

1 **Differential innate immune response of endometrial cells to**
2 **porcine reproductive and respiratory syndrome virus type 1**
3 **versus type 2**

4 Muttarin Lothong¹, Dran Rukarcheep¹, Suphot Wattanaphansak², Sumpun Thammacharoen¹,
5 Chatsri Deachapunya³ and Sutthasinee Poonyachoti^{1,4*}

6 ¹Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri-
7 Dunant Rd., Pathum Wan, Bangkok 10330, Thailand

8 ²Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University,
9 Henri-Dunant Rd., Pathum Wan, Bangkok 10330, Thailand

10 ³Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Sukhumvit Rd.,
11 Wattana, Bangkok 10110, Thailand

12 ⁴CU-Animal Fertility Research Unit, Chulalongkorn University, Henri-Dunant Rd., Pathum
13 Wan, Bangkok 10330, Thailand

14 *Corresponding author
15 E-mail: Sutthasinee.p@chula.ac.th
16

17 Running head: Endometrial immune response to PRRSV, Lothong et al., 2022

18
19
20
21
22

23 **Abstract**

24 Modification of cellular and immunological events due to porcine reproductive and
25 respiratory syndrome virus (PRRSV) infection is associated with pathogenesis in lungs. PRRSV
26 also causes female reproductive dysfunction and persistent infection which can spread to fetus,
27 stillbirth, and offspring. In this study, alterations in cellular and innate immune responses to
28 PRRSV type 1 or type 2 infection, including expression of PRRSV mediators, mRNA expression
29 of toll-like receptor (TLRs) and cytokine, and cytokine secretion, were examined in primary
30 porcine glandular endometrial cells (PGE). Cell infectivity as observed by cytopathic effect
31 (CPE), PRRSV nucleocapsid proteins, and viral nucleic acids was early detected at two days
32 post-infection (2 dpi) and persisted to 6 dpi. Higher percentage of CPE and PRRSV positive cells
33 were detected in type 2 infection. PRRSV mediator proteins, CD151, CD163, sialoadhesin (Sn),
34 integrin and vimentin, were upregulated following type 1 and type 2 infection. *CD151*, *CD163*
35 and *Sn* were upregulated by type 2. Both PRRSV types upregulated *TLR1* and *TLR6*. Only type 2
36 infection upregulated *TLR3*, but downregulated *TLR4* and *TLR8*. By contrast, both types
37 upregulated TLR4 and downregulated TLR6 protein expression. *Interleukin (IL)-1 β* , *IL-6* and
38 *tumor necrotic factor (TNF)- α* were upregulated by type 2, but *IL-8* was upregulated by type 1.
39 Both PRRSV type 1 and 2 stimulated IL-6 but suppressed TNF- α secretion. In addition, IL-1 β
40 secretion was suppressed by type 2. These findings reveal one of the important mechanisms
41 underlying the strategy of PRRSV on innate immune evasion in endometrium which is
42 associated with the viral persistence.

43

44 **Keywords:** innate immune response, glandular endometrium, porcine reproductive and
45 respiratory syndrome virus, PRRSV mediators, toll-like receptors

46 **Author Summary**

47 Widely prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) remains the
48 leading cause of huge economic losses to the global swine industry. Due to an infection of
49 macrophages, PRRSV can persist in animals for extended periods of time associated with long-
50 lasting reproductive disorders. Modification of cellular and immunological responses to PRRSV
51 infection which may be related with the pathogenesis of reproductive disorders remains unclear.
52 Herein, direct PRRSV infection of primary porcine glandular endometrial epithelial cell culture
53 (PGE) demonstrated that PRRSV type 1 and 2 upregulated the protein expression of PRRSV
54 mediators correlated with cell persistence of PRRSV. However, TLR and cytokines gene
55 expression, and cytokine secretion were differentially modulated in response to PRRSV type 1
56 vs. type 2. Our study provides new insights into the cellular mechanism associating with PRRSV
57 persistence in the endometrial cells and the underlying interaction of virus with the host.

58 **Introduction**

59 Porcine reproductive and respiratory syndrome virus (PRRSV) disease is one of the most
60 economic issue that affects the swine industry [1]. Massive reproductive disorders in sows
61 causing perinatal losses and respiratory distress in piglets is the main impact of PRRSV outbreak
62 [2]. Increased expenses associated with recirculation of PRRSV infection, i.e., confirming
63 PRRSV status and treatment of secondary infections have an indirect impact on the cost of
64 production [1].

65 PRRSV is a positive single-stranded RNA virus belonging to the *Arteriviridae* family.
66 Two distinct strains, PRRSV type 1 and type 2, are identified and share approximately 60%

67 genetic identity [3]. The virulence, clinical severity, antigenic and immunological diversity are
68 relevant to genetic variability of PRRSV strains [3, 4].

69 In reproductive organs, PRRSV can be transmitted via transplacental viral shedding
70 leading to aborted fetus and/or weak born piglet [5]. It has been suggested that PRRSV
71 replication can occur at the implantation site [6], although PRRSV is highly restricted to porcine
72 alveolar macrophages (PAMs) [7, 8].

73 PRRSV mediators are the major determinant of cellular susceptibility. At least five
74 molecules have been described as PRRSV mediators, such as CD163, Sn, CD151, integrin and
75 vimentin [9, 10]. These receptors play significant roles in PRRSV infection, including virus
76 binding, internalization, uncoating and replication [11]. Previous study in primary porcine
77 glandular endometrial cells (PGE) demonstrates a low expression level of PRRSV receptors,
78 CD163 and Sn; however, PRRSV can induce CPE and damage PGE [12]. Moreover, high
79 existence and release of PRRSV from PGE was gradually increased with time suggesting the
80 susceptibility or recirculation of PRRSV in the infected PGE [12]. Overexpression or
81 modification of PRRSV receptor cDNA in PRRSV non-permissive cell lines can generate the
82 infectious progeny virus from those cells [13]. This raised the possibility that PGE may express
83 alternative PRRSV receptors, in which PRRSV can infect and process host cellular response.
84 The modification of PRRSV receptor expression associated with the increased PRRSV
85 susceptibility and replication remains to be investigated.

86 Innate immune response is primarily responsible for an immediate protection against
87 pathogen invasion and subsequently activates the adaptive immune response. The innate immune
88 response is mediated through host pattern recognition receptors (PRRs), i.e., toll-like receptors

89 (TLRs). The TLRs 1-9 are expressed in immune cells and non-immune cells like endometrial
90 epithelial cells [14]. Endosomal TLRs, TLR3, TLR7, TLR8, and TLR9 detect internalized viral
91 nucleic acid and promote the production of anti-viral cytokines such as type I interferons (IFN),
92 IFN- α and IFN- β [15]. Membranous TLRs, TLR2 and TLR4 generally recognize bacterial
93 structural proteins but not the invading viral particles. TLR and cell signaling system mediate
94 host-viral PRRSV interaction by inducing the production of pro-inflammatory cytokines, such as
95 IL-6, IL-8 and TNF- α in MARC-145 and PAMs [16]. PRRSV infections are characterized by
96 prolonged viremia and complication from immunosuppressive effects because of the
97 upregulation of *IL-10* and *IL-1 β* expression and reduction of *IFN- γ* in porcine
98 polymorphonuclear cells [17, 18]. Thus, the cellular modification of host immune system is
99 relevant to both pathogenesis and host protection of PRRSV. The effect of PRRSV infection on
100 the local innate immunological responses of the reproductive system is associated with
101 reproductive failure is still in question.

102 In the present study, we employed the PGE infected with PRRSV from our previous
103 study [12] to determine an *in vitro* cellular response in association with cytopathic effect (CPE)
104 and viral replication pertaining to the expression of aforementioned PRRSV mediators, TLRs
105 and pro-inflammatory cytokines secretion following PRRSV type 1 or type 2 infection.

106 **Results**

107 **PRRSV type 2 induced CPE and viral existent in PGE**

108 As shown in Fig. 1, PGE infected with PRRSV type 1 or type 2 showed CPE, including
109 syncytial formation (Sc; Fig. 1A) and vacuolization (Vc; Fig. 1A) as early as 2 dpi. The CPE

110 area at 2 dpi were significantly extended to 20-30% in both type 1 and type 2 inoculated PGE as
111 compared to mock and uninfected PGE (Fig. 1B). A greater extent of CPE area (40%) was found
112 in type 2 inoculated PGE at 4 dpi, but it was recovered at 6 dpi (Fig. 1B). By contrast, the CPE
113 area produced by type 1 were not significantly different from that by the mock and uninfected
114 groups at 6 dpi (Fig. 1B). Corresponding to CPE formation, immunoreactivity of PRRSV
115 envelop protein (GP5; Fig. 1C) was early observed at 2 dpi and remained up to 6 dpi. Type 2
116 inoculation increased the PGE immunoreactive cells about 3-4 times higher than type 1
117 inoculation (Fig 1C, $p < 0.05$).

118 The PRRSV existing in type 2-inoculated PGE was 10^9 TCID₅₀/mL which were a ten-
119 fold higher than type 1 at 2 and 6 dpi (Fig. 1D; $p < 0.05$). However, the PRRSV titers were
120 equivalent in both type 1 and type 2 infected PGE at 4 dpi (Fig. 1D; $p > 0.05$).

121 **PRRSV type 2 upregulated *CD151*, *CD163* and *Sn* mRNA**
122 **expression**

123 The mRNA expression of PRRSV mediators, *CD151*, *CD163*, *Sn*, *integrin*, and
124 *vimentin*, was determined at 4 dpi to examine whether they might be a target involved in PRRSV
125 infection and existent. The normal uninfected PGE expressed a relatively higher level of
126 *vimentin* (3-fold) and low level of *CD151*, *CD163*, *Sn* and *integrin* (0.5-fold) as normalized to
127 *GAPDH* (Fig 2A). At 4 dpi, only type 2 infection was found to upregulate the expression of
128 *CD151*, *CD163* and *Sn* by 4-60-fold ($p < 0.05$, Fig 2B) with no effects on *integrin* or *vimentin*.
129 However, both mock and type 1 infection could not produce any effects on the mRNA
130 expression of PRRSV mediators tested ($p > 0.05$; Fig 2B).

131 **PRRSV type 1 and type 2 upregulated cellular expression of**
132 **PRRSV mediators**

133 Apart from mRNA expression, cellular localization of PRRSV mediator proteins at 4
134 dpi was further evaluated using immunohistochemistry in PGE. In uninfected group, at 0 dpi, the
135 immunoreactivity of CD151, CD163, Sn and integrin was rarely detected, whereas that of
136 vimentin was demonstrated about 10% (Fig. 3A). The immunoreactive CD151, CD163, Sn or
137 integrin was distributed in the cytoplasm of mock or PRRSV infected PGE (Fig. 3A). In contrast,
138 the vimentin immunoreactivity which had fiber-like characteristics was observed in the
139 uninfected and mock PGE. Analysis of expression area of PRRSV mediators was not difference
140 between the uninfected and mock PGE ($p > 0.05$; Fig 3A and 3B). Both type 1 and type 2
141 markedly upregulated the expression of all PRRSV mediators. In this result, the increases in
142 CD151, CD163, Sn, and integrin expression induced by type 2 was higher than type 1 ($p < 0.05$;
143 Fig 3B).

144 **PRRSV type 1 and type 2 upregulated TLR6 and**
145 **downregulated TLR4 expression**

146 Changes in mRNA and protein expressions of TLRs 1-10 by PGE were also determined
147 following 4 dpi. RT-PCR results of *TLR1-10* gene expression in Fig 4A showed that PRSSV type
148 1 and type 2 infection upregulated *TLR1* and *TLR6*, while only type 1 upregulated *TLR3*
149 expression ($p < 0.05$; Fig 4A). In contrast, *TLR4* and *TLR8* was downregulated in type 2 infected
150 group ($p < 0.05$; Fig 4A). Most consistent with mRNA expression, the protein expression of
151 *TLR1*, *TLR3*, *TLR4*, *TLR6* and *TLR10* in uninfected and mock infected groups was not

152 different ($p > 0.05$, Fig 4B and 4C). Both PRRSV type 1 and type 2 upregulated TLR6 by 2-fold
153 from uninfected group whereas they suppressed TLR4 expression ($p < 0.05$; Fig 4B).

154 **PRRSV type 1 and type 2 upregulated IL-6 and**
155 **downregulated TNF- α**

156 The mRNA expression of cytokines at 4 dpi and accumulated cytokine secretion at 6 dpi
157 were determined following PRRSV inoculation in PGE. The mRNA expression of cytokines was
158 not different between uninfected and mock infected groups ($p > 0.05$, Fig 5A). *IL-8* was
159 upregulated by type 1, and *IL-1 β* , *IL-6* and *TNF- α* were upregulated by type 2 infection ($p <$
160 0.05; Fig 5A).

161 Both PRRSV type 1 and 2 stimulated IL-6 but suppressed TNF- α secretion ($p < 0.05$;
162 Fig 5B). The accumulated secretion of IL-1 β was additionally suppressed after infection with
163 type 2 ($p < 0.05$; Fig 5B). CCL2, IL-8 and IFN- γ secretions were not different among groups (p
164 > 0.05 ; Fig 5B). Moreover, there was no difference in cytokine secretion between mock and
165 uninfected groups ($p > 0.05$; Fig 5B).

166 **Discussion**

167 Besides alveolar macrophages, the natural cell tropism of PRRSV, PGE has been
168 recently reported as an alternative target of PRRSV, which was preferentially infected via the
169 apical side of PGE monolayer [12]. In relation to the previous study, PGE infectivity as observed
170 by increases in CPE, PRRSV mediators and viral titers were found to be associated with changes
171 in cellular innate immune system, toll-like receptor expression, and cytokine expression and

172 secretion following the apical PRRSV infection in the present study. Both PRRSV type 1 and
173 type 2 infection not only produced the cytotoxic effects but also persisted in PGE up to 6 dpi.
174 However, different cellular responses of PGE to PRRSV type 1 and type 2 infection were
175 observed.

176 In the current study, PRRSV type 2 infected PGE displayed more CPE and higher
177 percentage of PRRSV positive cells than type 1. Thus, more cellular destruction and PRRSV
178 existence caused by type 2 infection indicated the higher virulence to PGE than that by type 1.
179 This finding was consistent with natural infection, which PRRSV type 2 revealed more severity
180 of respiratory distress than type 1 [3]. However, the natural infection or *in vivo* intranasal
181 inoculation with type 1 or type 2 could not demonstrate the different virulence in reproductive
182 signs, i.e., viral load in fetus or maternal-fetal interface, the number of embryonic death or
183 PRRSV-positive litters [19]. In our previous studies, apical route of PRRSV infection alters the
184 permeability and viability of PGE [12, 20]. However, the basolateral route of PRRSV infection
185 at endometrium occurred following viremia also causes reproductive disorders [21]. Therefore,
186 the different route of PRRSV infection which appears to produce severity in reproductive tissue
187 dysfunction should be taken into consideration and confirmed by further study.

188 Our study is the first report to indicate the upregulated cellular expression of PRRSV
189 mediators in response to PRRSV infection in porcine endometrial cells. PGE infected with
190 PRRSV type 2 induced higher degree of upregulated mRNA expressions of *CD151*, *CD163* and
191 *Sn* which were associated with the high titers of PRRSV persistence and release from infected
192 cells. The increased PRRSV mediators in PGE may play a substantial role in the sensitivity and
193 persistence to the consecutive PRRSV infection.

194 Besides, CD151 expression was found to be significant higher in endometrioid
195 carcinoma, sarcoma or carcinosarcoma [22]. Interaction between CD151 and integrin promoted
196 outgrowth in human embryonic carcinoma cell line NT2N [23]. Therefore, upregulated CD151
197 may explain the proliferative effects of PRRSV type 2 infection in PGE [20]. Moreover, the
198 infected PGE was associated with severe membrane integrity dysfunction [20]. Thus, modulation
199 of PRRSV mediators following PRRSV infection may be the underlying pathogenesis of
200 endometrial function leading to the reproductive failure in sows.

201 TLRs and cytokines are the key components of mucosal innate immune responses in
202 female reproductive tract. Upregulated TLR3, TLR7, and TLR8 expressions were correlated to
203 PRRSV virulence and clinical signs in highly pathogenic PRRSV-infected pigs [24]. Differential
204 regulation on *TLR1-10* expression was also observed following type 1 or type PRRSV infection
205 in PGE. Type 1 infection produced stimulatory effects on *TLRs*, *TLR1*, *TLR3* and *TLR6* which
206 seems not to be correlated with virulent characteristics found in the present study. Although the
207 upregulated *TLR1* and *TLR6* are not described as virulent characteristics [24], our findings that
208 PRRSV type 2 upregulation of *TLR1* and *TLR6* and downregulation of *TLR4* and *TLR8* are likely
209 to produce high infectivity, virulence, and persistence in the reproductive epithelial cells PGE.
210 Among the target genes of PRRSV infected PGE including *TLR1*, *TLR3*, *TLR4*, *TLR6* and *TLR8*
211 were indicated, only TLR4 and TLR6 protein expression were changed by PRRSV infection.

212 Upregulated TLR protein expression in PRRSV infected pigs contributes to disease
213 progression or the severity of clinical respiratory signs because of an excessive response of pro-
214 inflammatory cytokine via PAMPs/TLR signaling system [25]. Constitutive secretion of IL1 β ,
215 IL-6, IL-8 and TNF- α which is mediated through TLRs activation by TLRs ligand, including

216 poly I:C dsRNA simulating viral nucleic acids has been previously demonstrated in PGE [26].

217 Secretion of CCL2 and IFN- γ by PGE was additionally demonstrated in this study; however,
218 secretion of IL-10 and IFN- α was absence in all groups (data not shown). Thus, the presence of
219 these innate immunity-related molecules indicates the ability of PGE to interact with the viral
220 pathogens and establish a major part of the innate immune response of endometrial cells.

221 In PGE, PRRSV type 2, but not type 1 infection, induced *IL-1 β* , *IL-6*, *IL-8* and *TNF- α*
222 mRNA expression at 4 dpi, which revealed the highest CPE area of infected PGE. The recent
223 findings agree with the virulent effects of PRRSV type 2 in *in vitro* studies of PAMs and
224 peripheral blood mononuclear cell (PBMCs) [18, 25, 27].

225 In general, pro-inflammatory cytokines IL-1 β and TNF- α are released by host to
226 encounter invasive pathogens including viruses. The downregulated TNF- α synthesis and
227 secretion by PRRSV infection in PGE were consistent to the study of PAMs infected with
228 PRRSV type 2 [28]. Incubation with recombinant TNF- α was reported to reduce existent of
229 PRRSV [28]. In PRRSV-infected PGE, particularly type 2, the increased viral existence at 2-6
230 dpi (Fig. 1D) was concurrent to the decreased IL-1 β and TNF- α .

231 The suppressed TNF- α induced by PRRSV has been indicated to carry out by Nsp1 by
232 inhibiting the activation of NF- κ B and Sp1 transcription factors on the promoter region of *TNF-*
233 α [29], whereas upregulated IL-1 β production in PAMs induced by PRRSV was mediated via
234 TLR4/MyD88 pathway [30]. Therefore, the reduced IL-1 β secretion in PGE by type 2 may be
235 due to the suppressive effect of PRRSV on TLR expression. This was evidenced by the highest
236 degree of TLR4 suppression and IL-1 β inhibition in type 2 infected PGE. As the expression level
237 of IL-1 β was related to PRRSV clearance [31], the reduced TLR4/IL-1 β system and TNF- α

238 production by PRRSV might be the strategy of virus to escape the obliteration of host cells.
239 Herein, the decreased CPE with persistence of PRRSV type 2 at 6 dpi may support these
240 assumptions. Taken together, the downregulated TNF- α and IL-1 β secretion by PRRSV in
241 immune and PGE cells reflects a poor innate immune response which leads to secondary
242 infection by other microbial pathogens [32].

243 Additionally, the largely increased IL-6 secretion was found in response to PRRSV
244 infection. Excessive expression of IL-6 followed by the increased expressions of pro-
245 inflammatory cytokines and chemokines, including IL-1 β , IL-12, IL-8, and TNF- α was relevant
246 to the severe lung injury and damages of lymphoid organs in highly pathogenic PRRSV (HP-
247 PRRSV) [33]. It is likely that type 2 induced higher damages of PGE in our previous [20] and
248 current studies may be explained by the increase in *IL-1 β* , *IL-6* and *TNF- α* mRNA expression.

249 Apart from immune function, pro-inflammatory cytokines play roles in pregnancy and
250 parturition. The locally increased IL-1 β and TNF- α from neutrophil infiltrated uterine are
251 required for muscle contraction and cervical ripening during parturition [34]. However,
252 application of IL-1 β and/or TNF- α caused the dissolution of collagen fibers, stromal edema, and
253 severe inflammation in the cervix of guinea pigs [35]. Exposure or infusion of IL-1 β and TNF- α
254 caused the defects associated with peripartum intrauterine inflammation, abnormal lung
255 development associated with bronchopulmonary dysplasia, and brain injury [34]. Thus, the
256 modulation of cytokine synthesis and release by PRRSV infection in PGE affecting the
257 reproductive infertility needs a further study.

258 **Materials and Methods**

259

Reagents and materials

260 Cell culture-grade reagents of Ringer's solution, ethanol, isopropanol, H₂O₂ and
261 methanol were purchased from Sigma Chemical Co., (St Louis, MO, USA). Dulbecco's
262 Modified Eagle's Medium (DMEM), Dulbecco's PBS, fetal bovine serum (FBS), collagenase
263 type I, 0.05% trypsin-0.53 mM ethylenediaminetetraacetic acid (EDTA), kanamycin, penicillin-
264 streptomycin and fungizone were purchased from Gibco BRL (Grand Island, NY, USA).

265

Antibodies

266 Rabbit polyclonal antibody (pAb) against PRRSV envelop glycoprotein GP5 (Biorbyt
267 Ltd., Cambridge, UK; dilution 1:100) was used to detect PRRSV protein. To localize PRRSV
268 mediators, antibodies with the final dilution including rabbit pAb anti-human CD151 (Abcam,
269 Waltham, MA, USA; 1:250), goat pAb-anti-porcine CD163 (Santa Cruz biotechnology, Dallas,
270 TX, USA; 1:25), mouse monoclonal Ab (mAb)-anti-sialoadhesin (Bio-rad, Inc., Hercules, CA,
271 USA; 1:250), goat pAb anti-integrin- α 3 (Santa Cruz biotechnology, Dallas, TX, USA; 1:25) and
272 mAb anti-vimentin (Santa Cruz biotechnology, Dallas, TX, USA; 1:250) were used for
273 immunostaining. To assess the expression of toll-like receptors, mAb anti-TLR1, mAb anti-
274 TLR3, mAb anti-TLR4, mAb anti-TLR6, and mAb anti-TLR10 were purchased from Santa Cruz
275 biotechnology (Dallas, TX, USA). Other antibodies including mAb anti- β -actin, HRP-conjugated
276 anti-mouse IgG, and mAb anti-goat IgG were purchased from Bio-rad (Hercules, CA, USA).

277

PGE cell culture

278 PGE were isolated from Thai crossbred commercial 4–6 months old gilts provided by a
279 government-qualified slaughterhouse in Bangkok, Thailand, following a previous protocol [36].
280 Briefly, the uterine horn was opened along the longitudinal line and washed in Ca^{2+} - and Mg^{2+} -
281 free PBS. The mucosal layer was stripped off, minced, and digested overnight with 0.2%
282 collagenase. Endometrial glands were isolated from the digested tissues by filtration (40 μm pore
283 size) followed by a gravitational sedimentation. The sedimented glands were collected and
284 cultured in DMEM containing 5% FBS, 100 U/mL penicillin, 100 $\mu\text{g}/\text{mL}$ streptomycin, 100
285 $\mu\text{g}/\text{mL}$ kanamycin, 1% non-essential amino acids, and 10 $\mu\text{g}/\text{mL}$ insulin) at 37°C in 5% CO_2 .
286 The culture media were refreshed every 2 days. The contamination of immune cells was
287 removed, and the attached epithelial cells became confluent monolayers within 3-4 days. The
288 remaining stromal cells were removed by adding 0.02 % collagenase in serum-free medium for
289 24 h. After reaching 90% confluence, the cells were trypsinized and sub-cultured to an
290 appropriate cell culture vessel for each experiment.

291 Following our previous study [36], PGE purity over 98% was determined by the
292 immunocytochemistry staining of anti-pan cytokeratin antibody and transepithelial electrical
293 resistance (TER) of greater than 400 $\Omega\cdot\text{cm}^2$. PGE monolayers with TER of 400-800 $\Omega\cdot\text{cm}^2$ which
294 were considered as high tight junction integrity for studying ion transport were chosen for
295 inoculation. The contamination of PGE with *Mycoplasma spp.*, swine fever or PRRSV was
296 assessed by a multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR)
297 detection kit (Microplasma 16 s Ribosomal RNA Gene Genesig® Standard kit, [Primerdesign,
298 Camberley, UK]; Viotype® CSFV RT-PCR kit, [QiagenIAGEN, Leipzig, Germany]) [12]. The
299 mentioned pathogen-negative PGE was chosen for PRRSV inoculation.

300

Preparation of PRRSV inoculum

301

PRRSV was isolated from the lungs of pigs with respiratory and reproductive illness
302 and positive PRRSV sera at the Farm Animal Hospital (Faculty of Veterinary Science,
303 Chulalongkorn University, Nakorn Pathom, Thailand). To confirm and prepare PRRSV
304 inoculum, 2.3 g of the infected lung tissues was minced, homogenized in 15 mL of cold FBS-
305 free DMEM, and centrifuged at 10,000 \times g and 4°C for 10 min following the previous protocol
306 [37]. The supernatants were collected and filtered through a 0.2- μ m syringe, diluted with FBS-
307 free DMEM at a 1:1 ratio, and freshly proceeded to RT-qPCR using primers specific to ORF7 of
308 type 1/type 2, ORF 7 of type 1, and ORF 7 of type 2, as previously described [12, 38].

309

According to our previous study [12], 1 μ g of cDNA template was mixed with qPCR
310 SYBR master mix in the presence of forward and reverse primers. All reactions were subjected
311 to CFX96™ Real-Time PCR Detection System (Bio-rad, Hercules, CA, USA) using the
312 following cycle: 95°C for 3 min to activate the reaction, followed by 40 cycles of amplification
313 steps, including denaturation at 95°C for 20 s, annealing at 60°C for 30 s and extension at 72°C
314 for 30 s, respectively. The specificity of amplified products was confirmed using 1.5% agarose
315 gel electrophoresis and melting curve analysis. The lungs of PRRSV-negative pigs were isolated
316 and used for mock infection. No amplicons were produced in the mock control.

317

PRRSV inoculum quantification

318

All PRRSV inoculum were quantitated using MARC-145 cells (ATCC American Type
319 Culture Collection, VA, USA) cultivating in a 25-cm² flask (Costar®, Corning, MA, USA)
320 supplemented with DMEM containing 10% FBS. To quantitate the virus concentration as

321 described previously [12], PRRSV inoculum at 1 mL of 10-fold serial dilutions (10^{-1} to 10^{-6})
322 were incubated with the confluent MARC-145 cells at 37°C in 5% CO₂ for 1 h. After viral
323 inoculation, the cells were washed and replaced with the fresh media. CPEs in each MARC-145
324 cell culture well were observed microscopically at 2-, 4- and 6-days post-infection (dpi).
325 Following the Reed-Muench method [39], the dilution that produced CPEs by 50% was
326 considered the tissue culture infective dose 50% (TCID₅₀)/mL PRRSV inoculum stock at the
327 endpoint dilution of 10^5 TCID₅₀/mL to produce the pathological changes was used in this study
328 [12].

329 **PRRSV inoculation**

330 PGE (1×10^6 cells/mL) were seeded into 24 mm membrane cell culture inserts
331 (Transwell, MA, USA) or 25 cm² flasks (Costar, MA, USA), and maintained in the culture
332 medium for 7 days to become confluence. PGE were then allocated to Mock-, PRRSV type-1 or
333 type-2 group (n = 5 pigs each group). According to our previous protocol [12], the PGE
334 monolayer in 24 mm culture inserts or 25 cm² flasks was respectively inoculated with 1 mL or 5
335 mL of PRRSV 10^5 TCID₅₀/mL inoculum in 5% CO₂ at 37°C for 1 h. Inoculation with solution
336 extracted from PRRSV-negative lungs was used for the mock group. After 1 h of viral
337 adsorption, the cells were washed and replaced with fresh medium for 2-6 days. Each inoculation
338 was performed in duplicate.

339 **Immunohistochemistry, detection, and quantitation of** 340 **PRRSV infection and mediators**

341 All PRRSV-infected PGE were confirmed by the presence of CPE at 2, 4 and 6 dpi. All
342 CPEs were observed and measured in filter-grown PGE under light microscope with digital
343 camera (BX50F and UC50, Olympus, Tokyo, Japan). The total area of CPE was normalized with
344 the membrane filter area and reported as a percentage. To detect and quantitate PRRSV existent,
345 PRRSV isolated from PGE and culture medium were assessed by RT-qPCR with the inoculation
346 to MARC-145 cells following the Reed-Muench method [39].

347 Following the detection of CPE in PRRSV-infected PGE, immunostaining with primary
348 antibodies (Ab) to recognize viral protein PRRSV-GP5, and PRRSV mediators CD151, CD163,
349 sialoadhesin (Sn), integrin, and vimentin was performed. Following our previous protocol [12],
350 filter-grown PGE were fixed with 4% paraformaldehyde in PBS, pH 7.4 for 10 min at 25°C.
351 Fixed PGEs were treated with the non-specific blocking solution, 10% H₂O₂ in methanol,
352 followed by 4% goat serum in PBS for 4 h. The treated samples were incubated with primary
353 antibodies at 4°C overnight followed by universal HRP-conjugated secondary antibodies
354 (Vectastain® Elite ABC-HRP kit, Vector Laboratories, Inc., Burlingame, CA, USA).
355 Immunoreactivity was developed by incubating membrane filter with DAB (3,3-
356 diaminobenzidine tetrahydrochloride) substrate (Sigma Aldrich, MO, USA) and counter-stained
357 with hematoxylin (Invitrogen, Waltham, MA, USA). Immunoreactive area was visualized under
358 light microscope connected to a digital camera (BX50F and UC50, Olympus, Tokyo, Japan) with
359 20x magnification. All positive cells were captured by the digital images at the magnification of
360 20x and analyzed by ImageJ software (National Institutes of Health, Bethesda, MD, USA). The
361 area in pixel numbers of immunoreactive cells (dark-brownish staining) was measured and
362 calculated as the percentage of the total area of PGE, which comprised immunoreactive and non-

363 immunoreactive cells per fields. The means of all percentages of positive cells in each group
364 were compared.

365 **Total RNA isolation and reverse transcription**

366 Total RNA was collected from PGE (uninfected, mock, type 1, and type 2 groups)
367 grown in T25 flask using TRIzol® reagent (Invitrogen, Waltham, MA, USA). The concentration
368 of total RNA was measured for optical density at 260 nm (OD₂₆₀) using Nanodrop (NanoDrop
369 2000, Thermo Fisher Scientific, Waltham, MA USA). The purity of RNA was acceptable if the
370 OD₂₆₀/OD₂₈₀ ratio was at 1.8-2.0. Reverse transcription was done by using iScript® Select
371 cDNA synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA). Briefly, a 20 µl of reaction
372 mixture consisting of total RNA 3 µg, oligo dT primer and iScript reaction was prepared. First-
373 strand DNA was synthesized in thermocycler (Biometra GmbH, Göttingen, Germany) using the
374 following cycle: 25°C for 3 min, 46°C for 20 min, and 95°C for 1 min. cDNA concentration was
375 measured using NanoDrop and product stored at -20°C until performing real-time PCR.

376 **Real-time PCR**

377 The mRNA expression of PRRSV mediators, TLRs, and cytokines was carried out
378 using a GeneOn SYBR green based qPCR kit (GeneOn, Deutschland, Germany) following the
379 previous protocol [12, 20]. Briefly, a 20 µl of PCR reaction containing 1 µg of cDNA template,
380 2x qPCR SYBR master mix, and a pair of forward and reverse primers for each gene (Table 1)
381 was prepared. Forty cycles of reaction at 95°C, 60°C, and 72°C for 20, 30, and 30 s, respectively,
382 were carried out in a DNA Thermal Cycler (CFX96™, Bio-rad, Hercules, CA, USA). The
383 amplicons were evaluated for the specificity of product by running 1.5% agarose gel

384 electrophoresis and analyzing melting curve. The relative mRNA expression of interested genes
385 was determined by normalization with GAPDH mRNA expression and reported as fold change
386 compared to those of uninfected PGE using $2^{-\Delta\Delta C_t}$ calculation [40].

387 **Semiquantitative Western blot analysis**

388 PGE proteins were harvested using lysis buffer containing 50 mM tris, 150 mM NaCl,
389 1mM EGTA, 1mM PMSF, 1% NP-40, 6.02 mM sodium deoxycholate, 0.01 mg/ml aprotinin, 1
390 mM NaF and a cocktail protease inhibitor. Cell lysate was centrifuged at 12000 rpm for 15 min
391 at 4°C. The supernatant was collected and measured for a protein concentration using the BCA™
392 protein assay (Thermo Fisher Scientific, MA, USA). The protein sample was diluted with
393 Laemmli buffer containing β-mercaptoethanol (Bio-rad, Hercules, CA, USA) and incubated at
394 65°C for 5 min. The obtained denatured protein (30 µg) was separated by 10% sodium dodecyl
395 sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted to a PVDF membrane
396 (Millipore®, St Louis, MO, USA). After blocking non-specific protein with 2% bovine serum
397 albumin, the blotted membrane was probed with primary antibodies at 4°C for 12 h and further
398 stained with HRP-conjugated secondary antibodies for 1 h at room temperature. Dilution of all
399 antibodies was used following the manufacturer's instruction. An ECL substrate (SantaCruz
400 Biotechnology, Dallas, TX, USA) was used to develop immunoreactive bands, which were
401 visualized by exposure to an X-ray film (GE healthcare, Bloomington, IL, USA). The protein
402 expression of TLRs (n = 5 pigs each group) was analyzed by Scion image software and
403 normalized to β-actin. The results were represented as relative fold changes of protein expression
404 over those of mock group.

405 **Measurement of cytokine secretion**

406 Media collected from the apical and basolateral compartment of filter-grown PGE at 0,
407 2, 4 and 6 dpi were determined for cytokine secretion, which consisted of chemokine (C-C
408 motif) ligand 2 (CCL-2), IL-1 β , IL-6, IL-8, IL-10, TNF- α , IFN- α and IFN- γ by enzyme-linked
409 immunosorbent assay (ELISA) using commercial kits (R&D System, Minneapolis, MN, USA).
410 The ELISA processes were performed according to the instruction of commercial kits (n = 5 pigs
411 for each group). Cytokine concentration was measured at OD₄₅₀, by a microplate reader (Biotek,
412 Winooski, VT, USA), in which a background OD₆₂₀ was subtracted from all data. The
413 concentration was calculated from a standard curve. The accumulated concentrations of each
414 cytokine from 0-6 dpi were normalized by dividing with those of uninfected cells and displayed
415 as fold changes of uninfected cells.

416 **Statistical analysis**

417 All PGE data were obtained from 5 pigs per group and shown as the mean \pm SEM.
418 Statistical analysis was done by GraphPad Prism 9.0 (GraphPad software Inc., San Diego, CA,
419 USA). The percentages of CPE and PRRSV positive cells among different dpi were analyzed by
420 two-way ANOVA, and the mRNA expression of interested genes, protein expression, and
421 cytokine secretion were analyzed by one-way ANOVA. The multiple comparison with the
422 uninfected group was performed by Bonferroni's post hoc test. A *p* value of less than 0.05 was
423 considered as significant differences.

424 **Acknowledgments**

425 The authors thank the government qualified slaughterhouse in Bangkok, Thailand, for
426 providing samples used in this experiment. Department of Physiology and the Department of
427 Medicine, Faculty of Veterinary Science, Chulalongkorn University and the Department of
428 Physiology, Faculty of Medicine, Srinakharinwirot University for facilities used in this study.

429 **References**

430 1. Renken C, Nathues C, Swam H, Fiebig K, Weiss C, Eddicks M, et al. Application of an
431 economic calculator to determine the cost of porcine reproductive and respiratory syndrome at
432 farm-level in 21 pig herds in Germany. *Porcine Health Management*. 2021;7(1):3. doi:
433 10.1186/s40813-020-00183-x.

434 2. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, et al.
435 Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine
436 production in the United States. *Journal of the American Veterinary Medical Association*.
437 2005;227(3):385-92.

438 3. Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome
439 virus comparison: divergent evolution on two continents. *Journal of virology*. 1999;73(1):270-
440 80. PubMed PMID: 9847330; PubMed Central PMCID: PMC103831.

441 4. Gimeno M, Darwich L, Diaz I, de la Torre E, Pujols J, Martin M, et al. Cytokine profiles
442 and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and
443 respiratory syndrome virus isolates. *Veterinary research*. 2011;42:9. doi: 10.1186/1297-9716-42-
444 9. PubMed PMID: 21314968; PubMed Central PMCID: PMC3037899.

445 5. Christianson WT, Joo HS. Porcine reproductive and respiratory syndrome: A review.
446 *Swine Health and Production*. 1994;2(2):10-28.

447 6. Karniychuk UU, Saha D, Vanhee M, Geldhof M, Cornillie P, Caij AB, et al. Impact of a
448 novel inactivated PRRS virus vaccine on virus replication and virus-induced pathology in fetal
449 implantation sites and fetuses upon challenge. *Theriogenology*. 2012;78(7):1527-37. doi:
450 10.1016/j.theriogenology.2012.06.015. PubMed PMID: 22980086.

451 7. Van Gorp H, Van Breedam W, Delputte PL, Nauwynck HJ. Sialoadhesin and CD163 join
452 forces during entry of the porcine reproductive and respiratory syndrome virus. *J Gen Virol*.
453 2008;89(12):2943-53. doi: doi:10.1099/vir.0.2008/005009-0.

454 8. Music N, Gagnon CA. The role of porcine reproductive and respiratory syndrome
455 (PRRS) virus structural and non-structural proteins in virus pathogenesis. *Animal health research*
456 reviews. 2010;11(2):135-63. doi: 10.1017/S1466252310000034. PubMed PMID: 20388230.

457 9. Zhou L, Yang H. Porcine reproductive and respiratory syndrome in China. *Virus Res*.
458 2010;154(1-2):31-7. doi: 10.1016/j.virusres.2010.07.016. PubMed PMID: 20659506.

459 10. Feng L, Zhang X, Xia X, Li Y, He S, Sun H. Generation and characterization of a porcine
460 endometrial endothelial cell line susceptible to porcine reproductive and respiratory syndrome
461 virus. *Virus Res*. 2013;171(1):209-15. doi: 10.1016/j.virusres.2012.11.015. PubMed PMID:
462 23220338.

463 11. Shi C, Liu Y, Ding Y-z, Zhang Y, Zhang J. PRRSV receptors and their roles in virus
464 infection. *Archives of microbiology*. 2015;197. doi: 10.1007/s00203-015-1088-1.

465 12. Lothong M, Wattanaphansak S, Deachapunya C, Poonyachoti S. Porcine reproductive
466 and respiratory syndrome virus (PRRSV) preferentially infected the apical surface of primary
467 endometrial cell monolayer. *The Thai Journal of Veterinary Medicine*. 2020;49(4):401-13.

468 13. Delrue I, Van Gorp H, Van Doorsselaere J, Delputte PL, Nauwynck HJ. Susceptible cell
469 lines for the production of porcine reproductive and respiratory syndrome virus by stable

470 transfection of sialoadhesin and CD163. *BMC Biotechnology*. 2010;10(1):48. doi:
471 10.1186/1472-6750-10-48.

472 14. Young SL, Lyddon TD, Jorgenson RL, Misfeldt ML. Expression of Toll-like receptors in
473 human endometrial epithelial cells and cell lines. *American journal of reproductive immunology*
474 (New York, NY : 1989). 2004;52(1):67-73. Epub 2004/06/25. doi: 10.1111/j.1600-
475 0897.2004.00189.x. PubMed PMID: 15214945; PubMed Central PMCID: PMCPmc1459423.

476 15. Takeda K, Akira S. TLR signaling pathways. *Seminars in immunology*. 2004;16(1):3-9.
477 PubMed PMID: 14751757.

478 16. Duan E, Wang D, Luo R, Luo J, Gao L, Chen H, et al. Porcine reproductive and
479 respiratory syndrome virus infection triggers HMGB1 release to promote inflammatory cytokine
480 production. *Virology*. 2014;468-470:1-9. doi: <https://doi.org/10.1016/j.virol.2014.07.046>.

481 17. Suradhat S, Thanawongnuwech R. Upregulation of interleukin-10 gene expression in the
482 leukocytes of pigs infected with porcine reproductive and respiratory syndrome virus. *J Gen
483 Virol*. 2003;84(Pt 10):2755-60. doi: 10.1099/vir.0.19230-0. PubMed PMID: 13679610.

484 18. Tu PY, Tsai PC, Lin YH, Liu PC, Chang HL, Kuo TY, et al. Expression profile of Toll-
485 like receptor mRNA in pigs co-infected with porcine reproductive and respiratory syndrome
486 virus and porcine circovirus type 2. *Research in veterinary science*. 2015;98:134-41. Epub
487 2015/01/04. doi: 10.1016/j.rvsc.2014.12.003. PubMed PMID: 25555603.

488 19. Jeong J, Kang I, Park C, Kim S, Park SJ, Park KH, et al. A comparison of the severity of
489 reproductive failure between single and dual infection with porcine reproductive and respiratory
490 syndrome virus (PRRSV)-1 and PRRSV-2 in late-term pregnancy gilts. *Transbound Emerg Dis*.
491 2018;65(6):1641-7. Epub 2018/06/08. doi: 10.1111/tbed.12921. PubMed PMID: 29877065.

492 20. Rukarcheep D, Lothong M, Wattanaphansak S, Deachapunya C, Poonyachoti S. Porcine
493 reproductive and respiratory syndrome virus induces tight junction barrier dysfunction and cell
494 death in porcine glandular endometrial epithelial cells. *Theriogenology*. 2022.

495 21. Karniychuk U. Pathogenesis and prevention of placental and transplacental porcine
496 reproductive and respiratory syndrome virus infection. *Veterinary research*. 2013;44:95. doi:
497 10.1186/1297-9716-44-95.

498 22. Kumari S, Devi Gt, Badana A, Dasari VR, Malla RR. CD151-A Striking Marker for
499 Cancer Therapy. *Biomark Cancer*. 2015;7:7-11. doi: 10.4137/BIC.S21847. PubMed PMID:
500 25861224.

501 23. Stipp CS, Hemler ME. Transmembrane-4-superfamily proteins CD151 and CD81
502 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent
503 neurite outgrowth. *Journal of cell science*. 2000;113 (Pt 11):1871-82. Epub 2000/05/12. PubMed
504 PMID: 10806098.

505 24. Zhang L, Liu J, Bai J, Wang X, Li Y, Jiang P. Comparative expression of Toll-like
506 receptors and inflammatory cytokines in pigs infected with different virulent porcine
507 reproductive and respiratory syndrome virus isolates. *Virology journal*. 2013;10:135. doi:
508 10.1186/1743-422X-10-135. PubMed PMID: 23631691; PubMed Central PMCID:
509 PMC3673858.

510 25. Liu CH, Chaung HC, Chang HL, Peng YT, Chung WB. Expression of Toll-like receptor
511 mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus.
512 *Veterinary microbiology*. 2009;136(3-4):266-76. doi: 10.1016/j.vetmic.2008.11.016. PubMed
513 PMID: 19124206.

514 26. Deachapunya C, Poonyachoti S, Kiatprasert P, Srisomboon Y, Bauthong N.

515 Characterization of Toll-like Receptors and Beta-defensin Expression in Porcine Glandular

516 Epithelial Cells. Federation of American Societies for Experimental Biology; 2012.

517 27. Borghetti P, Saleri R, Ferrari L, Morganti M, De Angelis E, Franceschi V, et al. Cytokine

518 expression, glucocorticoid and growth hormone changes after porcine reproductive and

519 respiratory syndrome virus (PRRSV-1) infection in vaccinated and unvaccinated naturally

520 exposed pigs. Comparative immunology, microbiology and infectious diseases. 2011;34(2):143-

521 55. doi: 10.1016/j.cimid.2010.06.004. PubMed PMID: 20655592.

522 28. Lopez-Fuertes L, Campos E, Domenech N, Ezquerra A, Castro JM, Dominguez J, et al.

523 Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-alpha

524 production in infected macrophages. Virus Res. 2000;69(1):41-6. PubMed PMID: 10989184.

525 29. Subramaniam S, Kwon B, Beura LK, Kuszynski CA, Pattnaik AK, Osorio FA. Porcine

526 reproductive and respiratory syndrome virus non-structural protein 1 suppresses tumor necrosis

527 factor-alpha promoter activation by inhibiting NF-kappaB and Sp1. Virology. 2010;406(2):270-

528 9. doi: 10.1016/j.virol.2010.07.016. PubMed PMID: 20701940.

529 30. Bi J, Song S, Fang L, Wang D, Jing H, Gao L, et al. Porcine reproductive and respiratory

530 syndrome virus induces IL-1 β production depending on TLR4/MyD88 pathway and NLRP3

531 inflammasome in primary porcine alveolar macrophages. Mediators of inflammation.

532 2014;2014:403515-. Epub 2014/05/21. doi: 10.1155/2014/403515. PubMed PMID: 24966466.

533 31. Lunney JK, Fritz ER, Reecy JM, Kuhar D, Prucnal E, Molina R, et al. Interleukin-8,

534 interleukin-1beta, and interferon-gamma levels are linked to PRRS virus clearance. Viral

535 immunology. 2010;23(2):127-34. Epub 2010/04/09. doi: 10.1089/vim.2009.0087. PubMed

536 PMID: 20373993.

537 32. Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, et al. Porcine Reproductive
538 and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune
539 System. *Annu Rev Anim Biosci.* 2016;4:129-54. doi: 10.1146/annurev-animal-022114-111025.
540 PubMed PMID: 26646630.

541 33. Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly
542 pathogenic porcine reproductive and respiratory syndrome virus. *Veterinary microbiology.*
543 2017;209:30-47.

544 34. Yockey LJ, Iwasaki A. Interferons and Proinflammatory Cytokines in Pregnancy and
545 Fetal Development. *Immunity.* 2018;49(3):397-412. doi:
546 <https://doi.org/10.1016/j.immuni.2018.07.017>.

547 35. Chwalisz K, Benson M, Scholz P, Daum J, Beier HM, Hegele-Hartung C. Pregnancy:
548 Cervical ripening with the cytokines interleukin 8, interleukin 1 β and tumour necrosis factor α in
549 guinea-pigs*. *Human reproduction.* 1994;9(11):2173-81. doi:
550 10.1093/oxfordjournals.humrep.a138413.

551 36. Deachapunya C, O'Grady SM. Regulation of chloride secretion across porcine
552 endometrial epithelial cells by prostaglandin E2. *J Physiol.* 1998;508(1):31-47.

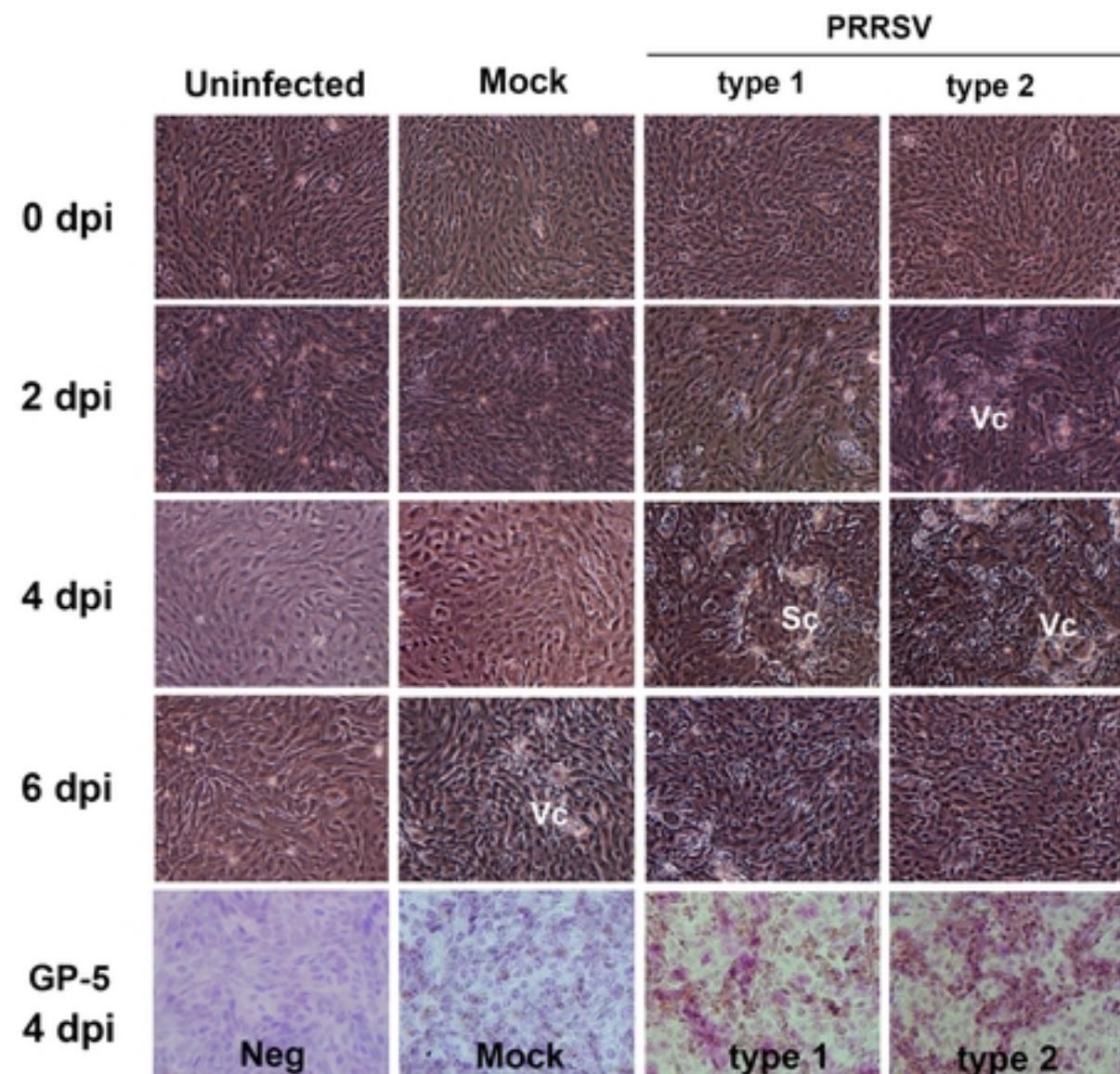
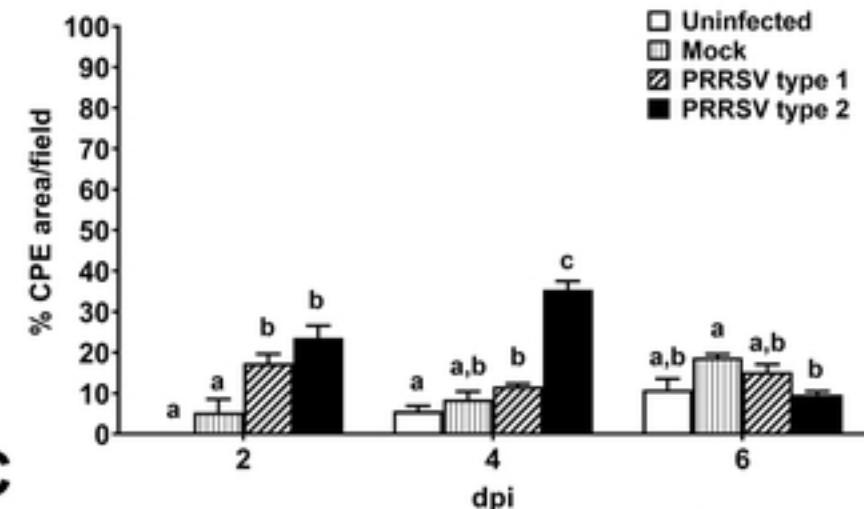
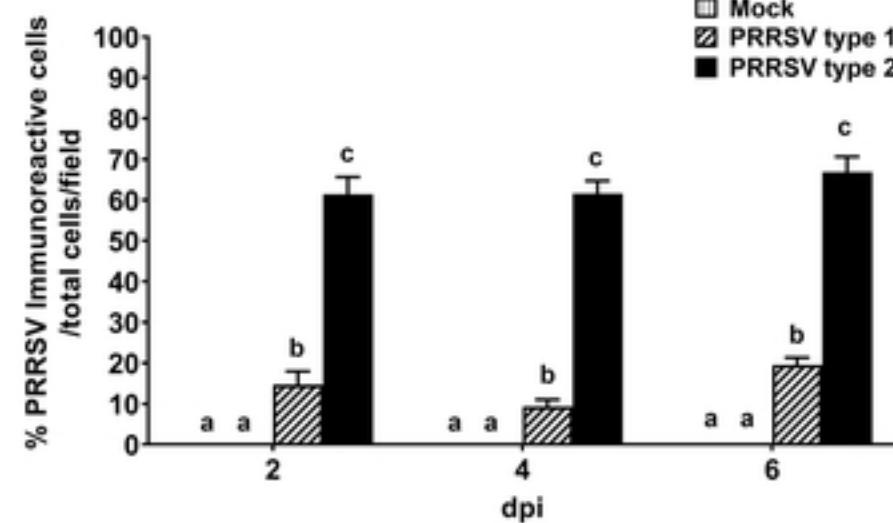
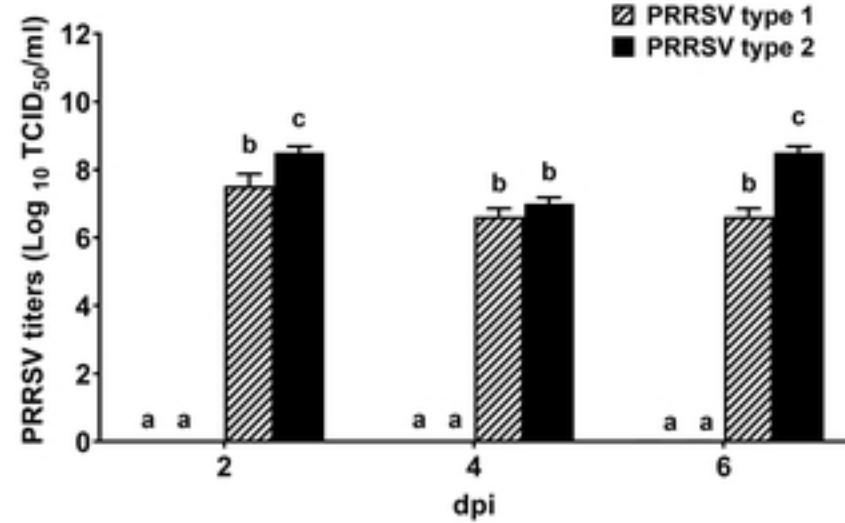
553 37. Meng XJ, Paul PS, Halbur PG, Lum MA. Characterization of a high-virulence US isolate
554 of porcine reproductive and respiratory syndrome virus in a continuous cell line, ATCC
555 CRL11171. *J Vet Diagn Invest.* 1996;8(3):374-81. doi: 10.1177/104063879600800317. PubMed
556 PMID: 8844584.

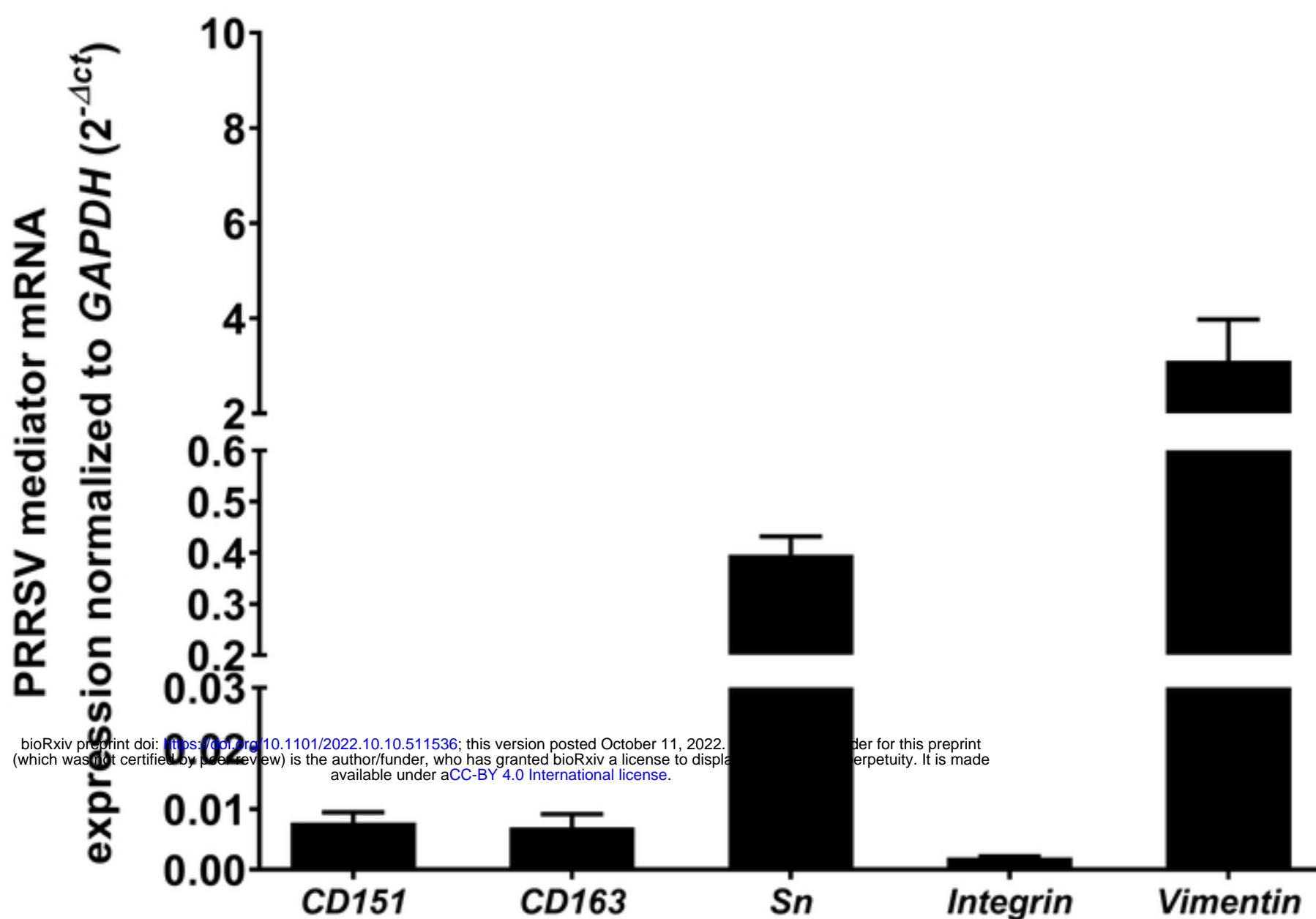
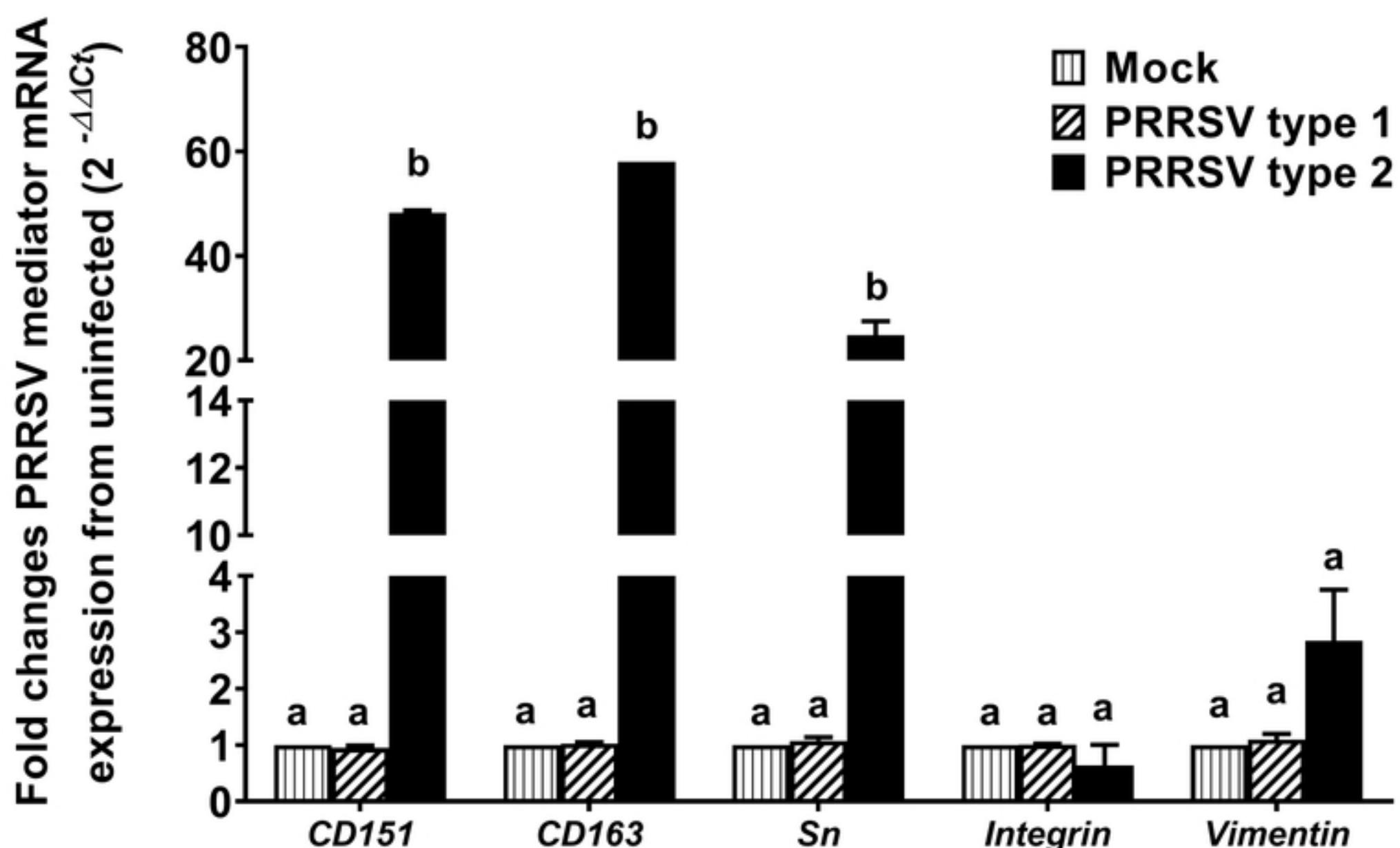
557 38. Meng XJ, Paul PS, Halbur PG, Lum MA. Phylogenetic analyses of the putative M (ORF
558 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV):

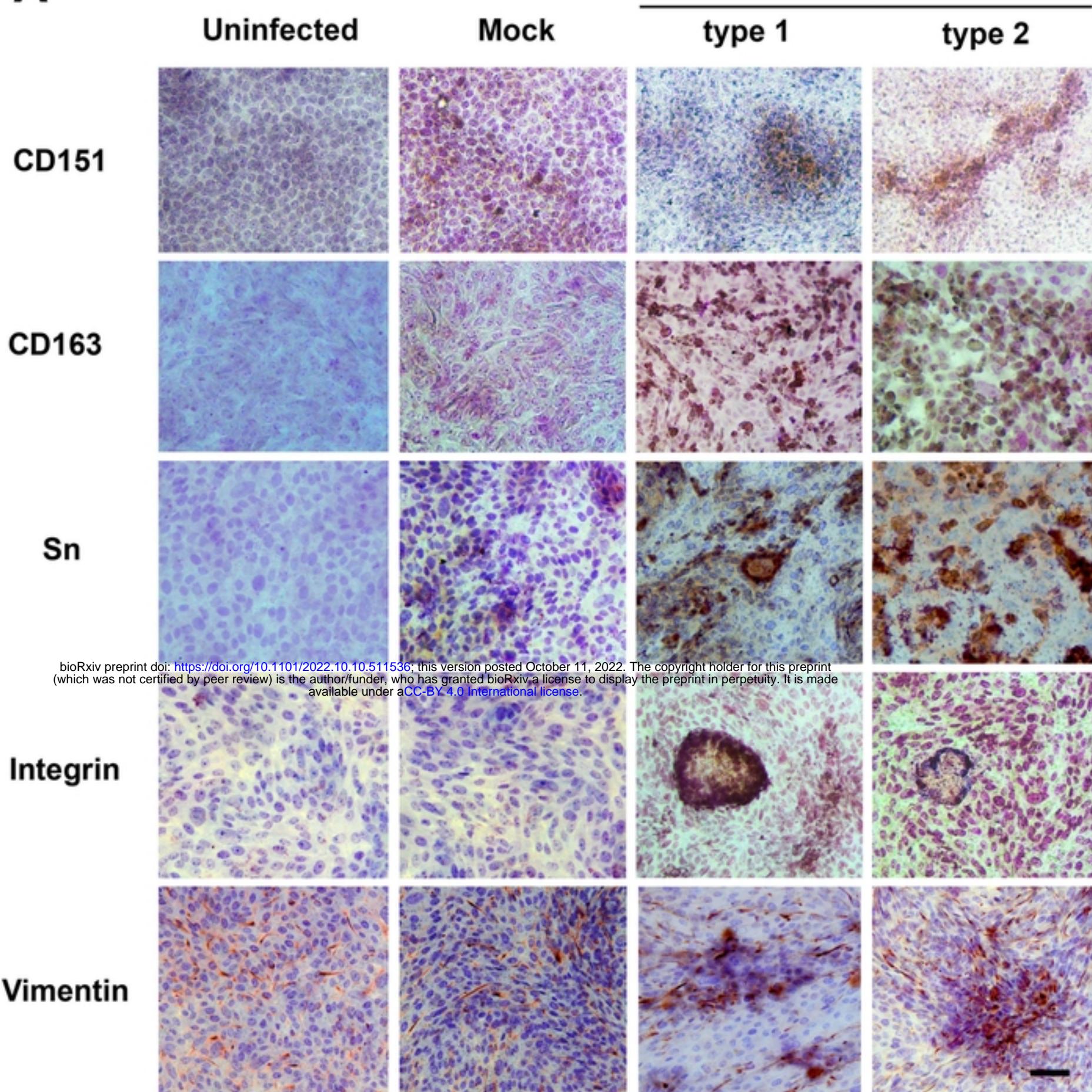
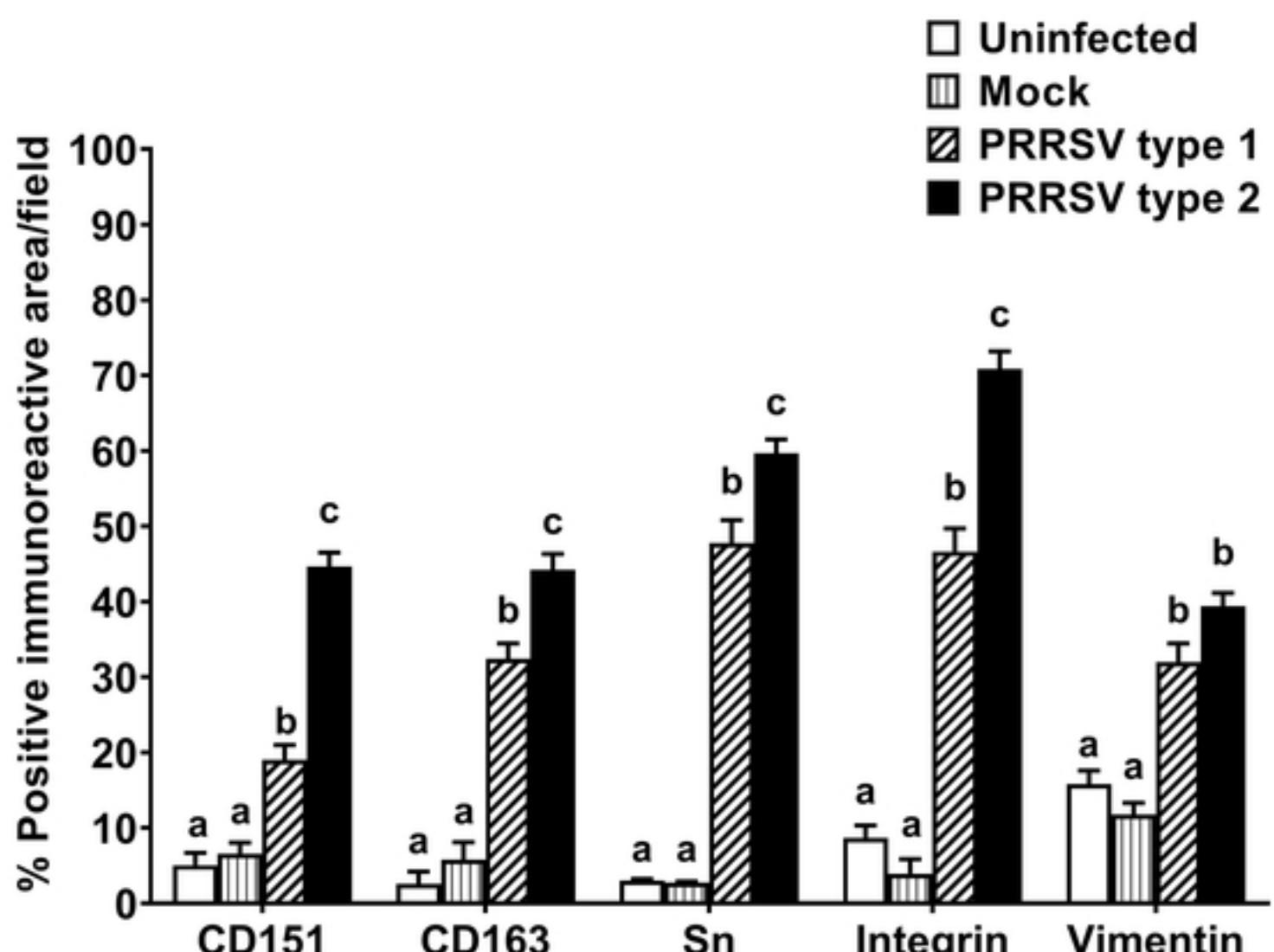
559 implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. *Arch Virol.*

560 1995;140(4):745-55. PubMed PMID: 7794115.

561 39. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. *American*

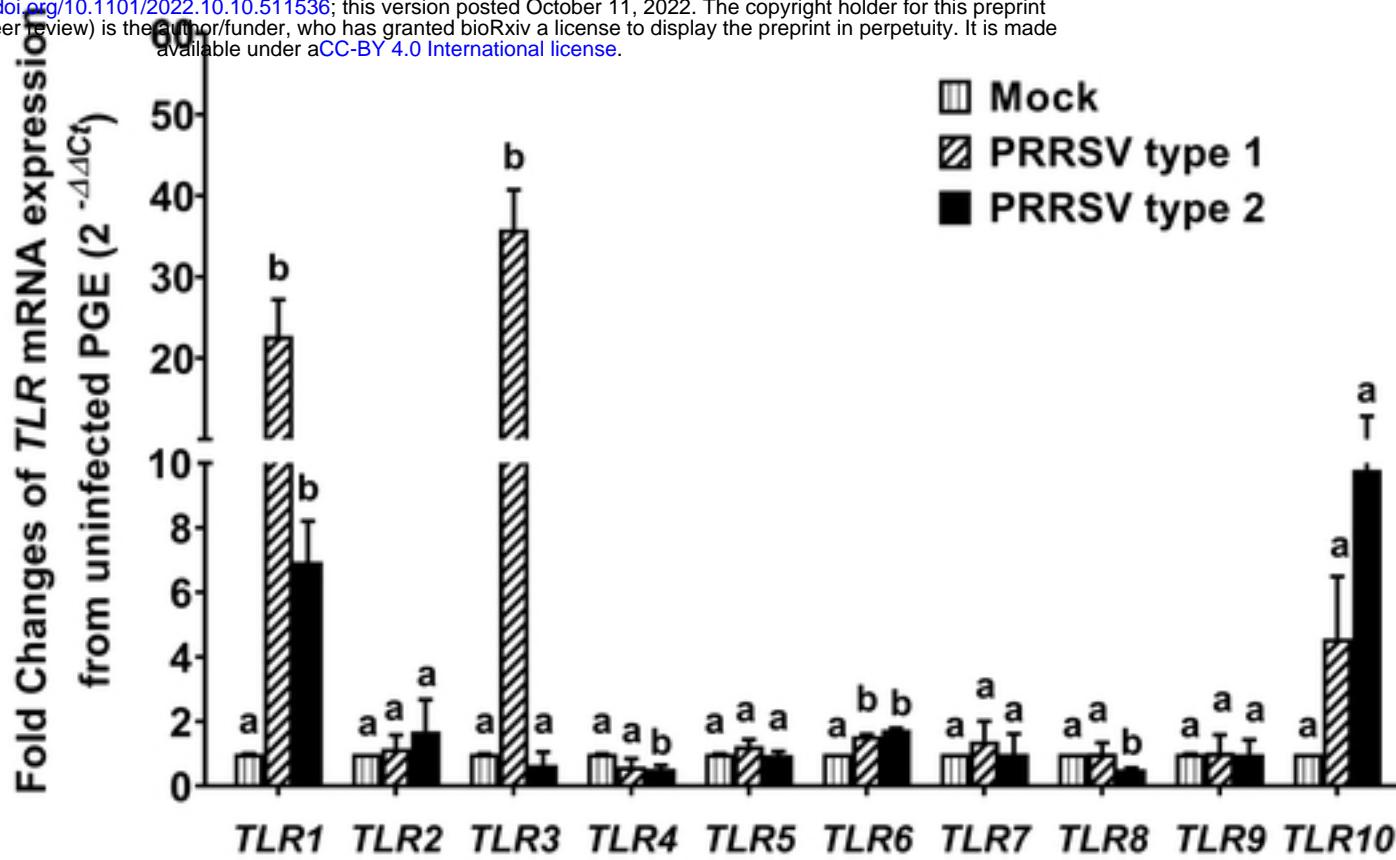
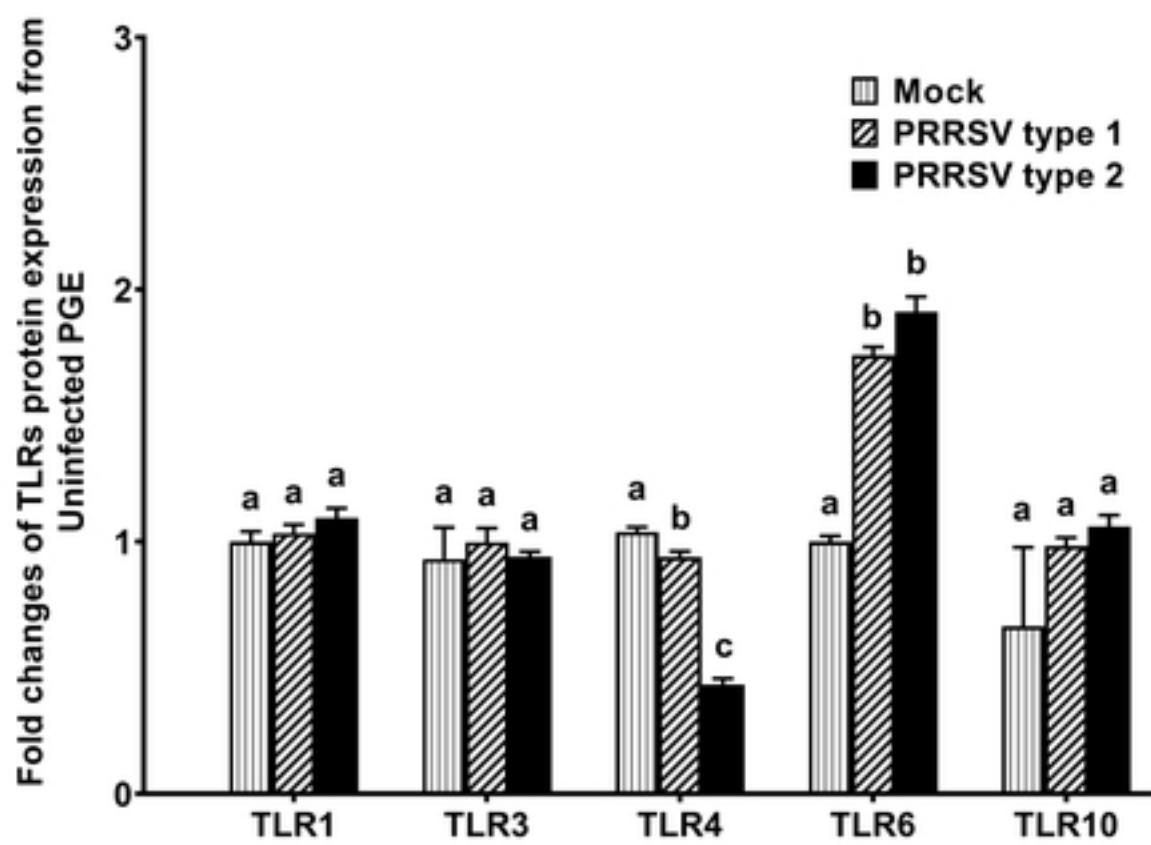
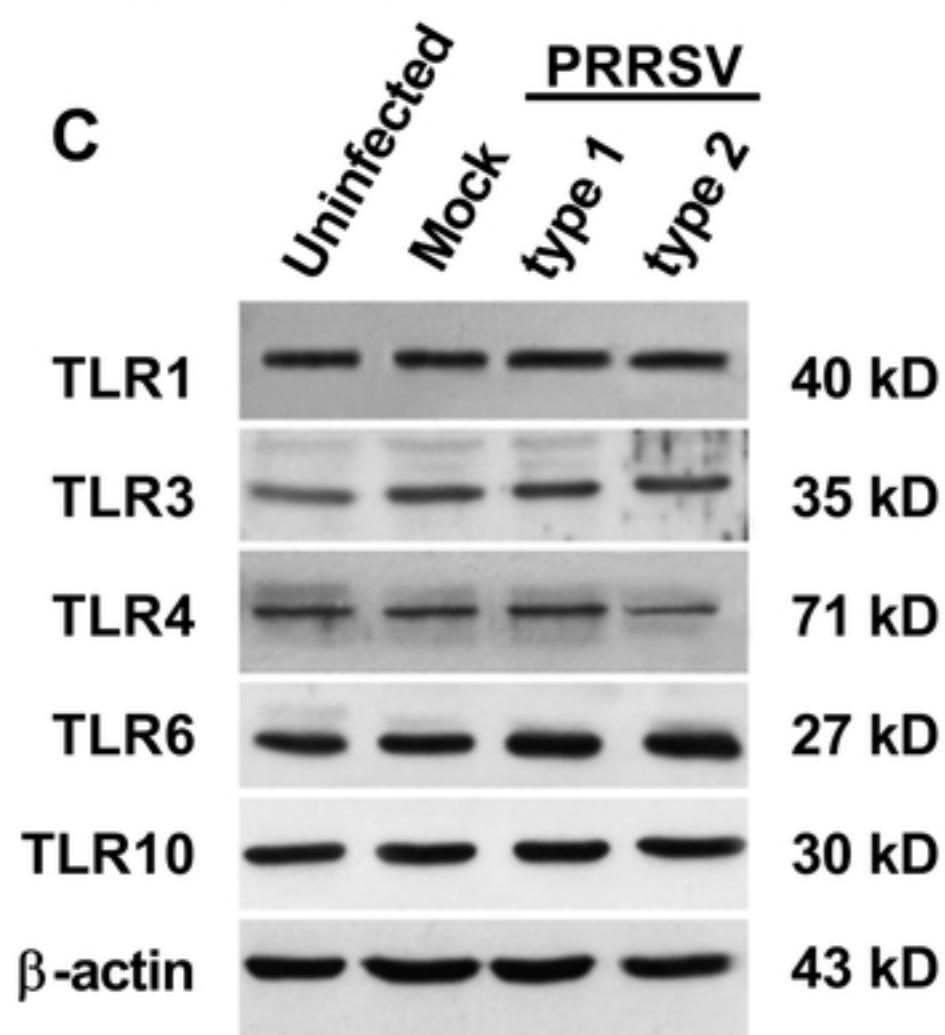




562 *journal of epidemiology*. 1938;27(3):493-7.



563 40. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time



564 quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*. 2001;25(4):402-8. doi:

565 10.1006/meth.2001.1262. PubMed PMID: 11846609.

566




A**B****C****D****Figure 1**

A**B****Figure 2**

A**B****Figure 3**

A

bioRxiv preprint doi: <https://doi.org/10.1101/2022.10.10.511536>; this version posted October 11, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**C****Figure 4**

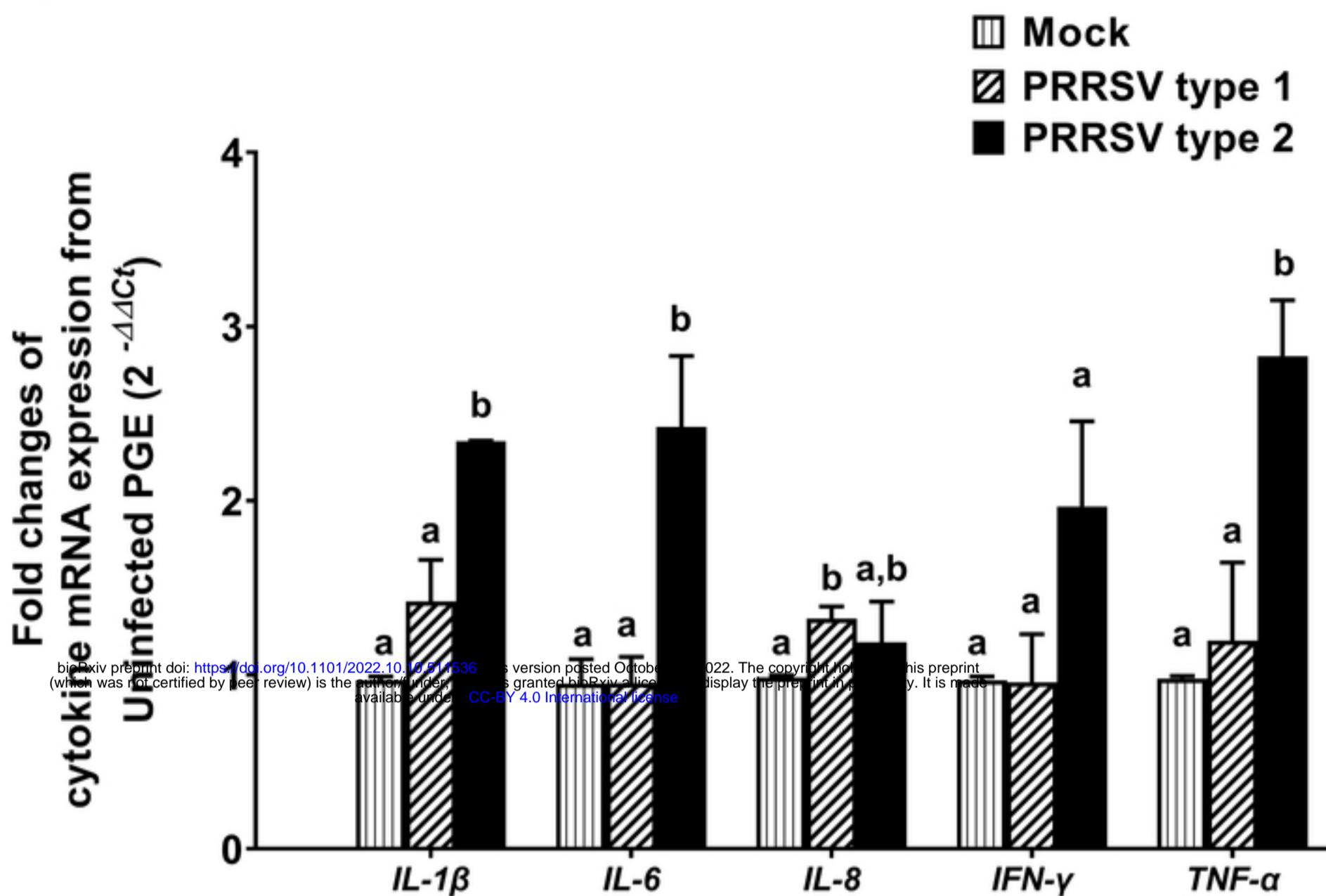
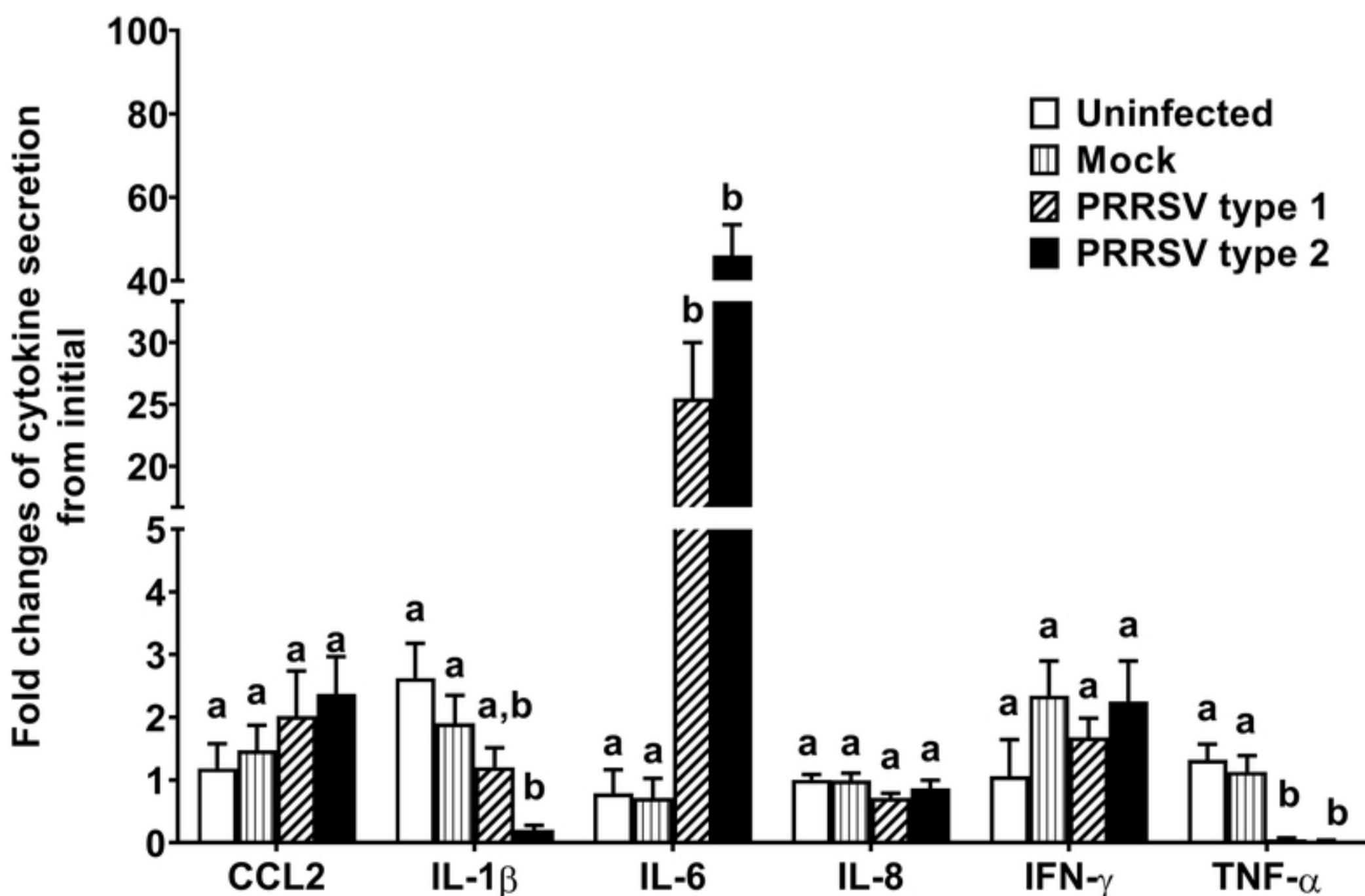


A**B**

Figure 5