

1 Structural snapshots uncover a lock-and-key type conserved activation mechanism of 2 β -arrestins by GPCRs

3 Jagannath Maharana¹, Parishmita Sarma¹, Manish K. Yadav¹, Sayantan Saha¹, Vinay
4 Singh¹, Shirsha Saha¹, Mohamed Chami², Ramanuj Banerjee^{1*} and Arun K. Shukla^{1*#}

⁵ ¹Department of Biological Sciences and Bioengineering, Indian Institute of Technology,
⁶ Kanpur 208016, India; ²BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland.

7 *Corresponding authors (ramanujb@iitk.ac.in or arshukla@iitk.ac.in)

8 #Lead contact

9 Keywords: GPCRs, Arrestins, cryo-EM, biased-agonism, cellular signaling, drug discovery

10

11

12

13

14

15

16

17

18

18

2

22 **Abstract**

23 Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) is a key
24 determinant for the binding and activation of multifunctional regulatory proteins known as β -
25 arrestins (β arrs). Although the primary sequence and phosphorylation pattern of GPCRs are
26 poorly conserved, the downstream functional responses mediated by β arrs such as receptor
27 desensitization, endocytosis and signaling are broadly applicable across GPCRs. A
28 conserved principle of β arr activation, if any, upon their interaction with different GPCRs
29 harboring divergent phosphorylation patterns remains to be visualized, and it represents a
30 major knowledge gap in our current understanding of GPCR signaling and regulatory
31 paradigms. Here, we present four structural snapshots of activated β arrs, in complex with
32 distinct phosphorylation patterns derived from the carboxyl-terminus of three different
33 GPCRs, determined using cryogenic-electron microscopy (cryo-EM). These structures of
34 activated β arrs elucidate a “lock-and-key” type conserved mechanism of β arr activation
35 wherein a P-X-P-P phosphorylation pattern in GPCRs interacts with a spatially organized K-
36 K-R-R-K-K sequence in the N-domain of β arrs. Interestingly, the P-X-P-P pattern
37 simultaneously engages multiple structural elements in β arrs responsible for maintaining the
38 basal conformation, and thereby, leads to efficient β arr activation. The conserved nature of
39 this lock-and-key mechanism is further illustrated by a comprehensive sequence analysis of
40 the human GPCRome, and demonstrated in cellular context with targeted mutagenesis
41 including “loss-of-function” and “gain-of-function” experiments with respect to β arr activation
42 measured by an intrabody-based conformational sensor. Taken together, our findings
43 uncover previously lacking structural insights, which explain the ability of distinct GPCRs to
44 activate β arrs through a common mechanism, and a key missing link in the conceptual
45 framework of GPCR- β arr interaction and resulting functional outcomes.

46

47

48 **Introduction**

49 G protein-coupled receptors (GPCRs) are characterized by their universal seven
50 transmembrane architecture, and agonist-induced coupling to heterotrimeric G-proteins and
51 β -arrestins (β barrs). Of these, β barrs are multifunctional cytosolic proteins critically involved in
52 regulating the signaling and trafficking of GPCRs (Kang et al., 2014; Lefkowitz and Shenoy,
53 2005; Shenoy and Lefkowitz, 2011). Their interaction with GPCRs involves a major
54 contribution from receptor phosphorylation, which not only drives the affinity of receptor- β barr
55 interaction but also imparts functionally competent active conformation in β barrs driving
56 downstream functional outcomes (Maharana et al., 2022; Ranjan et al., 2017; Reiter et al.,
57 2012). Additional interaction of β barrs with the receptor transmembrane core and membrane
58 lipid bilayer induces further structural changes (Eichel et al., 2018; Eichel et al., 2016;
59 Shiraishi et al., 2021), which also fine-tune the functional capabilities of β barrs and possibly
60 spatio-temporal aspects of their regulatory mechanisms (Asher et al., 2022; John Janetzko,
61 2022). Despite a poorly conserved primary sequence of GPCRs in terms of the number and
62 spatial positioning of the putative phosphorylation sites, the near-universal nature of β barr
63 interaction, ensuing signaling and regulatory responses, remain to be fully understood at
64 molecular level (Chen and Tesmer, 2022; Seyedabadi et al., 2021). Moreover, differential
65 receptor phosphorylation by different subtypes of GPCR kinases (GRKs), and possibly other
66 kinases, in cell-type specific manner adds further complexity to GPCR- β barr binding
67 modalities and context-specific functional specialization (Gurevich and Gurevich, 2020;
68 Kawakami et al., 2022; Matthees et al., 2021).

69 There are two isoforms of β barrs namely β barr1 and 2, also known as Arrestin 2 and 3,
70 respectively, and despite a high degree of sequence and structural similarity, they often
71 exhibit a significant diversity in their functional contribution towards GPCR signaling and
72 regulation (Drube et al., 2022; Ghosh et al., 2019; Srivastava et al., 2015). There are only a
73 very few structures of β barr1 in active conformation, either in complex with receptor-derived
74 phosphopeptides (He et al., 2021; Shukla et al., 2013), or, in complex with agonist-bound,

75 phosphorylated GPCRs (Cao; Huang et al., 2020; Lee et al., 2020; Staus et al., 2020; Yin et
76 al., 2019). The structural coverage for β arr2 is even more sparse with the structural
77 snapshots limited to either a complex with CXCR7-derived phosphopeptide (Min et al., 2020)
78 or in IP6-bound state (Chen et al., 2017). While these structures provide useful information
79 about β arrs' interaction with the receptors, there is only a limited information available about
80 the phosphorylation patterns either due to chimeric constructs used in these studies or the
81 lack of visualization of multiple phosphorylation sites resulting from insufficient structural
82 resolution. Thus, the quest to decipher precise molecular details of β arr activation, especially
83 a potentially conserved mechanism by which they can interact with a large repertoire of
84 receptors harboring different phosphorylation patterns, remains open. This represents a
85 major knowledge gap in our current understanding of GPCR signaling and regulatory
86 paradigms governing and fine-tuning the signal-transduction through this versatile class of
87 receptors.

88 In this backdrop, here we present cryogenic-electron microscopy (cryo-EM)
89 structures of full length β arr1 and 2 activated by defined phosphorylation patterns encoded
90 in the form of phosphopeptides, which are derived from three different GPCRs namely the
91 complement C5a receptor subtype 1 (C5aR1), the CXC chemokine receptor subtype 4
92 (CXCR4) and the vasopressin receptor subtype 2 (V2R). These structural snapshots reveal
93 that a P-X-P-P pattern of phosphorylation in GPCRs engages a K-K-R-R-K-K sequence in
94 the N-domain of β arrs forming a “lock-and-key” type interaction interface that directs β arr
95 activation. Interestingly, a large repertoire of GPCRs encode putative P-X-P-P motif either in
96 their carboxyl-terminus, or, the 3rd intracellular loop (ICL3), suggesting the conserved nature
97 of this activation mechanism. We validate this mechanism in cellular context on a set of
98 distinct receptors using conformational biosensors and structure-guided modification of the
99 P-X-P-P key leading to “gain-of-function” and “loss-of-function” with respect to β arr
100 activation. Collectively, our data reveal conserved principles of β arr activation, and provide a
101 structural mechanism that guides phosphorylation-dependent β arr activation by GPCRs.

102 **Results**

103 Although cryo-EM has been used to determine the structures of GPCR-βarr1 complexes
104 (Cao; Huang et al., 2020; Lee et al., 2020; Staus et al., 2020; Yin et al., 2019), all the
105 previous structures of βarrs in basal state (Han et al., 2001; Zhan et al., 2011), bound to
106 phosphopeptides (He et al., 2021; Shukla et al., 2013) or IP6 (Chen et al., 2017) have been
107 determined using X-ray crystallography. Therefore, in order to test the feasibility of structure
108 determination of βarrs in complex with different phosphorylation patterns encoded in GPCR
109 phosphopeptides by cryo-EM, we first reconstituted V2Rpp-βarr1 complex together with a
110 set of conformationally selective Fabs, which recognize activated βarr1 (Ghosh et al., 2017).
111 Subsequently, we analyzed these complexes using negative-staining single particle EM,
112 which revealed monodisperse particle distribution and 2D class averages where the
113 densities of βarr1 and Fabs were clearly discernible (Figure 1B and Figure S1A). Based on
114 these observations, we synthesized and characterized a set of phosphopeptides
115 corresponding to the carboxyl-terminus of the human complement C5a receptor subtype 1
116 (C5aR1) and the CXC chemokine receptor subtype 4 (CXCR4), and assessed their ability to
117 activate βarr1 measured in terms of Fab30 reactivity (Figure S1B-S1E). We identified the
118 phosphorylation patterns from C5aR1 (C5aR1pp2; referred to as C5aR1pp hereon) and
119 CXCR4 (CXCR4pp2; referred to as CXCR4pp hereon), which elicited maximal Fab30
120 reactivity as a measure of βarr1 activation (Figure S1B-S1E). Subsequently, we
121 reconstituted C5aR1pp-βarr1-Fab30 and CXCR4pp-βarr1-Fab30 complexes, validated their
122 monodispersity and architecture using negative-staining EM (Figure 1C and 1D and Figure
123 S1F and S1G), and subjected these complexes to cryo-EM. We successfully determined the
124 structures of C5aR1pp-βarr1-Fab30 and CXCR4pp-βarr1-Fab30 complexes at global
125 resolutions of 3.4 Å and 4.8 Å, respectively (Figure 1E and 1F, Figure S2).

126 **βarr1 structures in complex with C5aR1 and CXCR4 phosphorylation patterns**

127 Both structures revealed a dimeric arrangement with the two β arr1 protomers making
128 dimeric contacts through the C-edge loops and finger loops (Figure 2A and 2B). β arr1
129 protomers exhibit nearly-identical overall structures with each other (RMSD, 0.08 Å for
130 C5aR1pp- β arr1 and RMSD 0.15 Å for CXCR4pp- β arr1) with clear densities of the
131 phosphopeptides visible in the EM map (Figure S3A and 3B). C5aR1pp and CXCR4pp are
132 positioned in a positively-charged groove on the N-domain of β arr1 (Figure 2C and 2D), and
133 the phosphate moieties make extensive contacts with Arg/Lys residues at the binding
134 interface (Figure 2E and 2F). Interestingly, three phosphate groups arranged in a P-X-P-P
135 type pattern, where P is a phosphorylated residue and X is another amino acid, in both the
136 phosphopeptides engage a nearly-identical set of Lys/Arg residues in β arr1 (Figure 2E and
137 2F). Specifically, pT³³⁶-R³³⁷-pS³³⁸-pT³³⁹ pattern in C5aR1pp and pS³⁴⁴-E³⁴⁵-pS³⁴⁶-pS³⁴⁷
138 pattern in CXCR4pp engages K²⁹⁴-K¹¹-R²⁵-R⁷-K¹⁰-K¹⁰⁷ in β arr1. The other phosphate groups
139 present in the phosphopeptides are either not involved in a direct contact with Arg/Lys,
140 sparsely linked with Arg/Lys, or, positioned outside the binding groove. The N- and C-
141 domains of β arr1 exhibit an inter-domain rotation of approximately 20° when compared to
142 the basal state of β arr1, in both the structures, which is a hallmark of β arr activation upon
143 binding of phosphorylated GPCRs (Shukla et al., 2013) (Figure 2G). Moreover, the three
144 major loops in β arr1 namely the finger, middle and lariat loop also exhibit significant
145 reorientation upon binding of C5aR1pp and CXCR4pp compared to the basal state although
146 their positioning is almost identical between the two structures (Figure 2H). Finally, the three-
147 element interaction and polar-core network in β arr1 are also disrupted upon binding to
148 C5aR1pp and CXCR4pp when compared to the basal state structure through the
149 displacement of carboxyl-terminus of β arr1 from the N-domain and repositioning of the lariat
150 loop through the interaction of K²⁹⁴ with a phosphate moiety (Figure S4A and S4B). These
151 structural features and interaction interface are analogous to that observed in V2Rpp- β arr1-
152 Fab30 crystal structure determined previously (Shukla et al., 2013), although the primary
153 sequence and phosphorylation patterns encoded by C5aR1pp and CXCR4pp are distinct
154 from V2Rpp (Figure S4C).

155 **Structure-guided engineering yields structures of activated β arr2**

156 As mentioned earlier, the structural coverage of active β arrs, either in complex with full
157 GPCRs or GPCR-derived phosphopeptides, is limited primarily to β arr1. Activated structures
158 of the other isoform i.e., β arr2 are represented only by an IP6-bound crystal structure (Chen
159 et al., 2017) and a complex of truncated β arr2 with a phosphopeptide derived from a β arr-
160 biased 7TMR (CXCR7) (Min et al., 2020). Therefore, we set out to reconstitute and
161 determine the structure of β arr2 in complex with the phosphopeptides derived from different
162 receptors, i.e., C5aR1pp and CXCR4pp using cryo-EM. Surprisingly however, we did not
163 observe a significant Fab30 reactivity to C5aR1pp/CXCR4pp-bound β arr2 while it robustly
164 recognized V2Rpp- β arr2 complex (Figure 3A). Therefore, we analyzed the Fab30 interaction
165 interface on C5aR1pp-bound β arr1 structure to identify a potential reason for the lack of
166 Fab30 reactivity with β arr2. Interestingly, we observed that Fab30 epitope is conserved
167 between β arr1 and 2 except two residues i.e., instead of F²⁷⁷ and A²⁷⁹ as in β arr1, β arr2
168 contains L²⁷⁸ and S²⁸⁰ in the corresponding positions, respectively (Figure 3B). Therefore, we
169 generated a β arr2 mutant, referred to as β arr2^{DM}, and tested its reactivity to Fab30 upon
170 activation by distinct phosphopeptides. In line with our hypothesis, we observed a robust
171 interaction of Fab30 with C5aR1pp- β arr2^{DM} and CXCR4pp- β arr2^{DM} complex, and we also
172 noticed that the interaction of Fab30 with V2Rpp- β arr2^{DM} was further enhanced compared to
173 β arr2^{WT} (Figure 3C). We also confirmed that β arr2^{DM} exhibits a similar pattern of interaction
174 as β arr2^{WT} with V2R and C5aR1 in cellular context (Figure 3D) and shows near-identical
175 endosomal trafficking as β arr2^{WT} upon stimulation of V2R and C5aR1 (Figure 3E). Thus,
176 β arr2^{DM} provides us an excellent handle to reconstitute stable complexes with receptor
177 phosphopeptides suitable for cryo-EM. In fact, we successfully managed to reconstitute
178 monodisperse V2Rpp- β arr2^{DM}-Fab30 and C5aR1pp- β arr2^{DM}-Fab30 complexes (Figure S5C
179 and S5I) and determine their cryo-EM structures at 4.2 Å and 4.4 Å resolution, respectively
180 (Figure 4A and B, Figure S5D-S5H, S5J-S5N). In order to simplify the discussion, we refer to
181 β arr2^{DM} as β arr2 from here onwards unless specified otherwise.

182 **Structures of β Barr2 in complex with V2Rpp and C5aR1pp**

183 The V2Rpp- β Barr2 and C5aR1pp- β Barr2 structures exhibited a trimeric assembly of β Barr2 with
184 the individual protomers arranged through N- to C-domain contacts (Figures 4A-4D and
185 Figure S7). The overall structural features of the individual protomers in each structure were
186 nearly identical as reflected by low RMSD (0.005 Å for V2Rpp- β Barr2 and 0.038 Å for
187 C5aR1pp- β Barr2) with the phosphopeptide densities clearly visible in the EM maps (Figures
188 S3C and S3D). Like β Barr1 structures, V2Rpp and C5aR1pp are positioned in a positively-
189 charged groove on the N-domain of β Barr2 (Figures 4E and 4F), and the phosphate moieties
190 make extensive contacts with Arg/Lys residues at the binding interface (Figures 5A and 5B).
191 Remarkably, we observed that three phosphate groups arranged in a P-X-P-P pattern in the
192 phosphopeptides, engaged an analogous set of Lys/Arg residues as in β Barr1 (Figures 5A and
193 5B). Specifically, pT³⁶⁰-A³⁶¹-pS³⁶²-pS³⁶³ in V2Rpp and pT³³⁶-R³³⁷-pS³³⁸-pT³³⁹ in C5aR1pp
194 engage K²⁹⁵-K¹²-R²⁶-R⁸-K¹¹-K¹⁰⁸ in β Barr2 (Figures 5A and 5B). Similar to β Barr1 structures,
195 the other phosphate groups present in the phosphopeptides are either not involved in a
196 direct contact with Arg/Lys or positioned outside the binding groove. The N- and C-domains
197 of β Barr2 exhibit an inter-domain rotation of approximately 25° when compared to the basal
198 state of β Barr2 in both the structures, which is relatively higher from that observed in
199 phosphopeptide bound β Barr1 (Figure 5C). Moreover, the three major loops in β Barr2 namely
200 the finger, middle and lariat loop also exhibit significant reorientation upon binding of V2Rpp
201 and C5aR1pp compared to the basal state although their positioning is almost identical
202 between the two structures (Figure 5D). Finally, the three-element interaction and polar-core
203 network in β Barr2 are also disrupted upon binding to V2Rpp and C5aR1pp when compared to
204 the basal state structure through the displacement of carboxyl-terminus of β Barr2 from the N-
205 domain and repositioning of the lariat loop through the interaction of K²⁹⁵ with a phosphate
206 moiety (Figures 5E and 5F).

207 **A conserved “lock-and-key” mechanism of β Barr activation**

208 As mentioned earlier, the analysis of these structural snapshots in terms of phosphorylation
209 sites revealed a conserved P-X-P-P pattern with nearly-identical interactions with analogous
210 residues in β arr1 and 2 (Figures 6A-6C). Therefore, we analyzed the primary sequence of all
211 non-olfactory and non-orphan GPCRs in their carboxyl-terminus and intracellular loop 3
212 (ICL3) to identify the occurrence of P-X-P-P pattern in these receptors (Supplementary Table
213 S2). We observed that a large set of GPCRs harbored this motif in their carboxyl-terminus
214 sequence and several receptors also included it in their ICL3 (Figures 6F and 6G). In order
215 to validate the functional contribution of this motif in GPCR-induced β arr activation, we
216 employed Ib30-based conformational biosensor in cellular context using three different
217 receptors, which possess P-X-P-P motif either in their C-terminus (CXCR3), ICL3 (M2R), or,
218 lack it (CXCR7). At the level of β arr1 conformation, Ib30 sensor reports the degree ($>15^\circ$) of
219 inter-domain rotation as a proxy of β arr activation upon its interaction with activated and
220 phosphorylated receptors (Dwivedi-Agnihotri et al., 2020). In agreement with our hypothesis,
221 we observed robust reactivity of Ib30 sensor with β arr1 for CXCR3 and M2R but not for
222 CXCR7 (Figure 7A). To further corroborate these findings, we used two different receptors
223 namely, the Bradykinin receptor subtype 2 (B2R) and C5aR1 for structure-based targeted
224 mutagenesis to probe “gain-of-function” and “loss-of-function”, respectively, in terms of Ib30
225 reactivity pattern. As presented in Figures 7B and 7C, activation of the wild-type B2R fails to
226 induce an interaction between β arr1 and Ib30 as it lacks a P-X-P-P motif in its C-terminus,
227 although B2R is capable of recruiting β arrs (Baidya et al., 2020a; Zimmerman et al., 2011).
228 Interestingly however, reconstitution of P-X-P-P motif in B2R by double mutation
229 ($\Delta G^{368}+L^{370}T$) results in a robust Ib30 reactivity upon agonist-stimulation (Figure 7B). Along
230 the same lines, a mutant version of C5aR1pp, where the P-X-P-P motif is disrupted by
231 insertion of an additional arginine residue between pT³³⁶ and pS³³⁸, completely loses the
232 ability to induce a conformation that is recognizable by Fab30 (Figure 7C). Moreover, the
233 corresponding mutation in C5aR1 also leads to a dramatic loss of Ib30 reactivity in cellular
234 context (Figure 7C). Taken together these data establish the P-X-P-P phosphorylation

235 pattern in GPCRs as a “key” to open the “lock” in β bars leading to its conformational
236 activation (Figure 7D).

237 **Discussion**

238 The identification of conserved principles that guide the interaction and conformational
239 activation of β bars with a large repertoire of GPCRs has been a major challenge, and the
240 structural snapshots of β arr1 and 2 presented here with distinct phosphorylation patterns
241 derived from different receptors provide a breakthrough. The “P-X-P-P key” present in these
242 phosphorylation patterns appear to be sufficient to simultaneously engage the crucial “lock
243 points” in β bars to facilitate their activation. It is intriguing that the binding interface of “P-X-P-
244 P key” is conserved not only across different peptides irrespective of their primary sequence
245 but also for both β arr isoforms (Figures 6D and 6E). This conserved binding interface and
246 corresponding interactions ensure the displacement of β bars’ C-terminus from the N-domain
247 and repositioning of the lariat loop, leading to the release of the two major “breaks” on β arr
248 activation namely, the three-element interaction and the polar-core network (Gurevich and
249 Gurevich, 2020) (Figure S6A). It is important to note that GPCRs lacking the P-X-P-P pattern
250 are also capable of recruiting β bars in functionally competent conformation; however, they
251 are likely to induce an active β arr conformation that is distinct from the receptors harboring
252 the P-X-P-P key. Additionally, we cannot rule out the possibility that for some receptors, a
253 functional “P-X-P-P key” may not be formed despite having a suitable primary sequence
254 because all the phosphorylatable residues may not undergo phosphorylation in cellular
255 context. A previous study has proposed a framework of “full” and “partial” phosphorylation
256 codes imparting distinct β arr recruitment patterns for GPCRs (Zhou et al., 2017). Our study
257 now identifies and establishes a general principle of efficient β arr activation through a
258 specific phosphorylation pattern encoded in GPCRs engaging a conserved interface on
259 β bars.

260 An intriguing observation in these structural snapshots is novel dimer and trimer
261 assemblies of β arrs. Although β arrs have strong propensity to adopt different oligomeric
262 states (Chen et al., 2014; Chen et al., 2021; Gurevich and Gurevich, 2022), the dimer and
263 trimer interfaces observed here differ significantly from previously reported interfaces (Chen
264 et al., 2017; Chen et al., 2014; Chen et al., 2021) (Figure S7). The overall buried surface
265 area in dimer and trimer assemblies are approximately 1500 \AA^2 and 4500 \AA^2 , respectively,
266 suggesting a robust and stable oligomeric arrangement. The two protomers in C5aR1pp-
267 and CXCR4pp-bound β arr1 interface with each other through multiple hydrogen bonds, salt-
268 bridges, and non-bonded contacts in a manner where the C-edge loop residues of one
269 protomer are positioned into the central crest of the other protomer in proximity of the finger
270 loop. An analogous set of interactions are also involved in trimer arrangement of β arr2 in
271 complex with V2Rpp and C5aR1pp. Interestingly, a previous crystal structure of β arr2 in
272 complex with IP6 also shows a trimeric arrangement although the trimer interface is different
273 from that observed here in phosphopeptide-bound conformations (Chen et al., 2017). A
274 comprehensive map of dimer and trimer interface with residue-level contacts is listed in
275 Supplementary Table S3. Considering the functional multiplicity of β arrs in terms of distinct
276 signaling and regulatory outcomes and receptor-specific responses (Gurevich and Gurevich,
277 2019), it is plausible that distinct oligomeric interfaces in β arrs may be a modular mechanism
278 to fine-tune the functional contributions by providing distinct possibilities for adaptable
279 protein-protein interaction interfaces for binding partners.

280 The comparison of V2Rpp- and C5aR1pp-bound β arr1 and 2 reveal a significantly
281 higher inter-domain rotation in β arr2 compared to β arr1 as hypothesized earlier based on
282 cellular and biochemical studies (Ghosh et al., 2019), and this may provide a plausible
283 explanation for functional differences between the β arr isoforms as observed for multiple
284 GPCRs. It is also noteworthy that the structural snapshots presented here involve isolated
285 phosphopeptides with defined phosphorylation patterns without the transmembrane core of
286 the receptors. As the interaction of receptor core imparts additional conformational changes

287 in β arrs (Ghosh et al., 2019; Latorraca et al., 2018; Shiraishi et al., 2021), it is plausible that
288 the full complexes of receptors and β arrs may exhibit additional conformational changes in
289 β arrs, especially in terms of the positioning of the proximal region of the phosphorylated
290 segment. However, the conserved principle of “P-X-P-P key” to open the “K-K-R-R-K-K lock”
291 is likely to be maintained and guide β arr activation even in the context of full receptors.

292 In summary, we identify and experimentally validate a conserved principle of
293 phosphorylation-induced β arr activation based on structural snapshots of activated β arrs in
294 complex with distinct receptor phosphorylation patterns. Our study addresses a long-
295 standing question in the field to decipher the molecular basis of universal β arr activation by
296 receptor phosphorylation, and lays the foundation to further refine the conceptual framework
297 of β arr-mediated signaling and regulation of 7TMRs.

298 **Data availability statement**

299 The three-dimensional cryo-EM density maps have been deposited in the Electron
300 Microscopy Data Bank under the accession numbers EMD-34173 (C5aR1pp- β arr1-Fab30),
301 EMD-34175 (V2Rpp- β arr2-Fab30), EMD-34178 (C5aR1pp- β arr2-Fab30) and EMD-34188
302 (CXCR4pp- β arr1-Fab30). Coordinates for the atomic models have been deposited in the
303 RCSB Protein Data Bank with the accession numbers 8GO8 (C5aR1pp- β arr1-Fab30),
304 8GOC (V2Rpp- β arr2-Fab30), 8GOO (C5aR1pp- β arr2-Fab30) and 8GP3 (CXCR4pp- β arr1-
305 Fab30). Any additional information required to reanalyze the data reported in this paper is
306 available from the corresponding author upon reasonable request.

307 **Acknowledgements**

308 Research in A.K.S.’s laboratory is supported by the Senior Fellowship of the DBT Wellcome
309 Trust India Alliance (IA/S/20/1/504916) awarded to A.K.S., Science and Engineering
310 Research Board (EMR/2017/003804, SPR/2020/000408, and IPA/2020/000405), Council of
311 Scientific and Industrial Research [37(1730)/19/EMR-II], Indian Council of Medical research
312 (F.NO.52/15/2020/BIO/BMS), Young Scientist Award from Lady Tata Memorial Trust, and IIT

313 Kanpur. We thank A. Ranjan, M. Chaturvedi and H. Dwivedi-Agnihotri for their help with the
314 characterization of the phosphopeptides, M. Ganguly for assisting with GPCR sequence
315 analysis, and E. Ghosh for initial characterization of β arr2^{DM}. Cryo-EM was performed at
316 BioEM lab of the Biozentrum at the University of Basel, and we thank Carola Alampi and
317 David Kalbermatter for their excellent technical assistance.

318 **Authors' contribution**

319 JM and MKY prepared and characterized the β arr complexes, JM performed negative-
320 staining EM with RB, and processed the cryo-EM data with RB; PS carried out all the
321 functional assays related to β arr2^{DM} characterization and Ib30 sensor assay; MKY purified
322 β arrs and carried out the co-IP experiments with VS and SS; ShS contributed to functional
323 characterization of β arr2^{DM}; MC screened the samples and collected cryo-EM data; AKS
324 supervised and managed the overall project; all authors contributed to data analysis,
325 interpretation and manuscript writing.

326 **Conflict of interest**

327 The authors declare that they have no competing financial interests.

328 **Accession number**

329 The cryo-EM maps and structures have been deposited in the EMDB and PDB with
330 accession numbers EMD-34173 and 8GO8 (C5aR1pp- β arr1-Fab30), EMD-34174 and 8GO9
331 (D6Rpp- β arr2-Fab30), EMD-34175 and 8GOC (V2Rpp- β arr2-Fab30), EMD-34178 and
332 8GOO (C5aR1pp- β arr2-Fab30) and EMD-34188 and 8GP3 (CXCR4pp2- β arr1-Fab30)
333 respectively.

334 **Materials and Methods**

335 **General reagents, plasmids, and cell culture**

336 Most of the general reagents were purchased from Sigma Aldrich unless mentioned
337 otherwise. Dulbecco's Modified Eagle's Medium (DMEM), Dulbecco's Phosphate buffer
338 saline (PBS), Fetal-Bovine Serum (FBS), Trypsin-EDTA, Hank's balanced salt solution
339 (HBSS), and penicillin-streptomycin solution were purchased from Thermo Fisher Scientific.
340 HEK293 cells were obtained from ATCC and maintained in DMEM (Gibco, Cat no. 12800-
341 017) supplemented with 10% FBS (Gibco, Cat no. 10270-106) and 100 U ml⁻¹ penicillin
342 (Gibco, Cat no. 15140122) and 100 µg ml⁻¹ streptomycin (Gibco, Cat no. 15140-122) at 37
343 °C under 5% CO₂. The cDNA coding region for the mentioned receptors, namely V2R,
344 C5aR1 (WT and Mut), B2R (WT and Mut), M2R, CXCR3, and CXCR7 were cloned in
345 pcDNA3.1 consist of HA signal sequence followed by FLAG tag at the N-terminus of the
346 receptor. For the NanoBiT assay, receptors harboring SmBiT at the C-terminus were
347 generated by subcloning in the lab, and other constructs have been described
348 previously(Baidya et al., 2022; Baidya et al., 2020a; Baidya et al., 2020b). All the constructs
349 were verified by DNA sequencing (Macrogen).

350 **Expression and purification of βarrs**

351 Full length rat βarr1, βarr2^{WT} and βarr2^{DM} were cloned into pGEX-4T3 vector with thrombin
352 cleavage site between GST tag and βarr. Similar protocol was followed for purifying all three
353 forms of βarr. βarrs were expressed in *E. coli* BL21 cells and grown in Terrific broth media
354 supplemented with 100 µg ml⁻¹ Ampicillin. A primary culture of 50 ml volume was inoculated
355 with an isolated colony from freshly transformed LB-Amp plate. Primary culture was grown
356 till a cell optical density at 600 nm (OD₆₀₀) of 0.8-1 and further inoculated into a secondary
357 culture of TB-Amp of 1.5 L volume till OD₆₀₀ 0.8-1. The expression of βarrs was then induced
358 with 25 µM IPTG concentration and cells were allowed to grow till 16 h at 18 °C. Cultures
359 were harvested and stored at -80 °C until further use. Harvested pellets were of 12-15 g in
360 mass.

361 For purification, cells were lysed by sonication in lysis buffer; 25 mM Tris, pH 8.5, 150
362 mM NaCl, 1 mM PMSF (phenylmethylsulfonyl fluoride), 2 mM Benzamidine, 1 mM EDTA

363 (Ethylenediaminetetraacetic acid), 5% Glycerol, 2 mM Dithiothreitol (DTT) and 1 mg ml⁻¹
364 Lysozyme. The lysate was centrifuged at 18000-20000 rpm at 4 °C and supernatant was
365 allowed to bind to Glutathione resin (GS resin) (Glutathione Sepharose™ 4 Fast Flow, GE
366 Healthcare Cat no. 17-5132-02) in a batch binding mode for overnight at 4 °C. GS-resin
367 bound GST-βarr was transferred into Econo columns (Biorad, Cat. no.) and washed
368 rigorously with wash buffer (25 mM Tris, pH 8.5, 150 mM NaCl, 2 mM DTT and 0.02% n-
369 dodecyl-β-D-maltopyranoside (DDM). Afterward, on-column cleavage was set up by adding
370 thrombin to 1: 1 resin: buffer slurry at room temperature for 2 h. βarrs were then eluted with
371 gravity flow and further with buffer 25 mM Tris, pH 8.5, 350 mM NaCl and 0.02% DDM and 2
372 mM DTT. Eluted proteins were concentrated and further purified on a HiLoad 16/600
373 Superdex column in buffer 25 mM Tris, pH 8.5, 350 mM NaCl, 2 mM DTT and 0.02% DDM.
374 Fractions corresponding to pure βarr were flash frozen with 10% glycerol and stored at -80
375 °C until further use.

376 **Expression and purification of Fabs**

377 A similar protocol for expression and purification was followed for all the Fabs and they were
378 purified as previously mentioned (Ghosh et al., 2017). Briefly, Fabs were expressed in the
379 periplasmic fraction of *E. coli* M55244 cells (ATCC) and purified using Protein L resin (GE
380 Healthcare Cat no. 17547802) with gravity flow affinity chromatography. Cells transformed
381 with Fab plasmid were grown in 50 ml 2xYT media and allowed to grow overnight at 30 °C. 1
382 L 2xYT media was inoculated with 5% volume of initial inoculum and grown for an additional
383 8 h at 30 °C. Cells were collected and resuspended in an equal volume of CRAP medium
384 supplemented with 100 µg ml⁻¹ ampicillin, and grown further for 16 h at 30 °C. For
385 purification, cells were lysed in lysis buffer (50 mM HEPES-Na⁺, pH 8.0, 0.5 M NaCl, 0.5%
386 (v/v) Triton X-100, 0.5 mM MgCl₂) by sonication. Cell lysate was heated in a 65 °C water
387 bath for 30 min and cooled immediately on ice for 5 min. Lysate was centrifuged at 20,000
388 rpm and passed through pre-equilibrated Protein L resin packed gravity flow affinity columns.
389 Binding was performed at room temperature and beads were washed extensively with wash

390 buffer (50 mM HEPES-Na⁺, pH 8.0, 0.5 M NaCl). Fabs were eluted with 100 mM acetic acid
391 into tubes containing 10% vol of 1 M HEPES, pH 8.0 for neutralization. Eluted samples were
392 desalted into buffer (20 mM HEPES-Na⁺, pH 8.0, 0.1 M NaCl) using a pre-packed PD-10
393 column (GE Healthcare). Purified Fabs were flash-frozen and stored at -80 °C supplemented
394 with 10% (v/v) glycerol until further use.

395 **Co-immunoprecipitation assay**

396 For co-immunoprecipitation assay, 2.5 µg of β-arrestins were incubated with different
397 phosphopeptides at 10-fold molar excess in binding buffers (20 mM HEPES, pH 7.4, 150
398 mM NaCl) for 1 h at room temperature for activation. Post peptide-induced activation, 5 µg
399 Fab30 was added, and reaction was incubated for an additional 1 h at room temperature.
400 After 1 h hour, 25 µl of pre-equilibrated protein L beads (Capto™ L resin, GE Healthcare Cat
401 no. 17547802 Cat. no. 17547803) was added and reaction was incubated for 90 min at room
402 temperature, followed by five washes with binding buffer containing 0.01% LMNG. Bound
403 protein was eluted with 2X SDS loading buffer and 15 µl sample was analyzed on 12% SDS-
404 PAGE. For statistical analyses, protein bands were quantified using ImageJ software suite
405 and the values were plotted using GraphPad Prism software (v9.3). The data were
406 normalized with respect to their respective experimental control and appropriate statistical
407 analyses were performed as indicated in the corresponding figure legend.

408 **Reconstitution of pp-βarr-Fab complexes**

409 The previously published protocol was followed for complex purification with minor
410 modifications(Shukla et al., 2013). Briefly, βarrs were activated with corresponding
411 phosphopeptides at a 1:3 molar ratios of βarr: phosphopeptide for 30-40 min at room
412 temperature. Respective Fabs were added to the phosphopeptide-βarr mixture at 1:1.5
413 molar ratio of βarr:Fab and incubated for 1 h at room temperature. To remove excess Fabs,
414 the phosphopeptide-βarr-Fab complexes were concentrated with 30,000 MWCO
415 concentrators (Vivaspin, Cytiva Cat no. 28932361) and injected into Superose 6 Increase

416 10/300 GL (Cytiva Cat no. 29091596) gel-filtration column. Fractions were further analyzed
417 on SDS-PAGE and selected fractions were pooled and concentrated for structural studies.

418 **Negative-staining EM**

419 Complex formation, homogeneity and particle quality of the samples were judged through
420 negative staining of the samples prior to data collection under cryo conditions for high
421 resolution reconstructions. Negative staining of the samples was performed with uranyl
422 formate in accordance with the previously published protocols(Peisley and Skiniotis, 2015).
423 For imaging, 3.5 μ l of the samples were dispensed on glow discharged carbon/formvar
424 coated 300 mesh Cu grids (PELCO, Ted Pella) and allowed to adsorb for 1 min, followed by
425 blotting off the sample using a filter paper. The grid was then touched on a first drop of
426 freshly prepared 0.75% (w/v) uranyl formate stain and immediately blotted off, followed by
427 staining for 30 s on a second drop of stain. Imaging of the negatively stained samples were
428 performed on a FEI Tecnai G2 12 Twin TEM (LaB6) operating at 120 kV and equipped with
429 a Gatan CCD camera (4k x 4k) at 30,000x magnification. Data processing of the collected
430 micrographs for the individual samples were performed with Relion 3.1.2 (Zivanov et al.,
431 2020). Approximately 10,000 particles were autopicked using the gaussian blob picker within
432 Relion and the extracted particles were subjected to reference free 2D classification.

433 **Cryo-EM sample preparation and data acquisition**

434 Quantifoil holey carbon grids (Cu or Au, R2/1 or R2/2) were glow discharged for 45 s with a
435 Glocube (Quorum technologies Ltd, UK). 3 μ l of the complex was dispensed on the glow
436 discharged grid, blotted for 3 s with a Whatman paper filter no. 1 at 10 °C and maintained at
437 90% humidity and then plunge frozen into liquid ethane (-180 °C) using a Leica GP plunger
438 (Leica Microsystems, Austria).

439 For C5aR1pp- β barr1-Fab30 complex, cryo-EM data collection was performed on R2/2
440 Cu 300 mesh grid using a Titan Krios electron microscope (Thermofisher Scientific, USA)
441 operating at 300 kV equipped with the Gatan Energy Filter. Movies were recorded in
442 counting mode with a Gatan K2 Summit DED (Gatan, USA) using the automated SerialEM

443 software at a nominal magnification of 165,000x and a pixel size of 0.82 Å at sample level.
444 6212 movie stacks consisting of 40 frames were recorded over a defocus range of 0.5 to 2.5
445 μm with a total dose of 49 e⁻/Å² and total exposure time of 5 s.

446 For CXCR4pp-βarr1-Fab30 complex, cryo-EM data collection was performed on
447 R2/2 Cu 300 mesh grid using a Glacios electron microscope (Thermofisher Scientific, USA)
448 operating at 200 kV. Movies were recorded in counting mode with a Gatan K3 DED (Gatan,
449 USA) using the automated SerialEM software at a nominal magnification of 46,000x and a
450 pixel size of 0.878 Å at sample level. 5,637 movie stacks consisting of 40 frames were
451 recorded over a defocus range of 0.5 to 2.5 μm with a total dose of 49.3 e⁻/Å² and total
452 exposure time of 2.9 s.

453 For V2Rpp-βarr2-Fab30 complex, cryo-EM data collection was performed on R2/2
454 Au 200 mesh grid using a Titan Krios electron microscope (Thermofisher Scientific, USA)
455 operating at 300kV equipped with the Gatan Energy Filter. Movies were recorded in counting
456 mode with a Gatan K2 Summit DED (Gatan, USA) using the automated SerialEM software
457 at a nominal magnification of 165,000x and a pixel size of 0.82 Å at sample level. 9,720
458 movie stacks consisting of 40 frames were recorded over a defocus range of 0.5 to 2.5 μm
459 with a total dose of 48.7 e⁻/Å² and total exposure time of 4 s.

460 For C5aR1pp-βarr2-Fab30 complex, cryo-EM data collection was performed on R2/2
461 Cu 300 mesh grid using a Glacios electron microscope (Thermofisher Scientific, USA)
462 operating at 200 kV. Movies were recorded in counting mode with a Gatan K3 DED (Gatan,
463 USA) using the automated SerialEM software at a nominal magnification of 46,000x and a
464 pixel size of 0.878 Å at sample level. 8,614 movie stacks consisting of 40 frames were
465 recorded over a defocus range of 0.5 to 2.5 μm with a total dose of 51 e⁻/Å² and total
466 exposure time of 3 s.

467 **Cryo-EM data processing and model building**

468 All image processing steps were performed in cryoSPARC version 3.3.2(Punjani et al.,
469 2017) unless otherwise stated. In brief, for the C5aR1pp-βarr1-Fab30 complex, 6,212 movie
470 stacks were subjected to Patch motion correction (multi), followed by CTF refinement with

471 Patch CTF multi. 5,790 motion corrected micrographs with CTF fit resolution better than 4.5
472 Å were selected for further processing. 4,304,237 particle projections were automatically
473 picked with blob picker, extracted with a box size of 480 pixels and fourier cropped to 64
474 pixels. The particle stack so obtained was subjected to multiple rounds of 2D classification.
475 The class averages with clear secondary structural features were selected and re-extracted
476 with a box size of 480 pixels and fourier cropped to 256 pixels resulting in a pixel size of
477 1.5375 Å. 295,922 re-extracted particles were then subjected to Ab-initio reconstruction and
478 3D classification/Heterogeneous refinement with C1 symmetry yielding 4 models. 84,655
479 particles corresponding to a dimer and containing 47.9% of the total particles were subjected
480 to non-uniform refinement with C2 symmetry to yield a map with an estimated resolution of
481 3.41 Å (voxel size of 1.5375 Å). Local resolution of all reconstructions was estimated using
482 the Blocres within cryoSPARC version 3.3.2.

483 For the CXCR4pp-barr1-Fab30 complex data set, 5,637 movies were motion
484 corrected using a patch of 5x5 patch within Patch motion correction (multi). Following CTF
485 estimation, 5,236 motion corrected micrographs with CTF fit resolution better than 6 Å were
486 curated for further processing. 3,236,193 particles were automatically picked using the blob-
487 picker sub-program and subsequently extracted with a box size of 480 pixels and fourier
488 cropped to 64 pixels. The extracted particles were subjected to several rounds of 2D
489 classification to remove junk particles. 104,707 particles corresponding to the clean class
490 averages were selected, re-extracted with a box size of 480 pixels and fourier cropped to
491 256 pixels (pixel size of 1.65) and used to produce two ab-initio models. The particles
492 corresponding to the two ab-initio models were subjected to heterogenous refinement/3D
493 classification which produced a 3D class with clear dimeric conformation and a particle count
494 of 53,387. This particle set was re-extracted with full box size of 480 pixels (pixel size of
495 0.878) and subjected to non-uniform refinement with C2 symmetry which converge to a map
496 with 4.81 Å resolution as estimated using the gold standard Fourier Shell Correlation (GSC)
497 using the 0.143 criterion.

498 For the V2Rpp- β Barr2-Fab30 complex, 9,720 movies were motion corrected with 5x5
499 patches followed by CTF estimation with Patch CTF (multi). Following CTF refinement,
500 8,295 movies with CTF fit resolution better than 4.5 \AA were used for further processing.
501 Particle picking from the curated micrographs was performed automatically with the blob
502 picker sub-program to obtain an initial stack of 2,444,407 particles. The particles were then
503 extracted with a box size of 512 pixels and fourier cropped to a box size of 64 pixels. The
504 extracted particles were subjected to several rounds of reference free 2D classification. 2D
505 class averages with evident secondary features containing 32,397 particles were extracted
506 with a box size of 512 pixels and fourier cropped to a box size of 256 (pixel size of 1.64).
507 This sub-set of particles was used for ab-initio reconstruction and subsequent rounds of
508 3D/Heterogeneous classification with C1 symmetry to obtain 2 models. 18,492 particles
509 corresponding to a trimer were re-extracted with full box size of 512 pixels which refined to
510 an overall resolution of 4.18 \AA (voxel size of 0.82 \AA) with NU refinement (C3 symmetry)
511 according to the gold standard Fourier shell correlation (FSC) criterion of 0.143.

512 For the C5aR1pp- β Barr2-Fab30 complex data set, 8,614 movies were motion
513 corrected using Patch motion correction (multi) and subsequent CTF estimation was
514 performed through Patch CTF (multi). 8,157 micrographs with CTF fit resolution better than
515 6 \AA were curated for particle picking using the blob picker sub-program. 4,012,616 particles
516 were automatically picked and extracted with a box size of 512 pixels and fourier cropped to
517 64 pixels. Reasonable class averages after several rounds of reference free 2D classification
518 yielded a particle set containing 54,587 particle projections, which was re-extracted with a
519 box size of 512 pixels and fourier cropped to 360 pixels (pixel size of 1.2487 \AA) for
520 subsequent used for ab-initio reconstruction generating two ab-initio models. Following
521 heterogenous refinement/3D classification, the 3D class with evident features of a trimer and
522 containing 38,206 particles was subjected to non-uniform refinement with C3 symmetry to
523 yield a reconstruction at 4.41 \AA (final voxel size of 1.2487 \AA) as determined by gold standard
524 Fourier Shell Correlation (FSC) using the 0.143 criterion.

525 **Model building and refinement**

526 Coordinates from a previously solved IP6 bound β arr2 structure (PDB 5TV1) was used to
527 dock the model into the EM density map of D6Rpp- β arr2-Fab30 using Chimera(Pettersen et
528 al., 2004). The EM map was then used for manual rebuilding of the β arr1 residues and
529 placing the phosphopeptide in COOT(Emsley et al., 2010). The rebuilt model was subjected
530 to real space refinement in Phenix(Liebschner et al., 2019) to obtain a model with 94.77% of
531 the residues in most favored region and 5.23% in the allowed region of the Ramachandran
532 plot. The crystal structure of active β arr1 bound to vasopressin V2 receptor phosphopeptide
533 (PDB 4JQI) was used as an initial model for model building and refinement against the
534 C5aR1pp bound β arr1 density map. The model was docked into the coulombic map using
535 Chimera, followed by manual rebuilding in COOT, and refinement of the rebuilt model with
536 real space refinement in Phenix. The final refined model had 97.23% residues in the most
537 favored region, while 2.77% in the allowed region of the Ramachandran plot.

538 The protomeric structure from the D6Rpp- β arr2-Fab30 (PDB 8GO9) complex solved
539 in this study was used as an initial model to dock into the density map of V2Rpp- β arr2-
540 Fab30 complex and regenerate the trimeric complex with C3 symmetry. The rigid body fitted
541 trimeric model and the phosphopeptides were then rebuilt manually into the EM density map.
542 The rebuilt trimeric coordinates with the phosphopeptides were subsequently subjected to
543 real space refinement in Phenix to reach a final model with 95.05% in the favored region and
544 4.76% in the allowed region of the Ramachandran plot.

545 For model building into the 4.4 \AA C5aR1pp- β arr2-Fab30 coulombic map, the co-
546 ordinates corresponding to V2Rpp peptide were deleted from the trimeric co-ordinates of
547 V2Rpp- β arr2-Fab30 complex (PDB 8GOC), and the resulting model was docked into the EM
548 map in Chimera. The “all atom refine” sub-module within the “refine” module in COOT was
549 used for initial fitting of the model into the EM map, followed by manual rebuilding of the
550 phosphopeptides. Multiple rounds of Phenix real space refinement combined with iterative
551 model building yielded a model with 94.9% of the residues residing in the most favored
552 region of the Ramachandran plot.

553 The dimeric co-ordinates from the cryo-EM structure of C5aR1pp-barr1-Fab30 (PDB
554 8GO8) without the phosphopeptide was used as an initial model to dock into the CXCR4pp-
555 barr1-Fab30 EM map using Chimera. The docked model along with the coulombic map were
556 imported into COOT and the model was subjected to “all atom refine” for fitting the atoms
557 into the density. The phosphopeptide was manually built into the density to yield a complete
558 model, which was subsequently used to refine the model against the EM map with Phenix
559 real space refinement. The final refined model had 96.62% residues in the most favored
560 regions and 3.38% in the allowed regions of the Ramachandran plot.

561 All the refined models were validated using “Comprehensive Validation (cryo-EM)”
562 sub-module in Phenix. 3D reconstruction and model refinement statistics are provided as
563 Supplementary Table S1. Figures in the manuscript have been prepared with
564 Chimera(Pettersen et al., 2004) and ChimeraX(Pettersen et al., 2021) software. Domain
565 rotation analysis was performed with PyMOL (Schrödinger, 2020).

566 **NanoBiT assay for β barr2^{WT} and β barr2^{DM} recruitment**

567 β barr2^{WT} and β barr2^{DM} recruitment downstream of V2R and C5aR1 in response to AVP and
568 C5a, respectively, was measured using NanoBiT (Enzyme linked complementation-based
569 assay) assay following the protocol described earlier(Kawakami et al., 2022). Receptor
570 constructs were tagged with SmBiT at the carboxyl-terminus, and β barr2 constructs were N-
571 terminally tagged with LgBiT. Briefly, HEK293 cells were transfected with indicated receptor
572 constructs (3.5 μ g) and β barr2 (β barr2^{WT/DM}) constructs (3.5 μ g) using polyethylenimine (PEI)
573 linear (Polysciences, Cat no. 19850) at a ratio of 1: 3 (DNA: PEI linear). After 16-18 h of
574 transfection, cells were trypsinized, harvested, and resuspended in assay buffer (1XHBSS, 5
575 mM HEPES, pH 7.4, 0.01% BSA) containing 10 μ M coelenterazine (GoldBio, Cat no.
576 CZ2.5). Resuspended cells were seeded in a white flat bottom 96-well plate (100 μ l well⁻¹).
577 After 2 h of incubation (90 min at 37 °C and 30 min at room temperature), basal
578 luminescence was recorded using a multimode plate reader (FLUOstar Omega, BMG
579 Labtech). Later, cells were stimulated with varying doses of indicated ligands followed by
580 measurement of luminescence signal for 20 cycles. For data analysis, average of 5th to 10th

581 cycle readings were taken and normalized with the lowest ligand dose signal, and fold
582 normalized data was plotted using GraphPad Prism 9 software.

583 **NanoBiT assay for β arr trafficking**

584 Agonist-induced β arr2^{WT} and β arr2^{DM} endosomal trafficking downstream of the receptors
585 mentioned above was studied using NanoBiT assay as described in the recruitment
586 experiment. The only exception from the recruitment assay was that the receptor constructs
587 were not tagged with SmBiT, but rather β arr2 (β arr2^{WT/DM}) and FYVE constructs N-terminally
588 fused with SmBiT and LgBiT respectively were used for enzyme complementation. For each
589 experiment, 3 μ g of indicated receptors, 2 μ g of SmBiT- β arr2^{WT/DM}, and 5 μ g of LgBiT-FYVE
590 were used.

591 **NanoBiT assay for Ib30 reactivity**

592 To assess Ib30 reactivity in response to an agonist for the mentioned receptors, nanobit
593 assay was used following the same protocol as discussed in the β arr2^{WT} and β arr2^{DM}
594 recruitment assay(Dwivedi-Agnihotri et al., 2022). For enzyme complementation, N-
595 terminally SmBiT fused β arr1 and N-terminally LgBiT fused Ib30 were used. For transfection,
596 3 μ g receptor except for CXCR7 (5 μ g of which is transfected), 2 μ g SmBiT- β arr1, and 5 μ g
597 LgBiT-Ib30 were used. Transfected cells were stimulated with varying doses of respective
598 ligands (mentioned in corresponding figures).

599 **Receptor surface expression**

600 Receptor surface expression in various assays was measured using a previously described
601 whole cell-based surface ELISA assay³⁴. To study the surface expression of the receptor,
602 cells transfected with a particular receptor were seeded into a 0.01% poly-D-Lysine pre-
603 coated 24-well plate at a density of 2×10^5 cells well⁻¹. Post 24 h of seeding cells were
604 washed once with ice-cold 1XTBS, fixed with 4% PFA (w/v in 1XTBS) on ice for 20 min,
605 washed again three times with 1XTBS, and blocked with 1% BSA (prepared in 1XTBS) at
606 room temperature for 1.5 h. Afterward, cells were incubated with anti-FLAG M2-HRP
607 antibody at 1: 5000 dilution (Sigma, Cat no. A8592) for 1.5 h, which was followed by three
608 washes in 1% BSA. Subsequently, incubated with TMB-ELISA substrate (Thermo Fisher

609 Scientific, Cat no. 34028) until a light blue color appeared. To quench the reaction, 100 μ l of
610 the colored solution was transferred to another 96-well plate containing 100 μ l of 1 M H₂SO₄,
611 and the absorbance was measured at 450 nm. Afterward, the TMB substrate was removed,
612 washed twice with 1XTBS, and incubated with 0.2% (w/v) Janus Green (Sigma; Cat no.
613 201677) for 15 min at room temperature. Later, cells were washed with water to remove the
614 excess stain, followed by the addition of 800 μ l of 0.5 N HCl in each well. Thereupon, the
615 colored solution was transferred to a 96-well plate for measuring the absorbance at 595 nm.
616 The signal intensity was normalized by calculating the ratio of A450/A595 values followed by
617 quantifying fold increase with respect to the A450/A595 value of negative control (mock
618 transfection) and plotted using the GraphPad Prism (v9).

619 **Figure legends:**

620 **Figure 1. Reconstitution and structure determination of C5aR1pp/CXCR4pp- β barr1-
621 Fab30 complexes.**

622 **(A)** Agonist-stimulation of GPCRs leads to receptor phosphorylation by GPCR kinases
623 (GRKs) followed by the recruitment and activation of β barrs governed through the
624 phosphorylated residues and activated receptor core. **(B)** Negative-staining EM-based 2D
625 class averages of V2Rpp- β barr1 complexes stabilized by Fab30, Fab_B1*_D4, Fab_B1*_G7,
626 Fab_B1*_I9 and Fab_B1*_L12 respectively. **(C-D)** Negative-staining EM-based 2D class
627 averages of C5aR1pp- β barr1-Fab30 and CXCR4pp- β barr1-Fab30 complexes, respectively. **(E-
628 F)** Selected 2D class averages and surface representation of C5aR1pp- β barr1-Fab30 and
629 CXCR4pp- β barr1-Fab30 structures, respectively, determined by cryo-EM.

630 **Figure 2. Overall structures and key structural features of C5aR1pp/CXCR4pp- β barr1-
631 Fab30 complexes.**

632 **(A-B)** Overall structure of C5aR1pp- β barr1-Fab30 and CXCR4pp- β barr1-Fab30 complexes
633 shown with ribbon representation. **(C-D)** Structure of individual C5aR1pp- β barr1-Fab30 and
634 CXCR4pp- β barr1-Fab30 complex protomers shown as ribbon representation to indicate the

635 binding of phosphopeptides on the N-domain of β arr1. **(E-F)** Stabilizing charge-charge
636 interactions of C5aR1pp and CXCR4pp with the N-domain groove residues of β arr1
637 indicated as dotted lines. pS and pT refers to phospho-Ser and phospho-Thr residues,
638 respectively. **(G)** Inter-domain rotation in β arr1 upon binding of C5aR1pp (pink) and
639 CXCR4pp (blue) is compared with the basal conformation of β arr1 determined previously
640 (PDB 1G4M, gray). **(H)** Superimposition of C5aR1pp- and CXCR4pp-bound β arr1 structures
641 with the basal conformation of β arr1 (PDB 1G4M, gray) indicating the repositioning of finger,
642 middle and lariat loops upon β arr1 activation.

643 **Figure 3. Generation and characterization of β arr2DM for V2Rpp/C5aR1pp bound
644 complexes.**

645 **(A)** Fab30 reactivity of C5aR1pp and CXCR4pp activated β arr2WT was measured by co-
646 immunoprecipitation (co-IP) assay. C5aR1pp and CXCR4pp activated β arr2WT was not
647 recognized by Fab30 (upper panel). Densitometry-based quantification of the co-IP data is
648 presented in the lower panel (mean \pm SEM; n=3; normalized with respect to V2Rpp signal as
649 100%; One-way ANOVA, Dunnett's multiple comparisons test; (****p<0.0001; ns, non-
650 significant). **(B)** Comparison of the epitope region of Fab30 in β arr1 with β arr2 reveals that
651 instead of F277 and A279 as in β arr1, β arr2 contains L278 and S280 in corresponding
652 positions (indicated with asterisk). **(C)** Co-IP assay showing the reactivity of Fab30 towards
653 activated β arr2DM upon binding of C5aR1pp and CXCR4pp (upper panel). Densitometry-
654 based quantification is presented in the lower panel (mean \pm SEM; n=3; normalized with
655 respect to Fab30 reactivity towards activated β arr2DM treated as 100%; Two-way ANOVA,
656 Tukey's multiple comparisons test; **p<0.01, ***p<0.001, ****p<0.0001, ns = non-
657 significant). **(D)** A side-by-side comparison of agonist-induced β arr2WT and β arr2DM
658 recruitment to V2R (left panel) and C5aR1(right panel) in the nanoBiT assay (Receptor-
659 SmBiT+LgBiT- β arr2WT/ β arr2DM) (mean \pm SEM; n=5; normalized as fold over basal). **(E)** A
660 side-by-side comparison of β arr2WT and β arr2DM endosomal trafficking in response to

661 agonist (AVP for V2R and C5a for C5aR1) in the nanoBiT assay (Receptor+SmBiT-
662 β arr2+LgBiT-FYVE) (mean \pm SEM; n=5; normalized as fold over basal).

663 **Figure 4. Overall structures of V2Rpp/C5aR1pp- β arr2 complexes.**

664 **(A-B)** Overall cryo-EM structure of V2Rpp- β arr2-Fab30 (top) and C5aR1pp- β arr2-Fab30
665 complexes (bottom), respectively, in a trimeric assembly with β arr2 and Fab30 molecules
666 colored as individual units. Front and side views of the trimeric complex EM map have been
667 shown with β arr2 molecules in blue, olive green and purple; and Fab30 molecules in beige,
668 red and gray. **(C-D)** Overall trimeric arrangement of V2Rpp/C5aR1pp- β arr2-Fab30
669 complexes in the cryo-EM structures shown here as cartoon representation (left panel).
670 Domain organization of the β arr2 molecules in trimeric assembly without Fab30 shown as
671 cartoon representation (right panel). **(E-F)** Structure of individual β arr2 protomers in
672 V2Rpp/C5aR1pp- β arr2-Fab30 complexes showing the binding of phosphopeptides on the N-
673 domain of β arr2

674 **Figure 5. Overall structure and key structural features of V2Rpp/C5aR1pp- β arr2-Fab30
675 complexes.**

676 **(A-B)** Extensive charge-charge interactions between the phosphate residues in
677 V2Rpp/C5aR1pp with Lys/Arg in the N-domain (represented as black dotted lines) stabilize
678 the V2Rpp and C5aR1pp into the N-domain groove of β arr2. **(C)** V2Rpp (dark green) and
679 C5aR1pp (light green) activated β arr2 structures were superimposed with the basal state of
680 β arr2 (PDB 3P2D, orange) and inter-domain rotations were calculated. **(D)** Conformational
681 changes observed in the finger (top), middle (middle) and lariat loops (bottom) in the
682 activated β arr2 compared to the basal state crystal structure of β arr2. **(E)** Polar core
683 environment in basal β arr2 (PDB 3P2D, left) and disruption of polar core interactions upon
684 binding of V2Rpp (middle) and C5aR1pp to β arr2 (right). **(F)** Three-element interaction
685 network consisting of β arr2 C-terminal β -strand XX, α -helix1 and β -strand1 in the basal state
686 of β arr2 (left). Binding of the phosphopeptides V2Rpp and C5aR1pp to β arr2 results in the

687 displacement of the β -strand XX, and engages the phosphopeptide V2Rpp (middle) and
688 C5aR1pp (right) into the N-domain groove of β arr2 through hydrogen bonds and polar
689 interactions.

690 **Figure 6. A conserved lock and key mechanism of β arr activation.**

691 **(A)** Comparison of the V2Rpp-bound β arr1 and 2 reveals similar interactions of V2Rpp with
692 both isoforms of β arrs although a slightly higher inter-domain rotation is observed in β arr2
693 (left). A schematic representation of the interface network between negatively charged
694 phospho-residues (red) and positively charged residues (blue) of β arrs are shown (below,
695 zoomed in box). Although the lariat loops of the two structures align well, significant
696 deviations can be observed for the finger and middle loops (right, inset box). **(B)**
697 Comparative analysis of C5aR1pp-bound β arr1 and 2 structures reveal similar interactions
698 of C5aR1pp with both β arr isoforms, but again, a higher inter-domain rotation is observed for
699 β arr2. A similar representation of the interface between negatively charged phospho-
700 residues (red) and positively charged residues (blue) of β arrs are shown (below, zoomed in
701 box). **(C)** In all the structures of phosphopeptide-bound β arrs, a conserved motif can be
702 observed with respect to the three phospho-residues (dotted yellow circles), referred to as P-
703 X-P-P motif, where “P” is a phospho-Ser/Thr and “X” can be any residue. **(D)** Superposition
704 of V2Rpp- β arr1 (PDB 4JQI), V2Rpp- β arr2 (PDB 8GOC), C5aR1pp- β arr1 (PDB 8GO8),
705 C5aR1pp- β arr2 (PDB 8GOO) with D6Rpp- β arr2 (PDB 8GO9) clearly shows conservation of
706 phosphates corresponding to P-X-P-P position where as other phosphates are distributed
707 throughout the phosphopeptides. **(E)** Superposition of phosphopeptides on C5aR1pp- β arr1
708 reveals the conserved phospho-residues on positively charged cleft present on β arrs’ N-
709 Domain. β arr is shown as coulombic charged surface here. **(F)** A sequence alignment of the
710 C-terminal tail and ICL3 residues of non-olfactory and non-orphan Class-A receptors reveal
711 the consensus sequence, “P-X-P-P” required for activation of β arrs. The consensus
712 sequence logo was generated with the WEBLOGO tool⁵² and sequence alignment was
713 performed with Kalign (Lassmann, 2020). A stretch of 11 amino acid residues have been

714 shown for better representation. **(G)** Proportions of GPCRs of Class A, B, C and F having P-
715 X-P-P motif in C-terminus or ICL3 have been represented as pie charts.

716 **Figure 7. The P-X-P-P motif in GPCRs is sufficient for β arr activation.**

717 **(A)** NanoBiT-based assay for assessing Ib30 reactivity to CXCR3 (left panel), M2R (middle
718 panel), and CXCR7 (right panel) activated β arr1 (Receptor+SmBiT- β arr1+LgBiT-Ib30)
719 (mean \pm SEM; n=3; normalized as fold over basal). **(B)** Deletion of G368 and substitution of
720 L370 to Ala in B2R engineers the “P-X-P-P key” and results in “gain-of-function” in terms of
721 Ib30 reactivity as measured using the NanoBiT assay (Receptor+SmBiT- β arr1+LgBiT-Ib30)
722 (mean \pm SEM; n=3; normalized as fold over basal). **(C)** Addition of an extra Arg between
723 positions 336 and 337 in C5aR1pp to disrupt the “P-X-P-P key” (referred to as C5aR1ppMut)
724 leads to a near-complete loss of Fab30 (top) reactivity as measured in co-IP assay
725 (mean \pm SEM; n=3; densitometry-based data normalized with respect to C5aR1pp signal as
726 100%; One-way ANOVA, Dunnett’s multiple comparisons test; ****p < 0.0001, ns = non-
727 significant). Corresponding mutation in C5aR1 to disrupt the “P-X-P-P key” (referred to as
728 C5aR1Mut) results in a dramatic decrease in Ib30 reactivity (bottom) as measured using the
729 NanoBiT assay (mean \pm SEM; n=2; normalized as fold over basal). **(D)** Schematic
730 representation of the “lock and key” mechanism of β arr activation. The C-terminus of β arr is
731 positioned on the N-domain, which stabilizes the basal conformation through the three-
732 element interaction and polar-core network. Binding of GPCRs/ACRs harboring the “P-X-P-P
733 key” engages the critical points in the “K-K-R-K-R-K lock” leading to β arr activation and
734 functional responses.

735 **References**

736 Asher, W.B., Terry, D.S., Gregorio, G.G.A., Kahsai, A.W., Borgia, A., Xie, B., Modak, A., Zhu, Y., Jang,
737 W., Govindaraju, A., *et al.* (2022). GPCR-mediated beta-arrestin activation deconvoluted with single-
738 molecule precision. *Cell* *185*, 1661-1675 e1616.
739 Baidya, M., Chaturvedi, M., Dwivedi-Agnihotri, H., Ranjan, A., Devost, D., Namkung, Y., Stepniewski,
740 T.M., Pandey, S., Baruah, M., Panigrahi, B., *et al.* (2022). Allosteric modulation of GPCR-induced beta-
741 arrestin trafficking and signaling by a synthetic intrabody. *Nat Commun* *13*, 4634.

742 Baidya, M., Kumari, P., Dwivedi-Agnihotri, H., Pandey, S., Chaturvedi, M., Stepniewski, T.M.,
743 Kawakami, K., Cao, Y., Laporte, S.A., Selent, J., *et al.* (2020a). Key phosphorylation sites in GPCRs
744 orchestrate the contribution of beta-Arrestin 1 in ERK1/2 activation. *EMBO Rep* 21, e49886.

745 Baidya, M., Kumari, P., Dwivedi-Agnihotri, H., Pandey, S., Sokrat, B., Sposini, S., Chaturvedi, M.,
746 Srivastava, A., Roy, D., Hanyaloglu, A.C., *et al.* (2020b). Genetically encoded intrabody sensors report
747 the interaction and trafficking of beta-arrestin 1 upon activation of G-protein-coupled receptors. *J
748 Biol Chem* 295, 10153-10167.

749 Cao, C.a.B.-Á., Ximena and Zhang, Shicheng and Kim, Kuglae and Dämgen, Marc A. and Panova,
750 Ouliana and Suomivuori, Carl-Mikael and Fay, Jonathan and Zhong, Xiaofang and Krumm, Brian E.
751 and Gumper, Ryan H. and Seven, Alpay B. and Robertson, Michael J. and Krogan, Nevan J. and
752 Krogan, Nevan J. and Hüttenhain, Ruth and Nichols, David E. and Dror, Ron O. and Skiniotis, Georgios
753 and Roth, Bryan. Signaling Snapshots of 5-HT 2BR Activated by the Prototypical Psychedelic LSD.
754 <http://dx.doi.org/10.2139/ssrn.4072041>.

755 Chen, Q., Perry, N.A., Vishnivetskiy, S.A., Berndt, S., Gilbert, N.C., Zhuo, Y., Singh, P.K., Tholen, J., Ohi,
756 M.D., Gurevich, E.V., *et al.* (2017). Structural basis of arrestin-3 activation and signaling. *Nat
757 Commun* 8, 1427.

758 Chen, Q., and Tesmer, J.J.G. (2022). G protein-coupled receptor interactions with arrestins and GPCR
759 kinases: The unresolved issue of signal bias. *J Biol Chem* 298, 102279.

760 Chen, Q., Zhuo, Y., Kim, M., Hanson, S.M., Francis, D.J., Vishnivetskiy, S.A., Altenbach, C., Klug, C.S.,
761 Hubbell, W.L., and Gurevich, V.V. (2014). Self-association of arrestin family members. *Handb Exp
762 Pharmacol* 219, 205-223.

763 Chen, Q., Zhuo, Y., Sharma, P., Perez, I., Francis, D.J., Chakravarthy, S., Vishnivetskiy, S.A., Berndt, S.,
764 Hanson, S.M., Zhan, X., *et al.* (2021). An Eight Amino Acid Segment Controls Oligomerization and
765 Preferred Conformation of the two Non-visual Arrestins. *J Mol Biol* 433, 166790.

766 Drube, J., Haider, R.S., Matthees, E.S.F., Reichel, M., Zeiner, J., Fritzwanker, S., Ziegler, C., Barz, S.,
767 Klement, L., Filor, J., *et al.* (2022). GPCR kinase knockout cells reveal the impact of individual GRKs on
768 arrestin binding and GPCR regulation. *Nat Commun* 13, 540.

769 Dwivedi-Agnihotri, H., Chaturvedi, M., Baidya, M., Stepniewski, T.M., Pandey, S., Maharana, J.,
770 Srivastava, A., Caengprasath, N., Hanyaloglu, A.C., Selent, J., *et al.* (2020). Distinct phosphorylation
771 sites in a prototypical GPCR differently orchestrate beta-arrestin interaction, trafficking, and
772 signaling. *Sci Adv* 6.

773 Dwivedi-Agnihotri, H., Sarma, P., Deeksha, S., Kawakami, K., Inoue, A., and Shukla, A.K. (2022). An
774 intrabody sensor to monitor conformational activation of beta-arrestins. *Methods Cell Biol* 169, 267-
775 278.

776 Eichel, K., Jullie, D., Barsi-Rhyne, B., Latorraca, N.R., Masureel, M., Sibarita, J.B., Dror, R.O., and von
777 Zastrow, M. (2018). Catalytic activation of beta-arrestin by GPCRs. *Nature* 557, 381-+.

778 Eichel, K., Jullie, D., and von Zastrow, M. (2016). beta-Arrestin drives MAP kinase signalling from
779 clathrin-coated structures after GPCR dissociation. *Nat Cell Biol* 18, 303-+.

780 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. *Acta
781 Crystallogr D Biol Crystallogr* 66, 486-501.

782 Ghosh, E., Dwivedi, H., Baidya, M., Srivastava, A., Kumari, P., Stepniewski, T., Kim, H.R., Lee, M.H.,
783 van Gastel, J., Chaturvedi, M., *et al.* (2019). Conformational Sensors and Domain Swapping Reveal
784 Structural and Functional Differences between beta-Arrestin Isoforms. *Cell Rep* 28, 3287-3299
785 e3286.

786 Ghosh, E., Srivastava, A., Baidya, M., Kumari, P., Dwivedi, H., Nidhi, K., Ranjan, R., Dogra, S., Koide,
787 A., Yadav, P.N., *et al.* (2017). A synthetic intrabody-based selective and generic inhibitor of GPCR
788 endocytosis. *Nat Nanotechnol* 12, 1190-1198.

789 Gurevich, V.V., and Gurevich, E.V. (2019). Plethora of functions packed into 45 kDa arrestins:
790 biological implications and possible therapeutic strategies. *Cell Mol Life Sci* 76, 4413-4421.

791 Gurevich, V.V., and Gurevich, E.V. (2020). Biased GPCR signaling: Possible mechanisms and inherent
792 limitations. *Pharmacol Ther* 211, 107540.

793 Gurevich, V.V., and Gurevich, E.V. (2022). Solo vs. Chorus: Monomers and Oligomers of Arrestin
794 Proteins. *Int J Mol Sci* 23.

795 Han, M., Gurevich, V.V., Vishnivetskiy, S.A., Sigler, P.B., and Schubert, C. (2001). Crystal structure of
796 beta-arrestin at 1.9 angstrom: Possible mechanism of receptor binding and membrane translocation.
797 *Structure* 9, 869-880.

798 He, Q.T., Xiao, P., Huang, S.M., Jia, Y.L., Zhu, Z.L., Lin, J.Y., Yang, F., Tao, X.N., Zhao, R.J., Gao, F.Y., et
799 al. (2021). Structural studies of phosphorylation-dependent interactions between the V2R receptor
800 and arrestin-2. *Nat Commun* 12, 2396.

801 Huang, W., Masureel, M., Qu, Q., Janetzko, J., Inoue, A., Kato, H.E., Robertson, M.J., Nguyen, K.C.,
802 Glenn, J.S., Skiniotis, G., et al. (2020). Structure of the neurotensin receptor 1 in complex with beta-
803 arrestin 1. *Nature* 579, 303-308.

804 John Janetzko, R.K., Benjamin Barsi-Rhyne, Dirk H. Siepe, Franziska M. Heydenreich, Matthieu
805 Masureel, Kouki Kawakami, K. Christopher Garcia, Mark von Zastrow, Asuka Inoue, Brian K. Kobilka
806 (2022). Membrane phosphoinositides stabilize GPCR-arrestin complexes and provide temporal
807 control of complex assembly and dynamics. *bioRxiv*.

808 Kang, D.S., Tian, X., and Benovic, J.L. (2014). Role of beta-arrestins and arrestin domain-containing
809 proteins in G protein-coupled receptor trafficking. *Curr Opin Cell Biol* 27, 63-71.

810 Kawakami, K., Yanagawa, M., Hiratsuka, S., Yoshida, M., Ono, Y., Hiroshima, M., Ueda, M., Aoki, J.,
811 Sako, Y., and Inoue, A. (2022). Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity
812 underlying beta-arrestin transducer bias. *Nature Communications* 13.

813 Lassmann, T. (2020). Kalign 3: multiple sequence alignment of large datasets. *Bioinformatics* 36,
814 1928-1929.

815 Latorraca, N.R., Wang, J.K., Bauer, B., Townshend, R.J.L., Hollingsworth, S.A., Olivieri, J.E., Xu, H.E.,
816 Sommer, M.E., and Dror, R.O. (2018). Molecular mechanism of GPCR-mediated arrestin activation.
817 *Nature* 557, 452-456.

818 Lee, Y., Warne, T., Nehme, R., Pandey, S., Dwivedi-Agnihotri, H., Chaturvedi, M., Edwards, P.C.,
819 Garcia-Nafria, J., Leslie, A.G.W., Shukla, A.K., et al. (2020). Molecular basis of beta-arrestin coupling
820 to formoterol-bound beta1-adrenoceptor. *Nature* 583, 862-866.

821 Lefkowitz, R.J., and Shenoy, S.K. (2005). Transduction of receptor signals by beta-arrestins. *Science*
822 308, 512-517.

823 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W.,
824 Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using X-rays, neutrons
825 and electrons: recent developments in Phenix. *Acta Crystallogr D* 75, 861-877.

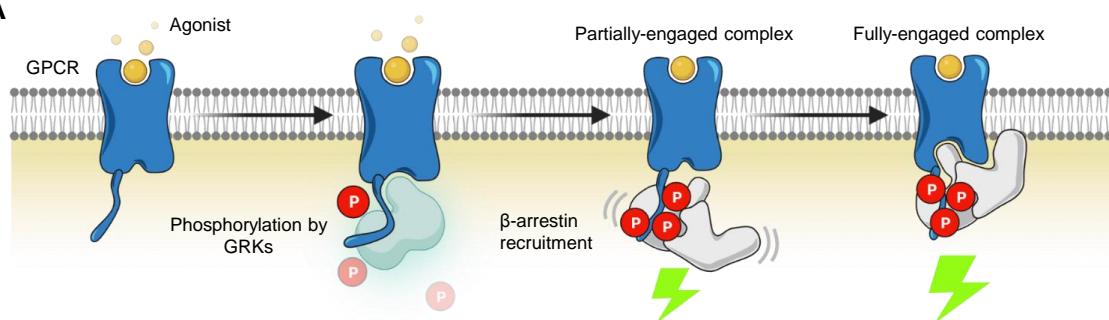
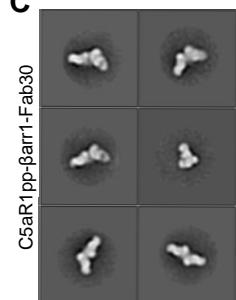
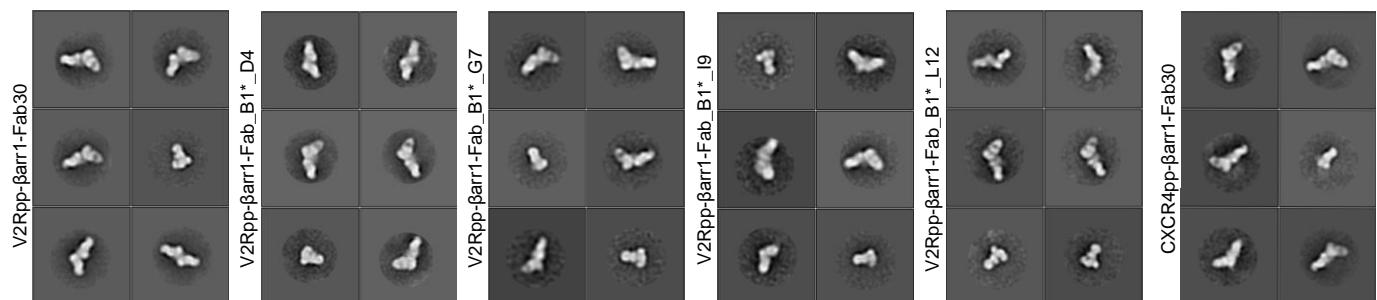
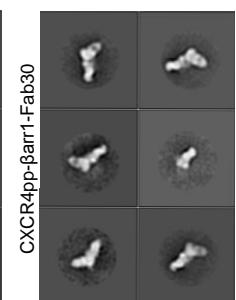
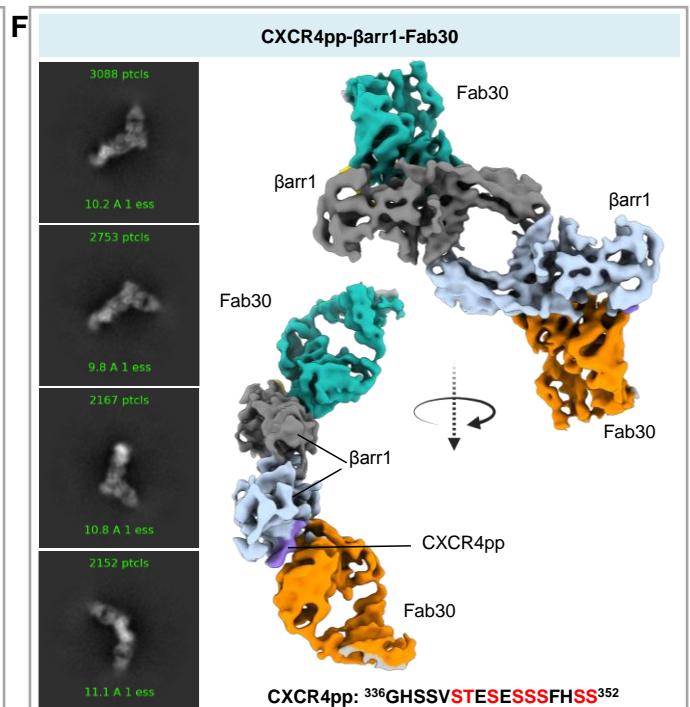
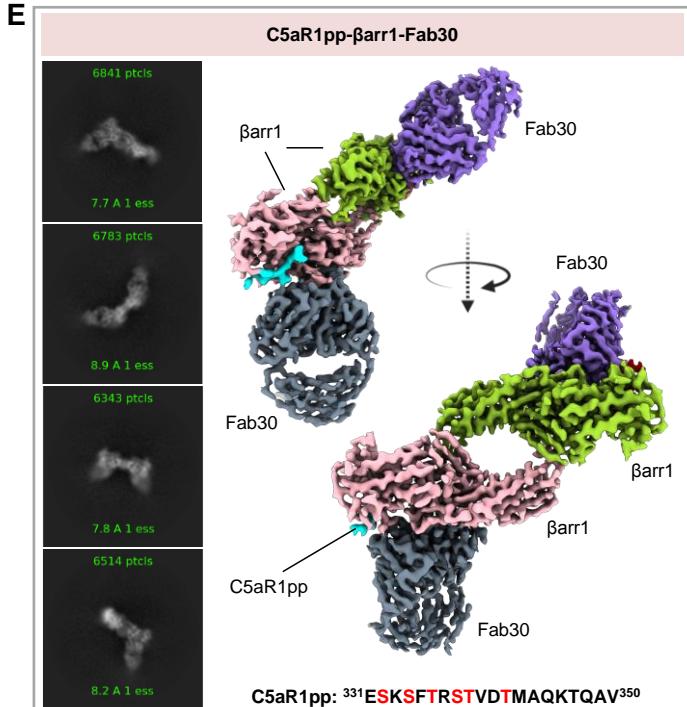
826 Maharana, J., Banerjee, R., Yadav, M.K., Sarma, P., and Shukla, A.K. (2022). Emerging structural
827 insights into GPCR-beta-arrestin interaction and functional outcomes. *Curr Opin Struct Biol* 75,
828 102406.

829 Matthees, E.S.F., Haider, R.S., Hoffmann, C., and Drube, J. (2021). Differential Regulation of GPCRs-
830 Are GRK Expression Levels the Key? *Front Cell Dev Biol* 9, 687489.

831 Min, K., Yoon, H.J., Park, J.Y., Baidya, M., Dwivedi-Agnihotri, H., Maharana, J., Chaturvedi, M., Chung,
832 K.Y., Shukla, A.K., and Lee, H.H. (2020). Crystal Structure of beta-Arrestin 2 in Complex with CXCR7
833 Phosphopeptide. *Structure* 28, 1014-1023 e1014.

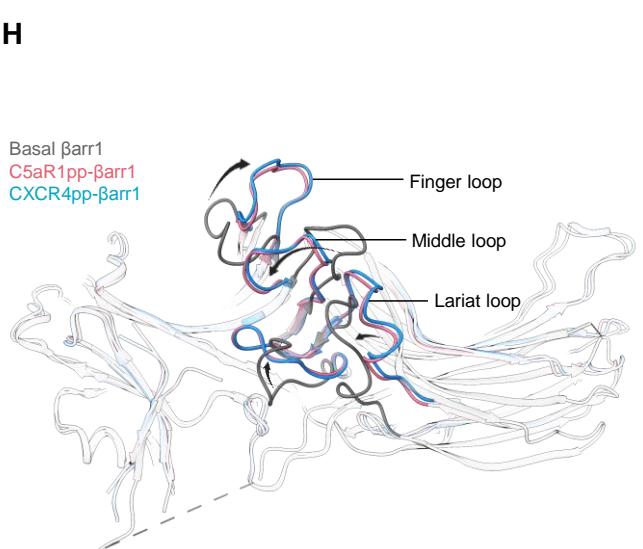
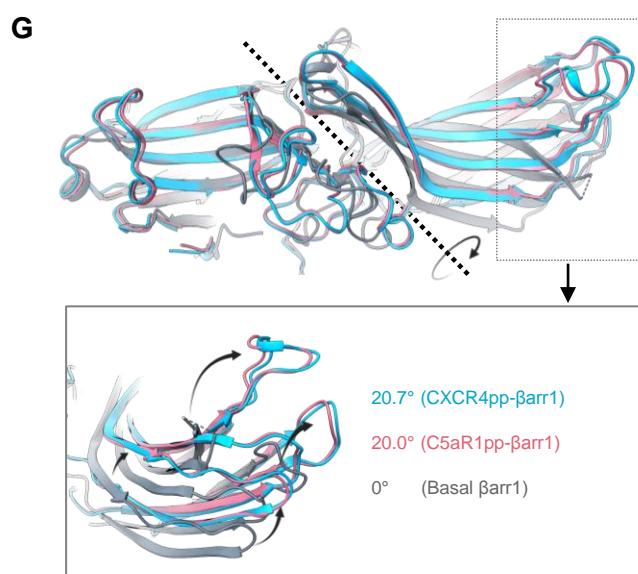
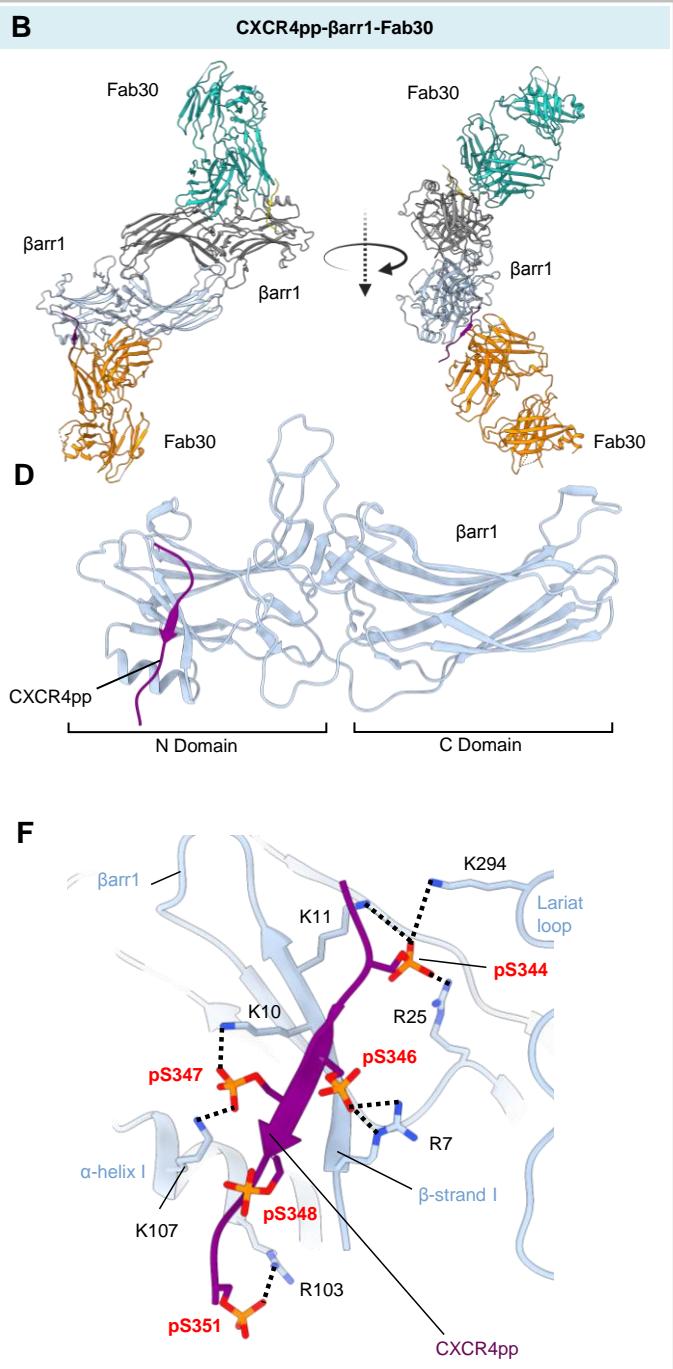
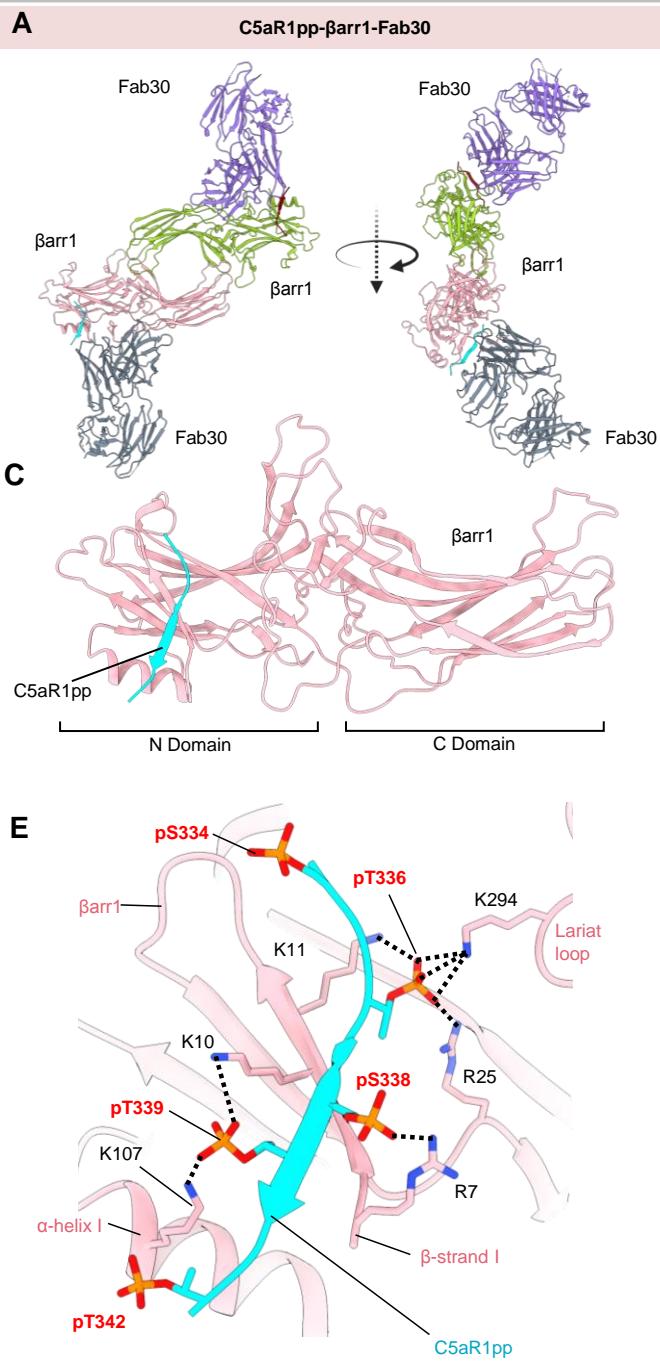
834 Peisley, A., and Skiniotis, G. (2015). 2D Projection Analysis of GPCR Complexes by Negative Stain
835 Electron Microscopy. *Methods Mol Biol* 1335, 29-38.

836 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.
837 (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem*
838 25, 1605-1612.







839 Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and
840 Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and
841 developers. *Protein Sci* 30, 70-82.

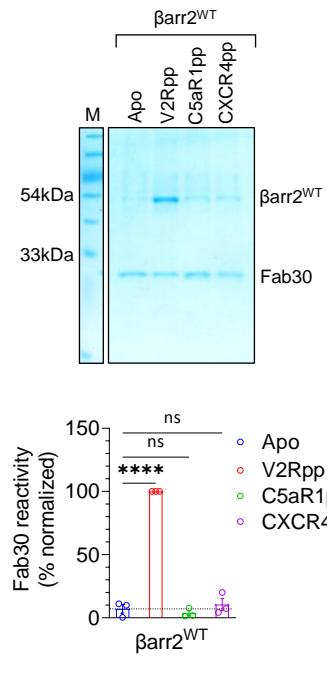
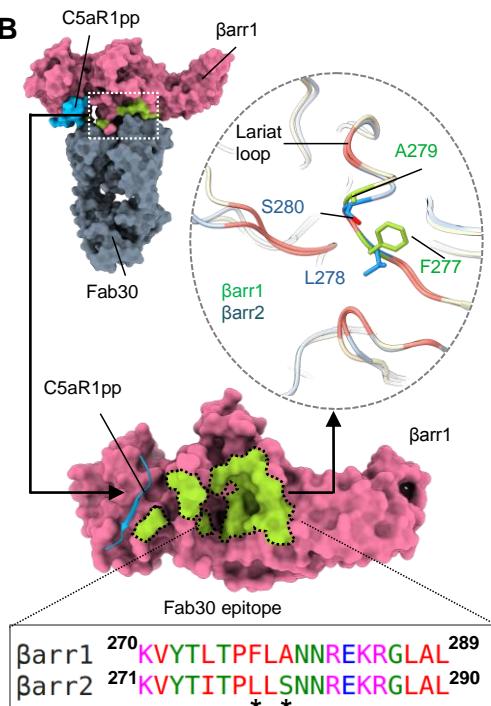
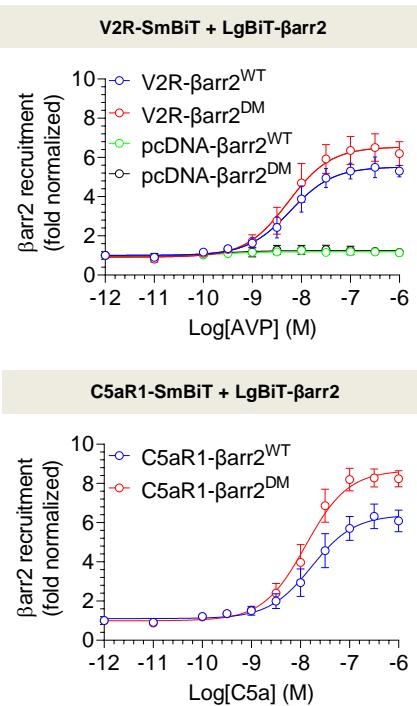
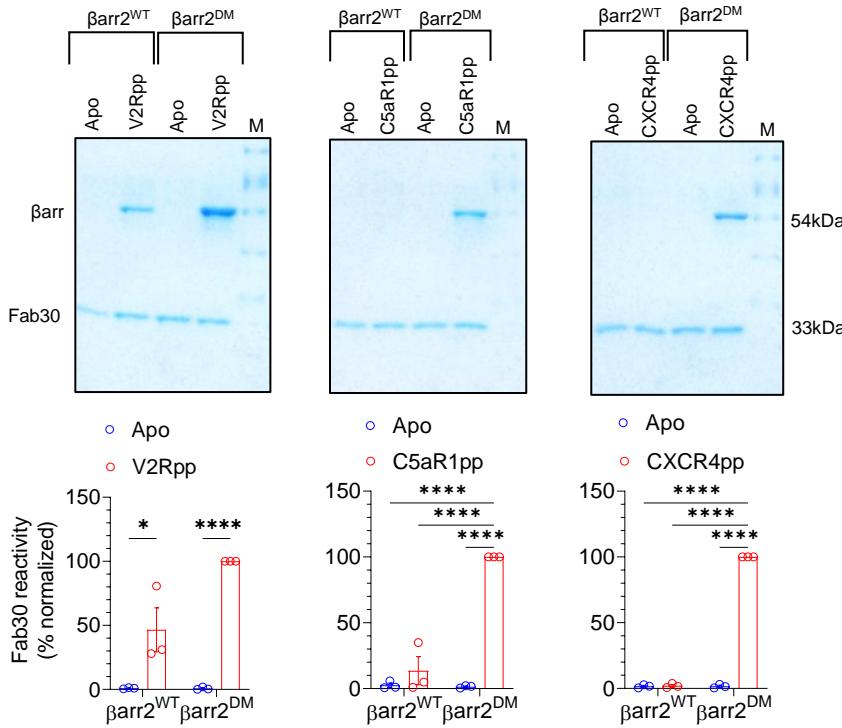
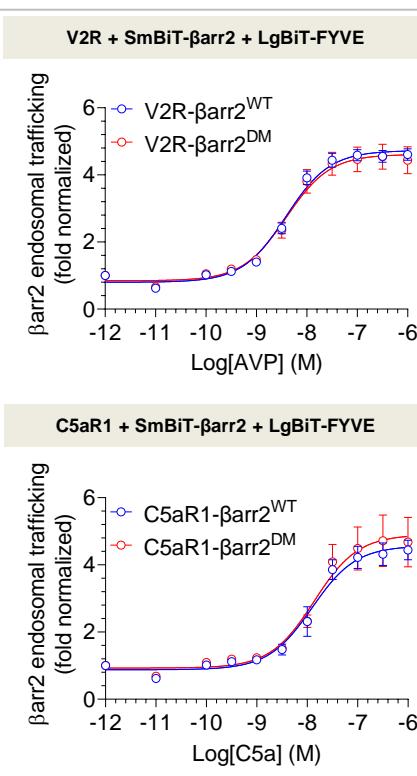
842 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC: algorithms for rapid
843 unsupervised cryo-EM structure determination. *Nat Methods* 14, 290-296.

844 Ranjan, R., Dwivedi, H., Baidya, M., Kumar, M., and Shukla, A.K. (2017). Novel Structural Insights into
845 GPCR-beta-Arrestin Interaction and Signaling. *Trends Cell Biol* 27, 851-862.
846 Reiter, E., Ahn, S., Shukla, A.K., and Lefkowitz, R.J. (2012). Molecular mechanism of beta-arrestin-
847 biased agonism at seven-transmembrane receptors. *Annu Rev Pharmacol Toxicol* 52, 179-197.
848 Schrödinger, L., & DeLano, W. (2020). PyMOL. <http://www.pymol.org/pymol>.
849 Seyedabadi, M., Gharghabi, M., Gurevich, E.V., and Gurevich, V.V. (2021). Receptor-Arrestin
850 Interactions: The GPCR Perspective. *Biomolecules* 11.
851 Shenoy, S.K., and Lefkowitz, R.J. (2011). beta-Arrestin-mediated receptor trafficking and signal
852 transduction. *Trends Pharmacol Sci* 32, 521-533.
853 Shiraishi, Y., Kofuku, Y., Ueda, T., Pandey, S., Dwivedi-Agnihotri, H., Shukla, A.K., and Shimada, I.
854 (2021). Biphasic activation of beta-arrestin 1 upon interaction with a GPCR revealed by methyl-
855 TROSY NMR. *Nat Commun* 12, 7158.
856 Shukla, A.K., Manglik, A., Kruse, A.C., Xiao, K., Reis, R.I., Tseng, W.C., Staus, D.P., Hilger, D., Uysal, S.,
857 Huang, L.Y., *et al.* (2013). Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor
858 phosphopeptide. *Nature* 497, 137-141.
859 Srivastava, A., Gupta, B., Gupta, C., and Shukla, A.K. (2015). Emerging Functional Divergence of beta-
860 Arrestin Isoforms in GPCR Function. *Trends Endocrinol Metab* 26, 628-642.
861 Staus, D.P., Hu, H., Robertson, M.J., Kleinhenz, A.L.W., Wingler, L.M., Capel, W.D., Latorraca, N.R.,
862 Lefkowitz, R.J., and Skiniotis, G. (2020). Structure of the M2 muscarinic receptor-beta-arrestin
863 complex in a lipid nanodisc. *Nature* 579, 297-302.
864 Yin, W.C., Li, Z.H., Jin, M.L., Yin, Y.L., de Waal, P.W., Pal, K., Yin, Y.T., Gao, X., He, Y.Z., Gao, J., *et al.*
865 (2019). A complex structure of arrestin-2 bound to a G protein-coupled receptor. *Cell Res* 29, 971-
866 983.
867 Zhan, X.Z., Gimenez, L.E., Gurevich, V.V., and Spiller, B.W. (2011). Crystal Structure of Arrestin-3
868 Reveals the Basis of the Difference in Receptor Binding Between Two Non-visual Subtypes. *Journal of
869 Molecular Biology* 406, 467-478.
870 Zhou, X.E., He, Y., de Waal, P.W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White,
871 T.A., *et al.* (2017). Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-
872 Coupled Receptors. *Cell* 170, 457-469 e413.
873 Zimmerman, B., Simaan, M., Akoume, M.Y., Houry, N., Chevallier, S., Seguela, P., and Laporte, S.A.
874 (2011). Role of ssarrestins in bradykinin B2 receptor-mediated signalling. *Cell Signal* 23, 648-659.
875 Zivanov, J., Nakane, T., and Scheres, S.H.W. (2020). Estimation of high-order aberrations and
876 anisotropic magnification from cryo-EM data sets in RELION-3.1. *IUCrJ* 7, 253-267.

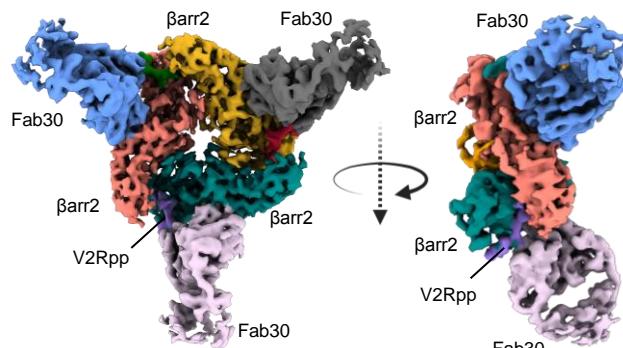
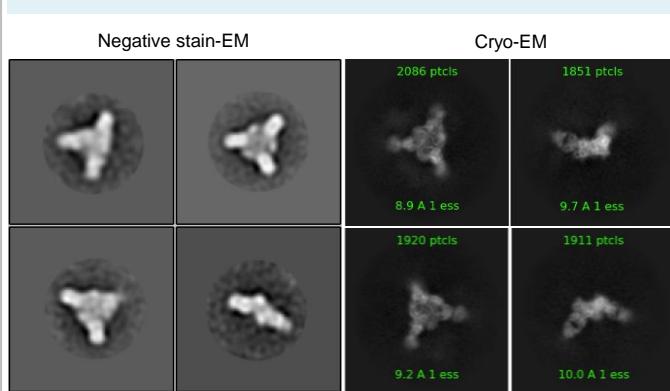
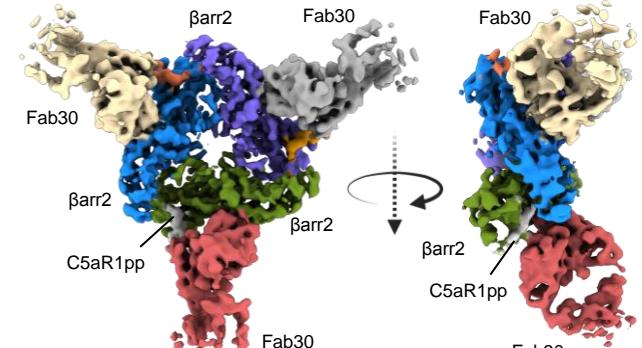
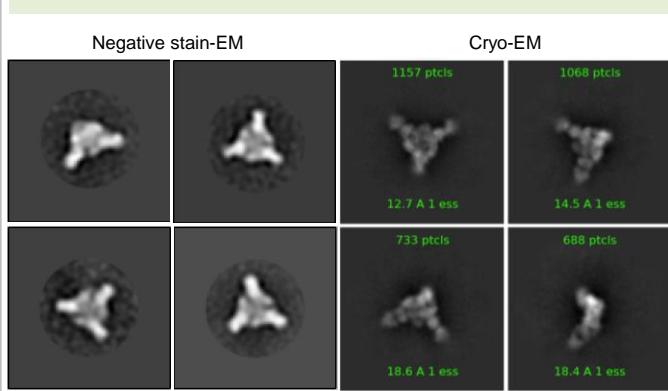
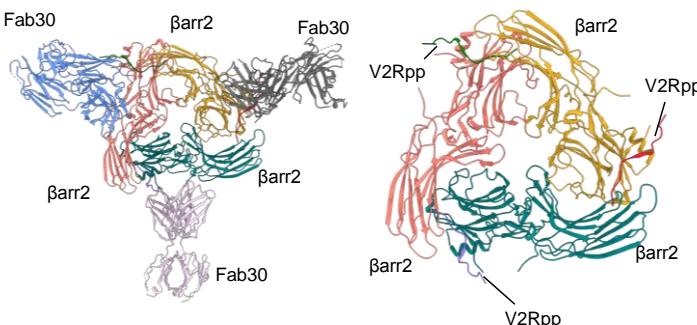
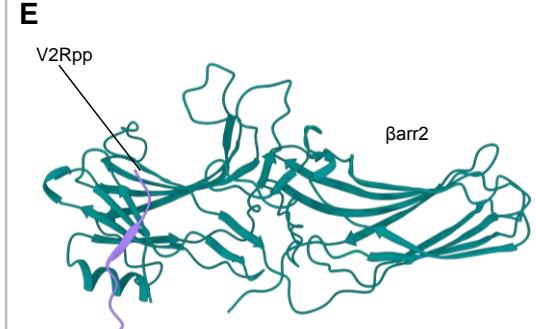
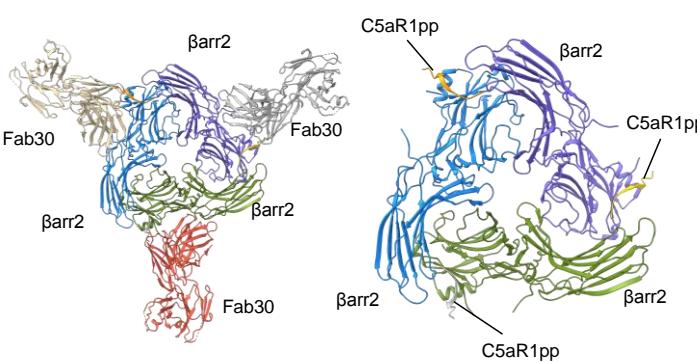
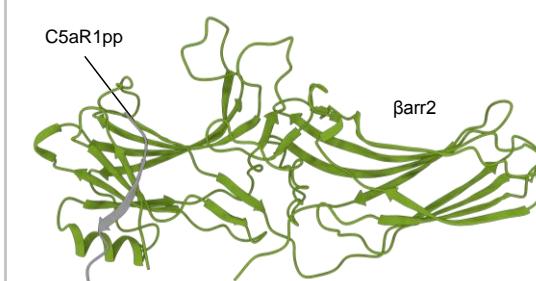




877

878

A**C****B****D****E**

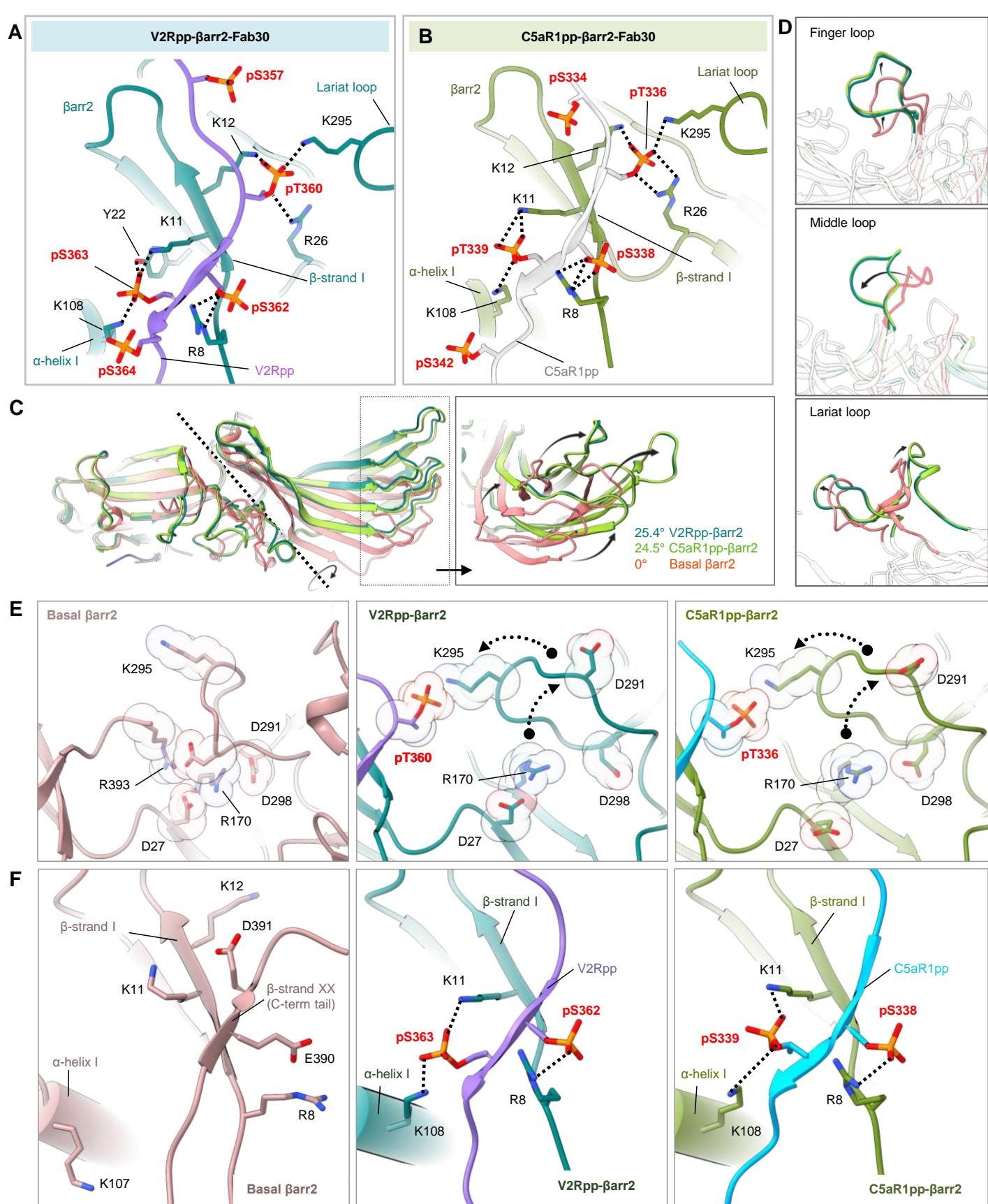





Figure 1. Reconstitution and structure determination of C5aR1pp/CXCR4pp- β arr1-Fab30 complexes.

(A) Agonist-stimulation of GPCRs leads to receptor phosphorylation by GPCR kinases (GRKs) followed by the recruitment and activation of β arrs governed through the phosphorylated residues and activated receptor core. **(B)** Negative-staining EM-based 2D class averages of V2Rpp- β arr1 complexes stabilized by Fab30, Fab_B1*_D4, Fab_B1*_G7, Fab_B1*_I9 and Fab_B1*_L12 respectively. **(C-D)** Negative-staining EM-based 2D class averages of C5aR1pp- β arr1-Fab30 and CXCR4pp- β arr1-Fab30 complexes, respectively. **(E-F)** Selected 2D class averages and surface representation of C5aR1pp- β arr1-Fab30 and CXCR4pp- β arr1-Fab30 structures, respectively, determined by cryo-EM.









Figure 2. Overall structures and key structural features of C5aR1pp/CXCR4pp-βarr1-Fab30 complexes.

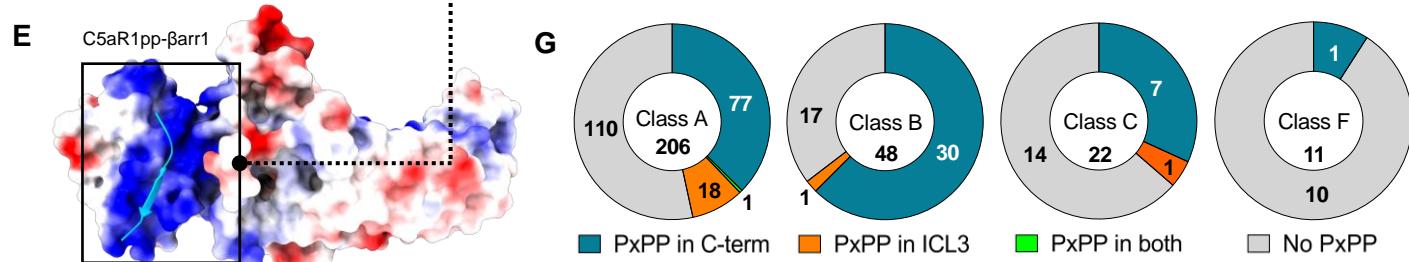
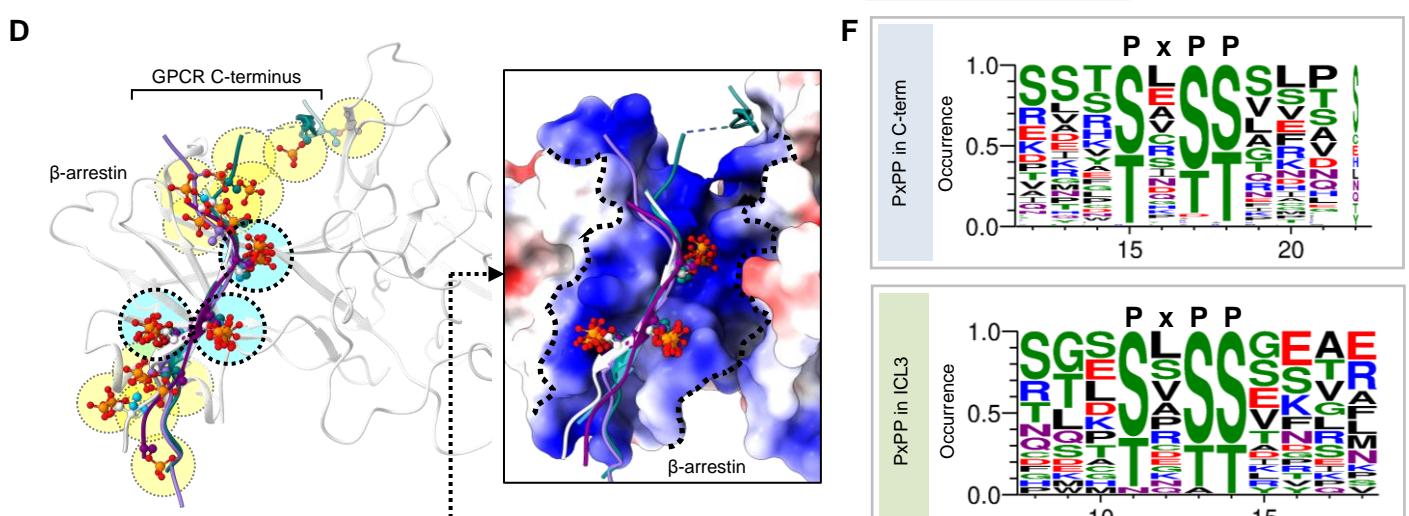
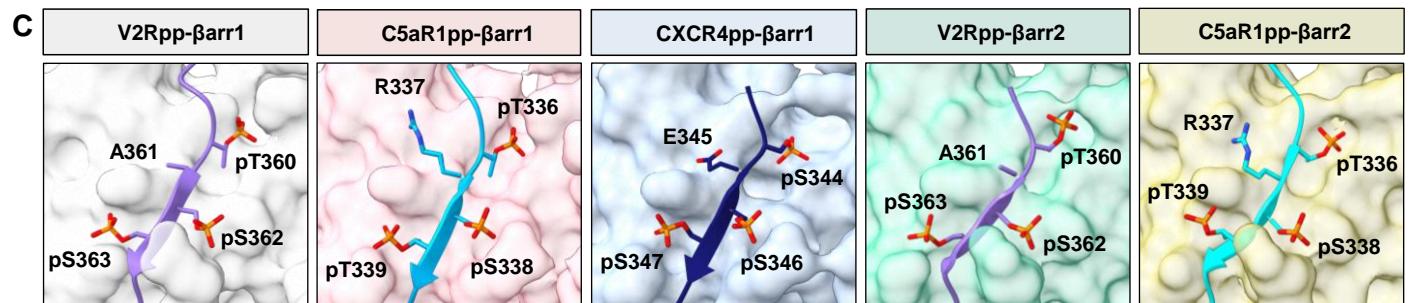
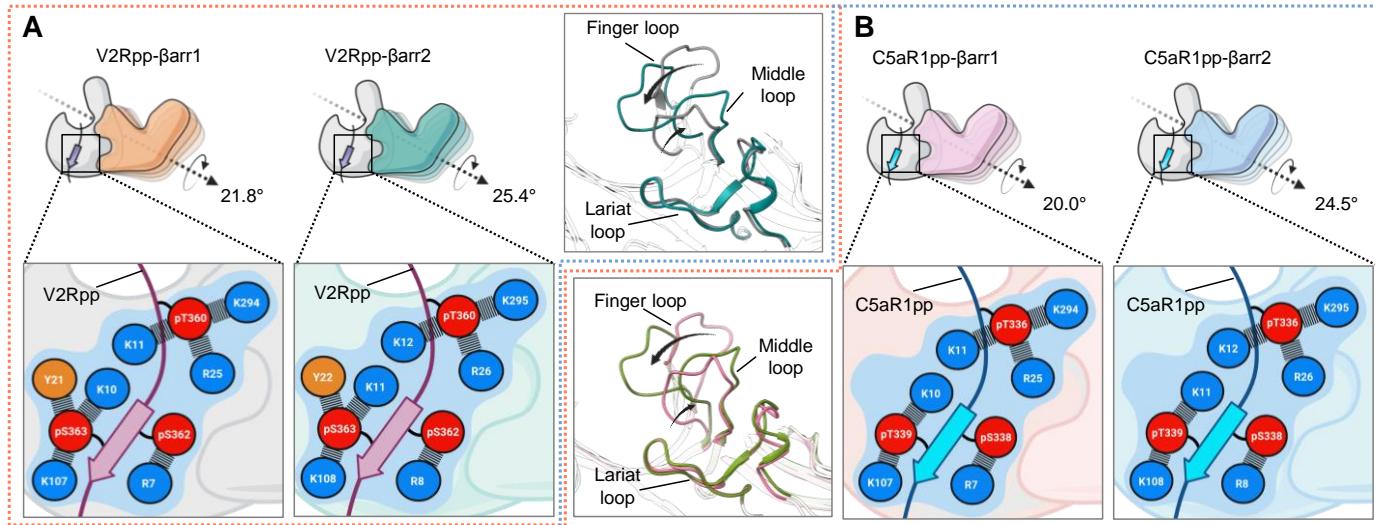
(A-B) Overall structure of C5aR1pp-βarr1-Fab30 and CXCR4pp-βarr1-Fab30 complexes shown with ribbon representation. **(C-D)** Structure of individual C5aR1pp-βarr1-Fab30 and CXCR4pp-βarr1-Fab30 complex protomers shown as ribbon representation to indicate the binding of phosphopeptides on the N-domain of βarr1. **(E-F)** Stabilizing charge-charge interactions of C5aR1pp and CXCR4pp with the N-domain groove residues of βarr1 indicated as dotted lines. pS and pT refers to phospho-Ser and phospho-Thr residues, respectively. **(G)** Inter-domain rotation in βarr1 upon binding of C5aR1pp (pink) and CXCR4pp (blue) is compared with the basal conformation of βarr1 determined previously (PDB 1G4M, gray). **(H)** Superimposition of C5aR1pp- and CXCR4pp-bound βarr1 structures with the basal conformation of βarr1 (PDB 1G4M, gray) indicating the repositioning of finger, middle and lariat loops upon βarr1 activation.

A**B****D****C****E**

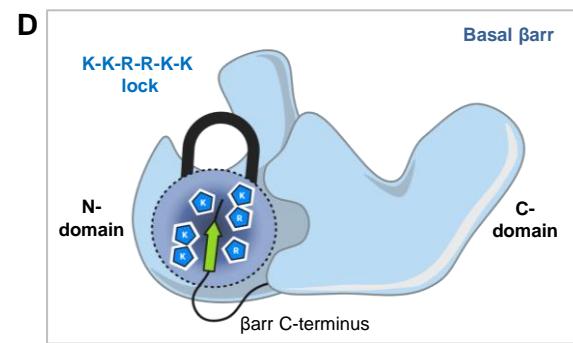
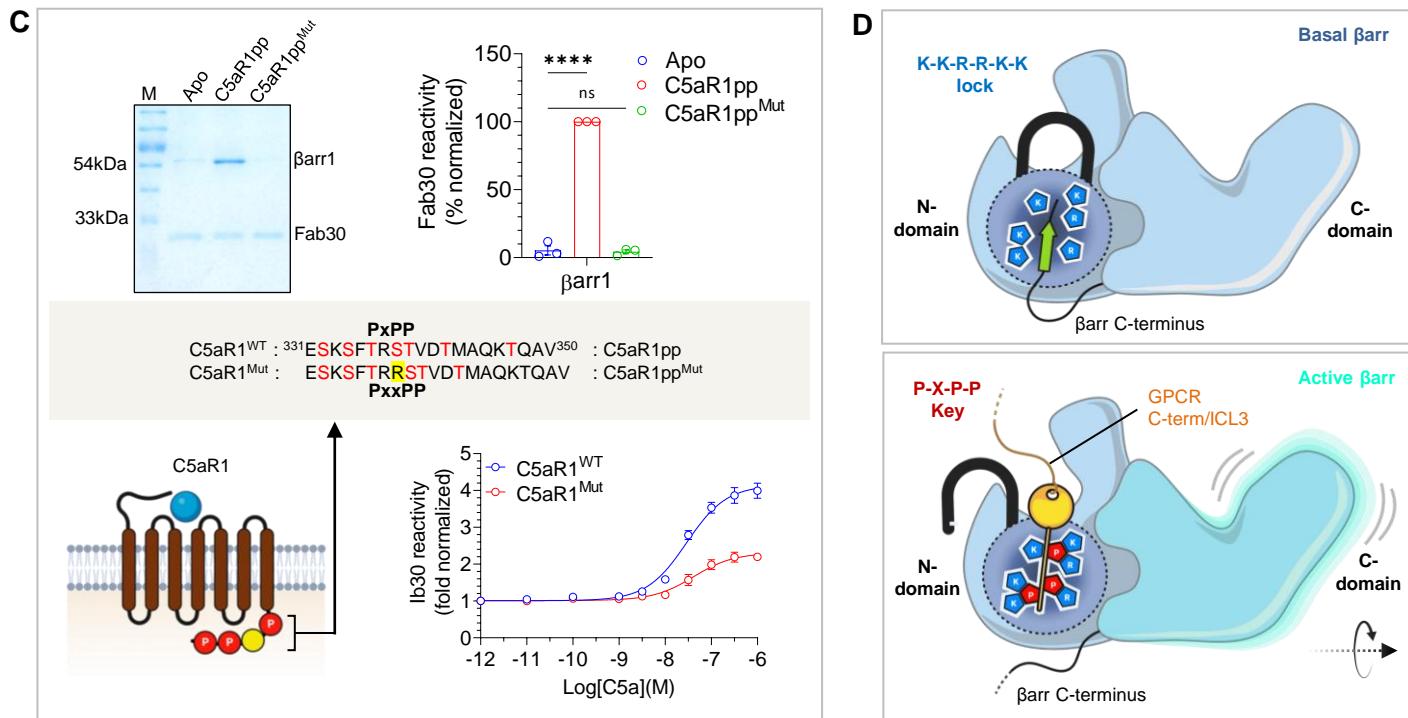
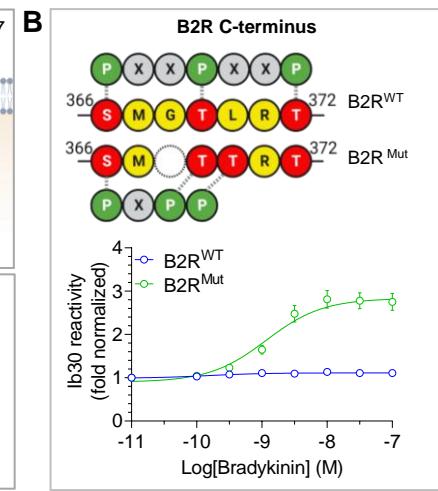
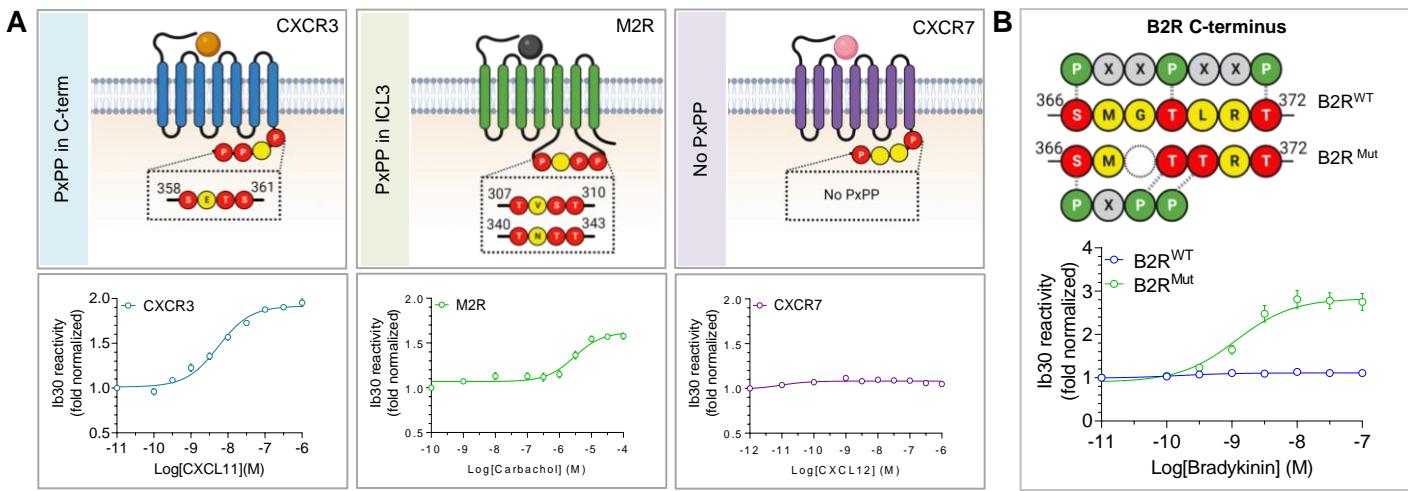

Figure 3. Generation and characterization of β arr2^{DM} for V2Rpp/C5aR1pp bound complexes.

(A) Fab30 reactivity of C5aR1pp and CXCR4pp activated β arr2^{WT} was measured by co-immunoprecipitation (co-IP) assay. C5aR1pp and CXCR4pp activated β arr2^{WT} was not recognized by Fab30 (upper panel). Densitometry-based quantification of the co-IP data is presented in the lower panel (mean \pm SEM; n=3; normalized with respect to V2Rpp signal as 100%; One-way ANOVA, Dunnett's multiple comparisons test; (**p<0.0001; ns, non-significant). **(B)** Comparison of the epitope region of Fab30 in β arr1 with β arr2 reveals that instead of F²⁷⁷ and A²⁷⁹ as in β arr1, β arr2 contains L²⁷⁸ and S²⁸⁰ in corresponding positions (indicated with asterisk). **(C)** Co-IP assay showing the reactivity of Fab30 towards activated β arr2^{DM} upon binding of C5aR1pp and CXCR4pp (upper panel). Densitometry-based quantification is presented in the lower panel (mean \pm SEM; n=3; normalized with respect to Fab30 reactivity towards activated β arr2^{DM} treated as 100%; Two-way ANOVA, Tukey's multiple comparisons test; **p<0.01, ***p<0.001, ****p<0.0001, ns = non-significant). **(D)** A side-by-side comparison of agonist-induced β arr2^{WT} and β arr2^{DM} recruitment to V2R (left panel) and C5aR1(right panel) in the nanoBiT assay (Receptor-SmBiT+LgBiT- β arr2^{WT}/ β arr2^{DM}) (mean \pm SEM; n=5; normalized as fold over basal). **(E)** A side-by-side comparison of β arr2^{WT} and β arr2^{DM} endosomal trafficking in response to agonist (AVP for V2R and C5a for C5aR1) in the nanoBiT assay (Receptor+SmBiT- β arr2+LgBiT-FYVE) (mean \pm SEM; n=5; normalized as fold over basal).

A**V2Rpp- β arr2-Fab30****B****C5aR1pp- β arr2-Fab30****C****V2Rpp- β arr2-Fab30****E****C5aR1pp- β arr2-Fab30****D****F**





Figure 4. Overall structures of V2Rpp/C5aR1pp- β arr2 complexes.

(A-B) Overall cryo-EM structure of V2Rpp- β arr2-Fab30 (left) and C5aR1pp- β arr2-Fab30 complexes (right), respectively, in a trimeric assembly with β arr2 and Fab30 molecules colored as individual units. Front and side views of the trimeric complex EM map have been shown with β arr2 molecules in blue, olive green and purple; and Fab30 molecules in beige, red and gray. **(C-D)** Overall trimeric arrangement of V2Rpp/C5aR1pp- β arr2-Fab30 complexes in the cryo-EM structures shown here as cartoon representation (left panel). Domain organization of the β arr2 molecules in trimeric assembly without Fab30 shown as cartoon representation (right panel). **(E-F)** Structure of individual β arr2 protomers in V2Rpp/C5aR1pp- β arr2-Fab30 complexes showing the binding of phosphopeptides on the N-domain of β arr2.





Figure 5. Overall structure and key structural features of V2Rpp/C5aR1pp- β arr2-Fab30 complexes.

(A-B) Extensive charge-charge interactions between the phosphate residues in V2Rpp/C5aR1pp with Lys/Arg in the N-domain (represented as black dotted lines) stabilize the V2Rpp and C5aR1pp into the N-domain groove of β arr2. **(C)** V2Rpp (dark green) and C5aR1pp (light green) activated β arr2 structures were superimposed with the basal state of β arr2 (PDB 3P2D, orange) and inter-domain rotations were calculated. **(D)** Conformational changes observed in the finger (top), middle (middle) and lariat loops (bottom) in the activated β arr2 compared to the basal state crystal structure of β arr2. **(E)** Polar core environment in basal β arr2 (PDB 3P2D, left) and disruption of polar core interactions upon binding of V2Rpp (middle) and C5aR1pp to β arr2 (right). **(F)** Three-element interaction network consisting of β arr2 C-terminal β -strand XX, α -helix1 and β -strand1 in the basal state of β arr2 (left). Binding of the phosphopeptides V2Rpp and C5aR1pp to β arr2 results in the displacement of the β -strand XX, and engages the phosphopeptide V2Rpp (middle) and C5aR1pp (right) into the N-domain groove of β arr2 through hydrogen bonds and polar interactions.

Figure 6. A conserved lock and key mechanism of β arr activation.

(A) Comparison of the V2Rpp-bound β arr1 and 2 reveals similar interactions of V2Rpp with both isoforms of β arrs although a slightly higher inter-domain rotation is observed in β arr2 (left). A schematic representation of the interface network between negatively charged phospho-residues (red) and positively charged residues (blue) of β arrs are shown (below, zoomed in box). Although the lariat loops of the two structures align well, significant deviations can be observed for the finger and middle loops (right, inset box). **(B)** Comparative analysis of C5aR1pp-bound β arr1 and 2 structures reveal similar interactions of C5aR1pp with both β arr isoforms, but again, a higher inter-domain rotation is observed for β arr2. A similar representation of the interface between negatively charged phospho-residues (red) and positively charged residues (blue) of β arrs are shown (below, zoomed in box). **(C)** In all the structures of phosphopeptide-bound β arrs, a conserved motif can be observed with respect to the three phospho-residues (dotted yellow circles), referred to as P-X-P-P motif, where "P" is a phospho-Ser/Thr and "X" can be any residue. **(D)** Superposition of V2Rpp- β arr1 (PDB 4JQI), V2Rpp- β arr2 (PDB 8GOC), C5aR1pp- β arr1 (PDB 8GO8), C5aR1pp- β arr2 (PDB 8GOO) with D6Rpp- β arr2 (PDB 8GO9) clearly shows conservation of phosphates corresponding to P-X-P-P position where as other phosphates are distributed throughout the phosphopeptides. **(E)** Superposition of phosphopeptides on C5aR1pp- β arr1 reveals the conserved phospho-residues on positively charged cleft present on β arrs' N-Domain. β arr is shown as coulombic charged surface here. **(F)** A sequence alignment of the C-terminal tail and ICL3 residues of non-olfactory and non-orphan Class-A receptors reveal the consensus sequence, "P-X-P-P" required for activation of β arrs. The consensus sequence logo was generated with the WEBLOGO tool⁵² and sequence alignment was performed with Kalign (Lassmann, 2020). A stretch of 11 amino acid residues have been shown for better representation. **(G)** Proportions of GPCRs of Class A, B, C and F having P-X-P-P motif in C-terminus or ICL3 have been represented as pie charts.

Figure 7. The P-X-P-P motif in GPCRs is sufficient for β arr activation.

(A) NanoBiT-based assay for assessing Ib30 reactivity to CXCR3 (left panel), M2R (middle panel), and CXCR7 (right panel) activated β arr1 (Receptor+SmBiT- β arr1+LgBiT-Ib30) (mean \pm SEM; n=3; normalized as fold over basal). **(B)** Deletion of G³⁶⁸ and substitution of L³⁷⁰ to Ala in B2R engineers the “P-X-P-P key” and results in “gain-of-function” in terms of Ib30 reactivity as measured using the NanoBiT assay (Receptor+SmBiT- β arr1+LgBiT-Ib30) (mean \pm SEM; n=3; normalized as fold over basal). **(C)** Addition of an extra Arg between positions 336 and 337 in C5aR1pp to disrupt the “P-X-P-P key” (referred to as C5aR1pp^{Mut}) leads to a near-complete loss of Fab30 (top) reactivity as measured in co-IP assay (mean \pm SEM; n=3; densitometry-based data normalized with respect to C5aR1pp signal as 100%; One-way ANOVA, Dunnett’s multiple comparisons test; ***p < 0.0001, ns = non-significant). Corresponding mutation in C5aR1 to disrupt the “P-X-P-P key” (referred to as C5aR1^{Mut}) results in a dramatic decrease in Ib30 reactivity (bottom) as measured using the NanoBiT assay (mean \pm SEM; n=2; normalized as fold over basal). **(D)** Schematic representation of the “lock and key” mechanism of β arr activation. The C-terminus of β arr is positioned on the N-domain, which stabilizes the basal conformation through the three-element interaction and polar-core network. Binding of GPCRs/ACRs harboring the “P-X-P-P key” engages the critical points in the “K-K-R-R-K-K lock” leading to β arr activation and functional responses.