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Summary

Pre-eclampsia (PE) is a syndrome that affects multiple organ systems and is the most
severe hypertensive disorder in pregnancy. It frequently leads to preterm delivery,
maternal and fetal morbidity and mortality and life-long complications’. We currently
lack efficient screening tools?? and early therapies*® to address PE. To investigate the
early stages of early onset PE, and identify candidate markers and pathways, we
performed spatio-temporal multi-omics profiling of human PE placentae and healthy
controls and validated targets in early gestation in a longitudinal clinical cohort. We
used a single-nuclei RNA-seq approach combined with spatial proteo- and
transcriptomics and mechanistic in vitro signalling analyses to bridge the gap from late
pregnancy disease to early pregnancy pathomechanisms. We discovered a key
disruption in villous trophoblast differentiation, which is driven by the increase of
transcriptional coactivator p300, that ultimately ends with a senescence-associated
secretory phenotype (SASP) of trophoblasts. We found a significant increase in the
senescence marker activin A in preeclamptic maternal serum in early gestation, before
the development of clinical symptoms, indicating a translation of the placental
syndrome to the maternal side. Our work describes a new disease progression,
starting with a disturbed transition in villous trophoblast differentiation. Our study
identifies potential pathophysiology-relevant biomarkers for the early diagnosis of the
disease as well as possible targets for interventions, which would be crucial steps
toward protecting the mother and child from gestational mortality and morbidity and an

increased risk of cardiovascular disease later in life.

Keywords: Pre-eclampsia; trophoblast differentiation; pregnancy pathology;
trophoblast stem cell; juvenile syncytiotrophoblast; spatial multi-omics; senescence-
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Main

Recent single-cell sequencing studies of healthy female reproductive tissues outside
and during pregnancy have characterised the early maternal-fetal interface®’,
trophoblast subtypes®, and the endometrium before pregnancy®. The temporary
maternal-fetal interface, which exists for the duration of pregnancy, mediates in utero
conditions that facilitate successful pregnancies and also shape the future health of
the mother and child over the long term’. While the single-cell landscape of healthy
placentae has been described well, this is not true for the uteroplacental tissue of those
suffering from the hypertensive pregnancy disorder pre-eclampsia (PE). A multi-modal
characterisation of PE would provide a deeper understanding of this early gestational
pathophysiology and improve clinical management? 1011,

Hypertensive disorders in pregnancy account for 14% of maternal deaths''. Early-
onset pre-eclampsia (eoPE) that urges delivery before the 34" week of gestation is
even more destructive*'213, Currently, diagnoses are made based on clinical signs
which appear when PE has progressed, late in pregnancy, to a point that maternal and
fetal morbidity is often already irreversible?'* Specific, reliable early first trimester
screening methods are lacking®'. The only pharmacological intervention known to
reduce risk, low-dose aspirin, is accompanied by challenges such as insufficient effects
in up to 60% of high-risk pregnancies'®. PE is also associated with a reduction of the
lifespan of both mother and child due to complications from cardiovascular disease
later in life>1%11, Highlighting the fundamental role for the placenta, the only therapy to
end the maternal PE crisis, is to deliver the placenta'” 18,

Here we integrated single nuclei RNA sequencing (snRNA-seq) with spatially resolved
proteo- and transcriptomics and multicentric pre-eclampsia cohorts. We identified an
early disruption in the villous trophoblast differentiation transition to the secretory
trophoblast (syncytiotrophoblast, STB) lineage and premature senescence that leads
to a fetal to maternal syndrome translation in eoPE. The markers and pathways we
identifed in the fetal-maternal barrier can be considered as candidates for underlying
molecular placental pathology in PE. In turn, these may act as prognostic biomarkers
to identify eoPE before clinical symptoms arise, potentially offering crucial tools for the

early diagnosis of this serious syndrome as well as therapeutic approaches.
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Results

Maternal-fetal crosstalk in early and late pregnancy

Since the placenta (fetal tissue) and decidua (maternal tissue) biopsy sampling in
ongoing pregnancy increases the risk for adverse outcomes, there is a lack of
comprehensive longitudinal studies and understanding of early pathomechanisms
translating disease to late gestation. To better understand the early pathophysiology
of maternal-fetal crosstalk in eoPE, we analysed diseased preeclamptic and healthy
term tissue. In addition, we included early gestation tissue to set pathological findings
in a temporal context. We performed snRNA-seq of fetal chorionic villi and maternal
decidua in healthy pregnancies from first trimester (5-10 gestational weeks, n=79,885
villus-derived nuclei (v) and 15,367 decidua-derived nuclei (d), in total 95,252 nuclei;
early control = e.ctrl; Fig. 1a-e, Extended Data Table 1 and Extended Data Fig. 1)
and term (=38 gestational weeks; n=39,663 nuclei; late control = l.ctrl; Fig. 1a-e).
Additionally, we profiled villi and decidua from women who had developed eoPE (<34
gestational weeks; n=35,662 nuclei; Fig. 1a-e). Single nuclei were harmonised across
samples from healthy early and term late, as well as eoPE pregnancies. Differences
of eoPE and I.ctrl were computationally adjusted for gestational age differences, since
eoPE is defined as PE with pre-term delivery before the 34" week of gestation
compared to normal term delivery in l.ctrl. Furthermore, we studied the spatial
heterogeneity of cell types by integrating multi-omics data using snRNA-seq, Visium
spatial transcriptomic assays , spatially resolved in situ sequencing (1ISS'?), and spatial
proteomics?°.

We identified a rich diversity of cell types and cell states in the maternal-fetal barrier
(Fig. 1c, Extended Data Fig. 1). Variations in cell composition within the immune,
vascular-endothelial, matrisome, and trophoblast compartments were evident at
different gestational sampling times at the maternal (Fig. 1d, Extended Data Fig. 1
and Table 4) and fetal (Fig. 1e, Extended Data Fig. 1 and Table 3) interface,
mirroring specific functional adaptiations at different stages of pregnancy.
Syncytiotrophoblast (STB) populations were more prominent in late compared to early
villi, and they tended to be more abundant in eoPE tissues (percent of total nuclei:
22.2% in e.ctrl, 83.3% in l.ctrl and 91.2% in eoPE, FDR < 0.01 e.ctrl to l.ctrl, FDR=0.144
l.ctrl to eoPE). We identified nuclei in the decidua that are villous-derived and strongly
positive for STB markers such as CGB and KISS1. We defined them as “deported
STBs” found in decidua (dDSTB). These fragments released from the STB are found
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more frequently in eoPE decidua than in controls (eoPE= 980; |.ctrl=85, e.ctrl=0; Fig.
1a, b, e Extended Data Table 4), and are postulated to be the final product of
senescent vSTB when shed into maternal circulation?'-22.

Our integrative analysis of shRNA-seq and spatial data showed that STB exists in three
transcriptionally different nuclei states, including a novel STB juvenile subtype
(vSTBjuv) alongside vSTB1 and vSTB2 (Fig. 1c, e and f, Extended Data Fig. 2). The
vSTBjuv population is characterised by the notably higher expression of hormone
genes including placental lactogen (CSH1, CSH2). It also exhibits exocytotic
expression signatures (HSPB1, CD63, FURIN) in addition to more classical vSTB
genes: KISS1, CGA, PGF, EBI3, TFPI. We postulate that vSTBjuv has a stromal
function by regulating cytoskeletal stability and the extracellular matrix, as indicated by
the expression of genes such as ACTB, TMSB10, SPARC, and VIM (Extended Data
Fig. 2).

Next, we localised the vSTBjuv cell state within the STB layer. We identified markers
that best distinguished vSTBjuv from vSTB1 and vSTB2, which were TENMS3
(log2FC=12.4), which promotes homophilic adhesion??, and DLK7 (log2FC=6.2), a
paternally imprinted gene which is correlated with birthweight?®*. Using in situ
hybridisation with DLK7 and TENMS3 padlock-probes, we localised DLK1*/TENM3*
vSTBjuv within a B-hCGP°s STB layer (Fig. 1f; Extended Data Fig. 3). We validated
the transcriptomic signatures of the STB and their progenitors, the cytotrophoblasts
(CTBs), which are both components of the maternal-fetal barrier, by applying spatial
proteomics?® (Fig. 2b-c, Extended Data Fig. 4a-d). The revealed signatures showed
enrichment for signalling of RhoGTPases, MIRO and RHOBTB3, and enriched mitotic
pathways in vCTBs. vSTBs exhibited an enrichment in oxidative stress-associated
processes such as ROS production and enzymes known to be involved in metabolic

disorders of biological oxidation (Extended Data Fig. 4).
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Fig. 1| Cell type and state distribution is altered across gestation and disturbed in early-
onset pre-eclampsia

(a) Schematic illustration of experimental design and histological changes across stages of
gestation (early and late pregnancy) and in late pregnancy disease versus control (healthy
term=l.ctrl, early onset preeclampsia=eoPE). Placental tissue was separately sampled
surgically to collect villi and decidua from the same patients for shRNA-seq. Early tissues
correspond to gestational ages between 5-10 weeks (e.ctrl), early-onset pre-eclampsia before
34 weeks (eoPE; range 27-33 weeks of gestation) and late healthy control at 39 weeks (l.ctrl;
range is 38-40 weeks of gestation). The gestational age difference between healthy term
controls (l.ctrl) and diseased pre-term eoPE were corrected for using additional scRNA-seq
data?® from preterm controls (pt.ctrl). Cell name abbreviations in Extended Data Fig. 1c. (b, c)
UMAP displaying (b) maternal (decidual, d) and (c) fetal (villous, v) cell types and states from
single nuclei RNA sequencing, with integrated samples from e.ctrl, I.ctrl and eoPE. Colours
code for a cell type or state. (d,e) Cell composition (%) distribution displayed, numbers under
bars indicate the sample size of sequenced nuclei. Cell compositions presented across
gestational time points (e.ctrl, l.ctrl) and between disease states (eoPE) are for (d) decidua
and (e) villi. (f) Representative images showing the localisation of the novel STB cell state
STBjuv; immunofluorescence staining with STB protein marker BHCG (green) combined with
padlock probe based in situ hybridisation for STBjuv markers DLK1 and TENM3 (arrows
indicate STBjuv specific mMRNA markers). Positive and negative controls for the probes are
shown above. STB, syncytiotrophoblast; juv, juvenile state. n = 3 independent experiments
with 2 biological replicates each per gestational time.
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Activin and Hippo reciprocally drive physiological trophoblast transition
To resolve the trophoblast cell states and infer how their disturbed development may
play a crucial role in eoPE, we recapitulated the transcriptional dynamics of human
trophoblast differentiation from the progenitors CTBs to their final identities cell column
trophoblasts (CCTs) or STBs. Modelling cell trajectories using pseudotime with
proliferating vCTB (vCTBp) as the root, we detected two distinct lineages of this
bipotent trophoblast. The trajectory expressed gene patterns computationally that
predicted to be transition genes expressed along a trajectory branch. vCTB cell fate
ran towards invading vCCT, or towards a secretory vSTB lineages (Fig. 2a,
Supplementary Table 3).

In the CCT trajectory (Fig. 2a), vCTBs can commit towards vCCT?%?7, a cell type that
expands and proliferates in the proximal part of cell columns (Fig. 2b, asterisk).
Distally, it anchors villion maternal decidua. These distal CCT?627 (Fig. 2b, area circled
in blue) then migrate and invade maternal decidua to remodel maternal vessels and
partially replace maternal local endothelium (called decidual extravillous trophoblasts
= dEVTs, Fig. 1b). This so-called spiral artery remodelling results in low-flow, low-
resistance vessels that prevents damage to the fetal trophoblast barrier. A faulty spiral
artery remodelling initiated by vCCT has been postulated as a crucial event in the
development of PE'428_ Receptor-ligand analyses of vCCT prior to invasion and non-
invaded maternal decidua suggested that vCCT may initiate maternal decidua
reorganisation via several integrins (ITGBS8, ITGA1), FLT1, and TGFBR1 (Extended
Data Fig. 4e). Key transition genes in the transition of vCTB towards the vCCT
phenotype are HLA-G and NOTUM (Fig. 2d and Extended figure 4f), so we
investigated potential drivers of the vCCT phenotype. We observed dynamic increase
of transcription factors FOS and the Hippo pathway member TEAD1 along the

pseudotime axis (Fig. 2d), which reflected the change from epithelial-like CDH1P°s
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vCTB to vCCT, that are ready to migrate and invade. The YAP/TAZ-TEAD1 complex,
which are Hippo pathway members, can act with other transcription factors with distinct
functional outputs?’. TEAD1 in combination with FOS is known to trigger epithelial to
mesenchymal transition and migration?®3°, a prerequisite for vCCT driven maternal
tissue remodelling. Inhibition of activin/nodal receptors ALK4/5/7 is known to shift the
vCTB progenitors into vCCT and dEVT transition3'. We validated the transition to HLA-
G* vCCT in primary isolated first trimester CTB by inhibiting ALK4/5/7 with A8301 and
thus recapitulated that vCCT transition genes HLA-G, NOTUM, TEAD1 and FOS
increased over time (Fig. 2e). To confirm these findings at the protein level, we
identified vCTB, vSTB, and vCCT on FFPE sections, laser microdissected the cell type
specific areas and then performed LC-MS (Fig. 2b). Principal component analysis and
unsupervised hierarchical clustering showed that vCTB was observed between
terminal differentiation states vCCT and vSTB on the proteome level (Fig. 2b-c,
Extended Data Fig. 4b, d). Our quantitative protein analyses revealed a significantly
higher expression of FOS in combination with higher TEAD1 in HLA-G*/NOTUM?*
vCCT (Fig. 2f). Using Visium spatial transcriptomics to replicate our previous findings,
we saw high expression of the AP1 pathway genes FOS, FOSL1, and JUN specifically
localised in vCCT regions (Fig. 2g), further highlighting that AP1 signalling contributes
to the development of vCCT with their migratory and invasive phenotype3233,

Next to the CCT trajectory, we also investigated differentiation dynamics of the vSTB
lineages (Fig. 2h-k). It has been postulated that the fetal placental villi, namely the
secretory multinucleated vSTB cell type covering villi as a barrier to maternal blood,
secretes factors into maternal circulation causing PE as maternal syndrome343%, In the
vSTB trajectory, ERVFRD1* pre-fusion CTB (vCTBpf) were defined as representing a
dynamic state of transition between vCTB and the novel vSTB cell state vSTBjuv (Fig.

2a). vCTB lineage leaf genes such as Hippo pathway effector transcriptional co-


https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.10.511539; this version posted October 11, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

activators YAP1 (Extended Data Fig. 5) in combination with TEAD1, are important in
maintaining proliferation in vCTB3¢-38, During the vSTB transition, TEAD1 is repressed
contrary to TEAD1 upregulation in vCCT trajectory (Fig. 2h).

In agreement with transition genes and pathways identified through our snRNA-seq
pseudotime analysis (Extended Data Fig. 5), the in vitro silencing of Hippo effectors
YAP/TAZ (siYAP/TAZ) in primary CTBs prevented TEAD1 increase (Fig. 2i). Our
proteomics analysis confirmed that vSTBs had lower levels of YAP protein than vCTB
(Fig. 2j). Blocking activin receptors ALK4/5/7 is known to contribute to self-renewal of
vCTB? similarly to Hippo members YAP?¥ . Instead, vSTB express the key transition
genes SDC1, CGA, and the activin-pathway ligand GDF15% (Fig. 2h). Consistent with
transition genes, silencing YAP/TAZ in primary vCTB provoked an increase in the
expression of SDC1, CGA, and-GDF 15 over time (Fig. 2i). Spatial transcriptomics, on
the other hand, showed an increase of TGFB-related placental BMP pathway related
genes such as BMP1, SMAD6, GREM?Z2 in vSTB-specific deconvoluted regions (Fig.
2k).

In summary, Hippo3” and activin®' pathways are crucial for maintaining CTBs and an
adequate differentiation towards AP1 pathway enriched vCCT?® as well as vSTB%'.
Both trophoblast cell types form the interface and barrier between fetal and maternal
circulations. Our multi-omics in situ and ex vivo data replicates previous in vitro
findings®” that a loss of Hippo drives CTB-STB transition towards activin-enriched
nuclei states of secretory vSTBs, while activin inhibition drives migratory CCT

differentiation by combining the Hippo and AP1 pathways.
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Fig. 2 | Early trophoblast invasion is AP1 and Hippo pathway driven and early
syncytiotrophoblast differentiation is prematurely initiated with silenced YAP/TAZ

(a) Stream plot elucidating the developmental trajectory of early trophoblast and cell density
across pseudotime. Branch length represents pseudotime progression, branch width is directly
proportional to cell numbers at a given pseudotime. (b) Early placenta FFPE sections (n=4,
gestational age 7-10 weeks) stained using immunofluorescence markers CDH1 and B-hCG;
CTB, STB, and CCT were identified and set areas laser micro-dissected. Dissected areas were
captured and processed via LC-MS. (c) Principal component analysis of proteomics data
revealed cell-type resolved proteomes based on 4,403 quantified protein groups. PC1 and
PC2 represent 38.4% and 17.5% of the total variability, respectively. (d) Trophoblast lineage
commitment regulators with a dynamic expression that correlates with pseudotime. Lines are
the polynomial regression fits to the normalised gene expression data. Cell-type membership
is incorporated on the x-axis, colours correspond to those annotated in Fig. 1b and 2a (snRNA-
seq, n=10 early placentae). (e) Primary CTB isolated from first trimester placenta were cultured
as indicated on x-axis (time in hours). Dynamic genes in vCCT lineage as calculated in snRNA-
seq analyses are replicated in CTB incubated with TGFB-inhibitor A8301 for up to 68 hours (5
MM, n=5 placentae pooled with n=4 independent experiments). (f) Spatial proteomics results
showing relative protein levels (z-score) of transcriptionally dynamic genes; transition markers
NOTUM, HLA-G are highly expressed in CCT, transition gene TEAD1 increases in CCT.
Member of AP1-pathway FOS expression is strongly increased in vCCT. (g) Spatial
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transcriptomics showing AP1-pathway genes FOS, JUN, FOSL1 expressed in a cell column
as found in non-negative matrix factorisation (NMF) deconvolution based Visium analysis,
integrating snRNA-seq data. (h) Trophoblast lineage commitment regulators with a dynamic
expression that correlates with pseudotime. Lines are the polynomial regression fits to the
normalised gene expression data. Cell-type membership is incorporated on the x-axis, colours
correspond to those annotated in Fig. 1b and 2a (snRNA-seq, n=10 early placentae). (i)
Primary CTB isolated from first trimester placenta were cultured as indicated on x-axis (time in
hours). Dynamic genes in STB lineage as calculated in snRNA-seq analyses are replicated in
siYAP/TAZ treated CTB incubated for up to 68 hours (n=5 placentae pooled with n=4
independent experiments). (j) Spatial proteomics validate dynamic genes found on a sn-
transcriptomic level; STB genes CGA, SDC1, GDF15 are highly expressed in STB, transition
gene YAP decreases in STB. (k) Spatial transcriptomics showing Activin-pathway associated
genes expressed in deconvoluted STB areas (spots) as found in NMF deconvolution based
Visium analysis integrating snRNA-seq data.

Cell name abbreviations in Extended Data Fig. 1c.

vSTB fusion trajectory is dysregulated in PE

Having established physiological trophoblast transition on a spatial multi-omics level,
we next investigated the impact of the pre-eclamptic disease state on the placental
transcriptome and the transition processes. Comparisons of eoPE to l.ctrl samples
were adjusted for the effect of preterm birth, i.e. the gestational age difference, using
published single-cell data specifically characterising differences on non-eoPE pre-term
placental cells'®. For the analysis pipeline, we also adjusted for potential confounders
and importantly, we validated the snRNA-seq targets in a multicentre pre-eclampsia
cohort.

Since uteroplacental tissue analyses of preeclampsia are limited to late timepoints in
pregnancy, we aimed to infer late gestation pathological profiles by computationally
recapitulating early gestation pathophysiology and evaluating disturbance. Therefore,
we investigated the fusion dynamics of STB progenitor cells with the goal to identify at
which stage of eoPE cells depart from their normal developmental trajectory. These
STB progenitor cells are ERVFRD-1* CTB cells, previously described by Liu et al.®
(Fig. 3a, here: CTBpf). Notably, CTBpf was the only villous cell type that expressed
the BMP-inhibitor GREMZ2 (Extended Data Fig. 2, 8), and we showed that GREM2r°s
cells still expressed the classical CTB-marker CDH1 in early villous tissue (Fig. 3b, c).
The CDH1P°s cell borders of CTBpf also show they are not yet fused with the
multinucleated vSTB and are still a mono-nucleated vCTB subtype, which is why we
named them CTBpf for their pre-fusion CTB cell state (Fig. 3d).

CTBpf also show high expression of CTNNB1 mRNA that encodes B-catenin. Spatial
proteomics of the STB layer confirmed the presence of B-catenin (Supplemental

Table 9), a Wnt regulator that is involved in CDH1 degradation. The appearance of
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CTNNB1 in CDH1Pesfusion-competent CTBpf cells underlines the importance of CTBpf
in the transition from CDHP°svCTB to CDH"®8 vSTB. We performed flow cytometry with
primary CDH1P°s CTB isolated from first trimester placentae to corroborate these
findings. We used snRNA-seq to identify the vCTBpf markers GREM2, ABTB2, CCR7
(Fig. 3c) that we then used in flow cytometry to identify and validate the vCTBpf. >93%
of CDH1P°s/CD49"*8 were positive for CTBpf markers GREM2 and CCRY7 (Fig. 3d, e;
Extended Data Fig. 6f). This CTBpf fraction increased over time in culture, achieving
a stable fraction of around 7-9% of live cells after day 3 (Fig. 3e). This was
accompanied by a shift from G0/G1 phase to G2/M phase and an increase of DNA
content (Extended Data Fig. 6g). These data support our proposal that the “pre-fusion
CTB” cell state® is a vCTB subtype and that, as cultured primary CTBs undergo
spontaneous fusion, vSTB have passed this vCTBpf cell state. Based on the specific
expression of BMP-inhibitor GREM2 in vCTBpf, we validated in vitro that BMP7
inhibited fusion induced by cAMP agonist forskolin (Extended Data Fig. 8). Temporary
BMP inhibition by CTBpf seems to be a prerequisite for fusion from vCTBs to vSTB.

This led us to investigate the activity of genes predicted to play key roles in modulating
the development of STB and lineage commitment that starts with the CTBpf cell state.
We identified a dysregulation of transition genes that drive trophoblast development
(Supplementary Table 3). STBjuv show the highest percentage of dysregulated STB
transition genes (18.1%, Fig. 3f) such as GDF15 and LNPEP (Extended Data Fig. 5).
In comparison to vSTBs, vCTBs have a relatively low fraction of transition genes within
their DEG (13 transition genes of 349 total CTB DEG, 0.04%). Notably, GREM2 was
also highly upregulated in the microarray validation dataset of placenta whole tissue
(Fig. 3g). Herewith, we can indicate that GREM2r°s pre-fusion vCTBs are of
importance in the aberrant trophoblast differentiation in eoPE. This CTBpf state was
also more abundant in first trimester compared to late gestation (Extended Data Table
3), and therefore may be part of eoPE pathophysiology already in early pregnancy by

impacting vSTB transition.
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Fig. 3 | Syncytiotrophoblast pre-fusion cytotrophoblast are dysregulated in early-onset
pre-eclampsia

(a) Schematic drawing illustrating cell trajectories as found in Fig. 2a; arrow pointing to CTBpf,
pre-fusion CTB; FV = fetal vessel, # = villous stroma; * = maternal blood in intervillous space;
Cell name abbreviations in Extended Data Fig. 1b. (b) Immunofluorescence staining of
GREM2res CTBpf (arrow) within a CDH1r°s (E-Cadherin) CTB layer. # = villous stroma; * =
maternal blood in intervillous space. (c) Dotplot of snRNAseq data with markers used in flow
cytometry for CTBpf characterisation. (d) Flow cytometry of primary isolated first trimester CTB
showing gating strategy; >93% CD49f-/CDH1+ CTB were positive for CTBpf markers GREM2,
CCR7, ABTB2. (e) Primary first trimester CTB were cultured for 3 and 6 days; a stable increase
to ~8% of GREM2+ CCR7+ ABTB2+ fraction of live cells can be seen (n=3, villous CTB
isolated from n=5 placentae and pooled). (f) Relative number of differentially expressed genes
(DEGs) in CTB and STB states in eoPE. Overlap with transition genes derived from the
trophoblast trajectory analysis towards the STB lineage is highlighted in blue, with the exact
percentage contribution written on the stacked bar plot. (g) Volcano plot of villi dysregulated
genes in early-onset PE analysed from a published microarray dataset*°, highlighting
concurrence with key genes identified in this manuscript; each dot represents an individual
gene. Interestingly, we observe GREM2 (vCTBpf state marker and a BMP antagonist) as one
of these candidate genes, supporting the notion that dysregulated STB differentiation in eoPE
is a mechanistic driver of placental dysfunction. (n = 23 placenta control, 14 eoPE). pt.cntrl;
preterm control, eoPE; lateC, late pregnancy control; eoPE, early onset pre-eclampsia. STB,
syncytiotrophoblast; CTB, cytotrophoblast; pf, pre-fusion.

To make an assessment of the extent of global tissue dysregulation, we measured the
number of differentially expressed genes (DEGs) in eoPE compared to term control
placentae. We found that between villi and decidua, villous cell types are the most
profoundly disturbed (Fig. 4a, Supplementary Table 4). Of the global tissue
dysregulation, STB accounted for 58.2% of the total DEGs in villi (% of villous DEG,

Supplementary Table 5). Of note, we found similar patterns in a larger microarray
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datasets*® of eoPE vs control (n=37; Extended Data Fig. 7), confirming our data in a
larger cohort. We found some shared DEG between different villous cell types
(Extended Data Fig. 7), speculating global dysregulating events. Interestingly, the
gene FLT1 encoding for the anti-angiogenic factor sFLT1 used in the clinic for short-
term follow-up in cases of eoPE?, was upregulated in two cell types, the vSTB and the
VVEC. In summary, eoPE is characterised by a massive dysregulation of the fetal
barrier consisting of mainly vSTB, as observed in the high degree of dysregulation in
these cell states.

vSTB is a multinucleated fused cell barrier towards the maternal circulation and
showed the highest aberration (Fig. 4a), so next we investigated dysregulation
patterns of different STB states and analysed the DEGs shared between STB subtypes
(22.6%; n=329 of 1084; Fig. 4b). Of these, 99.5% (n=15) showed same directionality
in gene expression, indicating a functional unit between vSTB1, vSTB2, and vSTBjuv
states. We therefore carried out a regulatory analysis to map transcription factors (TFs)
to binding motifs in downstream dysregulated targets shared between vSTB states
(Fig. 4c¢) to investigate the drivers of transition of the vSTB lineage under pathological
conditions. A TF that emerged from our prediction model as master regulator and top-
ranked TF was EP300, a transcriptional coactivator associated with fusion*' and cell
cycle arrest*?, that has binding motifs in the highest number of STB genes (normalised
enrichment score=3.54, FDR < 0.05, n= 561, i.e., 52% targets). In summary, we
identified EP300 as hub TF with the highest number of targets within the DEGs shared
between STB states (Fig. 4c), and an involvement in fusion processes.

Congruently, we identified an overlap between EP300 target and fusogenic genes
including CTBpf marker ERVFRD-1 and GCM1, which are associated with fusion of
cells® (Fig. 4g, Extended Data Fig. 6d). Dysregulated EP300 target genes in eoPE
were also found expressed early in pregnancy and are involved in the STB transition
(Extended Data Fig. 6d, e). EP300 encodes the histone acetyltransferase p300, which
is translocated to the nucleus upon activation. We show that the nuclear localisation of
p300 in trophoblasts is higher in eoPE compared to Il.ctrl (Fig. 4d, e). EP300 was also
found to be upregulated in whole-placenta lysates in eoPE compared to gestational
age-matched preterm controls (pt.ctrl) in a multicentre cohort (Fig. 4f). This suggests
that the cause of dysregulation in eoPE may be the aberrant transition to STB, driven
by EP300. This may subsequently cause an early differentiation or disproportionate

shift towards the vSTB-lineage in eoPE.
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Altogether, we identified p300/EP300 as important driver in eoPE. Dysregulation in
eoPE can be linked to the early transition of STB, at the intermediary fusion states
CTBpf and STBjuv.
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Fig. 4 | Syncytiotrophoblast populations are most affected in early-onset pre-eclampsia.

a) Significantly dysregulated expression profiles between late control (l.ctrl) and eoPE villous
and decidual cell types (Bonferroni adjusted two-sided, logistic regression p<0.05 and
log2FC>% 0.25). Log2FC between conditions for each individually expressed genes (dot) is
visualised. vCTBpf, vCCT, vCTBp, VEB, dBcell, dEpC, dNKp, dPC, dGranul, dEVT, dDSTB
excluded due to large cell-type composition changes between l.ctrl and eoPE. n=9 deciduas
(4 late control, 5 eoPE), n=12 placentae (6 late control, 6 eoPE). The analysis pipeline was
adjusted for potential confounders such as the sample collection site, fetal sex, and chemistry
used in sequencing. Since the groups did not differ in terms of BMI, maternal age, or smoking
habits, we did not make adjustments in these parameters, to avoid overadjustment. (b)
Convergence of DEGs in the syncytiotrophoblast lineage where each dot represents a single
gene (shared upregulated: red; shared downregulated: blue; variable gene expression: green).
(c) Predicted transcription factors (pTF) were calculated using dysregulation network of
trophoblast functional overlap, where motifs of dysregulated shared STB-genes were used to
predict its upstream transcription factors (threshold NES >3, max FDR on motif similarity
0.001); EP300 has most targets within the dysregulated genes (EP300 marked in red;
dysregulated in > 2 STB groups, minimum logFC > 0.4, gene expressed in > 30% cells; n= 28,
marked in black). (d) p300 is encoded by EP300, and was stained in tissue sections of healthy
late term controls (l.ctrl, n=3) and eoPE (n=3) where in CK7r°s trophoblasts p300 activation
through translocation to the nucleus was observed (open arrowheads show nuclei without
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p300 staining, closed arrowheads show nuclei with p300 staining). (e) p300 activation was
systematically analysed using automated image analysis by calculating a score normalising
positive p300 nuclei to total number of nuclei (calculated via mean intensity values based on
immunofluorescence staining of p300 and DAPI, total trophoblast area and overall villi area
(calculated via mean intensity values based on CK7 immunofluorescence staining area),
dividing each image scanned at same exposure times per channel into quadrants; Wilcoxon
rank-sum test, sig.-level 0.05. (f) mRNA expression level of EP300 is significantly increased in
eoPE compared to preterm controls (no gestational age difference) in a multicentre cohort,
sig.-level 0.05. (g) Heatmap illustrating fold changes in log2FC of EP300 dysregulated targets
between eoPE and term controls groups for overlapping genes shown in (b) for STB n=12 villi
(6 late control, 6 eoPE), genes involved in fusion are marked in red. Logistic Regression was
used for differential testing (log2FC = 0.25 and p-value < 0.05 after Bonferroni adjustment for
multiple testing of states, fusogenic EP300 target genes are marked in red).

eoPE is associated with a senescence-associated secretory phenotype
(SASP) at the maternal-fetal interface

Our analyses suggest that eoPE is the result of a perturbation in the transition of STB
via fusion cell states. The differentiation trajectory of these cells inherently involves
senescence-associated processes?’?2. When comparing the DEGs of STB subtypes
to the senescence-associated secretory phenotype (SASP) atlas database*?, we find
that in eoPE, affected trophoblasts exhibit a higher increase in SASP gene activity than
in late controls. 12% of the genes dysregulated in STBs during eoPE are annotated as
SASP factors (Supplemental Table 7). The placenta is known to be essential in the
pathology of PE and the placental syndrome eventually translates into a maternal
systemic syndrome'’. Altogether, this led us to carry out an analysis of focused
receptor-ligand interactions that might affect fetal to maternal SASP translation. Here,
we turned to a model that could be used as a proxy for the fetal to maternal crosstalk
from trophoblast to the maternal vasculature that underwent changes during
pregnancy. To this end, we analysed cell-cell communication between villous derived
STB components and decidual vascular cells (dVEC, dSMC) to investigate how the
dysregulated STB subtypes we described above could translate the fetal villous
syndrome to the maternal system.

We defined anatomically relevant cell types which physiologically interact, and
computationally analysed them for their ligand-receptor interaction (Fig. 5a). Among
the upregulated factors, we found a predominance of secreted factors (of dysregulated
vSTB genes were identified as secreted or extracellular exosome factors
(GO:0005615, GO:0070062, GO:0032940; GO:0060627; GO:0048010)) that interact

with receptors on the maternal vasculature (dVEC, dSMC) via the maternal circulation
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Fig. 5a). The interactions between vSTB-dVEC and vSTB-dSMC predominantly
involved SASP genes (67%, 6 out of 9). GDF15-TGFBRZ2 is found to be interacting via
maternal blood between villi in vSTB and decidual endothelial cells (Fig. 5a). GDF15
is a secreted TGFB superfamily protein and activin ligand that is abundant in the
placenta*t. In PE, it is observed in increased levels in maternal serum and placentae®.
In addition, we demonstrated a significant upregulation of vSTB-derived ligands of
LEP- and INHBA as well as interactions with their respective receptors (Fig. 5a).
Upregulation of both GDF15 and INHBA was independently validated in the multicentre
eoPE cohort, where; they were significantly upregulated in patients compared to
gestational with age-matched pre-term controls (Fig. 5b). Additionally, GDF15 was
detected by immunofluorescence to be elevated in eoPE patients compared to healthy
controls (Fig. 5e). When we visualised all DEGs of vSTBs that were EP300-mediated
SASP genes, we observed significant aberration profiles of vSTB cell states in eoPE
(Fig. 5f). We robustly validated our findings using multiple lines of evidence (Fig. 5b-
e). We conclude that overall, SASP drives the majority of fetal-to-maternal ligand-
receptor interactions in eoPE via secretion into the maternal circulation.

Our next aim was to identify the localisation of senescence-associated molecules
within the trophoblast wall of villi. To do this, we compared spatially resolved
transcriptomes from healthy term controls vs eoPE using in situ sequencing data (Fig.
5i). Transcripts were computationally assigned as villous wall structure and then
qualified to have their proximity to vascular markers (CDH5, IDO2, KDR, TEK, ZEB1),
derived from vessels close to the trophoblast layer, evaluated (see Extended Data
Fig. 8). One finding from in situ sequencing data was a divergence in the spatial
expression of the senescence marker INHBA. In eoPE, INHBA was found more
frequently in proximity to vascular transcripts, while in term controls, it was found to be
significantly distant from vessels (l.ctrl; Fig. 5j). The overall increase of SASPs in
vSTB, in combination with spatial disorganisation of these senescent vSTB, suggests
that there are functional dysregulations in regions of maternal to fetal crosstalk where
oxygen and nutrient transport across the STB from maternal blood to fetal circulation
occur. Further evidence for the importance of INHBA in the development of eoPE
comes from our multicentre cohort, whose villous tissue also exhibited increases in
INHBA expression (Fig. 5k). The gene products uncovered in this study, as described
above (Fig. 4c), and their role in vSTB transition (Fig. 2h-k) and maternal-fetal
crosstalk (Fig. 5i-j), might indicate a potential of these factors as an early predictor of
eoPE.
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Uteroplacental tissue analyses have been limited to cross-sectional studies at late
timepoints due to the increased maternal and fetal risk for adverse outcomes following
interventions during pregnancy. To evaluate the early predictive potential and
pathomechanistic relevance of our identified markers (Fig. 5a), we turned to a
prospective longitudinal cohort spanning from first trimester to delivery where clinical
outcome of eoPE was verified*®. Women were recruited in the first trimester of
pregnancy. A serum sample was taken before carrying out a risk assessment to predict
PE using the ‘Fetal Maternal Foundation’ (FMF) algorithm'6. We excluded women with
comorbidities such as chronic hypertension or diabetes mellitus and proceeded to
clinically match women that later developed eoPE to control patients 1:2 (27 cases und
49 controls after technical exclusion of five samples; Fig. 51). We used a conditional
logistic regression model without prior risk stratification via the FMF algorithm for
eoPE-prediction, and found that activin A also significantly contributed to predict eoPE
already early in pregnancy (p=0.0123; Extended Data Fig. 10). Clinically, uterine
artery pulsatility index measurements (UtA-Pl) are performed to determine adverse
pregnancy outcome. ROC analyses of UtA-Pl in combination with Activin A and GDF-
15 had a higher predictive potential compared to UtA-PI alone (Fig. 5m). Importantly,
our model showed that women who exhibited high circulating levels of activin A and
GDF15 in the first trimester had their risk of developing eoPE underestimated by the
FMF algorithm.

Our multi-omics results from later in gestation were the origin to bridge evidence from
this pilot study in early pregnancy to a longitudinal understanding of the
pathomechanism. We used senescence markers based on our late gestation data
(INHBA/Activin A*” and GDF15) in early pregnancy to assess and predict the risk of a
later development of eoPE.

Overall, our data delineates that a preeclamptic placenta syndrome starts early in
pregnancy during CTB to STB differentiation and ends with premature senescence

transferring the placental transition defect into a maternal syndrome.
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Fig. 5 | Early-onset pre-eclampsia affects key regulatory interactions at the maternal-

fetal interface.

Cell crosstalk dysregulation during eoPE in trophoblast secreted ligands. (a) vSTB secreted
ligands altered in eoPE relative to term controls with preterm gestational age correction acting
on highly expressed decidual endothelial receptors highlight ligand pressure, i.e. increased
ligand expression with unaltered receptor expression, at the maternal-fetal interface. Receptor-
ligand interaction pairs are shown (Wilcoxon rank-sum test, p<0.05) using arrows from ligands
towards receptors. Dot colours denote cell states/types, ligand squares illustrate average
log2FC between conditions (only upregulated candidates are included from Logistic
Regression; log2FC>0.25 and p-value<0.01 after Bonferroni correction) and receptors squares
encode average expression. (b,c) vSTB-derived ligands GDF15 and INHBA from (a) are
validated in a multicentre cohort comparing gestational age corrected non-PE preterm controls
with eoPE mRNA expression (n=23 eoPE, 11 preterm controls = pt.ctrl; sig.level>0.05;
unpaired two-tailed t-test with Welch'’s correction). (d) Immunofluorescence staining of GDF15
in l.ctrl and eoPE to validate differential mRNA-expression from (c) on protein level (n=3 each).
(e) Whole slide scans with standardised exposure were evaluated using automated image
analysis calculating mean GDF15 intensity on trophoblast area (n=3 each, scans divided into
4 quadrants; sig.-level>0.05, unpaired t-test). (f) EP300 targets that are senescence-
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associated secretory genes differentially expressed in STB cell states in eoPE (heatmap
showing log2-foldchanges with sig.-level>0.05; Logistic Regression and after Bonferroni
adjustment for covariates) (i) Targeted high-resolution spatial transcriptomic data was
acquired through spatially resolved in situ sequencing (ISS), with spatial context of mRNA
molecules implicating highly structured tissue in an unsupervised 2D embedding (n=3 total,
early and late villous samples; representative image of e.ctrl shown) (j) Senescence-
associated INHBA expression is spatially variable in ISS in situ sequencing data and (k) is
significantly more frequently found in proximity to vascular transcripts (black arrows). (1) Study
design for early gestational maternal serum used for eoPE-risk-prediction. (m) Activin A,
synthesised by inhibin Ba dimers that are encoded by INHBA, predicts eoPE in a conditional
logistic regression model and shows that the currently used FMF algorithm underestimates
eoPE-risk in women with high first-trimester activin A (eoPE: n=27; healthy term controls: n=49,
matched for BMI, gestational age, maternal age).
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Discussion

The pathomechanisms that lead to eoPE and distinguish at-risk mothers from their
healthy counterparts have so far been unclear. Here, we reconstruct the course of
pregnancy where longitudinal sampling is limited, and link evidence from preeclampsia
in later gestation to early pregnancy where underlying pathomechanisms are still
unclear and diagnosis is not yet possible. Thereby, we present evidence that the
preeclampsia syndrome arises from an early pregnancy disruption of trophoblast
differentiation. We trace the faulty trophoblast differentiation to the specific event of
transition from progenitor-like vCTB to post-fusion vSTB that create the fetal barrier to
maternal circulation. Our model suggests that vSTBs undergo a accelerated premature
differentiation associated with a dysregulation of the transcriptional co-activator p300.
This drives the premature development of a senescence-associated secretory
phenotype of vSTB subtypes that is specific to eoPE and impedes maternal-to-fetal
crosstalk. Accordingly, we provide evidence that levels of senescence marker activin
A and GDF15, detectable in serum at early stages of gestation, are contributing to a
prediction-model to estimate risk for the later development of eoPE. In summary, this
model defines preeclamptic disease as a response to altered syncytiotrophoblast
lineage drivers, which result in a disturbance of placental processes of senescence
translated to maternal circulation. This is in line with previous hypotheses that
senescence and the shedding of necroptotic STB bodies might play key roles in PE#8:49
and arise from disturbed trophoblast differentiation. We could capture these STB
bodies in decidua and transcriptionally profile them (dDSTB). These dDSTBs are
highly GDF15P°s STB particles derived from villous tissue and are putatively carried by
maternal blood into the maternal vasculature in PE. They are known to regulate
transcription in target maternal endothelial cells®.

Early uteroplacental tissue analyses derived from terminations of pregnancy have
been limited by the difficulty of predicting the future clinical course of a pregnancy. To
overcome this issue, we compared tissues obtained from a window at the beginning of
pregnancy, at which time the further progression was unknown, with a late window,
when the disease has fully developed. We had access to a longitudinal cohort that
phenotyped women from their screening in the first trimester all the way to delivery. By
comparing outcomes of women with eoPE to healthy controls, we could
computationally extend findings of late pregnancy back to an early gestational window

prior to the appearance of overt symptoms of the disease. Further computational work
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will need to be done that integrates biospecimens across a longer gestational time to
interpolate further important time frames in PE development and progression.

We identified an early dysregulation in pre-eclampsia where p300-linked transcription
factor complexes may affect the defective regulation of trophoblast development that
is associated with STB fusion. Congruently, we identified upregulation of genes that
are unique for a pre-fusion vCTB (CTBpf) and involved in fusion itself, such as
EVRFRD-1 and GREMZ2. This might be explained by Hippo-based
mechanotransduction of high-velocity arterial shear stress that occurs secondary to
the high-resistance uterine arteries®' phenotypical of eoPE. The disrupted trajectory of
STB subtypes we described may act in concert with other influences — oxidative stress,
altered perfusion, and other factors known to contribute to eoPE?'* — to create a
senescence-associated dysfunction of the maternal-fetal barrier. This means that
eoPE may be marked by a cell fate diversion that increasingly drives vCTBs toward
the STB fate (Fig. 1e), via an autocrine feedback loop that is very likely mediated by
activin.

Our study also lays the groundwork for a novel understanding of the early
pathophysiology of the early-onset subtype of PE. We carry out a precise analysis of
the fetal-to-maternal translation, from STB in the villi wall to maternal vasculature on
the cellular level. In general, our work confirms well-established biomarkers of eoPE
such as sFIt1 (FLTT1), PAPPA2, and PGF, and identified additional early pregnancy
markers that interact with maternal vasculature and are activin-pathway associated
SASP factors, such as GDF15 (GDF15) and activin A (INHBA). We have shown these
factors are pathophysiology-relevant and imminent to trophoblast transition.
Trophoblast differentiation is disrupted and as sequelae, premature senescence of
STB with increased GDF15 and INHBA expression ensues. While activin A was
reported previously, we can now additionally extrapolate it's central role in the
pathomechanism of preeclampsia early on. GDF15 was shown to be predictive of PE
in term pregnancy®?, and while it is putatively associated with cardiometabolic
disease®, we found a new role connecting this with early pregnancy STB differentiation
and early pathomechanisms.

Finally, we envision that the comprehensive multi-omics data we analysed will lead to
the discovery of further pathomechanistic biomarkers and ultimately the development
of new curative pharmacological approaches at early timepoints in gestation. These
new approaches may finally prevent a syndrome that begins during a vulnerable period

of the life of the child, and continues to affect them their entire lives. So far, the
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established symptomatic pre-eclampsia treatments, related to blood pressure
management and preterm delivery, are primarily beneficial for the mother but have
adverse effects on the fetus, thus posing a public health concern. We suggest that
future molecular phenotyping and precision medicine in pregnancy should focus on the
disturbed fetal trophoblast transition to prevent the pathogenesis of the fetus and

subsequently of the mother.
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Methods

Patient samples

Tissue sampling was done in a multicentre-design. Patients were recruited in Berlin
(German), Graz and Vienna (Austria) and Oslo (Norway). The studies were approved
by each regional committee and described individually and headlined by the analysing

method.

First trimester tissue used for snRNA-sequencing

Placental and matching decidual tissue were collected from electively terminated
pregnancies with informed consent of healthy individuals (gestational age 5 — 11
weeks). Exclusion criteria were maternal age under 18, maternal BMI >25 and self-
reported maternal pathologies. Ethical approval was obtained from the Medical
University of Graz Ethics Committee (31-019 ex 18/19; 26-132 ex 13/14). Immediately
after surgical extraction, tissue was stored at 4°C in culture medium DMEM/F12 1:1, 1
g/dL glucose, Gibco®, Life Technologies (TM), Thermo Fisher Scientific, Vienna,
Austria) and processed in no more than 4 hours. Amnion was removed and decidua
dissected. Villous and decidual tissue were separately rinsed twice in cold (4°C) 0.9%
NaCl to remove blood afterwards snap frozen in liquid nitrogen and stored at -80°C

until processing. Patient characteristics can be found in Extended Data Table 1.

Healthy term tissue used for shnRNA-sequencing

Healthy term samples were collected immediately after delivery at the inpatient clinic
of the Department of Obstetrics and Gynaecology, University Hospital Graz, Austria.
The study was approved by the local Ethics committee at the Medical University of
Graz (31-019 ex 18/19; 26-132 ex 13/14) and informed consent was obtained from
each participating woman. Representative tissue samples (1x1x1 cm) of the medial
third of the placenta were cut from vital cotyledons that were macroscopically free of
infarct areas or other obvious pathologies that are assumed to have happened during
delivery. This should avoid sampling degraded RNA and ensure a high-quality yield for
further analysis, well knowing that it might skew towards possibly inaccurate
phenotypes on either side of disease and healthy samples. Amnion was dissected and

remaining tissue were rinsed twice in cold (4°C) 0.9% NaCl to remove blood afterwards
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snap frozen in liquid nitrogen and stored at -80°C until processing. Patient

characteristics can be found in Extended Data Table 1 and Supplementary Table 1.

Early-onset pre-eclampsia and healthy term tissue used for snRNA-sequencing
Pregnant women were recruited in Oslo University Hospital prior to elective caesarean
section after informed written consent, as previously described'?, from women with
either early onset pre-eclampsia (eoPE) or normotensive pregnancies. eoPE was
defined as new onset hypertension (blood pressure 2140/90 mmHg) and new onset
proteinuria (=1+ on dipstick, or 230 protein/creatinine ratio) at 220 weeks gestation but
with delivery prior to gestational week 34. Placental villous tissue biopsies were cut
from the centre of central normal appearing cotyledons, and were snap frozen in liquid
nitrogen and stored at —80°C until use. The study was approved by the regional
committee for Medical and Health Research Ethics in South-Eastern Norway, and
performed according to the Helsinki Declaration. Patient characteristics can be found

in Extended Data Table 1 and Supplementary Table 1.

Validation cohort Graz

Study samples were recruited retrospectively immediately after delivery at the inpatient
clinic of the Department of Obstetrics and Gynaecology, University Hospital Graz,
Austria between 2018 and 2019. Pre-eclampsia (PE) was defined according to the
ISSHP guidelines (Brown MA, Pregnancy Hypertension, 2018). Women receiving low
dose aspirin were excluded. The study was approved by the local Ethics committee at
the Medical University of Graz (26-132 ex 13/14 and 31-019 ex 18/19) and informed
consent was obtained from each participating woman. Patient characteristics can be
found in Extended Data Table 2.

Validation cohort Oslo

Pregnant women were recruited prior to elective caesarean section after informed
written consent, as previously described?, from women with either pre-eclamptic (or
normotensive pregnancies. PE was defined as new onset hypertension (blood
pressure 2140/90 mmHg) and new onset proteinuria (=1+ on dipstick, or =30
protein/creatinine ratio) at =220 weeks gestation. In addition, eoPE was defined as
delivery prior to gestational week 34. Placental villous tissue biopsies were cut from

the centre of central normal appearing cotyledons, and were snap frozen in liquid
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nitrogen and stored at —-80°C until use. The study was approved by the Regional
committee for Medical and Health Research Ethics in South-Eastern Norway and
performed according to the Helsinki Declaration. Patient characteristics can be found
in Extended Data Table 2.

Validation cohort Berlin

Samples from 19 placentas <34 weeks were collected from March 2013 to July 2014
at the Department of Obstetrics at Charité University Medicine, Campus Virchow Clinic,
Berlin, Germany. The trial protocol was approved by the local ethics committee, and
written and informed consent was obtained from all participants. Women were recruited
at the time of clinical admission. PE was defined according to the International Society
for the Study of Hypertension in Pregnancy (ISSHP) 2000, as new onset hypertension
of >140/90 mmHg at two occasions six hours apart, in combination with proteinuria of
>300 mg/24 h or >2+ dip stick. This subset was part of a bigger cohort that was
described in detail previously*®. Patient characteristics can be found in Extended Data
Table 2.

Single-nucleus sequencing (snRNA-Seq)

Nuclei capture, library generation, sequencing

Approximately 100-200 mg frozen placental and corresponding, separately sampled,
decidual tissue was processed according to an optimised nuclei isolation protocol by
Krishnaswami et al.?® Briefly, frozen tissue was disrupted with a pre-cooled glass
Dounce in homogenisation buffer (1X NIM2 [1X protease inhibitor, 1 uM DDT, 250 mM
sucrose, 25 mM KCI, 5 mM MgCI2, 10 mM pH8.0 Tris], 0.4 U/uL RNAseln, 0.2 U/uL
Superasin, 0.1% v/v Triton X-100) and filtered through a flow-cytometry (BD Falcon)
tube with a 35 um cell sieve cap. Homogenate was incubated in the dark, on ice, for
two minutes with DAPI (5 pg/uL) and centrifuged for eight minutes (1,000xg, 4°C).
Pellet was resuspended with staining buffer, transferred to a FACS-tube (BD Falcon)
with a 35 ym cell-sieve cap and analysed using the BD FACS ARIA Il flow cytometer
using the BD FACSDiva software (BD Bioscience). After FACS sorting with a cut-off at
90% viable single nuclei, nuclei from the landing buffer (1% BSA, 0.2 U/uL
RNAseln) were counted using a digital counting chamber (Elvira) to achieve the
concentration of 400-500 nuclei/pl and were loaded onto 10x Genomics Chromium

chips. 10x Genomics single-index v2 and v3 libraries were prepared according to

32


https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.10.511539; this version posted October 11, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

manufacturer's instructions (Chromium Single Cell 3’ Kits v2 User Guide — CG00052,
Chromium Single Cell 3’ Kits v3.1 Dual Index User Guide — CG000315). Libraries were
sequenced on an lllumina HiSeq-4000 (pair-ended) aiming for a minimum coverage of

50,000 raw reads per nucleus.

Data pre-processing and quality control

The demultiplexing, processing, identification of Unique Molecular Identifiers (UMI) and
barcode filtering of raw 3’ snRNA-Seq data was performed using Cell Ranger software
(versions 3.0.2, 6.0.1 & 6.1.2) from 10x Genomics. Specifically, the SP014 (10X V2
chemistry), SP082 and SP136 batches (10X V3 chemistry) were processed with
versions 3.0.2, 6.0.1, and 6.1.2 respectively.

The transcripts were aligned against the pre-built human reference genome GRCh38
premRNA version 3.0.0, which was built from the GRCh38 precompiled reference
(https://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz),
and modified for use with snRNA-Seq data by extracting “transcripts” features from the
gene model GTF and instead annotating these as “exon”, as described in the protocol
defined by 10x Genomics (https://support.10xgenomics.com/single-cell-gene-
expression/software/release-notes/build#grch38_3.0.0). Subsequently, systematic
biases and empty droplets were modelled and removed by filtering counts due to

contaminated ambient RNA reads and random barcode swapping using the remove-
background function implemented in CellBender v0.2.02. The total number of droplets

was kept at 15,000, and a combined ambient and swapping model was used. Filtered
expression matrices were loaded into python v3.7.9 and further processed using
scanpy v1.8.2.

The post-quantification quality control was computed with the calculate_qgc_metrics
function in scanpy. Nuclei having fewer than 200 expressed genes or for which the
total mitochondrial transcript expression was higher than 5% were excluded. Only
those genes expressed in more than three nuclei were included. Data quality was
assessed by plotting the number of unique molecular identifiers (UMIs) and total
number of genes per sample. After quality control filtering, the samples were log-

normalised to 10,000 reads using scanpy.
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Data harmonization, clustering, and cell annotations for placenta

For the data harmonization of placenta samples, firstly, 6000 highly variable genes
were computed using scanpy’s highly variable_genes function, using the dispersion-
based method (flavor='seurat v3') and otherwise default parameters. The donor
identifier was used as the key batch to minimize selection of batch-specific genes.
Subsequently, the samples were integrated using a Bayesian variational inference
model scVI v0.14.5 (based on stochastic optimization and deep neural networks
architecture). Using, scvi.model.SCVI and get_latent_representation functions in scVI,
a shared latent space of 15 dimensions for all placental single nuclei was inferred.
Precisely, 128 nodes per hidden layer, 2 hidden layers used for encoder and decoder
for the variational inference, and 0.1 drop-out rate was used. Zero-inflated negative
binomial distribution (ZINB) was used to model gene expression. Apart from using
donor_id (each sample) as batch key, further categorical covariates (10X library
chemistry used, procurement centre of samples, gestational time) and continuous
covariates (total counts, total number of genes with at least one positive count,
percentage of mitochondrial expression, XIST counts per nucleus) were used to
minimize the influence of unwanted technical variation in the cell typing.

The K-nearest neighbour graph was computed on the scVI inferred latent space using
pp.neighrbors function in scanpy with k=15 and otherwise default parameters. To
further reduce the high dimensional latent spaces to 2D, visualization was generated
using Uniform Manifold Approximation and Projection (UMAP). Particularly, the umap-
learn v0.5.2 implementation in python was used and the maximum number of iterations
was set to 500 (for better convergence) and random state to O (for reproducibility).
Cell-typing (annotations) was initially performed on the control placenta samples (both
early and late gestation) based on robust and specific expression of marker genes. At
first, clusters were identified in an unsupervised manner using Leiden community
algorithm implemented in scanpy (with an initial resolution limit of 2) and initially
annotated using marker genes extracted from literature plus top signatures obtained
from EmpiricalBayes-method by model.differential_expression function in scVI and
Seurat’s FindAlIMarkers Logistic Regression (LR) method in Seurat. Leiden clusters
lacking robust/specific biological markers were merged into the closest cluster.
Thereafter, a LR classifier model (optimized by the stochastic gradient descent
algorithm) implemented in Celltypist v0.2.0° was trained based on our control cluster

labels and was used to predict the cell annotations in diseased (eoPE) samples. A
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confusion-matrix was used to evaluate the performance of the classifier (predicted
labels) given the known ground-truth (from Leiden clusters annotation). Spurious
Leiden clusters mapping to a specific sample and lacking appropriate markers were
removed. Particularly, a fibroblast (n=669) and erythroblast (n=930) subpopulation
were excluded because they mapped solely to two specific early samples and hence,
do not contribute to comparative cell typing. Additionally, 547 misclassified nuclei firmly
clustering with vCTBp but also expressing high STB/EVT markers were excluded (with
further help from the pseudotime analysis where these nuclei could not be modelled in
a specific differentiation path). For further internal validation of cluster phenotype, we
computed module scores using known markers list using the tl.score_genes function
in scanpy. Finally, all the clusters assigned to a phenotype (label) were evaluated using
robust and specific marker genes (described in the Differential expression analysis

section; also refer to Extended Data Figure 2).

Data harmonization, clustering, and cell annotations for decidua

Similar to placenta, the top 6000 highly variable genes were computed using scanpy’s
highly_variable_genes function using donor_id as the batch key. Here, the cell typing
was initially performed on the 10X V2 samples (because they were sequenced earlier)
by annotating unsupervised Leiden clusters based on robust and specific markers
expression. Using the get_latent_representation function in scVI, a shared latent
space of 10 dimensions was inferred keeping the other parameters same as used for
the placenta. Like placenta, markers were extracted from literature as well as top
signatures obtained from Bayes-method scVI model.differential_expression function
and Seurat’s FindAlIMarkers LR method. Leiden clusters mapping uniquely to a donor
were excluded for the purpose of comparative cell typing. Subsequently, the cell labels
were transferred to the 10X V3 samples using scANVI’.

In parallel to scANVI, a LR classifier model from Celltypist was trained using the
annotated cluster labels and was used to predict the cell annotations in 10X V3
samples. A confusion-matrix was used to evaluate the performance of CellTypist
classifier and scANVI (predicted labels). Ultimately, each cluster was inspected using
biological markers knowledge and final decisions were made.

A cluster (initially annotated as stromal given its proximity to the DSC1/2 and consisting
of 2911 nuclei) was later excluded because of the expression of conflicting markers
such as NOTUM, HPGD and HLA-G (denoting EVT lineage). It also expressed certain
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macrophage genes and was difficult to classify. The CellTypist LR classifier assigned
them a very low confidence score (~0) indicating the cluster was very likely
contaminated. Another cluster (initially thought of as NKT cells; 1119 nuclei) were
removed because of high macrophage gene expression.

The final UMAP embedding stratifying the cellular hierarchies for decidua and villi are

shown in figure 1b.

Evaluation of clustering robustness

To ensure the effective annotation of cell types/states, amortized Latent Dirichlet
Allocation (LDA) implemented within scVI was used to find topic profiles for both
tissues. Conceptually, a distinct cell types/state should map to a unique topic.
Subclusters share the topics of the mother cluster and in additionally usually harbor a
unique topic. For example, dNK1 and dNK2 have shared as well as unique topics. This
modelling approach can also be used to identify potential doublets when cells exhibit
multiple conflicting topics (mainly due to opposing lineage markers), similar to marker-
based approaches used in other single cell studies of placenta and decidua®.

LDA was performed at several stages (initially using the number of Leiden clusters
equal to the number of topics and ultimately, to the number of final labels) to see if the
learned topics were mainly dominant in cells close together in the UMAP space. When
a topic is dominant in multiple clusters in the UMAP, it is an indicative of similarity
between the clusters despite being distant in the embedding. This might happen if the
local relationships were not preserved beyond a certain threshold. In this way, the
problematic clusters were confirmed to not map to unique/known topics and hence,
removed from all downstream analysis. Additionally, it was also used as a quality check
for the UMAP embedding.

Syncytiotrophoblast sub-clusters

For the first time, we detected significant heterogeneity in the vSTB group. Notably, we
found an interesting state termed as juvenile STB that is marked by the expression of
paternally imprinted DLKT (regulator of cell growth and differentiation), SPARC,
TMSB10, and ACTB which indicate an association with extracellular matrix remodelling
and promotion of changes to cell shape. Interestingly, the juvenile nuclei robustly

express the secretory phenotype (characterized by several PSGs and maternally
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imprinted TFPI2) and a classical STB like profile (expression of CGA, CYP19A1,
KISS1, ADAM12, SDC1 and others) for which it was classified under vSTB group.
vCTBp was considered as the trophoblast progenitor as they are actively cycling given
the expression of genes like MKI67, TOP2A, STMN1 and CENPK/CENPE. Notably,
they exhibit robust expression of YAP1, TEAD1, TP63, CCNA2, ITGA6- all known for
their roles as progenitor. vCTBpf is primarily fusogenic and is characterized by very
specific markers such as GREM2, ERVFRD-1, ERVV-1/2, OTUB2, and DYSF.
Placental F13A1+/FGF13+ resident macrophages (Hofbauer cells, vHBC) uniquely
express hyaluronan receptor LYVET in the immune cell subset, suggested to maintain
arterial tone and have pro-angiogenic functions. We additionally identify antigen
presenting HLA-DRA+ placenta associated maternal monocytes/macrophages
(vPAMM) which are villi-associated and are extra-embryonic or maternal in origin. A
cycling population of vHBC was identified (vHBCp) characterized by traditional HBC
genes as well as proliferative genes like MKI67 and TOP2A. The villi myocytes (vMC)
were identified given their AGTR1 expression. Other cell types were mapped using

well known based on their marker genes (Supplementary Table 8).

Evaluation of integration performance

To quantify integration performance for both decidua and placenta, we employed
metrics suitable for atlas level integration as discussed by Luecken et al.®

Firstly, an adjusted rand index (ARI) implemented in scikit-learn was computed to
ensure that the cluster labels are independent of the sample information (scaled from
0 to 1 where values close to zero indicate our labels were not influenced by batches).
The score for decidua (0.062) and placenta (0.044) indicate our labels were not
affected by batches (donor). Adjusted mutual information (AMI) was additionally used
to verify the above observation.

Importantly, an absolute silhouette score (ASW) of batch labels per cell-type were
computed to measure batch-mixing (scaled from 0 to 1 where 1 indicates ideal batch
mixing and O represents strongly separated batches). Since the batches are expected
to integrate within a cell identity, the batch ASW was computed per cell type/state. The
mean scores for placenta (0.863) and decidua (0.802) cell type/states indicate well

batch-mixing alongside bio-conservation.
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Differential expression analysis

Cell-type marker analyses for both decidua and placenta were performed using multi-
variate LR generalized linear model implemented in Seurat’s FindAlIMarkers() and
were further internally validated using the empirical Bayes method in scVI
model.differential_expression function.

In case of LR, the number of UMI, number of genes, and percentage of mitochondrial
transcripts per nuclei were used as continuous covariates. Additionally, ~disease (if a
nucleus is from a control or eoPE sample) and library (10X V2 or V3 chemistry) were
used as categorical covariates to minimize the effects of eoPE and libraries. Only those
genes having a log fold-change cut-off of 0.25 and expressed in at least 25% of cells
within each cluster were considered as a significant cell marker. An adjusted p-value

cut-off was kept at 0.05 (after Bonferroni correction for multiple testing).

Differential analysis of disease markers and gestational age correction

To determine the differentially expressed genes for disease (eoPE) against late
controls, the LR framework (implemented Seurat’s FindMarkers function) was applied
to respective cell types/states. The number of UMI, gene counts, percentage of
mitochondrial transcripts and percentage of sex-specific transcripts per nuclei were
used as continuous covariates.

Importantly, a cell type/state specific preterm-score was calculated using the preterm
vs term in labour significant genes' having FDR <0.05 and used as a continuous
covariate in the LR model. This was explicitly performed to prevent strong preterm
specific effects in the analysis since eoPE arises 6-8 weeks prior to healthy term. Since
no differential features was separately reported for the vSTB preterm, the other
trophoblasts genes (vCTB) were used for correction. Additionally, SLIT2 & ROBO1
genes were included in the module-score based correction for as they are associated
with risk for spontaneous preterm birth".

Additionally, cell type/state specific labour signatures were considered for correction
by extracting the term in-labour vs no labour differential genes from respective groups™
Only those genes having a log2 fold-change cut-off of 0.25 and expressed in at least
10% of cells within each group were reported as significant given adjusted p-value <
0.05 (Bonferonni corrected). Both up- and down-regulated genes were computed.

No cell type/state exhibited significant composition shift in eoPE relative to term

controls (except for vHBC)- hence, down sampling was only performed for the vHBC.
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For cell types such as vCCT, dEVT, vCTBp, vCTBpf, dDSTB, dPC, dBcells no analysis
was performed owing to extreme sparsity in eoPE group. None of our samples were

confounded with a major co-occurring disease.

Reconstruction of differentiation trajectories, lineage relationships and computation of

pseudotime genes

To infer the cluster and lineage relationships between the different trophoblast cell
types/states- STREAM v1.1. (https://github.com/pinellolab/STREAM) and diffusion
pseudotime'? were used. Specifically, the trajectory inference was restricted to the
early controls of the trophoblast cell types including vCTBp (progenitor), vCTB,
vCTBpf, vSTBjuv, vSTB1/2 and vCCT. In the late term controls, there is a striking
discrepancy in the cell-type composition given a massive increase of vSTB sub-
populations which signifies degradation rather than differentiation.

At first, the scVI harmonized control data as subsetted for the relevant cell types and
learned the trajectory principal graph using STREAM 1.1. Using previously computed
latent variables, cells were clustered in the reduced UMAP space for recovering the
main and possibly finer structures of trophoblast differentiation. Thereafter, the
principal graph was inferred on the manifold learnt from the dimension_reduction
function using the first six components. K-means clustering was used for the initial
graph seeding using seed_elastic_principal_graph(). The elastic principal graphs are
structured data approximators, consisting of each cell as a vertex interconnected by
edges. The inference of this graph relied on a greedy optimization procedure based on
which a minimum spanning tree (MST) was constructed using the Kruskal’'s algorithm.
No branch pruning or shifting of nodes were performed to obtain the optimal principal
graph (Figure 2A and Extended Data Figure 4a).

Ultimately, the transition and leaf markers were computed for all lineage paths (vSTB,
vCTB and vCCT) by considering MKI67 positive vCTBp as a root node (start of the
pseudotime) respectively. The transition genes are dynamical in nature and calculated
by considering fold change in average gene expression of the first 20% and the last
80% of the cells for an individual branch based on the inferred pseudotime. For the
genes exhibiting log2 fold change cut-off of 0.20, further Spearman’s rank correlation
was calculated between pseudotime and gene expression of all the cells along the
individual branches (as implemented in STREAM’s detect transition_markers

function). Ultimately, genes above a specified correlation threshold (=0.35) were
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reported as transition genes. For leaf gene detection, the z-scores of all leaf branches
were calculated based on the average gene expressions. Particularly, Kruskal-Wallis
H-test followed by a post-hoc pairwise Conover’s test (as implemented in STREAM'’s
detect_leaf _markers function) was used for multiple comparisons of mean rank sums
test among all leaf branches. A Z-score cut-off of 1, and p-value cut-off of 0.01 were
used to identify the candidate leaf genes. The expression of highly robust cell fate
markers along the pseudotime provided a strong validation for our trajectories
(Extended figure 4d).

To further evaluate the lineage relationships and global transcriptomic similarity
between different cell types (for trophoblast), Diffusion map analysis was performed
that orders cells based on their transcriptomic similarity in a Markovian space. This
method considers each cell to be represented by a Gaussian wave function and
diffusion distances are based on a robust connectivity measure between cells which is
estimated over all possible paths of a certain length between the cells. The Eigen
functions of the Markovian transition probability matrix (diffusion components; DC1 and
DC2) were used for low-dimensional representation and visualization of trophoblast
data (Extended Data Figure 4b).

Receptor-Ligand interaction databases

An extremely important factor deciding the results of the R-L interaction study is the
underlying database used. Two popular databases, CellChatDB and FANTOMS, were
used that allowed identification of well-established interactions such as MIF-
ACKR3/CXCR7 and INHBA-ENG/END, which were unique to CellChatDB and
FANTOMS respectively.

Receptor-Ligand interaction differential analysis of eoPE vs term controls

The differentially expressed ligand-receptor interactions were inferred using
Connectome v1.0.1 (specifically, the differential connectomics pipeline). For the
maternal-fetal interface, the strategy was to use only secretory ligands for vSTB groups
that can practically cross the maternal-fetal barrier and can be in contact with the
maternal blood (decidua) where it can influence the vessels. Only significantly
differentially upregulated ligands (p-value 0.01 after adjusting for multiple testing) in
eoPE relative to term controls exhibiting a log2FC cut-off of 0.25 and detected in a

minimum of 10% of diseased cells were considered. It was assumed that once a ligand
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is activated (upregulated), it would bind the receptor (irrespective of the latter being
differential or not). Biologically, we can describe such instance as ligand pressure
(where ligand is high, but receptor is either non-differential or low; Figure 4C).
Multivariate Logistic Regression was used for differential calculation and the statistics
are consistent with our former described DEG test (including covariate corrections).

For the within tissue interaction map (decidua and villi interaction) using immune and
endothelial cell types, LR and Connectome were used. The log2FC cut-off of 0.25 and
ligands/receptors detected in a minimum of 10% of diseased cells were considered for
both up and downregulated differential candidates. The p-value was adjusted for
covariates (as described for eoPE vs late term DEG). Visualization was performed

using circos plots.
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Receptor-Ligand interaction analysis in eoPE

The analysis for decidual STB and EVT ligands (with maternal VEC and dSMC) were

restricted to eoPE samples only given their extreme sparsity in late term. Interactions

were derived using Connectome using both FANTOMS5 and CellChatDB databases.
The min.cells.per.ident was kept at 75 and Diagnostic Odds Ratio (DOR) was
calculated for each interaction pair. High DOR is an indicative of high specificity and
sensitivity with a low rate of false positives and false negatives.

For dDSTB, the interaction list was filtered using pct.source (senders) >= 25% and
pct.target (receivers) >= 20% (pct= percentage of cells expressing a ligand/receptor)
and further, filtered by DOR.source > 3 and ligand expression > 1.5 (Figure 4A).

For the interactions with dEVT, relatively robust criteria were used for narrowing down
the important interaction partners (from an initial list of > 2000 pairs). Particularly,
DOR.source of 5, edge strength (product of the receptor and ligand expression) of 3
and minimum percentage of ligand expressing source of 50% was used to ensure cell

specific communication.

Computational validation of major R-L interactions

All Connectome results were cross checked SingleCellSignalR'3 for the vSTB, dDSTB
and dEVT based interactions. All the R-L interactions were recapitulated (when not
limited by database).

Subsequently, we applied additional tools (NATMI, logFC Mean (inspired by iTalk),
CellphoneDB, CellChat) implemented within LIANA framework'4 and we were able to
recapitulate all R-L interactions across numerous databases. Identification of decidual

and villous cell types and states.

Pathway and network analyses of marker genes

The list of DEG based on cut-off values (logFC +/-0.25 and a significance level of 0.05)
were used as background for networks. Variable genes were excluded using the
webtool diVenn (divenn.noble.org). Genes were then used as input in the stringDB for
PPI networks (confidence level = 0.15, no added proteins in shells). Networks were
then further analysed in Cytoscape (version 3.8.2)". Hub genes, defined as genes with
high correlation in candidate modules, were identified from the PPI network calculating

top 5 genes of all topological analysis methods of CytoHubba'® in Cytoscape plug-in

42


https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.10.511539; this version posted October 11, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(DMNC; MNC, MCC, ecCentricity, Bottleneck, Degree, EPC, Closeness). The
candidate hub genes were merged into one network, decomposed into communities
using clustermaker'” and GLay'® Cytoscape plug-in based on Newman and Girvan’s
edge-betweenness algorithm. The hub network was analysed to visualise the network
degree of nodes by size of nodes. The original background logFC was used for
continuous mapping colours. The hub gene network was used to calculate transcription
factors via iRegulon’ cytoscape plug-in (standard threshold: enrichment score
threshold 3.0, ROC threshold for AUC calc 0.03, Rank threshold 5000, minimum
identity between orthologous genes: 0.0, max FDR on motif similarity: 0.001).
Predicted transcription factors were visualised as PPl (confidence level 0.15) via
stringDB and validated by adding expression values from the DEG list.

Pathway analyses are based on these DEG lists, hub genes, and transcriptions factors

and were carried out via web-tools Metascape and Enrichr.

In Situ Sequencing

High sensitivity library preparation

Fresh tissue samples of early villi were FFPE processed and stored at +4°C. A custom
gene panel was used to detect specific cell-type and cell pathway genes of interest.
The in situ sequencing method was processed according to manufacturer instructions
(Cartana, part of 10x Genomics). 5um tissue sections were baked at 60°C for one hour,
deparaffinised in xylene, rehydrated in 100% and 70% ethanol, and permeabilised
using citrate buffer (pH 6) for 45min at >95°C in a steamer. Sections were dehydrated
in an ethanol series from 70 to 100% and air-dried (Secure Seal, Grace Biolabs, Bend,
United States). Gene specific chimeric padlock probes were added, directly hybridised
to the RNA at 37°C in an RNAse free humid chamber overnight and ligated at 37°C for
2 hours. Ligation derived circular oligonucleotide structures (padlocks) amplified
overnight at 30°C. RNA-degradation during tissue processing was minimised by
adding 0.1% v/v diethyl pyrocarbonate (DEPC) to all buffers and reagents not provided
by the manufacturer.

Imaging
Imaging was performed using a digital slide scanner (Olympus SLIDEVIEW VS200)
connected to external LED source (Excelitas Technologies, X-Cite Xylis).

Fluorescence filters cubes and wheels were equipped with a pentafilter (AHF,
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excitations: 352-404 nm, 460-488 nm, 542-566 nm, 626-644 nm, 721-749 nm;
emissions 416-452 nm, 500-530 nm, 579-611 nm, 665-705 nm, 767-849 nm) and
single cube filters (Kromnigon; SpectraSplit 440, SpectraSplit 488, SpectraSplit Cy3,
and SpectraSplit 594). Images were obtained with a sSCMOS camera (2304 x 2304,
ORCA-Fusion (C14440-20UP, 16 bit, Hamamatsu), and Olympus Universal-
Plansuperapochromat 40x% (0.95 NA/air, UPLXAPO40X). To avoid signal cross-talk,
the pentafilter was used to image DAPI, Cy5 and AF750 signals, and the single cubes
to image AF488 and Cy3 were used. Imaged regions were recorded to
perform repetitive cycle imaging. After imaging, labelling mix was stripped from each

slide by adding three times 100% formamide for 1min, followed by a washing step.

Hybridizing and Sequencing

In situ sequencing steps were repeated six times with six different adapter probe pools,
each imaged in five channels (DAPI, FITC, Cy3, Cy5, AF750). After stripping, adapter
probes were hybridised at 37°C for 1 h in a RNAse free humid chamber, washed
and sequencing probes hybridised at 37°C for 30 min in a RNAse free humid chamber.
Sections were washed, dehydrated in an ethanol series, air-dried, and mounted
with SlowFade Gold Antifade Mountant (Thermo Fisher Scientific). Library preparation
protocols were optimised for placental tissue using high (MALAT1) and low (RPLPO)
control probes before using the final probe panels. Background without any adapter

probe pool was imaged in 6 channels for autofluorescence subtraction.

Image analysis and spot calling

Imaging data was analysed with the custom pipeline provided by CARTANA that
handles image processing and gene calling. All code was written in MATLAB and
additionally a CellProfiler pipeline (v.2.1.1)?° was used, that includes the ImageJ
plugins MultiStackReg, StackReg and TurboReg as previously described?'. In short,
TIFF images from all sequencing cycles were aligned to the general stain of
library preparation, and split into multiple smaller images. The median intensity of all
RCP signals of each channel was calculated with an additional CellProfiler pipeline
(v.4.0.7)?°, this value was used to normalise RCP signal intensities of each channel to
a pixel intensity of 10,000. The received multiplication factor value for each channel
was integrated in the CellProfiler pipeline and the background of each channel

subtracted from each sequencing cycle, to reduce the autofluorescence of the tissue. A
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pseudo-anchor was created for each cycle by making a composition of the
four readout detection probe channels into one merged image. The pseudo-
anchor was used to perform a second, more exact alignment. RCPs of the labelling
mix were detected, x and y coordinates saved and fluorescence intensities measured.
The highest intensity value in each sequencing cycle was assigned as positive event
and used for decoding in Matlab. For signal visualisation, the selected transcripts were

plotted on a DAPI-stained image.

In situ sequencing data analysis

In situ sequencing data handling

In situ sequencing data handling was performed using the plankton.py v0.1.0 package
(https://github.com/HiDiHIabs/planktonpy) in python 3.10.4. For the conclusive
analysis routine, the in situ sequencing data was displayed as decoded spots of x and
y coordinates of all detected mMRNA molecules, each with an associated gene label. In
total, three in situ sequencing slide scans were analysed (106KS, 107KS, 156KS).
156KS (early control) contained genes from the customized placenta/cell typing pane
| that was designed for retrieving cell and tissue types, and both 106KS (late control)
and 107KS (eoPE) contained genes from the custom/pathway panel which was
targeted at analysing cell state and metabolic activity (code book for panels available
via zenodo doi: 10.5281/zenodo.5243240). The cell typing sample was taken during
the early stage of pregnancy.

For visualization of the detected mRNA molecules in their histological context,
matching DAPI stains of each sample slide were pre-processed by transforming it to
grayscale, normalizing the colour values between 0 and 1 and pushing the low-

exposure areas by raising all values to the power of 0.4.

Identification of cell type specific markers in the placenta panel

Analysis of the placenta cell typing data had the aim of contextualizing major cell types
determined by snRNA-Seq analysis. Genes from the cell typing panel were
conceptualized as cell type markers, with CTB, STB and HBC cell types considered
for further spatial analysis and plotting since they had good marker coverage and
constituted important spatial landmarks in the villi anatomy (with the walls being
layered with STBs and CTBs, and HBCs forming distinct, compact cells in the intra-

villous matrix).
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Accordingly, a gene-cell-type affinity measure was derived through the gene molecule
counts in the snRNA-Seq data set for CTB, STB and HBC. This was done per gene by
contrasting molecule counts in the cells belonging to a cell type of interest in the
snRNA-Seq data against the molecule counts of an opposing set of cells using
plankton.py’s score_affinity function. Hence, for each analysis, two contrastive sets of
cell types were defined: (i) CTB vs STB for CTBs; (ii) STBs vs CTBs for STBs; and (iii)
HBC vs all other cells for HBCs. The transcriptome of CTB and STB cells could be
expected to be more similar since both cells are trophoblasts. Therefore, to determine
definitive cell type markers, CTB and STB were contrasted against each other, which
would cancel out potential common trophoblast marker genes. Each genes’ mean
molecule counts in all cells assigned to the two contrastive cell type sets was
determined. The logarithm of the ratio of these mean count indicators was used as
score for a gene’s affinity to a certain cell type. To improve visual clarity during plotting,
a threshold of 0.5 was used to assign colour labels to each gene in both analyses.
Genes exceeding this affinity score threshold determined markers for CTBs (ASPM,
ATAD2, BRIP1, CD24, CDH1, CENPE, DIAPH3, FBN2, KANK1, SEMA6D, TIMP3),
STBs (ADAMTS20, CGA, CYP19A1, ENTPD1, KISS1, KLRD1, LEP, LINC00474,
MYCNUT, PAPPA2, PLAC4, PLXDC2), and HBCs (CD163L1, CD36, F13A1, FGF13,
LYVE1, MEF2C, SPP1), with the remaining genes assigned as ‘other’.

MRNA molecule spatial context analysis in the placenta panel

Using the plankton.py’s run_umap function, a weighted neighbourhood graph was built
using the 800 nearest neighbours of each molecule, with neighbours weighted
according to their Euclidean distance using a Gaussian probability density function
(PDF) at a bandwidth of 9 um, which would roughly cover the area of a single cell and
its immediate environment. Then, a model of local MRNA distribution was created over
all genes by summing over each gene's molecules’ weights. Furthermore, a
regularization mechanism was introduced by increasing each distribution’s value of the
gene of its molecule of origin by 1.15.

A 2D embedding of recurring spatial context was determined by applying the python
umap-learn v0.5.3 algorithm to the local distributions. The number of neighbours in the
UMAP algorithm was set to 24 and the minimal distance of points in the embedded
representation was set to 0.2. UMAP used a Euclidean distance metric and was

initiated at a random state of 42. The determined gene-celltype associations were used
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in a cell type visualization plot of the early placenta sample 156KS. All molecules were
plotted as a scatter plot on top of the greyscale renderings of the DAPI stain. Molecules
with a celltype-association affinity score above 0.5 were coloured accordingly, while

the remaining molecules were rendered as grey.

Villi wall detection

Having demonstrated the principal plausibility of the spatial information in our in situ
sequencing data during the cell-typing analysis, our experimental design required a
follow up comparative analysis of pathways between a late control and an eoPE
sample. The pathway categories chosen for the analysis of this second experiment
were ‘vascularization’ (genes IDO2, ZEB1, TEK, CDH5, KDR), senescence (genes
MMP11, INHBA) and trophoblasts (genes LGRS, FGFR2, MET).

Spatial analysis was restricted to the densely populated and well-structured villi walls
in both samples, as this is the most structured part of the tissue. Villi walls were
determined using a basic edge detection algorithm applied to matching DAPI signal,
where villi walls were clearly remarked by dense nucleation. A greyscale rendering of
the DAPI stain was smoothed using an optical Gaussian filter at a 2 ym bandwidth.
Scikit-image's (v0.19.2) feature.canny() implementation of the canny edge detection
algorithm (using a sigma value of 3.7) was used to extract the villi walls in the smoothed
image. Every molecule within a radius of 5 um to any point of the detected edges was
defined as being part of the villi walls, and all other molecules were discarded from
further analysis. The wall filter algorithm was visualized by plotting the underlying DAPI
stain in matplotlib’s violet-blue ‘magma’ colour scheme. The detected edges from the
second step of the wall filter algorithm were plotted on top of the stain as orange lines.
In the bottom-right half of the plot, the present mMRNA molecules were plotted, coloured
green or blue according to their assignment as wall/not-wall members (Extended
Figure 6d).

Spatial relationship of vascular and senescence markers

For visualization of the spatial senescence-vascularization relation, all ‘wall’ molecules
were plotted on top of a black-and-white rendering of the DAPI stain, coloured
according to their gene assignments of ‘vascularization’ (red) and ‘senescence’
(yellow), with the other molecules plotted in a white. Optical inspection of the scattered

senescence and vascularization markers hinted that senescence marker topography
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was more structured in the control sample as compared to the eoPE sample, with
senescence marker expression being reduced around vascularization clusters in the
tissue.

To statistically model this observation, the villi wall molecules were subdivided into two
categories depending on their location of expression: (i) a vessel proximal category
that contained all molecules within regions of 5 um of another vessel marker; and (ii) a
vessel-distal category that contained the other molecules. A null hypothesis was
formed, according to which the distributions of genes should be equal within the two
categories. For each gene, we reported the p-value of the violation of this null
hypothesis in a binomial test. Scipy’s (v1.8.1) stats.binom.cdf implementation was
used, with parameters ‘p’ defined as the total percentage of ‘proximal’ molecules, ‘K’
the gene-specific number of proximal molecules and ‘n’ the total number of molecules
of the respective gene in the sample. The sorted p-values for all genes present in the
pathway sample were displayed in a vertical bar graph, with the bars coloured
according to their membership to the categories ‘senescence’, ‘vascularization’,
‘trophoblast’ or ‘other’ (Extended Data Figure 6f,g). The p-values of senescence,
vascularization and a control category of ‘trophoblasts’ were extracted and plotted per
sample as scatters on a vertical line. The scatters of both samples were displayed next

to each other for visual comparison (Figure 4j, Extended Data Figure 6h).

10X Visium

Sample preparation

First trimester tissue was collected as described above, dissected under a
stereomicroscope and snap-frozen by using isopentane in a liquid nitrogen bath. To
avoid large batch-effects, multiple placental tissue sections were embedded in a
6.5x6.5 mm cryo-mould using OTC cryo-embedding medium (TissueTek). Samples
were put on -80°C overnight and cryo-sectioned at -20°C. Control H&E staining was
performed to ensure morphological intactness of the embedded tissues. The cryo-
sectioned tissue at 10 um was transferred to spatial transcriptomics slides (Visium, 10x
Genomics) and placed on a single tissue optimisation and gene expression slide

capture area.
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Visium data sequencing

After having determined the permeabilisation time of 18 minutes following the tissue
optimisation protocol (10x Genomics — CG000238 Rev A), the gene expression
experiment was carried out according to the manufacturer’s user guide (10x Genomics
— CG000239 Rev A). The images were scanned using the Slide Scanner Pannoramic
MIDI (3DHISTECH) with the objective plan-apochromat 20%/0.8x (Zeiss).

The dual-indexed Visium library was then loaded at 200 pM and sequenced on a
HiSeg-4000 (lllumina) with the following configuration: 28-10-10-90 (see sequencing
requirements for Visium Spatial Gene Expression -
https://support.10x_genomics.com/spatial-gene-
expression/sequencing/doc/specifications-sequencing-requirements-for-visium-

spatial-gene-expression).

Generation of the Visium count matrix

The base call (BCL) files generated from the lllumina run were converted to FASTQ
reads with bcl2fastq (lllumina). Subsequently, the reads were mapped to the human
reference dataset GRCh38 (build 2020-A; refdata-gex-GRCh38-2020-A) using the
spaceranger count pipeline (Space Ranger v1.1.0) with automatic fiducial alignment
and tissue detection. We observed 1,387 spots under the tissue, yielding 201,176
mean reads and 3,561 median genes per spot.

Seurat processing of the Visium count matrix

The 10x output folder was read using Load10X_Spatial function implemented in Seurat
(v3). The object was then normalised with SCTransform function. PCA was then
calculated using RunPCA: 50 PCs were computed and the first 20 were selected for
identifying the k-nearest neighbours of each spot with FindNeighbors function. Finally,

clustering was performed via FindClusters (resolution = 0.2).

Spotlight based deconvolution of Visium data

The spotlight object was generated using the spotlight _deconvolution function in
SPOTlight (Version 0.1.7) by supplying the early villi subset (from the placental single-
nuclei data) as reference. The marker table for the nuclei clusters was initially

generated based on Logistic Regression method implemented in Seurat as discussed
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before, and subsequently filtered to yield the best topic profile representative of each
cell type found in the dataset.

The non-negative matrix factorisation (NMF - nsNMF) regression as well as Non-
negative Least Squares (NNLS) regression were used for deconvolution as
implemented in SPOTIight. Cells contributing to less than 1% of the spot composition
were removed, min_cont = 0.07. The deconvoluted spots were assessed by
investigating the topic profiles of the cell type (Extended Data Figure 1f) and the nature

of individual topics within a cell type.

In-vitro validations

First trimester CTB cell culture

Villous cytotrophoblasts (vCTBs) were isolated according to recently published
protocols??. Precisely, placental tissue (6 — 8" week of gestation) was cut from the
chorionic membranes, further minced into small pieces, and subjected to three
consecutive digestion steps at 37°C in Hanks balanced salt solution (HBSS, Gibco)
containing 0.25% trypsin (Gibco) and 1.25 mg/ml DNAse | (Sigma-Aldrich) for 10 min,
15 min, and 15 min, respectively. Per ml tissue, 5 ml digestion solution was used. Each
digestion was stopped using 10% FBS ([v/v] PAA Laboratories). Subsequently the cells
were filtered through a 100-um pore size cell strainer (BD Biosciences), and cells from
the second and third digestion were pooled. Next, the cells were loaded onto Percoll
gradients (10 — 70 % [v/v]) and vCTBs were collected between 35 — 50% of Percoll
layers, pelleted, and washed twice with HBSS. Eventually, red blood cells (if present)
were removed by incubating vCTBs with erythrocyte lyses buffer (155 mM NH4ClI, 10
mM KHCOs, 0.2 mM EDTA, pH 7.3) at room temperature for 5 min. Afterwards, vCTBs
were washed twice with HBSS. Subsequently, vCTBs were either immediately frozen
in cell banker 2 (2 — 5 x 108 per ml; Zenoaq) and stored in liquid nitrogen for flow
cytometry analyses or seeded onto fibronectin-coated (20 ug/ml, Millipore) 48-well
dishes at a concentration of 2.5 x 10° cells per cm? in DMEM/F12 (Gibco) containing
10 % FBS and 0.05 mg/ml gentamycin (Gibco). After 2 hours, non-attached cells were
removed and fresh culture medium was added supplemented with vehicles (ctrl), or 5
MM A8301 (Tocris). For siRNA experiments, vCTBs were transfected with ON-
TARGETplus non-targeting siRNAs (siCTRL; D-001810-10-0020, Thermo
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Scientific/Dharmacon), or co-transfected with ON-TARGETplus YAP71 and WWTR1
(siYAP1/TAZ; L-012200-00-0005, L-016083-00-0005, Thermo Scientific/Dharmacon)
using Lipofectamine RNAIMAX (Invitrogen) according to the instructions of the
manufacturer. After two and four days, the culture medium was changed containing
the respective supplements and siRNAs. At indicated time points, cells were washed
with ice-cold PBS and lysed using PeqGold Trifast (PegLab). For immunofluorescence
analyses cells were washed with ice-cold PBS and fixed with 4% paraformaldehyde

for 15 min at room temperature.

RNA isolation and RT-qPCR

Cell pellets or pulverized tissue were lysed in QIAzol lysis reagent (Qiagen, Austin,
Texas). RNA was isolated according to the manufacturer’s instructions (AllPrep
DNA/RNA/Protein Mini, Qiagen, Austin, Texas). RNA quality was determined using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Quality check
was followed by reverse transcription of 1 ug total RNA per reaction using High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA),
according to the manufacturer's manual. For Graz cohort, qPCR was performed with
Blue S’Green gPCR Kit (Biozym, CityVienna, Austria) using a Bio-Rad CFX96 cycler.
For all other gPCRs, the QuantStudio 3 Real-Time PCR System (Applied Biosystems)
with either TagMan Fast Universal PCR Master Mix or Fast SYBR Green Master Mix
(both Thermo Fisher Scientific) were used. Primer and probes (see below in Table S1)
were designed using Real-time PCR (TagMan) Primer and Probes Design Tool (online
tool) from GenScript and synthesized by BioTez, Germany. Primers were diluted to a
final concentration of 10 mM, probes to 5 mM. The target mMRNA expression was
quantitatively analysed with standard curve method. All expression values were
normalized to the housekeeping gene 78S or TBP. Validation cohorts were analysed

individually and for combined presentation merged by z-transformation.
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Target | Forward sequence Reverse sequence Probe sequence

gene

(human

)

18S 5" ACA TCC AAG 5 TTTTCGTCACTA |5 FAM-CGC GCA AAT
GAA GGC AGC AG CCTCCCCG ¥ TAC CCA CTC CCG
3 ACA-TAMRA 3’

CGA 5 5 NA
CTGCATGTTCTCCA | TAGCGTGCATTCTGG
TTCCGC 3’ GCAAT 3

EP300 |5 5 NA
TGCCACCATGGAG | CATCCCGACCATCCA
AAGCATA 3 TCAGA 3’

FOS 5 5 NA
GACTCCTTCTCCAG | GGGAATGAAGTTGG
CATGGG 3 CACTGG 3’

GATA3 | 5 5 NA
CAGTTGCCGTTGA | TAGGGACAAGACAG
GGGTTTC & ATGCCG 3

GDF15 |5 5 5 FAM-
TGGGAAGATTCGA | CCCGAGAGATACGC | CTGGGATCCGGCGG
ACACCGA 3’ AGGTG 3’ CCACCT-TAMRA 3’

HLA-G | % 5 NA
GGAAGAGGAGACA | ACTGGAGGGTGTGA
CGGAACA 3’ GAACTG 3’

INHBA | 5 5 NA
GCAGACCTCGGAG | GAAATCTCGAAGTGC
ATCATCA 3’ AGCGT 3

NOTU |5 5 NA

M GTGGAACGCAAAC | ACCACCTCCTGGAT
ATGGTCT 3 GATGAG 3’

SDC1 5 5 NA
CCAAGCTGACCTT | GGCCACTACAGCCG
CACACTC 3’ TATTCT 3

TBP 5 TGA CCC AGC 5 CCA GCA CACTCT | NA
ATCACTGTTTC3 |TCTCAGCAZ

TEAD1 | 5 5 NA
AGCCAGGATCCTC | AGGCTCAAACCCTG
ACAAGAC 3 GAATGG 3

NA, not applicable.

Flow cytometry analyses

Pooled villous cytotrophoblast cells from the same isolation (3 donors, gestational ages
weeks 8+5, 9+2, 10+3) were seeded onto fibronectin coated plates (20 ug/mL, FC010
Merck) at a density of 0.25 x 108 cells/cm? and cultured for three (d3) or six (d6) days
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in DMEM/F12 (Gibco) containing 10% FBS and 0.05 mg/ml gentamycin (Gibco). Media
was changed the day after thawing and every second day thereafter. d3 and d6 cells
were trypsinised with TryPLE for 5 min at 37°C and plated on V plates alongside freshly
thawed cells (d0) from the same donors at 0.1 x 10° cells per well. All flow cytometry
measurements included dead cell exclusion using Live Dead Fixable Aqua Dead Cell
Stain Kit for 405 nm excitation (Thermo Fischer). ABTB2 (HPA020065) antibody was
concentrated using the Antibody Concentration and Clean-Up Kit (Abcam, ab102778)
and conjugated with PerCP-Cy5.5 (ab102911); GREM2 (ProteinTech, 13892-1-AP)
was conjugated with Phycoerythrin (Pe) (ab102918), according to manufacturer’'s
instructions. Cells were stained with surface antibodies (Supplementary Table 2) in
PBS + 0.5% BSA + 2 mM EDTA together with human FcR-blocking reagent (Miltenyi,
130-059-90) and incubated for 30 min on ice. Cells were stained with secondary
antibodies (Invitrogen A11008 (anti-rabbit) & A-21235 (anti-mouse)) for 30 min on ice
and fixed using the FoxP3 Staining Buffer Kit (eBioscience, 00-5523-00), stained with
intracellular antibodies for 30 min on ice and analysed. Gating was performed
according to unstained cells and fluorescence-minus-one (FMO) controls. Lineage-
negative (CD34-, CD45-, CD49a-, CD235a-) cells were gated from live singlet events.
Next, CD49f- (BD 747725) and E-cadherin+ (Cell Signalling 3195) cells were gated
and co-expression of GREM2, CCR7 (BioLegend 353243) and ABTB2 in this

subpopulation quantified. See extended Data Figure 6f for a visual representation of

gates.
Antigen Flourophore Clone Dilution Manufacturer
CD49of BV421 GoH3 1:200 BD Biosciences
E-cadherin* - 24E10 1:50 Cell signalling
GREM2* PerPC-Cy5.5 polyclonal 1:200 ProteinTech
ABTB2* Pe polyclonal 1:100 SigmaAldrich (HPA)
CCR7 AlexaFluor 700 1:100
CD34* biotinylated AC136 1:200 Miltenyi
CD45* biotinylated REA747 1:100 Miltenyi
CD49a* biotinylated REA1106 1:100 Miltenyi
CD235a* biotinylated REA175 1:100 Miltenyi
Streptavidin PE-Vio 770 - 1:250 Miltenyi
Secondary AF488 - 1:200
rabbit 1IgG

*

Antibodies used for flow cytometry. * intra-cellular antigen, * non-preconjugated
antibody, was stained with secondary streptavidin (if biotinylated) or anti-rabbit I1gG.
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First trimester Serum ELISA Measurement

Women were recruited in the first trimester of pregnancy and a serum sample was
taken before risk assessment via the FMF algorithm?3. We excluded women with
comorbidities such as chronic hypertension or diabetes mellitus and proceeded to
match women that developed early onset preeclampsia to controls 1:2 (n=28 vs n=56).
The matching was based on the variables maternal age, gestational age at first scan,
and BMI. This was done using the R package Matching, which finds for each case two
matching controls that minimise the weighted distance of their matching variables. We
excluded patients that were prescribed prophylactic Aspirin from being part of the
control group to reduce confounding. The serum samples from the 84 selected case
and control patients (matched on maternal age, GA at first scan, and BMI) were then
analysed for leptin, perlecan, GDF15 and activin A according manufactures protocol:
human HSPG (Perlecan) ELISA Kit (ab274393; Abcam), human GDF-15 Quantikine
ELISA Kit (DGD150; R&D Systems), human/mouse/rat Activin A Quantikine ELISA Kit
(DACO00; R&D Systems) and human Leptin Quantikine ELISA Kit (DLPOO; R&D
Systems). Due to missing samples and one sample that was removed after unreliable
measurements, the group sizes were eoPE: n=27 and healthy term controls: n=49. A
conditional logistic regression model was fit to the new data with predictor variables
being included using forward selection. A conditional logistic regression model was
calculated as absolute model without prior risk assessment based on the cohort
published earlier?, a second model included the risk assessment by the FMF algorithm
as offset. ROC curves and AUC are calculated from the method described in?®, while
confidence intervals stem from the DeLong method. R-scripts, data-tables and detailed

results are available via https://github.com/HiDiHlabs/preeclamspsia_Nonn_etal/.

Immunofluorescence staining

Formalin fixed paraffin embedded (FFPE) placenta tissue sections (5 ym) were
mounted on Superfrost Plus slides. Standard deparaffinisation was followed by antigen
retrieval (AGR) in the multifunctional microwave tissue processor KOS in Tris-EDTA
buffer pH 9.0 or citrate buffer pH 6.0 for 40 min at 93°C. Thereafter, sections were
washed with PBS/T and incubated with Ultra V Block for 7 min at RT. For double
staining, primary antibodies were mixed and diluted in antibody diluent and incubated

on sections for 30 min at RT. Subsequently, slides were washed with PBS/T and
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incubated with secondary anti-mouse or anti-rabbit antibodies for 30 min at RT. Finally,
slides were washed and nuclei stained with DAPI (1:2,000; Invitrogen). Rabbit
immunoglobulin fraction and negative control mouse IgG1 were used as described
above and revealed no staining. Tissue sections were mounted with ProLong Gold
antifade reagent (Invitrogen) and fluorescence micrographs were acquired with an

Olympus microscope (BX3-CBH).

Target Clone Species | Dilution | AGR Company

Cytokeratin- | RCK105 mouse | 1:200 pH 6.0 | BD Biosciences,

7 (RUO) 550507

E-Cadherin | 4A2 mouse | 1:500 pH 9.0 | Cell Signaling, mADb
#14472

GREM2 - rabbit 1:200 pH 9.0 | proteintech, 13892-1-
AP

p300 D8Z4E rabbit 1:800 pH 6.0 | Cell Signaling, mADb
#86377

anti-rabbit IgG (Alexa Fluor | goat 1:200 Invitrogen

555)

anti-mouse I1gG (Alexa | goat 1:200 Invitrogen

Fluor 488)

Image analysis

Image analysis was performed on the whole-slide images using the image analysis
software Visiopharm, version 2021.09. For p300 staining, we did villi and trophoblast
detection and used the commercial Visiopharm app ‘Nuclei Detection, Al
(Fluorescence)’ for nuclei detection and separation. We then classified nuclei into
positive and negative by an intensity threshold of 70 (on an 8-bit scale 0-255) on the
P300 marker within the respective nucleus area. Numbers of P300 positive and
negative nuclei were assessed on the trophoblast area as well as on the remaining
villous area.

For GDF15 staining, we accessed the mean intensity on the detected trophoblast area

after villi and trophoblast area detection
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Immunohistochemistry

Formalin fixed paraffin embedded (FFPE) placenta tissue sections were deparaffinised
according to standard procedures. Antigen retrieval (AGR) was performed in a
microwave oven in citrate buffer pH6 for 40 min. After a washing step with TBS/T
sections were incubated with Hydrogen Peroxide Block (Epredia, Netherlands) to
quench endogenous peroxidase followed by a further blocking step with UltraVision
Protein Block (Epredia). Primary antibodies were diluted in antibody diluent and
incubated on the sections for 45 min at RT. Slides were washed with TBS/T and
thereafter the UltraVision LP HRP Polymer Detection System (Epredia) was used
according to the manufacturer’s instructions. The polymer complex was visualized with
AEC (AEC substrate kit, Abcam, UK), sections were counterstained with hemalaun
and mounted with Kaisers glycerin gelatine (Merck, Germany). An Olympus VS200

slide scanner was used to scan the slides.

Target Clon | Species | Dilution Company
e
GDF15 - rabbit 1:1000 (1%t | Sigma-Aldrich,
Trim) #HPA011191
1:250 (Term)
HLA-G 4H84 | mouse 1:6000 BD Biosciences,
#557577
RHCG - rabbit 1:1000 Thermo Scientific, #RB-
059-A

Spatial proteomics

Formalin fixed, paraffin embedded (FFPE) placenta tissue sections (5 um) were
mounted on PPS FrameSlides (Leica). Standard deparaffinisation was followed by
antigen retrieval (AGR) in the incubator with Pepsin solution for 10 min at 37°C.
Thereafter, sections were washed with PBS/T and incubated with Ultra V Block for 10
min at RT. For double staining, primary antibodies were mixed and diluted in antibody
diluent and incubated on sections overnight at 4°C. Subsequently, slides were washed

with PBS/T and incubated with secondary anti-mouse or anti-rabbit antibodies for 30
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min at RT. Finally, slides were washed and tissue sections were mounted with Slow
Fade Diamond Mounting media with DAPI (Invitrogen) and fluorescence micrographs

were acquired.

Target Clone Species | Dilution | AGR Company

b-CG 5H4-E2 mouse | 1:300 Pepsin | Abcam #ab9582

E-Cadherin | 24E10 rabbit 1:200 Pepsin | Cell Signaling, mAb
#3195

anti-rabbit IgG (Alexa Fluor | goat 1:300 Life Technologies

488)

anti-mouse IgG (Alexa in 1:200 Jackson Immuno

donkey Cy3) Research

Regions of interest were collected by laser microdissection (LMD) on a Leica LMD7
microscope using a 20x objective operated in fluorescence mode. An area of
approximately 50,000 um? was collected per sample into 384-well plates (Eppendorf
#0030129547). After LMD, tissue samples were processed for bottom-up LC-MS
based proteomics as recently described?®, but with small adjustments. Briefly, 4 ul of
60 mM triethylammonium bicarbonate (TEAB, Sigma #T7408) was added to each well,
shortly centrifuged (2,000xg, 1 min) and the plate heated at 95°C for 60 min in a thermal
cycler (Biorad’s S1000 with 384-well reaction module) at a constant lid temperature of
110°C. 1 pl of ACN was then added to each well (20% final concentration) and heated
again at 75°C for 60 min in the thermal cycler. Samples were shortly cooled to room
temperature and 2 pl LysC (Promega) added pre-diluted in ultra-pure water to 2 ng/ul
and digested for 4 h at 37°C in the thermal cycler. Subsequently, 2 pl trypsin (Promega
Trypsin Gold) was added pre-diluted in ultra-pure water to 2 ng/ul and incubated
overnight at 37°C in the thermal cycler. Next day, digestion was stopped by adding
trifluoroacetic acid (TFA, final concentration 1% v/v) and samples vacuum-dried
(approx. 60min at 60°C). Finally, 4 yul MS loading buffer (3% acetonitrile in 0.2% TFA)
was added, the plate vortexed for 10 s and centrifuged for 5 min at 2,000xg. Samples

were stored at -20°C until LC-MS analysis.

LC-MS analysis

Liquid chromatography mass spectrometry (LC-MS) analysis was performed with an
EASY-nLC-1200 system (Thermo Fisher Scientific) connected to a trapped ion mobility
spectrometry quadrupole time-of-flight mass spectrometer (timsTOF SCP, Bruker

Daltonik GmbH, Germany) with a nano-electrospray ion source (Captive spray, Bruker
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Daltonik GmbH). The autosampler was configured for sample pick-up from 384-well
plates.

Peptides were loaded on a 20 cm in-house packed HPLC-column (75 pm inner
diameter packed with 1.9 ym ReproSilPur C18-AQ silica beads, Dr. Maisch GmbH,
Germany). Peptides separation followed a 32 min gradient with a flow rate of 250 nL
with increasing concentration of buffer B (0.1% formic acid, 90% ACN in LC-MS grade
H20) to 60%. Buffer A consisted of 3% ACN, 0.1% formic acid in LC-MS grade H20.
The total gradient length was 44 min. Column temperature was controlled by a column
oven and kept constant at 40°C.

Mass spectrometric analysis was performed in data-independent (diaPASEF) mode?’
using the default method for long gradients with a cycle time of 1.8 s. lon accumulation
and ramp time in the dual TIMS analyser was set to 100 ms each and we analysed the
ion mobility range from 1/KO = 1.6 Vs cm-2 to 0.6 Vs cm-2. The total m/z range was
set to 100-1,700 m/z. The collision energy was lowered linearly as a function of
increasing mobility starting from 59 eV at 1/KO = 1.6 VS cm-2 to 20 eV at 1/K0 = 0.6
Vs cm-2. Singly charged precursor ions were excluded with a polygon filter

(timsControl software, Bruker Daltonik GmbH).

Data analysis of proteomic raw files

Proteomics measurements were analysed using the timsControl software (Bruker
Daltonik GmbH, v. 3.1). For diaPASEF measurements, raw files were analysed with
DIA-NN (v. 1.8)% in library-free mode based on a predicted human spectral library
(Uniprot 2021 release). Default settings were used with small adjustments. The mass
range was set to 100 — 1,700 m/z, precursor charge state was 2 - 4 and the maximum
number of allowed miscleavages was 2. MS1 and MS2 mass accuracies were set to
15 ppm and the match-between-runs option was enabled. Quantification strategy was
set to ‘Robust LC’. For downstream data analysis, we used the protein FDR filtered
pg.matrix.tsv and unique.genes.matrix.tsv DIA-NN output tables were analysed with
Perseus (v. 1.6.15.0)*° and the Protigy R package (v. 1.0.2,

https://github.com/broadinstitute/protigy). Missing values were imputed based on a

normal distribution (width = 0.3; downshift = 1.8) after stringent data filtering (70%
quantified values across samples). Prior to principal component analysis (PCA), batch
effects were corrected with the proBatch R package (v. 1.10.0) based on the ComBat
method (https://doi.org/10.3929/ethz-b-000307772). Pathway enrichment analysis
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was performed with clusterProfiler R package (version 422,
https://doi.org/10.1089/0mi.2011.0118).

Data and code availability

The snRNA-Seq raw data of the 33 villi and decidua samples generated in this study
have been deposited in the European Genome-Phenome Archive under the accession
number EGAS00001005681. The data are available under controlled access due to
the sensitive nature of sequencing data, and access can be obtained by contacting the
appropriate Data Access Committee listed for each dataset in the study. Access will
be granted to commercial and non-commercial parties according to patient consent
forms and data transfer agreements. Images of the ISS data are available via Zenodo
(doi: 10.5281/zen0do0.5243240). The Visium data are available via Zenodo (doi:
10.5281/zen0do.5336504). The remaining data are available within the article,
Extended Data Figures or Tables and Supplementary Information. Scripts used to
analyse the data and generate figures are available via

https://qgithub.com/HiDiHlabs/preeclamspsia Nonn etal/.

Data collection
No software was used for data collection.

Data analysis

Single-nucleus RNA sequencing analysis. The alignment and pre-processing of the
snRNA-Seq data were performed using Cellranger version 3.0.2, 6.0.1 & 6.1.2.
Ambient RNA and background noise correction were performed using CellBender
0.2.0. The data were processed using scanpy 1.8.2 in python 3.7.9. scvi-tools 0.14.5
was used for data harmonization. UMAP was computed using umap-learn 0.5.2.
Trajectory analysis was performed using stream 1.1 and scanpy 1.8.2. Seurat 4.0 was
used for marker analysis. Cell-cell interaction analyses were performed using
Connectome 1.0.1 and LIANA 0.1.4. Gene/transcription factor regulatory network
analyses and visualization were performed using STRING, iRegulon, and Cytoscape
3.8.2. For visualisation, igraph 1.3.2, circlize 0.4.15, dplyr 1.0.9, ComplexHeatmap
2.10.0; seaborn 0.10.0, and python-igraph 0.7.1 were used. Generally, scikit-learn
1.0.2, statsmodel 0.12.1, scipy 1.5.3, pandas 1.1.4, and numpy 1.19.4 were used.
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10X Visium was analyzed using Spotlight 1.0.0.

ISS analysis was performed using python 3.10.4 and jupyter 1.0.0. Data handling was
done using plankton 0.1.0, which uses pandas 1.4.3. All plots were generated using
matplotlib 3.5.2. SnRNA-Seq data was integrated using scanpy 1.9.1. Image analysis
for villi wall detection was performed with Scikit-image 0.19.2. Scikit-learn 1.1.1 was
used to assign wall pixels and for spatial model building and nearest neighbor analysis.
Numpy 1.22.4 was used for all algebraic operations on matrix representations of the
data. Scipy 1.8.1 was used for statistical model building during pathway analysis.
Spatial proteomic analyses were performed using timsControl software (Bruker
Daltonik GmbH, version 3.1), DIA-NN 1.8; and Protigy R 1.0.2, proBatch R 1.10.0,
clusterProfiler 4.2.2, and Perseus 1.6.15.0. Pathway enrichment analysis was
performed with clusterProfiler R 4.2.2 packages.

For conditional regression model analyses and visualisations, R 4.1.2, magrittr 2.0.2,
Matching 4.9-11, tidyr 1.2.0, survival 3.2-13 and pROC 1.18.0 were used.
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