling is upregulated when the Pf4 prophage is deleted
suggests that Pf4 encodes proteins that inhibit PQS signaling, or that the phages
themselves somehow suppress activation of the PQS circuit. The Pf4 prophage
encodes a 5’ retron element [49] and a 3’ toxin-antitoxin pair [50] and these elements
may be acting upon host quorum sensing systems. Another possible mechanism
involves genes in the Pf core genome as there are still several with unknown function
(e.g., PAO717-PA0720).

In the absence of C. elegans, PAO1 produces significantly less pyocyanin
compared to APf4 and infectious Pf4 virions are not simultaneously produced under
these conditions. This indicates that the Pf4 prophage can modulate quorum-regulated
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294  pigment production during lysogeny when infectious Pf4 virions are not produced. When
295 C. elegans are present, however, Pf4 replication is induced and Pf4 virions appear to
296 accumulate in the C. elegans intestine. Pf4 virions are known to promote P. aeruginosa
297  biofilm formation and colonization of mucosal surfaces [14, 16, 51]. It is possible that
298 Pf4 virions may contribute to P. aeruginosa colonization of the C. elegans intestine,

299  which is a primary cause of C. elegans death in the slow killing model [21].

300 Our study had some limitations. For example, we only measured pyocyanin

301 production by P. aeruginosa. Although pyocyanin is often used as an indicator of P.
302 aeruginosa virulence potential [52, 53], there are many other factors that contribute to P.
303 aeruginosa virulence, such as hydrogen cyanide [53]. We also only used well-defined
304 laboratory strains of P. aeruginosa and C. elegans. While our study suggests that Pf
305 phages may be broad modulators of bacterial virulence, to accurately predict how

306 different P. aeruginosa strains (e.g., clinical vs environmental) might be affected by Pf,
307 future work is required to characterize the effects various Pf strains have on QS

308 systems in different P. aeruginosa hosts. One indication that Pf phages may behave
309 differently in various bacterial hosts are variances in QS hierarchies in different P.

310 aeruginosa isolates [54]. As quorum sensing can be rewired (e.g., Las dominant verses
311  Rhl dominant hierarchies, [33, 55]), it would not be surprising that Pf phage modulate
312  different behaviors in different P. aeruginosa hosts.

313 Our results support a role for AhR signaling in modulating C. elegans sensitivity
314 to P. aeruginosa infection. Studies in vertebrates reveal that AhR serves as a pattern
315 recognition receptor that senses aromatic bacterial pigments like pyocyanin to initiate
316  appropriate immune responses [40, 41]. However, AhR recognizes a diverse array of
317 ligands and modulation of inflammatory responses by AhR is context specific. For

318 example, exposure of airway epithelial cells to combustion products induces pro-

319 inflammatory AhR-dependent responses [56] while activation of AhR by tryptophan

320 metabolites derived from commensal bacteria in the gut is associated with anti-

321 inflammatory responses and maintenance of intestinal barrier integrity [57]. Our

322  proteomics dataset and survival assays suggest that cuticle integrity might be

323 compromised in C. elegans exposed to PAO1 compared to APf4. An interesting

324 research direction would be to link activation of AhR signaling by bacterial pigments to
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325 enhanced cuticle integrity as a potential defense mechanism in nematodes.

326 In addition to AhR, C. elegans has other mechanisms to detect bacterial

327 pigments. In environments illuminated with white light, C. elegans can discriminate the
328 distinctive blue-green color of pyocyanin to avoid P. aeruginosa [58]. Our studies were
329 performed predominantly in dark environments; future investigations on how Pf4 may
330 affect C. elegans spectral sensing of pathogenic bacteria would be interesting. The

331 existence of multiple bacterial pigment detection mechanisms in C. elegans highlights
332 the importance of bacterial pigment detection in nematode survival.

333 Overall, our study provides evidence that Pf4 phage increase bacterial fitness
334 against C. elegans predation. Prior work demonstrates that Pf4 phage also increase
335 bacterial fitness against phagocytes by inhibiting bacterial uptake [10, 16]. In the

336 environment, nematodes and other bacterivores such as phagocytic amoeba can

337 impose high selective pressures on bacteria [59-61]. The ability of Pf phage to increase
338 P. aeruginosa fitness against environmental bacterivores may help explain why Pf

339 prophages are so widespread amongst diverse P. aeruginosa strains [3, 62, 63].

340 Further, the ability of Pf phage to increase bacterial fithess against bacterivores in the
341 environment may translate to an enhanced ability of P. aeruginosa Pf lysogens to

342  exploit opportunities to infect susceptible vertebrate hosts, such as people with medical
343 implants, diabetic ulcers, or cystic fibrosis.
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344  Materials and Methods:

345  Strains, plasmids, and growth conditions

346 Strains, plasmids, and their sources are listed in Table 1. Unless otherwise

347 indicated, bacteria were grown in lysogeny broth (LB) at 37 °C with 230 rpm shaking
348 and supplemented with antibiotics (Sigma) where appropriate. Unless otherwise noted,
349 gentamicin was used at the at either 10 or 30 ug mi—'.

350
351 Plaque assays
352 Plaque assays were performed using APf4 as the indicator strain grown on LB

353 plates. Phage in filtered supernatants were serially diluted 10x in PBS and spotted onto
354 lawns of APf4 strain. Plaques were imaged after 18h of growth at 37°C. PFUs/mL were
355 then calculated.

356
357 Pyocyanin extraction and measurement
358 Pyocyanin was measured as described elsewhere [64, 65]. Briefly, 18-hour

359 cultures were treated by adding chloroform to a total of 50% culture volume. Samples
360 were vortexed vigorously and the different phases separated by centrifuging samples at
361 6,000xg for 5 minutes. The chloroform layer (dark blue if pyocyanin present) was

362 removed to a fresh tube and 20% the volume of 0.1 N HCI was added and the mixture
363  vortexed vigorously (if pyocyanin is present, the aqueous acid solution turns pink). Once
364 the two layers were separated, the aqueous layer was removed to a fresh tube and

365 absorbance measured at 520 nm. The concentration of pyocyanin in the culture

366  supernatant, expressed as pg/ml, was obtained by multiplying the optical density at 520
367 nmby 17.072, as described [65].

368
369 Quorum sensing reporters
370 Competent P. aeruginosa PAO1 and APf4 were prepared by washing overnight

371  cultures in 300 mM sucrose followed by transformation by electroporation [66] with the
372 plasmids CP1 Blank-PBBR-MCS5, CP53 PBBR1-MCS5 pqsA-gfp, CP57 PBBR1-MCS5
373  rhiA-gfp, CP59 PBBR1-MCSS rsal-gfp listed in Table 1. Transformants were selected
374 by plating on the appropriate antibiotic selection media. The indicated strains were

375 grown in buffered LB containing 50 mM MOPS and 100 uyg mI~' gentamicin for 18

376  hours. Cultures were then sub-cultured 1:100 into fresh LB MOPS buffer and grown to
377 an ODego of 0.3. To measure reporter fluorescence, each strain was added to a 96-well
378 plate containing 200 yL LB MOPS with a final bacterial density of ODsoo 0.1 and

379 incubated at 37°C in a CLARIOstar BMG LABTECH plate-reader. Prior to each

380 measurement, plates were shaken at 230 rpm for a duration of two minutes. A

381 measurement was taken every 15 minutes for both growth (ODeqo) or fluorescence

382 (excitation at 485-15 nm and emission at 535-15 nm).

383
384 Table 1. Bacterial strains, phage, and plasmids used in this study.
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Strain Description Source
Escherichia coli
DH5a New England Biolabs [67]
P. aeruginosa
PAO1 Wild type [9]
PAO1 APf4 Deletion of the Pf4 prophage from [9]
PAO1
Bacteriophage Strains
Pf4 Inovirus [14]
C. elegans
N2 Wild type Caenorhabditis Genetic
Center
ZG24 AhR null mutant ahr-1(ia3) [68]
CF512 Temperature-sensitive sterile [36]
background rrf-3(b26) II; fem-1(hc17) IV
Plasmids
CP59 pBBR1-MCS5 GFP lasl transcriptional reporter [35]
rsalL-gfp
CP57 pBBR1-MCS5 GFP rhiA transcriptional reporter [35]
rhiA-gfp
CP53 pBBR1-MCS5 GFP pgsA transcriptional reporter [34]
pgsA-gfp
CP1 pBBR-MCS5- GFP empty vector control [35]
Blank
385
386 C. elegans slow killing assay
387 Synchronized adult N2, ahr-1(ia3), or rf-3(-); fem-1(-) C. elegans were plated on

388 normal nematode growth media (NNGM) plates with 30 nematodes for each indicated
389 lawn of P. aeruginosa and incubated at 30°C. Over the course of the assay, nematodes
390 were passaged onto new plates of 24-hour-old P. aeruginosa lawns daily and counted.
391 Nematodes were counted as either alive or dead with missing nematodes being

392  withdrawn from the study. The study was ended when all nematodes were either dead
393  or missing.

394
395 Preparation of fluorescently tagged Pf4 virions
396 P. aeruginosa APf4 was grown in LB broth to an ODego of 0.5 at 37°C in a

397  shaking incubator (225 rpm). Five L of a Pf4 stock containing 5x10° PFU/mL were

398 used to infect the culture. After growing overnight (18h) in the 37°C shaking incubator,
399 bacteria were removed by centrifugation (12,000 xg, 5 minutes, room temperature) and
400 supernatants filtered through a 0.2 ym syringe filter. Pf4 virions were PEG precipitated
401 by adding NaCl to the filtered supernatants to a final concentration of 0.5 M followed by
402 the addition of PEG 8k to a final concentration of 20% wi/vol. After incubating at 4°C for
403  four hours, the supernatants became noticeably turbid. At this time, phage were pelleted
404 by centrifugation (15,000 xg, 15 minutes, 4°C), the pellet gently washed in PBS,

405 centrifuged again, and the phage pellet resuspended in 1 mL 0.1 M sodium bicarbonate
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406  buffer, pH 8.3. Virions were then labeled with 100 ug of Alexa Fluor™ 488 TFP ester
407  following the manufacturer’s instructions (ThermoFisher). Unincorporated dyes were
408 separated from labeled virions using PD-10 gel filtration columns. PBS was used to

409 elute labeled phages from the column. Titers of labeled phages were measured by

410 gPCR using our published protocol [69]. Labeled phages were aliquoted and stored at -
411 20°C.

412
413  Fluorescent imaging of nematodes
414 Approximately 10° Alexa Fluor 488-labeled Pf4 virions in 200 uL PBS were

415 added evenly to 24-hour old E. coli OP50 lawns growing on NNGM agar. Plates were
416 incubated at 30°C for 30 minutes and synchronized adult N2 C. elegans were plated.
417 Routine analysis of C. elegans by fluorescence/light microscopy was performed after 24
418  hours by transferring nematodes to a 5% agarose pad containing levamisole (250 mM),
419 anematode paralytic agent that enables imaging. Nematodes were examined and

420 imaged using a Leica DFC300G camera attached to a Leica DM5500B microscope.
421

422  Protein extraction from C. elegans

423 Proteins were extracted from rrf-3(-); fem-1(-) C. elegans as described [70]. Briefly,
424  after P. aeruginosa exposure for two days, ~320 C. elegans were harvested from

425 NMMG plates into 1.5 mL tubes containing 1 mL PBS. Nematodes were gently mixed
426 by hand, pelleted by centrifugation, and resuspended in 1 mL fresh PBS. C. elegans
427  were again pelleted and supernatants were discarded, pellets were weighed and frozen
428 at-80°C until proteins were ready to be harvested. Pellets were suspended in

429 reassembly buffer (RAB, 0.1M MES, 1mM EGTA, 0.1mM EDTA, 0.5mM MgSOs, 0.75M
430 NacCl, 0.2M NaF, pH7.4) containing Pierce Protease Inhibitor (ThermoScientific,

431  A32965). Samples were sonicated on ice for 10 cycles of a 2 second pulse with 10

432  seconds rest between pulses. After 2 minutes rest, sonication was repeated for a total
433  of 8 cycles of 10 x 2 second pulses. Lysates were centrifuged at 20,000xg for 30

434  minutes at 4°C. Supernatants were transferred to fresh tubes and concentrated to

435 approximately 2ug/uL using 10kDa molecular weight cut off spin columns (VivaSpin
436 500, Sartorius, VS0102). Protein concentration was determined using a Bradford assay.
437  After visualizing protein integrity by SDS-PAGE (Fig S2A), 200 ug total protein for each
438  of the four biological replicates for each treatment were sent to the IDeA National

439  Resource for Quantitative Proteomics Center for proteomic analysis.

440

441  Mass spectrometry-based quantitative proteomics

442 Total protein (200 pg) from each sample was reduced, alkylated, and purified by
443  chloroform/methanol extraction prior to digestion with sequencing grade modified

444  porcine trypsin (Promega). Tryptic peptides were labeled using tandem mass tag

445  isobaric labeling reagents (Thermo) following the manufacturer’s instructions and
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combined into one 16-plex TMTpro sample group. The labeled peptide multiplex was
separated into 46 fractions on a 100 x 1.0 mm Acquity BEH C18 column (Waters) using
an UltiMate 3000 UHPLC system (Thermo) with a 50 min gradient from 99:1 to 60:40
buffer A:B ratio under basic pH conditions, and then consolidated into 18 super-
fractions. Each super-fraction was then further separated by reverse phase XSelect
CSH C18 2.5 um resin (Waters) on an in-line 150 x 0.075 mm column using an UltiMate
3000 RSLCnano system (Thermo). Peptides were eluted using a 75 min gradient from
98:2 to 60:40 buffer A:B ratio. Eluted peptides were ionized by electrospray (2.4 kV)
followed by mass spectrometric analysis on an Orbitrap Eclipse Tribrid mass
spectrometer (Thermo) using multi-notch MS3 parameters. MS data were acquired
using the FTMS analyzer in top-speed profile mode at a resolution of 120,000 over a
range of 375 to 1500 m/z. Following CID activation with normalized collision energy of
35.0, MS/MS data were acquired using the ion trap analyzer in centroid mode and
normal mass range. Using synchronous precursor selection, up to 10 MS/MS
precursors were selected for HCD activation with normalized collision energy of 65.0,
followed by acquisition of MS3 reporter ion data using the FTMS analyzer in profile
mode at a resolution of 50,000 over a range of 100-500 m/z. Proteins were identified
and quantified by database search using MaxQuant (Max Planck Institute) TMT MS3
reporter ion quantification with a parent ion tolerance of 2.5 ppm and a fragment ion
tolerance of 0.5 Da. Buffer A = 0.1% formic acid, 0.5% acetonitrile. Buffer B = 0.1%
formic acid, 99.9% acetonitrile. Both buffers were adjusted to pH 10 with ammonium
hydroxide for offline separation.

Proteomics data analysis

Prior to data analysis, datasets (Supplementary Table S1) were subjected to
and passed quality control procedures. To assess if there are more missing values than
expected by random chance in one group compared to another, peptide intensity values
were Logo-transformed (Fig S2B). Peptide intensities were comparable across all
groups. Principal component analysis (PCA) shows that biological replicates cluster
within groups (Fig S2C).
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Figure S2. Protein input and proteomics data quality check. (A) C. elegans exposed to PAO1 or
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478  APf4 show similar total protein profiles. Forty-five ug of total protein extracted from C. elegans rrf-3(-
479 ); fem-1(-) exposed to either PAO1 or APf4 for 48 hours was loaded onto a 4-15% Tris Glycine SDS
480 gel and stained with Coomassie blue. Lane 1 Precision Plus All Blue Standard (Bio-Rad 1610373),
481 Lanes 2-5 biological replicates of PAO1 exposed C. elegans, Lanes 6-9 APf4 exposed C. elegans.
482  Note that after sufficient protein was set aside for mass spectrometry analysis, protein for the sample
483  in lane 9 was limiting, so less was loaded (~35 ug/uL). (B) Logz transformed peptide intensity values
484  were comparable in all datasets. (C) Principal component analysis (PCA) shows that biological
485  replicates cluster within groups.

486
487 The normalized Log> cyclic loess MS3 reporter ion intensities for TMT for the

488 reference P. aeruginosa PAO1 proteome (UniprotKB: UP000002438) were compared
489  between wild-type P. aeruginosa PAO1 and P. aeruginosa PAO1 APf4 conditions.
490 Proteins with = 1.5-fold change (= 0.58 log2FC) and P values < 0.05 were considered
491  significantly differential. Functional classification and Gene Ontology (GO) enrichment
492  analysis were performed using PANTHER classification system

493  (http://www.pantherdb.org/) [71]. Analysis results were plotted with GraphPad Prism
494  version 9.4.1 (GraphPad Software, San Diego, CA).

495
496  Statistical analyses
497 Differences between data sets were evaluated with a Student’s t-test (unpaired,

498 two-tailed) where appropriate. P values of < 0.05 were considered statistically

499  significant. Survival curves were analyzed using the Kaplan—Meier survival analysis

500 tool. Individual nematodes that were not confirmed dead were removed from the study.
501 The Bonferroni correction for multiple comparisons was used when comparing individual
502  survival curves. GraphPad Prism version 9.4.1 (GraphPad Software, San Diego, CA)
503 was used for all analyses.
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