

Highly contiguous genome assemblies of *Photobacterium* strains isolated from fish light organs using nanopore sequencing technology

AL Gould^{1*} and JB Henderson²

1. Ichthyology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118
*Corresponding author: agould@calacademy.org

2. Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr. San Francisco, CA 94118

Abstract

Several species of luminous bacteria in the genus *Photobacterium* are the light organ symbionts of teleost fishes. *Photobacterium leiognathi* and its subspecies, *P. mandapamensis*, in particular, commonly form bioluminescent symbioses with fish hosts in the Leiognathidae and Acropomatidae families as well as with cardinalfish in the genus *Siphamia* (Apogonidae). These two closely related lineages of *Photobacterium* are right at the cutoff average nucleotide identity used to delimit bacterial species (95-96%) and show overlapping ecological niches, including their host fish range. However, there are only a few whole genome assemblies available for these bacterial species, particularly for symbiotic strains isolated from fish light organs, that can be used to explore genome evolution of these two lineages. Here we used Oxford Nanopore Technologies sequencing to produce long reads for assembling highly contiguous genomes of *Photobacterium* strains isolated from fish light organs, including several *P. kishitanii* strains isolated from deep water fishes. We were able to assemble 31 high-quality genomes with near complete BUSCO scores, many at the chromosome-level, and compare their gene contents, including plasmid genes. In doing so, we discovered a new candidate species of *Photobacterium*, *Candidatus Photobacterium acropomis*, which originated from the light organ of the acropomid fish, *Acropoma japonicum*. We also describe a lack of congruency between the presence of the *luxF* gene, which is involved in light production, and the phylogenetic relationships between closely related *P. leiognathi* and *P. mandapamensis* strains. In contrast, there was strong congruency between *luxF* and the host fish family of origin, suggesting this gene might be essential to initiate bioluminescent symbioses with certain hosts, including *Siphamia* and *Acropoma* species. Our study shows the benefit of using long reads in the assembly of bacterial genomes and outlines an assembly pipeline that results in highly contiguous genomes, even from low-coverage ONT reads.

35

36 **Introduction**

37 The genus *Photobacterium* belongs to the Vibrionaceae family of bacteria and contains several
38 luminous species that form symbiotic relationships with a range of fish and squid hosts.
39 *Photobacterium leiognathi* and its subspecies, *P. mandapamensis*, both associate with a broad
40 range of teleost fish hosts, including fish in the Leiognathidae and Acropomatidae families as
41 well as cardinalfish in the genus *Siphamia* (Apogonidae) (Kaeding *et al.* 2007). *Photobacterium*
42 *kishitanii*, on the other hand, is typically found in colder waters and associates with deep-
43 dwelling fish hosts (Ast & Dunlap 2005). Light production in *Photobacterium* is controlled by a
44 contiguous set of genes, termed the *lux-rib* operon. These genes can vary between species
45 and have been used, in combination with certain housekeeping genes, to distinguish between
46 closely related species (e.g. Ast & Dunlap, 2004, 2005, Dunlap & Ast, 2005, Wada *et al.*,
47 2006, Ast *et al.*, 2007b, Kaeding *et al.*, 2007, Urbanczyk *et al.* 2011a). The *luxF* gene in
48 particular is a key distinguishing feature between *P. leiognathi* and other luminous
49 *Photobacterium* species, including subspecies *P. mandapamensis*; *luxF* is present in most
50 species but has been secondarily lost in *P. leiognathi* (Ast & Dunlap 2004). In a recent study in
51 which the *lux* operons of *P. mandapamensis* and *P. leiognathi* were cloned into *E. coli* revealed
52 that *luxF* is not required for light production, but cultures harboring the gene emit more light than
53 without *luxF* (Brodl *et al.* 2022). There are two additional genes located upstream of the *lux-*
54 *rib* operon, *lumP* and *lumQ*, which encode proteins of the lumazine operon (Ast *et al.* 2007) that
55 also vary between *P. leiognathi* and *P. mandapamensis*; like the *luxF* gene, *lumP* is present in
56 *P. mandapamensis* but absent in *P. leiognathi*. Furthermore, two sets of orthologous genes
57 involved secretion have also been shown to be good at discriminating between the two lineages
58 (Urbanczyk *et al.* 2013).
59

60 Despite the divergence between *P. leiognathi* and *P. mandapamensis* in certain genes, the two
61 groups remain indistinguishable at the 16S rRNA gene (Ast & Dunlap 2004, Wada *et al.* 2006),
62 and the average nucleotide identity between the two are slightly above the 95% cut-off of the
63 bacterial species definition, indicating the two should be considered the same species
64 (Urbanczyk *et al.* 2013). Furthermore, cardinalfish in the genus *Siphamia* appear to only
65 associate with *P. mandapamensis* (Kaeding *et al.* 2007, Gould *et al.* 2021), indicating there may
66 be important ecological and/or physiological differences between the two groups that are
67 recognizable by *Siphamia* hosts. For example, they differ in their growth and luminescence
68 responses to salinity as well as the color of light produced (Ast and Dunlap 2004). Urbanczyk
69 *et. al.* carried out a whole genome comparison between a single *P. leiognathi* and *P.*
70 *mandapamensis* strain, and determined that the *P. leiognathi* strain has a larger genome with
71 higher plasticity and a higher rate of foreign gene acquisition compared to the *P.*
72 *mandapamensis* strain (Urbanczyk *et al.* 2013). However, there is currently a limited number of
73 genomes available with which to investigate the breadth of their genomic differences and how
74 these differences may relate to host range and specificity, particularly for the highly specific
75 association between *P. mandapamensis* and *Siphamia* hosts.
76

77 There are currently 18 *P. leiognathi* genomes available from NCBI, three of which are additional
78 assemblies of previously assembled genomes. Of the unique strains for which whole genomes
79 are available, eight originated from the light organs of five distinct fish species, only two of
80 which are assembled at the scaffold level; *P. leiognathi* strain Irivu4.1 (GCA_000509205.1) is
81 comprised of 20 scaffolds (Urbanczyk *et al.* 2013) and the *P. mandapamensis* reference strain
82 svers1.1 (GCA_000211495.1) contains 11 scaffolds (Urbanczyk *et al.* 2011b). However, the
83 genome of *P. mandapamensis* isolated from a non-luminous *Loligo* squid from Singapore was
84 recently assembled using Oxford Nanopore Technologies (ONT) sequencing (Soh *et al.* 2018)

85 and is comprised of only three contigs, representing the large and small chromosome present
86 in most vibrio genomes (Okada *et al.* 2005) as well as one plasmid sequence. There are also 24
87 *P. kishitanii* genomes currently available on NCBI, four of which are scaffolded, and only the
88 reference strain, ANT-2200 (Ali *et al.* 2010), contains fewer than 50 contigs.

89
90 In this study we set out to characterize and compare the genome variation in symbiotic
91 *Photobacterium* strains isolated from fish light organs using ONT sequencing. We focused
92 most of our efforts on *P. leiognathi* and *P. mandapamensis* to gain a more complete
93 understanding of the distinction between these two groups and to look for evidence of
94 genomic traits associated with host range. We also include four symbiotic *P. kishitanii* strains
95 isolated from deep sea fishes as a point of comparison to the *P. leiognathi* and *P.*
96 *mandapamensis* strains and compare them to the currently available *P. kishitanii* genomes. To
97 assemble these genomes from ONT sequences, we performed various assembly pipelines
98 comprised of different combinations of filtering, polishing, and scaffolding steps and present
99 quality assessments of the different approaches implemented. In total we assembled 31 highly
100 contiguous *Photobacterium* genomes, including several that are fully circularized, and present
101 here a more complete picture of the genome biology of symbiotically luminous *Photobacterium*
102 species associated with fish hosts.

103 **Methods**

104 Bacterial isolates and DNA extraction

105 The luminous bacterial strains in this study were initially isolated from the light organs of
106 various fish species listed in Table 1. Several strains were recently isolated from the light
107 organs of *Siphonia tubifer* collected from Verde Island, Philippines, and from Okinawa, Japan
108 (Table 1). Those fish were handled and euthanized using an approved protocol by the
109 Institutional Animal Care and Use Committee at the California Academy of Sciences. The
110 isolates were each grown on LSW-70 (Kaeding *et al.* 2007) agar plates and resuspended in
111 liquid media overnight. Cell pellets were spun down and rinsed with 1x PBS prior to DNA
112 extraction. High molecular weight DNA was then extracted from the fresh cell pellets using a
113 Qiagen MagAttract HWM DNA kit following the manufacturer's protocol. Following extraction,
114 the DNA was purified with sparQ PureMag Beads (Quantabio) and final DNA concentrations
115 were determined using the Qubit dsDNA HS kit and a Qubit 3.0 fluorimeter (Thermo Fisher).

116 Library prep and MinION sequencing

117
118 DNA concentrations were standardized across samples to an input value of 5.5ng/ul and
119 sequence libraries were prepared with the Rapid (96) Barcoding Kit (Oxford Nanopore
120 Technologies) per the manufacturer's instructions. The final libraries were pooled and
121 sequenced on a MinION R9.4.1 flow cell. Base-calling for was performed with Guppy v.6.1.7
122 using the "dna_r9.4.1_450bps_hac" model and a quality score cutoff of eight to retain reads
123 that were used for all subsequent analyses.

124 Genome assembly

125
126 After base-calling, the sequence reads were additionally filtered with Filtlong
127 (<https://github.com/rrwick/Filtlong>), removing reads less than 1,000 bp and applying various
128 "keep_percent" settings (80%, 90%, and 95%). Draft genome assemblies were produced from
129

130 these sets of filtered reads using the Flye assembler (Kolmogorov et al. 2019). Circlator (Hunt
131 et al. 2015) was then run on the draft assemblies to attempt to circularize any additional
132 contigs, followed by two polishing steps. The first round of polishing was carried out with
133 Medaka (<https://github.com/nanoporetech/medaka>) followed by Homopolish (Huang et al.
134 2021) with “*Photobacterium*” provided as the input genus. After polishing, additional genome
135 scaffolding was carried out using both RagTag (Algone et al. 2021) and Ragout (Kolmogorov et
136 al. 2014). The highest quality, circularized and polished draft assemblies produced by Flye
137 were used as references for scaffolding along with the reference strain JS01 described above.
138 For the four *P. kishitanii* strains, the reference genome (ANT-2200, GCA_002631085.1), which
139 has the fewest number of contigs (n=5) of all *P. kishitanii* genomes available fromn NCBI, was
140 used for scaffolding.

141
142 Hybrid assemblies
143

144 Two strains, StP2.23 and StJ4.81, also had Illumina short reads (150 bp paired-end reads)
145 available from a recent study (Gould et al. in prep) that were used along with the ONT reads as
146 input for Unicycler (Wick et al. 2007) to produce hybrid assemblies. The short reads were first
147 quality filtered and trimmed using fastp (Chen et al. 2018). The resulting assemblies were also
148 circularized and scaffolded with Circlator (Hunt et al. 2015) and RagTag (Algone et al. 2021),
149 respectively, and compared with their long read-only assemblies.

150
151 Annotation and genome comparisons
152

153 BUSCO (Seppey et al. 2019) scores were calculated using the Vibrionales (vibrionales_odb10)
154 set of genes (n=1,445) throughout the assembly pipeline to assess completeness. Similarly,
155 Prokka (Seemann 2014) was implemented to annotate the draft assemblies at each step and to
156 compare gene content and number. QUAST (Gurevich et al. 2013) was used to calculate
157 genome statistics at various steps as well.

158
159 Pangenome and phylogenetic analysis
160

161 A pangenome analysis of the *P. leiognathi* and *P. mandapamensis* strains was carried out with
162 Roary (Page et al. 2015) based on the Prokka annotations of the final assemblies. Additional
163 reference strains available from NCBI (Table 2) were included in the analysis for comparison.
164 The core alignment produced by Roary was then used to construct a maximum likelihood
165 phylogeny in IQ-TREE (Nguyen et al. 2015) using the best predicted model (GTR+F+I+G4) and
166 a maximum of 1,000 bootstrap replicates. An additional pangenome analysis was carried out
167 with Roary on all strains, including the four *P. kishitanii* strains, and a phylogeny including these
168 strains was inferred from the core genome alignment with IQ-TREE as previously described.
169 Whole genome comparisons were made between all pairwise combinations of strains using
170 FastANI (Jain et al. 2018), and ANIclustermap v1.2.0 (Shimoyama 2022) was implemented to
171 visualize the results.

172
173 Plasmids
174

175
176 Plasmids from 106 *Photobacterium* bacteria downloaded from GenBank July 26, 2022 together
177 with the *P. mandapamensis* strain Ikei8.2 contig manually determined to be its plasmid from
178 this study were combined and used to create a blast nucleotide database (makeblastdb -in

179 plasmids.fasta -parse_seqids -dbtype nucl). blastn was then run over this database with the
180 final assemblies as the query, excluding contigs greater than 50,000 bp prefixing contig names
181 with organism identifiers. Output with qcovus greater than 10% was retained. Records
182 matching the tophit blastn contig of each assembly were collected and manually curated to
183 identify candidate plasmid sequences. Prokka (Seemann 2014) was the implemented on these
184 sequences to obtain the plasmid gene content for each strain.

185
186 **Results**

187 **MinION Sequencing Data**

188 The ONT MinION sequencing run generated 5.29M fast5 reads with an N50 of 9.1Kb. After
189 demultiplexing and base calling with Guppy, a total of 1.76M reads (4.82 Gbp) were obtained,
190 145,744 of which were unclassified (no barcode could be assigned). The number of reads
191 assigned to each sample ranged from 7,816 to 122,045, and the minimum and maximum
192 sequencing depths were 4x and 130x, respectively.

193
194 **Draft assembly statistics**

195 After the initial Flye assembly on the filtered long reads (90 “keep percent”), one genome,
196 *ajapo5.5*, was assembled as two complete circular chromosomes, one large (>3,100,000 bp)
197 and one small (>1,400,000 bp) with one additional circular plasmid (~16,000 bp) (Fig. 1). Nine
198 additional genomes assemblies contained at least one circular chromosome (Fig. 1). After
199 running circlator on the Flye assemblies, two additional chromosomes were circularized from
200 two different assemblies. The total number of contigs also decreased for nearly all of the
201 assemblies (Fig. 2). In contrast, the polishing steps had no effect on the number of contigs, but
202 did increase the BUSCO completeness scores, in some cases by a large percentage. Running
203 Homopolish after the initial polishing with medaka especially improved BUSCO scores across
204 all strains, and in some cases, there was a greater than 20% increase in completeness (Fig. 3).
205 Scaffolding, on the other hand, had little to no effect on the BUSCO scores, but did decrease
206 the number of contigs even further nearly all assemblies; 16 of the 32 strains ended up with
207 draft genomes that were comprised of only 2 or 3 contigs (Table S1). The most notable
208 scaffolding improvement was observed for strain StJ4.81, which went from 50 to 3 contigs
209 after scaffolding the polished assemblies. Scaffolding also increased the number of coding
210 sequences (CDS) detected for most strains (Table S1). In the case of StJ4.81, the total number
211 of CDS increased from 4,346 to 4,361, while the number of rRNAs and tRNAs remained the
212 same, 63 and 208, respectively. One strain, StJ4.33, had low average coverage (3.4x) and the
213 BUSCO completeness score only reached 2.8%. Thus, it was removed from further analysis.
214 Of the remaining 31 strains, 27 had BUSCO completeness scores of 95% or greater, 15 of
215 which were 99% complete (Fig. 3).

216
217 For the final assemblies, the average genome size was 4,944,424 bp across all 32 strains,
218 ranging from 4,521,083 to 5,791,416 bp, including four *P. kishitanii* strains. The
219 *Photobacterium leiognathi* and *P. mandapamensis* strains averaged 4,920,253 total bp and had
220 an average of 4,393 CDS, 49 rRNAs, and 193 tRNAs. The *P. leiognathi* strains were
221 approximately 6% larger than the *P. mandapamensis* genomes, whereas the four *P. kishitanii*
222 strains were even larger, averaging 5,085,414 total bp with an average of 5,576 CDSs, 33
223 rRNAs, and 196 tRNAs (Table 3). For the *P. leiognathi* and *P. mandapamensis* strains with fully
224 circularized chromosomes, the larger chromosome averaged 3,207,570 bp and the smaller one

226 averaged 1,511,137 bp. The assembly for strain lk8.2, which was isolated from a *Siphamia*
227 *tubifer* light organ from Okinawa, Japan in 2014, consisted of three circular contigs,
228 representing both chromosomes and a plasmid. There were 2,741 CDSs, 181 tRNAs, and 56
229 rRNAs on the large chromosome and 1,320 CDSs, 27 tRNAs, and no rRNAs on the small
230 chromosome. Similarly, strain ajapo5.5, which had the highest depth of coverage of all strains,
231 contained 2,696 CDSs, 181 tRNAs, and 59 rRNAs on the large chromosome and 1,286 CDSs,
232 27 tRNAs, and no rRNAs on the small chromosome. A BLAST comparison of *P.*
233 *mandapamensis* strain lk8.2 to several other strains revealed multiple unique gene regions that
234 were only found in the lk8.2 genome (Fig.4), but most of the genes in these regions were of
235 unknown function. A comparison of the genome assembly of strain lk8.2 and the reference *P.*
236 *mandapamensis* strain svers1.1, indicates a high degree of genome synteny and exemplifies
237 the ability of this highly contiguous assembly to be used to scaffold previous assemblies
238 available from NCBI (Fig. 4).

239
240 Hybrid assemblies
241

242 The use of short reads improved the assembly for the two strains for which short reads were
243 available, StP2.23 and StJ4.81. After trimming, there were 3,385,214 and 5,808,314 paired end
244 reads for StP2.23 and StJ4.81, respectively that were used for the initial assembly step in
245 Unicycler (Wick *et al.* 2007). With respect to BUSCO scores, the hybrid assemblies were more
246 complete than the long read-only assemblies. For strain StP2.23, the BUSCO completeness
247 score went from 77.8% to 99.1% for the Flye and Unicycler assemblies, respectively, and for
248 StJ4.81, it improved from 94.5% to 99.1% (Table 4). Running both Circlator (Hunt *et al.* 2015)
249 and RagTag (Algone *et al.* 2021) on the assemblies reduced the number of contigs but had
250 slightly negative effects on the BUSCO scores. The hybrid assembly for StP2.23 went from 30
251 contigs down to 2 scaffolds, but the BUSCO completeness score decreased to 96.3%.
252 Similarly, the hybrid assembly for strain StJ4.81 went from 15 to 2 contigs after both
253 circularizing and scaffolding, but BUSCO completeness dropped to 98.6% (Table 4). However,
254 removing sequences less than 1,000 bp from the scaffolded (non-circularized) hybrid
255 assemblies resulted in only three contigs for both strains and 99.1% BUSCO completeness
256 scores, and were used in the remaining analyses for strains StP2.23 and StJ4.81.

257
258 Pangenome Analysis
259

260 A pangenome analysis revealed a total of 18,142 genes across all *P. leiognathi* and *P.*
261 *mandapamensis* strains examined in this study. Of these, 2,017 genes are 'core' genes shared
262 across at least 95% of the strains and 2,884 are 'shell' genes shared across 15-95% of strains.
263 The majority of the genes detected (73%, n=13,241), however, are 'cloud' genes present in
264 fewer than 15% of the total strains examined (Fig. 5). A separate analysis of only the *P.*
265 *leiognathi* strains in this study (n=4) revealed a pangenome of 3,237 genes, whereas the
266 pangenome of the *P. mandapamensis* strains (n=27) contains 2,618 genes. Two strains,
267 ajapo5.5 and the reference strain ajapo4.1 (GCA_003026025.1), both of which originated from
268 the same host species, are divergent from the remaining *P. leiognathi* and *P. mandapamensis*
269 strains and share 765 genes that are not present in any of the other strains examined (Fig. 5).
270 Of these genes, 517 are of unknown function, but of the remaining 248 genes with assigned
271 function, several related to macrolide antibiotics and drug resistance. Additionally, the
272 complete operon for urease production (*ureABCDEF*) was present in both strains (Table S2).

273
274 Phylogenetic Analysis

275

276 A phylogenetic analysis based on an alignment of 520 core genes identified across all strains,
277 including the four *P. kishitanii* strains and NCBI reference strains representative of additional
278 *Photobacterium* species, indicates strong support for *P. leiognathi/mandapamensis* clade (Fig.
279 6a). This analysis also supports the divergence of strains ajapo4.1 and ajapo5.1 from this
280 clade. An additional analysis of these two strains and the *P. leiognathi* and *P. mandapamensis*
281 strains based on an alignment of 2,017 core genes detected in the pangenome analysis
282 indicated 4 distinct clades among the *P. leiognathi* and *P. mandapamensis* strains in this study.
283 Two of the clades are comprised entirely of strains originating from the host fish, *Siphamia*
284 *tubifer*, with the exception of a single strain, Isplen1.1, which originated from the Leiognathid
285 host, *Eubleekeria splendens*. A third clade is comprised of strains that originated from the light
286 organs of both Leiognathid and Acropomatid fishes, and a fourth clade, basal to the other
287 three, contain only strains originating from Leiognathid hosts, including the *P. leiognathi* type
288 strain ATCC25521 (Fig. 6b). This clade also contains *P. leiognathi* strain Irivu4.1
289 (GCA_000509205.1), whereas the other three clades contain strains previously identified as *P.*
290 *mandapamensis*. This analysis also placed ajapo5.5 and ajapo4.1 (GCA_003026025.1) as
291 divergent from the *P. leiognathi* and *P. mandapamensis* strains with high confidence (100/100)
292 (Fig. 5b).

293

294 Lux operon

295

296 A comparison of the of the *lux-rib* operon of the different strains revealed a pattern that
297 corresponds with the fish host family from which the bacteria originated. Bacteria isolated from
298 *Acropoma japonicum* ('ajapo' strains) and *Siphamia tubifer* hosts all contain the *luxF* gene (Fig.
299 7). One strain, SV5.1, which was isolated from the light organ of *S. tubifer*, had an incomplete
300 assembly of the *lux* genes and is thus, excluded from this analysis. In contrast, all strains that
301 were isolated from the light organs of Leiognathid fishes, with the exception of one strain,
302 Inuch19.1, did not contain the *luxF* gene, as well as most of the *lumP* gene (Fig. 7). The four *P.*
303 *kishitanii* isolates all contained *luxF* but lacked both the *lumP* and *lumQ* genes.

304

305 Average Nucleotide Identity

306

307 The pairwise average nucleotide identity (ANI) analysis across all strains showed a clear
308 distinction between the *P. kishitanii* strains and all others, with an average ANI of 80.6%
309 between the two groups (Fig. 8). The pairwise comparisons among all non-*P. kishitanii* strains
310 resulted in ANIs greater than 95%, with the exception of the two divergent strains mentioned
311 above in the phylogenetic analysis, ajapo5.5 and ajapo4.1. The average ANI between these
312 two strains and the *P. leiognathi* and *P. mandapamensis* strains is 92.9%, below the 95%
313 threshold for bacterial species delimitation (Fig. 8). The average pairwise ANI between the *P.*
314 *leiognathi* strains and *P. mandapamensis* strains was 96.5% versus 97.3% when the *P.*
315 *leiognathi* strains were compared to each other.

316

317 Plasmids

318

319 Of the plasmid sequences identified across all strains, 24 were fully circularized. The average
320 length of these circularized sequences ranged from 7,304 to 100,280 bp with a mean of 39,194
321 bp. Most strains had only one identifiable plasmid, however three circularized plasmids were
322 identified in strains Isplen1.1 and LN-I.1. Four additional strains contained two plasmids. The

323 majority of genes identified across all plasmid sequences were of unknown function, but there
324 were 163 total genes that were assigned function, 30 of which encoded transposases, and 52
325 that were shared by at least two strains (Fig. 9). The remaining 111 genes were uniquely found
326 in only a single strain (Table S3). Comparing genes across the plasmid sequences from
327 different strains revealed some similarities between plasmids originating from the same host
328 species and location, such as ajapo8.1/ajapo8.2 and lk8.1/lk8.2. There were also several genes
329 present in plasmids across all strains, including *bin3*, *dns*, *repA*, and *tnpR* (Fig. 9). With respect
330 to transposases, the IS6 family transposase ISPpr9 was the most common in plasmids across
331 strains.

332

333 Discussion

334

335 Using ONT sequencing, we were able to assembly highly contiguous genomes of 31
336 *Photobacterium* species originating from the light organs of 12 species of fish representing 6
337 unique families in 4 orders. The majority of the assemblies were at the chromosome-level,
338 comprised of one large contig greater than 3 Mbp and one smaller contig approximately 1.5
339 Mbp. Several strains had additional plasmid sequences ranging in size from approximately
340 2,000-100,000 bp. These values are consistent with what has been reported for the genomes
341 of other *Photobacterium* species, which are typically comprised of one large and small
342 chromosome between 3.13 to 4.09 Mbp and 1.05 to 2.24 Mbp, respectively, as well as
343 numerous small plasmids (Dunlap *et al.* 2004; Okada *et al.* 2005, Vezzi *et al.* 2005; Kim *et al.*
344 2008, Urbanczyk *et al.* 2011a). The study represents the largest collection of *Photobacterium*
345 genomes sequenced to date, and more than doubles the number of *P. leiognathi* and *P.*
346 *mandapamensis* genomes available from NCBI, enabling a more robust analysis of these two
347 groups of closely related lineages.

348

349 There are many programs currently available for the assembly of bacterial genomes from ONT
350 sequences and previous studies have compared some of the different assembly approaches
351 (e.g. Goldstein *et al.* 2019, Lee *et al.* 2021, Murgineux *et al.* 2021, Zhang *et al.* 2021), there
352 remains no clear consensus pipeline. Comparing several combinations of various assembly
353 tools used in this study, we chose a pipeline that implemented the Flye assembler (Kolmogorov
354 *et al.* 2019) followed by Circlator (Hunt *et al.* 2015), to orient and circularize the sequences, and
355 both Medak and Homopolish (Huang *et al.* 2021) for polishing. After polishing we ran Ragout
356 (Kolmogorov *et al.* 2014) or RagTag (Algone *et al.* 2021) for scaffolding with varying results
357 depending on the strain. Overall, this pipeline resulted in the assembly of highly contiguous,
358 near-complete *Photobacterium* genomes, even from samples with less than 10x sequence
359 coverage depth. Like other studies (Lee *et al.* 2021, Zhang *et al.* 2021), we found that using
360 Homopolish as a secondary polishing step dramatically improved BUSCO completeness
361 scores, particularly for strains with poor coverage depth. We also saw a reduction in the
362 number of contigs for many assemblies after running Circlator and, most notably, after
363 scaffolding. Not surprisingly, incorporating available short reads to the assembly also
364 increased BUSCO completeness dramatically, although these hybrid assemblies resulted in a
365 larger number of contigs than the long read-only assembly, which were reduced significantly
366 by scaffolding and discarding short contigs (<1,000 bp).

367

368 This study confirms that *P. leiognathi* and *P. mandapamensis* are phylogenetically and
369 ecologically closely related and are at the cut-off used to delimit bacterial species, providing a
370 unique opportunity to analyze the early stages of bacterial speciation (Urbanczyk *et al.* 2013).
371 Overall, the differences we see between the *P. leiognathi* and *P. mandapamensis* genomes are

372 minimal, although the *P. leiognathi* strains are approximately 6% larger. The core genome of *P.*
373 *leiognathi* was also larger than that of *P. mandapamensis*, but this could also be a result of the
374 fact that fewer *P. leiognathi* strains were sequenced in this study. However, it has been
375 suggested that *P. leiognathi* has a more plastic genome and acquires genes horizontally more
376 frequently than *P. mandapamensis* (Urbanczyk *et al.* 2013). In fact, horizontal gene transfer has
377 been shown from more distantly related bacteria to *Photobacterium* species, contributing to
378 the pangenome (Urbanczyk *et al.* 2011). The role of plasmids in the genome evolution of
379 *Photobacterium* has not been thoroughly examined, however, our study confirms previous
380 findings that *Photobacterium* plasmids typically lack essential genes (Campanaro *et al.* 2005).
381 Thus, the role of plasmids in contributing to genetic novelties in *Photobacterium* is likely
382 minimal overall.

383
384 Based on the average nucleotide identities of approximately 93% between strains ajapo4.1
385 and ajapo5.1 and the *P. leiognathi* and *P. mandapamensis* strains, as well as their divergence
386 from the *P. leiognathi/mandapamensis* clade, we suggest that strains ajapo5.5 and ajapo4.1 be
387 considered a new species of *Photobacterium*. We propose the name 'Candidatus'
388 *Photobacterium acropomis* to reflect their host of origin, *Acropoma japonicus*. These two
389 strains possess 765 unique genes not present in the other *Photobacterium* genomes. Among
390 these genes are those relating to macrolide export and the production of urease, which
391 catalyzes the hydrolysis of urea. While it remains unclear what the role urease might play for
392 these bacteria, the presence of these genes provides them with the potential to break down
393 urea.

394
395 While housekeeping and *lux* gene phylogenies are generally congruent for *Photobacterium*
396 (Urbanczyk *et al.*, 2008, 2011), the presence or absence of *luxF* does not correlate with the
397 phylogenetic relationships inferred from the core genome assemblies of the *P. leiognathi* and *P.*
398 *mandapamensis* strains in this study. In fact, several strains inferred to be *P. mandapamensis*
399 based on their phylogenetic positioning are missing *luxF*, suggesting its presence or absence
400 may not be a defining feature between *P. leiognathi* and *P. mandapamensis* (Ast & Dunlap 2004).
401 Interestingly, there is strong congruence between the presence of *luxF* and host family of origin.
402 All strains originating from Apogonid (*Siphamia*) and Acropomatid (*Acropoma*) hosts contained
403 both the *luxF* and *lumP* genes, whereas all strains from Leiognathid hosts were missing both
404 genes, with the exception of one strain, which was most closely related to strains isolated from
405 an *Acropoma* host. While *luxF* is not required for light production, its presence in the *lux* operon
406 appears to increase light emission (Brodl *et al.* 2022), which may be critical for the bioluminescent
407 symbiosis with *Siphamia* and *Acropoma* hosts, and perhaps, is a key genetic feature for these
408 hosts to recognize potential symbionts from the environmental pool of bacteria.

409
410 Despite the congruence of host range and the presence of the *luxF* gene, there remains no
411 evidence of the bioluminescent symbiosis having played a role in the divergence of *P.*
412 *leiognathi* and *P. mandapamensis*. Furthermore, strains from both lineages can be co-
413 symbionts of the same light organ (Kaeding *et al.* 2007). Leiognathid fishes appear to associate
414 with a wide range of both *P. leiognathi* and *P. mandapamensis* strains, as do Acropomatids,
415 which also associate with 'Candidatus' *Photobacterium acropomis* described here. In contrast,
416 Apogonid hosts in the genus *Siphamia* associate with a much narrower range of only *P.*
417 *mandapamensis* strains (Kaeding *et al.* 2007, Gould *et al.* 2021, this study). It remains unclear
418 why this degree of specificity exists for the bioluminescent symbiosis with *Siphamia* hosts and
419 not for the other hosts examined, but it could be due the host's distinct behavioral ecology as
420 a cryptic reef fish (Gould *et al.* 2014). Furthermore, there are likely mechanisms in place for the

421 *Siphamia* hosts to identify *P. mandapamensis* from the diverse pool of bacteria in the
422 environment, which could include the presence of *luxF* and other genomic features. As long
423 read sequencing technologies like ONT become more accurate and accessible and new
424 programs are developed to improve genome assembly pipelines, there will be an increasing
425 number of bacterial genomes available to explore the genetic signatures of host-microbe
426 interactions.

427

428 **Acknowledgements**

429

430 We'd like to thank Paul Dunlap for the initial sampling, isolation, and cultivation of many of the
431 strains sequenced in this study. We would also like to thank Athena Lam, Director of the
432 Center for Comparative Genomics at the California Academy of Sciences, for her assistance
433 with Nanopore sequencing.

434

435 **Funding**

436

437 Funding for this research was provided by the National Institutes of Health grant
438 DP5OD026405

439

440 **Data Accessibility**

441

442 All genome assemblies will be made publicly available on NCBI and the corresponding scripts
443 used for data analysis will be available on the authors' Github pages.

444

445 **References**

446

447 Al Ali, B., Garel, M., Cuny, P., Miquel, J. C., Toubal, T., Robert, A., & Tamburini, C. (2010).
448 Luminous bacteria in the deep-sea waters near the ANTARES underwater neutrino telescope
449 (Mediterranean Sea). *Chemistry and Ecology*, 26(1), 57-72.

450

451 Alonge, M., Lebeigle, L., Kirsche, M., Aganezov, S., Wang, X., Lippman, Z. B., ... & Soyk, S.
452 (2021). Automated assembly scaffolding elevates a new tomato system for high-throughput
453 genome editing. *BioRxiv*.

454

455 Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment
456 search tool." *J. Mol. Biol.* 215:403-410.

457

458 Ast J.C., & Dunlap, P.V. (2004) Phylogenetic analysis of the lux operon distinguishes two
459 evolutionarily distinct clades of *Photobacterium leiognathi*. *Arch Microbiol* 181: 352–361.

460

461 Ast, J. C., and Dunlap, P. V. (2005). Phylogenetic resolution and habitat specificity of members
462 of the *Photobacterium phosphoreum* species group. *Environmental Microbiology*, 7(10), 1641-
463 1654

464

465 Ast J.C., Urbanczyk, H., & Dunlap, P.V. (2007) Natural merodiploidy of the lux-rib operon of
466 *Photobacterium leiognathi* from coastal waters of Honshu, Japan. *J Bacteriol* 189: 6148–6158.

467

468 Ast, J. C., Cleenwerck, I., Engelbeen, K., Urbanczyk, H., Thompson, F. L., De Vos, P., &
469 Dunlap, P. V. (2007). *Photobacterium kishitanii* sp. nov., a luminous marine bacterium symbiotic

470 with deep-sea fishes. *International Journal of Systematic and Evolutionary Microbiology*, 57(9),
471 2073-2078.

472

473 Brodl, E., Csamay, A., Horn, C., Niederhauser, J., Weber, H., & Macheroux, P. (2020). The
474 impact of LuxF on light intensity in bacterial bioluminescence. *Journal of Photochemistry and*
475 *Photobiology B: Biology*, 207, 111881.

476

477 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
478 preprocessor. *Bioinformatics*, 34(17), i884-i890.

479

480 Dunlap, P. V., Jiemjit, A., Ast, J. C., Pearce, M. M., Marques, R. R., & Lavilla-Pitogo, C. R.
481 (2004). Genomic polymorphism in symbiotic populations of *Photobacterium*
482 *leiognathi*. *Environmental Microbiology*, 6(2), 145-158.

483

484 Dunlap, P. V., & Ast, J. C. (2005). Genomic and phylogenetic characterization of luminous
485 bacteria symbiotic with the deep-sea fish *Chlorophthalmus albatrossis* (Aulopiformes:
486 *Chlorophthalmidae*). *Applied and environmental microbiology*, 71(2), 930-939.

487

488 Fukasawa, S., Suda, T., & Kubota, S. (1988). Identification of luminous bacteria isolated from
489 the light organ of the fish, *Acropoma japonicum*. *Agricultural and biological chemistry*, 52(1),
490 285-286.

491

492 Goldstein, S., Beka, L., Graf, J., & Klassen, J. L. (2019). Evaluation of strategies for the
493 assembly of diverse bacterial genomes using MinION long-read sequencing. *BMC*
494 *genomics*, 20(1), 1-17.

495

496 Gould, A. L., Harii, S., & Dunlap, P. V. (2014). Host preference, site fidelity, and homing
497 behavior of the symbiotically luminous cardinalfish, *Siphamia tubifer* (Perciformes:
498 *Apogonidae*). *Marine biology*, 161(12), 2897-2907.

499

500 Gould, A. L., Fritts-Penniman, A., & Gaisiner, A. (2021). Museum genomics illuminate the high
501 specificity of a bioluminescent symbiosis for a genus of reef fish. *Frontiers in ecology and*
502 *evolution*, 9, 630207.

503

504 Gould, A.L., Donohoo, S., & Neff, E. (*in prep*) Distinct strain-level symbiont communities
505 between individuals and populations of a bioluminescent fish host
506 Grant, J.R., Enns, E., Marinier, E., Saha-Mandal, A., Chen, C-Y., Graham, M., Van Domselaar,
507 G., & Stothard, P. (2022) A web server for assembling, annotating and visualizing bacterial
508 genomes. Poster, BioNet 2022 Conference

509

510 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for
511 genome assemblies. *Bioinformatics*, 29(8), 1072-1075.

512

513 Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R.
514 (2018). Phandango: an interactive viewer for bacterial population
515 genomics. *Bioinformatics*, 34(2), 292-293.

516

517 Huang, Y. T., Liu, P. Y., & Shih, P. W. (2021). Homopolish: a method for the removal of
518 systematic errors in nanopore sequencing by homologous polishing. *Genome biology*, 22(1), 1-
519 17.

520

521 Hunt, M., Silva, N. D., Otto, T. D., Parkhill, J., Keane, J. A., & Harris, S. R. (2015). Circlator:
522 automated circularization of genome assemblies using long sequencing reads. *Genome
523 biology*, 16(1), 1-10.

524

525 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High
526 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature
527 communications*, 9(1), 1-8.

528

529 Kaeding, A. J., Ast, J. C., Pearce, M. M., Urbanczyk, H., Kimura, S., Endo, H., ... & Dunlap, P.
530 V. (2007). Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of
531 "Photobacterium mandapamensis". *Applied and Environmental Microbiology*, 73(10), 3173-
532 3182.

533

534 Kolmogorov, M., Raney, B., Paten, B., & Pham, S. (2014). Ragout—a reference-assisted
535 assembly tool for bacterial genomes. *Bioinformatics*, 30(12), i302-i309.

536

537 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads
538 using repeat graphs. *Nature biotechnology*, 37(5), 540-546.

539

540 Lee, J. Y., Kong, M., Oh, J., Lim, J., Chung, S. H., Kim, J. M., ... & Kwak, W. (2021).
541 Comparative evaluation of Nanopore polishing tools for microbial genome assembly and
542 polishing strategies for downstream analysis. *Scientific Reports*, 11(1), 1-11.

543

544 Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and
545 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular
546 biology and evolution*, 32(1), 268-274.

547

548 Okada, K., Iida, T., Kita-Tsukamoto, K., & Honda, T. (2005). Vibrios commonly possess two
549 chromosomes. *Journal of bacteriology*, 187(2), 752-757.

550

551 Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T., ... & Parkhill, J.
552 (2015). Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics*, 31(22), 3691-
553 3693.

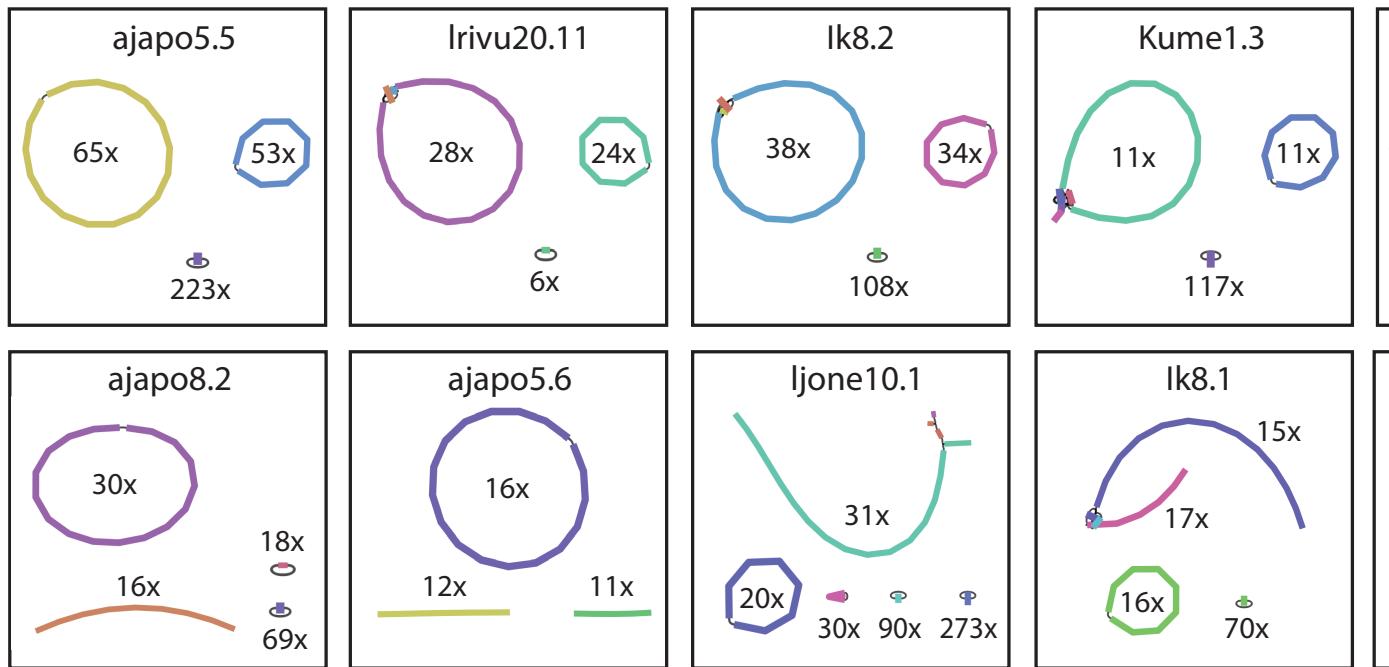
554

555 Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, 30(14),
556 2068-2069.

557

558 Seppey, M., Manni, M., & Zdobnov, E. M. (2019). BUSCO: assessing genome assembly and
559 annotation completeness. In *Gene prediction* (pp. 227-245). Humana, New York, NY.

560


561 Shimoyama, Y. (2022) ANIclustermap: A tool for drawing ANI clustermap between all-vs-all
562 microbial genomes (<https://github.com/moshi4/ANIclustermap>)

563

564 Soh, J. Y., Russell, C. W., Fenlon, S. N., & Chen, S. L. (2018). Complete genome sequence of
565 *Photobacterium leiognathi* strain JS01. *Genome Announcements*, 6(1), e01396-17.

566
567 Urbanczyk, H., Ast, J. C., Kaeding, A. J., Oliver, J. D., & Dunlap, P. V. (2008). Phylogenetic
568 analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. *Journal of*
569 *bacteriology*, 190(10), 3494-3504.
570
571 Urbanczyk, H., Ast, J. C., & Dunlap, P. V. (2011a). Phylogeny, genomics, and symbiosis of
572 Photobacterium. *FEMS microbiology reviews*, 35(2), 324-342.
573
574 Urbanczyk, H., Ogura, Y., Hendry, T. A., Gould, A. L., Kiwaki, N., Atkinson, J. T., ... & Dunlap,
575 P. V. (2011b). Genome sequence of Photobacterium mandapamensis strain svers.1.1, the
576 bioluminescent symbiont of the cardinal fish Siphamia versicolor.
577
578 Urbanczyk, H., Urbanczyk, Y., Hayashi, T., & Ogura, Y. (2013). Diversification of two lineages of
579 symbiotic Photobacterium. *PloS one*, 8(12), e82917.
580
581 Wada, M., Kamiya, A., Uchiyama, N., Yoshizawa, S., Kita-Tsukamoto, K., Ikejima, K., ... &
582 Kogure, K. (2006). Lux A gene of light organ symbionts of the bioluminescent fish Acropoma
583 japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely
584 related to that of Photobacterium leiognathi ssp. Mandapamensis. *FEMS microbiology*
585 *letters*, 260(2), 186-192.
586
587 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: resolving bacterial
588 genome assemblies from short and long sequencing reads. *PLoS computational biology*, 13(6),
589 e1005595.
590
591 Zhang, P., Jiang, D., Wang, Y., Yao, X., Luo, Y., & Yang, Z. (2021). Comparison of de novo
592 assembly strategies for bacterial genomes. *International Journal of Molecular Sciences*, 22(14),
593 7668.
594
595
596
597

598
599

600
601
602
603
604

Figure 1. Assembly graphs for the ten *Photobacterium* strains with at least one fully circularized chromosome from the initial Flye assembly. Coverage depth of each contig is also indicated. Plots were made with the program Bandage.

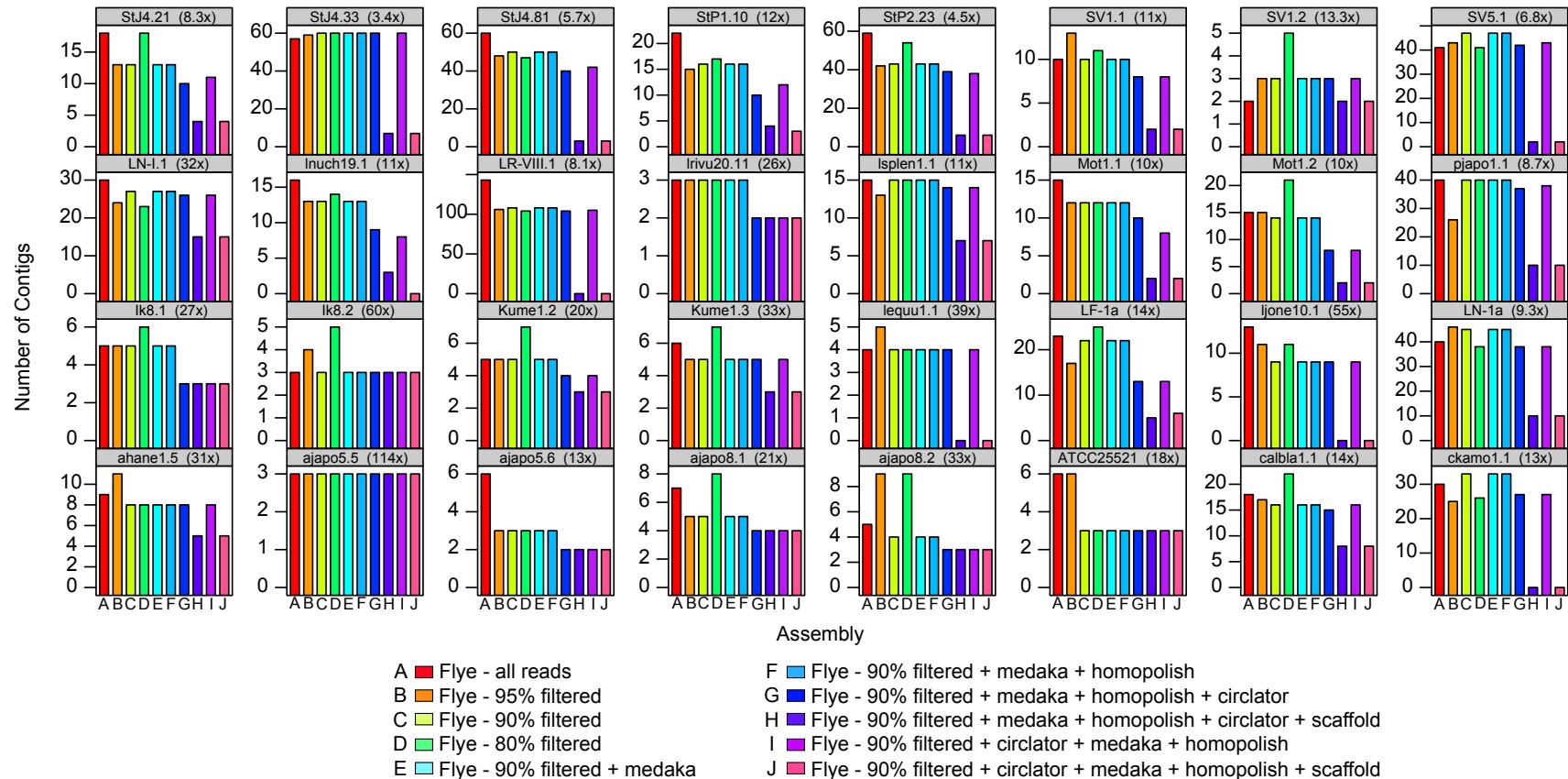


Figure 2. Number of contigs for each draft assembly of the 32 strains of *Photobacterium* using only ONT reads. The strain names and their average coverage depth are indicated in the gray bar above each plot. The different assembly approaches are indicated in the legend and colored accordingly.

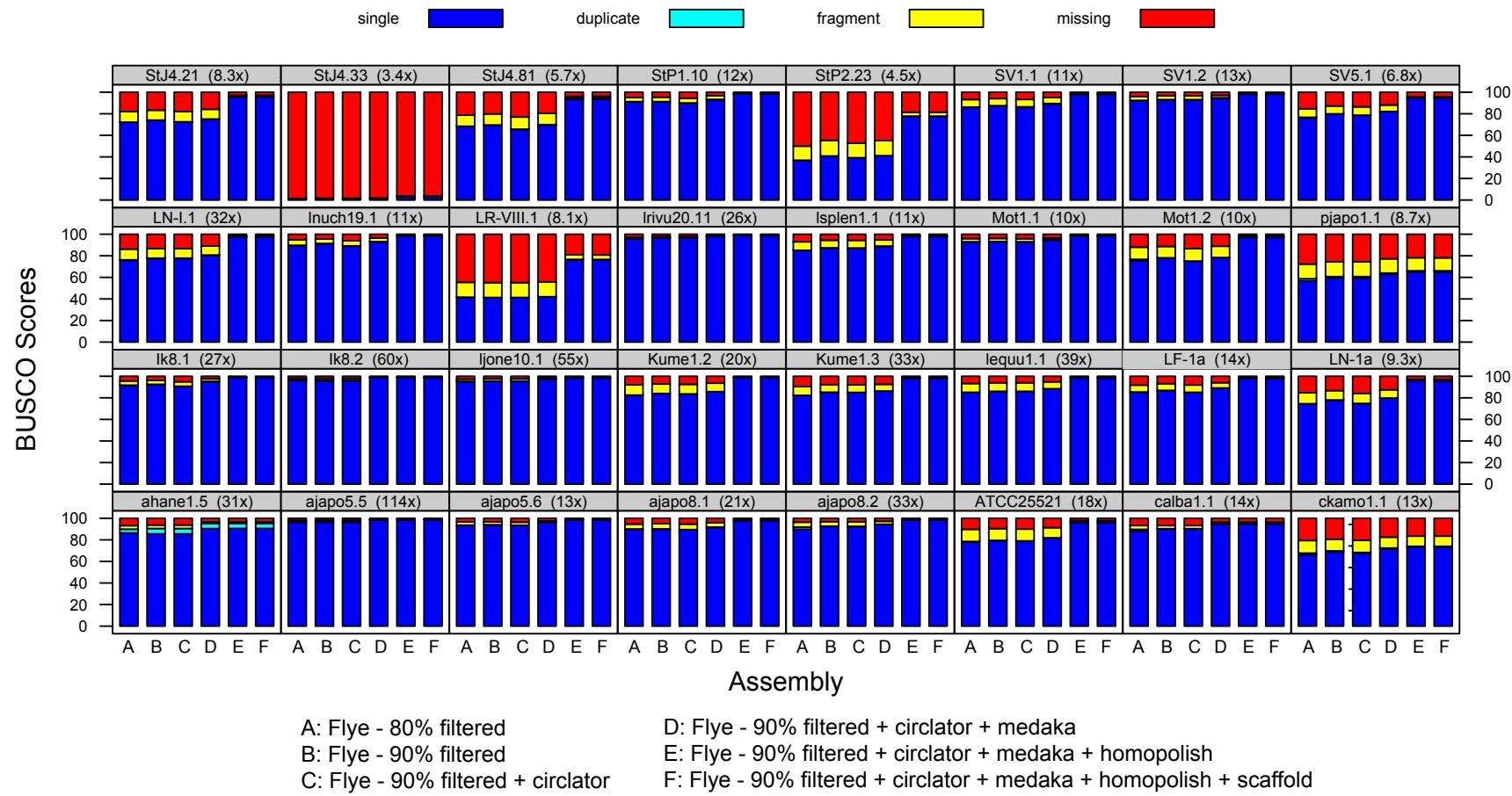


Figure 3. BUSCO scores for the draft assemblies of the 32 strains of *Photobacterium* using only ONT reads. The strain names and their average coverage depth are indicated in the gray bar above each plot. The different assembly approaches are indicated in the legend and the bar colors represent the different BUSCO gene categories: single copy (blue), duplicate (cyan), fragmented (yellow), and missing (red).

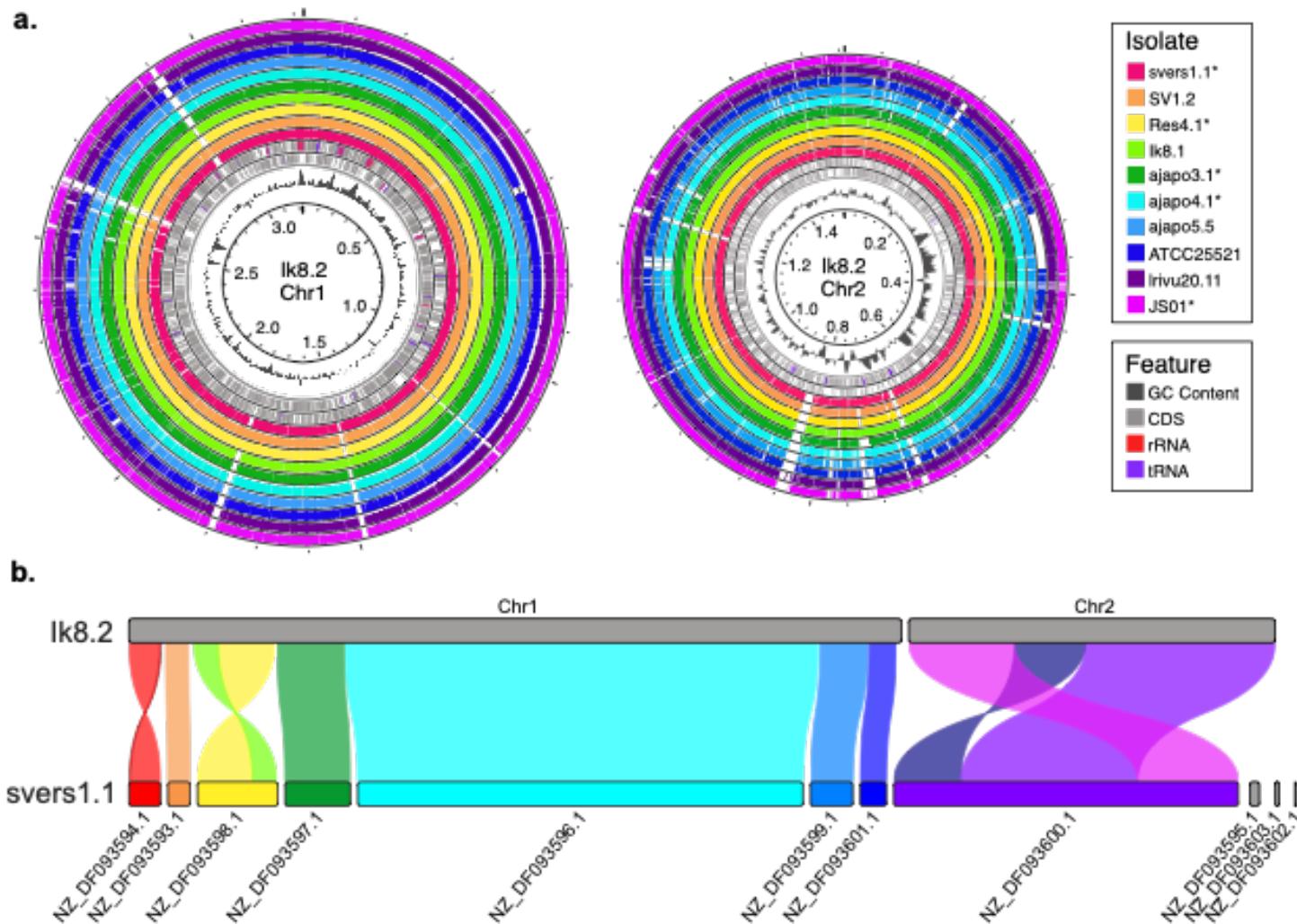


Figure 4. Synteny of the genome assembly of isolate lk8.2 to that of other *P. leiognathi (mandapamensis)* genomes. a) blastn alignments of the isolates listed to both chromosomes of lk8.2. Assemblies from NCBI are indicated with an *. Genomic features including coding sequences (CDS), rRNAs, tRNAs, and GC content are shown on the inner rings of each chromosome. b) Syntenic blocks between the *P. leiognathi* subsp. *mandapamensis* reference strain svers1.1 and the chromosome-level assembly of lk8.2.

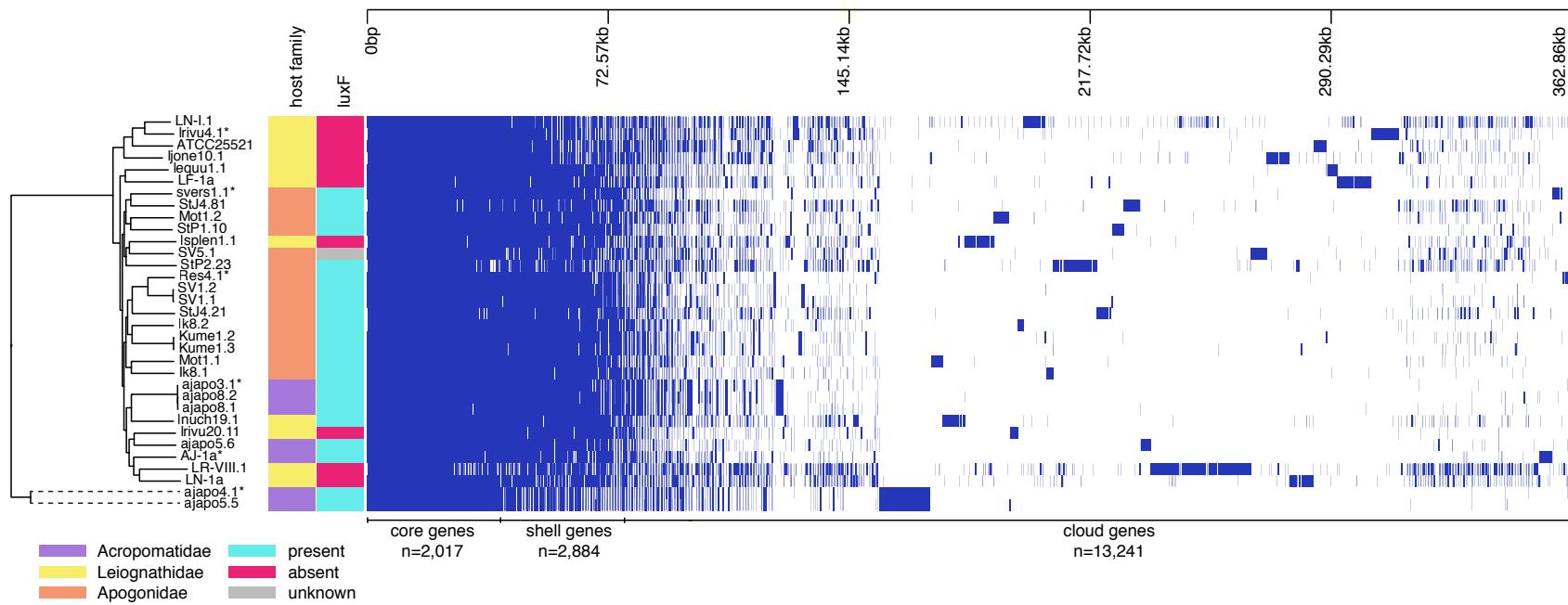


Figure 5. Pangenome analysis of *Photobacterium leiognathi (mandapamensis)* isolated from the light organs of various fish hosts. Phandango plot (Hadfield *et al.* 2018) of gene presence and absence across the core genome the strains where blue indicates the presence of a gene and white indicates its absence. A phylogenetic tree of the strains is also shown as well as each strain's corresponding host family of origin and the presence or absence of *luxF* in the genome as indicated by the different colors to the right of the phylogeny (see legend for details).

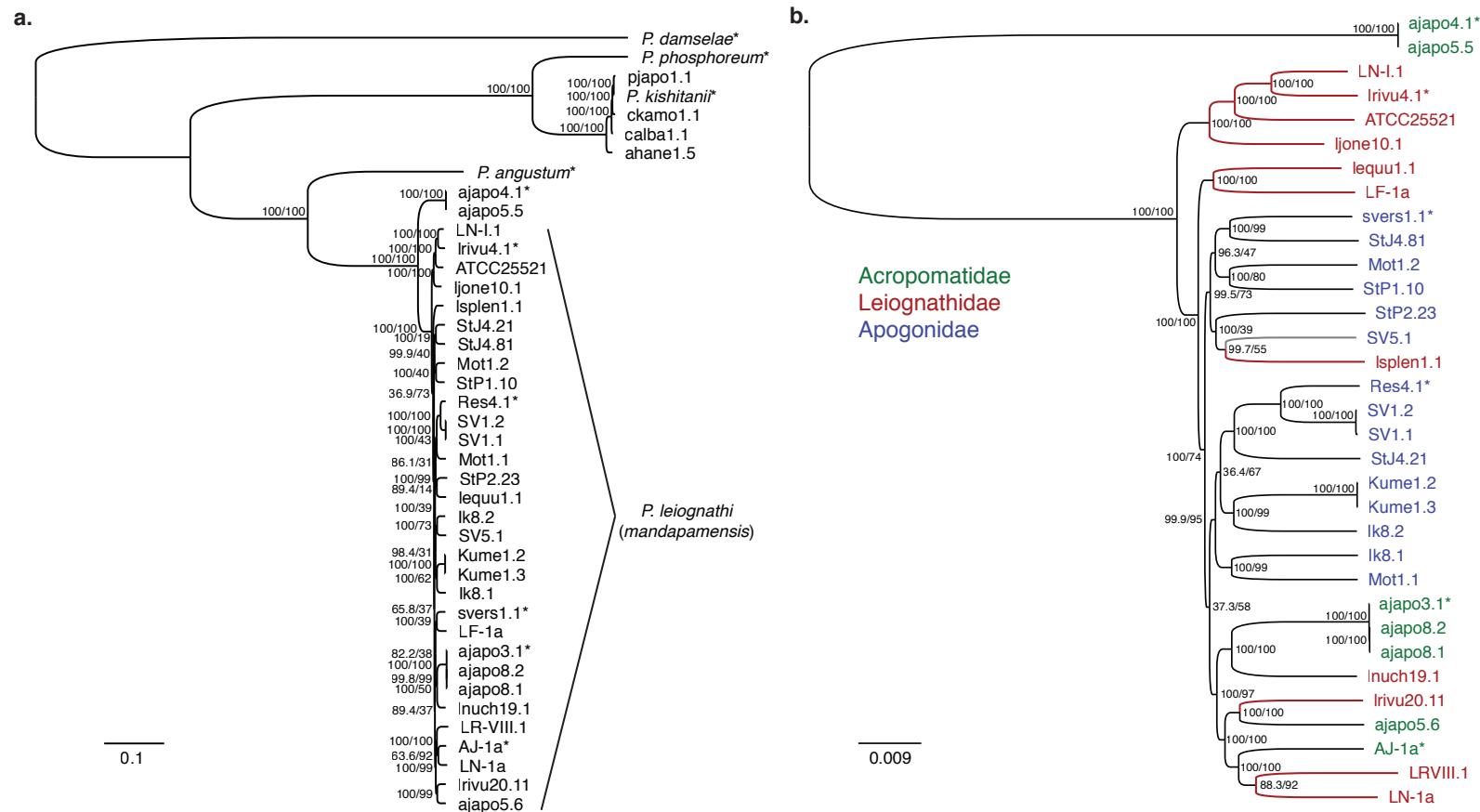


Figure 6. Phylogenetic analysis of *Photobacterium* species isolated from the light organs of various fish hosts. Midpoint rooted trees are shown for an analysis of a) all strains sequenced in this study based on an alignment of 520 core genes with 150 bootstrap replicates and b) only the *P. leiognathi (mandapamensis)* strains based on an alignment of 2,017 core genes with 300 bootstrap replicates. Tip labels are colored according to which family of host fish the strain originated from and the red branches indicates the absence of *luxF* in the genome. Reference strains included in the analyses are indicated by an *. Scale bars show the inferred number of nucleotide substitutions per site. Both trees were constructed using the GTR+F+I+G4 model in IQtree. Values listed on branches indicate bootstrap/SH-aLRT support.

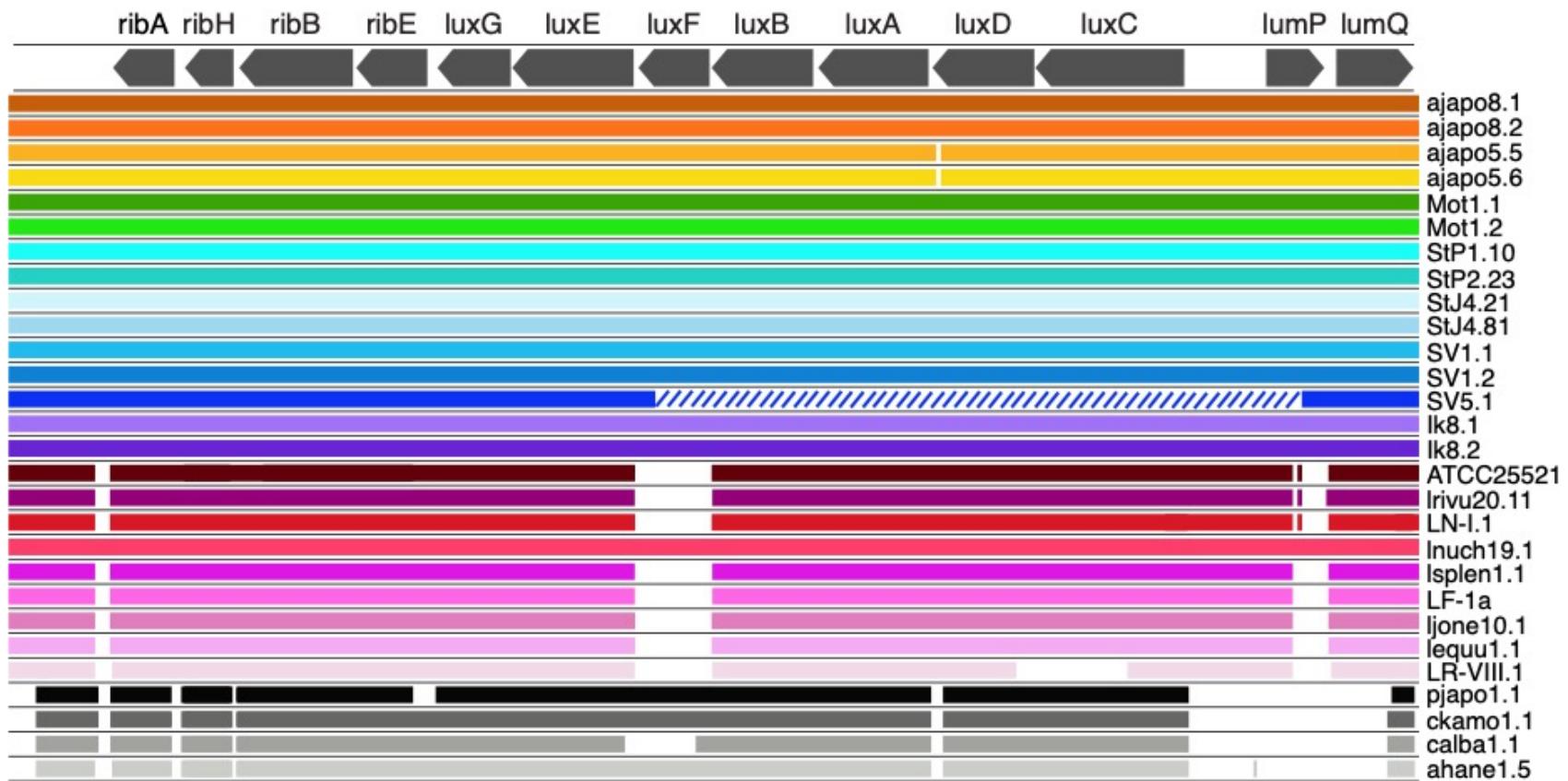


Figure 7. Alignments of the *lux-rib* operon of the *Photobacterium* sp. isolates sequenced in this study. *Photobacterium mandapamensis* strain svers1.1 (Urbanczyk *et al.* 2011) was used as the reference for BLAST comparisons of the other isolates using an e-value cutoff score of 0.1. The isolate names are listed to the right of their respective colored band. Hash marks indicate an incomplete genome assembly. Figure produced with Proksee (Grant *et al.* 2022).

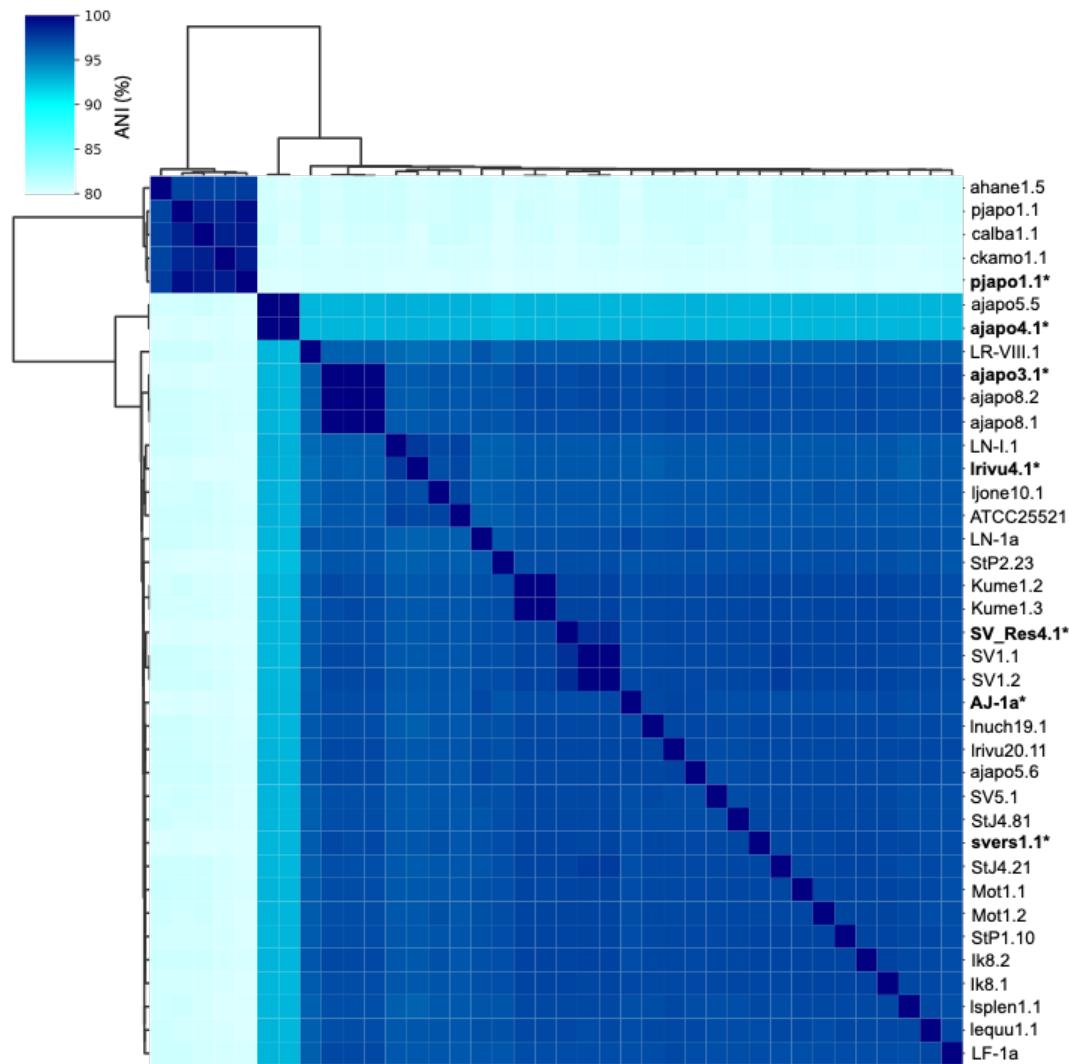


Figure 8. Clustered heatmap depicting the pairwise average nucleotide identities (ANI) across the complete genomes of the *Photobacterium* strains sequenced in this study. Reference strains included in the analysis are in bold and indicated with an *.

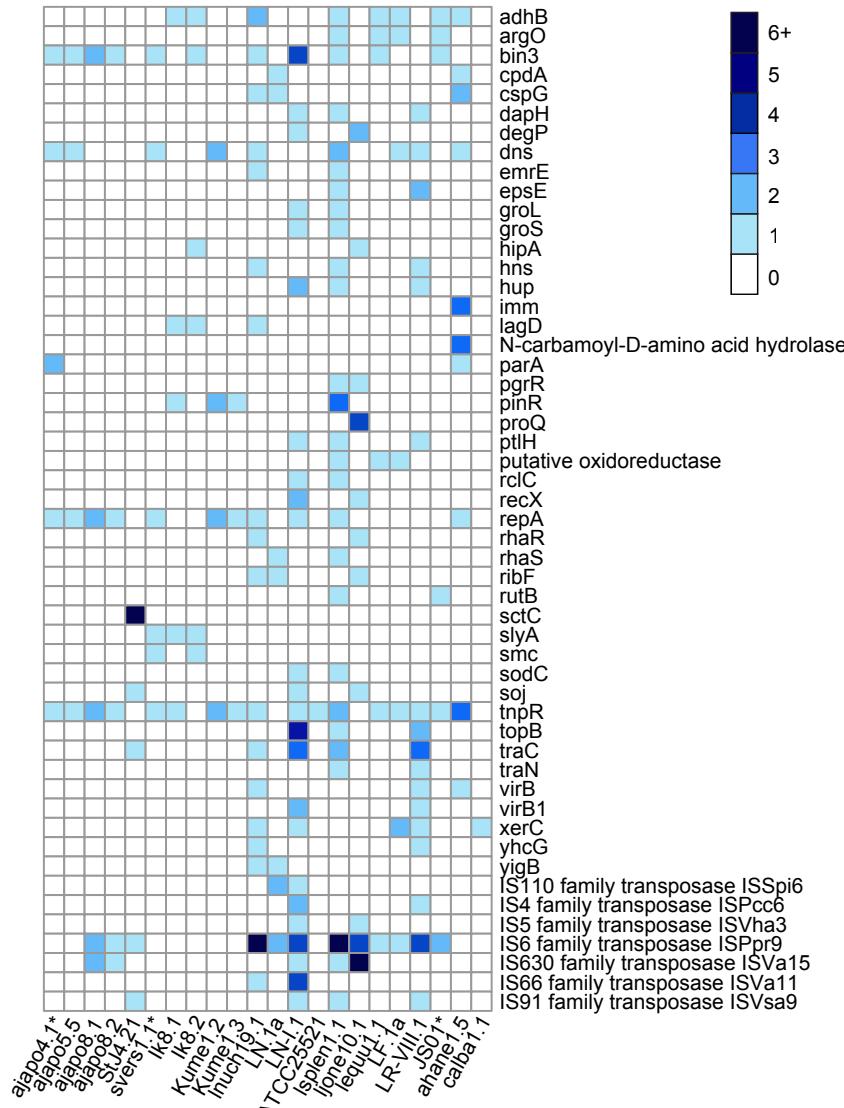


Figure 9. Summary of plasmid gene content of the *Photobacterium* sp. strains sequenced in this study. Genes listed are present in at least two strains and their copy number is indicated by the corresponding legend color. A complete list of genes present in all plasmid sequences identified are presented in Table S3. Reference strains included in the analysis are indicated with a *.

Table 1. Summary of the 32 *Photobacterium* sp. strains from fish light organs sequenced using Oxford Nanopore Technology. The host species and family from which each strain originated as well as the location and year of collection, when available are listed.

Strain	Host species	Host family	Source	Reference
ahane1.5	<i>Acropoma hanedai</i>	Acropomatidae	Tungkang, Taiwan (2004)	Dunlap <i>et al.</i> (2007)
ajapo5.5	<i>Acropoma japonicum</i>	Acropomatidae	Saga, Shikoku, Japan; Tosa Bay	Kaeding <i>et al.</i> (2007)
ajapo5.6	<i>Acropoma japonicum</i>	Acropomatidae	Saga, Shikoku, Japan; Tosa Bay	Kaeding <i>et al.</i> (2007)
ajapo8.1	<i>Acropoma japonicum</i>	Acropomatidae	Yui, Honshu, Japan; Suruga Bay	Kaeding <i>et al.</i> (2007)
ajapo8.2	<i>Acropoma japonicum</i>	Acropomatidae	Yui, Honshu, Japan; Suruga Bay	Kaeding <i>et al.</i> (2007)
ATCC25521	<i>Eubleekeria splendens</i>	Leiognathidae	Gulf of Thailand (1967)	Boisvert <i>et al.</i> (1967)
calba1.1	<i>Chlorophthalmus albatrossis</i>	Chlorophthalmidae	Owase, Japan (2004)	Dunlap & Ast (2005)
ckamo1.1	<i>Coelorinchus kamoharai</i>	Macrouridae	Owase, Japan (2004)	Ast & Dunlap (2005)
Ik8.1	<i>Siphonia tubifer</i>	Apogonidae	Ikei Island, Okinawa, Japan (2014)	-
Ik8.2	<i>Siphonia tubifer</i>	Apogonidae	Ikei Island, Okinawa, Japan (2014)	-
Kume1.2	<i>Siphonia tubifer</i>	Apogonidae	Kume Island, Okinawa, Japan (2014)	-
Kume1.3	<i>Siphonia tubifer</i>	Apogonidae	Kume Island, Okinawa, Japan (2014)	-
leequ1.1	<i>Leiognathus equula</i>	Leiognathidae	Manila Bay, Philippines (1982)	Dunlap <i>et al</i> (2004); Ast & Dunlap (2004)
LF-1a	<i>Aurigequula fasciata</i>	Leiognathidae	Manila Bay, Philippines (1982)	Ast <i>et al.</i> (2007)
Ijone10.1	<i>Eubleekeria jonesi</i>	Leiognathidae	Iloilo, Philippines (1999)	Ast <i>et al.</i> (2007)
LN-1a	<i>Nucchequula nuchalis</i>	Leiognathidae	Sagami Bay (1980)	Ast <i>et al.</i> (2007)
LN-I.1	<i>Nucchequula nuchalis</i>	Leiognathidae	Sagami Bay (1980)	Ast <i>et al.</i> (2007)
Inuch19.1	<i>Nucchequula nuchalis</i>	Leiognathidae	Suruga Bay, Honshu, Japan (2004)	Ast <i>et al.</i> (2007)
LR-VIII.1	<i>Equulites rivulatus</i>	Leiognathidae	Sagami Bay (1989)	Ast <i>et al.</i> (2007)
Irvu20.11	<i>Equulites rivulatus</i>	Leiognathidae	Suruga Bay (2004)	Ast <i>et al.</i> (2007)
Isplen1.1	<i>Eubleekeria splendens</i>	Leiognathidae	Gulf of Thailand (1967)	Ast <i>et al.</i> (2007)
Mot1.1	<i>Siphonia tubifer</i>	Apogonidae	Motobu, Okinawa, Japan (2014)	-
Mot1.2	<i>Siphonia tubifer</i>	Apogonidae	Motobu, Okinawa, Japan (2014)	-
pjapo1.1	<i>Physiculus japonicus</i>	Moridae	Manazuru, Japan (1982)	Dunlap (1984); Ast & Dunlap (2004)
StJ4.21	<i>Siphonia tubifer</i>	Apogonidae	Motobu, Okinawa, Japan (2019)	this study
StJ4.33	<i>Siphonia tubifer</i>	Apogonidae	Motobu, Okinawa, Japan (2019)	this study
StJ4.81	<i>Siphonia tubifer</i>	Apogonidae	Motobu, Okinawa, Japan (2019)	this study
StP1.10	<i>Siphonia tubifer</i>	Apogonidae	Verde Island, Philippines (2021)	this study
StP2.23	<i>Siphonia tubifer</i>	Apogonidae	Verde Island, Philippines (2021)	this study
SV1.1	<i>Siphonia tubifer</i>	Apogonidae	Sesoko Island, Okinawa, Japan (2008)	-
SV1.2	<i>Siphonia tubifer</i>	Apogonidae	Sesoko Island, Okinawa, Japan (2008)	-
SV5.1	<i>Siphonia tubifer</i>	Apogonidae	Sesoko Island, Okinawa, Japan (2008)	-

Table 2. *Photobacterium* genomes available from NCBI included in the study.

Genbank ID	Strain ID	Species
GCA_003026895.1	A2-4	<i>Photobacterium angustum</i>
GCA_009665375.1	2012V-1072	<i>Photobacterium damselae</i>
GCA_002954725.1	JCM 21184	<i>Photobacterium phosphoreum</i>
GCA_000613045.3	ANT-2200	<i>Photobacterium kishitanii</i>
GCA_000509205.1	Irivu4.1	<i>Photobacterium leiognathi</i>
GCA_003026025.1	ajapo4.1	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>
GCA_003026055.1	Res4.1	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>
GCA_003026695.1	AJ-1a	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>
GCA_003026735.1	ajapo3.1	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>
GCA_000211495.1	svers1.1	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>
GCA_002631085.2	JS01	<i>Photobacterium leiognathi</i> subsp. <i>mandapamensis</i>

Table 3. Statistics for the final genome assemblies as determined by QUAST. Reference strains indicated in bold with an * are also included for comparison. Listed are the number of total contigs, the number of contigs greater than 1,000, 10,000, and 50,000 bp, the largest contig in bp, the total number of bp, %GC content, the N50 and L50 values, and the number of N's per 100 Kbp. The first five shaded entries are *Photobacterium kishitanii* strains whereas all others are *P. leiognathi* and *P. mandapamensis* strains.

Strain	Total bp	Contigs	Largest contig	N50	L50	GC(%)	Ns	CDS	rRNA	tRNA
ahane1.5	5,100,844	5	3,353,657	3,353,657	1	39.02	126	4,680	53	207
calba1.1	5,200,973	7	3,263,220	3,263,220	1	38.96	792	4,892	46	206
ckamo1.1	5,039,339	4	3,317,370	3,317,370	1	38.96	2,489	6,136	8	173
pjapo1.1	5,000,498	4	3,339,696	3,339,696	1	39.36	12,224	6,596	25	196
pjapo1.1*	4,695,065	117	925,439	174,214	6	39.10	0	4,217	6	84
AJ-1a*	4,711,244	65	468,721	238,774	7	41.14	0	4,156	13	131
ajapo3.1*	4,794,394	51	480,625	245,626	8	40.98	0	4,214	12	137
ajapo4.1*	4,576,643	52	696,744	262,428	5	41.2	0	3,991	11	124
ajapo5.5	4,690,822	3	3,177,212	3,177,212	1	41.37	0	4,004	59	307
ajapo5.6	4,729,792	2	3,174,233	3,174,233	1	41.27	0	4,052	62	213
ajapo8.1	4,878,649	4	3,245,602	3,245,602	1	41.12	0	4,255	44	192
ajapo8.2	4,886,267	3	3,261,968	3,261,968	1	41.15	0	4,239	53	194
ATCC25521	4,750,881	3	3,269,131	3,269,131	1	41.02	0	4,255	41	194
Ik8.1	4,765,281	3	3,231,342	3,231,342	1	41.15	0	4,130	47	197
Ik8.2	4,783,140	3	3,218,875	3,218,875	1	41.17	0	4,104	56	207
JS01*	4,874,529	3	3,251,164	3,251,164	1	41.20	0	4,288	57	205
Kume1.2	4,835,311	3	3,186,767	3,186,767	1	41.25	1,634	4,156	49	197
Kume1.3	4,818,955	3	3,185,044	3,185,044	1	41.23	1,911	4,137	43	194
Iequuu1.1	4,825,624	4	3,204,041	3,204,041	1	41.19	0	4,192	62	209
LF-1a	5,104,659	5	3,267,821	3,267,821	1	40.96	1,222	4,607	39	192
Ijone10.1	5,276,714	8	3,313,411	3,313,411	1	41.34	1	4,535	62	207
LN-1a	5,174,290	10	3,359,026	3,359,026	1	41.21	54	4,760	44	195
LN-I.1	5,490,629	15	3,405,483	3,405,483	1	41.53	20	5,017	62	200
Inuch19.1	5,237,683	5	3,439,577	3,439,577	1	41.18	162	4,618	57	197
LR-VIII.1	5,791,416	21	3,699,906	3,699,906	1	41.28	22,860	5,602	32	147
Irvu20.11	4,738,701	2	3,228,638	3,228,638	1	41.24	0	4,069	58	209
Irvu4.1*	5,268,214	20	1,730,671	979,827	2	40.98	6,943	4,332	3	72
Isplen1.1	5,292,468	7	3,284,001	3,284,001	1	41.01	813	4,768	37	174
Mot1.1	4,676,757	2	3,973,505	3,973,505	1	41.25	13	4,069	62	208
Mot1.2	4,947,312	2	3,234,211	3,234,211	1	41.2	2,558	4,336	62	206

Res4.1*	4,730,847	65	766,940	129,576	9	40.99	0	4,098	13	152
StJ4.21	4,877,430	4	3,228,436	3,228,436	1	41.23	623	4,361	63	208
StJ4.81	4,713,802	3	3,157,280	3,157,280	1	41.22	6	4,047	45	195
StP1.10	4,781,050	3	3,175,608	3,175,608	1	41.15	19	4,194	47	194
StP2.23	4,685,648	3	3,130,376	3,130,376	1	41.17	11	4,043	33	182
SV1.1	4,749,844	2	3,174,417	3,174,417	1	41.13	1,321	4,126	38	190
SV1.2	4,718,353	2	3,184,478	3,184,478	1	41.17	0	4,083	51	200
SV5.1	4,521,083	2	3,089,627	3,089,627	1	41.27	91	4,122	35	193
svers1.1*	4,598,918	11	1,910,320	1,477,894	2	41.06	742	4,031	6	75

Table 4. Comparison of the long read-only and hybrid draft assemblies for the two *P. mandapamensis* strains with short reads available. Listed are the number of contigs (Ctgs), the total number of bp in the assembly, the largest contig size (bp), the GC content, N50 and L50 values, the average number of Ns/100 kbp, the number of coding sequences (CDS), the number of rRNAs and tRNAs, the number of repeat regions, and the BUSCO scores shown as percentages: complete [single, duplicate], fragmented, and missing.

Strain	Assembly	Ctgs	Total bp	GC%	N50	L50	Ns	CDS	rRNA	tRNA	Repeat	Complete [S, D]	Fragment	Missing
StP2.23	flye+circ+polish	38	4228014	41.09	209731	7	0	4211	20	144	0	77.8 [77.7, 0.1]	3.60	18.60
	flye+circ+polish+scaffold	4	4888897	41.09	3236904	1	14038	4525	20	144	0	77.8 [77.7, 0.1]	3.60	18.60
	unicycler	30	4686987	41.18	2741469	1	0	4044	33	188	2	99.1 [98.8, 0.3]	0.10	0.80
	unicycler+circ	4	4688278	41.18	3000960	1	0	4112	35	182	2	96.0 [95.7, 0.3]	1.20	2.80
	unicycler+circ+scaffold	2	4688478	41.18	3134673	1	4.27	4112	35	182	2	96.0 [95.7, 0.3]	1.20	2.80
	unicycler+scaffold	25	4691567	41.18	3130376	1	10.67	4044	33	188	2	98.5 [98.0, 0.5]	0.20	1.30
	unicycler+scaffold+circ	2	4689350	41.18	3135545	1	4.26	4095	35	181	2	96.3 [96.0, 0.3]	1.00	2.70
StJ4.81	flye+circ+polish	42	4610923	41.33	215021	6	0	4280	46	187	0	94.5 [93.3, 1.2]	1.60	3.90
	flye+circ+polish+scaffold	3	4614823	41.33	3008273	1	84.51	4279	46	187	0	94.6 [93.4, 1.2]	1.60	3.80
	unicycler	15	4716676	41.23	1555055	2	0	4047	45	196	2	99.1 [98.8, 0.3]	0.10	0.80
	unicycler+circ	2	4716071	41.23	3161731	1	0	4160	47	198	2	95.9 [95.6, 0.3]	1.00	3.10
	unicycler+circ+scaffold	2	4716071	41.23	3161731	1	0	4161	47	198	2	95.9 [95.6, 0.3]	1.00	3.10
	unicycler+scaffold	12	4716976	41.23	3157280	1	6.36	4047	45	196	2	99.1 [98.8, 0.3]	0.10	0.80
	unicycler+scaffold+circ	2	4711728	41.22	3157280	1	6.37	4101	44	195	2	98.6 [98.3, 0.3]	0.10	1.30