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ABSTRACT

Large datasets along with sampling bias represent a challenge
for phylodynamic reconstructions, particularly when the study
data are obtained from various heterogeneous sources and/or
through convenience sampling. In this study, we evaluate the
presence of unbalanced sampled distribution by collection date,
location, and risk group of HIV-1 subtype C using a compre-
hensive subsampling strategy, and assess their impact on the
reconstruction of the viral spatial and risk group dynamics us-
ing phylogenetic comparative methods. Our study shows that
the most suitable dataset for ancestral trait reconstruction can
be obtained through subsampling by collection date, location,
and risk group, particularly using multigene datasets. We also
demonstrate that sampling bias is inflated when considerable
information for a given trait is unavailable or of poor quality,
as we observed for the risk group in the analysis of HIV-1 sub-
type C. In conclusion, we suggest that, even if traits are not well
recorded, including them deliberately optimizes the representa-
tiveness of the original dataset rather than completely exclud-
ing them. Therefore, we advise the inclusion of as many traits
as possible with the aid of subsampling approaches in order to
optimize the dataset for phylodynamic analysis while reducing
the computational burden. This will benefit research communi-
ties investigating the evolutionary and spatiotemporal patterns
of infectious diseases.
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Introduction

Large sequencing efforts have greatly increased the availabil-
ity of genomic data of infectious agents or pathogens in pub-
lic databases (1). This data availability has led to the devel-
opment of novel methods to speed up molecular epidemio-
logical analyses of these datasets (2, 3). Yet, although these
tools aim to solve the problem of data processing, they do
not by themselves resolve the issue of data representative-
ness, as seen through the presence of sampling bias in large
databases, resulting in datasets with a skewed distribution of
certain traits not truly representing the population diversity.
Genetic databases, such as GenBank (4) and GISAID (5),
are used as repositories for genomic data, which is often de-
posited at the moment of submission of a manuscript to peer-
reviewed journals, with a few notable exceptions such as the
genomic data be deposited during the Ebola outbreak in West

Africa (6), the SARS-CoV-2/COVID-19 pandemic (7, 8) and
throughout seasonal influenza virus surveillance efforts to in-
form vaccine composition (9). In public databases, sampling
bias can be seen through the random deposit of samples in the
database in an unintended way (sequences being deposited as
project-dependent and not population-dependent) that does
not reflect a fair representation of the true population, result-
ing in some traits (i.e., genetic diversity, location, popula-
tions at greater risk of HIV acquisition (PGRHA)) of the tar-
get population having a lower or higher sampling probability
than others compared to their actual prevalence (10-13).

Sampling bias is a persistent concern when performing phy-
logeographic inference (14, 15). Apart from an increase in
taxon sampling having been shown to aid in the reduction
of phylogenetic error (16), several software applications tar-
get the reduction of size and redundancy for the purpose of
phylogenetic analysis (17) or the increase in phylogenetic di-
versity while reducing data set size (18). Sequencing errors
and the lack of a representative sampling from large datasets
can lead to inferring erroneous phylogenies, hampering accu-
rate downstream conclusions (19). Sampling bias can, for ex-
ample, lead to incorrect inference of ancestral locations and
migration rates from oversampled regions, leading to spuri-
ous results that may affect public policy in the response of
an epidemic (14). The presence of sampling bias is chal-
lenging for all currently available phylogeographic models,
and mitigating such bias might require large data set sizes
and the incorporation of associated metadata in those mod-
els (20). Additionally, sequencing errors have been shown
to affect phylogenetic inference, potentially impacting local
SARS-CoV-2 lineage tracing efforts (21).

Subsampling is typically a strategy to mitigate any biases
present in a dataset, and thus to improve the representative-
ness of the actual patterns of the epidemics. However, a re-
cent study has shown that such subsampling strategies do not
consistently improve (discrete) phylogeographic inference at
intermediate levels of sampling bias, and that the improve-
ments is dependent on the actual migration model (20). Sub-
sampling is also used to reduce the computational burden of
phylogenetic and other molecular epidemiology analysis of
very large genetic datasets, such as those for the human defi-
ciency virus (HIV) (11), seasonal influenza viruses (22) and
the severe acute respiratory syndrome coronavirus 2 (SARS-
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CoV-2) (23).

Representativeness is multi-dimensional, in the sense that a
single genomic dataset does not only consist of genomic data,
but multiple underlying metadata layers (traits) which when
combined allow for a comprehensive view of the population
represented by the dataset. Studies focusing on the spatio-
temporal dynamics of pathogens often tend to subsample
based on location, particularly for the challenging discrete
(location) trait reconstruction analysis (11). However, even
when the goal is to purely reconstruct the pathogen’s spatial
spread, including more traits during the subsampling process
might improve the representativeness of the actual underlying
patterns of the epidemics and lead to more accurate results.
Among the existing large genomic data repositories, the
Los Alamos National Laboratory (LANL) HIV Sequence
Database (https://www.hiv.lanl.gov) is one of the
most widely used for HIV research. In addition to genomic
data, the database contains metadata associated with the viral
genetic sequences, including records of the collection date
and sampling country along with PGRHA information for
certain samples, thus making it an ideal database to evaluate
sampling bias on multiple traits associated with the samples.
HIV-1 subtypes B and C have the largest number
of sequences recorded in the LANL HIV Sequence
Database (https://www.hiv.lanl.gov/content/
sequence/HIV/mainpage.html). As of August 3
2022, there were 535995 and 152290 records for HIV-1
subtypes B and C, respectively. Subtype B is the most
widespread HIV-1 variant accounting for approximately 11%
of all infections worldwide (24), and has been extensively
studied including in the phylodynamic context (25). Despite
there being studies addressing the global evolution and spa-
tiotemporal patterns of HIV-1 subtype C (26), to the best of
our knowledge the present study is the first one to address the
potential influence of sampling bias on the accuracy of such
reconstructions.

Many studies tend to focus on genomic analyses for spe-
cific regions, however the regional transmission dynamics
might not fully represent the overall evolutionary and spatio-
temporal patterns of the disease worldwide. In this study, we
evaluate the effect of dataset subsampling based on a combi-
nation of traits (date, country, PGRHA) on phylogenetic in-
ference and subsequent downstream analysis, such as ances-
tral trait reconstruction and phylogeographic inference. We
subsample and analyze two large HIV-1 subtype C datasets
with sequences collected globally obtained from LANL, en-
compassing near-complete genome and partial pol gene, with
associated metadata. We find that subsampling using a com-
bination of genetic sequence and metadata traits yields more
comprehensive phylogenetic results than the usual subsam-
pling based on a single metadata trait.

Materials and Methods

Sequence dataset compilation. All available near-
complete genome sequences (HXB2 genome position
790-9417, with minimum fragment length of 6000
bp) and partial pol sequences (HXB2 genome positions
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2200-3500, with minimum fragment length of 600 bp)
of HIV-1 subtype C with known sampling dates and geo-
graphic information were retrieved from the Los Alamos
National Laboratory (LANL) HIV Sequence Database
(https://www.hiv.lanl.gov) on March 26th,
2021. Problematic sequences, as defined by LANL,
were removed and only one sequence per patient was
selected before download. Sequence quality was ana-
lyzed using the Quality Control tool from the LANL site,
and all genotype assignments were confirmed using RIP
v.3.0 (27). Hypermutation analysis was performed using
Hypermut v2.0 (28). The two final datasets include 1221
publicly available near-complete genome sequences of
HIV-1 subtype C (fulli221) with known sampling year
(1986-2019) and locations (32 countries), and 34229
publicly available partial pol sequences of HIV-1 subtype
C (pol34229) with known sampling year (1986-2019) and
locations (106 countries). For both full1221 and pol34229
datasets, we grouped PGRHA into six categories: male
who have sex with male (SM), people who inject drugs
(PD), heterosexual (SH), mother-to-baby (MB), not recorded
(NR), and other (OT), as described at LANL (https:
//www.hiv.lanl.gov/content/sequence/HIV/
data_dictionary/data_dictionary.html).

Molecular sequence analyses.The fulll22] and
pol34229 datasets were processed separately. Multiple
sequence alignments of the two datasets (full122] and
pol34229) were obtained using MAFFT v7.427 (29) under
an automatic algorithm and subsequently adjusted manually
in BioEdit v7.2.5 (30). Next, we excluded sequences with
more than 50% gaps as well as duplicate sequences, defined
as having the same collection date, country, PGRHA, and
nucleotide sequence. This resulted in a full genome dataset
of 1210 sequences (full), and a pol gene dataset comprising
33859 sequences (pol).

In order to subsample the datasets, we used the
Subsampling According to Metadata for Phyloge-
netic Inference (SAMPI) python tool (available at:
https://github.com/jlcherry/SAMPI). ~ Subsampling  was
performed to obtain a homogeneous collection of sam-
ples using the variables country, PGRHA, and year while
maintaining a manageable dataset size lower than 1000
sequences for computational efficiency. Three subsets with
repetitions for full genomes and pol gene were assembled.
(CP) country, PGRHA, and year, (C) country and year,
and (P) PGRHA and year. This resulted in the following
datasets: (fullCP): 10 sequences per date, country, and
PGRHA, n=626 sequences; (fullC): 10 sequences per date
and country, n=562 sequences; (fullP): 10 sequences per
date and PGRHA, n=393 sequences; (pol CP): 1 sequence
per date, country, and PGRHA, n=698 sequences; (pol C):
1 sequence per date and country, n=986 sequences; (pol P):
7 sequences per date and PGRHA, n=727 sequences. We
selected a higher number of sequences per date and PGRHA
for pol C given the smaller number states of PGRHA and
with the objective of having a subsampled dataset of similar
size to the other datasets.
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To examine the reproducibility of the datasets and anal-
ysis, we performed three independent repetitions of each
subsampling strategy. Multiple iterations of maximum-
likelihood (ML) phylogenetic reconstruction using RAXML
v8.2.12 (31) under a GTR+I'4+I nucleotide substitution
model with 1000 bootstrap replicates were performed, with
removal of outlier sequences — those with incongruent sam-
pling dates and root-to-tip genetic divergence — via the Tem-
pEst software package v1.5.3 (32). This resulted in full
genome datasets with 626 (fullCP), 562 (fullC), and 393
(fullP) sequences, and partial pol gene datasets with 986 (pol
CP), 698 (pol C), 727 (pol P) sequences.

Phylogenetic reconstruction. ML phylogenetic recon-
struction was performed for the original datasets and their
subsampling replicates (full, fullCP, fullC, fullP, pol CP,
pol C, and pol P) using RAXML v8.2.12 (31) under the
GTR+I"4+I nucleotide substitution model with 1,000 boot-
strap replicates. Due to the large size of the pol dataset, ML
phylogeny reconstruction was performed using IQ-TREE
v2.1.2 with the GTR+F+R 10 substitution model (33). In ad-
dition, we used FigTree v1.4.4 (34) to visualize and annotate
the phylogenetic trees with geographic location and PGRHA.

Phylogenetic tree comparison.In order to understand
how subsampling affected the tree topology among the
shared taxa among all trees for pol and for the full genome
datasets, we compared the tree topologies using the Clus-
teringInfoDist metric (see below), which provides a similar-
ity score between trees with the same sequences as tips. To
this end, we first extracted subtrees from each dataset con-
taining the intersect of the taxa present in all the trees using
ybyra_pruner.py from the YBYRA package (35). Then, we
separately compared each subtree set from the near-complete
genome and partial pol gene using the “ClusteringInfoDist”
function from the TreeDist package as implemented in R (36—
38). The ClusteringlnfoDist algorithm calculates a nor-
malized tree similarity and distance measures based on the
amount of phylogenetic or clustering information that two
trees hold in common, where a lower value corresponds to
trees that are topologically more similar, with a zero dis-
tance corresponding to identical trees. The normalization
process on ClusteringInfoDist allows for a better comparison
between the results of analyses coming from distinct datasets
(i.e, results from pol comparisons vs results from full com-
parisons). We calculated the average, mean, and performed
a two-tailed distribution t-test assuming two-samples of un-
equal variance (heteroscedastic) in order to identify statistical
significance (<0.01) between the ClusterInfoDist values for
the groups of subsampled trees.

Transmission Networks. To evaluate the robustness of
our subsampling method, we generated transmission net-
works based on our phylogenetic reconstructions for all the
datasets using the parsimony ancestral reconstruction method
in StrainHub v1.1.2. Disease transmission networks of traits
of interest display the connectivity and dynamics within each
trait (i.e., country and PGRHA) and allow us to understand
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the behavior the disease and importance of each network
node on the spread of the disease (e.g., if there is a single
node in the network being a super spreader or if the spread is
balanced among nodes).

StrainHub generates a transmission network based on char-
acter state changes in metadata, such as collection location,
mapped on the phylogenetic tree. The nodes of this transmis-
sion network represent the relationship of the ancestral and
descendant states of the pathogen sequences (e.g. changes in
geography, host shifts, and among PGRHA) (39). We eval-
uated to what extent subsampling interfered with the struc-
ture of the networks by comparing the networks directly and
through the centrality metrics of each network (40). Metadata
were extracted from the sequence headers and geographic co-
ordinates were extracted from latlong.net. We ranked
the datasets’ metadata (country and PGRHA) by degree cen-
trality and Source Hub Ratio (SHR). Degree centrality is
defined as the number of edges a trait state has within the
network, meaning that the higher the degree, the more con-
nected the state is to other states. The estimates associated
with SHR, a score that ranges from O to 1, indicate a sink or
source behaviour of a particular state, respectively (hub has a
SHR=0.5), as implemented in StrainHub (39). We also cal-
culated the Pearson product-moment correlation coefficient
for all the pairs of trait states for all original and subsampled
full and pol datasets to understand how subsampling affects
the overall transmission network structure.

Results

Subsampling. In the full dataset, genome sequences col-
lected in South Africa (ZA; 49.7% (601/1210)) and Zam-
bia (ZM; 8.1% (219/1210)), and from the NR (68.6%
(830/1210)) and SH (26.9% (325/1210)) populations at
greater risk of HIV acquisition (PGRHA) are over-
represented compared to the numbers for the other coun-
tries and PGRHA (Figure 1). Our subsampling strategy re-
sulted in datasets with the following reduced sequence counts
(average between three repetitions of subsampled datasets)
for South Africa and Zambia: 31.2% (195/626) and 14.4%
(90/626) in the fullCP datasets, 26.9% (151/562) and 13.5%
(76/562) in the fullC datasets, and 34.9% (137.3/393) and
14.0% (55/393) in the fullP datasets. Similarly, the sub-
sampling by PGRHA results in datasets with the following
NR and SH genome sequence counts: 60.9% (381/626) and
31.5% (197/626) in the fullCP datasets, 62.1% (349/562) and
30.2% (170/562) in the fullC datasets, and 54.7% (215/393)
and 33.1% (130/393) in the fullP datasets, respectively.

In the pol datasets (Figure 2), the partial pol gene sequences
collected in South Africa (51.1% (17312/33859)) and In-
dia (8.6% (2922/33859)), and from the NR PGRHA (90.4%
(30615/33859)) are over-represented. After subsampling,
the average between three repetitions of subsampled datasets
for the partial pol gene sequences obtained in South Africa
and India account for 6.8% (67/986) and 5.7% (56/986)
in the pol CP datasets, 4.0% (28/698) and 3.3% (23/698)
in the pol C datasets, and 24.4% (177.3/727) and 13.9%
(101.3/727) in the pol P datasets, respectively. Likewise,
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the subsampled partial pol gene sequences collected from the
NR PGRHA now account for 62.7% (618/986) from the pol
CP datasets, 75.2% (524.7/698) from the pol C datasets, and
26.5% (193/727) from the pol P datasets.

The subsampling of the pol P datasets yield a different coun-
try composition in comparison to the other datasets (46 or
47 of 105 countries), given the large amount of data and the
subsampling method that did not include country as a sub-
sampling trait. For downstream analyses, we compared only
the intersect of data between each dataset, i.e, pol (105 coun-
tries) vs pol CP (105 countries); pol CP (105 countries) vs
pol C (105 countries); pol, pol CP, or pol C (46 or 47 of 105
countries) vs pol P (46 or 47 countries).

Tree comparisons. For the full datasets (Figure 3A), the
topologies of the subtrees subsampled by country (fullC; av-
erage = 26.24) are the closest in similarity to that of the orig-
inal dataset (full). Nevertheless, fullCP datasets (average =
28.06) have very close values to fullC, with fullP (average
= 33.94) being the most distant datasets to full. For the pol
gene dataset (Figure 3B) the topologies of all the subsampled
subtrees are mostly equidistant to the original pol dataset (pol
CP average = 34.92; pol C average = 34.87; pol P average =
36.02). We estimated that the datasets were not significantly
different across full and pol subsamplings, with the excep-
tion of fullCP vs fullP (p-value = 0.009) and fullC vs fullP
(p-value = 0.0005). Nevertheless, we observe overall similar
values across subsamplings for both the full and pol datasets
(small variance across subsamplings; fullCP = 2.47; fullC =
0.72; fullP = 0.90; pol CP = 1.10; pol C = 2.49; and pol P =
3.57).

Transmission networks. We generated transmission net-
works for all the full and pol datasets. We observed that
there was limited variation of the correlation of the degree
centrality metric between country and PGRHA with the orig-
inal dataset across repetitions of the same subsampling strat-
egy or across the three subsampling strategies for full and
pol datasets, with the exception of pol P (Figure 4, Supple-
mentary Figures S1, and S2). This means that the degree of
connectivity of each country or PGRHA node in the overall
transmission network is maintained irrespective of the sub-
sampling strategy. Despite the overall maintenance of the
country and PGRHA node importance, their behaviours (i.e,
sink/hub or source of disease), assessed using the Source-
Hub Ratio (SHR) estimate, varies with the subsampling strat-
egy employed. We observed that the correlation of the SHR
with the original dataset for the country trait is highest for
fullCP and fullC, and lowest for fullP. This pattern is also ob-
served for the pol subsamplings, even though the overall SHR
correlations with the original dataset are lower than those for
the full dataset.

Interestingly, the correlation of SHR for the PGRHA trait is
higher for both fullCP and fullC than for fullP. This might
suggest that for the full dataset, even when subsampling is
done solely using country, we obtain a distribution of samples
such that they are similar to the overall PGRHA trait structure
of the original full dataset (Figure 5). However, the limited
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information for PGRHA yields results that do not represent
the overall PGRHA trait structure in the original dataset. This
behaviour is not observed in the pol subsampling, where pol
CP and pol P have the highest SHR correlation with the origi-
nal dataset, agreeable with the fact that both strategies include
information for PGRHA, whereas pol C yields the lowest cor-
relation with the original PGRHA transmission network.

Looking within the transmission networks geographically, in
the full genome dataset, the countries with the highest de-
gree centrality are (in order of high to low degree centrality)
South Africa (ZA), Sweden (SE), Zambia (ZM), Tanzania
(TZ) and the United Kingdom (GB) (Figure 5A). However,
GB does not rank among the top five countries in the fullCP
and fullC datasets, where it is replaced by Botswana (BW).
Moreover, Sweden does not rank among the top five coun-
tries in the fullP dataset, but it does include GB and BW.
In the pol datasets, given the larger number of countries, we
elected to display the top nine countries for each dataset. The
countries with the highest degree centrality are (in order of
high to low degree centrality) ZA, ZM, GB, Ethiopia (ET),
Zimbabwe (ZW), India (IN), United States (US), TZ and Bu-
rundi (BI). The polA datasets best represent the pol dataset’s
top 10, with only two countries being replaced (GB and BI
by SE and Malawi; MW), with these two countries being re-
placed as numbers 8 and 9. The polB dataset replaced three
of the top 9 countries from the original dataset (IN, TZ, BI
with Australia (AU), Germany (DE) and Israel(IL)), and polC
replaced three countries as well (GB, TZ, BI with AU, BW,
MW) (Figure 5B).

We have also summarized the spatial transmission dynam-
ics among the original full and pol datasets and their respec-
tive subsampled dataset. For the full datasets (Supplemen-
tary Figure S3), even though there was some variation across
replicates, we observed an overall similar pattern character-
ized by viral dissemination from Africa to Europe and vice-
versa, as well as from Africa do the US and South Asia. The
pol dataset (Supplementary Figure S4) depicts more complex
spatio-temporal dynamics that included the viral movements
described for the full datasets, plus introductions from North
America to Asia, Europe to South America, and Africa to
Oceania. The patterns observed for pol C were more sparse,
likely due to the reduced number of countries included for
this dataset compared to the other pol datasets.

The transmission network among PGRHA shares a similar
result across all of the full datasets, with SH and NR hav-
ing the highest mean degree centrality, therefore contributing
with the highest number of connections within the network,
and OT, PI, MB and SM contributing less (Figure 5C). For
the pol datasets, we see similar results with NR and SH hav-
ing the highest for pol, polA and polB, and a more elevated
degree centrality for OT, PI, MB and SM, with polC having a
high degree centrality on all PGRHA with an almost uniform
distribution (Figure 5D).

The summarized PGRHA transmission dynamics among the
original full and pol datasets and their respective subsampled
dataset highlight the results described in the paragraph above.
In both the full and pol datasets (Supplementary Figures S5
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Fig. 1. Sampling distributions of metadata traits for the full and subsampled datasets of HIV-1 subtype C. (A) Country distribution for the full and subsampled datasets. The
distribution of the original dataset shows a disproportionate amount of samples sampled from BR, BW, IN, MW, SE, TZ, ZA and ZM. (B) Populations at greater risk of HIV
acquisition (PGRHA) distribution for the full and subsampled datasets. The distribution of the data shows a large amount of missing data (labeled NR) and higher amount of
SH in comparison to the other PGRHA. The number of sequences for the full dataset is labelled on the right y-axis.

and S6), we reconstructed similar PGRHA dynamics with
NR acting as the main source among PGRHA followed by the
SH group, irrespective of subsampling. In the full datasets,
we estimated the large majority of transmission dynamics oc-
curring from NR to SH. In the pol datasets, the viral trans-
missions were mostly from NR to SH but we also estimated a
substantial proportion of viral seeding from NR to MB. The
patterns observed for pol C were unlike those observed for
any other dataset, with no particular PGRHA standing out in
terms of viral source or sink. This is again likely due to the re-
duced number of countries included in this dataset compared
to the other pol datasets.

Discussion

In this study, we investigated HIV-1 subtype C evolution-
ary and spatiotemporal dynamics while subsampling the ge-
netic data to decrease the sequence counts from over-sampled
traits. Subsampling was performed in order to mitigate bi-
ases introduced during sampling of PGRHA, as well as of
countries through time. To this end, we compiled compre-
hensive sequence datasets of full genomes and the pol gene
region, and revealed that both datasets contained inherent bi-
ases irrespective of the trait studied, as observed through the
heterogeneous distribution of the datasets (Figure 1 and 2).
We could not compare the subsampled dataset distributions
to the real population case estimates, which are impossible
to obtain. The available epidemiological curves are not de-
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segregated by HIV-1 type and are biased by time and spatial
surveillance coverage and effectiveness (41). For these rea-
sons, we assumed for this study that an unbiased sampling
should follow a near uniform distribution.

Sampling strategies and procedures like subsampling meth-
ods can help address varying trait representativeness in the
metadata associated to genomic datasets. There are many
studies that apply subsampling methods in an attempt to cor-
rect for bias on sampling date and location. For instance,
studies targeting the early spread and epidemic ignition of
HIV-1 in humans (11), investigating the spatial history of
HIV-1 subtype B in the United States (25), and exploring the
rapid epidemic expansion of the SARS-CoV-2 Omicron vari-
ant in southern Africa (13). Nevertheless, these studies do
not comprehensively examine the effects of varying repre-
sentativeness of traits and its implications on phylodynamic
reconstruction. Here, we have observed that a more com-
prehensive subsampling strategy that includes as many traits
as possible (date, location, PGRHA) yields the best result in
retaining the original dataset properties, as demonstrated by
the high similarities of the transmission networks between
the HIV-1 subtype C full and pol, and the fullCP and polCP
datasets, respectively (Figure 4). Furthermore, studies that
take into account sampling bias are often limited to a single
replicate of a particular subsampling method (11, 13, 42, 43).
We have demonstrated that this likely does not have harmful
implications to the interpretation of the results as there is lit-
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tle variation of the overall tree topology across subsampling
replicates (Figure 3), as well as in the ancestral trait recon-
struction (Figure 4).

Comparing the tree topologies of the original full and pol
datasets with their respective subsampled datasets allows
uncovering which subsampling strategies best represent the
original structure and whether that structure is punctuated by
a particular trait. Our analyses indicate that both full and
pol along with their subsampled datasets present comparable
variability in tree topology among the subsets both in terms of
country and PGRHA. However, there are inherent limitations
in both datasets as observed by the majority of sequences la-
beled as NR (PGRHA) in all datasets.

Our analyses indicate that there is a slightly stronger signal in
the full dataset for location as shown by the smaller distances
across the original dataset and those subsampled using the lo-
cation trait, whereas the pol dataset seems to hold the same
level of information for both country and PGRHA traits, in-
dicating a more balanced dataset. The comparable ClusterIn-
foDist metric across datasets and respective subsample rep-
etitions suggest that irrespective of the subsampling strategy
the overall structure of the original topology is maintained
given the similar values across all comparisons (Figure 3).
We can assume that the reason behind the original full and
pol datasets having a slightly lower degree of similarity, as
measured through ClusterInfoDist, to the datasets subsam-
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pled by PGRHA (fullP and polP) might be that the datasets
are mainly driven by location, regardless of the skewed sam-
pling distribution in certain geographical locations, such as
India and South Africa (Figures 1 and 2), which may be
in part due to the predominance of the HIV-1 subtype C in
these regions (44). In this scenario, subsampling solely by
PGRHA would have a stronger effect on the tree topology,
possibly due to the different behavior of the PGRHA within
each country. In addition to that, subsampling by PGRHA
produces a distinct outcome from subsampling by country, or
by both country and PGRHA, most likely owing to the large
presence of missing data labeled as NR.

Consequently, the limited information for PGRHA in both
full and pol datasets produces inconsistent transmission net-
works. Overall, these results indicate that the full dataset
might be a better choice to investigate phylodynamic patterns
since the subsampled datasets produce transmission networks
that have higher correlations to the original dataset for both
country and PGRHA, and yield more comprehensive evolu-
tionary histories. This result demonstrates once more how
multigene datasets provide higher accuracy in phylogenetic
analysis despite lower dataset sizes (45).

Geographically, the top countries for the spread of HIV-1
subtype C, as measured by degree centrality of the nodes
within the transmission network on both full and pol datasets,
are in line with previous studies (44). The most prominent
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PGRHA in both original full and pol networks is SH, as seen
by the larger sampling of heterosexual individuals in these
datasets (Figures 1 and 2), which likely represents the current
state of the HIV-1 subtype C epidemic at global scale (46).
In pol, we also observed MB as a major PGRHA acting as
a transmission source. NR seems to be largely connected to
SH in both datasets, indicating that the vast majority of non-
reported PGRHA may belong to SH (Supplementary figure
S5 and S6). The behavior of PGRHA is expected to be de-
pendent on regional norms (47-49), thus the lack of cover-
age of locations in polP may be the reason why these results
diverge considerably from those of the other datasets. Ad-
ditionally, the countries excluded from polP might be those
that have a stronger signal for the dynamics observed in the
other datasets, namely transmission events from NR to SH
and from NR to MB. Therefore, as expected, including both

Lietal. | Multiple-trait subsampling

country and PGRHA as subsampling traits yields the most
consistent results for both country and PGRHA transmission
networks.

Our attempts to mitigate bias by employing multiple sub-
sampling strategies are not without limitations. For instance,
since they rely on the metadata available for the genetic data,
we might not address biases created by unknown factors. In
this HIV-1 subtype C study, most of the metadata regard-
ing PGRHA is not recorded, and NR accounted for 68.6%
and 90.4% of sequences in the full and pol datasets, respec-
tively. Besides, some of the metadata may be mislabeled,
such as reports of “men who have sex with men” (SM) due to
HIV/AIDS-related stigmatization and discrimination, as re-
ported in previous studies (50). Both sequence data and asso-
ciated metadata are critical to gain more detailed insights into
the evolutionary and spatiotemporal patterns of HIV-1 sub-
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type C and other pathogens. Therefore, more reporting and
sharing of data in an open and real-time fashion is needed for
an effective public health response.

Comparing the original and subsampled datasets to epidemi-
ological data could be a solution to the present issue in sam-
pling. However, this kind of data also often suffers from bi-
ases, including those created by under-sampling in low- and
middle-income countries or are not documented particularly
for the early dynamics of the epidemics (51, 52). We made
an effort to obtain retrospective epidemiological data docu-
menting the number of patients infected with HIV-1 subtype
C, but the epidemiological data does not report nor is sorted
by subtype, which further complicated this endeavour. Ad-
ditionally, HIV/AIDS being a disease associated with severe
stigma could lead to case reports that do not accurately rep-
resent the overall circulation patterns (50, 53).

Even though we here offer a detailed approach to reduce in-
herent biases and further optimize ancestral trait reconstruc-
tion by subsampling large datasets, there are other proce-
dures to account for issues with sampling, including careful
research and surveillance design, simulations, and weighted
methods based on metrics such as prevalence (10, 54-58).
New methodological developments enable phylogeographic
inferences that are not as affected by sampling bias (14), but
currently do not scale well with the increasing number of se-
quences and locations, and hence make analysis of large data
sets computationally challenging.

In summary, we address the challenges of working with large
datasets and sampling bias using a subsampling approach
based on date, country, and PGRHA. We evaluate how this
approach can mitigate bias and optimize data analyses based
on the available metadata. We also highlight the importance
of rigorously recording metadata in addition to the genetic
sequences. This study systematically evaluates strategies to
optimize ancestral trait reconstruction in HIV-1 subtype C,
and will be helpful to future phylodynamic analysis of this
virus, as well as serve as a reference to the study of other
pathogens.
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