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Summary 

Pre-eclampsia (PE) is a syndrome that affects multiple organ systems and is the most 

severe hypertensive disorder in pregnancy. It frequently leads to preterm delivery, 

maternal and fetal morbidity and mortality and life-long complications1. We currently 

lack efficient screening tools2,3 and early therapies4,5 to address PE. To investigate the 

early stages of early onset PE, and identify candidate markers and pathways, we 

performed spatio-temporal multi-omics profiling of human PE placentae and healthy 

controls and validated targets in early gestation in a longitudinal clinical cohort. We 

used a single-nuclei RNA-seq approach combined with spatial proteo- and 

transcriptomics and mechanistic in vitro signalling analyses to bridge the gap from late 

pregnancy disease to early pregnancy pathomechanisms. We discovered a key 

disruption in villous trophoblast differentiation, which is driven by the increase of 

transcriptional coactivator p300, that ultimately ends with a senescence-associated 

secretory phenotype (SASP) of trophoblasts. We found a significant increase in the 

senescence marker activin A in preeclamptic maternal serum in early gestation, before 

the development of clinical symptoms, indicating a translation of the placental 

syndrome to the maternal side. Our work describes a new disease progression, 

starting with a disturbed transition in villous trophoblast differentiation. Our study 

identifies potential pathophysiology-relevant biomarkers for the early diagnosis of the 

disease as well as possible targets for interventions, which would be crucial steps 

toward protecting the mother and child from gestational mortality and morbidity and an 

increased risk of cardiovascular disease later in life. 

 

 

Keywords: Pre-eclampsia; trophoblast differentiation; pregnancy pathology; 

trophoblast stem cell; juvenile syncytiotrophoblast; spatial multi-omics; senescence-

associated secretory phenotype;  
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Main 

Recent single-cell sequencing studies of healthy female reproductive tissues outside 

and during pregnancy have characterised the early maternal-fetal interface6,7, 

trophoblast subtypes8, and the endometrium before pregnancy9. The temporary 

maternal-fetal interface, which exists for the duration of pregnancy, mediates in utero 

conditions that facilitate successful pregnancies and also shape the future health of 

the mother and child over the long term1. While the single-cell landscape of healthy 

placentae has been described well, this is not true for the uteroplacental tissue of those 

suffering from the hypertensive pregnancy disorder pre-eclampsia (PE). A multi-modal 

characterisation of PE would provide a deeper understanding of this early gestational 

pathophysiology and improve clinical management2,10,11.  

Hypertensive disorders in pregnancy account for 14% of maternal deaths11. Early-

onset pre-eclampsia (eoPE) that urges delivery before the 34th week of gestation is 

even more destructive4,12,13. Currently, diagnoses are made based on clinical signs 

which appear when PE has progressed, late in pregnancy, to a point that maternal and 

fetal morbidity is often already irreversible2,14 Specific, reliable early first trimester 

screening methods are lacking2,15. The only pharmacological intervention known to 

reduce risk, low-dose aspirin, is accompanied by challenges such as insufficient effects 

in up to 60% of high-risk pregnancies16. PE is also associated with a reduction of the 

lifespan of both mother and child due to complications from cardiovascular disease 

later in life2,10,11. Highlighting the fundamental role for the placenta, the only therapy to 

end the maternal PE crisis, is to deliver the placenta17,18. 

Here we integrated single nuclei RNA sequencing (snRNA-seq) with spatially resolved 

proteo- and transcriptomics and multicentric pre-eclampsia cohorts. We identified an 

early disruption in the villous trophoblast differentiation transition to the secretory 

trophoblast (syncytiotrophoblast, STB) lineage and premature senescence that leads 

to a fetal to maternal syndrome translation in eoPE. The markers and pathways we 

identifed in the fetal-maternal barrier can be considered as candidates for underlying 

molecular placental pathology in PE. In turn, these may act as prognostic biomarkers 

to identify eoPE before clinical symptoms arise, potentially offering crucial tools for the 

early diagnosis of this serious syndrome as well as therapeutic approaches. 
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Results 

Maternal-fetal crosstalk in early and late pregnancy 

Since the placenta (fetal tissue) and decidua (maternal tissue) biopsy sampling in 

ongoing pregnancy increases the risk for adverse outcomes, there is a lack of 

comprehensive longitudinal studies and understanding of early pathomechanisms 

translating disease to late gestation. To better understand the early pathophysiology 

of maternal-fetal crosstalk in eoPE, we analysed diseased preeclamptic and healthy 

term tissue. In addition, we included early gestation tissue to set pathological findings 

in a temporal context. We performed snRNA-seq of fetal chorionic villi and maternal 

decidua in healthy pregnancies from first trimester (5-10 gestational weeks, n=79,885 

villus-derived nuclei (v) and 15,367 decidua-derived nuclei (d), in total 95,252 nuclei; 

early control = e.ctrl; Fig. 1a-e, Extended Data Table 1 and Extended Data Fig. 1) 

and term (≥38 gestational weeks; n=39,663 nuclei; late control = l.ctrl; Fig. 1a-e). 

Additionally, we profiled villi and decidua from women who had developed eoPE (≤34 

gestational weeks; n=35,662 nuclei; Fig. 1a-e). Single nuclei were harmonised across 

samples from healthy early and term late, as well as eoPE pregnancies. Differences 

of eoPE and l.ctrl were computationally adjusted for gestational age differences, since 

eoPE is defined as PE with pre-term delivery before the 34th week of gestation 

compared to normal term delivery in l.ctrl. Furthermore, we studied the spatial 

heterogeneity of cell types by integrating multi-omics data using snRNA-seq, Visium 

spatial transcriptomic assays , spatially resolved in situ sequencing (ISS19), and spatial 

proteomics20. 

We identified a rich diversity of cell types and cell states in the maternal-fetal barrier 

(Fig. 1c, Extended Data Fig. 1). Variations in cell composition within the immune, 

vascular-endothelial, matrisome, and trophoblast compartments were evident at 

different gestational sampling times at the maternal (Fig. 1d, Extended Data Fig. 1 

and Table 4) and fetal (Fig. 1e, Extended Data Fig. 1 and Table 3) interface, 

mirroring specific functional adaptiations at different stages of pregnancy. 

Syncytiotrophoblast (STB) populations were more prominent in late compared to early 

villi, and they tended to be more abundant in eoPE tissues (percent of total nuclei: 

22.2% in e.ctrl, 83.3% in l.ctrl and 91.2% in eoPE, FDR < 0.01 e.ctrl to l.ctrl, FDR=0.144 

l.ctrl to eoPE). We identified nuclei in the decidua that are villous-derived and strongly 

positive for STB markers such as CGB and KISS1. We defined them as “deported 

STBs” found in decidua (dDSTB). These fragments released from the STB are found 
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more frequently in eoPE decidua than in controls (eoPE= 980; l.ctrl=85, e.ctrl=0; Fig. 

1a, b, e Extended Data Table 4), and are postulated to be the final product of 

senescent vSTB when shed into maternal circulation21,22. 

Our integrative analysis of snRNA-seq and spatial data showed that STB exists in three 

transcriptionally different nuclei states, including a novel STB juvenile subtype 

(vSTBjuv) alongside vSTB1 and vSTB2 (Fig. 1c, e and f, Extended Data Fig. 2). The 

vSTBjuv population is characterised by the notably higher expression of hormone 

genes including placental lactogen (CSH1, CSH2). It also exhibits exocytotic 

expression signatures (HSPB1, CD63, FURIN) in addition to more classical vSTB 

genes: KISS1, CGA, PGF, EBI3, TFPI. We postulate that vSTBjuv has a stromal 

function by regulating cytoskeletal stability and the extracellular matrix, as indicated by 

the expression of genes such as ACTB, TMSB10, SPARC, and VIM (Extended Data 

Fig. 2).  

Next, we localised the vSTBjuv cell state within the STB layer. We identified markers 

that best distinguished vSTBjuv from vSTB1 and vSTB2, which were TENM3 

(log2FC=12.4), which promotes homophilic adhesion23, and DLK1 (log2FC=6.2), a 

paternally imprinted gene which is correlated with birthweight24. Using in situ 

hybridisation with DLK1 and TENM3 padlock-probes, we localised DLK1+/TENM3+ 

vSTBjuv within a β-hCGpos STB layer (Fig. 1f; Extended Data Fig. 3). We validated 

the transcriptomic signatures of the STB and their progenitors, the cytotrophoblasts 

(CTBs), which are both components of the maternal-fetal barrier, by applying spatial 

proteomics20 (Fig. 2b-c, Extended Data Fig. 4a-d). The revealed signatures showed 

enrichment for signalling of RhoGTPases, MIRO and RHOBTB3, and enriched mitotic 

pathways in vCTBs. vSTBs exhibited an enrichment in oxidative stress-associated 

processes such as ROS production and enzymes known to be involved in metabolic 

disorders of biological oxidation (Extended Data Fig. 4).  
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Fig. 1 | Cell type and state distribution is altered across gestation and disturbed in early-

onset pre-eclampsia 

(a) Schematic illustration of experimental design and histological changes across stages of 
gestation (early and late pregnancy) and in late pregnancy disease versus control (healthy 
term=l.ctrl, early onset preeclampsia=eoPE). Placental tissue was separately sampled 
surgically to collect villi and decidua from the same patients for snRNA-seq. Early tissues 
correspond to gestational ages between 5-10 weeks (e.ctrl), early-onset pre-eclampsia before 
34 weeks (eoPE; range 27-33 weeks of gestation) and late healthy control at 39 weeks (l.ctrl; 
range is 38-40 weeks of gestation). The gestational age difference between healthy term 
controls (l.ctrl) and diseased pre-term eoPE were corrected for using additional scRNA-seq 
data25 from preterm controls (pt.ctrl). Cell name abbreviations in Extended Data Fig. 1c. (b, c) 
UMAP displaying (b) maternal (decidual, d) and (c) fetal (villous, v) cell types and states from 
single nuclei RNA sequencing, with integrated samples from e.ctrl, l.ctrl and eoPE. Colours 
code for a cell type or state. (d,e) Cell composition (%) distribution displayed, numbers under 
bars indicate the sample size of sequenced nuclei. Cell compositions presented across 
gestational time points (e.ctrl, l.ctrl) and between disease states (eoPE) are for (d) decidua 
and (e) villi. (f) Representative images showing the localisation of the novel STB cell state 
STBjuv; immunofluorescence staining with STB protein marker βHCG (green) combined with 
padlock probe based in situ hybridisation for STBjuv markers DLK1 and TENM3 (arrows 
indicate STBjuv specific mRNA markers). Positive and negative controls for the probes are 
shown above. STB, syncytiotrophoblast; juv, juvenile state. n = 3 independent experiments 
with 2 biological replicates each per gestational time.  
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Activin and Hippo reciprocally drive physiological trophoblast transition  

To resolve the trophoblast cell states and infer how their disturbed development may 

play a crucial role in eoPE, we recapitulated the transcriptional dynamics of human 

trophoblast differentiation from the progenitors CTBs to their final identities cell column 

trophoblasts (CCTs) or STBs. Modelling cell trajectories using pseudotime with 

proliferating vCTB (vCTBp) as the root, we detected two distinct lineages of this 

bipotent trophoblast. The trajectory expressed gene patterns computationally that 

predicted to be transition genes expressed along a trajectory branch. vCTB cell fate 

ran towards invading vCCT, or towards a secretory vSTB lineages (Fig. 2a, 

Supplementary Table 3).  

In the CCT trajectory (Fig. 2a), vCTBs can commit towards vCCT26,27, a cell type that 

expands and proliferates in the proximal part of cell columns (Fig. 2b, asterisk). 

Distally, it anchors villi on maternal decidua. These distal CCT26,27 (Fig. 2b, area circled 

in blue) then migrate and invade maternal decidua to remodel maternal vessels and 

partially replace maternal local endothelium (called decidual extravillous trophoblasts 

= dEVTs, Fig. 1b). This so-called spiral artery remodelling results in low-flow, low-

resistance vessels that prevents damage to the fetal trophoblast barrier. A faulty spiral 

artery remodelling initiated by vCCT has been postulated as a crucial event in the 

development of PE14,28. Receptor-ligand analyses of vCCT prior to invasion and non-

invaded maternal decidua suggested that vCCT may initiate maternal decidua 

reorganisation via several integrins (ITGB8, ITGA1), FLT1, and TGFBR1 (Extended 

Data Fig. 4e). Key transition genes in the transition of vCTB towards the vCCT 

phenotype are HLA-G and NOTUM (Fig. 2d and Extended figure 4f), so we 

investigated potential drivers of the vCCT phenotype. We observed dynamic increase 

of transcription factors FOS and the Hippo pathway member TEAD1 along the 

pseudotime axis (Fig. 2d), which reflected the change from epithelial-like CDH1pos 
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vCTB to vCCT, that are ready to migrate and invade. The YAP/TAZ-TEAD1 complex, 

which are Hippo pathway members, can act with other transcription factors with distinct 

functional outputs27. TEAD1 in combination with FOS is known to trigger epithelial to 

mesenchymal transition and migration29,30, a prerequisite for vCCT driven maternal 

tissue remodelling. Inhibition of activin/nodal receptors ALK4/5/7 is known to shift the 

vCTB progenitors into vCCT and dEVT transition31. We validated the transition to HLA-

G+ vCCT in primary isolated first trimester CTB by inhibiting ALK4/5/7 with A8301 and 

thus recapitulated that vCCT transition genes HLA-G, NOTUM, TEAD1 and FOS 

increased over time (Fig. 2e). To confirm these findings at the protein level, we 

identified vCTB, vSTB, and vCCT on FFPE sections, laser microdissected the cell type 

specific areas and then performed LC-MS (Fig. 2b). Principal component analysis and 

unsupervised hierarchical clustering showed that vCTB was observed between 

terminal differentiation states vCCT and vSTB on the proteome level (Fig. 2b-c, 

Extended Data Fig. 4b, d). Our quantitative protein analyses revealed a significantly 

higher expression of FOS in combination with higher TEAD1 in HLA-G+/NOTUM+ 

vCCT (Fig. 2f). Using Visium spatial transcriptomics to replicate our previous findings, 

we saw high expression of the AP1 pathway genes FOS, FOSL1, and JUN specifically 

localised in vCCT regions (Fig. 2g), further highlighting that AP1 signalling contributes 

to the development of vCCT with their migratory and invasive phenotype32,33.  

Next to the CCT trajectory, we also investigated differentiation dynamics of the vSTB 

lineages (Fig. 2h-k). It has been postulated that the fetal placental villi, namely the 

secretory multinucleated vSTB cell type covering villi as a barrier to maternal blood, 

secretes factors into maternal circulation causing PE as maternal syndrome34,35. In the 

vSTB trajectory, ERVFRD1+ pre-fusion CTB (vCTBpf) were defined as representing a 

dynamic state of transition between vCTB and the novel vSTB cell state vSTBjuv (Fig. 

2a). vCTB lineage leaf genes such as Hippo pathway effector transcriptional co-
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activators YAP1 (Extended Data Fig. 5) in combination with TEAD1, are important in 

maintaining proliferation in vCTB36-38. During the vSTB transition, TEAD1 is repressed 

contrary to TEAD1 upregulation in vCCT trajectory (Fig. 2h). 

In agreement with transition genes and pathways identified through our snRNA-seq 

pseudotime analysis (Extended Data Fig. 5), the in vitro silencing of Hippo effectors 

YAP/TAZ (siYAP/TAZ) in primary CTBs prevented TEAD1 increase (Fig. 2i). Our 

proteomics analysis confirmed that vSTBs had lower levels of YAP protein than vCTB 

(Fig. 2j). Blocking activin receptors ALK4/5/7 is known to contribute to self-renewal of 

vCTB29 similarly to Hippo members YAP37. Instead, vSTB express the key transition 

genes SDC1, CGA, and the activin-pathway ligand GDF1539 (Fig. 2h). Consistent with 

transition genes, silencing YAP/TAZ in primary vCTB provoked an increase in the 

expression of SDC1, CGA, and GDF15 over time (Fig. 2i). Spatial transcriptomics, on 

the other hand, showed an increase of TGFβ-related placental BMP pathway related 

genes such as BMP1, SMAD6, GREM2 in vSTB-specific deconvoluted regions (Fig. 

2k).  

In summary, Hippo37 and activin31 pathways are crucial for maintaining CTBs and an 

adequate differentiation towards AP1 pathway enriched vCCT26 as well as vSTB37. 

Both trophoblast cell types form the interface and barrier between fetal and maternal 

circulations. Our multi-omics in situ and ex vivo data replicates previous in vitro 

findings37 that a loss of Hippo drives CTB-STB transition towards activin-enriched 

nuclei states of secretory vSTBs, while activin inhibition drives migratory CCT 

differentiation by combining the Hippo and AP1 pathways.   
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Fig. 2 | Early trophoblast invasion is AP1 and Hippo pathway driven and early 

syncytiotrophoblast differentiation is prematurely initiated with silenced YAP/TAZ 

(a) Stream plot elucidating the developmental trajectory of early trophoblast and cell density 
across pseudotime. Branch length represents pseudotime progression, branch width is directly 
proportional to cell numbers at a given pseudotime. (b) Early placenta FFPE sections (n=4, 
gestational age 7-10 weeks) stained using immunofluorescence markers CDH1 and β-hCG; 
CTB, STB, and CCT were identified and set areas laser micro-dissected. Dissected areas were 
captured and processed via LC-MS. (c) Principal component analysis of proteomics data 
revealed cell-type resolved proteomes based on 4,403 quantified protein groups. PC1 and 
PC2 represent 38.4% and 17.5% of the total variability, respectively. (d) Trophoblast lineage 
commitment regulators with a dynamic expression that correlates with pseudotime. Lines are 
the polynomial regression fits to the normalised gene expression data. Cell-type membership 
is incorporated on the x-axis, colours correspond to those annotated in Fig. 1b and 2a (snRNA-
seq, n=10 early placentae). (e) Primary CTB isolated from first trimester placenta were cultured 
as indicated on x-axis (time in hours). Dynamic genes in vCCT lineage as calculated in snRNA-
seq analyses are replicated in CTB incubated with TGFβ-inhibitor A8301 for up to 68 hours (5 
µM, n=5 placentae pooled with n=4 independent experiments). (f) Spatial proteomics results 
showing relative protein levels (z-score) of transcriptionally dynamic genes; transition markers 
NOTUM, HLA-G are highly expressed in CCT, transition gene TEAD1 increases in CCT. 
Member of AP1-pathway FOS expression is strongly increased in vCCT. (g) Spatial 
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transcriptomics showing AP1-pathway genes FOS, JUN, FOSL1 expressed in a cell column 
as found in non-negative matrix factorisation (NMF) deconvolution based Visium analysis, 
integrating snRNA-seq data. (h) Trophoblast lineage commitment regulators with a dynamic 
expression that correlates with pseudotime. Lines are the polynomial regression fits to the 
normalised gene expression data. Cell-type membership is incorporated on the x-axis, colours 
correspond to those annotated in Fig. 1b and 2a (snRNA-seq, n=10 early placentae). (i) 
Primary CTB isolated from first trimester placenta were cultured as indicated on x-axis (time in 
hours). Dynamic genes in STB lineage as calculated in snRNA-seq analyses are replicated in 
siYAP/TAZ treated CTB incubated for up to 68 hours (n=5 placentae pooled with n=4 
independent experiments). (j) Spatial proteomics validate dynamic genes found on a sn-
transcriptomic level; STB genes CGA, SDC1, GDF15 are highly expressed in STB, transition 
gene YAP decreases in STB.  (k) Spatial transcriptomics showing Activin-pathway associated 
genes expressed in deconvoluted STB areas (spots) as found in NMF deconvolution based 
Visium analysis integrating snRNA-seq data.   
Cell name abbreviations in Extended Data Fig. 1c. 
 
 
 

vSTB fusion trajectory is dysregulated in PE  

Having established physiological trophoblast transition on a spatial multi-omics level, 

we next investigated the impact of the pre-eclamptic disease state on the placental 

transcriptome and the transition processes. Comparisons of eoPE to l.ctrl samples 

were adjusted for the effect of preterm birth, i.e. the gestational age difference, using 

published single-cell data specifically characterising differences on non-eoPE pre-term 

placental cells19. For the analysis pipeline, we also adjusted for potential confounders 

and importantly, we validated the snRNA-seq targets in a multicentre pre-eclampsia 

cohort.   

Since uteroplacental tissue analyses of preeclampsia are limited to late timepoints in 

pregnancy, we aimed to infer late gestation pathological profiles by computationally 

recapitulating early gestation pathophysiology and evaluating disturbance. Therefore, 

we investigated the fusion dynamics of STB progenitor cells with the goal to identify at 

which stage of eoPE cells depart from their normal developmental trajectory. These 

STB progenitor cells are ERVFRD-1+ CTB cells, previously described by Liu et al.8 

(Fig. 3a, here: CTBpf). Notably, CTBpf was the only villous cell type that expressed 

the BMP-inhibitor GREM2 (Extended Data Fig. 2, 8), and we showed that GREM2pos 

cells still expressed the classical CTB-marker CDH1 in early villous tissue (Fig. 3b, c). 

The CDH1pos cell borders of CTBpf also show they are not yet fused with the 

multinucleated vSTB and are still a mono-nucleated vCTB subtype, which is why we 

named them CTBpf for their pre-fusion CTB cell state (Fig. 3d). 

CTBpf also show high expression of CTNNB1 mRNA that encodes β-catenin. Spatial 

proteomics of the STB layer confirmed the presence of β-catenin (Supplemental 

Table 9), a Wnt regulator that is involved in CDH1 degradation. The appearance of 
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CTNNB1 in CDH1pos fusion-competent CTBpf cells underlines the importance of CTBpf 

in the transition from CDHpos vCTB to CDHneg vSTB. We performed flow cytometry with 

primary CDH1pos CTB isolated from first trimester placentae to corroborate these 

findings. We used snRNA-seq to identify the vCTBpf markers GREM2, ABTB2, CCR7 

(Fig. 3c) that we then used in flow cytometry to identify and validate the vCTBpf. >93% 

of CDH1pos/CD49neg were positive for CTBpf markers GREM2 and CCR7 (Fig. 3d, e; 

Extended Data Fig. 6f). This CTBpf fraction increased over time in culture, achieving 

a stable fraction of around 7-9% of live cells after day 3 (Fig. 3e). This was 

accompanied by a shift from G0/G1 phase to G2/M phase and an increase of DNA 

content (Extended Data Fig. 6g). These data support our proposal that the “pre-fusion 

CTB” cell state8 is a vCTB subtype and that, as cultured primary CTBs undergo 

spontaneous fusion, vSTB have passed this vCTBpf cell state. Based on the specific 

expression of BMP-inhibitor GREM2 in vCTBpf, we validated in vitro that BMP7 

inhibited fusion induced by cAMP agonist forskolin (Extended Data Fig. 8). Temporary 

BMP inhibition by CTBpf seems to be a prerequisite for fusion from vCTBs to vSTB.  

This led us to investigate the activity of genes predicted to play key roles in modulating 

the development of STB and lineage commitment that starts with the CTBpf cell state. 

We identified a dysregulation of transition genes that drive trophoblast development 

(Supplementary Table 3). STBjuv show the highest percentage of dysregulated STB 

transition genes (18.1%, Fig. 3f) such as GDF15 and LNPEP (Extended Data Fig. 5). 

In comparison to vSTBs, vCTBs have a relatively low fraction of transition genes within 

their DEG (13 transition genes of 349 total CTB DEG, 0.04%).  Notably, GREM2 was 

also highly upregulated in the microarray validation dataset of placenta whole tissue 

(Fig. 3g). Herewith, we can indicate that GREM2pos pre-fusion vCTBs are of 

importance in the aberrant trophoblast differentiation in eoPE. This CTBpf state was 

also more abundant in first trimester compared to late gestation (Extended Data Table 

3), and therefore may be part of eoPE pathophysiology already in early pregnancy by 

impacting vSTB transition. 
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Fig. 3 | Syncytiotrophoblast pre-fusion cytotrophoblast are dysregulated in early-onset 

pre-eclampsia 

(a) Schematic drawing illustrating cell trajectories as found in Fig. 2a; arrow pointing to CTBpf, 
pre-fusion CTB; FV = fetal vessel, # = villous stroma; * = maternal blood in intervillous space; 
Cell name abbreviations in Extended Data Fig. 1b. (b) Immunofluorescence staining of 
GREM2pos CTBpf (arrow) within a CDH1pos (E-Cadherin) CTB layer. # = villous stroma; * = 
maternal blood in intervillous space. (c) Dotplot of snRNAseq data with markers used in flow 
cytometry for CTBpf characterisation. (d) Flow cytometry of primary isolated first trimester CTB 
showing gating strategy; >93% CD49f-/CDH1+ CTB were positive for CTBpf markers GREM2, 
CCR7, ABTB2. (e) Primary first trimester CTB were cultured for 3 and 6 days; a stable increase 
to ~8% of GREM2+ CCR7+ ABTB2+ fraction of live cells can be seen (n=3, villous CTB 
isolated from n=5 placentae and pooled). (f) Relative number of differentially expressed genes 
(DEGs) in CTB and STB states in eoPE. Overlap with transition genes derived from the 
trophoblast trajectory analysis towards the STB lineage is highlighted in blue, with the exact 
percentage contribution written on the stacked bar plot. (g) Volcano plot of villi dysregulated 
genes in early-onset PE analysed from a published microarray dataset40, highlighting 
concurrence with key genes identified in this manuscript; each dot represents an individual 
gene. Interestingly, we observe GREM2 (vCTBpf state marker and a BMP antagonist) as one 
of these candidate genes, supporting the notion that dysregulated STB differentiation in eoPE 
is a mechanistic driver of placental dysfunction. (n = 23 placenta control, 14 eoPE). pt.cntrl; 
preterm control, eoPE; lateC, late pregnancy control; eoPE, early onset pre-eclampsia. STB, 
syncytiotrophoblast; CTB, cytotrophoblast; pf, pre-fusion. 
 

To make an assessment of the extent of global tissue dysregulation, we measured the 

number of differentially expressed genes (DEGs) in eoPE compared to term control 

placentae. We found that between villi and decidua, villous cell types are the most 

profoundly disturbed (Fig. 4a, Supplementary Table 4). Of the global tissue 

dysregulation, STB accounted for 58.2% of the total DEGs in villi (% of villous DEG, 

Supplementary Table 5). Of note, we found similar patterns in a larger microarray 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

datasets40 of eoPE vs control (n=37; Extended Data Fig. 7), confirming our data in a 

larger cohort. We found some shared DEG between different villous cell types 

(Extended Data Fig. 7), speculating global dysregulating events. Interestingly, the 

gene FLT1 encoding for the anti-angiogenic factor sFLT1 used in the clinic for short-

term follow-up in cases of eoPE3, was upregulated in two cell types, the vSTB and the 

vVEC. In summary, eoPE is characterised by a massive dysregulation of the fetal 

barrier consisting of mainly vSTB, as observed in the high degree of dysregulation in 

these cell states.  

vSTB is a multinucleated fused cell barrier towards the maternal circulation and 

showed the highest aberration (Fig. 4a), so next we investigated dysregulation 

patterns of different STB states and analysed the DEGs shared between STB subtypes 

(22.6%; n=329 of 1084; Fig. 4b). Of these, 99.5% (n=15) showed same directionality 

in gene expression, indicating a functional unit between vSTB1, vSTB2, and vSTBjuv 

states. We therefore carried out a regulatory analysis to map transcription factors (TFs) 

to binding motifs in downstream dysregulated targets shared between vSTB states 

(Fig. 4c) to investigate the drivers of transition of the vSTB lineage under pathological 

conditions. A TF that emerged from our prediction model as master regulator and top-

ranked TF was EP300, a transcriptional coactivator associated with fusion41 and cell 

cycle arrest42, that has binding motifs in the highest number of STB genes (normalised 

enrichment score=3.54, FDR < 0.05, n= 561, i.e., 52% targets). In summary, we 

identified EP300 as hub TF with the highest number of targets within the DEGs shared 

between STB states (Fig. 4c), and an involvement in fusion processes.  

Congruently, we identified an overlap between EP300 target and fusogenic genes 

including CTBpf marker ERVFRD-1 and GCM1, which are associated with fusion of 

cells8 (Fig. 4g, Extended Data Fig. 6d). Dysregulated EP300 target genes in eoPE 

were also found expressed early in pregnancy and are involved in the STB transition 

(Extended Data Fig. 6d, e). EP300 encodes the histone acetyltransferase p300, which 

is translocated to the nucleus upon activation. We show that the nuclear localisation of 

p300 in trophoblasts is higher in eoPE compared to l.ctrl (Fig. 4d, e). EP300 was also 

found to be upregulated in whole-placenta lysates in eoPE compared to gestational 

age-matched preterm controls (pt.ctrl) in a multicentre cohort (Fig. 4f). This suggests 

that the cause of dysregulation in eoPE may be the aberrant transition to STB, driven 

by EP300. This may subsequently cause an early differentiation or disproportionate 

shift towards the vSTB-lineage in eoPE.  
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Altogether, we identified p300/EP300 as important driver in eoPE. Dysregulation in 

eoPE can be linked to the early transition of STB, at the intermediary fusion states 

CTBpf and STBjuv.  

 

 
Fig. 4 | Syncytiotrophoblast populations are most affected in early-onset pre-eclampsia. 

a) Significantly dysregulated expression profiles between late control (l.ctrl) and eoPE villous 
and decidual cell types (Bonferroni adjusted two-sided, logistic regression p<0.05 and 
log2FC>± 0.25). Log2FC between conditions for each individually expressed genes (dot) is 
visualised. vCTBpf, vCCT, vCTBp, vEB, dBcell, dEpC, dNKp, dPC, dGranul, dEVT, dDSTB 
excluded due to large cell-type composition changes between l.ctrl and eoPE. n=9 deciduas 
(4 late control, 5 eoPE), n=12 placentae (6 late control, 6 eoPE). The analysis pipeline was 
adjusted for potential confounders such as the sample collection site, fetal sex, and chemistry 
used in sequencing. Since the groups did not differ in terms of BMI, maternal age, or smoking 
habits, we did not make adjustments in these parameters, to avoid overadjustment. (b) 
Convergence of DEGs in the syncytiotrophoblast lineage where each dot represents a single 
gene (shared upregulated: red; shared downregulated: blue; variable gene expression: green). 
(c) Predicted transcription factors (pTF) were calculated using dysregulation network of 
trophoblast functional overlap, where motifs of dysregulated shared STB-genes were used to 
predict its upstream transcription factors (threshold NES >3, max FDR on motif similarity 
0.001); EP300 has most targets within the dysregulated genes (EP300 marked in red; 

dysregulated in  2 STB groups, minimum logFC  0.4, gene expressed in  30% cells; n= 28, 
marked in black). (d) p300 is encoded by EP300, and was stained in tissue sections of healthy 
late term controls (l.ctrl, n=3) and eoPE (n=3) where in CK7pos trophoblasts p300 activation 
through translocation to the nucleus was observed (open arrowheads show nuclei without 
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p300 staining, closed arrowheads show nuclei with p300 staining). (e) p300 activation was 
systematically analysed using automated image analysis by calculating a score normalising 
positive p300 nuclei to total number of nuclei (calculated via mean intensity values based on 
immunofluorescence staining of p300 and DAPI, total trophoblast area and overall villi area 
(calculated via mean intensity values based on CK7 immunofluorescence staining area), 
dividing each image scanned at same exposure times per channel into quadrants; Wilcoxon 
rank-sum test, sig.-level 0.05. (f) mRNA expression level of EP300 is significantly increased in 
eoPE compared to preterm controls (no gestational age difference) in a multicentre cohort, 
sig.-level 0.05. (g) Heatmap illustrating fold changes in log2FC of EP300 dysregulated targets 
between eoPE and term controls groups for overlapping genes shown in (b) for STB n=12 villi 
(6 late control, 6 eoPE), genes involved in fusion are marked in red. Logistic Regression was 
used for differential testing (log2FC ≥ 0.25 and p-value < 0.05 after Bonferroni adjustment for 
multiple testing of states, fusogenic EP300 target genes are marked in red). 
 
 

eoPE is associated with a senescence-associated secretory phenotype 

(SASP) at the maternal-fetal interface  

Our analyses suggest that eoPE is the result of a perturbation in the transition of STB 

via fusion cell states. The differentiation trajectory of these cells inherently involves 

senescence-associated processes21,22. When comparing the DEGs of STB subtypes 

to the senescence-associated secretory phenotype (SASP) atlas database43, we find 

that in eoPE, affected trophoblasts exhibit a higher increase in SASP gene activity than 

in late controls. 12% of the genes dysregulated in STBs during eoPE are annotated as 

SASP factors (Supplemental Table 7). The placenta is known to be essential in the 

pathology of PE and the placental syndrome eventually translates into a maternal 

systemic syndrome17. Altogether, this led us to carry out an analysis of focused 

receptor-ligand interactions that might affect fetal to maternal SASP translation. Here, 

we turned to a model that could be used as a proxy for the fetal to maternal crosstalk 

from trophoblast to the maternal vasculature that underwent changes during 

pregnancy. To this end, we analysed cell-cell communication between villous derived 

STB components and decidual vascular cells (dVEC, dSMC) to investigate how the 

dysregulated STB subtypes we described above could translate the fetal villous 

syndrome to the maternal system.  

We defined anatomically relevant cell types which physiologically interact, and 

computationally analysed them for their ligand-receptor interaction (Fig. 5a). Among 

the upregulated factors, we found a predominance of secreted factors (of dysregulated 

vSTB genes were identified as secreted or extracellular exosome factors 

(GO:0005615, GO:0070062, GO:0032940; GO:0060627; GO:0048010)) that interact 

with receptors on the maternal vasculature (dVEC, dSMC) via the maternal circulation 
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Fig. 5a). The interactions between vSTB-dVEC and vSTB-dSMC predominantly 

involved SASP genes (67%, 6 out of 9). GDF15-TGFBR2 is found to be interacting via 

maternal blood between villi in vSTB and decidual endothelial cells (Fig. 5a). GDF15 

is a secreted TGFβ superfamily protein and activin ligand that is abundant in the 

placenta44. In PE, it is observed in increased levels in maternal serum and placentae45.  

In addition, we demonstrated a significant upregulation of vSTB-derived ligands of 

LEP- and INHBA as well as interactions with their respective receptors (Fig. 5a). 

Upregulation of both GDF15 and INHBA was independently validated in the multicentre 

eoPE cohort, where; they were significantly upregulated in patients compared to 

gestational with age-matched pre-term controls (Fig. 5b). Additionally, GDF15 was 

detected by immunofluorescence to be elevated in eoPE patients compared to healthy 

controls (Fig. 5e). When we visualised all DEGs of vSTBs that were EP300-mediated 

SASP genes, we observed significant aberration profiles of vSTB cell states in eoPE 

(Fig. 5f). We robustly validated our findings using multiple lines of evidence (Fig. 5b-

e). We conclude that overall, SASP drives the majority of fetal-to-maternal ligand-

receptor interactions in eoPE via secretion into the maternal circulation. 

Our next aim was to identify the localisation of senescence-associated molecules 

within the trophoblast wall of villi. To do this, we compared spatially resolved 

transcriptomes from healthy term controls vs eoPE using in situ sequencing data (Fig. 

5i). Transcripts were computationally assigned as villous wall structure and then 

qualified to have their proximity to vascular markers (CDH5, IDO2, KDR, TEK, ZEB1), 

derived from vessels close to the trophoblast layer, evaluated (see Extended Data 

Fig. 8). One finding from in situ sequencing data was a divergence in the spatial 

expression of the senescence marker INHBA. In eoPE, INHBA was found more 

frequently in proximity to vascular transcripts, while in term controls, it was found to be 

significantly distant from vessels (l.ctrl; Fig. 5j). The overall increase of SASPs in 

vSTB, in combination with spatial disorganisation of these senescent vSTB, suggests 

that there are functional dysregulations in regions of maternal to fetal crosstalk where 

oxygen and nutrient transport across the STB from maternal blood to fetal circulation 

occur. Further evidence for the importance of INHBA in the development of eoPE 

comes from our multicentre cohort, whose villous tissue also exhibited increases in 

INHBA expression (Fig. 5k). The gene products uncovered in this study, as described 

above (Fig. 4c), and their role in vSTB transition (Fig. 2h-k) and maternal-fetal 

crosstalk (Fig. 5i-j), might indicate a potential of these factors as an early predictor of 

eoPE.  
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Uteroplacental tissue analyses have been limited to cross-sectional studies at late 

timepoints due to the increased maternal and fetal risk for adverse outcomes following 

interventions during pregnancy. To evaluate the early predictive potential and 

pathomechanistic relevance of our identified markers (Fig. 5a), we turned to a 

prospective longitudinal cohort spanning from first trimester to delivery where clinical 

outcome of eoPE was verified46. Women were recruited in the first trimester of 

pregnancy. A serum sample was taken before carrying out a risk assessment to predict 

PE using the ‘Fetal Maternal Foundation’ (FMF) algorithm16. We excluded women with 

comorbidities such as chronic hypertension or diabetes mellitus and proceeded to 

clinically match women that later developed eoPE to control patients 1:2 (27 cases und 

49 controls after technical exclusion of five samples; Fig. 5l). We used a conditional 

logistic regression model without prior risk stratification via the FMF algorithm for 

eoPE-prediction, and found that activin A also significantly contributed to predict eoPE 

already early in pregnancy (p=0.0123; Extended Data Fig. 10). Clinically, uterine 

artery pulsatility index measurements (UtA-PI) are performed to determine adverse 

pregnancy outcome. ROC analyses of UtA-PI in combination with Activin A and GDF-

15 had a higher predictive potential compared to UtA-PI alone (Fig. 5m). Importantly, 

our model showed that women who exhibited high circulating levels of activin A and 

GDF15 in the first trimester had their risk of developing eoPE underestimated by the 

FMF algorithm.  

Our multi-omics results from later in gestation were the origin to bridge evidence from 

this pilot study in early pregnancy to a longitudinal understanding of the 

pathomechanism. We used senescence markers based on our late gestation data 

(INHBA/Activin A47 and GDF15) in early pregnancy to assess and predict the risk of a 

later development of eoPE. 

Overall, our data delineates that a preeclamptic placenta syndrome starts early in 

pregnancy during CTB to STB differentiation and ends with premature senescence 

transferring the placental transition defect into a maternal syndrome. 
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Fig. 5 | Early-onset pre-eclampsia affects key regulatory interactions at the maternal-

fetal interface. 

Cell crosstalk dysregulation during eoPE in trophoblast secreted ligands. (a) vSTB secreted 
ligands altered in eoPE relative to term controls with preterm gestational age correction acting 
on highly expressed decidual endothelial receptors highlight ligand pressure, i.e. increased 
ligand expression with unaltered receptor expression, at the maternal-fetal interface. Receptor-
ligand interaction pairs are shown (Wilcoxon rank-sum test, p<0.05) using arrows from ligands 
towards receptors. Dot colours denote cell states/types, ligand squares illustrate average 
log2FC between conditions (only upregulated candidates are included from Logistic 
Regression; log2FC>0.25 and p-value<0.01 after Bonferroni correction) and receptors squares 
encode average expression. (b,c) vSTB-derived ligands GDF15 and INHBA from (a) are 
validated in a multicentre cohort comparing gestational age corrected non-PE preterm controls 
with eoPE mRNA expression (n=23 eoPE, 11 preterm controls = pt.ctrl; sig.level>0.05; 
unpaired two-tailed t-test with Welch’s correction). (d) Immunofluorescence staining of GDF15 
in l.ctrl and eoPE to validate differential mRNA-expression from (c) on protein level (n=3 each). 
(e) Whole slide scans with standardised exposure were evaluated using automated image 
analysis calculating mean GDF15 intensity on trophoblast area (n=3 each, scans divided into 
4 quadrants; sig.-level>0.05, unpaired t-test). (f) EP300 targets that are senescence-
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associated secretory genes differentially expressed in STB cell states in eoPE (heatmap 
showing log2-foldchanges with sig.-level>0.05; Logistic Regression and after Bonferroni 
adjustment for covariates) (i) Targeted high-resolution spatial transcriptomic data was 
acquired through spatially resolved in situ sequencing (ISS), with spatial context of mRNA 
molecules implicating highly structured tissue in an unsupervised 2D embedding (n=3 total, 
early and late villous samples; representative image of e.ctrl shown)  (j) Senescence-
associated INHBA expression is spatially variable in ISS in situ sequencing data and (k) is 
significantly more frequently found in proximity to vascular transcripts (black arrows). (l) Study 
design for early gestational maternal serum used for eoPE-risk-prediction. (m) Activin A, 
synthesised by inhibin βα dimers that are encoded by INHBA, predicts eoPE in a conditional 
logistic regression model and shows that the currently used FMF algorithm underestimates 
eoPE-risk in women with high first-trimester activin A (eoPE: n=27; healthy term controls: n=49, 
matched for BMI, gestational age, maternal age).  
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Discussion 

The pathomechanisms that lead to eoPE and distinguish at-risk mothers from their 

healthy counterparts have so far been unclear. Here, we reconstruct the course of 

pregnancy where longitudinal sampling is limited, and link evidence from preeclampsia 

in later gestation to early pregnancy where underlying pathomechanisms are still 

unclear and diagnosis is not yet possible. Thereby, we present evidence that the 

preeclampsia syndrome arises from an early pregnancy disruption of trophoblast 

differentiation. We trace the faulty trophoblast differentiation to the specific event of 

transition from progenitor-like vCTB to post-fusion vSTB that create the fetal barrier to 

maternal circulation. Our model suggests that vSTBs undergo a accelerated premature 

differentiation associated with a dysregulation of the transcriptional co-activator p300. 

This drives the premature development of a senescence-associated secretory 

phenotype of vSTB subtypes that is specific to eoPE and impedes maternal-to-fetal 

crosstalk. Accordingly, we provide evidence that levels of senescence marker activin 

A and GDF15, detectable in serum at early stages of gestation, are contributing to a 

prediction-model to estimate risk for the later development of eoPE. In summary, this 

model defines preeclamptic disease as a response to altered syncytiotrophoblast 

lineage drivers, which result in a disturbance of placental processes of senescence 

translated to maternal circulation. This is in line with previous hypotheses that 

senescence and the shedding of necroptotic STB bodies might play key roles in PE48,49 

and arise from disturbed trophoblast differentiation. We could capture these STB 

bodies in decidua and transcriptionally profile them (dDSTB). These dDSTBs are 

highly GDF15pos STB particles derived from villous tissue and are putatively carried by 

maternal blood into the maternal vasculature in PE. They are known to regulate 

transcription in target maternal endothelial cells50.   

Early uteroplacental tissue analyses derived from terminations of pregnancy have 

been limited by the difficulty of predicting the future clinical course of a pregnancy. To 

overcome this issue, we compared tissues obtained from a window at the beginning of 

pregnancy, at which time the further progression was unknown, with a late window, 

when the disease has fully developed. We had access to a longitudinal cohort that 

phenotyped women from their screening in the first trimester all the way to delivery. By 

comparing outcomes of women with eoPE to healthy controls, we could 

computationally extend findings of late pregnancy back to an early gestational window 

prior to the appearance of overt symptoms of the disease. Further computational work 
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will need to be done that integrates biospecimens across a longer gestational time to 

interpolate further important time frames in PE development and progression.  

We identified an early dysregulation in pre-eclampsia where p300-linked transcription 

factor complexes may affect the defective regulation of trophoblast development that 

is associated with STB fusion. Congruently, we identified upregulation of genes that 

are unique for a pre-fusion vCTB (CTBpf) and involved in fusion itself, such as 

EVRFRD-1 and GREM2. This might be explained by Hippo-based 

mechanotransduction of high-velocity arterial shear stress that occurs secondary to 

the high-resistance uterine arteries51 phenotypical of eoPE. The disrupted trajectory of 

STB subtypes we described may act in concert with other influences – oxidative stress, 

altered perfusion, and other factors known to contribute to eoPE2,14 – to create a 

senescence-associated dysfunction of the maternal-fetal barrier. This means that 

eoPE may be marked by a cell fate diversion that increasingly drives vCTBs toward 

the STB fate (Fig. 1e), via an autocrine feedback loop that is very likely mediated by 

activin. 

Our study also lays the groundwork for a novel understanding of the early 

pathophysiology of the early-onset subtype of PE. We carry out a precise analysis of 

the fetal-to-maternal translation, from STB in the villi wall to maternal vasculature on 

the cellular level. In general, our work confirms well-established biomarkers of eoPE 

such as sFlt1 (FLT1), PAPPA2, and PGF, and identified additional early pregnancy 

markers that interact with maternal vasculature and are activin-pathway associated 

SASP factors, such as GDF15 (GDF15) and activin A (INHBA). We have shown these 

factors are pathophysiology-relevant and imminent to trophoblast transition. 

Trophoblast differentiation is disrupted and as sequelae, premature senescence of 

STB with increased GDF15 and INHBA expression ensues. While activin A was 

reported previously, we can now additionally extrapolate it’s central role in the 

pathomechanism of preeclampsia early on. GDF15 was shown to be predictive of PE 

in term pregnancy52, and while it is putatively associated with cardiometabolic 

disease53, we found a new role connecting this with early pregnancy STB differentiation 

and early pathomechanisms. 

Finally, we envision that the comprehensive multi-omics data we analysed will lead to 

the discovery of further pathomechanistic biomarkers and ultimately the development 

of new curative pharmacological approaches at early timepoints in gestation. These 

new approaches may finally prevent a syndrome that begins during a vulnerable period 

of the life of the child, and continues to affect them their entire lives. So far, the 
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established symptomatic pre-eclampsia treatments, related to blood pressure 

management and preterm delivery, are primarily beneficial for the mother but have 

adverse effects on the fetus, thus posing a public health concern. We suggest that 

future molecular phenotyping and precision medicine in pregnancy should focus on the 

disturbed fetal trophoblast transition to prevent the pathogenesis of the fetus and 

subsequently of the mother.  
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Methods  

  

Patient samples 

Tissue sampling was done in a multicentre-design. Patients were recruited in Berlin 

(German), Graz and Vienna (Austria) and Oslo (Norway). The studies were approved 

by each regional committee and described individually and headlined by the analysing 

method. 

 

First trimester tissue used for snRNA-sequencing 

Placental and matching decidual tissue were collected from electively terminated 

pregnancies with informed consent of healthy individuals (gestational age 5 – 11 

weeks). Exclusion criteria were maternal age under 18, maternal BMI >25 and self-

reported maternal pathologies. Ethical approval was obtained from the Medical 

University of Graz Ethics Committee (31-019 ex 18/19; 26-132 ex 13/14). Immediately 

after surgical extraction, tissue was stored at 4°C in culture medium DMEM/F12 1:1, 1 

g/dL glucose, Gibco®, Life Technologies (TM), Thermo Fisher Scientific, Vienna, 

Austria) and processed in no more than 4 hours. Amnion was removed and decidua 

dissected. Villous and decidual tissue were separately rinsed twice in cold (4°C) 0.9% 

NaCl to remove blood afterwards snap frozen in liquid nitrogen and stored at -80°C 

until processing. Patient characteristics can be found in Extended Data Table 1. 

 

Healthy term tissue used for snRNA-sequencing  

Healthy term samples were collected immediately after delivery at the inpatient clinic 

of the Department of Obstetrics and Gynaecology, University Hospital Graz, Austria. 

The study was approved by the local Ethics committee at the Medical University of 

Graz (31-019 ex 18/19; 26-132 ex 13/14) and informed consent was obtained from 

each participating woman. Representative tissue samples (1x1x1 cm) of the medial 

third of the placenta were cut from vital cotyledons that were macroscopically free of 

infarct areas or other obvious pathologies that are assumed to have happened during 

delivery. This should avoid sampling degraded RNA and ensure a high-quality yield for 

further analysis, well knowing that it might skew towards possibly inaccurate 

phenotypes on either side of disease and healthy samples. Amnion was dissected and 

remaining tissue were rinsed twice in cold (4°C) 0.9% NaCl to remove blood afterwards 
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snap frozen in liquid nitrogen and stored at -80°C until processing. Patient 

characteristics can be found in Extended Data Table 1 and Supplementary Table 1. 

 

Early-onset pre-eclampsia and healthy term tissue used for snRNA-sequencing  

Pregnant women were recruited in Oslo University Hospital prior to elective caesarean 

section after informed written consent, as previously described1,2, from women with 

either early onset pre-eclampsia (eoPE) or normotensive pregnancies. eoPE was 

defined as new onset hypertension (blood pressure ≥140/90 mmHg) and new onset 

proteinuria (≥1+ on dipstick, or ≥30 protein/creatinine ratio) at ≥20 weeks gestation but 

with delivery prior to gestational week 34. Placental villous tissue biopsies were cut 

from the centre of central normal appearing cotyledons, and were snap frozen in liquid 

nitrogen and stored at −80°C until use. The study was approved by the regional 

committee for Medical and Health Research Ethics in South-Eastern Norway, and 

performed according to the Helsinki Declaration. Patient characteristics can be found 

in Extended Data Table 1 and Supplementary Table 1. 

 

Validation cohort Graz  

Study samples were recruited retrospectively immediately after delivery at the inpatient 

clinic of the Department of Obstetrics and Gynaecology, University Hospital Graz, 

Austria between 2018 and 2019. Pre-eclampsia (PE) was defined according to the 

ISSHP guidelines (Brown MA, Pregnancy Hypertension, 2018). Women receiving low 

dose aspirin were excluded. The study was approved by the local Ethics committee at 

the Medical University of Graz (26-132 ex 13/14 and 31-019 ex 18/19) and informed 

consent was obtained from each participating woman. Patient characteristics can be 

found in Extended Data Table 2. 

 

Validation cohort Oslo  

Pregnant women were recruited prior to elective caesarean section after informed 

written consent, as previously described3, from women with either pre-eclamptic (or 

normotensive pregnancies. PE was defined as new onset hypertension (blood 

pressure ≥140/90 mmHg) and new onset proteinuria (≥1+ on dipstick, or ≥30 

protein/creatinine ratio) at ≥20 weeks gestation. In addition, eoPE was defined as 

delivery prior to gestational week 34. Placental villous tissue biopsies were cut from 

the centre of central normal appearing cotyledons, and were snap frozen in liquid 
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nitrogen and stored at −80°C until use. The study was approved by the Regional 

committee for Medical and Health Research Ethics in South-Eastern Norway and 

performed according to the Helsinki Declaration. Patient characteristics can be found 

in Extended Data Table 2. 

 

Validation cohort Berlin 

Samples from 19 placentas <34 weeks were collected from March 2013 to July 2014 

at the Department of Obstetrics at Charité University Medicine, Campus Virchow Clinic, 

Berlin, Germany. The trial protocol was approved by the local ethics committee, and 

written and informed consent was obtained from all participants. Women were recruited 

at the time of clinical admission. PE was defined according to the International Society 

for the Study of Hypertension in Pregnancy (ISSHP) 2000, as new onset hypertension 

of >140/90 mmHg at two occasions six hours apart, in combination with proteinuria of 

>300 mg/24 h or >2+ dip stick. This subset was part of a bigger cohort that was 

described in detail previously4,5. Patient characteristics can be found in Extended Data 

Table 2. 

 

Single-nucleus sequencing (snRNA-Seq)  

Nuclei capture, library generation, sequencing 

Approximately 100-200 mg frozen placental and corresponding, separately sampled, 

decidual tissue was processed according to an optimised nuclei isolation protocol by 

Krishnaswami et al.20 Briefly, frozen tissue was disrupted with a pre-cooled glass 

Dounce in homogenisation buffer (1X NIM2 [1X protease inhibitor, 1 µM DDT, 250 mM 

sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM pH8.0 Tris], 0.4 U/µL RNAseIn, 0.2 U/µL 

Superasin, 0.1% v/v Triton X-100) and filtered through a flow-cytometry (BD Falcon) 

tube with a 35 µm cell sieve cap. Homogenate was incubated in the dark, on ice, for 

two minutes with DAPI (5 µg/µL) and centrifuged for eight minutes (1,000xg, 4°C). 

Pellet was resuspended with staining buffer, transferred to a FACS-tube (BD Falcon) 

with a 35 µm cell-sieve cap and analysed using the BD FACS ARIA III flow cytometer 

using the BD FACSDiva software (BD Bioscience). After FACS sorting with a cut-off at 

90% viable single nuclei, nuclei from the landing buffer (1% BSA, 0.2 U/µL 

RNAseIn) were counted using a digital counting chamber (Elvira) to achieve the 

concentration of 400-500 nuclei/µl and were loaded onto 10x Genomics Chromium 

chips. 10x Genomics single-index v2 and v3 libraries were prepared according to 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

manufacturer's instructions (Chromium Single Cell 3’ Kits v2 User Guide – CG00052, 

Chromium Single Cell 3’ Kits v3.1 Dual Index User Guide – CG000315). Libraries were 

sequenced on an Illumina HiSeq-4000 (pair-ended) aiming for a minimum coverage of 

50,000 raw reads per nucleus. 

 

Data pre-processing and quality control 

The demultiplexing, processing, identification of Unique Molecular Identifiers (UMI) and 

barcode filtering of raw 3’ snRNA-Seq data was performed using Cell Ranger software 

(versions 3.0.2, 6.0.1 & 6.1.2) from 10x Genomics. Specifically, the SP014 (10X V2 

chemistry), SP082 and SP136 batches (10X V3 chemistry) were processed with 

versions 3.0.2, 6.0.1, and 6.1.2 respectively.  

The transcripts were aligned against the pre-built human reference genome GRCh38 

premRNA version 3.0.0, which was built from the GRCh38 precompiled reference 

(https://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz), 

and modified for use with snRNA-Seq data by extracting “transcripts” features from the 

gene model GTF and instead annotating these as “exon”, as described in the protocol 

defined by 10x Genomics (https://support.10xgenomics.com/single-cell-gene-

expression/software/release-notes/build#grch38_3.0.0). Subsequently, systematic 

biases and empty droplets were modelled and removed by filtering counts due to 

contaminated ambient RNA reads and random barcode swapping using the remove-

background function implemented in CellBender v0.2.02. The total number of droplets 

was kept at 15,000, and a combined ambient and swapping model was used. Filtered 

expression matrices were loaded into python v3.7.9 and further processed using 

scanpy v1.8.2. 

The post-quantification quality control was computed with the calculate_qc_metrics 

function in scanpy. Nuclei having fewer than 200 expressed genes or for which the 

total mitochondrial transcript expression was higher than 5% were excluded. Only 

those genes expressed in more than three nuclei were included. Data quality was 

assessed by plotting the number of unique molecular identifiers (UMIs) and total 

number of genes per sample. After quality control filtering, the samples were log-

normalised to 10,000 reads using scanpy.  
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Data harmonization, clustering, and cell annotations for placenta  

For the data harmonization of placenta samples, firstly, 6000 highly variable genes 

were computed using scanpy’s highly_variable_genes function, using the dispersion-

based method (flavor='seurat_v3') and otherwise default parameters. The donor 

identifier was used as the key batch to minimize selection of batch-specific genes. 

Subsequently, the samples were integrated using a Bayesian variational inference 

model scVI v0.14.5 (based on stochastic optimization and deep neural networks 

architecture). Using, scvi.model.SCVI and get_latent_representation functions in scVI, 

a shared latent space of 15 dimensions for all placental single nuclei was inferred. 

Precisely, 128 nodes per hidden layer, 2 hidden layers used for encoder and decoder 

for the variational inference, and 0.1 drop-out rate was used. Zero-inflated negative 

binomial distribution (ZINB) was used to model gene expression. Apart from using 

donor_id (each sample) as batch key, further categorical covariates (10X library 

chemistry used, procurement centre of samples, gestational time) and continuous 

covariates (total counts, total number of genes with at least one positive count, 

percentage of mitochondrial expression, XIST counts per nucleus) were used to 

minimize the influence of unwanted technical variation in the cell typing.  

The K-nearest neighbour graph was computed on the scVI inferred latent space using 

pp.neighrbors function in scanpy with k = 15 and otherwise default parameters. To 

further reduce the high dimensional latent spaces to 2D, visualization was generated 

using Uniform Manifold Approximation and Projection (UMAP). Particularly, the umap-

learn v0.5.2 implementation in python was used and the maximum number of iterations 

was set to 500 (for better convergence) and random state to 0 (for reproducibility). 

Cell-typing (annotations) was initially performed on the control placenta samples (both 

early and late gestation) based on robust and specific expression of marker genes. At 

first, clusters were identified in an unsupervised manner using Leiden community 

algorithm implemented in scanpy (with an initial resolution limit of 2) and initially 

annotated using marker genes extracted from literature plus top signatures obtained 

from EmpiricalBayes-method by model.differential_expression function in scVI and 

Seurat’s FindAllMarkers Logistic Regression (LR) method in Seurat. Leiden clusters 

lacking robust/specific biological markers were merged into the closest cluster. 

Thereafter, a LR classifier model (optimized by the stochastic gradient descent 

algorithm) implemented in Celltypist v0.2.06 was trained based on our control cluster 

labels and was used to predict the cell annotations in diseased (eoPE) samples. A 
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confusion-matrix was used to evaluate the performance of the classifier (predicted 

labels) given the known ground-truth (from Leiden clusters annotation). Spurious 

Leiden clusters mapping to a specific sample and lacking appropriate markers were 

removed. Particularly, a fibroblast (n=669) and erythroblast (n=930) subpopulation 

were excluded because they mapped solely to two specific early samples and hence, 

do not contribute to comparative cell typing. Additionally, 547 misclassified nuclei firmly 

clustering with vCTBp but also expressing high STB/EVT markers were excluded (with 

further help from the pseudotime analysis where these nuclei could not be modelled in 

a specific differentiation path). For further internal validation of cluster phenotype, we 

computed module scores using known markers list using the tl.score_genes function 

in scanpy. Finally, all the clusters assigned to a phenotype (label) were evaluated using 

robust and specific marker genes (described in the Differential expression analysis 

section; also refer to Extended Data Figure 2). 

  

Data harmonization, clustering, and cell annotations for decidua 

Similar to placenta, the top 6000 highly variable genes were computed using scanpy’s 

highly_variable_genes function using donor_id as the batch key. Here, the cell typing 

was initially performed on the 10X V2 samples (because they were sequenced earlier) 

by annotating unsupervised Leiden clusters based on robust and specific markers 

expression. Using the get_latent_representation function in scVI,  a shared latent 

space of 10 dimensions was inferred keeping the other parameters same as used for 

the placenta. Like placenta, markers were extracted from literature as well as top 

signatures obtained from Bayes-method scVI model.differential_expression function 

and Seurat’s FindAllMarkers LR method. Leiden clusters mapping uniquely to a donor 

were excluded for the purpose of comparative cell typing. Subsequently, the cell labels 

were transferred to the 10X V3 samples using scANVI7.  

In parallel to scANVI, a LR classifier model from Celltypist was trained using the 

annotated cluster labels and was used to predict the cell annotations in 10X V3 

samples. A confusion-matrix was used to evaluate the performance of CellTypist 

classifier and scANVI (predicted labels). Ultimately, each cluster was inspected using 

biological markers knowledge and final decisions were made. 

A cluster (initially annotated as stromal given its proximity to the DSC1/2 and consisting 

of 2911 nuclei) was later excluded because of the expression of conflicting markers 

such as NOTUM, HPGD and HLA-G (denoting EVT lineage). It also expressed certain 
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macrophage genes and was difficult to classify. The CellTypist LR classifier assigned 

them a very low confidence score (~0) indicating the cluster was very likely 

contaminated. Another cluster (initially thought of as NKT cells; 1119 nuclei) were 

removed because of high macrophage gene expression. 

The final UMAP embedding stratifying the cellular hierarchies for decidua and villi are 

shown in figure 1b.  

 

Evaluation of clustering robustness 

To ensure the effective annotation of cell types/states, amortized Latent Dirichlet 

Allocation (LDA) implemented within scVI was used to find topic profiles for both 

tissues. Conceptually, a distinct cell types/state should map to a unique topic. 

Subclusters share the topics of the mother cluster and in additionally usually harbor a 

unique topic. For example, dNK1 and dNK2 have shared as well as unique topics. This 

modelling approach can also be used to identify potential doublets when cells exhibit 

multiple conflicting topics (mainly due to opposing lineage markers), similar to marker-

based approaches used in other single cell studies of placenta and decidua8. 

LDA was performed at several stages (initially using the number of Leiden clusters 

equal to the number of topics and ultimately, to the number of final labels) to see if the 

learned topics were mainly dominant in cells close together in the UMAP space. When 

a topic is dominant in multiple clusters in the UMAP, it is an indicative of similarity 

between the clusters despite being distant in the embedding. This might happen if the 

local relationships were not preserved beyond a certain threshold. In this way, the 

problematic clusters were confirmed to not map to unique/known topics and hence, 

removed from all downstream analysis. Additionally, it was also used as a quality check 

for the UMAP embedding.  

 

Syncytiotrophoblast sub-clusters 

For the first time, we detected significant heterogeneity in the vSTB group. Notably, we 

found an interesting state termed as juvenile STB that is marked by the expression of 

paternally imprinted DLK1 (regulator of cell growth and differentiation), SPARC, 

TMSB10, and ACTB which indicate an association with extracellular matrix remodelling 

and promotion of changes to cell shape. Interestingly, the juvenile nuclei robustly 

express the secretory phenotype (characterized by several PSGs and maternally 
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imprinted TFPI2) and a classical STB like profile (expression of CGA, CYP19A1, 

KISS1, ADAM12, SDC1 and others) for which it was classified under vSTB group.  

vCTBp was considered as the trophoblast progenitor as they are actively cycling given 

the expression of genes like MKI67, TOP2A, STMN1 and CENPK/CENPE. Notably, 

they exhibit robust expression of YAP1, TEAD1, TP63, CCNA2, ITGA6- all known for 

their roles as progenitor. vCTBpf is primarily fusogenic and is characterized by very 

specific markers such as GREM2, ERVFRD-1, ERVV-1/2, OTUB2, and DYSF.  

Placental F13A1+/FGF13+ resident macrophages (Hofbauer cells, vHBC) uniquely 

express hyaluronan receptor LYVE1 in the immune cell subset, suggested to maintain 

arterial tone and have pro-angiogenic functions. We additionally identify antigen 

presenting HLA-DRA+ placenta associated maternal monocytes/macrophages 

(vPAMM) which are villi-associated and are extra-embryonic or maternal in origin.  A 

cycling population of vHBC was identified (vHBCp) characterized by traditional HBC 

genes as well as proliferative genes like MKI67 and TOP2A. The villi myocytes (vMC) 

were identified given their AGTR1 expression. Other cell types were mapped using 

well known based on their marker genes (Supplementary Table 8). 

 

Evaluation of integration performance 

To quantify integration performance for both decidua and placenta, we employed 

metrics suitable for atlas level integration as discussed by Luecken et al.9  

Firstly, an adjusted rand index (ARI) implemented in scikit-learn was computed to 

ensure that the cluster labels are independent of the sample information (scaled from 

0 to 1 where values close to zero indicate our labels were not influenced by batches). 

The score for decidua (0.062) and placenta (0.044) indicate our labels were not 

affected by batches (donor). Adjusted mutual information (AMI) was additionally used 

to verify the above observation.  

Importantly, an absolute silhouette score (ASW) of batch labels per cell-type were 

computed to measure batch-mixing (scaled from 0 to 1 where 1 indicates ideal batch 

mixing and 0 represents strongly separated batches). Since the batches are expected 

to integrate within a cell identity, the batch ASW was computed per cell type/state. The 

mean scores for placenta (0.863) and decidua (0.802) cell type/states indicate well 

batch-mixing alongside bio-conservation.   
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Differential expression analysis  

Cell-type marker analyses for both decidua and placenta were performed using multi-

variate LR generalized linear model implemented in Seurat’s FindAllMarkers() and 

were further internally validated using the empirical Bayes method in scVI 

model.differential_expression function.  

In case of LR, the number of UMI, number of genes, and percentage of mitochondrial 

transcripts per nuclei were used as continuous covariates. Additionally, ~disease (if a 

nucleus is from a control or eoPE sample) and library (10X V2 or V3 chemistry) were 

used as categorical covariates to minimize the effects of eoPE and libraries. Only those 

genes having a log fold-change cut-off of 0.25 and expressed in at least 25% of cells 

within each cluster were considered as a significant cell marker. An adjusted p-value 

cut-off was kept at 0.05 (after Bonferroni correction for multiple testing).  

 

Differential analysis of disease markers and gestational age correction 

To determine the differentially expressed genes for disease (eoPE) against late 

controls, the LR framework (implemented Seurat’s FindMarkers function) was applied 

to respective cell types/states. The number of UMI, gene counts, percentage of 

mitochondrial transcripts and percentage of sex-specific transcripts per nuclei were 

used as continuous covariates.  

Importantly, a cell type/state specific preterm-score was calculated using the preterm 

vs term in labour significant genes10 having FDR <0.05 and used as a continuous 

covariate in the LR model. This was explicitly performed to prevent strong preterm 

specific effects in the analysis since eoPE arises 6-8 weeks prior to healthy term. Since 

no differential features was separately reported for the vSTB preterm, the other 

trophoblasts genes (vCTB) were used for correction. Additionally, SLIT2 & ROBO1 

genes were included in the module-score based correction for as they are associated 

with risk for spontaneous preterm birth11.  

Additionally, cell type/state specific labour signatures were considered for correction 

by extracting the term in-labour vs no labour differential genes from respective groups10 

Only those genes having a log2 fold-change cut-off of 0.25 and expressed in at least 

10% of cells within each group were reported as significant given adjusted p-value < 

0.05 (Bonferonni corrected). Both up- and down-regulated genes were computed.  

No cell type/state exhibited significant composition shift in eoPE relative to term 

controls (except for vHBC)- hence, down sampling was only performed for the vHBC. 
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For cell types such as vCCT, dEVT, vCTBp, vCTBpf, dDSTB, dPC, dBcells no analysis 

was performed owing to extreme sparsity in eoPE group.  None of our samples were 

confounded with a major co-occurring disease. 

 

Reconstruction of differentiation trajectories, lineage relationships and computation of 

pseudotime genes 

To infer the cluster and lineage relationships between the different trophoblast cell 

types/states- STREAM v1.1. (https://github.com/pinellolab/STREAM) and diffusion 

pseudotime12 were used. Specifically, the trajectory inference was restricted to the 

early controls of the trophoblast cell types including vCTBp (progenitor), vCTB, 

vCTBpf, vSTBjuv, vSTB1/2 and vCCT. In the late term controls, there is a striking 

discrepancy in the cell-type composition given a massive increase of vSTB sub-

populations which signifies degradation rather than differentiation.  

At first, the scVI harmonized control data as subsetted for the relevant cell types and 

learned the trajectory principal graph using STREAM 1.1. Using previously computed 

latent variables, cells were clustered in the reduced UMAP space for recovering the 

main and possibly finer structures of trophoblast differentiation. Thereafter, the 

principal graph was inferred on the manifold learnt from the dimension_reduction 

function using the first six components. K-means clustering was used for the initial 

graph seeding using seed_elastic_principal_graph(). The elastic principal graphs are 

structured data approximators, consisting of each cell as a vertex interconnected by 

edges. The inference of this graph relied on a greedy optimization procedure based on 

which a minimum spanning tree (MST) was constructed using the Kruskal’s algorithm. 

No branch pruning or shifting of nodes were performed to obtain the optimal principal 

graph (Figure 2A and Extended Data Figure 4a).  

Ultimately, the transition and leaf markers were computed for all lineage paths (vSTB, 

vCTB and vCCT) by considering MKI67 positive vCTBp as a root node (start of the 

pseudotime) respectively. The transition genes are dynamical in nature and calculated 

by considering fold change in average gene expression of the first 20% and the last 

80% of the cells for an individual branch based on the inferred pseudotime. For the 

genes exhibiting log2 fold change cut-off of 0.20, further Spearman’s rank correlation 

was calculated between pseudotime and gene expression of all the cells along the 

individual branches (as implemented in STREAM’s detect_transition_markers 

function). Ultimately, genes above a specified correlation threshold (=0.35) were 
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reported as transition genes. For leaf gene detection, the z-scores of all leaf branches 

were calculated based on the average gene expressions. Particularly, Kruskal–Wallis 

H-test followed by a post-hoc pairwise Conover’s test (as implemented in STREAM’s 

detect_leaf_markers function) was used for multiple comparisons of mean rank sums 

test among all leaf branches. A Z-score cut-off of 1, and p-value cut-off of 0.01 were 

used to identify the candidate leaf genes. The expression of highly robust cell fate 

markers along the pseudotime provided a strong validation for our trajectories 

(Extended figure 4d).  

To further evaluate the lineage relationships and global transcriptomic similarity 

between different cell types (for trophoblast), Diffusion map analysis was performed 

that orders cells based on their transcriptomic similarity in a Markovian space. This 

method considers each cell to be represented by a Gaussian wave function and 

diffusion distances are based on a robust connectivity measure between cells which is 

estimated over all possible paths of a certain length between the cells. The Eigen 

functions of the Markovian transition probability matrix (diffusion components; DC1 and 

DC2) were used for low-dimensional representation and visualization of trophoblast 

data (Extended Data Figure 4b).  

 

Receptor-Ligand interaction databases 

An extremely important factor deciding the results of the R-L interaction study is the 

underlying database used. Two popular databases, CellChatDB and FANTOM5, were 

used that allowed identification of well-established interactions such as MIF-

ACKR3/CXCR7 and INHBA-ENG/END, which were unique to CellChatDB and 

FANTOM5 respectively.  

  

Receptor-Ligand interaction differential analysis of eoPE vs term controls 

The differentially expressed ligand-receptor interactions were inferred using 

Connectome v1.0.1 (specifically, the differential connectomics pipeline). For the 

maternal-fetal interface, the strategy was to use only secretory ligands for vSTB groups 

that can practically cross the maternal-fetal barrier and can be in contact with the 

maternal blood (decidua) where it can influence the vessels. Only significantly 

differentially upregulated ligands (p-value 0.01 after adjusting for multiple testing) in 

eoPE relative to term controls exhibiting a log2FC cut-off of 0.25 and detected in a 

minimum of 10% of diseased cells were considered. It was assumed that once a ligand 
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is activated (upregulated), it would bind the receptor (irrespective of the latter being 

differential or not). Biologically, we can describe such instance as ligand pressure 

(where ligand is high, but receptor is either non-differential or low; Figure 4C). 

Multivariate Logistic Regression was used for differential calculation and the statistics 

are consistent with our former described DEG test (including covariate corrections).  

For the within tissue interaction map (decidua and villi interaction) using immune and 

endothelial cell types, LR and Connectome were used. The log2FC cut-off of 0.25 and 

ligands/receptors detected in a minimum of 10% of diseased cells were considered for 

both up and downregulated differential candidates. The p-value was adjusted for 

covariates (as described for eoPE vs late term DEG). Visualization was performed 

using circos plots.  
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Receptor-Ligand interaction analysis in eoPE 

The analysis for decidual STB and EVT ligands (with maternal VEC and dSMC) were 

restricted to eoPE samples only given their extreme sparsity in late term. Interactions 

were derived using Connectome using both FANTOM5 and CellChatDB databases. 

The min.cells.per.ident was kept at 75 and Diagnostic Odds Ratio (DOR) was 

calculated for each interaction pair. High DOR is an indicative of high specificity and 

sensitivity with a low rate of false positives and false negatives.  

For dDSTB, the interaction list was filtered using pct.source (senders) >= 25% and 

pct.target (receivers) >= 20% (pct= percentage of cells expressing a ligand/receptor) 

and further, filtered by DOR.source > 3 and ligand expression > 1.5 (Figure 4A).  

For the interactions with dEVT, relatively robust criteria were used for narrowing down 

the important interaction partners (from an initial list of > 2000 pairs). Particularly, 

DOR.source of 5, edge strength (product of the receptor and ligand expression) of 3 

and minimum percentage of ligand expressing source of 50% was used to ensure cell 

specific communication. 

 

Computational validation of major R-L interactions 

All Connectome results were cross checked SingleCellSignalR13 for the vSTB, dDSTB 

and dEVT based interactions. All the R-L interactions were recapitulated (when not 

limited by database).  

Subsequently, we applied additional tools (NATMI, logFC Mean (inspired by iTalk), 

CellphoneDB, CellChat) implemented within LIANA framework14 and we were able to 

recapitulate all R-L interactions across numerous databases. Identification of decidual 

and villous cell types and states.  

 

Pathway and network analyses of marker genes 

The list of DEG based on cut-off values (logFC +/-0.25 and a significance level of 0.05) 

were used as background for networks. Variable genes were excluded using the 

webtool diVenn (divenn.noble.org). Genes were then used as input in the stringDB for 

PPI networks (confidence level = 0.15, no added proteins in shells). Networks were 

then further analysed in Cytoscape (version 3.8.2)15. Hub genes, defined as genes with 

high correlation in candidate modules, were identified from the PPI network calculating 

top 5 genes of all topological analysis methods of CytoHubba16 in Cytoscape plug-in 
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(DMNC; MNC, MCC, ecCentricity, Bottleneck, Degree, EPC, Closeness). The 

candidate hub genes were merged into one network, decomposed into communities 

using clustermaker17 and GLay18 Cytoscape plug-in based on Newman and Girvan’s 

edge-betweenness algorithm. The hub network was analysed to visualise the network 

degree of nodes by size of nodes. The original background logFC was used for 

continuous mapping colours. The hub gene network was used to calculate transcription 

factors via iRegulon19 cytoscape plug-in (standard threshold: enrichment score 

threshold 3.0, ROC threshold for AUC calc 0.03, Rank threshold 5000, minimum 

identity between orthologous genes: 0.0, max FDR on motif similarity: 0.001). 

Predicted transcription factors were visualised as PPI (confidence level 0.15) via 

stringDB and validated by adding expression values from the DEG list. 

Pathway analyses are based on these DEG lists, hub genes, and transcriptions factors 

and were carried out via web-tools Metascape and Enrichr. 

 

In Situ Sequencing   

High sensitivity library preparation 

Fresh tissue samples of early villi were FFPE processed and stored at +4°C. A custom 

gene panel was used to detect specific cell-type and cell pathway genes of interest. 

The in situ sequencing method was processed according to manufacturer instructions 

(Cartana, part of 10x Genomics). 5µm tissue sections were baked at 60°C for one hour, 

deparaffinised in xylene, rehydrated in 100% and 70% ethanol, and permeabilised 

using citrate buffer (pH 6) for 45min at >95°C in a steamer. Sections were dehydrated 

in an ethanol series from 70 to 100% and air-dried (Secure Seal, Grace Biolabs, Bend, 

United States). Gene specific chimeric padlock probes were added, directly hybridised 

to the RNA at 37°C in an RNAse free humid chamber overnight and ligated at 37°C for 

2 hours. Ligation derived circular oligonucleotide structures (padlocks) amplified 

overnight at 30°C. RNA-degradation during tissue processing was minimised by 

adding 0.1% v/v diethyl pyrocarbonate (DEPC) to all buffers and reagents not provided 

by the manufacturer.  

   

Imaging 

Imaging was performed using a digital slide scanner (Olympus SLIDEVIEW VS200) 

connected to external LED source (Excelitas Technologies, X-Cite Xylis). 

Fluorescence filters cubes and wheels were equipped with a pentafilter (AHF, 
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excitations: 352-404 nm, 460-488 nm, 542-566 nm, 626-644 nm, 721-749 nm; 

emissions 416-452 nm, 500-530 nm, 579-611 nm, 665-705 nm, 767-849 nm) and 

single cube filters (Kromnigon; SpectraSplit 440, SpectraSplit 488, SpectraSplit Cy3, 

and SpectraSplit 594). Images were obtained with a sCMOS camera (2304 × 2304, 

ORCA-Fusion C14440-20UP, 16 bit, Hamamatsu), and Olympus Universal-

Plansuperapochromat 40× (0.95 NA/air, UPLXAPO40X). To avoid signal cross-talk, 

the pentafilter was used to image DAPI, Cy5 and AF750 signals, and the single cubes 

to image AF488 and Cy3 were used. Imaged regions were recorded to 

perform repetitive cycle imaging. After imaging, labelling mix was stripped from each 

slide by adding three times 100% formamide for 1min, followed by a washing step. 

  

Hybridizing and Sequencing  

In situ sequencing steps were repeated six times with six different adapter probe pools, 

each imaged in five channels (DAPI, FITC, Cy3, Cy5, AF750). After stripping, adapter 

probes were hybridised at 37°C for 1 h in a RNAse free humid chamber, washed 

and sequencing probes hybridised at 37°C for 30 min in a RNAse free humid chamber. 

Sections were washed, dehydrated in an ethanol series, air-dried, and mounted 

with SlowFade Gold Antifade Mountant (Thermo Fisher Scientific). Library preparation 

protocols were optimised for placental tissue using high (MALAT1) and low (RPLP0) 

control probes before using the final probe panels. Background without any adapter 

probe pool was imaged in 6 channels for autofluorescence subtraction.  

  

Image analysis and spot calling 

Imaging data was analysed with the custom pipeline provided by CARTANA that 

handles image processing and gene calling. All code was written in MATLAB and 

additionally a CellProfiler pipeline (v.2.1.1)20 was used, that includes the ImageJ 

plugins MultiStackReg, StackReg and TurboReg as previously described21. In short, 

TIFF images from all sequencing cycles were aligned to the general stain of 

library preparation, and split into multiple smaller images. The median intensity of all 

RCP signals of each channel was calculated with an additional CellProfiler pipeline 

(v.4.0.7)20, this value was used to normalise RCP signal intensities of each channel to 

a pixel intensity of 10,000. The received multiplication factor value for each channel 

was integrated in the CellProfiler pipeline and the background of each channel 

subtracted from each sequencing cycle, to reduce the autofluorescence of the tissue. A 
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pseudo-anchor was created for each cycle by making a composition of the 

four readout detection probe channels into one merged image. The pseudo-

anchor was used to perform a second, more exact alignment. RCPs of the labelling 

mix were detected, x and y coordinates saved and fluorescence intensities measured. 

The highest intensity value in each sequencing cycle was assigned as positive event 

and used for decoding in Matlab. For signal visualisation, the selected transcripts were 

plotted on a DAPI-stained image.  

 

In situ sequencing data analysis 

In situ sequencing data handling 

In situ sequencing data handling was performed using the plankton.py v0.1.0 package 

(https://github.com/HiDiHlabs/planktonpy) in python 3.10.4. For the conclusive 

analysis routine, the in situ sequencing data was displayed as decoded spots of x and 

y coordinates of all detected mRNA molecules, each with an associated gene label. In 

total, three in situ sequencing slide scans were analysed (106KS, 107KS, 156KS). 

156KS (early control) contained genes from the customized placenta/cell typing pane 

l that was designed for retrieving cell and tissue types, and both 106KS (late control) 

and 107KS (eoPE) contained genes from the custom/pathway panel which was 

targeted at analysing cell state and metabolic activity (code book for panels available 

via zenodo doi: 10.5281/zenodo.5243240). The cell typing sample was taken during 

the early stage of pregnancy.   

For visualization of the detected mRNA molecules in their histological context, 

matching DAPI stains of each sample slide were pre-processed by transforming it to 

grayscale, normalizing the colour values between 0 and 1 and pushing the low-

exposure areas by raising all values to the power of 0.4. 

 

Identification of cell type specific markers in the placenta panel 

Analysis of the placenta cell typing data had the aim of contextualizing major cell types 

determined by snRNA-Seq analysis. Genes from the cell typing panel were 

conceptualized as cell type markers, with CTB, STB and HBC cell types considered 

for further spatial analysis and plotting since they had good marker coverage and 

constituted important spatial landmarks in the villi anatomy (with the walls being 

layered with STBs and CTBs, and HBCs forming distinct, compact cells in the intra-

villous matrix). 
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Accordingly, a gene-cell-type affinity measure was derived through the gene molecule 

counts in the snRNA-Seq data set for CTB, STB and HBC. This was done per gene by 

contrasting molecule counts in the cells belonging to a cell type of interest in the 

snRNA-Seq data against the molecule counts of an opposing set of cells using 

plankton.py’s  score_affinity function. Hence, for each analysis, two contrastive sets of 

cell types were defined: (i) CTB vs STB for CTBs; (ii) STBs vs CTBs for STBs; and (iii) 

HBC vs all other cells for HBCs. The transcriptome of CTB and STB cells could be 

expected to be more similar since both cells are trophoblasts. Therefore, to determine 

definitive cell type markers, CTB and STB were contrasted against each other, which 

would cancel out potential common trophoblast marker genes. Each genes’ mean 

molecule counts in all cells assigned to the two contrastive cell type sets was 

determined. The logarithm of the ratio of these mean count indicators was used as 

score for a gene’s affinity to a certain cell type. To improve visual clarity during plotting, 

a threshold of 0.5 was used to assign colour labels to each gene in both analyses. 

Genes exceeding this affinity score threshold determined markers for CTBs (ASPM, 

ATAD2, BRIP1, CD24, CDH1, CENPE, DIAPH3, FBN2, KANK1, SEMA6D, TIMP3), 

STBs (ADAMTS20, CGA, CYP19A1, ENTPD1, KISS1, KLRD1, LEP, LINC00474, 

MYCNUT, PAPPA2, PLAC4, PLXDC2), and HBCs (CD163L1, CD36, F13A1, FGF13, 

LYVE1, MEF2C, SPP1), with the remaining genes assigned as ‘other’. 

 

mRNA molecule spatial context analysis in the placenta panel 

Using the plankton.py’s run_umap function, a weighted neighbourhood graph was built 

using the 800 nearest neighbours of each molecule, with neighbours weighted 

according to their Euclidean distance using a Gaussian probability density function 

(PDF) at a bandwidth of 9 µm, which would roughly cover the area of a single cell and 

its immediate environment. Then, a model of local mRNA distribution was created over 

all genes by summing over each gene’s molecules’ weights.  Furthermore, a 

regularization mechanism was introduced by increasing each distribution’s value of the 

gene of its molecule of origin by 1.15.  

A 2D embedding of recurring spatial context was determined by applying the python 

umap-learn v0.5.3 algorithm to the local distributions. The number of neighbours in the 

UMAP algorithm was set to 24 and the minimal distance of points in the embedded 

representation was set to 0.2. UMAP used a Euclidean distance metric and was 

initiated at a random state of 42. The determined gene-celltype associations were used 
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in a cell type visualization plot of the early placenta sample 156KS. All molecules were 

plotted as a scatter plot on top of the greyscale renderings of the DAPI stain. Molecules 

with a celltype-association affinity score above 0.5 were coloured accordingly, while 

the remaining molecules were rendered as grey.  

 

Villi wall detection 

Having demonstrated the principal plausibility of the spatial information in our in situ 

sequencing data during the cell-typing analysis, our experimental design required a 

follow up comparative analysis of pathways between a late control and an eoPE 

sample. The pathway categories chosen for the analysis of this second experiment 

were ‘vascularization’ (genes IDO2, ZEB1, TEK, CDH5, KDR), senescence (genes 

MMP11, INHBA) and trophoblasts (genes LGR5, FGFR2, MET).  

Spatial analysis was restricted to the densely populated and well-structured villi walls 

in both samples, as this is the most structured part of the tissue. Villi walls were 

determined using a basic edge detection algorithm applied to matching DAPI signal, 

where villi walls were clearly remarked by dense nucleation. A greyscale rendering of 

the DAPI stain was smoothed using an optical Gaussian filter at a 2 µm bandwidth. 

Scikit-image's (v0.19.2) feature.canny() implementation of the canny edge detection 

algorithm (using a sigma value of 3.7) was used to extract the villi walls in the smoothed 

image. Every molecule within a radius of 5 µm to any point of the detected edges was 

defined as being part of the villi walls, and all other molecules were discarded from 

further analysis. The wall filter algorithm was visualized by plotting the underlying DAPI 

stain in matplotlib’s violet-blue ‘magma’ colour scheme. The detected edges from the 

second step of the wall filter algorithm were plotted on top of the stain as orange lines. 

In the bottom-right half of the plot, the present mRNA molecules were plotted, coloured 

green or blue according to their assignment as wall/not-wall members (Extended 

Figure 6d). 

 

Spatial relationship of vascular and senescence markers 

For visualization of the spatial senescence-vascularization relation, all ‘wall’ molecules 

were plotted on top of a black-and-white rendering of the DAPI stain, coloured 

according to their gene assignments of ‘vascularization’ (red) and ‘senescence’ 

(yellow), with the other molecules plotted in a white. Optical inspection of the scattered 

senescence and vascularization markers hinted that senescence marker topography 
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was more structured in the control sample as compared to the eoPE sample, with 

senescence marker expression being reduced around vascularization clusters in the 

tissue.  

To statistically model this observation, the villi wall molecules were subdivided into two 

categories depending on their location of expression: (i) a vessel proximal category 

that contained all molecules within regions of 5 µm of another vessel marker; and (ii) a 

vessel-distal category that contained the other molecules. A null hypothesis was 

formed, according to which the distributions of genes should be equal within the two 

categories. For each gene, we reported the p-value of the violation of this null 

hypothesis in a binomial test. Scipy’s (v1.8.1) stats.binom.cdf implementation was 

used, with parameters ‘p’ defined as the total percentage of ‘proximal’ molecules, ‘k’ 

the gene-specific number of proximal molecules and ‘n’ the total number of molecules 

of the respective gene in the sample. The sorted p-values for all genes present in the 

pathway sample were displayed in a vertical bar graph, with the bars coloured 

according to their membership to the categories ‘senescence’, ‘vascularization’, 

‘trophoblast’ or ‘other’ (Extended Data Figure 6f,g). The p-values of senescence, 

vascularization and a control category of ‘trophoblasts’ were extracted and plotted per 

sample as scatters on a vertical line. The scatters of both samples were displayed next 

to each other for visual comparison (Figure 4j, Extended Data Figure 6h). 

  

10X Visium  

Sample preparation 

First trimester tissue was collected as described above, dissected under a 

stereomicroscope and snap-frozen by using isopentane in a liquid nitrogen bath. To 

avoid large batch-effects, multiple placental tissue sections were embedded in a 

6.5x6.5 mm cryo-mould using OTC cryo-embedding medium (TissueTek). Samples 

were put on -80°C overnight and cryo-sectioned at -20°C. Control H&E staining was 

performed to ensure morphological intactness of the embedded tissues. The cryo-

sectioned tissue at 10 µm was transferred to spatial transcriptomics slides (Visium, 10x 

Genomics) and placed on a single tissue optimisation and gene expression slide 

capture area. 
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Visium data sequencing 

After having determined the permeabilisation time of 18 minutes following the tissue 

optimisation protocol (10x Genomics – CG000238 Rev A), the gene expression 

experiment was carried out according to the manufacturer’s user guide (10x Genomics 

– CG000239 Rev A). The images were scanned using the Slide Scanner Pannoramic 

MIDI (3DHISTECH) with the objective plan-apochromat 20×/0.8× (Zeiss). 

The dual-indexed Visium library was then loaded at 200 pM and sequenced on a 

HiSeq-4000 (Illumina) with the following configuration: 28-10-10-90 (see sequencing 

requirements for Visium Spatial Gene Expression - 

https://support.10x_genomics.com/spatial-gene-

expression/sequencing/doc/specifications-sequencing-requirements-for-visium-

spatial-gene-expression). 

 

Generation of the Visium count matrix 

The base call (BCL) files generated from the Illumina run were converted to FASTQ 

reads with bcl2fastq (Illumina). Subsequently, the reads were mapped to the human 

reference dataset GRCh38 (build 2020-A; refdata-gex-GRCh38-2020-A) using the 

spaceranger count pipeline (Space Ranger v1.1.0) with automatic fiducial alignment 

and tissue detection. We observed 1,387 spots under the tissue, yielding 201,176 

mean reads and 3,561 median genes per spot. 

 

Seurat processing of the Visium count matrix 

The 10x output folder was read using Load10X_Spatial function implemented in Seurat 

(v3). The object was then normalised with SCTransform function. PCA was then 

calculated using RunPCA: 50 PCs were computed and the first 20 were selected for 

identifying the k-nearest neighbours of each spot with FindNeighbors function. Finally, 

clustering was performed via FindClusters (resolution = 0.2). 

 

Spotlight based deconvolution of Visium data 

The spotlight object was generated using the spotlight_deconvolution function in 

SPOTlight (Version 0.1.7) by supplying the early villi subset (from the placental single-

nuclei data) as reference. The marker table for the nuclei clusters was initially 

generated based on Logistic Regression method implemented in Seurat as discussed 
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before, and subsequently filtered to yield the best topic profile representative of each 

cell type found in the dataset.  

The non-negative matrix factorisation (NMF - nsNMF) regression as well as Non-

negative Least Squares (NNLS) regression were used for deconvolution as 

implemented in SPOTlight. Cells contributing to less than 1% of the spot composition 

were removed, min_cont = 0.01. The deconvoluted spots were assessed by 

investigating the topic profiles of the cell type (Extended Data Figure 1f) and the nature 

of individual topics within a cell type. 

 

 

In-vitro validations 

 

First trimester CTB cell culture 

Villous cytotrophoblasts (vCTBs) were isolated according to recently published 

protocols22. Precisely, placental tissue (6 – 8th week of gestation) was cut from the 

chorionic membranes, further minced into small pieces, and subjected to three 

consecutive digestion steps at 37°C in Hanks balanced salt solution (HBSS, Gibco) 

containing 0.25% trypsin (Gibco) and 1.25 mg/ml DNAse I (Sigma-Aldrich) for 10 min, 

15 min, and 15 min, respectively. Per ml tissue, 5 ml digestion solution was used. Each 

digestion was stopped using 10% FBS ([v/v] PAA Laboratories). Subsequently the cells 

were filtered through a 100-µm pore size cell strainer (BD Biosciences), and cells from 

the second and third digestion were pooled. Next, the cells were loaded onto Percoll 

gradients (10 – 70 % [v/v]) and vCTBs were collected between 35 – 50% of Percoll 

layers, pelleted, and washed twice with HBSS. Eventually, red blood cells (if present) 

were removed by incubating vCTBs with erythrocyte lyses buffer (155 mM NH4Cl, 10 

mM KHCO3, 0.2 mM EDTA, pH 7.3) at room temperature for 5 min. Afterwards, vCTBs 

were washed twice with HBSS. Subsequently, vCTBs were either immediately frozen 

in cell banker 2 (2 – 5 x 106 per ml; Zenoaq) and stored in liquid nitrogen for flow 

cytometry analyses or seeded onto fibronectin-coated (20 µg/ml, Millipore) 48-well 

dishes at a concentration of 2.5 x 105 cells per cm2 in DMEM/F12 (Gibco) containing 

10 % FBS and 0.05 mg/ml gentamycin (Gibco). After 2 hours, non-attached cells were 

removed and fresh culture medium was added supplemented with vehicles (ctrl), or 5 

µM A8301 (Tocris). For siRNA experiments, vCTBs were transfected with ON-

TARGETplus non-targeting siRNAs (siCTRL; D-001810-10-0020, Thermo 
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Scientific/Dharmacon), or co-transfected with ON-TARGETplus YAP1 and WWTR1 

(siYAP1/TAZ; L-012200-00-0005, L-016083-00-0005, Thermo Scientific/Dharmacon) 

using Lipofectamine RNAiMAX (Invitrogen) according to the instructions of the 

manufacturer. After two and four days, the culture medium was changed containing 

the respective supplements and siRNAs. At indicated time points, cells were washed 

with ice-cold PBS and lysed using PeqGold Trifast (PeqLab). For immunofluorescence 

analyses cells were washed with ice-cold PBS and fixed with 4% paraformaldehyde 

for 15 min at room temperature. 

 

RNA isolation and RT-qPCR 

Cell pellets or pulverized tissue were lysed in QIAzol lysis reagent (Qiagen, Austin, 

Texas). RNA was isolated according to the manufacturer’s instructions (AllPrep 

DNA/RNA/Protein Mini, Qiagen, Austin, Texas). RNA quality was determined using an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Quality check 

was followed by reverse transcription of 1 μg total RNA per reaction using High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA), 

according to the manufacturer’s manual. For Graz cohort, qPCR was performed with 

Blue S’Green qPCR Kit (Biozym, CityVienna, Austria) using a Bio-Rad CFX96 cycler. 

For all other qPCRs, the QuantStudio 3 Real-Time PCR System (Applied Biosystems) 

with either TaqMan Fast Universal PCR Master Mix or Fast SYBR Green Master Mix 

(both Thermo Fisher Scientific) were used. Primer and probes (see below in Table S1) 

were designed using Real-time PCR (TaqMan) Primer and Probes Design Tool (online 

tool) from GenScript and synthesized by BioTez, Germany. Primers were diluted to a 

final concentration of 10 mM, probes to 5 mM. The target mRNA expression was 

quantitatively analysed with standard curve method. All expression values were 

normalized to the housekeeping gene 18S or TBP. Validation cohorts were analysed 

individually and for combined presentation merged by z-transformation. 
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Target 
gene 
(human
) 

Forward sequence Reverse sequence Probe sequence 

18S 5´ ACA TCC AAG 
GAA GGC AGC AG 
3´ 
 

5´ TTT TCG TCA CTA 
CCT CCC CG 3´ 
 

5’ FAM-CGC GCA AAT 
TAC CCA CTC CCG 
ACA-TAMRA 3’ 

CGA 5’ 
CTGCATGTTCTCCA
TTCCGC 3’ 

5’ 
TAGCGTGCATTCTGG
GCAAT 3’ 

NA 

EP300 5’ 
TGCCACCATGGAG
AAGCATA 3’ 

5’ 
CATCCCGACCATCCA
TCAGA 3’ 

NA 

FOS 5’ 
GACTCCTTCTCCAG
CATGGG 3’ 

5’ 
GGGAATGAAGTTGG
CACTGG 3’ 

NA 

GATA3 5’ 
CAGTTGCCGTTGA
GGGTTTC 3’ 

5’ 
TAGGGACAAGACAG
ATGCCG 3’ 

NA 

GDF15 5’ 
TGGGAAGATTCGA
ACACCGA 3’ 
 

5’ 
CCCGAGAGATACGC
AGGTG 3’ 

5’ FAM-
CTGGGATCCGGCGG
CCACCT-TAMRA 3’ 

HLA-G 5’ 
GGAAGAGGAGACA
CGGAACA 3’ 

5’ 
ACTGGAGGGTGTGA
GAACTG 3’ 

NA 

INHBA 5’ 
GCAGACCTCGGAG
ATCATCA 3’ 

5’ 
GAAATCTCGAAGTGC
AGCGT 3’ 

NA 

NOTU
M 

5’ 
GTGGAACGCAAAC
ATGGTCT 3’ 

5’ 
ACCACCTCCTGGAT
GATGAG 3’ 

NA 

SDC1 5’ 
CCAAGCTGACCTT
CACACTC 3’ 

5’ 
GGCCACTACAGCCG
TATTCT 3’ 

NA 

TBP 5’ TGA CCC AGC 
ATC ACT GTT TC 3’ 

5’ CCA GCA CAC TCT 
TCT CAG CA 3’ 

NA 

TEAD1 5’ 
AGCCAGGATCCTC
ACAAGAC 3’ 

5’ 
AGGCTCAAACCCTG
GAATGG 3’ 

NA 

NA, not applicable. 

 

Flow cytometry analyses 

Pooled villous cytotrophoblast cells from the same isolation (3 donors, gestational ages 

weeks 8+5, 9+2, 10+3) were seeded onto fibronectin coated plates (20 µg/mL, FC010 

Merck) at a density of 0.25 x 106 cells/cm2 and cultured for three (d3) or six (d6) days 
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in DMEM/F12 (Gibco) containing 10% FBS and 0.05 mg/ml gentamycin (Gibco). Media 

was changed the day after thawing and every second day thereafter. d3 and d6 cells 

were trypsinised with TryPLE for 5 min at 37°C and plated on V plates alongside freshly 

thawed cells (d0) from the same donors at 0.1 x 106 cells per well. All flow cytometry 

measurements included dead cell exclusion using Live Dead Fixable Aqua Dead Cell 

Stain Kit for 405 nm excitation (Thermo Fischer). ABTB2 (HPA020065) antibody was 

concentrated using the Antibody Concentration and Clean-Up Kit (Abcam, ab102778) 

and conjugated with PerCP-Cy5.5 (ab102911); GREM2 (ProteinTech, 13892-1-AP) 

was conjugated with Phycoerythrin (Pe) (ab102918), according to manufacturer’s 

instructions. Cells were stained with surface antibodies (Supplementary Table 2) in 

PBS + 0.5% BSA + 2 mM EDTA together with human FcR-blocking reagent (Miltenyi, 

130-059-90) and incubated for 30 min on ice. Cells were stained with secondary 

antibodies (Invitrogen A11008 (anti-rabbit) & A-21235 (anti-mouse)) for 30 min on ice 

and fixed using the FoxP3 Staining Buffer Kit (eBioscience, 00-5523-00), stained with 

intracellular antibodies for 30 min on ice and analysed. Gating was performed 

according to unstained cells and fluorescence-minus-one (FMO) controls. Lineage-

negative (CD34-, CD45-, CD49a-, CD235a-) cells were gated from live singlet events. 

Next, CD49f- (BD 747725) and E-cadherin+ (Cell Signalling 3195) cells were gated 

and co-expression of GREM2, CCR7 (BioLegend 353243) and ABTB2 in this 

subpopulation quantified. See extended Data Figure 6f for a visual representation of 

gates.  

 

Antigen Flourophore Clone Dilution Manufacturer 
CD49f BV421 GoH3 1:200 BD Biosciences 
E-cadherin* - 24E10 1:50 Cell signalling 
GREM2^ PerPC-Cy5.5 polyclonal 1:200 ProteinTech 
ABTB2^ Pe polyclonal 1:100 SigmaAldrich (HPA) 
CCR7 AlexaFluor 700  1:100  
CD34* biotinylated AC136 1:200 Miltenyi 
CD45* biotinylated REA747 1:100 Miltenyi 
CD49a* biotinylated REA1106 1:100 Miltenyi 
CD235a* biotinylated REA175 1:100 Miltenyi 
Streptavidin PE-Vio 770 - 1:250 Miltenyi 
Secondary 
rabbit IgG 

AF488 - 1:200  

Antibodies used for flow cytometry. ^ intra-cellular antigen, * non-preconjugated 
antibody, was stained with secondary streptavidin (if biotinylated) or anti-rabbit IgG. 
 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

54 

First trimester Serum ELISA Measurement 

Women were recruited in the first trimester of pregnancy and a serum sample was 

taken before risk assessment via the FMF algorithm23. We excluded women with 

comorbidities such as chronic hypertension or diabetes mellitus and proceeded to 

match women that developed early onset preeclampsia to controls 1:2 (n=28 vs n=56). 

The matching was based on the variables maternal age, gestational age at first scan, 

and BMI. This was done using the R package Matching, which finds for each case two 

matching controls that minimise the weighted distance of their matching variables. We 

excluded patients that were prescribed prophylactic Aspirin from being part of the 

control group to reduce confounding. The serum samples from the 84 selected case 

and control patients (matched on maternal age, GA at first scan, and BMI) were then 

analysed for leptin, perlecan, GDF15 and activin A according manufactures protocol: 

human HSPG (Perlecan) ELISA Kit (ab274393; Abcam), human GDF-15 Quantikine 

ELISA Kit (DGD150; R&D Systems), human/mouse/rat Activin A Quantikine ELISA Kit 

(DAC00; R&D Systems) and human Leptin Quantikine ELISA Kit (DLP00; R&D 

Systems). Due to missing samples and one sample that was removed after unreliable 

measurements, the group sizes were eoPE: n=27 and healthy term controls: n=49. A 

conditional logistic regression model was fit to the new data with predictor variables 

being included using forward selection. A conditional logistic regression model was 

calculated as absolute model without prior risk assessment based on the cohort 

published earlier24, a second model included the risk assessment by the FMF algorithm 

as offset. ROC curves and AUC are calculated from the method described in25, while 

confidence intervals stem from the DeLong method. R-scripts, data-tables and detailed 

results are available via https://github.com/HiDiHlabs/preeclamspsia_Nonn_etal/. 

 

 

Immunofluorescence staining 

Formalin fixed paraffin embedded (FFPE) placenta tissue sections (5 μm) were 

mounted on Superfrost Plus slides. Standard deparaffinisation was followed by antigen 

retrieval (AGR) in the multifunctional microwave tissue processor KOS in Tris-EDTA 

buffer pH 9.0 or citrate buffer pH 6.0 for 40 min at 93°C. Thereafter, sections were 

washed with PBS/T and incubated with Ultra V Block for 7 min at RT. For double 

staining, primary antibodies were mixed and diluted in antibody diluent and incubated 

on sections for 30 min at RT. Subsequently, slides were washed with PBS/T and 
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incubated with secondary anti-mouse or anti-rabbit antibodies for 30 min at RT. Finally, 

slides were washed and nuclei stained with DAPI (1: 2,000; Invitrogen). Rabbit 

immunoglobulin fraction and negative control mouse IgG1 were used as described 

above and revealed no staining. Tissue sections were mounted with ProLong Gold 

antifade reagent (Invitrogen) and fluorescence micrographs were acquired with an 

Olympus microscope (BX3-CBH). 

 

Target Clone Species Dilution AGR Company 

Cytokeratin-

7 

RCK105 

(RUO) 

mouse 1:200 pH 6.0 BD Biosciences, 

550507 

E-Cadherin 4A2 mouse 1:500 pH 9.0 Cell Signaling, mAb 

#14472 

GREM2 - rabbit 1:200 pH 9.0 proteintech, 13892-1-

AP 

p300 D8Z4E rabbit 1:800 pH 6.0 Cell Signaling, mAb 

#86377 

anti-rabbit IgG (Alexa Fluor 

555) 

goat 1:200  Invitrogen 

anti-mouse IgG (Alexa 

Fluor 488) 

goat 1:200  Invitrogen 

 

 

Image analysis 

Image analysis was performed on the whole-slide images using the image analysis 

software Visiopharm, version 2021.09. For p300 staining, we did villi and trophoblast 

detection and used the commercial Visiopharm app ‘Nuclei Detection, AI 

(Fluorescence)’ for nuclei detection and separation. We then classified nuclei into 

positive and negative by an intensity threshold of 70 (on an 8-bit scale 0-255) on the 

P300 marker within the respective nucleus area. Numbers of P300 positive and 

negative nuclei were assessed on the trophoblast area as well as on the remaining 

villous area.  

For GDF15 staining, we accessed the mean intensity on the detected trophoblast area 

after villi and trophoblast area detection 
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Immunohistochemistry 

Formalin fixed paraffin embedded (FFPE) placenta tissue sections were deparaffinised 

according to standard procedures. Antigen retrieval (AGR) was performed in a 

microwave oven in citrate buffer pH6 for 40 min. After a washing step with TBS/T 

sections were incubated with Hydrogen Peroxide Block (Epredia, Netherlands) to 

quench endogenous peroxidase followed by a further blocking step with UltraVision 

Protein Block (Epredia). Primary antibodies were diluted in antibody diluent and 

incubated on the sections for 45 min at RT. Slides were washed with TBS/T and 

thereafter the UltraVision LP HRP Polymer Detection System (Epredia) was used 

according to the manufacturer’s instructions. The polymer complex was visualized with 

AEC (AEC substrate kit, Abcam, UK), sections were counterstained with hemalaun 

and mounted with Kaisers glycerin gelatine (Merck, Germany). An Olympus VS200 

slide scanner was used to scan the slides. 

 

 

Target Clon

e 

Species Dilution Company 

GDF15 - rabbit 1:1000 (1st 

Trim) 

1:250 (Term) 

Sigma-Aldrich, 

#HPA011191 

HLA-G 4H84 mouse 1:6000 BD Biosciences, 

#557577 

ßHCG - rabbit 1:1000 Thermo Scientific, #RB-

059-A 

 

 

Spatial proteomics 

Formalin fixed, paraffin embedded (FFPE) placenta tissue sections (5 μm) were 

mounted on PPS FrameSlides (Leica). Standard deparaffinisation was followed by 

antigen retrieval (AGR) in the incubator with Pepsin solution for 10 min at 37°C. 

Thereafter, sections were washed with PBS/T and incubated with Ultra V Block for 10 

min at RT. For double staining, primary antibodies were mixed and diluted in antibody 

diluent and incubated on sections overnight at 4°C. Subsequently, slides were washed 

with PBS/T and incubated with secondary anti-mouse or anti-rabbit antibodies for 30 
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min at RT. Finally, slides were washed and tissue sections were mounted with Slow 

Fade Diamond Mounting media with DAPI (Invitrogen) and fluorescence micrographs 

were acquired. 

   

Target  Clone  Species  Dilution  AGR  Company  
b-CG 5H4-E2 mouse  1:300  Pepsin  Abcam #ab9582 
E-Cadherin  24E10 rabbit  1:200  Pepsin  Cell Signaling, mAb 

#3195  
anti-rabbit IgG (Alexa Fluor 
488)  

goat  1:300    Life Technologies  

anti-mouse IgG (Alexa in 
donkey Cy3)  

 1:200    Jackson Immuno 
Research  

 
Regions of interest were collected by laser microdissection (LMD) on a Leica LMD7 

microscope using a 20x objective operated in fluorescence mode. An area of 

approximately 50,000 µm2 was collected per sample into 384-well plates (Eppendorf 

#0030129547). After LMD, tissue samples were processed for bottom-up LC-MS 

based proteomics as recently described26, but with small adjustments. Briefly, 4 µl of 

60 mM triethylammonium bicarbonate (TEAB, Sigma #T7408) was added to each well, 

shortly centrifuged (2,000xg, 1 min) and the plate heated at 95°C for 60 min in a thermal 

cycler (Biorad’s S1000 with 384-well reaction module) at a constant lid temperature of 

110°C. 1 µl of ACN was then added to each well (20% final concentration) and heated 

again at 75°C for 60 min in the thermal cycler. Samples were shortly cooled to room 

temperature and 2 µl LysC (Promega) added pre-diluted in ultra-pure water to 2 ng/µl 

and digested for 4 h at 37°C in the thermal cycler. Subsequently, 2 µl trypsin (Promega 

Trypsin Gold) was added pre-diluted in ultra-pure water to 2 ng/µl and incubated 

overnight at 37°C in the thermal cycler. Next day, digestion was stopped by adding 

trifluoroacetic acid (TFA, final concentration 1% v/v) and samples vacuum-dried 

(approx. 60min at 60°C). Finally, 4 µl MS loading buffer (3% acetonitrile in 0.2% TFA) 

was added, the plate vortexed for 10 s and centrifuged for 5 min at 2,000xg. Samples 

were stored at -20°C until LC-MS analysis. 

  
LC-MS analysis  

Liquid chromatography mass spectrometry (LC-MS) analysis was performed with an 

EASY-nLC-1200 system (Thermo Fisher Scientific) connected to a trapped ion mobility 

spectrometry quadrupole time-of-flight mass spectrometer (timsTOF SCP, Bruker 

Daltonik GmbH, Germany) with a nano-electrospray ion source (Captive spray, Bruker 
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Daltonik GmbH). The autosampler was configured for sample pick-up from 384-well 

plates. 

Peptides were loaded on a 20 cm in-house packed HPLC-column (75 µm inner 

diameter packed with 1.9 µm ReproSilPur C18-AQ silica beads, Dr. Maisch GmbH, 

Germany). Peptides separation followed a 32 min gradient with a flow rate of 250 nL 

with increasing concentration of buffer B (0.1% formic acid, 90% ACN in LC-MS grade 

H2O) to 60%. Buffer A consisted of 3% ACN, 0.1% formic acid in LC-MS grade H2O. 

The total gradient length was 44 min. Column temperature was controlled by a column 

oven and kept constant at 40°C.   

Mass spectrometric analysis was performed in data-independent (diaPASEF) mode27 

using the default method for long gradients with a cycle time of 1.8 s. Ion accumulation 

and ramp time in the dual TIMS analyser was set to 100 ms each and we analysed the 

ion mobility range from 1/K0 = 1.6 Vs cm-2 to 0.6 Vs cm-2. The total m/z range was 

set to 100-1,700 m/z. The collision energy was lowered linearly as a function of 

increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm-2 to 20 eV at 1/K0 = 0.6 

Vs cm-2. Singly charged precursor ions were excluded with a polygon filter 

(timsControl software, Bruker Daltonik GmbH).  

   

Data analysis of proteomic raw files 

Proteomics measurements were analysed using the timsControl software (Bruker 

Daltonik GmbH, v. 3.1). For diaPASEF measurements, raw files were analysed with 

DIA-NN (v. 1.8)28 in library-free mode based on a predicted human spectral library 

(Uniprot 2021 release). Default settings were used with small adjustments. The mass 

range was set to 100 – 1,700 m/z, precursor charge state was 2 - 4 and the maximum 

number of allowed miscleavages was 2. MS1 and MS2 mass accuracies were set to 

15 ppm and the match-between-runs option was enabled. Quantification strategy was 

set to ‘Robust LC’. For downstream data analysis, we used the protein FDR filtered 

pg.matrix.tsv and unique.genes.matrix.tsv DIA-NN output tables were analysed with 

Perseus (v. 1.6.15.0)29 and the Protigy R package (v. 1.0.2, 

https://github.com/broadinstitute/protigy). Missing values were imputed based on a 

normal distribution (width = 0.3; downshift = 1.8) after stringent data filtering (70% 

quantified values across samples). Prior to principal component analysis (PCA), batch 

effects were corrected with the proBatch R package (v. 1.10.0) based on the ComBat 

method (https://doi.org/10.3929/ethz-b-000307772). Pathway enrichment analysis 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

59 

was performed with clusterProfiler R package (version 4.2.2, 

https://doi.org/10.1089/omi.2011.0118).     

 

 

Data and code availability 

The snRNA-Seq raw data of the 33 villi and decidua samples generated in this study 

have been deposited in the European Genome-Phenome Archive under the accession 

number EGAS00001005681. The data are available under controlled access due to 

the sensitive nature of sequencing data, and access can be obtained by contacting the 

appropriate Data Access Committee listed for each dataset in the study. Access will 

be granted to commercial and non-commercial parties according to patient consent 

forms and data transfer agreements. Images of the ISS data are available via Zenodo 

(doi: 10.5281/zenodo.5243240). The Visium data are available via Zenodo (doi: 

10.5281/zenodo.5336504). The remaining data are available within the article, 

Extended Data Figures or Tables and Supplementary Information. Scripts used to 

analyse the data and generate figures are available via 

https://github.com/HiDiHlabs/preeclamspsia_Nonn_etal/. 

 

Data collection 

No software was used for data collection.  

 

Data analysis 

Single-nucleus RNA sequencing analysis. The alignment and pre-processing of the 

snRNA-Seq data were performed using Cellranger version 3.0.2, 6.0.1 & 6.1.2. 

Ambient RNA and background noise correction were performed using CellBender 

0.2.0. The data were processed using scanpy 1.8.2 in python 3.7.9. scvi-tools 0.14.5 

was used for data harmonization. UMAP was computed using umap-learn 0.5.2. 

Trajectory analysis was performed using stream 1.1 and scanpy 1.8.2. Seurat 4.0 was 

used for marker analysis. Cell-cell interaction analyses were performed using 

Connectome 1.0.1 and LIANA 0.1.4. Gene/transcription factor regulatory network 

analyses and visualization were performed using STRING, iRegulon, and Cytoscape 

3.8.2. For visualisation, igraph 1.3.2, circlize 0.4.15, dplyr 1.0.9, ComplexHeatmap 

2.10.0; seaborn 0.10.0, and python-igraph 0.7.1 were used. Generally, scikit-learn 

1.0.2, statsmodel 0.12.1, scipy 1.5.3, pandas 1.1.4, and numpy 1.19.4 were used.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511539
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

60 

10X Visium was analyzed using Spotlight 1.0.0. 

ISS analysis was performed using python 3.10.4 and jupyter 1.0.0. Data handling was 

done using plankton 0.1.0, which uses pandas 1.4.3. All plots were generated using 

matplotlib 3.5.2. SnRNA-Seq data was integrated using scanpy 1.9.1. Image analysis 

for villi wall detection was performed with Scikit-image 0.19.2. Scikit-learn 1.1.1 was 

used to assign wall pixels and for spatial model building and nearest neighbor analysis. 

Numpy 1.22.4 was used for all algebraic operations on matrix representations of the 

data. Scipy 1.8.1 was used for statistical model building during pathway analysis.  

Spatial proteomic analyses were performed using timsControl software (Bruker 

Daltonik GmbH, version 3.1), DIA-NN 1.8; and Protigy R 1.0.2, proBatch R 1.10.0, 

clusterProfiler 4.2.2, and Perseus 1.6.15.0. Pathway enrichment analysis was 

performed with clusterProfiler R 4.2.2 packages.  

For conditional regression model analyses and visualisations, R 4.1.2, magrittr 2.0.2, 

Matching 4.9-11, tidyr 1.2.0, survival 3.2-13 and pROC 1.18.0 were used. 
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