

1 **Title: Characterizing biofilm interactions between *Ralstonia insidiosa* and**
2 ***Chryseobacterium gleum***

3
4 Running title: *Ralstonia-Chryseobacterium* biofilm interactions
5
6 Andrea Foote^a, Kristin Schutz^b, Zirui Zhao^c, Pauline DiGianvittorio^{a,b}, Bethany R. Korwin-
7 Mihavics^a, John J. LiPuma^d, and Matthew J. Wargo^{b,#}
8

9 ^a Cellular, Molecular, and Biomedical Sciences Graduate Program, and ^b Department of
10 Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine,
11 Burlington, Vermont, USA

12 ^c Department of Biology, University of Vermont, Burlington, Vermont, USA

13 ^d Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan,
14 USA.

15
16 # Corresponding author

17 Matthew J. Wargo
18 95 Carrigan Drive, 308 Stafford Hall, Burlington, VT 05405

19 mwargo@uvm.edu

20 P: 802-656-1115

21
22 **Key Words:** tap water microbiology, bacterial ecology, dual-species biofilms, bacterial
23 interactions

24

25 **Abstract**

26 *Ralstonia insidiosa* and *Chryseobacterium gleum* are bacterial species commonly
27 found in potable water systems and these two species contribute to the robustness of
28 biofilm formation in a model six-species community from the International Space Station
29 (ISS) potable water system. Here, we set about characterizing the interaction between
30 these two ISS-derived strains and examining the extent to which this interaction extends
31 to other strains and species in these two genera. The enhanced biofilm formation between
32 the ISS strains of *R. insidiosa* and *C. gleum* is robust to starting inoculum and
33 temperature, occurs in some but not all tested growth media, and evidence does not
34 support a soluble mediator or co-aggregation mechanism. These findings shed light on
35 the ISS *R. insidiosa* and *C. gleum* interaction, though such enhancement is not common
36 between these species based on our examination of other *R. insidiosa* and *C. gleum*
37 strains, as well as other species of *Ralstonia* and *Chryseobacterium*. Thus, while the
38 findings presented here increase our understanding of the ISS potable water model
39 system, not all our findings are broadly extrapolatable to strains found outside of the ISS.

40

41 **Importance:**

42 Biofilms present in drinking water systems and terminal fixtures are important for human
43 health, pipe corrosion, and water taste. Here we examine the enhanced biofilm of cu-
44 cultures for two very common bacteria from potable water systems, *Ralstonia insidiosa*
45 and *Chryseobacterium gleum*. While strains originally isolated on the International Space
46 Station show enhanced dual-species biofilm formation, terrestrial strains do not show the

47 same interaction properties. This study contributes to our understanding of these two
48 species in both dual and mono-culture biofilm formation.

49

50

51 **Introduction**

52 Multispecies, surface-attached biofilms are an important part of the built
53 environment, particularly the potable water system that includes the municipal delivery
54 system, building plumbing, terminal fixtures, appliances, and associated surfaces [1-6].
55 Potable water system biofilms contribute to alterations in material corrosion, water
56 properties, and health of those drinking and bathing in the water [7]. While the microbial
57 communities within these systems are diverse, there are a number of taxa that are
58 common across wide swaths of geography and water chemistry, including the genera
59 *Ralstonia* and *Chryseobacterium* [8]. *Ralstonia insidiosa* and its close relative, *Ralstonia*
60 *pickettii*, are beta proteobacteria that are common in water systems and other parts of the
61 built environment [9, 10] and can be found infrequently as opportunistic pathogens in
62 human infections [11-14]. *Chryseobacterium gleum* (formerly, *Flavobacterium gleum*) in
63 the phylum Bacteroidetes, is present in similar environments as *R. insidiosa* and can also
64 be present in human infections [15-17], though less frequently.

65 *R. insidiosa* promotes biofilms in conjunction with a number of species including
66 *Listeria monocytogenes*, *Salmonella enterica*, and *Escherichia coli* [18-22]. In most of
67 these cases, *R. insidiosa* has been reported as a physical bridge between cells of the
68 other species with components of the biofilm matrix predicted as driving the enhanced
69 biofilms [21, 22]. *Chryseobacterium* species are reported as strong biofilm formers in

70 single-species cultures [17], but their enhancement of multispecies biofilms has not been
71 reported as frequently [23].

72 We previously reported that strains of *R. insidiosa* isolate and *C. gleum* from the
73 International Space Station (ISS) were capable of enhanced dual-species biofilm
74 formation, though neither was capable of robust biofilm formation alone [24]. This
75 interaction is a critical facet for robustness of biofilm formation in this six-species model
76 drinking water community [24]. Here we characterize the interaction between *R. insidiosa*
77 and *C. gleum* in relation to biofilm formation, examining potential broad mechanisms, the
78 dependence of the interaction on growth conditions, and the broader applicability of this
79 interaction by testing other strains and species within these two genera.

80

81 **Methods**

82 Bacterial strains and maintenance conditions

83 *R. insidiosa* 130770013-1 was isolated from the ISS Potable Water Delivery
84 System and *C. gleum* 113330055-2 was isolated from the Russian SVO-ZV module on
85 the ISS, and both identified by the Microbiology Laboratory at the NASA Johnson Space
86 Center (Houston, TX) [1]. The strain numbers listed after each species are for the strain
87 database at the Johnson Space Center, and strains may be requested directly using
88 these designations. Terrestrial strains of *R. insidiosa*, *R. picketii*, *C. gleum*,
89 *Chryseobacterium indologenes*, *Chryseobacterium meningosepticum*, and *Ralstonia*
90 strains that cannot be identified as belonging to one of the currently named species in this
91 genus were acquired from the Cystic Fibrosis Foundation *Burkholderia cepacia* Research
92 Laboratory and Repository at the University of Michigan. Details on all strains presented

93 in **Table 1**. All bacteria were stored in 20% glycerol stocks at -80°C and were recovered
94 on R2A plates at 30°C.

95 For all experiments below, the R2A plates were used as a source of inoculation
96 into MRLP media [24] (2/3rd modified MOPS media [25], 1/3rd R2B, with 2% LB and 10
97 mM sodium pyruvate; in composition, this medium comprises 26.4 mM MOPS, 2.64 mM
98 tricine, 6.28 mM NH₄Cl, 34.7 mM NaCl, 0.35 mM MgCl₂, 0.19 mM K₂SO₄, 1.57 mM
99 K₂HPO₄, 10.91 mM sodium pyruvate, 0.94 mM glucose, 32 µM MgSO₄, 21.1 µM CaCl₂,
100 6 µM FeSO₄, 5.28 µM FeCl₂, 0.33 g l⁻¹ peptone, 0.27 g l⁻¹ yeast extract, 0.20 g l⁻¹ tryptone,
101 0.17 g l⁻¹ soluble starch, and 0.66X MOPS medium micronutrients) and cells were grown
102 overnight in 3 ml culture volume at 30°C with orbital shaking of angled, loosely capped
103 18 x 150 mm glass tubes. Some experiments were also conducted in a high calcium
104 version of MRLP where the final CaCl₂ concentration was 400 µM. The higher calcium
105 concentration increases monoculture biofilm formation for *C. gleum* as described in the
106 results section, but co-culture enhancement is still apparent. Calcium concentration is
107 noted in each figure legend.

108 Other media formulations were also tested to assess the range of conditions within
109 which coculture biofilm enhancement could be seen. These included versions of MRLP
110 where the 2/3 volume of minimal media was switched from MOPS to M9 or M63 to
111 generate M9-RLP and M63-RLP, respectively. Additionally, RL media was used which
112 was 1/3 R2B with 2% LB with the remainder of the volume made up from distilled-
113 deionized water.

114

115 Biofilm initiation, quantification, and cell numbers

116 For 96-well format static biofilms, overnight MRLP-grown cultures were used as
117 the starting source for biofilm experiments. The optical density of each species was
118 determined and normalized to generate an initial OD_{600} of 0.05 for each species member
119 in MRLP. After pipetting 150 μ l of the species mixtures into flexible 96-well plates, the
120 plates were placed into humidified chambers and incubated under static conditions (no
121 shaking) at 30 °C for 24 hours. To measure biofilm formation, the crystal violet staining
122 protocol was used as described by O'Toole and colleagues [26]. Biofilms were quantified
123 by dissolving the crystal violet with 10% acetic acid and measuring absorbance at 550
124 nm.

125 For rotating wall vessel (RWV) biofilms, cells were grown overnight as for the 96-
126 well biofilms and then inoculated into 10 ml RWVs (Synthecon Inc., ethanol-sterilized and
127 dried) at a starting inoculum of 0.008 OD_{600} per species. RWVs were rotated in the vertical
128 orientation at room temperature overnight. In conducting the RWV experiments, we
129 observed that most of the biomass, particularly in the dual-species culture, was present
130 as a biofilm on the air-permeable membrane of the vessel. To measure these biofilms,
131 the membrane was rinsed with sterile media and then scraped with a silicon cell scraper
132 into a Petri dish containing additional sterile media. The contents of the Petri dish were
133 then collected by centrifugation and pellets stained with crystal violet as above. After
134 staining, pellets were washed twice before dissolution of the crystal violet in 10% acetic
135 acid. Due to the large quantity of biofilm material, the crystal violet was quantified by two-
136 fold serial dilutions, which were then corrected to total absorbance by multiplication with
137 the respective serial dilution factor.

138 For biofilms on glass coverslips, 22 mm square coverslips were sterilized in
139 ethanol and dried prior to insertion into 12-well plates. The coverslips fit snugly in the
140 wells but rest slightly off of vertical. Each well contained 2.2 ml of high calcium MRLP,
141 which was enough to reach about halfway up the coverslip. After inoculation as described
142 for the 96-well biofilms, the 12-well dished were incubated statically at 30°C in a
143 humidified chamber for 20-24 hours.

144 To determine total cell number in the static 96-well plates (planktonic + biofilm),
145 cells were gathered by resuspending the contents of each well via vigorous pipetting and
146 scraping the well walls with a pipette tip. As measured by crystal violet staining, < 1% of
147 the biomass remained after this treatment. The scraped well contents were vortexed to
148 resuspend and serially diluted in R2B before plating onto R2A. For wells with both
149 species, CFU counts for each species were determined by the obvious colony color
150 difference (orange-yellow for *C. gleum*, and white/beige for *R. insidiosa*).

151

152 Statistical analysis and data visualization

153 All data visualization and statistical analyses were conducted in GraphPad Prism
154 v9 using one-way or two-way ANOVA with Tukey, Sidak, Bonferroni, or Dunnett's post-
155 testing as described in individual figures. Values of p below 0.05 were considered
156 statistically significant. Data is presented, when possible, with bars representing the mean
157 and either biological replicates or all experimental replicates shown as individual data
158 point overlain. Even when all experimental replicates are depicted, statistical analysis is
159 conducted using the means of each biological replicate only. Where individual data points

160 are not shown for clarity and figure size considerations, error bars represent standard
161 deviation.

162

163 **Generation of mScarlet-expressing *R. insidiosa***

164 We used *attTn7*-based chromosomal integration to generate stable fluorescent *R.*
165 *insidiosa* using the general method for Gram-negative bacteria [27]. Briefly, we mixed *R.*
166 *insidiosa* with *E. coli* S17-1 carrying pMRE-Tn7-145 [27] and allowed conjugation to occur
167 on an LB plate with 0.1% L-arabinose overnight. The spot was scraped, resuspended,
168 and *R. insidiosa* carrying the *attTn7* insertion were selected by plating on MOPS agar
169 with 25 mM pyruvate, 10 mM glucose, 25 µg/ml gentamicin, and 10 µg/ml
170 chloramphenicol. Colonies were picked and screened for presence of the *R. insidiosa*
171 specific PCR product [11], the integration cassette via PCR for the gentamicin resistance
172 gene (GmR-check-F 5'- TCTTCCCGTATGCCCACTT-3' and GmR-check-R 5'-
173 ACCTACTCCAACATCAGCC-3'), and fluorescence concordant with mScarlet (using
174 565 excitation and 600 emission using a Biotek H1 multimode plate reader).

175

176 **Microscopy**

177 Fluorescence microscopy was carried out on a Nikon A1R-ER confocal laser
178 microscope housed in the UVM Microscopy Imaging Center using the RFP laser and
179 emission filter for mScarlet which, while not optimized for mScarlet, still allowed
180 visualization of the mScarlet signal. Images were captured and analyzed with Nikon NIS-
181 Elements software.

182

183 **Results**

184 Co-culture of the ISS *Chryseobacterium gleum* and *Ralstonia insidiosa* leads to enhanced
185 biofilm formation

186 We had previously observed that the ISS isolates of *R. insidiosa* and *C. gleum* in
187 our six-member potable water biofilm community demonstrated enhanced biofilm
188 formation together and very little when grown alone [24]. The goal of this project was to
189 extend the characterization of this interaction. Partly to aid in this endeavor, we generated
190 a clone of the ISS *R. insidiosa* carrying mScarlet at the *attTn7* site. Both the parent strain
191 of *R. insidiosa* and the *R. insidiosa* with mScarlet showed enhanced biofilm formation with
192 *C. gleum* in flexible 96-well dish biofilms (**Figure 1A**). This enhanced biofilm formation is
193 not due solely to growth stimulation of either species during co-culture (**Figure 1B**).

194 To examine the enhanced biofilm microscopically, we grew each biofilm on glass
195 coverslips positioned roughly vertically in 12-well dishes. To visually assess biofilm
196 formation, we stained duplicate coverslips with crystal violet. Enhanced biofilm is
197 apparent in the co-cultures, and we also note that *R. insidiosa attTn7::mScarlet* forms a
198 stronger mono-culture biofilm on glass than it does on plastic (**Figure 2A**), which is not
199 different than the untagged *R. insidiosa* on glass. The doublet line, most apparent in the
200 co-culture, is formed because the coverslip rests at an angle off vertical; the surface film
201 intercepts at slightly different positions on each side of the coverslip. For fluorescent
202 microscopy, we wiped one side thoroughly with paper cloth after fixation to remove
203 material from the side not being viewed. Imaging of the co-culture biofilm showed red-
204 fluorescent cells that were co-stained with DAPI (*R. insidiosa*), as well as cells fluorescing

205 solely with DAPI (*C. gleum*) (**Figure 2B**). Like other examples of *R. insidiosa* enhancing
206 biofilm formation [19-22], this dual-species biofilm is intermixed.

207

208 The impact of calcium concentration on *C. gleum* biofilm formation

209 During compilation of the data and final sets of experimentation, it was noticed that
210 while enhanced biofilm was always obvious between these two strains of bacteria, the
211 baseline biofilm formation by *C. gleum* was very different between different experimenters
212 and compared to our previous work [24]. A deep dive through lab notebooks uncovered
213 the likely difference as two different recipes for our MRLP media in the lab that differed
214 only in their final calcium concentrations: 21.1 μ M vs 400 μ M. To test whether this calcium
215 difference was able to explain the *C. gleum* biofilm differences between experimenters,
216 we tested freshly made versions of both MOPS recipes. High calcium increases *C. gleum*
217 biofilm formation (**Figure 3**). There is roughly 5-fold higher biofilm formation by *C. gleum*
218 grown in high calcium versus in low calcium. The dual-species biofilms were also
219 enhanced by high calcium growth, but biofilm for *R. insidiosa* remained unchanged.
220 Because we saw enhanced biofilm at either calcium level, we present data from both
221 calcium conditions in this paper and note the calcium level in the figure legends.

222

223 The biofilm stimulation between these strains is robust to starting inoculum

224 Our initial studies used equal starting OD's for each species and we chose to next
225 examine the robustness of the enhanced biofilm formation to starting inoculum. If we
226 changed the ratio of the starting inoculum of *C. gleum* to *R. insidiosa* from 10% *C. gleum*
227 (90% *R. insidiosa*) to 90% *C. gleum* (10% *R. insidiosa*), where 50% *C. gleum* is our

228 previously reported 1:1 mixture, we saw that all combinations resulted in enhanced biofilm
229 formation compared to *C. gleum* alone (100% *C. gleum*), particularly at the lower
230 proportions of *C. gleum* (**Figure 4A**). Further dilution of *C. gleum* compared to a set
231 proportion of *R. insidiosa* showed that some biofilm enhancement of the co-culture
232 compared to that of *R. insidiosa* alone was retained down to 0.0001% *C. gleum* (roughly
233 15 *C. gleum* cells per well at time of inoculation) (**Figure 4B**).

234

235 Media and environmental impacts on the *C. gleum/R. insidiosa* interaction

236 After observing that the enhanced biofilm formation in the *C. gleum/R. insidiosa* co-
237 culture was very robust to the starting inoculum (**Fig. 4**) and that calcium concentration
238 could alter *C. gleum* mono- and co-culture biofilm formation (**Fig. 3**), we expanded the
239 parameters and examined the impacts of media composition, temperature, and low-shear
240 simulated microgravity conditions.

241 In an initial attempt to simplify the media composition, replacement of the MOPS
242 media in our standard MRLP with M9 (M9-RLP) or M63 (M63-RLP) was attempted, as
243 was the RL composition (see Materials & Methods for precise descriptions). When
244 overnight cultures were pre-grown in MRLP and used to inoculate biofilm formation in
245 various media, all tested media supported some level of enhanced biofilm between *R.*
246 *insidiosa* and *C. gleum* (**Figure 5A**). However, when overnights were pre-grown in M9-
247 RLP, biofilm enhancement was only seen in MRLP and RL media, while no significant
248 biofilm enhancement was seen with M9-RLP or M63-RLP (**Figure 5B**). In data not shown
249 here, pre-growth in RL media was similar to MRLP, while pre-growth in M63-MRLP was
250 similar to M9-RLP. One of the primary differences between MRLP/RL vs M9-RLP/M63-

251 RLP is phosphate concentration, but we have not formally tested if phosphate is the
252 contributing factor in these media differences.

253 We also tested whether enhanced biofilm formation by *C. gleum* and *R. insidiosa*
254 was achieved at higher temperatures. Both species are opportunistic pathogens and thus
255 capable of growth at body temperature. When grown at 37°C, similar biofilm enhancement
256 between these species was observed as when grown at 30°C (**Figure 5C**).

257 Finally, the focus of these studies were two strains collected from the ISS and thus
258 previously subjected to continuous microgravity and the low-shear environment that
259 accompanies such gravity conditions. To mimic the low-shear component of microgravity,
260 we used rotating wall vessels (RWVs) where the cells in suspension have defined vertical
261 circular paths within a low-shear environment. While some clumping was seen for the
262 cells in suspension in the dual-species RWV cultures, we noted that most of the biomass
263 was present as biofilm on the gas-permeable membrane of the RWV chamber. We
264 removed the biofilm from the membranes with silicon cell-scrappers and crystal violet
265 stained the collected cells to assess total membrane attached biofilms. Under these RWV
266 conditions, enhanced biofilm formation was readily apparent compared to the individual
267 species (**Figure 5D**). Note that in the RWV system, *R. insidiosa* forms a more robust
268 biofilm than in most other conditions reported in this study, reminiscent of its stronger
269 biofilm on glass (**Figure 2A**).

270

271 Testing potential mechanisms of biofilm enhancement

272 Most of the previous descriptions of *R. insidiosa* stimulation of biofilm in mixed
273 cultures showed that the effect was contact dependent and not co-aggregation based.

274 Our microscopy supported comingling of the two species (**Figure 2B**), but we also wanted
275 to formally test whether a soluble factor or co-aggregation could explain the enhanced
276 biofilm formation of this specific interaction. To test whether biofilm stimulation was
277 transferrable by conditioned media, we used cell-free supernatants from *C. gleum*, *R.*
278 *insidiosa*, or co-cultures mixed 1:1 with fresh media and measured biofilm formation in
279 the flexible 96-well format. Neither single species nor the dual-species supernatants were
280 able to stimulate biofilm formation (**Figure 6A**). This supports the direct interaction model
281 but does not fully rule out potential for a soluble mediator, especially if the mediator is
282 short-lived.

283 We assessed the potential for co-aggregation by mixing concentrated cultures of
284 both species together and looking for any sedimentation caused by aggregation. At one
285 hour there was no evidence of sedimentation (**Figure 6B**) and no sedimentation indicative
286 of aggregation was apparent at times up to 24 h (data not shown).

287

288 Species and strain specificity for dual-species biofilm enhancement

289 Our primary goal was to characterize the interaction between the ISS *C. gleum*
290 and *R. insidiosa* to understand our potable water model community. However, we also
291 wanted to understand how broadly applicable this interaction was for other species in
292 these genera and other strains of these species. We acquired non-ISS strains of *R.*
293 *insidiosa*, *R. pickettii*, an unnamed *R. sp.*, *C. gleum*, *C. indologenes*, and *C.*
294 *meningosepticum* (**Table 1**) and conducted biofilm assays in the flexible 96-well dish
295 format. Most of the *R. insidiosa* strains could enhance ISS *C. gleum* biofilm formation,
296 while only some of the other two *Ralstonia* species were able to do this (**Figure 7A, B**).

297 The ability of ISS *C. gleum* to respond to *Ralstonia* presence with enhanced biofilm
298 formation, however, was limited only to ISS *C. gleum* and very mild stimulation of *C.*
299 *meningosepticum* biofilm (**Figure 7A, C**). A big difference between the ISS *C. gleum* and
300 the other strains is that the other Chryseobacterium tested, particularly the *C. gleum*
301 strains, form robust biofilms on their own (**Figure 7A**).

302

303 **Discussion**

304 Here we examined the interaction between ISS-derived *R. insidiosa* and *C. gleum*
305 to better understand the enhanced biofilm of the dual-species cultures (**Figure 1**) as part
306 of community biofilm formation in our six-species potable water community [24]. The
307 enhanced biofilm formation between these two ISS strains is robust to starting inoculum
308 (**Figure 4**) and temperature (**Figure 5C**), does not occur in all growth media (**Figure 5B**),
309 and does not appear to be driven by a soluble mediator or co-aggregation (**Figure 6**).
310 While these findings shed light on the ISS *R. insidiosa* and *C. gleum* interaction, such
311 enhancement is not a common interaction outcome between these species based on our
312 examination of other *R. insidiosa* and *C. gleum* strains, as well as other species of
313 *Ralstonia* and Chryseobacterium (**Figure 7**). Thus, while the work presented here
314 increases our understanding of the potable water model system, we fully acknowledge
315 that most of the findings are not broadly extrapolatable to strains found outside of the ISS.

316 The enhanced biofilm formation between the ISS *R. insidiosa* and *C. gleum* is
317 readily apparent (**Figure 1A**) and is not driven by changes in total cell number or
318 proportional changes in cell number in the cultures (**Figure 1B**). The material presented
319 here is part of a broader characterization of the ISS potable water model community, and

320 thus has been underway for quite a number of years and with many different graduate,
321 undergraduate, and technician contributors. It was during data examination for this report
322 that we realized that there were two different MOPS media recipes co-existing in the lab
323 differing only by their calcium concentrations. This calcium difference was sufficient to
324 describe the higher biofilm formation by *C. gleum* monoculture observed by some lab
325 members but not others (**Figure 3**). The general biofilm enhancement between the two
326 ISS bacteria is still readily apparent at either calcium concentration, and the calcium
327 concentration of the resultant MRLP media in each experiment is noted in each figure
328 legend.

329 The enhancement of biofilm formation between the ISS *R. insidiosa* and *C. gleum*
330 is very robust to starting inoculation (**Figure 4**). While we did not assess resulting CFUs
331 for each species in these broader inoculation tests, we have no *a priori* reason to suspect
332 that there are different mechanisms of enhancement at different starting inocula, though
333 we cannot rule that out. The enhanced biofilm formation was seen at both 30°C and 37°C
334 (**Figure 5C**) and occurred at room temperature (22-24°C) in the RWV experiments
335 (**Figure 5D**). The RWVs were used to ensure that the biofilm enhancement we observed
336 in open, static biofilms was retained in a system mimicking the low shear environment
337 found during growth in microgravity, as applicable to the ISS. While enhanced biofilm
338 formation could happen with surprisingly low inoculum of *C. gleum*, no enhancement of
339 biofilm could be seen in either direction by single culture or co-culture supernatants
340 (**Figure 6A**), suggesting that there is either no soluble mediator or that any such mediator
341 is very labile. Co-aggregation, while a common mechanism in biofilms particularly in the
342 oral cavity, does not drive the enhanced biofilm formation in this interaction (**Figure 6B**).

343 When the ISS strains were grown in MRLP in the overnight cultures used for
344 inoculation, there was observable dual-species biofilm enhancement in all tested media
345 (**Figure 5A**), but when cells were instead grown in overnights of M9-RLP (**Figure 5B**) or
346 M63-RLP (not shown) there was no biofilm enhancement in the subsequent M9-RLP or
347 M63-RLP conditions, though enhancement was retained in MRLP and RL. We suspect
348 that this is due to the relatively high phosphate concentration in the M9 and M63 media
349 that could be suppressing biofilm enhancement. However, mechanistic dissection of the
350 media component contribution to biofilm enhancement was halted once we determined
351 that this interaction was not commonly shared between strains of these species (**Figure**
352 **7**).

353 The ISS *R. insidiosa* behaves similarly to most of the other *R. insidiosa* strains in
354 terms of their weak monoculture biofilm formation and ability to enhance biofilm when
355 grown with ISS *C. gleum* (**Figure 7**). Most of the *R. pickettii* strains do not show strong
356 biofilm enhancement with *C. gleum*, nor does a *Ralstonia pickettii*-like species that has
357 not yet been named. These similarities amongst the *R. insidiosa* strains suggest the ISS
358 *R. insidiosa* and our mScarlet labeled derivative are potentially good representatives of
359 the species. It is at least minimally genetically tractable, as we were able to generate an
360 *attTn7::mScarlet* integrant that may be useful for studying *R. insidiosa* interaction studies
361 with other bacteria.

362 The non-ISS *C. gleum* strains form strong biofilms, as shown in **Figure 7** and from
363 literature reports [17], as do the two tested *C. indologenes* strains, while the two tested *C*
364 *meningosepticum* strains do not. Thus, the ISS *C. gleum* appears to be non-representative
365 of other *C. gleum* strains. While all our Chryseobacterium isolates tested were from

366 clinical sources, others in the literature were isolated from environmental sources and
367 also show strong biofilm formation in monoculture. Thus, our ISS *C. gleum* appears only
368 useful to describe its specific interactions amongst the ISS potable water bacteria.

369 In conclusion, we have presented partial dissection of an important interaction in
370 a model potable water community. Despite the observations that this strain-specific
371 interaction is unlikely to be broadly applicable beyond this model, we have provided
372 additional information on basal biofilm formation amongst diverse *C. gleum* and *R.*
373 *insidiosa* strains as well as generated an mScarlet-expressing *R. insidiosa* that may be
374 useful to others in the field or studying *R. insidiosa* pathogenesis.

375

376

377

378 **Conflicts of Interest**

379 The authors declare that there are no conflicts of interest.

380

381 **Funding Information**

382 This study was supported by NASA cooperative agreements 20-EPSCoR2020-
383 0079 and 16-EPSCoR2016-0019 to MJW. Graduate student rotation support for AF and
384 BM was provided by the University of Vermont Cellular, Molecular, and Biomedical
385 Sciences (CMB) Program. PD was supported by the Vermont Lung Center
386 Multidisciplinary Training in Lung Biology T32 HL076122. ZZ was supported by a summer
387 undergraduate research fellowship from the University of Vermont. Confocal microscopy
388 was performed in the Microscopy Imaging Center at the University of Vermont on a Nikon

389 A1R-ER point scanning confocal, supported by NIH award number 1S10OD025030-01
390 from the Office of Research Infrastructure Programs. The funders had no role in study
391 design, data collection and interpretation, or the decision to submit the work for
392 publication.

393

394 **Acknowledgements**

395 We'd like to acknowledge the many undergraduate researchers and graduate rotation
396 students who examined various aspects of the *R. insidiosa/C. gleum* interaction that are
397 not reported here but still contributed holistically to our understanding of these two
398 bacteria, including: Matthew Bompastore, Sierra Bruno, Brynn Cairns, Matthew Kinahan,
399 Alexis Nadeau, Hannah Schulman, Alex Thompson, Sophie Unger, and Trevor Wolf.

400

401 **Table 1: Description of strains used in this study**

402	Strain#	Species	From	Source ID ^a	Source
<u>403 Genus Ralstonia</u>					
404	MJ602	<i>Ralstonia insidiosa</i>	ISS PW ^b	130770013-1	NASA JSC(cite)
405	MJ875	<i>Ralstonia insidiosa</i>	CF ^c sputum	AU13589	CFSS-UMich
406	MJ880	<i>Ralstonia insidiosa</i>	CF sputum	AU16942	CFSS-UMich
407	MJ885	<i>Ralstonia insidiosa</i>	Liver biopsy	AU19393	CFSS-UMich
408	MJ886	<i>Ralstonia insidiosa</i>	CF sputum	AU20290	CFSS-UMich
409	MJ890	<i>Ralstonia insidiosa</i>	CF sputum	AU20795	CFSS-UMich
410	MJ891	<i>Ralstonia insidiosa</i>	CF sputum	AU21215	CFSS-UMich
411	MJ899	<i>Ralstonia insidiosa</i>	CF sputum	AU2944	CFSS-UMich
412	MJ912	<i>Ralstonia insidiosa</i>	CF sputum	AU37532	CFSS-UMich
413	MJ913	<i>Ralstonia insidiosa</i>	CF sputum	AU40266	CFSS-UMich
414	MJ915	<i>Ralstonia insidiosa</i>	CF sputum	AU42598	CFSS-UMich
415	MJ916	<i>Ralstonia insidiosa</i>	Blood	AU5199	CFSS-UMich
416	MJ918	<i>Ralstonia insidiosa</i>	CF sputum	AU9058	CFSS-UMich
417	MJ919	<i>Ralstonia insidiosa</i>	CF sputum	AU9775	CFSS-UMich
418	MJ926	<i>Ralstonia insidiosa</i>	Water	HI4151	CFSS-UMich
419	MJ873	<i>Ralstonia pickettii</i>	Dialysis fluid	AU10444	CFSS-UMich
420	MJ876	<i>Ralstonia pickettii</i>	CF sputum	AU14824	CFSS-UMich
421	MJ877	<i>Ralstonia pickettii</i>	Deep wound	AU15492	CFSS-UMich
422	MJ882	<i>Ralstonia pickettii</i>	CF sputum	AU17622	CFSS-UMich
423	MJ884	<i>Ralstonia pickettii</i>	CF sputum	AU17695	CFSS-UMich
424	MJ887	<i>Ralstonia pickettii</i>	CF sputum	AU20306	CFSS-UMich
425	MJ892	<i>Ralstonia pickettii</i>	Blood	AU21292	CFSS-UMich
426	MJ895	<i>Ralstonia pickettii</i>	CF sputum	AU27711	CFSS-UMich
427	MJ897	<i>Ralstonia pickettii</i>	CF swab	AU28427	CFSS-UMich
428	MJ898	<i>Ralstonia pickettii</i>	CF sputum	AU28504	CFSS-UMich
429	MJ900	<i>Ralstonia pickettii</i>	CF throat	AU30485	CFSS-UMich
430	MJ911	<i>Ralstonia pickettii</i>	CF sputum	AU36159	CFSS-UMich
431	MJ914	<i>Ralstonia pickettii</i>	CF ET ^d aspirate	AU40593	CFSS-UMich

432	MJ917	<i>Ralstonia pickettii</i>	Pericardium	AU6150	CFSS-UMich
433	MJ920	<i>Ralstonia pickettii</i>	Soil	HI2644	CFSS-UMich
434	MJ921	<i>Ralstonia pickettii</i>	IV ^e saline	HI2937	CFSS-UMich
435	MJ922	<i>Ralstonia pickettii</i>	Environmental	HI3561	CFSS-UMich
436	MJ923	<i>Ralstonia pickettii</i>	Environmental	HI3575	CFSS-UMich
437	MJ924	<i>Ralstonia pickettii</i>	Environmental	HI3597	CFSS-UMich
438	MJ925	<i>Ralstonia pickettii</i>	Environmental	HI3631	CFSS-UMich
439	MJ874	<i>Ralstonia</i> sp. 1	CF sputum	AU11313	CFSS-UMich
440	MJ879	<i>Ralstonia</i> sp. 2	Blood	AU15928	CFSS-UMich
441	MJ881	<i>Ralstonia</i> sp. 2	ET aspirate	AU17267	CFSS-UMich
442	MJ883	<i>Ralstonia</i> sp. 2	CF sputum	AU17666	CFSS-UMich
443					
444		<u>Genus Chryseobacterium</u>			
445	MJ601	<i>Chryseobacterium gleum</i>	ISS PW	113330055-2	NASA JSC(cite)
446	MJ878	<i>Chryseobacterium gleum</i>	CF sputum	AU15601	CFSS-UMich
447	MJ893	<i>Chryseobacterium gleum</i>	CF sputum	AU23904	CFSS-UMich
448	MJ894	<i>Chryseobacterium gleum</i>	CF throat	AU25398	CFSS-UMich
449	MJ896	<i>Chryseobacterium gleum</i>	CF sputum	AU28136	CFSS-UMich
450	MJ901	<i>Chryseobacterium gleum</i>	CF sputum	AU32207	CFSS-UMich
451	MJ902	<i>Chryseobacterium gleum</i>	CF nasopharynx	AU32450	CFSS-UMich
452	MJ903	<i>Chryseobacterium gleum</i>	CF throat	AU33652	CFSS-UMich
453	MJ904	<i>Chryseobacterium gleum</i>	CF sputum	AU33758	CFSS-UMich
454	MJ905	<i>Chryseobacterium gleum</i>	CF nasopharynx	AU34337	CFSS-UMich
455	MJ907	<i>Chryseobacterium gleum</i>	CF sputum	AU34937	CFSS-UMich
456	MJ908	<i>Chryseobacterium gleum</i>	CF	AU35407	CFSS-UMich
457	MJ910	<i>Chryseobacterium gleum</i>	CF sputum	AU36080	CFSS-UMich
458	MJ906	<i>Chryseobacterium indologenes</i>	CF throat	AU34532	CFSS-UMich
459	MJ909	<i>Chryseobacterium indologenes</i>	CF sputum	AU35927	CFSS-UMich
460	MJ888	<i>Chryseobacterium meningiseppticum</i>	CF sputum	AU20341	CFSS-UMich
461	MJ889	<i>Chryseobacterium meningiseppticum</i>	CF sputum	AU20342	CFSS-UMich
462					

463 a- The database ID at the source repository

464 b- PW, potable water

465 c- Sputum from a person with cystic fibrosis (CF)

466 d- ET, endotracheal

467 e- IV, intravenous

468

469 REFERENCES

470

471 1. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL. Microbial
472 characterization during the early habitation of the International Space Station.
473 *Microb Ecol*. 2004;47(2):119-26; doi: 10.1007/s00248-003-1030-y.

474 2. Cardinale M, Kaiser D, Lueders T, Schnell S, Egert M. Microbiome analysis and
475 confocal microscopy of used kitchen sponges reveal massive colonization by
476 *Acinetobacter*, *Moraxella* and *Chryseobacterium* species. *Sci Rep*.
477 2017;7(1):5791; doi: 10.1038/s41598-017-06055-9.

478 3. Hong PY, Hwang C, Ling F, Andersen GL, LeChevallier MW, Liu WT.
479 Pyrosequencing analysis of bacterial biofilm communities in water meters of a
480 drinking water distribution system. *Appl Environ Microbiol*. 2010;76(16):5631-5;
481 doi: 10.1128/AEM.00281-10.

482 4. Ling F, Whitaker R, LeChevallier MW, Liu WT. Drinking water microbiome
483 assembly induced by water stagnation. *ISME J*. 2018;12(6):1520-31; doi:
484 10.1038/s41396-018-0101-5.

485 5. Dias MF, da Rocha Fernandes G, Cristina de Paiva M, Christina de Matos Salim
486 A, Santos AB, Amaral Nascimento AM. Exploring the resistome, virulome and
487 microbiome of drinking water in environmental and clinical settings. *Water Res*.
488 2020;174:115630; doi: 10.1016/j.watres.2020.115630.

489 6. Perrin Y, Bouchon D, Delafont V, Moulin L, Hechard Y. Microbiome of drinking
490 water: A full-scale spatio-temporal study to monitor water quality in the Paris
491 distribution system. *Water Res*. 2019;149:375-85; doi:
492 10.1016/j.watres.2018.11.013.

493 7. Szewzyk U, Szewzyk R, Manz W, Schleifer KH. Microbiological safety of drinking
494 water. *Annu Rev Microbiol*. 2000;54:81-127; doi: 10.1146/annurev.micro.54.1.81.

495 8. Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent Proteobacteria
496 and other Gram-negative bacteria in drinking water. *Sci Total Environ*.
497 2017;586:1141-9; doi: 10.1016/j.scitotenv.2017.02.104.

498 9. Ryan MP, Adley CC. The antibiotic susceptibility of water-based bacteria
499 *Ralstonia pickettii* and *Ralstonia insidiosa*. *J Med Microbiol*. 2013;62(Pt 7):1025-
500 31; doi: 10.1099/jmm.0.054759-0.

501 10. Lee J, Lee CS, Hugunin KM, Maute CJ, Dysko RC. Bacteria from drinking water
502 supply and their fate in gastrointestinal tracts of germ-free mice: a phylogenetic
503 comparison study. *Water Res*. 2010;44(17):5050-8; doi:
504 10.1016/j.watres.2010.07.027.

505 11. Coenye T, Goris J, De Vos P, Vandamme P, LiPuma JJ. Classification of
506 *Ralstonia pickettii*-like isolates from the environment and clinical samples as
507 *Ralstonia insidiosa* sp. nov. *Int J Syst Evol Microbiol*. 2003;53(Pt 4):1075-80; doi:
508 10.1099/ijss.0.02555-0.

509 12. Fluit AC, Bayjanov JR, Aguilar MD, Canton R, Tunney MM, Elborn JS, et al.
510 Characterization of clinical *Ralstonia* strains and their taxonomic position.
511 *Antonie Van Leeuwenhoek*. 2021;114(10):1721-33; doi: 10.1007/s10482-021-
512 01637-0.

513 13. Fang Q, Feng Y, Feng P, Wang X, Zong Z. Nosocomial bloodstream infection
514 and the emerging carbapenem-resistant pathogen *Ralstonia insidiosa*. *BMC*
515 *Infect Dis.* 2019;19(1):334; doi: 10.1186/s12879-019-3985-4.

516 14. Ryan MP, Adley CC. *Ralstonia* spp.: emerging global opportunistic pathogens.
517 *Eur J Clin Microbiol Infect Dis.* 2014;33(3):291-304; doi: 10.1007/s10096-013-
518 1975-9.

519 15. Chiu CW, Li MC, Ko WC, Li CW, Chen PL, Chang CM, et al. Clinical impact of
520 Gram-negative nonfermenters on adults with community-onset bacteremia in the
521 emergency department. *J Microbiol Immunol Infect.* 2015;48(1):92-100; doi:
522 10.1016/j.jmii.2013.08.004.

523 16. Tsouvalas CP, Mousa G, Lee AH, Philip JA, Levine D. *Chryseobacterium gleum*
524 Isolation from Respiratory Culture Following Community-Acquired Pneumonia.
525 *Am J Case Rep.* 2020;21:e921172; doi: 10.12659/AJCR.921172.

526 17. Lo HH, Chang SM. Identification, characterization, and biofilm formation of
527 clinical *Chryseobacterium gleum* isolates. *Diagn Microbiol Infect Dis.*
528 2014;79(3):298-302; doi: 10.1016/j.diagmicrobio.2014.01.027.

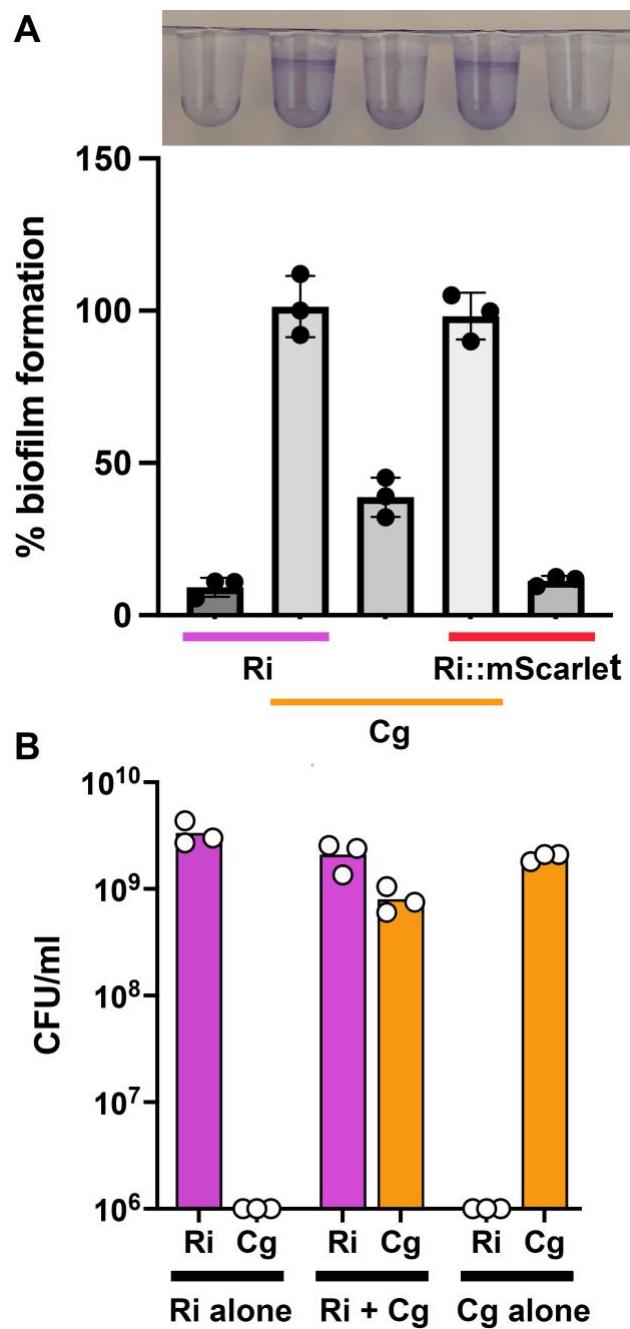
529 18. Guo A, Xu Y, Mowery J, Nagy A, Bauchan G, Nou XW. *Ralstonia insidiosa*
530 induces cell aggregation of *Listeria monocytogenes*. *Food Control.* 2016;67:303-
531 9.

532 19. Liu NT, Nou XW, Lefcourt AM, Shelton DR, Lo YM. Dual-species biofilm
533 formation by *Escherichia coli* O157:H7 and environmental bacteria isolated from
534 fresh-cut processing facilities. *International Journal of Food Microbiology.*
535 2014;171:15-20; doi: 10.1016/j.ijfoodmicro.2013.11.007.

536 20. Liu NT, Nou XW, Bauchan GR, Murphy C, Lefcourt AM, Shelton DR, et al.
537 Effects of Environmental Parameters on the Dual-Species Biofilms Formed by
538 *Escherichia coli* O157:H7 and *Ralstonia insidiosa*, a Strong Biofilm Producer
539 Isolated from a Fresh-Cut Produce Processing Plant. *Journal of Food Protection.*
540 2015;78(1):121-7; doi: 10.4315/0362-028x.Jfp-14-302.

541 21. Liu NT, Bauchan GR, Francoeur CB, Shelton DR, Lo YM, Nou XW. *Ralstonia*
542 *insidiosa* serves as bridges in biofilm formation by foodborne pathogens *Listeria*
543 *monocytogenes*, *Salmonella enterica*, and *Enterohemorrhagic Escherichia coli*.
544 *Food Control.* 2016;65:14-20; doi: 10.1016/j.foodcont.2016.01.004.

545 22. Xu Y, Nagy A, Bauchan GR, Xia X, Nou X. Enhanced biofilm formation in dual-
546 species culture of *Listeria monocytogenes* and *Ralstonia insidiosa*. *AIMS*
547 *Microbiol.* 2017;3(4):774-83; doi: 10.3934/microbiol.2017.4.774.

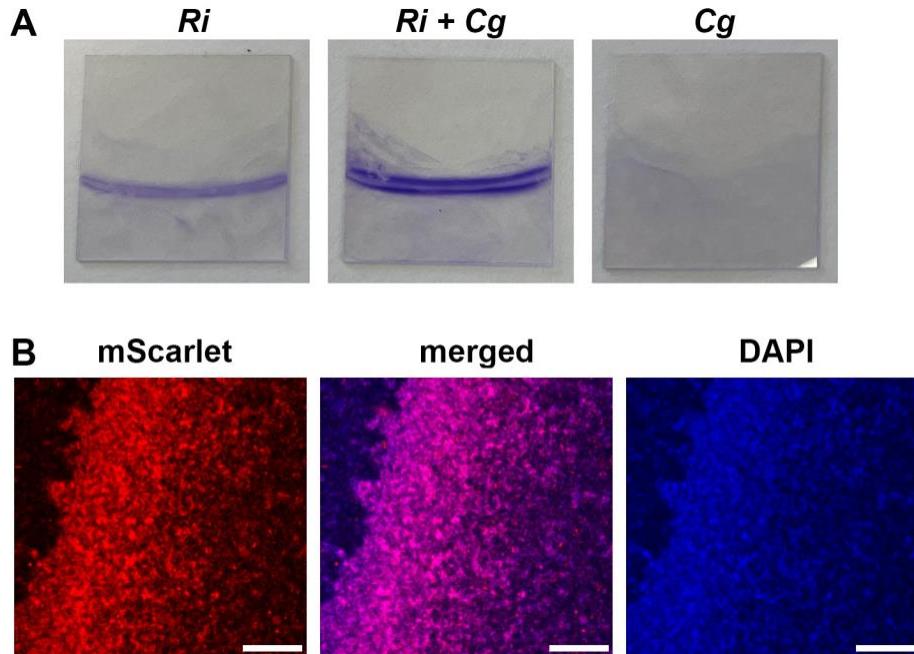

548 23. Roder HL, Raghupathi PK, Herschend J, Brejnrod A, Knochel S, Sorensen SJ, et
549 al. Interspecies interactions result in enhanced biofilm formation by co-cultures of
550 bacteria isolated from a food processing environment. *Food Microbiol.*
551 2015;51:18-24; doi: 10.1016/j.fm.2015.04.008.

552 24. Thompson AF, English EL, Nock AM, Willsey GG, Eckstrom K, Cairns B, et al.
553 Characterizing species interactions that contribute to biofilm formation in a
554 multispecies model of a potable water bacterial community. *Microbiology*
555 (Reading). 2020;166(1):34-43; doi: 10.1099/mic.0.000849.

556 25. Labauve AE, Wargo MJ. Growth and Laboratory Maintenance of *Pseudomonas*
557 *aeruginosa*. *Curr Protoc Microbiol.* 2012;Chapter 6:Unit6E 1; doi:
558 10.1002/9780471729259.mc06e01s25.

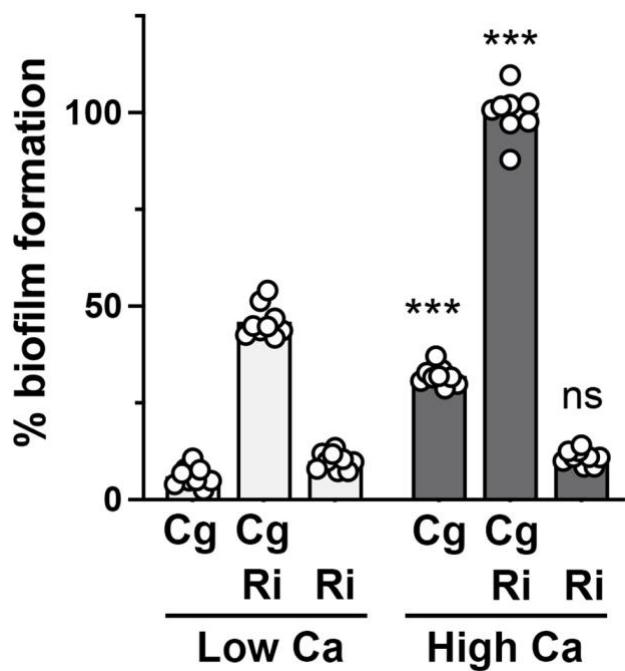
559 26. Merritt JH, Kadori DE, O'Toole GA. Growing and Analyzing Static Biofilms. In:
560 Current Protocols in Microbiology. Hoboken, NJ: J. Wiley & Sons; 2005. p. 1-17.
561 27. Schlechter RO, Jun H, Bernach M, Oso S, Boyd E, Munoz-Lintz DA, et al.
562 Chromatic Bacteria - A Broad Host-Range Plasmid and Chromosomal Insertion
563 Toolbox for Fluorescent Protein Expression in Bacteria. *Front Microbiol*.
564 2018;9:3052; doi: 10.3389/fmicb.2018.03052.
565

566



567

568 **Figure 1. Enhanced biofilm formation during *Ralstonia insidiosa* and**
569 ***Chryseobacterium gleum* coculture.** The ISS isolates of *R. insidiosa* (Ri) and *C. gleum*
570 (Cg) grown alone or cocultured in high-calcium MRLP medium for 24 hours. (A) (Top)
571 Representative crystal violet stain of these static biofilms grown in flexible 96-well dishes,
572 with samples in the same order as the graph. (Bottom) Quantification of the crystal violet
573 biofilm absorbance normalized to *R. insidiosa*+*C. gleum* as 100% biofilm formation.
574 Integration of *mScarlet* at the *attTn7* site (Ri::mScarlet) does not impact *R. insidiosa*'s


575 biofilm formation or interaction with *C. gleum*. **(B)** Quantification of planktonic and biofilm
576 cells from the mono- or co-culture wells. After scraping, vortexing, and resuspension,
577 colony forming units were counted by serial dilution plating and subsequent counting. The
578 y-axis starts at 10^6 CFU as that was the detection limit for these dilutions. For each panel,
579 each individual dot is the mean of three technical replicates on a separate experimental
580 day. For (A), using ANOVA with a Sidak's post-test, the biofilm formed by the co-cultures
581 was significantly higher than that formed by the respective monocultures ($p < 0.001$) and
582 was also significantly higher than the sum of the monoculture biofilms ($p < 0.005$). For
583 (B), using a two-way ANOVA with Tukey's post-test, the co-culture does not significantly
584 impact the CFU of the individual bacteria compared to monoculture and the total cells per
585 well are also not significantly altered.

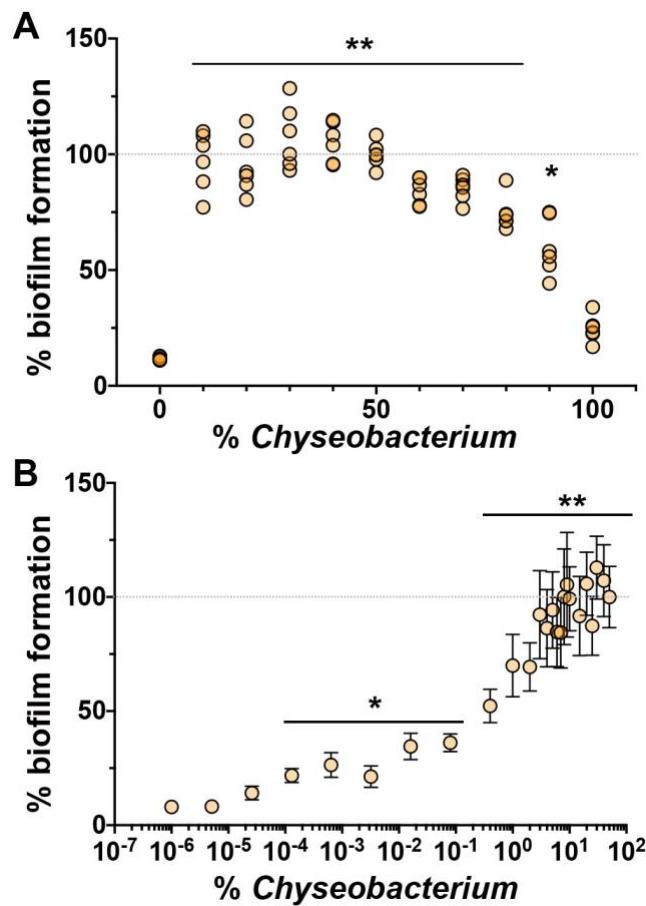
586
587

Figure 2. Enhanced dual-species biofilm formation on glass coverslips by *C. gleum* and *R. insidiosa* *attTn7::mScarlet*. The ISS isolates *C. gleum* (*Cg*) and the mScarlet-expressing *R. insidiosa* (*Ri*) were grown alone or cocultured in high-calcium MRLP medium for 24 hours in 12-well plates with a vertically oriented coverslip in each well. **(A)** Crystal violet staining of the coverslip biofilm. Note that *R. insidiosa* forms more biofilm on glass than on plastic (Figure 1). **(B)** One example Z-section of the dual-species biofilm taken approximately 3 μ m above the coverslip using confocal microscopy. The air-liquid interface runs roughly diagonally on a line rotated slightly clockwise from vertical with the air side on the left. Scale bar = 100 μ m.

601

602

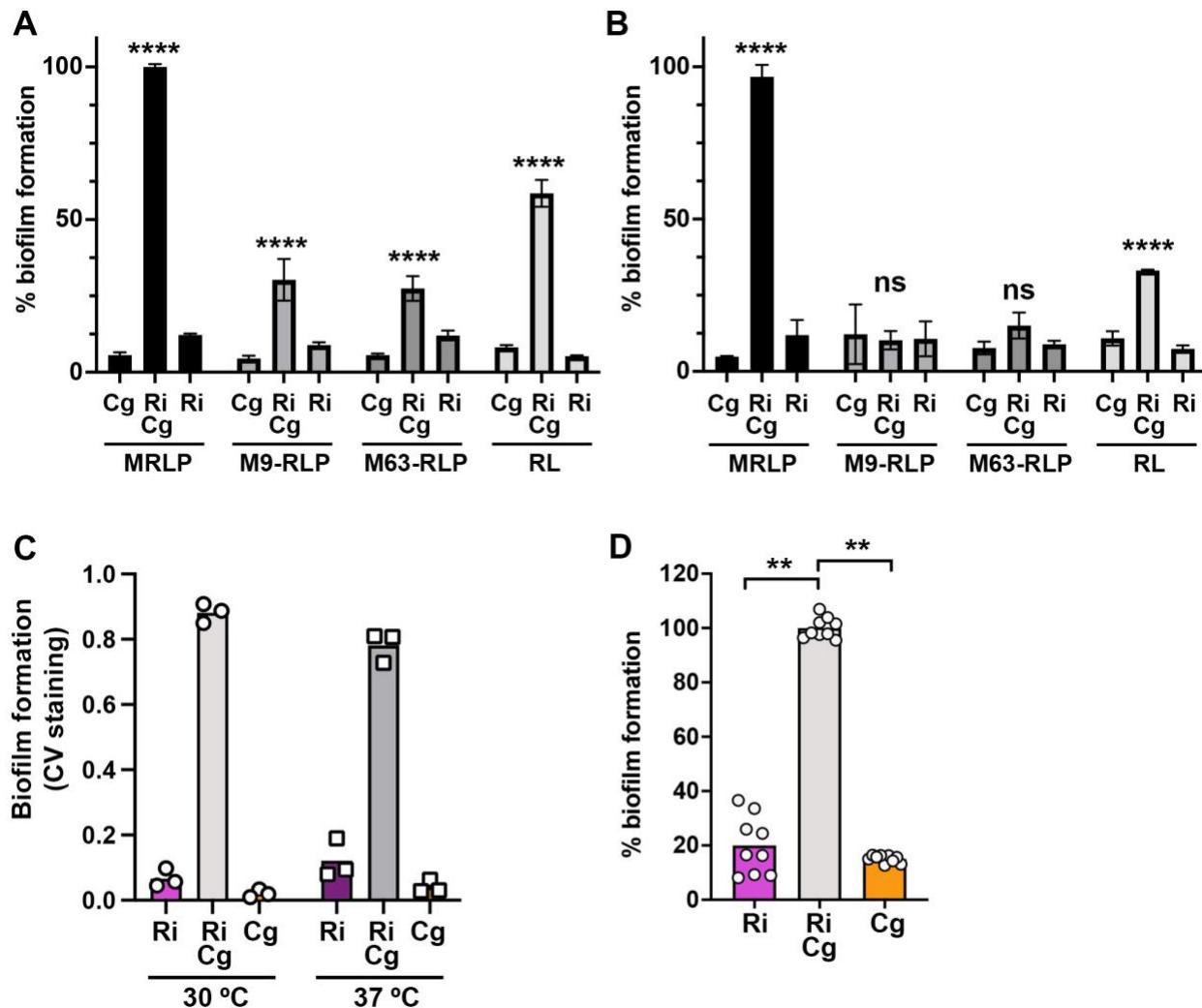
603


604 **Figure 3. Impact of calcium on biofilm formation by *C. gleum*.** More biofilm is
605 generated by *C. gleum* and the dual species biofilm when grown in high calcium (400 μ M)
606 MOPS media versus low calcium (21.1 μ M) MOPS media. Calcium concentration did not
607 impact *R. insidiosa* biofilm formation. Dots represent individual experimental replicates
608 from three independent experiments; statistic calculated using the means of each
609 experiment. Two-way ANOVA with a Sidak's multiple comparison test separately
610 comparing each species composition between the two calcium conditions. ***, p < 0.001;
611 ns, not significant.

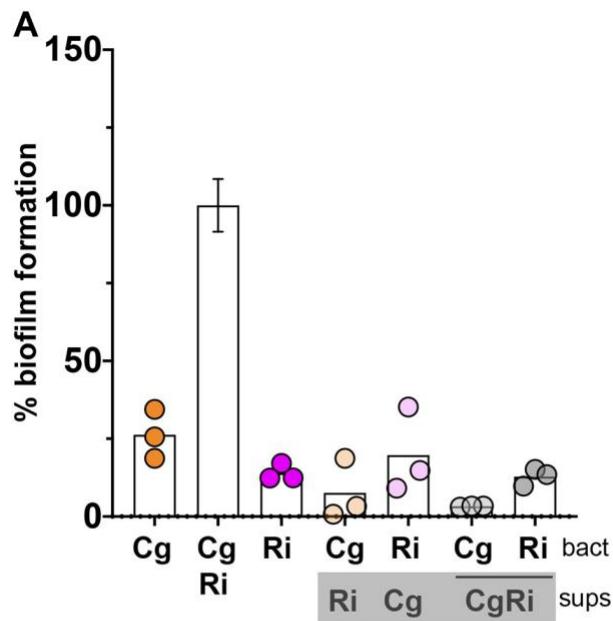
612

613

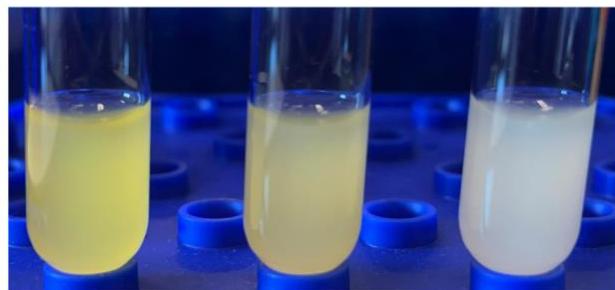
614


615
616

617
618

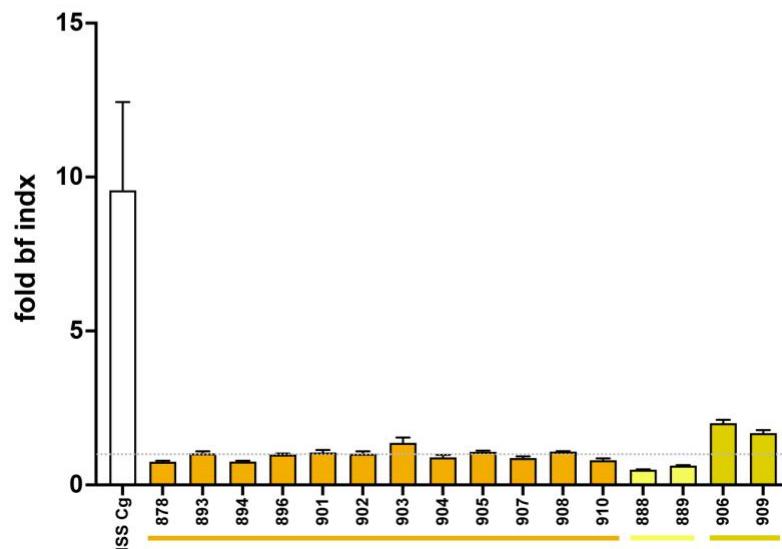
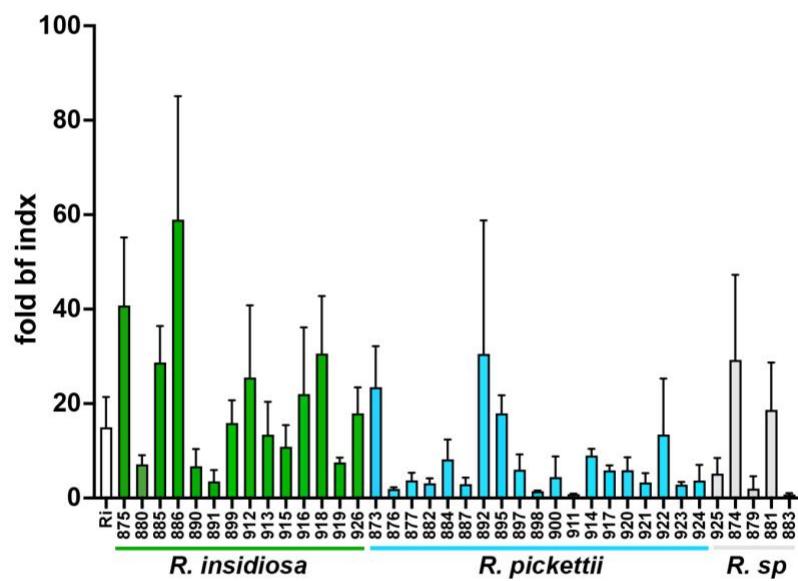

Figure 4. Biofilm stimulation with varying initial concentrations of *C. gleum*. The ISS *C. gleum* was added as a percentage of the initial starting OD₆₀₀ noted on the x-axis with the remainder being comprised of ISS *R. insidiosa*. All experiments conducted in high calcium MOPS (A) *C. gleum* stimulation of dual-species biofilm formation decreases as the *C. gleum* composition increases above 50% but shows stable stimulation as *C. gleum* composition drops below 50%. Each dot represents the measurement of a biological replicate from three separate experiments (two replicates per experiment). (B) Dilution to extinction of *C. gleum* shows biofilm stimulation above *R. insidiosa* alone (the zero *C. gleum* condition is set as the 10⁻⁶ dot), showing that biofilm stimulation can be seen with as little as 0.0001% *C. gleum*. Dots represent the mean of at least three independent experiments and the error bars represent standard deviation. The grey dotted line marks the 100% biofilm formation that is set based on the 50/50 *R. insidiosa*, *C. gleum* mix and all other biofilm formation is normalized to this 100% mark. Data were analyzed with Browne-Forsythe and Welch ANOVA with a Dunnett's post-test with 100% *C. gleum* as the comparator in (A) and 100% *R. insidiosa* as the comparator in (B). *, p < 0.05; **, p <0.01.

635
636
637



638
639
640 **Figure 5.** Characterization of growth media, temperature, and low-shear growth on
641 enhanced biofilm formation. **(A)** Biofilm formation normalized to Ri+Cg MRLP for the
642 media listed below the x-axis, with cells pre-grown in low calcium MRLP. **(B)**
643 Normalized biofilm formation in the media listed below the x-axis, with cells pre-grown in
644 low calcium M9-RLP. Data in (B) is normalized to Ri+Cg in MRLP from (A). Means from
645 three independent experimental days, error bars represent standard deviation. **(C)**
646 Biofilm formation from the noted single or dual-species cultures in low calcium MRLP
647 grown at 30°C (left), or 37°C (right). Each point represents the mean of three biological
648 replicates for each of three independent experimental days. **(D)** Biofilm formation on the
649 gas-permeable membrane of a rotating wall vessel (RWV) in high calcium MRLP. Each
650 point represents each replicate of the RWV experiment, though statistics calculated
651 from each experimental day's mean (i.e. n=3). Statistics for (A,B,C) done using 2-way
652 ANOVA with a Dunnett's corrected multiple comparison post-test comparing each single
653 species biofilm to the dual-species biofilm within each media or condition. Statistic for
654 (D) using Welch's ANOVA with Dunnett's post-test comparing each single species
655 biofilm to the dual-species biofilm.

656

B

Cg Cg+Ri Ri

657
658 **Figure 6. The biofilm enhancing effect of either species cannot be transferred by**
659 **supernatant and is not due to co-aggregation. (A)** The enhancement in biofilm
660 formation seen in the dual-species growth is not conferred by cell-free supernatant from
661 either the single or dual-species conditions using 50% spent supernatant and 50% fresh
662 media. None of the supernatant treatments were significantly different than their single
663 species growth after correction for multiple comparisons using a Brown-Forsythe and
664 Welch ANOVA with a Dunnett's post-test comparing all means to each other. The source
665 of the supernatants tested is present in the grey box under the species abbreviation. Each
666 dot represents the mean from three biological replicates per experiment. The Cg/Ri
667 conditions is set to 100% for each experiment to normalize between experiments, so the
668 average standard deviation for 50/50 Cg-Ri mixes is displayed. **(B)** There is no co-
669 aggregation apparent between these strains. Cells grown in the high-Ca MOPS media
670 were collected by centrifugation and resuspended at a final concentration of OD₆₀₀ = 6
671 and examined over time with the picture representative of all replicates at one hour post
672 mixing.
673

675 **Figure 7. Strain and species specificity for dual-species biofilm enhancement.**
676 **(A)** Biofilm quantification normalized by setting the intraday ISS *R. insidiosa* and ISS *C. gleum*
677 dual-species biofilm as 100% biofilm formation. White circles are data for each
678 species alone and the blue circles are in the presence of either the ISS *C. gleum* (for
679 Ralstonia species) or the ISS *R. insidiosa* (for the Chryseobacterium species). Two-way
680 repeated measures ANOVA with Sidak's multiple comparison test comparing intra-
681 species mono- and dual-species biofilms supports that at the species level, only *R.*
682 *insidiosa* shows significant biofilm enhancement under dual species conditions ($p <$
683 0.001). **(B)** The same data contributing to panel (A) converted to fold change of dual
684 species biofilm divided by biofilm formation by that strain alone. Green bars are the *R.*
685 *insidiosa* strains, blue are *R. pickettii* strains, and grey are an unnamed Ralstonia species.
686 **(C)** The same data contributing to panel (A) represented as fold change of dual species
687 biofilm divided by biofilm formation by that strain alone. The white bar is the ISS *C. gleum*,
688 orange bars are the non-ISS *C. gleum* strains, yellow are *C. indologenes* strains, and
689 mustard are *C. meningosepticum* strains.