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Abstract 

During economic choice, evidence from monkeys and humans suggest that activity in 
the orbitofrontal cortex (OFC) encodes the subjective values of options under 
consideration. Monkey data further suggests that value representations in the OFC are 
context dependent, representing subjective value in a way influenced by the decision 
makers’ recent experience. Using stereo electroencephalography (sEEG) in human 
subjects, we investigated the neural representations of both past and present subjective 
values in the OFC, insula, cingulate and parietal cortices, amygdala, hippocampus and 
striatum. Patients with epilepsy (n=20) reported their willingness to pay—a measure 
of subjective value—for snack food items in a Becker-DeGroot-Marschack (BDM) 
auction task. We found that the high frequency power (gamma and high-gamma 
bands) in the OFC positively correlated with the current subjective value but 
negatively correlated with the subjective value of the good offered on the last trial – a 
kind of temporal context dependency not yet observed in humans. These 
representations were observed at both the group level (across electrode contacts and 
subjects) and at the level of individual contacts. Noticeably, the majority of significant 
contacts represented either the present or past subjective value, but not both. A 
dynamic dimensionality-reduction analysis of OFC population trajectories suggested 
that the past trial begin to influence activity early in the current trial after the current 
offer was revealed, and that these two properties—current and past subjective 
values—dominate the electrophysiological signals. Together, these findings indicate 
that information about the value of the past and present rewards are simultaneously 
represented in the human OFC, and offer insights into the algorithmic structure of 
context-dependent computation during human economic choice. 
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Introduction 

Over the course of the last several decades, studies in macaque monkeys have come to 
define the electrophysiological representation of rewards and reinforcers (Schultz et 
al., 1997; Platt & Glimcher, 1999; Roitman & Shadlen, 2002; Fiorillo et al., 2003; 
Sugrue et al., 2004; Padoa-Schioppa & Assad, 2006, 2008; Kennerley et al., 2006; 
Rudebeck et al., 2017; Pastor-Bernier et al., 2021; Yang et al., 2022; for reviews, see 
Gold & Shadlen, 2007; Wallis, 2007; Kable & Glimcher, 2009; Kennerley et al., 2011; 
Padoa-Schioppa, 2011; Rudebeck & Murray, 2014; Klein-Flügge et al., 2022). This 
research has revealed that the firing rates of neurons in many brain areas encode a 
subjective estimate, the subjective value, of reward magnitude and type. Based on 
these extensive recordings, the broad topography of the network that represents 
reward-related value has now been well established in the macaque brain. Similar data 
are emerging for the rodent brain (Kepecs et al., 2008; Avila & Lin, 2014; Hanks et 
al., 2015; Constantinople et al., 2019; Gardner et al., 2019; Dabney et al., 2020; Lak 
et al., 2020), further extending our understanding of these important 
electrophysiological signals. 

One key feature of this work in animals is that it has revealed the importance of 
context in the subjectivization of these reward-related signals. Monkey parietal cortex, 
for example, has been shown to encode a kind of spatial context-dependency (Louie et 
al., 2011; Rorie et al., 2010; Churchland et al., 2008). Monkey orbitofrontal cortex 
and dorsal anterior cingulate cortex, in contrast, appear to show a kind of temporal 
context-dependency, in which the recent history of rewards influences the 
electrophysiological representation of currently available rewards (Tremblay & 
Schultz, 1999; Padoa-Schioppa, 2009; Seo & Lee, 2009; Kennerley et al., 2011; 
Murray et al., 2014; Cavanagh et al., 2016). Closely related work has extended these 
findings to the rodents (Hocker et al., 2021). The importance of these findings, 
however, extends beyond the study of non-human animals because growing evidence 
suggests that these subjectivized representations seem to account for important 
idiosyncrasies and irrationalities observed in human choice behavior (Louie et al., 
2013; Caplin & Dean, 2015; Khaw et al., 2017; Polania et al., 2018; Woodford, 2020; 
Webb et al., 2021).  

At a neurobiological level, functional magnetic resonance imaging (fMRI) 
studies in humans have also linked animal-based studies of the subjective value 
network to our understanding of the human brain. While the blood oxygen level 
dependent (BOLD) signal measured by fMRI is quite distinct from 
electrophysiological measurements, many fMRI studies now show clear evidence of a 
subjective value network (Levy & Glimcher, 2012; Bartra et al., 2013; Clithero & 
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Rangel, 2014) much like the one observed electrophysiologically in animals. These 
human fMRI studies indicate that subjective value representations in humans are 
much like those recorded from animal brains can be observed in the BOLD signal. 
Interestingly however, BOLD signal maps of subjective value in humans do not 
always agree with the electrophysiological maps developed in animals. In the parietal 
and orbitofrontal cortices, for example, very few studies using fMRI have identified 
the subjective value signals so often seen in non-human primate brains (though see 
Kahnt et al., 2014 for an example exception). 

When considering fMRI data, however, much less information is available about 
the role of context in the human neural representation of reward. Although a 
tremendous amount of behavioral evidence identifies context-dependency as a critical 
factor that shapes both human and animal choice behavior (e.g., Kahneman & 
Tversky, 1979; Belke, 1992; Pompilio & Kacelnik, 2010; Zimmermann et al., 2018; 
Lin et al., 2020), few studies exist that localize context dependency in the human 
brain. Unlike in macaques, the evidence is unclear in humans whether and how the 
orbitofrontal cortex participates in context-dependent valuation (e.g., Elliot et al., 
2008; Cox & Kable, 2014; Palminteri et al., 2015). This lack of clarity may reflect 
either a limitation of the technology, or a species difference. While there are some 
examples of context dependent responses in humans, it seems likely that the spatial 
and temporal scale at which fMRI operates and the nature of the BOLD signal itself, 
has made it extremely difficult to extract clear evidence of either spatial or temporal 
context dependency using that technology. 

In this report we sought to achieve three goals aimed at addressing these gaps 
between our understanding of human and animal representations of reward and 
reinforcement. First, and most importantly, we sought to determine whether human 
intracranial electrophysiological signals encoding rewards show a clear and 
ubiquitous context dependency, as has been observed in animals. To that end, we 
focused the inquiry on temporal context dependency and sought to gather evidence 
indicating whether or not the recent history of rewards influences the 
electrophysiological representation in reward-encoding areas of the human brain. 
Second, we sought to perform this search at the single electrode (contact) and within-
subject levels, which might allow us to overcome some of the limitations faced by 
region-of-interest based human intracranial electrophysiology studies. While 
averaging across subjects and electrode contacts has proven valuable in previous 
studies, animal research suggests that while the averaged signal may encode a 
property like reward value, this representation may be non-uniformly distributed from 
micro-site to micro-site. We hypothesized that by analyzing data at the single contact 
level, many of the important features which have never before been examined in 
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humans could be assessed. Third, by analyzing data at the single contact level and 
transforming all recording sites to a standard anatomical reference, we hypothesized 
that it might also be possible to assess the spatial distribution of reward network 
signals at a very fine-grained level of analysis, as is common in animal research but 
has not yet been regularly undertaken in human studies.  

The study reported here was thus designed to allow us to examine several 
subareas of the frontal and orbital cortex at relatively high resolution, as well as 
providing data at areal levels of analysis throughout several nodes of the reward 
value-network; the amygdala, hippocampus, striatum, insula, cingulate cortex, and 
parietal cortex. Our work extends critical earlier work by Pessiglione and colleagues 
(Lopez-Persem et al., 2019) and Hsu and colleagues (Saez et al., 2018) who were 
among the first to bridge the gap between human and animal research. Recording field 
potentials from human patients performing both rating and choice tasks, these authors 
provided the first electrophysiological confirmation that subjective value 
representations arise in the human brain in a manner very similar to what has been 
observed in the monkey.  

Here we report the use of stereo electroencephalography (sEEG) to record neural 
activity in human epileptic patients (n=20) performing an incentive compatible 
valuation task known to induce temporal context dependency at the behavioral level 
in humans (Khaw et al., 2017). Our data show some of the first evidence for 
neurobiological temporal context-dependent value computations in humans. We 
observe this context dependency in a number of subregions of the orbitofrontal cortex. 
High-gamma activity (80-150 Hz)—thought to aggregate heterogeneous neuronal 
activity near the recording site (Buzsáki et al., 2012; Rich & Wallis, 2017)— 
represents both the subjective value of the present reward under consideration and the 
subjective value of the reward in the previous trial. The same patterns of correlation 
also arise in the gamma band (30-80 Hz). Our single-contact analysis reveals that at 
the level of gamma and high-gamma band signals, statistically significant single 
contacts encode either subjective value or temporal context, with only a few contacts 
encoding both: The orbitofrontal cortex carries context-dependent subjective value 
signals that seems to be built up from single contacts that encode either a subjective 
value signal that is only weakly influenced by temporal context or a clear and 
significant context-setting signal that is dissociable from the current reward. We found 
that context-dependent signals were more robustly observed in the central and medial 
orbitofrontal cortex than the lateral orbitofrontal cortex. In other brain areas we 
examined, the hippocampus and insula also carried these signals at the level of 
activity averaged across contacts and at the single contact level. Our single contact 
mapping data revealed that, as in monkey data (Rich & Wallis, 2016), high-frequency 
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activity in only about 30% of recording sites carry statistically significant subjective 
value signals, and these sites are found to be distributed throughout each of the fronto-
cortical and subcortical areas we examined. As in monkeys, not all locations within an 
area encode subjective value, and the locations which do are not apparently clustered 
but rather appear distributed throughout a given subarea. Finally, we adapted 
advanced dimension-reduction methods (Mante et al., 2013) developed to analyze 
neuronal population activity in macaques to characterize the population responses in 
humans. As in the monkey we found that activity in the human orbitofrontal cortex 
describes a spatial trajectory as a decision is being made, and that this spatial 
trajectory describes the time-course of human decision-making, including context 
dependency, just as it does the time course of monkey decision-making. 

These results paint a novel and detailed picture of subjective value-related 
electrophysiological signals in the human brain at both the population and single-
contact level. While broadly confirming previous findings from fMRI, they add to our 
understanding by providing some of the first evidence for context-dependent 
subjective value representations in the human brain, and the first multi-unit trajectory 
for a human decision in a frontal informational space. Perhaps unexpectedly, these 
data suggest that context-setting signals may be more patchily distributed than has 
been previously suspected, at least at the scale of sEEG. These findings are, it should 
also be noted, broadly compatible with at least some computational models of how 
context dependency arises in the subjective-value network (e.g., Glimcher, 2022).  
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Results 

In order to obtain behavioral measures of subjective value at the single-trial level, the 
subjects performed a version of the Becker-DeGroot-Marschak (BDM) auction task—
a standard incentive-compatible paradigm used to elicit subjective value (Becker et 
al., 1964). On each trial, the subjects saw an image of a snack food item presented on 
a computer screen and had to indicate the maximum amount they were willing to pay 
for the snack food item (Fig. 1A). Here the amount is a measure of the subjective 
value for the food reward.  

 

 

 

Figure 1. Experimental design and behavioral results. A. Trial sequence of the Becker-
DeGroot-Marschak (BDM) auction task. On each trial, the subjects faced a snack food item 
and had to indicate their willingness to pay for that item. Subjects first pressed the left button 
on the mouse to signal that they were ready to indicate their willingness-to-pay. A matrix that 
indicated possible prices, from 0 to 200 cents, in 10 cent increments, would then appear on 
the computer screen. The subjects’ task was to use the mouse cursor to point to and click on 
the number closest to their maximum willingness-to-pay. B. The distribution of willingness-
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to-pay (in New Taiwan Dollars, TWD) from all subjects on all food items. C. The impact of 
the bid offered by the subject on the previous trial on willingness-to-pay on the current trial. 
Note that sequential items were selected randomly and in an uncorrelated manner for 
presentation. For each subject, we regressed their willingness-to-pay—a measure of 
subjective value (SV)—in the current trial against the willingness-to-pay in the previous trial. 
Here we plot the regression coefficient of the willingness-to-pay in the previous trial. In the 
majority of subjects, willingness-to-pay in the current trial was positively correlated with the 
willingness-to-pay in the previous trial. D. The relationship between the willingness-to-pay 
and response time (RT). For each subject, we regressed their willingness-to-pay against the 
response time in the trial. We plot the regression coefficient of the response time. In the 
majority of subjects, there was no relation between willingness-to-pay and response time. * 
indicates p<0.05. 

 

Bidding behavior  

We found several interesting features in the subjects’ willingness-to-pay. First, across 
all subjects, the distribution of willingness-to-pay appeared to be positively skewed 
(Fig. 1B). About 23% of the trials across all subjects were zero bids. Second, the 
willingness-to-pay in a trial was significantly affected by the willingness-to-pay in the 
previous trial. The larger the subjects bid in a trial, the larger that she or he tended to 
bid in the next trial (Fig. 1C) even though sequentially presented rewards were 
uncorrelated in preceding BDM-bid values, indicating a temporal context dependency 
in bids. Third, we found no relationship between response time (how long it took the 
subjects to place the bid) and the amount of their willingness-to-pay (Fig. 1D). The 
distribution of individual subjects’ data on the willingness-to-pay and reaction time 
can be found in the Supplement (Supplementary Figs. 1 and 2). Individual subjects’ 
plots on the willingness-to-pay of the current trial against that of the previous trial and 
on the willingness-to-pay against response time can also be found in the Supplement 
(Supplementary Figs. 3 and 4).        

 

High-gamma activity in the orbitofrontal cortex represents past and present 
subjective value 

In the orbitofrontal cortex (OFC), we collected stereo electroencephalography (sEEG) 
signals from a total of 166 electrode contacts in 20 subjects (Fig. 2A). The sEEG 
preprocessing pipeline can be found in the Supplement (Supplementary Fig. 5). 
Across these OFC contacts, we found that high-gamma (80-150 Hz) activity 
represented both the current subjective value (the willingness-to-pay of the current 
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trial) and the past subjective value (the willingness-to-pay of the snack food item in 
the previous trial). Subjective-value representations were seen at both the group level 
(Fig. 2B) and at the individual-contact level (Fig. 2CD). At the group level, the mean 
time course of regression coefficients (averaged across all OFC contacts) showed that 
high-gamma activity positively correlated with the current subjective value, but 
negatively correlated with the previous subjective value (p<0.05, familywise error 
corrected for multiple testing across time points; see Permutation test in Methods for 
details). 

At the individual-contact level, we found that about 30% of the OFC contacts 
showed significant subjective-value representations (p<0.05, familywise error 
corrected at each contact) (Fig. 2C). The scatter plot (Fig. 2C) of t statistics according 
to the maximum threshold-free-cluster-enhancement (TFCE) statistic (Smith & 
Nichols, 2009; Winkler et al., 2014) revealed that the majority of significant OFC 
contacts cluster in the fourth quadrant, suggesting a positive correlation with the 
current subject value and negative correlation with the previous subjective value. This 
result is consistent with the group-level results (Fig. 2B). Among the significant OFC 
contacts, about half of them significantly represented the current subjective value, 
29% of the contacts represented the previous subjective value, and 16% represented 
both the current and previous subjective value. In other words, a majority of the 
significant contacts represented either the current or the previous subjective value, but 
not both. Data from two representative contacts are also shown (Fig. 2D): One contact 
shows significant positive correlation with the current subjective value, and negative 
correlation with the previous subjective value. The other contact exhibits only a 
positive correlation with the current subjective value.  

The presence of the previous subjective-value representation is consistent with 
the view that the OFC is sensitive to the temporal context of experience (Tremblay & 
Schultz, 1999). It is also consistent with the results in monkey OFC (Padoa-Schioppa, 
2009; Kennerley et al., 2011) and with the view that the OFC implements a divisive-
normalization algorithm to compute relative subjective value which we measure here 
using a simple linear regression (Yamada et al., 2018). 
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Figure 2. High-gamma activity (80-150 Hz) in the human OFC represents the subjective 
value of food rewards. A. Location of OFC electrode contacts. We collected data from a total 
of 166 electrode contacts in the OFC from 20 subjects. B. Subjective-value representations 
across OFC contacts. Here we plot the mean time course (averaged across all OFC contacts) 
of regression coefficients for the subjective value of the current trial (current SV, in blue) and 
the subjective value of the previous trial (previous SV, in green). C. Subjective-value 
representations from individual OFC contacts. We plot the t statistic of the current subjective 
value against that of the previous subjective value separately for each contact. Each data point 
represents a single contact. For each contact, we select the most significant time point 
according to the threshold-free-cluster-enhancement (TFCE) statistic, and plot the 
corresponding t statistic, separately for the current subjective value and previous subjective 
value. Since the t statistics come from the most significant time points, the data points in the 
graph are biased away from zero. Individual contacts that significantly represent the current 
subjective value, previous subjective value, or both are shown in blue, green, and red 
respectively. Individual contacts that neither represented the current nor the previous 
subjective value are shown in gray. The pie chart shows the proportions of contacts belonging 
to each of the categories described above. D. Results from two representative OFC contacts. 
Error bars represent ±1 standard error of the mean. Coordinates are in Montreal-
Neurological-Institute (MNI) space. * indicates p<0.05 (familywise error corrected) using a 
permutation test based on the threshold-free cluster enhancement (TFCE) statistic. Colored 
(blue or green) horizontal lines indicate the time points with p<0.05 (familywise error 
corrected). 

 

Robustness of subjective-value representations in the OFC 

To examine the robustness of the subjective-value representations, we performed four 
additional analyses to rule out potential confounds. First, we examined whether the 
results could have been driven by collinearity between the current and previous 
subjective value, since in most subjects the stated current subjective value positively 
correlated with the stated subjective value in the previous trial (Fig. 1C). To examine 
this possibility we carried out a regression analysis in two steps (GLM-2 in Fig. 3B). 
In the first step, we regressed high-gamma activity against the current subjective 
value. In the second step, we used the residuals from the first step as data and 
regressed them against the past subjective value. The results still indicated that the 
high-gamma activity in the OFC positively correlated with the current subjective 
value and negatively correlated with the past subjective value (Fig. 3B)—consistent 
with the original model (GLM-1 in Fig. 3A). We also performed the two-step analysis 
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in the reversed direction and the results were identical (See Supplementary Fig. 6).    

 

 

Figure 3. Testing the robustness of subjective-value representations in the OFC. We 
performed four different General-Linear-Modeling (GLM) analyses to examine the robustness 
of subjective-value representations in the OFC depicted in column A. The GLMs were 
implemented for both the high-gamma (80-150 Hz; top row) and gamma activity (30-80 Hz; 
bottom row). A. GLM-1. This is the original model where brain activity was regressed 
against the current and the previous subjective value. The high-gamma graph was identical to 
that shown in Fig. 2B. B. GLM-2. This analysis was performed in two steps. In the first step, 
we regressed brain activity against the current subjective value. In the second step, we used 
the residuals from the first step and regressed them against the previous subjective value. C. 
GLM-3. In this model, we only included trials where the subjects’ willingness-to-pay were 
not zero in the analysis. The model was identical to GLM-1. D. GLM-4. This regression 
model is identical to GLM-1 except that the subjects’ response time (RT) in the current trial 
was added as a nuisance regressor to the model. E. GLM-5. In this model, we added the 
subjective value of the option encountered two-trials back in addition to the subjective value 
of the current trial and the previous trial. * indicates p<0.05 (familywise error corrected) 
using permutation test based on the threshold-free cluster enhancement (TFCE) statistic. 
Colored (blue or green) horizontal lines indicate the time points with p<0.05 (familywise 
error corrected). 

 

 Second, we examined whether subjective-value representations can be affected 
by the zero-bid trials, as these trials represented about 23% of the total trials gathered 
across subjects (Fig. 1B). In GLM-3 we therefore excluded the zero-bid trials and 
only included the non-zero bid trials in the analysis. The results were again consistent 
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with the original model (Fig. 3C). Third, we examined whether response time might 
somehow interact with subjective-value in a way that altered the results found in 
GLM-1. Therefore, in GLM-4, in addition to the current and previous subjective value 
as regressors, we added the subjects’ current-trial response time as a regressor to the 
model. Again, the results (Fig. 3D) were consistent with the original model (GLM-1 
shown in Fig. 3A).  

Fourth, we extended the original model by adding the subjective value obtained 
two trials previously as a regressor so as to examine whether the results would be 
consistent with the original results and to also examine the impact of the two-trials 
back bid on the OFC activity. The results were consistent with the original findings 
(Fig. 3E). However, we note that we found no significant impact of the subjective 
value in the two-trial back on the OFC activity, for both the high-gamma activity 
(upper graph in Fig. 3E) and gamma activity (bottom graph in Fig. 3E). While this 
almost certainly reflects a power issue, we are unable to conclude from this result 
whether or not the impact of previous trials extends back beyond one previous trial. 
Finally, we noticed that the patterns of subjective-value representations were 
remarkably similar between the high-gamma (80-150 Hz) activity (top row in Fig. 3) 
and the gamma (30-80 Hz) activity (bottom row in Fig. 3) across these five different 
regressions. This suggested that activity in a broad frequency range (from 30 to 150 
Hz) represented the subjective value of food rewards in a similar fashion. Together, 
through these robustness checks support the conclusions that OFC 
electrophysiological activity in humans encodes both the subjective-value of the 
currently offered option and the subjective-value of at least one previously considered 
option. 

 

Subjective-value representations in different OFC subregions 

We next examined whether patterns of subjective-value representations differed 
between the three major subregions on the human OFC—the medial (area 14), central 
(areas 11 and 13), and lateral (area 47/12) OFC. In all three regions, the high-gamma 
activity significantly correlated with the current subjective value (Fig. 4 in blue). By 
contrast, not all regions showed significant representation of the subjective value 
encountered in the previous trial: both the medial and central OFC significantly and 
negatively correlated with the previous subjective value, but not the lateral OFC (Fig. 
4 in green). At the individual-contact level, the majority of contacts that significantly 
represented the current subjective value (blue triangles) showed positive correlation 
with the current subjective value. The results on the previous subjective value, at the 
individual-contact level, were less consistent across the three regions. In the central 
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OFC, significant previous-value contacts tended to show a negative correlation with 
previous subjective value. In the medial and lateral OFC, this tendency was less 
obvious. 

  

 

 

Figure 4. Subjective-value representations in the three major regions of the OFC. A. 
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Electrode contacts in the medial (left), central (middle), and lateral OFC (right). B. High-
gamma activity. Average time course of regression coefficients for the current subjective 
value (in blue) and previous subjective value (in green) in the medial, central, and lateral 
OFC. * indicates p<0.05 (familywise error corrected) using permutation test based on the 
threshold-free cluster enhancement (TFCE) statistic. Colored (blue or green) horizontal lines 
indicate the time points with p<0.05 (familywise error corrected). C. Subjective-value 
representations in individual OFC contacts. Conventions are the same as described in Fig. 2C. 

 

Cross-frequency representations of subjective value  

Surprisingly, in the OFC, we not only found significant subjective-value 
representations in the high-gamma and gamma activity bands (Fig. 3), but also in the 
activity of lower frequencies (Fig. 5). The two-dimensional heatmap (Fig. 5A) plots 
the z statistic for the regression coefficients (across all electrode contacts across all 
subjects) in the time-frequency space for the current subjective value (left graph in 
Fig. 5A) and for the previous subjective value (right graph in Fig. 5A). The colors in 
the maps reveal the encoding directions of subjective value—orange for positive 
correlation with the subjective value, blue for the negative correlation, and green for 
non-significant results. It is evident that, after stimulus onset (indicated by 0 on the 
horizontal axis), activity in the gamma and high-gamma band positively correlated 
with the current subjective value (the orange clusters in the left graph, Fig. 5A) but 
negatively correlated with the previous subjective value (the blue clusters in the right 
graph, Fig. 5A). Interestingly, the encoding patterns of subjective value were reversed 
in the low frequency bands. Activity in the beta (13-30 Hz), alpha (8-12 Hz), and theta 
(4-7 Hz) bands negatively correlated with the current subjective value (blue clusters in 
the left graph, Fig. 5A), but positively correlated with the previous subjective value 
(orange clusters in the right graph, Fig. 5A). These results are further summarized in 
the group-level time series plots of the regression coefficients (Fig. 5B). At the 
individual-contact level, scatter plots of the t statistic according to the maximum 
TFCE statistic are plotted in Fig. 5C. Noticeably, the low-frequency activity 
significantly represented a bias on the current subjective value before stimulus 
onset—before information about the current food item was revealed. We found that in 
the alpha band, these results were associated with two behavioral patterns: the 
variability of the bids and the correlation between the current subjective value and the 
previous subjective value. We found that, in part, such pre-stimulus representations 
were driven by the subjects who showed less variability in their bids and whose bids 
were more affected by the bid in the previous trial (Supplementary Figs. 7 and 8). In 
other words, the more the subjects relied on the previous bid, the greater the 
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likelihood of significant pre-stimulus representations (a form of bias).      
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Figure 5. Cross-frequency representations of subjective value. A. Time-frequency 
representations for subjective value. The heatmap plots the z statistic of the regression 
coefficient for the current subjective value (left graph) and previous subjective value (right 
graph). Significant clusters in these two-dimensional maps were identified by contiguous 
points in the time-frequency space that survived multiple testing after with a familywise error 
rate of 0.05 according to the threshold-free-cluster-enhancement (TFCE) statistic. Significant 
positive correlation is represented by orange, significant negative correlation is indicated by 
blue. Non-significant results are coded by green. B-C. Results from activity in the beta, theta, 
and alpha bands. B. Average time course of regression coefficients for the current subjective 
value (blue) and previous subjective (green) in the beta (13-30 Hz, top graph), alpha (8-12 
Hz, middle graph), and theta (4-7 Hz, bottom graph) activity. C. Subjective-value 
representations on individual OFC contacts in the beta (top graph), alpha (middle graph), and 
theta activity (bottom graph). Conventions are the same as described in Fig. 2C. * indicates 
p<0.05 (familywise error corrected) using permutation test based on the threshold-free cluster 
enhancement (TFCE) statistic. Colored (blue or green) horizontal lines indicate the time 
points with p<0.05 (familywise error corrected). 

 

Subjective-value representations in other brain regions 

We also examined subjective-value representations in several other subcortical (Fig. 
6) and cortical regions (Fig. 7). The subcortical regions included the amygdala, 
hippocampus, and striatum. At the group-level, all of these regions except the striatum 
showed significant subjective-value representations (middle graph in Fig. 6). Both the 
amygdala and the hippocampus significantly represented the current subjective value, 
while the hippocampus also represented the previous subjective value. In the 
hippocampus, at the individual-contact level, the majority of the significant contacts 
seemed to cluster in the fourth quadrant, suggesting a positive correlation with the 
current subjective value and a negative correlation with the previous subjective 
value—a result consistent with our findings in the OFC. In the amygdala, 90% of the 
contacts were non-significant, even though the group-level results indicate significant 
current-value representation in the area. To summarize, even though all three 
subcortical regions showed evidence for subjective-value representations, only the 
hippocampus showed significant representations for both the current and previous 
subjective value, at the group level and at the level of individual contacts.     
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Figure 6. Subcortical representations for subjective value. High-gamma activity in the 
amygdala, hippocampus, and striatum. Conventions are the same as described in Figure 2. A. 
Amygdala. B. Hippocampus. C. Striatum. 

 

 In our analysis of recordings from cortical regions other than the OFC—including the 
insula, the anterior cingulate and midcingulate cortex (ACC and MCC), posterior cingulate 
cortex (PCC), and the intraparietal sulcus (IPS)—we found that, at the group level, all but the 
IPS significantly represented the subjective value. The insula significantly represented both 
the current and the previous subjective value, while the ACC-MCC, and PCC represented the 
previous subjective value. At the individual-contact level, about 85% of contacts in the ACC-
MCC, PCC, and IPS were non-significant, while about 30% of the contacts in the insula were 
significant in either representing the current or the previous subjective value. The proportion 
of significant contacts in the insula (27%) was identical to the OFC (29%, Fig. 2C) and 
hippocampus (28%, Fig. 6B). In summary, while there was evidence for subjective-value 
representations in these four cortical regions, only the insula showed prominent 
representations for both the current and previous subjective value, as these representations 
were observed at the group level and at the level of individual contacts in our valuation task. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511706doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511706
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

 

 

Figure 7. Cortical representations for subjective value. High-gamma activity in the insula, 
cingulate cortex, posterior cingulate cortex, and intraparietal sulcus. Conventions are the same 
as described in Figure 2. A. Insula. B. Anterior cingulate and midcingulate cortex (ACC and 
MCC). C. Posterior cingulate cortex (PCC). D. Intraparietal sulcus (IPS). 

 

OFC activity trajectories in value space  

To further understand how the OFC as a whole dynamically represents subjective 
value and context, we performed two final complementary analyses, one based on a 
principal component analysis (PCA) and the other based on a regression subspace 
analysis (Mante et al., 2013; Aoi et al., 2020).  

For each electrode contact, we first computed the mean high-gamma activity 
timeseries (across all trials) and subtracted it from each individual trials’ timeseries. 
Second, we sorted trials according to the subjective value of the current trial (high or 
low, median spilt) and the subjective value of the previous trial (high or low, median 
split). The medians we used were subject-specific. This resulted in a 2 (current 
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subjective value magnitude) × 2 (previous subjective value magnitude) design and a 
total of four conditions. Third, we gathered the activity timeseries across all OFC 
contacts according to condition (Fig. 8A). Each condition is represented by a two-
dimensional matrix where each row represents the timeseries—from 1s before 
stimulus onset to 1.5s after stimulus onset—of a single OFC electrode contact. Fourth, 
we stacked up the four two-dimensional matrices (one for each condition) and 
performed a single principal component analysis (PCA) across all conditions. The 
PCA allowed us to identify the dimensions in the neural state space that captured the 
most variance in the OFC high-gamma activity. Here the neural state space is a 
𝑁!"#$%!$&-dimensional space where 𝑁!"#$%!$&	is the number of electrode contacts in 
the OFC (𝑁!"#$%!$& = 166). This analysis approach combines two advantages in our 
dataset—the idiosyncratic preferences of different individuals and a large number of 
electrode contacts across participants. In other words, by using the individual-specific 
medians to categorize trials into different conditions, we preserved the individual-
specific preference information in this population-level, across-subjects analysis. 

 

 

Figure 8. State-space analysis reveals OFC activity trajectories in value space. A. OFC 
activity sorted by condition. We sorted trials into four different conditions according to the 
magnitude of the current subjective value (high or low, median split for each subject 
separately) and the previous subjective value (high or low, median spilt for each subject 
separately). Each graph summarizes the average OFC activity timeseries of 166 electrode 
contacts. Each row represents the timeseries—from 1 s before stimulus onset to 1.5 s after 
stimulus onset—of a single OFC contact. B-D. Principal component analysis (PCA) of all 
trials massed together reveals distinct, condition-specific activity trajectories and subjective-
value axes. B. Activity trajectories for subsets of trials all used in the PCA are plotted and 
color-coded with respect to the four conditions in the space of the first and second principal 
components. The horizontal and vertical axes represent the projections of OFC population 
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activity onto the first principal component (PC-1) and the second principal component (PC-2). 
Time is indexed by the darkness of the colors, with the starting time point (1 s before stimulus 
onset) being the darkest and the end time point the lightest. Each data point in the trajectories 
represents a 50-ms time point. C. PC-1 captures the subjective value from the previous trial. 
Here we plot the activity trajectories on the PC-1 axis as a function of time. High previous 
subjective value: cyan and yellow; low previous subjective value: magenta and purple. D. PC-
2 captures the subjective value of the current trial. Here we plot the activity trajectories on the 
PC-2 axis as a function of time. High current subjective value: magenta and cyan; low current 
subjective value: yellow and purple. E. Activity trajectories are plotted in the space 
constructed of the current subjective-value axis (horizontal axis) and the previous subjective-
value axis (vertical axis). Color codes are identical to 8B. F. The current subjective-value axis 
distinguishes high (magenta and cyan) from low (yellow and purple) current subjective value. 
Here we plot the activity trajectories on the current subjective-value axis as a function of 
time. G. The previous subjective-value axis distinguishes high (cyan and yellow) from low 
(magenta and purple) previous subjective value. Here we plot the activity trajectories on the 
previous subjective-value axis as a function of time. 

  

We then projected the activity timeseries from each of the four groups of trials 
(current subjective value magnitude: high and low × previous subjective value 
magnitude: high and low) separately onto the first principal component (PC-1) and the 
second principal component (PC-2) and plotted a temporal trajectory of the 
population activity during each of these four groups of trials (Fig. 8B). We found that 
each of the four conditions had very unique trajectories, suggesting that the top two 
principal components—the factors that accounted for the most variance in the OFC 
high-gamma activity—strongly and orthogonally capture information about current 
and past trial subjective value. The four activity trajectories start from a common 
origin (corresponding to 1s before stimulus onset) and then diverge in four different 
cardinal directions. These directions revealed that the first principal component 
appears to capture the subjective value observed in the previous trial (Fig. 8C), 
separating high previous subjective value (yellow and cyan) from low previous 
subjective value (purple and magenta). The degree of separation appears to depend on 
the current subjective value, with stronger separation between high and low previous 
subjective value when the current subjective value was high (cyan and magenta). The 
onset of this stronger separation emerged early, right after the stimulus onset (0s 
mark). The second principal component appears to capture information in the 
population about the magnitude of the subjective value observed in the current trial 
(Fig. 8D), separating high current subjective value (cyan and magenta) from low 
current subjective value (yellow and purple). The emergence of this separation also 
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appeared to be early, approximately 200 ms after stimulus onset. These patterns were 
consistently observed under different data-smoothing parameters (Supplementary Fig. 
9). This unbiased PCA analysis thus seems to support the notion that, at least when 
human subjects are performing a valuation task, much of the variability in activity 
observed in the OFC encodes the current value and context, with context information 
seeming to have a greater overall impact on the data variance. 

Interestingly, the regression subspace analysis adapted from Mante et al. (2013 
revealed a similar pattern of trajectories (Fig. 8E-G) as those observed in the PCA 
(Fig. 8B-D). The regression subspace analysis aims to reveal OFC activity in a value-
specific low-dimensional subspace that captures the across-trial variance due to the 
subjective value of the current trial, and the subjective value of the previous trial. The 
analysis consisted of two steps. First, we denoised the OFC population activity (using 
the first 12 PCs from PCA accounting for 78.59% of the neural variance across 
electrode contacts). Second, we projected the denoised population activity onto two 
orthogonal axes—the axis of the current subjective value (horizontal axis) and the 
previous subjective value (vertical axis)—that were defined based on the regression 
coefficients of subjective value in GLM-1 (See Methods for details). The trajectories 
from the four different conditions again started at the same origin and quickly 
established their unique paths after stimulus onset in a manner highly similar to the 
one observed in the first two components of the raw PCA. As expected then, the 
current subjective value regression axis could easily distinguish the current subjective 
value (Fig. 8F), separating high current subjective value (cyan and magenta) from the 
low current subjective value (purple and yellow). The emergence of this separation 
appears to begin within 500ms after stimulus onset. The previous subjective value 
regression axis could easily distinguish the previous subjective value (Fig. 8G), 
separating the high (yellow and cyan) from the low (purple and magenta) previous 
subjective values. Finally, we found that these patterns remained when we varied the 
number of PCs for activity denoising (from 2 to 20 accounting for 39.89% and 
89.83%; See Supplementary Fig. 10) and when no data smoothing was applied 
(Supplementary Fig. 11). 

In summary, these two analyses reveal the dynamics of OFC activity in 
representing the subjective value and temporal context, and highlight the fact that 
context is a major source of organized patterns of activity in the OFC. At least while 
subjects are performing valuation tasks, value and context seem to be the major 
determinants of activity patterns in this region. 
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Discussion 

In this study, we used stereo electroencephalography (sEEG) in human epileptic 
patients to investigate the electrophysiological representation of subjective value and 
context, in humans—fundamental building blocks in the theory of decision making 
widely studied in non-human animals. Our data show that, as observed previously in 
animals, human subjective value signals show strong evidence of context dependency. 
Indeed, our PCA results suggest that context is an even more significant determinant 
of activity pattern than simple value. Previous work has indicated that the human 
orbitofrontal cortex (OFC) represents the subjective value of rewards under 
immediate consideration: Gamma (30-80Hz) and high-gamma activity (80-150Hz) 
have both been shown to positively correlate with the subjective value of an offered 
reward (Lopez-Persem et al., 2019). We found that these signals were negatively 
influenced by the magnitude of rewards offered on previous trials, a form of temporal 
context dependency that has been observed behaviorally in humans and 
physiologically only in non-human primates. To our knowledge, this is the first 
evidence of context-dependency in human electrophysiological signals encoding 
subjective value.  

An important—and often less explored in previous studies—dimension of our 
data analysis was an analysis of signals at the single contact/electrode level. Many 
previous human intracranial studies have been forced to average across electrode 
contacts in order to report findings about a region of interest. The high quality of both 
our initial signals and the nature of our analytic pipeline, allowed us to both examine 
single-contact level data and region of interest averages. The single-contact level data 
allowed us to examine the local spatial distribution of both subjective value and 
context signals, independently, at the level of cortical subareas. Our data revealed that 
signals from many individual contacts in the lateral OFC encode a subjective value 
signal that is only weakly influenced by temporal context. In contrast, subjective 
value signals influenced by context were more common in the central and medial 
subregions of the orbitofrontal cortex. In a similar vein, we found that the 
hippocampus and insula carried subjective value signals strongly influenced by 
temporal context at the single contact level. 

Our contact-by-contact data also indicates that even in areas known to carry 
robust subjective value signals, only about 30% of the recording sites carry those 
signals (in a statistically significant way). The observed patchy distribution of 
subjective value signals in the human agrees well with parallel work in the monkey 
conducted with much finer electrodes gathering signals at the single neuron level.  
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Value representations in the human and monkey OFC 

There is now widespread agreement that subjective value representations are broadly 
distributed in the mammalian brain. A series of influential meta-analysis studies 
examining fMRI data from human subjects have focused attention on two key areas: 
the ventral striatum and the ventromedial prefrontal cortex. Activity in these two areas 
is now widely associated with decision-making and subjective value and 
measurements of these areas are now often used as direct tools for assessing 
subjective value in humans. Interestingly, however, the focus on these two human 
brain areas stands in contrast to extensive electrophysiological work on value 
representations in non-human primates and to a lesser extent in rodents. Multiple 
electrophysiological studies in animals have focused interest on the orbitofrontal 
cortex as critical source of subjective value signals in these species. This apparent 
mismatch between human and monkey data has been of some significance, and has 
raised the question of whether this mismatch reflects a technological difference 
between fMRI and electrophysiology or a species difference between humans and 
other mammals. 

 Recently, a small number of intracranial electrophysiological studies have begun 
to address this dichotomy by using electrophysiological tools to examine subjective 
value representations in humans. Studies on value-based decision making in humans 
have now been conducted using electrocorticography (ECoG) (Saez et al., 2018) and 
sEEG in human epileptic patients (Jenison et al., 2011; Mormann et al., 2019; Lopez-
Persem et al., 2020). Since the high-frequency components (the gamma and high-
gamma bands) of the sEEG and ECoG signals are believed to correlate tightly with 
the single unit activity (Siegel & König, 2003; Liu & Newsome, 2006; Berens et al., 
2008; Belitski et al., 2008; Ray & Maunsell, 2011; Perge et al., 2014; Rich & Wallis, 
2017), it should be possible to use these tools to search for the human analog of 
monkey OFC value signals. Lopez-Persem and colleagues (2020) for example, used a 
region of interest approach with sEEG recordings and showed unambiguous 
subjective value signals that were the human homologue of monkey value signals in 
that same region. 

 Our observations extend this earlier work from the level of a region of interest to 
the level of a single recording contact. This adds to a growing literature using sEEG 
or ECoG in humans that finds subjective-value representations in the medial (area 14) 
and central OFC (areas 11 and 13) in single-unit responses (Mormann et al., 2019), in 
gamma and high-gamma activity (Saez et al., 2018; Lopez-Persem et al., 2020), and 
in single-unit activity in the amygdala (Jenison et al., 2011). It should, however, be 
noted that the naming of the subdivisions of OFC are not consistent across studies. 
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Here we have adopted the monkey-based convention used by Padoa-Schioppa and Cai 
(2011) and Wallis (2012) in describing the medial (area 14), central (areas 11 and 13), 
and lateral (area 47/12) OFC.   

 

Measuring subjective value: choice, willingness-to-pay, and liking ratings 

Our current understanding of the subjective valuation of rewards in humans is based 
on three different methods for eliciting subjective value—choice tasks, the Becker-
DeGroot-Marschak auction task where subjects indicate willingness-to-pay, and 
liking-rating tasks. To date, however, there has been little discussion of how these 
different elicitation methods might differentially impact the subjective-value signals 
measured physiologically. 

While we employed the incentive compatible Becker-DeGroot-Marschak value 
elicitation method to assess a subject’s subjective valuation for food items (as in 
Jenison et al., 2011), most other studies have employed either the liking-ratings tasks 
under similar conditions (Mormann et al., 2019; Lopez-Persem et al., 2020) or asked 
the subjects to choose between different monetary lotteries (Saez et al., 2018). We 
chose the willingness-to-pay approach presented here for two reasons. First, unlike 
the liking-rating approach, with the BDM it is in the subjects’ best interest to provide 
their true valuation of the rewards and some research indicates that this yields more 
accurate estimates of subjective value at the behavioral level (Becker et al., 1964). 
Second, compared with choice tasks that offer 2 or more options, each trial presents 
only one object for evaluation, simplifying the interpretation of neural data to the 
representation of a single object. 

Despite these advantages of the BDM approach, however, it must be 
acknowledged that the cognitive and motivational processes associated with each 
method are not identical. How might these different elicitation methods impact 
subjective valuation? It will be important for future investigations to enrich our 
understanding of the neural representations for subjective value by characterizing the 
similarities and differences between these different methods as they impact subjective 
value signals in the brain. 

 

Contextual Modulations of Subjective Value Representations 

Numerous studies in non-human primates have made it clear that the subjective value 
signals in the OFC are strongly influenced by context. Padoa-Schioppa and colleagues 
(Padoa-Schioppa, 2009), for example, have shown that the firing rates of single 
monkey neurons are strongly adapted by temporal context. If animals face blocks of 
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low value rewards, this has the effect of reducing the responses of OFC neurons. 
These non-human primate signals appear to be affected the by the range of subjective 
value experienced in the recent past (Simmons & Richmond, 2008; Padoa-Schioppa, 
2009; Kobayashi et al., 2010; Kennerley et al., 2011). It remains an open question as 
to whether the human OFC activity exhibits this same property. Another important 
and open question is how these relative-value signals in OFC contribute to choice 
behavior. While studies had begun to show the effects of range on choice behavior 
(Zimmermann et al., 2018), the links between OFC relative-value signals and range-
affected choice behavior remain unclear. 

 Our data show that recently experienced rewards influence the activity of human 
subjective value neurons in these same areas. We found that the reward delivered on 
the preceding trial effectively down-adapted the signal observed from the human 
OFC. This is a finding compatible with both the standard range adaptation models and 
with divisive normalization models, both of which are aimed at describing the 
influence of recent temporal context on OFC firing rates. We stress that the fact that 
our linear regression analysis suggests a subtractive relationship between current and 
previous reward should not be interpreted as specifically supporting a subtractive 
relationship in the neuronal data. Linear regression is constrained to always represent 
divisive relationships as subtractive. Were the true relationship divisive it would be 
expected to appear subtractive upon linear regression as used here. For this reason, we 
must be silent about the true form of the representation. 

 

Population-Level Analyses Using Dimension Reduction Approaches in Humans 

Over the last decade there has been increasing interest in aggregating information 
from large populations of neurons in macaques and rodents into high dimensional 
datasets that can then be analyzed at the population level (Cunningham & Yu, 2014; 
Vyas et al., 2020; Urai et al., 2022). Of particular interest has been the extraction of 
the trajectories—in low-dimensional space—neuronal activity takes in these high 
dimensional data-spaces in valuation and decision-making tasks. In this report we 
extended those approaches to the study of human sEEG signals, for what we believe 
to be the first time. Our results both validate and extend this earlier work in non-
human primates. First, our unbiased PCA revealed that during our task the population 
begins each trial at a common starting point and then evolves toward a representation 
whose primary properties are a representation of reward context and current offer, 
with the suggestion of context being an even larger signal than value. Our regression 
subspace dimensionality reduction analysis (Mante et al., 2013) further confirmed and 
extended this finding, revealing that OFC population dynamics formed distinct 
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trajectories according to the subjective value and context setting signals. These 
trajectories serve as another point of contact with monkey data, reinforcing the 
similarities of these two species in the orbitofrontal cortex. 

 

Single Contact Measurements Reveal Site Heterogeneity 

Previous monkey studies have also provided some sense of how subjective value and 
context signals are distributed in the monkey brain. While subjective value signals are 
observed robustly in areas like the monkey OFC, it is important to note that not all 
OFC neurons show these signals. Estimates from Rich and Wallis (2017) made in the 
monkey suggest that only about 30% of channels in the OFC carry a subjective value 
signal. They found that after stimulus onset, the peak percentage of OFC channels 
whose high-gamma activity represented expected reward size was about 20%. After a 
reward was delivered, the peak percentage was about 40% in representing the type of 
reward the animals received. Interestingly, we observed a similar result: in high-
gamma activity, about 30% of our OFC electrode contacts showed evidence of either 
the subjective value signals, or the context setting signals (subjective value of the 
previous trial), or both. This seems to show excellent agreement between humans and 
monkeys. 

 Our examination of context dependency, however, does seem to suggest a 
difference between humans and monkeys. We observed that in some areas, like the 
central and medial OFC, individual contacts reflected either subjective value signals 
or context setting signals. Very few contacts represented both the subjective value and 
context setting signals. This is an observation that has not been widely reported in the 
monkey. While it will be important to confirm these findings, this does raise the 
possibility that human context setting signals may be distinctive in some way. 

 

Cross-frequency representations 

Results from non-human primates also may shed light on how broad-band sEEG 
signals might be expected to behave. For example, it has been suggested that low-
frequency activity in the alpha band may be involved in modulating inputs from task-
relevant and task-irrelevant brain regions (Haegens et al., 2011). In studies of reward 
representations, An et al. (2019) found that in non-human primates, reward 
expectation increased single-unit firing rates in the primary motor cortex but 
decreased alpha (8-14 Hz) oscillatory power. Given that single-unit firing rates often 
positively correlate with high-gamma power (Ray & Maunsell, 2011), this finding 
suggests that the high-frequency power (e.g., high-gamma activity) in M1 may 
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positively correlate with reward expectation, while low-frequency power, such as 
alpha power, negatively correlates with reward expectation. This is similar to what we 
found where the encoding directions for subjective value in the low-frequency activity 
were reversals of those in the high-frequency activity.  

One potential explanation for the encoding directions of subjective value in the 
alpha band is the inhibition of the previous subjective value. Increase in alpha 
oscillations have been shown to reflect inhibitory activity in circuits associated with 
attention, perception, and working memory (Foxe et al., 1998; Jensen et al., 2002; 
VanRullen & Koch, 2003; Sauseng et al., 2005; Thut et al., 2006; Rihs et al., 2009; 
Kerlin et al., 2010; Jensen & Mazaheri, 2010). Hence, it is possible that the positive 
correlation of alpha activity with the previous subjective value reflects the inhibition 
of information about past subjective value when the subjects evaluate a snack food 
item in the current trial. Similarly, the negative correlation of alpha power with the 
current subjective value may reflect increased attention to the food item in the current 
trial. 

Our findings also suggest the involvement of alpha oscillations in modulating 
visual attention during value-based decision making (Krajbich & Rangel, 2011). 
Previous fMRI studies found that value signals in the vmPFC are modulated by visual 
attention (Lim et al., 2013). An open question, therefore, is to investigate whether and 
how alpha oscillations in the OFC, and other value-related regions, change in a free-
choice paradigm where different options are simultaneously presented and the 
subjects are free to look at these options before making a decision.      

 

Implications to the links between LFP and BOLD signals in value 
representations  

Our results were consistent with the view that there is a close relationship between 
high-frequency oscillations (30 to 150 Hz) in local field potential (LFP) and the fMRI 
BOLD signals. Our results showed the involvement of gamma (30-80 Hz) and high-
gamma (80-150 Hz) activity in the representation of subjective value. This frequency 
range (30-150 Hz) coincides with previous observations that “LFPs were often 
dominated by stimulus-induced and usually stimulus-locked fast oscillations in the 
range of 30-150 Hz” (Logothetis et al., 2001). Given that BOLD signals have been 
found to be better described by the LFP than by multi-unit activity (MUA), it is 
possible that the gamma and high-gamma findings here would be observed in the 
BOLD signals in the human OFC had there been the same spatial resolution or no 
signal loss due to the susceptibility artifacts in the BOLD signals in this brain region. 
In brain regions associated with subjective value representation that do not suffer 
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BOLD signal loss, we would expect the gamma and high-gamma activity there to 
represent subjective value. Indeed, we found that many other brain regions also 
represented the subjective value in high-gamma activity. Among them, the insula and 
hippocampus stood out because evidence for the past and present subjective-value 
representations were found at the group level (averaged across electrode contacts) and 
at the level of individual contacts in those regions.       

 

Technical limitations of sEEG 

An important limitation for any sEEG is the sparse and heterogeneous coverage of the 
electrodes. The decision about where to implant electrodes is, rightfully, an entirely 
clinical decision, but as a result the spatial coverage we can achieve is spare and 
heterogeneous, both within and across the subjects. This limitation poses challenges 
to both within- and between-subject (group-level) statistical inference and the 
interpretation of null results. On the one hand, null results can signal that a region is 
not involved in certain tasks or computations. On the other hand, the null results could 
be driven by sparse or inefficient coverage. In the context of our study, it is 
insufficient to conclude, for example, that OFC does not represent subjective value on 
a particular subject based on the null results from his or her OFC contacts. It is 
possible that his or her OFC contacts are not ‘in the right spot’—regions in the OFC 
that represent subjective value. One possible way to address this issue is the 
development of distributed, anatomically realistic source modeling of LFP data (e.g., 
Lin et al., 2021). Future studies need to explore this direction and to examine its 
feasibility and value in contributing to the interpretations of LFP signals in human 
sEEG experiments.  

 

Summary 

Many of the behaviors in humans and animals are affected by the context of our 
recent experience. Characterizing the representations of context at the computational, 
algorithmic and neural implementation levels, therefore, is essential to understanding 
a wide array of cognitive functions. Using human intracranial electrophysiology, we 
found several distinct features of context-dependent representations for the subjective 
valuation of rewards. At the computational and algorithmic levels, temporal context—
recent history of rewards—was represented in a manner predicted by existing models 
like divisive normalization and range adaptation. At the neural implementation level, 
we found that the current reward value and the context were represented by distinct 
electrode contacts in the orbitofrontal cortex, insula, and hippocampus. These findings 
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suggest that contextual adaptation is implemented through distinct, large-scale 
neuronal populations that separately represent current and past information about 
reward value. 
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Methods 

Participants. Twenty patients with drug-resistant epilepsy participated in this study 
(9 males; aged 16–51 years; average: 29.2 years). Patients had been implanted with 
multi-contact depth electrodes and were undergoing intracranial monitoring in order 
to identify seizure onset regions. Each patient was implanted with 7 to 14 electrodes. 
The decision to implant the electrodes and their location was driven solely by medical 
considerations. The study was approved by Taipei Veterans General Hospital 
Institutional Review Board. Informed consent was obtained from each patient before 
participation.  

 

Behavioral Task. The subjects performed a version of the Becker-DeGroot-Marschak 
(BDM) auction task during sEEG recording. They were asked to refrain from eating 
for at least two hours before the start of the experiment. Prior to the BDM task, the 
subjects received 200 New Taiwan Dollar (TWD) as an endowment to purchase food 
items. 

The BDM task consisted of 8 blocks of 25 trials each. One hundred snack food 
items were introduced and each food item was presented twice in the experiment. In 
each trial, a snack food item was presented and the subjects were instructed to bid—
his or her maximum willingness-to-pay—for the snack food item. A trial started with 
a fixation cross presenting in the center of the screen for 1 s. Following the fixation, a 
snack food item was presented on the screen until subjects clicked on the mouse 
button to signal that she or he was ready to indicate his or her willingness-to-pay. The 
subjects could take as long as they wanted to indicate their readiness. Trials where the 
response time (RT) was 3 standard deviation away from the mean RT of the subject 
were excluded from further analysis (usually less than 1% of trials), as they could 
very well indicate disruptions of the experiment outside of the experimenters’ control 
(e.g., visits from clinicians, nurses, and/or staffs). After making the mouse click, a 1 s 
fixation period followed. After the fixation period, the subjects would see a price 
matrix from 0 to 200 in steps of 10 on the computer screen (Fig. 1A). The subjects’ 
task was to move the cursor to the price box that reflected the most she or he was 
willing to pay for that food item. Subjects can take as much time as they desired to 
select one of these boxes with a mouse click, but were encouraged to respond within 2 
s. To give the subjects an idea of time, the box where the cursor was at would turn 
blue within 2 s after the price matrix box appeared. After 2 s, the box where the cursor 
pointed at would turn red. After clicking on the desired price box, a brief visual 
feedback on the selected price (willingness-to-pay) was shown (0.5 s), which was then 
followed by a variable inter-trial interval (1, 1.5, or 2 s). 
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In this task design, a single trial therefore consisted of two stages: an evaluation 
stage followed by response stage. During the evaluation stage—when the food item 
was presented—the subjects were instructed to take time and think over how much 
money they were willing to pay for the food. By contrast, during the response stage—
when the price matrix was shown—the subjects were instructed to indicate 
willingness-to-pay as quickly as possible. The reason for implementing the two-stage 
design was to temporally localize the valuation signals we hoped to observe. Since 
valuation of the food item and the motor response to indicate willingness-to-pay were 
temporally separated by our task, we hoped that the impact of motor-related 
confounds introduced when subjects indicated willingness-to-pay could effectively be 
minimized. 

After all trials of the BDM task were complete, one trial was randomly selected 
and realized according to the rules of the BDM auction. The rules are as follows. Let 
X be the bid made by a subject for a food item. A random integer Y is drawn from a 
discrete uniform distribution ranging from 10 to 200 with interval of 10. If X ≥ Y, the 
subject would buy the food item at a price equal to Y. If X<Y, the subject would not 
get the food and would keep the endowment. These widely used rules establish a 
situation whereby the optimal strategy for the subjects is to bid exactly the maximum 
amount that they are willing to pay for the item. If they underbid for an item, the 
subject may lose the opportunity to purchase the item later at a still highly desirable 
price. If they overbid they risk being forced to purchase the item at an undesirable 
price. Only by stating the exact maximum price at which they would purchase the 
item can they achieve the optimal result. The BDM rules and the consequences were 
informed to the subjects before the BDM task so that they knew that the best strategy 
is to bid exactly what they are willing to pay for the item.  

 

Electrophysiological recordings. Patients were implanted with 0.86 mm diameter 
depth electrodes (Ad-Tech, Racine, WI, USA) that were arranged into strips with 6, 8, 
or 10 contacts (2.29 mm in contact length) and 4-8 mm (most strips: 5 mm) 
separation. One of the electrode strips was 1.12 mm in diameter with 6 contacts (2.41 
mm in contact length) and 5 mm separation in between neighboring contacts. 
Recordings were obtained simultaneously from the scalp and depth electrodes while 
the patients performed the task. Data was collected using the Natus Quantum system 
(Natus Medical Incorporated). Sampling rates were 2048 Hz with an 878 Hz low-pass 
filter. During recording, all the electrodes were referenced to the scalp PFz electrode 
or an intracranial contact located in white matter. Details on the recording sites—MNI 
coordinates of the electrode contacts—presented in the current study can be found in 
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the Supplementary Tables. 

 

MRI acquisitions. For each patient, T1-weighed structural MRI images were 
collected on a 1.5T Signa HDxt scanner (GE Healthcare, Milwaukee, WI, USA) 
before and after the surgery for electrode implantation. The MR images were taken 
along the axial plane using a fast spoiled gradient-recalled echo sequence (axial slice 
thickness=1 mm; TR=10.02 ms, TE=4.28 ms, TI=0 ms, flip angle=15°, 
bandwidth=31.2 kHz, matrix=256×256, FOV=256×256 mm).  

 

CT acquisitions. CT images were used in conjunction with T1-weighted MRI images 
for transforming the anatomical location of the electrode contacts into the standard 
MNI space. CT images were acquired using Philips Brilliance 64 CT scanner with the 
following parameters: 64 slices, rotation duration of 1 sec with coverage of 16 cm per 
rotation, 60-kW generator (512×512 matrix), 120 kV, 301 mAs, and axial slice 
thickness of 1 mm. 

 

sEEG data analysis 

Below we describe the sEEG data analysis pipeline in detail. A summary of the sEEG 
data analysis pipeline can be found in the Supplementary Figure 5.  

 

sEEG preprocessing. EEG data were preprocessed and analyzed by EEGLAB 
(Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014) in 
MATLAB in the following steps. First, a digital band-pass filter from 0.5 Hz to 250 
Hz and a 60 Hz notch filter were applied to the EEG data at the single contact level—
including the scalp and the sEEG dataset—and the EEG data were mean centered. 
Second, the scalp EEG dataset were separated from the sEEG dataset. Third, the 
sEEG data for each electrode contact were re-referenced to the average of the two 
neighboring contacts (Li et al., 2018). The scalp EEG data were re-referenced to the 
left and right mastoid. Fourth, in order to remove eye-movement-related activity from 
the sEEG data, we performed an independent component analysis (ICA) separately on 
scalp EEG dataset and the sEEG dataset. Prior to the ICA, we performed a principal 
component analysis (PCA) separately to each dataset to denoise the data. Our 
criterion was to select the number of PCs that explained 95% of the data variance. We 
then performed ICA on the denoised dataset. Eye-related activities were first 
identified by inspecting the independent components (ICs) of the scalp EEG data. 
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Once an IC with ocular artifacts was identified, we checked whether there was a 
corresponding IC in the sEEG data. If there was such a component, it was removed 
from the sEEG data. 

The epoch for each trial (trial epoch) started 1.5 s before the onset of the food 
stimulus and ended 2 s after stimulus onset, with a pre-stimulus baseline correction. 
Trial epochs with interictal spikes were identified through visual inspection and were 
excluded from further data analysis. We referred to the trials with no interictal spikes 
as the valid trials.  

 

Time-frequency analysis. After preprocessing, a time frequency analysis was 
performed using a wavelet transform, estimating spectral power from 4 to 200 Hz for 
each epoch with full-epoch length single-trial baseline correction (Grandchamp & 
Delorme, 2011). After time-frequency analysis, the epoch of the timeseries data start 
at 1 sec before stimulus presentation and end at 1.5 s after stimulus presentation with 
a 10 ms resolution. The timeseries of the power data from the high-gamma (80-150 
Hz), gamma (30-80 Hz), beta (13-30 Hz), alpha (8-12 Hz), theta (4-7 Hz) bands for 
the epoch were further extracted for the GLM analysis described below (see General 
linear modeling of brain activity below). At each frequency band, the corresponding 
timeseries data had 251 time points (a 2.5-s time window with a 10ms resolution).   

 

Identifying the anatomical locations of electrode contacts 

To identify the anatomical location of electrode contacts across different subjects, we 
transformed the electrode contact location from the subject’s native space to standard 
Montreal Neurological Institute (MNI) space. To do that, we used three sets of brain 
images collected from each subject: the T1-weighted image prior to electrode 
implementation (pre-T1), the T1-weighted image after electrode implementation 
(post-T1), and the CT image after electrode implantation (post-CT). Our goal was to 
transform the CT image to MNI space. The reason we used the CT image to identify 
the electrode contact coordinates in the standard space was because the CT image, 
compared with T1-weighted image, suffers less distortion and therefore allows for 
more accurate mapping of the contact location. The transformation was performed 
using SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK; 
https://www.fil.ion.ucl.ac.uk/spm/) and proceeded in the following three steps. First, 
the post-CT image was aligned to the post-T1 image with 4th degree B-Spline 
interpolation. Second, both the post-T1 image and the realigned post-CT image were 
aligned with the pre-T1 image, also with 4th degree B-Spline interpolation. Finally, the 
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pre-T1, the realigned post-T1 and post-CT images were transformed to the standard 
MNI space (1 mm isotropic voxel size). The location of each contact in MNI space 
was obtained through the post-CT images in MNI space. 

 

Identifying the OFC electrode contacts  

We used the Harvard-Oxford probabilistic atlas available in FSL (version 6, 
https://fsl.fmrib.ox.ac.uk/fsl) to identify the electrode contacts in the OFC. An 
electrode contact was identified as an OFC contact when the probability of its MNI 
coordinates being in the OFC was larger than 1%. In addition, because some contacts 
were situated at the borders between the posterior section of the OFC and the anterior 
insula, we decided to exclude the contacts that had a higher probability of being in the 
insula than being in the OFC. 

 

Visualizing anatomical locations of electrode contacts 

To visualize the anatomical location of electrode contacts across different subjects, we 
used the MNI coordinates of the contacts and plotted them in the standard MNI brain 
template (Lin et al., 2021; https://github.com/fahsuanlin/fhlin_toolbox).    

 

General linear modeling of brain activity 

For each contact, after time-frequency analysis, we obtained – for each trial – a time-
series data of power at a particular frequency band. Here we use high-gamma band 
(80-150 Hz) as an example and we refer to the power of high-gamma as high-gamma 
activity, as in Rich and Wallis (2017). To examine subjective-value representations, 
we performed the following General Linear Modeling (GLM) analysis. First, we set 
up a GLM for each time point within the epoch separately. Here the data—a vector of 
length 𝑁$'(%)& where 𝑁$'(%)& is the number of valid trials a subject performed in the 
BDM task—are the frequency-specific power obtained from time-frequency analysis 
(see sEEG preprocessing for descriptions on valid trials). We implemented five 
different but similar GLMs. The first GLM (GLM-1) was the main GLM, and the rest 
were slightly different versions of GLM-1 in order to test the robustness of GLM-1’s 
results on subjective-value representations (Fig. 3). In GLM-1, we implemented a 
constant term, a regressor for the subjective value of the current trial, and a regressor 
for the subjective value of the previous trial. In GLM-2, we performed the analysis in 
two steps. First, we implemented a model with the constant term and the current 
subjective value regressor. Second, we used the residuals from the first step as data 
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and implemented a model with the constant term and the previous subjective value. In 
GLM-3, we implemented the same model as GLM-1 except that we only considered 
trials where the subject’s willingness-to-pay was greater than zero dollars. In GLM-4, 
the subject’s response time (RT) was added as a regressor, along with the constant 
term, the current subjective value, and the previous subjective value. In GLM-5, we 
added the subjective value of the food option encountered two-trials back as a 
regressor, along with the constant term, the current subjective value, and the previous 
subjective value. We used the fitlm function in MATLAB to perform the GLM 
analysis.     

 

Group-level permutation test (across electrode contacts) 

This analysis was used for Figs. 2B, 3, 4B, 5B, 6 (middle graphs), and 7 (middle 
graphs). The data is an 𝑁!"#$%!$& × 𝑁$(*+ 	matrix of estimated regression coefficients. 
𝑁!"#$%!$& denotes the number of electrode contacts in a region of interest (e.g., 
orbitofrontal cortex, OFC), and 𝑁$(*+ denotes the number of time points within the 
trial epoch. Using this data, we computed the timeseries of the t statistic (across 
electrode contacts). Hence, the t-statistic timeseries is a 1 × 𝑁$(*+ 	matrix. To 
compute the t statistic, at each time point we computed the mean regression 
coefficient (across contacts) and divided it by its standard error. We then transformed 
the t statistic to the z statistic. To correct for multiple comparisons across time points, 
we performed a permutation test with threshold-free cluster enhancement (TFCE) 
(Smith & Nichols, 2009; Winkler et al., 2014). In each permutation, we randomly 
assigned a label of 1 to half of the contacts and -1 to the other half. Note that for each 
permutation, this procedure—assigning 1 to half of the contacts and -1 to the other 
half—was applied to all the time points of the trial epoch. For each time point 
separately, we then performed a linear regression analysis where data is the actual 
regression coefficients, and the regressor was the randomly permuted label. This gives 
us a t statistic for the regressor at each time point. The t statistic was transformed to 
the z statistic, and using the z statistic we computed the TFCE statistic (E=2, H=2) for 
each time point. As a result, after each permutation, we obtained a timeseries of the 
TFCE statistic, which we then used to identify the maximum TFCE statistic. After 
10,000 permutations, we obtained the null distribution of the maximum TFCE and 
used it to determine the critical region (p<0.05, familywise error corrected). The 
TFCE statistic at each time point was then evaluated with respect to the critical 
region: if the TFCE statistic fell within the critical region, we would conclude that it 
was statistically significant. Otherwise, it was assessed as not significant. 
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Test of symmetry in the data distribution 

An important assumption for the permutation test is the symmetry of the data 
distribution (Winkler et al., 2014). For the group-level permutation tests described 
above, we had two datasets, one containing the regression coefficients of the current 
subjective value, and the other for the previous subjective value. Taking the current 
subjective value as an example, the data is an 𝑁!"#$%!$& × 𝑁$(*+ matrix where each 
element is the regression coefficient of the current subjective value of a particular 
electrode contact at a particular point in time in the trial epoch. Each time point 
consists of a distribution of the regression coefficients across electrode contacts. Our 
goal was to examine whether this distribution (𝑁!"#$%!$& × 1 matrix of regression 
coefficient) was symmetrical. Therefore, for each time point separately, we computed 
its corresponding sample skewness (Pearson median skewness). To test symmetry, we 
used the bootstrap method (resampling with replacement) so as to obtain the 
distribution of the sample skewness and use it to construct the 95% confidence 
interval of sample skewness. If the 95% confidence interval did not include 0, we 
would conclude that the data distribution was symmetrical. 

Taking the OFC high-gamma activity as an example: In order to obtain the 
distribution of the sample skewness, first, we resampled with replacement the OFC 
contacts (166 in total) 10,000 times. This gave us, for each resampled dataset, a time 
series of beta coefficients, separately for the current subjective value and the previous 
subjective value, from the 166 resampled contacts. Second, for each time point 
separately within the time series, we computed the sample skewness (Pearson median 
skewness) of the beta coefficients across the resampled OFC contacts. Third, with 
10,000 resampled datasets, we obtained, for each time point separately, a distribution 
of sample skewness that we used to construct the 95% confidence interval. Finally, 
using the 95% confidence interval, we were able to test whether the data distribution 
was symmetric at each time point separately. We found that the sample skewness did 
not differ significantly from 0 in the majority of time points, for each brain region, 
each frequency band, and for each regressor of interest (current subjective value and 
previous subjective value). The results are shown in the supplement (Supplementary 
Figs. 12-14). We did, however, observed a significant positive skewness for the 
current subjective value in OFC high-gamma activity approximately at 600~700 ms 
after stimulus onset (left graph, Supplementary Fig. 12A). On the one hand, this does 
raise concern for the permutation test regarding the current subjective value at this 
particular 100-ms time window. On the other hand, we also observed that the time 
window of activity that significantly correlated with the current subjective value 
(from approximately 400 ms to 1500 ms after stimulus onset; Fig. 2B) far extended 
this 100-msec time window. In other words, the significant current subjective-value 
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representations included many time points where the skewness was not significantly 
different from 0. On this ground, we concluded that the violation of the symmetry 
assumption observed here should not change the overall conclusion that OFC high-
gamma activity represented the current subjective value.           

 

Group-level permutation test (across contacts) in the time-frequency space 

This analysis was used for Fig. 5A. The analysis logic is similar to that described in 
Permutation test across contacts in the time domain. The main difference is the 
dimensionality of the dataset. Here the dataset included 166 OFC contacts across 20 
subjects. In the 1st-level GLM, we regressed the power against the current and the 
previous subjective value for each contact in each time-frequency point. As a result, 
for the current subjective value and previous subjective value separately, we obtained 
information about the regression coefficient (which we also referred to as the beta 
value) in a three-dimensional space (time, frequency, electrode contacts). Let 𝑁,'+- 
denote the number of frequency points (from 4 Hz to 200 Hz), 𝑁$(*+ denotes the 
number of time points within the trial epoch, and 𝑁!"#$%!$& denotes the number of 
electrode OFC contacts. To correct for multiple testing across time points at the group 
level (across all contacts), we performed permutation test with threshold-free cluster 
enhancement (TFCE) (Smith & Nichols, 2009; Winkler et al., 2014). In each 
permutation, we randomly assigned a label of 1 to half of the contacts and -1 to the 
other half. For each time-frequency point separately, we performed a linear regression 
analysis (see General linear modeling of brain activity above) where data was the 
actual beta values and the regressor was the randomly permuted label. This would 
give us the t statistic of the regressor at each 2D time-frequency point. The t statistic 
was then transformed to the z statistic and based on the z statistic, we computed the 
TFCE statistic (E=1, H=2) at each 2D time-frequency point. As a result, we obtained a 
2D map of TFCE and identified the maximum TFCE. After 10,000 permutations, we 
obtained the null distribution of the maximum TFCE where we then used to determine 
whether each 2D time-frequency point was significant (p<0.05, familywise error 
corrected). 

 

Individual-level permutation test (for individual electrode contacts) 

This analysis was performed for each individual electrode contact separately and was 
used for Figs. 2C, 4C, 5C, 6 (right graphs), and 7 (right graphs). At each individual 
contact, the data is a 𝑁$'(%)& × 𝑁$(*+ matrix of brain activity where 𝑁$'(%)& denotes 
the number of valid trials and 𝑁$(*+ the number of time points within the trial epoch. 
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Here brain activity is referred to as the power of a particular frequency band (e.g., 
high gamma for 80-150 Hz) after time-frequency analysis. For each time point 
separately, we regressed brain activity (𝑁$'(%)& × 1 matrix) against the current 
subjective value and the previous subjective value (GLM-1). This gave us a timeseries 
of regression coefficients for each regressor (1 × 𝑁$(*+ matrix) and their 
corresponding t statistics. To correct for multiple testing across time points, we 
performed a permutation test with threshold-free cluster enhancement (TFCE) (Smith 
& Nichols, 2009; Winkler et al., 2014). At each permutation, we randomly permuted 
the trial label (𝑁$'(%)& × 1 matrix) of the design matrix (𝑁$'(%)& × 2 matrix where the 
current subjective value and previous subjective value were the two regressors). Note 
that for each permutation, the same permutation was applied to all the time points. We 
then regressed the data (𝑁$'(%)& × 1 matrix), for each time point separately, against 
the permuted design matrix. This gave us a t statistic of the regressor at each time 
point. The t statistic was transformed to the z statistic, and using the z statistic we 
computed the TFCE statistic (E=2, H=2) for each time point. As a result, we obtained 
a time series of TFCE statistic and identified the maximum TFCE across time. After 
10,000 permutations, we obtained the null distribution of the maximum TFCE that we 
used to determine the critical region (p<0.05, familywise error corrected). If the TFCE 
statistic of a time point was inside the critical region, it would be labeled as 
statistically significant. Otherwise, it was labeled as not significant. 

 

State space analysis 

To study how the dynamics of high-gamma activity in the OFC as a whole 
represented subjective value, we performed two complementary state space analyses, 
one based on the Principal Component Analysis (PCA) and the other based on a 
regression subspace analysis (Mante et al., 2013). The data preparation for both 
analyses was identical and was performed in the following sequence. For each 
electrode, we first smoothed the high-gamma timeseries data for each trial (Gaussian 
time window=400 ms). We also performed the same analysis with no smoothing 
applied, and with 100 ms, 200 ms, and 300 ms Gaussian time window 
(Supplementary Fig. 9). The timeseries data started from 1s before the onset of the 
food stimulus and ended 1.5s after stimulus onset. Second, we computed the average 
timeseries (across all trials) and subtracted it from the timeseries of each trial. Third, 
we sorted the trials into four conditions according to the magnitude of the subjective 
value of the current trial (high or low, median spit) and the magnitude of the 
subjective value on the previous trial (high or low, median spilt). The medians were 
obtained based on the corresponding subject’s willingness-to-pay data. The four 
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conditions therefore are [current subjective value, previous subjective value] = [high, 
low], [high, high], [low, low], [low, high]. Fourth, we computed the average 
timeseries of each condition. Fifth, for each condition, we organized the average 
timeseries data of all electrode contacts as a two-dimensional matrix of size 
𝑁!"#$%!$& × 𝑁$(*+ where 𝑁!"#$%!$& is the number of electrode contacts in the OFC 
across all subjects (𝑁!"#$%!$& = 166) and 𝑁$(*+ is the number of time points within 
the trial epoch (𝑁$(*+ = 251). We denote this condition-specific matrix 𝑋! . Finally, 
we collapsed the four 2D activity matrices (one from each condition) such that the 
final dataset for the subsequent analyses (PCA-based analysis and regression subspace 
analysis described below) was a 2D matrix of size 166 × 1044	which included all 
data aggregated together before the initial PCA was performed. We denote this data 
matrix 𝑋. 

PCA-based analysis. We performed PCA on the prepared dataset described above 
using the pca function in MATLAB. The feature dimensions were the electrode 
contacts, and the observations were the time points within the trial epoch. We then 
projected the activity matrix of each condition onto the first two PCs, resulting in four 
different trajectories (timeseries) in the PC space. We then plotted the trajectories and 
color coded them (Fig. 8B-D). 

Regression subspace analysis. We first performed PCA on the prepared dataset to 
denoise the data. In the main text, the prepared dataset was the smoothed high-gamma 
timeseries data (Gaussian time window of 400 ms). We also performed the analysis 
with no smoothing applied (Supplementary Fig. 11). The number of PCs selected to 
construct the denoising matrix was 12. We also performed the same analysis described 
below with number of PCs being 2 and 20 (Supplementary Fig. 10). The denoising 
matrix (D) was constructed  

𝐷 = ∑ 𝑃𝐶(𝑃𝐶(.
/!"
(01       

where 𝑃𝐶( is the i-th principal component and is a column vector of size 𝑁!"#$%!$&. 
The resulting D is a 𝑁!"#$%!$& × 𝑁!"#$%!$& matrix. The denoised data 𝑋2!% is 
obtained according to 

𝑋2!% = 𝐷𝑋.  

Next, we turn our attention to the linear regression analysis (GLM-1) and the 
regression coefficients. In GLM-1, we implemented two task-related regressors, 
namely the subjective value of the current trial and the subjective value of the 
previous trial. The GLM was performed on each electrode contact and for each time 
point within the trial epoch separately. Let v denote task-related variable. Here we 
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have two task related variables, the current and the previous subjective value. Let 𝛽3,$ 
denote the regression vector consisting of regression coefficient of each contact 
associated with task variable v (current subjective value or previous subjective value) 
at time t. 𝛽3,$ therefore has a length of 𝑁!"#$%!$&. We then applied the denoising 
matrix (D) to 𝛽3,$ to denoise the regression vector 

𝛽3,$
2!% = 𝐷𝛽3,$ 

where 𝛽3,$
2!% is the denoised regression vector. 

 For each task variable v, we find the time 𝑡3*%5 that has the maximum L2 norm 

of 𝛽3,$
2!% and define the corresponding regression vector 𝛽3,$#$%&

2!%  as 𝛽3*%5 where 

𝛽3*%5 is the time-independent, de-noised regressor vector for task variable v. We then 
put 𝛽3*%5 from different task variables (current and previous subjective value) 
together into a single 2D matrix 𝛽*%5 where the columns are the task variables and 
the rows are the electrode contacts. 𝛽*%5 therefore has a size of 𝑁3 × 𝑁!"#$%!$& 
where 𝑁3 = 2 and 𝑁!"#$%!$& = 166. Finally, we obtain the orthogonal axes of the 
current subjective value and the previous subjective value by orthogonalizing 
𝛽*%5with QR decomposition 

𝛽*%5 = 𝑄𝑅  

where Q is an orthogonal matrix and R is an upper triangular matrix. The first two 
columns of Q correspond to the orthogonalized regressor vectors 𝛽36, which we refer 
to as the task-related axes of the current subjective value and the previous subjective 
value. 

 To study the representations of the current and previous subjective value in the 
OFC, we projected the condition-specific data matrix 𝑋! onto the orthogonal axes  

𝑃3,! = 𝛽36
.𝑋! 

Where 𝑃3,! is the set of timeseries vectors over all task variables (v) and conditions 
(c). Here we have two task variables, the current and previous subjective value, and 
four conditions. Therefore, in the two-dimensional space with the current and 
previous subjective value as the task-related axes, we have four trajectories, which we 
plotted in Fig. 8E-G.     
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Supplementary Figure 1. The distribution of willingness-to-pay for individual subjects. 
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Supplementary Figure 2. The response time (RT) distribution of individual subjects. 
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Supplementary Figure 3. Correlation between the subjective value of the current trial and the 
subjective value of the previous trial. r indicates the Pearson correlation coefficient, and p indicates 
the corresponding p-value. 
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Supplementary Figure 4. Correlation between the subjective value of the current trial and the 
response time (RT). r indicates the Pearson correlation coefficient, and p indicates the p-value. 
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Supplementary Figure 5. Overview of the sEEG data processing pipeline. First, the sEEG data were 
filtered to remove uninteresting frequency bands and power-line interference. Second, the sEEG data 
of each electrode contact were re-referenced to the average of the two neighboring contacts 
(Laplacian reference). Third, the ocular artifacts were identified and removed from the sEEG data 
using the Independent Component Analysis (ICA). The trial epoch for each trial was 3.5 s, from 1.5 s 
before the onset of stimulus to 2 s after stimulus onset. The baseline used for baseline correction was 
the 2-s pre-stimulus interval. The epochs with interictal activities were identified and excluded from 
further analysis. After preprocessing, a time-frequency analysis was performed for each epoch. The 
time series of the power from different frequency bands were then extracted. For each contact, we 
regressed the logarithm of the power in each 10 ms time bin against the regressors – the bid 
(willingness-to-pay) subjects revealed in the current trial (bidt) and that in the previous trial (bidt-1). 
The estimated regression coefficients (𝛽!, 𝛽") reflect the strength and direction of the representations 
for the subjective value of the current trial (𝛽!) and that of the previous trial (𝛽"). 
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Supplementary Figure 6. Testing the robustness of subjective-value representations in the 
OFC. Here we revered the order of steps in GLM-2. In the first step, we regressed high-
gamma activity against the previous subjective value. In the second step, we used the 
residuals from the first step as data and regressed them against the current subjective value. 
Results were similar to GLM-2 (Fig. 3 in the main text). Conventions are the same as 
described in Fig. 3 in the main text. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511706doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511706
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Supplementary Figure 7 
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Supplementary Figure 7. Subjective-value representations in the OFC for subjects with 
different variability of bids. We split the subjects to two different groups according to the 
variability of their bids (willingness-to-pay). A. The 10 subjects with larger variability of bids 
(94 contacts). B. The 10 subjects with lower variability of bids (72 contacts). Conventions are 
the same as in Figs. 3 and 5 in the main text. 
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Supplementary Figure 8 
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Supplementary Figure 8. Subjective-value representations in the OFC for subjects with 
different degree of correlations between the current subjective value and the previous 
subjective value. We split the subjects into two groups according to the degree of correlation. 
A. The 10 subjects with larger correlation between the current subjective value and the 
previous subjective value (87 contacts). B. The 10 subjects with lower correlation between 
current subjective value and the previous subjective value (79 contacts). Conventions are the 
same as described in Figs. 3 and 5 in the main text. 
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Supplementary Figure 9 
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Supplementary Figure 9. Trajectories of OFC population high-gamma activity in the space 
of the first and second principal components (PC-1, PC-2) under different smoothing 
parameters. A. No smoothing was applied to the trial-level high-gamma timeseries data. B. 
Data were smoothed with a 100ms Gaussian window. C. Data were smoothed with a 200ms 
Gaussian window. D. Data were smoothed with a 300ms Gaussian window.  
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Supplementary Figure 10. Regression subspace analysis. Trajectories of OFC population 
high-gamma activity in the space of current subjective value (Current SV axis) and previous 
subjective value (Previous SV axis) under different PCA-based denoising setup when the 
trial-level high-gamma timeseries data were smoothed with a 400ms Gaussian time window. 
A. When the number of PCs included is 2. B. When the number of PCs included is 20.    
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Supplementary Figure 11. Regression subspace analysis. Trajectories of OFC population 
high-gamma activity in the space of current subjective value (Current SV axis) and previous 
subjective value (Previous SV axis) under different PCA-based denoising setup when no 
smoothing was applied to the trial-level high-gamma timeseries data. A. The number of PCs 
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included in the denoising matrix is 2. B. 12 PCs were included in the denoising matrix. C. 20 
PCs were included in the denoising matrix.     
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Supplementary Figure 12. Sample skewness of the regression coefficient in GLM-1 in the 
OFC contacts. A. High-gamma power (80-150 Hz). B. Gamma power (30-80 Hz). C. Beta 
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power (13-30 Hz). D. Alpha power (8-12 Hz). E. Theta power (4-7 Hz). 
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Supplementary Figure 13. Sample skewness of the regression coefficient in GLM-1 in the 
subcortical contacts. A. Amygdala (30 contacts). B. Hippocampus (126 contacts). C. Striatum 
(25 contacts). 
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Supplementary Figure 14. Sample skewness of the regression coefficient in GLM-1 in the 
cortical contacts. A. Insula (169 contacts). B. Anterior cingulate and midcingulate cortex 
(ACC and MCC, 81 contacts). C. Posterior cingulate cortex (PCC, 31 contacts). D. 
Intraparietal sulcus (IPS, 62 contacts). 
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Supplementary Table 1: Orbitofrontal cortex (OFC). MNI coordinates for the 166 OFC 
contacts. 
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Supplementary Table 2: Amygdala. MNI coordinates for the 30 amygdala contacts. 

 
 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511706doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511706
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Supplementary Table 3: Hippocampus. MNI coordinates for 126 hippocampus contacts. 
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Supplementary Table 4: Striatum. MNI coordinates for the 25 striatum contacts. 
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Supplementary Table 5: Insula. MNI coordinates for the 169 insula contacts. 
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Supplementary Table 6. Anterior cingulate cortex (ACC) and midcingulate cortex (MCC). 
MNI coordinates for the 81 ACC and MCC contacts. 
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Supplementary Table 7. Posterior cingulate cortex (PCC). MNI coordinates for 31 PCC 
contacts. 
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Supplementary Table 8. Intraparietal sulcus (IPS). MNI coordinates for the 62 IPS contacts. 
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