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Abstract  
Bigger sample size can help to identify new genetic variants contributing to an 
increased risk of developing Alzheimer's disease. However, the heterogeneity of the 
whole-exome sequencing (WES) data generation methods presents a challenge to a 
joint analysis. Here we present a bioinformatics strategy for joint calling 20,504 WES 
samples collected across nine studies and sequenced using ten different capture kits in 
fourteen sequencing centers in the Alzheimer’s Disease Sequencing Project. gVCFs of 
samples were joint-called by the Genome Center for Alzheimer’s Disease into a single 
VCF, containing only positions within the union of capture kits. The VCF was then 
processed using specific strategies to account for the batch effects arising from the use 
of different capture kits from different studies.  
 
We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, 
and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 15% 
are missense variants. 1.8% of the variants are with CADD>30. 
   
Our new strategy for processing these diversely generated WES samples has shown to 
generate high-quality data. The improved ability to combine data sequenced in different 
batches benefits the whole genomics research community. The WES data are 
accessible to the scientific community via https://dss.niagads.org/.  
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Background  

The Alzheimer’s Disease Sequencing Project (ADSP) was established in 2012 as a key 
initiative to meet the goals of the National Alzheimer’s Project Act (NAPA): to prevent 
and effectively treat Alzheimer’s Disease (AD) by 2025. Developed jointly by the 
National Institute on Aging (NIA) and the National Human Genome Research Institute 
(NHGRI), the aims of the ADSP are to (1) identify protective genomic variants in older 
adults at risk for AD; (2) identify new risk variants among AD cases; and (3) examine 
these factors in multi-ethnic populations to identify therapeutic targets for disease 
prevention.  
 
The ADSP completed whole-exome sequencing (WES) of 10,836 unrelated cases and 
controls in 2018. The data were generated by three NHGRI-funded Sequencing Centers 
(Broad Institute, the Baylor College of Medicine’s Human Genome Sequencing Center, 
and Washington University’s McDonnell Genome Institute) using Illumina technology 
and QC’ed by the ADSP. The study identified a novel rare variant in the long non-coding 
RNA AC099552.4, as well as two novel genes (OPRL1 and GAS2L2), via gene-based 
analysis (Bis et al. 2020) that were associated with AD. However, the discovery of novel 
rare variants for AD is still limited by available sample size.  
 
ADSP has sought to leverage other WES data sets (most of which were generated 
concurrently with the ADSP’s data set in the collaborative network) to increase the 
power to detect AD-related rare variants, not only limited to the Non-Hispanic White 
population but in other populations as well (African American, Hispanic, etc.). This 
collaboration will lead to the generation of the largest yet AD WES data set sharable 
with the public community. Combining data sets generated in projects that are originally 
designed for studying AD or other related dementias (ADRD) from different labs across 
different times (2010-2021) poses new challenges, as each WES data set was 
generated and processed using different protocols, potentially introducing biases into 
the combined data set (Clark et al. 2011; Sulonen et al. 2011; JS et al. 2011). As 
sequencing cost decreases and technology advances, more sequence data will be 
available shortly (both whole-genome sequencing [WGS] and WES) and will be 
generated using different protocols. Due to the desire for joint and meta-analysis, there 
is a need to process data generated by different platforms efficiently in a consistent 
manner.  
 
To ensure all sequence data are processed following best practices with consistency 
and efficiency, the Genome Center for Alzheimer's Disease (GCAD) in collaboration 
with the ADSP developed the genomic variant calling pipeline and data management 
tool for ADSP, VCPA (Leung et al. 2019). This is functionally equivalent to the CCDG 
and TOPMed pipelines (Regier et al. 2018). VCPA has currently been adopted as the 
official pipeline for processing all ADSP WGS/WES data, as well as data received from 
the collaborative network, a group of principal investigators (PIs) who have obtained 
either NIH funding or funding from private foundations involved in sequencing small 
numbers of AD samples.  
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Compared to WGS data, WES data focuses on exons, which make up roughly 1% of 
the entire genome. The critical challenge unique to WES data harmonization is using 
different capture kits to sequence samples. The capture kits were made by different 
vendors over the years containing probes that were designed using different reference 
genomes and versions of gene annotations.  
 
In this study, GCAD built a new computational framework to integrate information from 
multiple capture kits (see Table 1 for details) while calling variants at the individual level 
and joint genotyping across individuals. Corresponding updated QC strategies were 
specifically developed for this data. Finally, all the individual data and joint-called data 
were shared with the community via https://dss.niagads.org/ in February 2020.   
 
Data description  
 
Sample selection 
 
The data set consists of 20,504 samples across nine studies (Table 1). Approximately 
half of the samples are from the ADSP-Discovery (part of the ADSP case/control data). 
Case control status were defined using the NINCDS-ADRDA (National Institute of 
Neurological and Communicative Disorders and Stroke, and the Alzheimer's Disease 
and related Disorders Association) criteria (Beecham et al. 2017). GCAD reached out to 
ADGC/ADSP PIs in the collaborative network and received 9,847 additional WES 
samples from eight different studies. Table 1 contains Sample counts that have passed 
through QC (see Section Sample level quality assurance checks for details).   
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Table 1: Summary of the data set with 20,504 WES samples from the nine studies, 
sequenced using ten different capture kits across fourteen sequencing centers. 
Footnotes for the sequencing site: the Broad Institute (Broad), Baylor College of 
Medicine Human Genome Sequencing Center (Baylor), the McDonnell Genome 
Institute at Washington University (WashU), Institute for Genomic Medicine - Columbia 
University (IGM-Columbia), Children's Hospital of Philadelphia (CHOP), Functional 
Genomics Core of the Institute for Diabetes, Obesity and Metabolism (FGC, IDOM), 
Penn Genome Frontiers Institute - University of Pennsylvania (PGFI), Genentech 
company, (Genentech), MGI company (MGI), Otogenetics Corporation (Otogenetics). 
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ADSP-
Discovery

sa000001 10657
Broad, 
Baylor, 
WashU

HiSeq 
2000/2500

X X

ADGCAA sa000003 3157
University of 
Miami

HiSeq 3000 X

Columbia 
WHICAP

sa000007 3861
IGM- 
Columbia

HiSeq 2000 X

MIAMI 
Family sa000006 108

University of 
Miami

HiSeq 
2000/2500 X X

CBD sa000009 346 CHOP HiSeq 2500 X

PSP sa000010 550
FGC, IDOM, 
PGFI

HiSeq 
2000/2500

X

Knight 
ADRC

sa000008 650
Genentech, 
MGI, 
Otogenetics

HiSeq 2000 X x X

FASe Family sa000004 1100
Genentech, 
MGI, 
Otogenetics

HiSeq 2000 X

Brkanac sa000005 75
University of 
Washington

HiSeq 2000 X

Capture kits used  

Studies 
Data set ID 

in NIAGADS 
DSS

Sample 
count (After 

QC)

Sequencing 
Site  

Sequencing 
platform 
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Genome Sequencing and Capture kit information  
 
Libraries were constructed from sample DNA with PCR amplification. Sequencing was 
performed across fourteen sites using different combinations of Illumina sequencing 
platforms and capture kits. Several studies (e.g., ADSP-Discovery) used multiple kits. 
while other studies used a single capture kit for all samples in their study design (e.g., 
Roche Nimblegen’s VCRome v2 kit was used in ADSP-Discovery, PSP, and Knight 
ADRC studies). The details are summarized in Table 1.  
 
Demographics 
 
Phenotype information, such as disease status (AD and other dementia case or 
control), self-reported race/ethnicity, sex and age, as well as the number of APOE 
e2/e3/e4 alleles per individual, were obtained from the phenotype data shared by the 
data contributors. The demographics of this dataset are summarized in Table 2. This 
dataset contains subjects from three major populations: 13,362 Non-Hispanic White, 
4,103 Black or African American, and 2,195 Hispanic. Altogether, there are a total of 
9,955 cases (75.8 ± 8.9 years old) and 9,717 controls (81.5 ± 8.1 years old). 60% of the 
cases were female, with a similar gender ratio for controls. 44% of the cases (and 23% 
of the controls) have ≥1 APOE e4 alleles, which is a known genetic risk factor for AD.  
 
Table 2: Summary of the demographics for each study. Listed in this table are total 
number of samples.  Duplicate samples from the same subject for platform comparison 
are counted multiple times.  

 
 
Methods 
 
Integrating Multiple WES Capture kits    
 
As summarized in Table 1, ten different capture kits were used for sequencing samples 
across nine studies. These capture kits were manufactured over the years by three 
different vendors (Illumina, Agilent, and Roche) and had substantial differences in kit 
contents, as the capture kits were generated based on different genomic annotation 
databases (e.g., Ensembl (Aken et al. 2016) on different reference genome builds 

Cases Controls Cases Controls Cases Controls 
0 1 2 0 1 2

Non-Hispanic White 5596 4279 75.6 (8.7) 86.8 (3.7) 58% 59% 57% 40% 3% 87% 13% 0%

Hispanic 234 157 75.2 (7.3) 74.8 (8.4) 65% 59% 59% 40% 1% 61% 39% NA

Other/Unknown 3 3 76.3 (11.8) 86.3 (2.1) 67% 0% 67% 33% NA 100% NA NA

Non-Hispanic White 1 0 58.0 (0) NA 0% NA NA 100% NA NA NA NA

Hispanic 2 6 81.0 (0) 74.0 (12.0) 100% 100% 50% 50% NA 67% 33% NA

Black or African American 1283 1634 74.5 (8.0) 72.9 (8.2) 70% 74% 35% 49% 15% 62% 35% 3%

Non-Hispanic White 83 800 85.4 (5.1) 80.5 (6.6) 66% 58% 80% 18% 2% 77% 21% 2%

Hispanic 511 1257 84.0 (5.5) 80.6 (6.3) 75% 70% 69% 29% 2% 79% 20% 1%

Black or African American 218 939 84.0 (5.7) 80.1 (6.6) 76% 69% 61% 33% 5% 67% 31% 2%

Miami_Families Non-Hispanic White 86 18 74.2 (7.6) 76.6 (6.9) 66% 39% 44% 53% 2% 78% 22% NA

CBD Non-Hispanic White 335 0 63.5 (8.4) NA 45% NA NA NA NA NA NA NA

PSP Non-Hispanic White 550 0 69.2 (8.4) NA 45% NA NA NA NA NA NA NA

Non-Hispanic White 224 338 68.3 (8.8) 71.3 (8.9) 42% 59% 48% 42% 9% 67% 29% 3%

Hispanic 0 3 NA 78 (19.1) NA 100% NA NA NA 100% NA NA

Black or African American 26 3 64.0 (9.2) 74.3 (5.5) 65% 33% 19% 50% 23% 67% 33% NA

Other/Unknown 3 2 76.0 (14.1) 76.0 (9.9) 100% 0% 33% NA 67% 50% 50% NA

Non-Hispanic White 731 274 78.5 (7.2) 78.8 (7.5) 63% 57% 25% 57% 18% 52% 44% 4%

Hispanic 7 2 79.4 (3.3) 75.0 (4.2) 71% 50% 71% 14% 14% 50% 50% NA

Other/Unknown 2 2 72.5 (3.5) 68.0 (4.2) 100% 0% 50% 50% NA NA 100% NA

Non-Hispanic White 44 0 74.9 (7.6) NA 61% NA 30% 39% 25% NA NA NA

Hispanic 16 0 68.1 (11.9) NA 56% NA 63% 31% 6% NA NA NA

Total 9955 9717 75.8 (8.9) 81.5 (8.1) 60% 64% 47% 38% 6% 77% 22% 1%

ADSP_Discovery

Controls Studies 
# of APOE e4 alleles Race/Ethnicity Age Gender (% of Female)

Cases 

ADGC_AA

Columbia_WHICAP

KnightADRC

FASe_Families

Brkanac_Families
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[GRCh36, GRCh37]). Whenever possible, capture kit annotation files (in BED format) 
were received directly from the data contributors. If not, GCAD downloaded the original 
capture kit annotation files from the vendor’s website. Note that these files contain the 
genomic coordinate information, and do not include the exact sequences of the 
designed regions. If GRCh38 information of capture kits is not available, we performed 
UCSC liftOver (Kuhn, Haussler, and James Kent 2013) converting coordinates to 
GRCh38 . All regions were further combined as a single BED file that contains the union 
of the capture kits’ genomic intervals (with flanking ± 7 bps). The BED files for individual 
capture kits, as well as the BED file containing all the captures’ intervals, are available 
in NIAGADS DSS (https://dss.niagads.org/datasets/ng00067/). 
 
Processing WES using VCPA at the individual sample level 
 
VCPA, a BWA/GATK-based pipeline (DePristo et al. 2011; Li 2013), was developed by 
GCAD and the ADSP and optimized for processing large-scale, short-read WGS data 
(Leung et al. 2019). To adopt VCPA for ADSP WES data processing, GCAD followed 
GATK Best Practices (Van der Auwera et al. 2013) with the following additional steps to 
accommodate for the use of multiple WES capture kits. Instead of calling variants 
limited to the capture regions per sample (JS et al. 2011; Sulonen et al. 2011), VCPA 
keeps all detected variants, as we envision that (1) the research community will use the 
joint-called VCF for different kinds of analyses (i.e., one project will select a few studies 
for its analyses, but another project might pick different studies); and (2) Any WES data 
sets in the future may use different capture kits. Compared to VCPA-WGS, VCPA-WES 
has explicit steps as follows:   

• Coverage calculation – the 20x coverage metric (i.e., percentage of base pairs 
[bps] with 20 reads or more) was calculated on regions that were included in the 
capture kits only. 

• Variant evaluation – Ti/Tv ratio (ratio of the number of transitions to the number 
of transversions) and counts of SNPs/indels were calculated on regions that were 
included in the capture kits only.  

• Variant calling – VCPA-WES has been updated to use GATK4.1.1 
HaplotypeCaller for better accuracy of SNV and indel detection. 

Sample-level quality assurance (QA) checks 
 
Three quality assurance checks were applied prior to joint genotype calling to identify 
problematic samples:  

1. SNV concordance check with existing SNP array genotypes to identify possible 
sample errors. Using verifyBamID (Jun et al. 2012) to compare between SNP 
array data and WES BAM files, samples with concordance <0.95 were excluded.  

2. Sex check for variants outside PAR region to identify possible sample swaps or 
misreporting. Using PLINK, samples with F statistics < 0.2 or > 0.8.   

3. Contamination check for possible sample swaps. Using verifyBamID (Jun et al. 
2012) to calculate the concordance estimate between the array genotypes and 
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the GRCh38-mapped BAM file. A sample is potentially contaminated if the 
CHIPMIX value is <0.05. 

In total, we dropped 55 samples that failed the SNP concordance check, 41 samples 
that were recorded with the incorrect sex, and 211 samples that failed the contamination 
check. An additional 266 samples were dropped due to consent issues, resulting in a 
call set containing 20,504 samples. 
 
Joint-genotype call of 20,504 WES samples  
 
All WES samples were joint-called using GATK4.1.1 to create a joint-genotype called, 
project-level VCF (pVCF). This included four major steps: 

• CombineGVCF and GenotypeGVCF – these two steps are the same in both 
VCPA-WGS and VCPA-WES pipelines. gVCFs of all 20,504 samples were 
combined in parallel across 5,000 genomic windows/regions across all the 
chromosomes.   

• Generating the VQSR model – a Variant Quality Score Recalibration (VQSR) 
indicator is used for defining qualities of variants via a machine-learning model. 
Only variants that were called within any of the capture kits were used to build 
the VQSR model. 

• Applying the VQSR model – the trained VQSR model was applied to all the 
autosomal chromosomes, as well as chromosomes X and Y, and mitochondria.  

Quality control (QC) protocol for WES samples  
 
The GCAD quality control (QC) pipeline uses a modified protocol originally developed 
by the ADSP QC Working Group on WGS (Naj et al. 2019) and includes several major 
components: (1) pre-QC quality checks; (2) variant-level QC; (3) sample-level QC; and 
(4) post-QC quality checks. These steps are applied to both SNVs and indels. 
We implemented variant-level QC to SNVs and indels in the project-level VCFs. Data 
were stratified into sequencing subsets based on the capture kit, sequencing assay, and 
sequencing center. We applied filters in the following order within sequencing subsets, 
resulting in the exclusion of: (1) variants outside of designated capture regions specific 
to the capture kit used on a sample; (2) variants failing GATK quality assessment (those 
without “PASS” or in a VQSR Tranche of 99.5% or more extreme); monomorphic 
variants; (3) variants with a high missingness rate (≥20%); (4) variants with excessive 
heterozygosity and (5) variants with high average read depth (>500x). Additionally, we 
estimated within subsets the allelic read ratio for each variant, and within each 
population (race/ethnicity). We also estimated the departure from Hardy-Weinberg 
Equilibrium (HWE) or excess heterozygosity, which may be used as potential exclusion 
criteria by end-users of the data.     
 
We also explored sample-level QC criteria and evaluated multiple filters to further 
exclude potential low-quality samples. We estimated multiple quality metrics within each 
sample including (1) counts of singleton/doubleton variant calls (to identify an excess of 
private variants); (2) genotype missingness rate within the sample; (3) 
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Transition/Transversion (Ti/Tv) ratio (for SNVs only); (4) heterozygosity-to-
homozygosity ratio across all variants within individuals; and (5) the mean within-sample 
read depth. Samples were considered for exclusion if their values for any of these 
criteria were greater than 6 SD from the mean value. 
 
Genotype concordance analyses with the previously published ADSP-Discovery WES 
data  
 
Genotype calls generated by VCPA in this data set (20,504 samples) include samples 
that were part of the ADSP-Discovery data set (Bis et al. 2020). To provide a 
comparison of genotype quality, we examined the concordance between genotype calls 
using the ATLAS approach (Challis et al. 2012) on 10,786 samples that overlapped 
between the two sets. The previous genotype calling was conducted based on 
GRCh37, which were lifted to GRCh38 using liftOver (Kuhn, Haussler, and James Kent 
2013). For these analyses, genotype concordance was defined as identical genotype 
calls (including missing genotypes) between the two call sets. Concordance was 
calculated by sample, by variant, and overall. Because VCPA employs a joint calling 
approach, we also investigated the impact of the capture kit coverage on genotype 
concordance under the hypothesis that limited coverage in additional samples of the 
current data set could alter the quality control metrics. 
 
Annotation protocol for WES samples  
 
Variants were annotated using our published annotation pipeline with updated 
resources (VEP 98 (McLaren et al. 2016),  CADDv1.4 (Rentzsch et al. 2019), 
SnpEffv4.1k (Cingolani et al. 2012) ) in GRCh38, described elsewhere (Butkiewicz et al. 
2018). Briefly, we assign a “most damaging consequence” via a custom prioritization 
routine that down-weights non-coding transcripts or transcripts flagged as undergoing 
nonsense-mediated decay.   
 
Results  
 
Characteristics of Capture kits  
 
As summarized in Table 1, a total of ten capture kits were used for sequencing 20,504 
individuals. Since these files were in different genome builds and file formats, GCAD 
first standardized them in the same file format and normalized them to the same 
reference genome build GRCh38. Table 3 contains additional key information about the 
capture kit contents, including the size of targeted genomic regions, the percentage of 
capture regions that are within Ensembl v94 exons, and the percentage of the Ensembl 
v94 exons (with flanking bp) that are captured by each of the kits.  
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Table 3: Characterization of genomic regions (in GRCh38) by each capture kit. 

 
 
We observed a wide range of differences in terms of the bases covered by each of 
these capture kits with respect to the human reference genome (from 37 million to 69 
million bps). An average of 91.76% of the capture regions per capture kit were 
annotated as Ensembl exons. In addition, on average 95.22% of these exons were 
captured by each capture kit.   
 
Capture kit comparison  
 
We next compare the target region designs among different capture kits. First, the 
Jaccard similarity measure was calculated on all capture regions at basepair level 
across these kits. A value of 1 indicates that the kits are very similar to each other, while 
a 0 indicates the opposite. The results are visualized in Figure 1. 

Capture kit info Number of bp
% of capture regions 
that are Ensembl 
v94 exons

% of Ensembl v94 
exons (with flanking 
7bp) that are 
captured

Agilent WES v3 capture region 52,941,356 92.54 95.13

Agilent WES v4 capture region 53,791,945 92.11 94.14

Agilent WES v5 capture region 53,309,273 89.97 96.27

Agilent WES v6 capture region 61,549,327 87.78 95.88

IDT xGen Exome Whole Exome Research Panel v1.0 w/Custom Spike-In Baits 39,968,963 94.05 95.20

Illumina Rapid Capture Exome (ICE) kit 40,653,755 91.17 98.03

Nimblegen VCRome sequencing w/Custom Spike-In Baits 41,708,836 96.26 93.63

Roche Nimblegen's VCRome v2.1 37,951,907 96.05 94.39

Roche SeqCap EZ Exome Probes v2.0 Target Enrichment Probes 47,294,869 94.68 92.34

Roche SeqCap EZ Exome Probes v3.0 Target Enrichment Probes 69,167,416 83.01 97.14
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Figure 1: Jaccard similarity measure of the capture kits.   
The average of all pairwise Jaccard similarity scores is 0.586 (SD: 0.038). The two most 
similar kits are “Illumina_Rapid_Capture_Exome_ICE_kit” and 
“Nimblegen_VCRome_sequencing_w-Custom_Spike-In_Baits” (Jaccard score = 0.83). 
Conversely, the two most dissimilar kits are 
“IDT_xGen_Exome_Whole_Exome_Research_Panel_v1.0_w-Custom_Spike-In_Baits” 
and “Roche_SeqCap_EZ_Exome_Probes_v3.0_Target_Enrichment_Probes (Jaccard 
score = 0.39).” 
 
Data quality – WES CRAMs  
 
The VCPA pipeline generated all CRAMs without using any capture kit information. 
Therefore, the differences observed in the CRAM metrics are independent of the 
capture kits and are primarily due to differences in the sequencing platforms used by 
the different sequencing centers.  
 
We investigated whether the processed CRAMs were affected by sequencing centers 
(Figure 2a) or platforms (Figure 2b). We compared multiple CRAM metrics, including i) 
percentage of mapped reads; ii) percentage of duplicated reads; iii) percentage of 
paired reads; and iv) quality of reads (based on a Q score of 30 [Q30]).   

a) sequencing centers  
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b) sequencing platforms  
 

 

Figure 2: Comparison of WES CRAM quality metrics across a) sequencing centers
(Seq_center); and b) sequencing platforms (Sequencer).  
 
From Figure 2a, we observed that (1) the average mapping rate is 99.6%; (2) 93.4% of
samples have <20% duplicated reads; (3) 83.4% of samples have >95% proper pairs;
and (4) 97.2% of samples have >80% of alignment with Q30. While there is some
variability in these metrics, we do not observe systematic bias as to which sequencing
center performed best/worst in all areas as compared to the others (Figures 2a, 2b).  
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Next, we sought to compare the 20x coverage (i.e., percentage of bps with 20 reads or 
more within the sample-specific capture regions) across all samples (Figure 3). 20x 
coverage was chosen as it was the minimum coverage required to successfully 
genotype 95% of heterozygous SNPs in an analyses (Meynert et al. 2014). For about 
95% of the CRAMs, we observed that >80% of reads were located within the capture 
region at 20x coverage. Similarly, this metric does not have sequencing center- or 
sequencer-specific effects, but on average, 20x coverage is lower for samples 
sequenced using the Illumina 2000/2500 platform.  
 

  
Figure 3: Comparison of 20x coverage of all the WES BAMs/CRAMs by a) Sequencing 
centers (left); and b) Sequencers (right).  
 
 
Data quality – variants   
Next, we examined the variant-level data quality. GATK outputs VQSR scores. Overall, 
96.83% of the variants (>7.3 million SNVs and 0.61 million indels) were labeled PASS 
by the model.  
 
Besides using the GATK VQSR indicator to specify the quality of a variant, the 
ADSP/GCAD QC pipeline (Naj et al. 2019) outputs a series of quality metrics to 
determine whether the variant is within capture regions, the call rate, depth, and Ti/Tv 
ratio after QC. Figure 4 shows the Ti/Tv ratio on the exonic variants (colored by study) 
before and after QC (Before QC on the x-axis, After QC on the y-axis). Before QC, the 
average Ti/Tv ratio is 2.53. After QC, the Ti/Tv ratio on exonic regions in our studies is 
around 3.03. This post-QC Ti/Tv ratio is similar to reports in previous findings (Lek et al. 
2016).  
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Figure 4: Comparison of the Ti/Tv ratio of exonic variants before and after QC.  
 
The QC protocol enables us to look for variants found across studies as well as those 
which are study-specific. On average, 97.26% of variants have a GATK PASS across 
study-capture combinations. 91.45% of variants within the designed capture kit per each 
study-capture combination are labeled as good quality.  
Table 4: Variant quality per study-capture combination. 

Study Capture Kit info 

% of  
variants 
that are 
monomor
phic 

% of non- 
monomor
phic 
sites, in 
capture 
kits 

Within 
the 
capture 
kits, % 
with 
GATK 
PASS 

Within 
the 
capture 
kits, % 
with 
VFLAG 0 

MIAMI 
family 

Agilent WES v3 capture 
region 97.65% 63.22% 97.56% 91.70% 

MIAMI 
family 

Agilent WES v4 capture 
region 97.88% 57.95% 95.29% 72.50% 

CBD 
Agilent WES v5 capture 
region 94.20% 68.74% 98.09% 95.30% 

FASe 
family 

Agilent WES v5 capture 
region 93.60% 70.88% 97.57% 91.84% 
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ADGCAA Agilent WES v6 capture 
region 71.92% 73.71% 97.56% 94.81% 

Knight 
ADRC 

IDX xGen Exome Whole 
Exome Research Panel 
v1.0 w/Custom Spike-in 
Baits 95.90% 47.79% 97.44% 95.48% 

ADSP-
Discovery 

Illumina Rapid Capture 
Exome (ICE) kit 77.87% 54.20% 97.90% 93.87% 

FASe 
family 

Nimblegen VCRome 
sequencing w/Custom 
Spike-in Baits 96.06% 46.57% 96.73% 93.86% 

Knight 
ADRC 

Nimblegen VCRome 
sequencing w/Custom 
Spike-in Baits 91.67% 47.97% 97.56% 95.31% 

ADSP-
Discovery 

Roche Nimblegen's 
VCRome v2.1 69.64% 66.22% 98.51% 94.69% 

FASe 
family 

Roche Nimblegen's 
VCRome v2.1 95.91% 62.59% 96.95% 91.74% 

PSP 
Roche Nimblegen's 
VCRome v2.1 92.47% 59.10% 95.60% 84.13% 

Brkanac 
Roche SeqCap EZ Exome 
Probes v3.0 Target 
Enrichment Probes 97.17% 64.59% 97.45% 91.17% 

Columbia 
WHICAP 

Roche SeqCap EZ Exome 
Probes v3.0 Target 
Enrichment Probes 67.19% 78.37% 97.39% 93.90% 

 
Genotype Concordance between two different callers on a set of overlapping individuals 
 
The ADSP-Discovery data set, comprised of 10,786 individuals, was sequenced and 
processed by three sequencing centers: Broad Institute, Baylor College of Medicine’s 
Human Genome Sequencing Center, and Washington University’s McDonnell Genome 
Institute. Genotypes for bi-allelic SNVs and indels were called using ATLAS2 on 
hg19/GRCh37 (Bis et al. 2020). To evaluate the genotype quality on our 20k WES call 
set, which was generated using a novel approach in which no capture regions were 
used for individual sample calling, we examined the overall concordance, by sample 
and by variant, of genotypes called differently on the 10,786 samples that were present 
in both the ADSP-Discovery data set and the current data set. 1,407,006 variants were 
called in both sets, comprising 15,175,966,716 genotypes. Overall concordance was 
99.43%. There were five samples with a genotype concordance <95%. Three samples 
had extremely low concordance (8.21%, 10.44%, and 23.44%), reflecting low DNA 
concentration samples, and the other two samples had 86.4% and 90.5% concordance. 
We also examined variant-level genotype concordance relative to capture kit coverage. 
The majority (69.3%) of variants were covered by all ten capture kits, 18.1% by nine, 
7% by eight, and 4% by seven capture kits. These patterns may be due to differences in 
sequence read coverage from the various capture kits combined with joint calling 
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approaches that leverage information across samples, but this trend only holds for a 
very small percentage of all called variants.     
 
Annotation results  
 
Using the ADSP annotation pipeline (Butkiewicz et al. 2018), we found that the 8.16 
million variants are located in 28,579 transcripts based on Ensembl annotations 
(McLaren et al. 2016; Butkiewicz et al. 2018). Every variant is annotated based on the 
most damaging VEP predicted consequence (see “Annotation protocol for WES 
samples” section). Figure 5A shows the top ten most damaging consequence 
categories. In summary, 41% of the variants are intronic, 15% are missense variants, 
followed by upstream/downstream gene variants (each 9%), synonymous variants (8%), 
and 3’UTR variants (7%). Figure 5B shows the proportion of the CADD score that is 
PHRED-like scores ranging from 1 to 99, based on the rank of each variant relative to 
all possible 8.6 billion substitutions in the human reference genome. The mean CADD 
score of all variants is 9.26, while the median value is 6. Meanwhile, 15.5% of the 
variants have a CADD score >20, meaning that these variants are among the top 1% of 
deleterious variants in the human genome. In addition, 1.8% of the WES variants are 
among the top 0.1% of deleterious variants in the human genome (CADD>30).   
 

a) b)  
Figure 5: Annotation results for all variants called in the WES pVCF of 20,504 samples: 
a) Top ten categories of VEP predicted consequence; b) Distribution of CADD phred-
normalized scores.  
 
Data sharing – NIAGADS Data Sharing Service (DSS)   
 
The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site 
(NIAGADS) is a national data repository that facilitates access to genetic data by 
qualified investigators for the study of the genetics of early-onset/late-onset Alzheimer’s 
Disease and Alzheimer’s Disease Related Dementias (ADRD). Collaborations with large 
consortia such as the Alzheimer’s Disease Genetics Consortium (ADGC), Cohorts for 
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Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium and the 
ADSP, a main mission of NIAGADS is to manage large AD genetic data sets that can 
be easily accessed by the research community.  
 
The NIAGADS Data Sharing Service (DSS) released the CRAMs (compressed version 
of BAM files), gVCFs generated by GATK4.1.1, and QC-ed pVCFs of the 
abovementioned ADSP WES data set in September 2020 (NG00067.v3), together with 
pedigree structures for family studies and phenotypes that were harmonized according 
to ADSP protocols. Qualified investigators can access these data with a submission 
request and approval from the NIAGADS Data Access Committee managed by 
independent NIH program officers. Data can be downloaded through the DSS portal. 
More information about the data set can be found on the data set page,�NG00067 
(https://dss.niagads.org/datasets/ng00067/). See the�Application Instructions�page 
(https://dss.niagads.org/documentation/applying-for-data/application-instructions/) on 
how to submit a Data Access Request and access data. 

Discussion and conclusions  

In this study, we developed a new bioinformatics approach to joint call WES samples 
sequenced using multiple capture kits from different sequencing providers. The 
procedure has been successfully applied to a total of 20,504 exomes gathered through 
the collaborative network of the ADSP, resulting in the generation of the world’s largest 
publicly available AD WES data collection and joint-call pVCF to date. Annotated and 
QC-ed following ADSP protocols, this high-quality WES pVCF with ~7.5 million SNVs 
and >700,000 indels is publicly available at NIAGADS DSS for qualified investigators 
worldwide.  
 
Joint-calling WES samples based on different capture kits poses several challenges due 
to the nature of the kits. Although each capture kit was designed primarily based on 
exonic regions (> 91% of the capture regions per capture kit were covered by Ensembl 
exons, (Table 3, Section Characteristics of Capture kits), they were also designed 
based on different genome builds and gene annotations, therefore resulting in 
substantial differences in the captured contents (average Jaccard similarity score of 
~0.6 per capture kit vs all other kits, (Figure 1, Section Capture kits comparison). In 
order to successfully harmonize/joint-call all of the data without any systematic bias, a 
uniform bioinformatics pipeline together with the standardization of capture kit target 
region definitions are critical.  
 
In our calling strategy, we first lifted over all capture kits using the same protocol to 
GRCh38 if they were not of this genome build. We then processed all WES samples 
using a single analysis pipeline: VCPA-WES (Section VCPA for WES processing). 
We did not use capture region definitions to limit variant calls when we generated gVCF 
or joint-called pVCFs. Capture region definitions were only used in the QC steps to 
identify high quality variant and genotype calls.  There are two advantages of this 
approach. First, in the future when additional samples on different capture kits needs to 
be incorporated, we can reuse the gVCFs of these old samples without reprocessing 
gVCFs. Second, we can retain variants and genotype calls that are either outside the 
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target regions but still have good quality, or in regions that are not targeted by all 
capture kits. Indeed, if we only look at regions that are targeted by all capture kits, we 
are left with only about 45% of the unions. 
 
The genotype data generated by this tailor-made bioinformatics strategy are high- 
quality. We have shown in Figures 2 and 3 that there is no systematic bias attributed to 
the sequencing centers and sequencers on the CRAM quality (Section Data quality – 
WES CRAMs). This shows that even though the WES data were sequenced in different 
ways, these experimental artifacts could be greatly reduced with a carefully designed 
data processing pipeline.   
 
Next, we evaluated the quality of the variants using the GATK VQSR score, Ti/Tv ratio 
(Figure 4), and via our in-house GCAD/ADSP QC protocol (Section Data quality – 
variants). Overall, ~97% of variants were labeled PASS by GATK. After variant-level 
QC was performed, the Ti/Tv ratio in exonic regions in our studies was >3. This is 
similar to what was previous reported, indicating that the data doesn’t contain many 
false positives caused by random sequencing errors. In terms of study-capture specific 
variants, using a multi-step QC protocol as shown in Table 4 (exclude variants with high 
missingness rate, excessive heterozygosity, high read depth, etc.), >91% of variants 
have successfully met our QC criteria, are of good quality, and can be used in 
subsequent analyses.  
 
Lastly, we performed genotype concordance analyses on the set of overlapping 
samples found in both the previously published ADSP-Discovery WES data set and this 
newly joint-called WES data set. Around 11,000 samples were used for the analyses 
(Section Genotype Concordance between two different callers on a set of 
overlapping samples). Even though the two data sets were called using different 
callers (ATLAS vs GATK), >1.4 million variants were called in both data sets, 
comprising 15 billion genotypes. Overall concordance was 99.43%. Variants that were 
not concordant may be located in genomic regions that are difficult to be sequenced. 
This shows that, despite the complexity involved in creating this new, much larger, joint-
called WES data set, the innovative bioinformatics strategy allowed us to produce a 
data set with high-quality genotypes.  
 
The 8.16 million variants in this WES data set span across 28,579 transcripts (Section 
Annotation results). We annotated every variant based on the most damaging VEP 
predicted consequence (Figure 5A). The top ten most damaging consequence 
categories included missense variants, upstream/downstream gene variants, 
synonymous variants, and 3’UTR variants. Meanwhile, 15.5% of the variants have a 
normalized CADD score >20, meaning that these variants are among the top 1% of 
deleterious variants in the human genome (Figure 5B). These results showcase that the 
ADSP annotation pipeline we developed is very well capable of annotating both WGS 
and WES data.   
 
In conclusion, the VCPA-WES bioinformatics pipeline, together with the QC and 
annotation protocol GCAD developed, enable us to generate a high-quality AD-specific 
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WES data set containing over 8 million variants on 20,504 samples. The pipeline works 
well when joint-calling any WES data (of different phenotypes) that are sequenced in 
different batches using different sequencing machines and capture kits. This valuable 
data set is free of batch effects and is, by far, the largest publicly available AD WES 
data set. It is available at NIAGADS DSS: https://dss.niagads.org/datasets/ng00067/ . 
Qualified and approved investigators can apply to access and download the data for 
various research purposes. 
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Figure legends  

Figure 1: Jaccard similarity measure of the capture kits.   
Figure 2: Comparison of WES CRAM quality metrics across a) sequencing centers 
(Seq_center); and b) sequencing platforms (Sequencer).  
Figure 3: Comparison of 20x coverage of all the WES BAMs/CRAMs by a) Sequencing 
centers (left); and b) Sequencers (right).  
Figure 4: Comparison of the Ti/Tv ratio of exonic variants before and after QC.  
Figure 5: Annotation results for all variants called in the WES pVCF of 20,504 samples: 
a) Top ten categories of VEP predicted consequence; b) Distribution of CADD phred-
normalized scores.  

Tables 

Table 1: Summary of the data set with 20,504 WES samples from the nine studies, 
sequenced using ten different capture kits across 14 sequencing centers.  
Table 2: Summary of the demographics for each study.   
Table 3: Characterization of genomic regions (in GRCh38) by each capture kit. 
Table 4: Variant quality per study-capture combination. 
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