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Mediation analysis is used to investigate the role of intermediate variables (mediators) that lie in7

the path between an exposure and an outcome variable. While significant research has focused on8

developing methods for assessing the influence of mediators on the exposure-outcome relationship,9

current approaches do not easily extend to settings where the mediator is high-dimensional. These10

situations are becoming increasingly common with the rapid increase of new applications measuring11

massive numbers of variables, including brain imaging, genomics, and metabolomics. In this work,12

we introduce a novel machine learning based method for identifying high dimensional mediators. The13

proposed algorithm iterates between using a machine learning model to map the high-dimensional14

mediators onto a lower-dimensional space, and using the predicted values as input in a standard15

three-variable mediation model. Hence, the machine learning model is trained to maximize the16

likelihood of the mediation model. Importantly, the proposed algorithm is agnostic to the machine17

learning model that is used, providing significant flexibility in the types of situations where it can be18

used. We illustrate the proposed methodology using data from two functional Magnetic Resonance19

Imaging (fMRI) studies. First, using data from a task-based fMRI study of thermal pain, we20

combine the proposed algorithm with a deep learning model to detect distributed, network-level21

brain patterns mediating the relationship between stimulus intensity (temperature) and reported22

pain at the single trial level. Second, using resting-state fMRI data from the Human Connectome23

Project, we combine the proposed algorithm with a connectome-based predictive modeling approach24

to determine brain functional connectivity measures that mediate the relationship between fluid25

intelligence and working memory accuracy. In both cases, our multivariate mediation model links26

exposure variables (thermal pain or fluid intelligence), high dimensional brain measures (single-trial27

brain activation maps or resting-state brain connectivity) and behavioral outcomes (pain report or28

working memory accuracy) into a single unified model. Using the proposed approach, we are able to29

identify brain-based measures that simultaneously encode the exposure variable and correlate with30

the behavioral outcome.31

Keywords: machine learning, deep learning, mediation analysis, fMRI, resting-state functional connectivity,32

pain33

I. HIGHLIGHTS34

• Current methods for assessing mediation do not easily extend to high dimensions35

• We introduce a new approach for performing high-dimensional mediation analysis36

• Links high-dimensional mediator to path analysis model via machine learning algorithm37

• Method illustrated using data from two fMRI studies38

II. INTRODUCTION39

A frequent occurrence in biological, mechanical, and information systems alike is that the relationship between40

two variables x and y is transmitted through a third intervening variable, or mediator, m. An example of such a41

relationship is illustrated in the three-variable path diagram depicted in Figure 1A. For example, exposure to a drug42

may cause a clinical benefit via its effects on brain neurotransmitter levels. Solar energy may power an electric motor43

via an intermediate transformation to energy by a solar cell. Changing the position of an advertisement on a web page44

may influence sales of the advertised product via the position’s intermediate effects on people’s attention to the ad.45

In all these cases, estimating how much of the total effect of the exposure (or initial variable, x) on the outcome (or46

dependent variable, y) is transmitted through the mediator can help explain how the exposure influences the outcome,47

and thus under what conditions the relationship is likely to occur.48
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The concept of mediation has been a staple in the behavioral sciences [1] for a century, and a linear model version of49

mediation analysis was popularized in the psychometric and behavioral sciences literature several decades ago [2, 3].50

This framework has since been widely used in the social and behavioral sciences [4], economics, decision and policy51

making [5, 6], epidemiology [7], neuroscience [8, 9], and beyond. It has also been extended to use estimates based on52

modern causal modeling frameworks [10–14].53

In most applications, the mediator variable is either univariate [15, 16] or low-dimensional, meaning that there are54

typically only one or a few mediating variables in the model [17–19]. In practice, in many psychological, behavioral,55

and biological systems, there are many potential mediators, and these can be highly correlated. For example, the effects56

of surgery on post-operative pain may be mediated by a complex pattern of correlated gene expression changes in57

immune cells. The effects of an advertisement campaign on sales may be mediated by a complex pattern of measurable58

user data. Similarly, the effects of a hot stimulus on reported pain might be mediated by a complex pattern across59

inter-correlated brain regions. When the mediator space is high-dimensional, with larger numbers of mediators and60

multi-colinearity among them, estimating individual path coefficients in the standard way is not feasible. Potential61

reasons include difficulties modeling the appropriate relationship between variables in this setting [20], and the fact62

that standard estimation procedures become unstable when the number of mediators is much larger than the number of63

observations. However, in many cases, including those above, it may be useful or even preferred to assess the effects of a64

pattern across mediating variables of the same type in aggregate, without attempting to disentangle the unique causal65

effects of any single one. For example, the unique effect of each of 10,000 gene expression measures on post-operative66

pain may be difficult or impossible to estimate adequately, but a pattern that constitutes some function across the set67

of inter-correlated variables (e.g., a weighted average) may be both possible to estimate precisely and useful for both68

predictive and explanatory purposes. Such summaries are increasingly popular in genetics, neuroimaging, -omics, and69

beyond [21–23]. In genetics, for example, it is now possible to measure ∼1 million inter-correlated single-nucleotide70

polymorphisms, which individually explain < 1 percent of the variance in phenotypes at best, but in aggregate can71

often explain much more variance. These pattern-based models have enjoyed wide applicability in machine learning,72

but have seldom been extended to mediation tests. Thus, with the recent growth in the number of new applications73

collecting data on massive numbers of variables (e.g., brain imaging, genetics, epidemiology, and public health studies),74

it has become important to develop mediation analysis in high-dimensional settings.75

As a motivating example that we continue throughout the remainder of this paper, consider the study of human brain76

function using functional magnetic resonance imaging (fMRI) data. Here researchers are interested in understanding77

the role of distributed brain measures acting as potential mediators on the relationship between an exposure (or78

treatment) variable and certain cognitive (or outcome) variables [19, 24–30]. In this context, the mediator can be a79

high-dimensional image (e.g., a 3-dimensional structural brain image or brain activation map) or a set of measures80

of functional connectivity (e.g., a 2-dimensional connectivity matrix), while both the exposure and outcome variables81

are univariate. For instance, [31] uses functional connectivity to perform mediation analysis and suggest that prenatal82

exposure to crime is associated with weaker neonatal limbic and frontal functional brain connectivity.83

Standard mediation techniques will not be directly applicable in these settings, and new approaches are required.84

[32] proposed an early approach based on expressing the multivariate images using summary measures upon which85

standard mediation analysis was performed. Another early approach, “mediation effect parametric mapping” [26–86

28], sought to investigate univariate mediators at each spatial location (voxel). However, this ignores the inherent87

relationship between voxels, instead identifying a series of univariate mediators. More recently, a number of approaches88

have sought to explicitly derive optimized, multivariate linear combinations of the high-dimensional mediators. [33]89

proposed a transformation model using spectral decomposition where mediation effects were estimated by placing90

the univariate transformed mediators into a series of regression models. A related approach, denoted the “principal91

directions of mediation” (PDM) [34, 35], decomposed high dimensional mediators into multiple orthogonal mediators92

that together mediate the effect of an exposure variable on the outcome. The method was applied to fMRI data93

and used to identify brain regions that mediate the relationship between a thermal stimulus and reported pain [35].94

Finally, [36] proposed a sparse principal components approach towards high-dimensional mediation analysis.95

In this paper we introduce a novel machine learning based method for identifying high dimensional mediators.96

Our proposed approach links the high dimensional mediators (e.g., brain activation maps or resting-state functional97

connectivity) to a standard path analysis model through a machine learning model (e.g., deep learning or support98

vector regression); see Figure 1B. Our proposed algorithm iterates between using a machine learning model to map99

the high-dimensional mediators m onto low dimensional mediators z, and using the predicted values as input in100

a standard three-variable mediation model. Importantly, the true value of z is latent, and the machine learning101

algorithm is trained to maximize the likelihood of the underlying mediation model, rather than based on directly102

predicting z. Our proposed approach uses an iterated maximization algorithm that alternates between fitting the103

machine learning algorithm and the mediation model. Thus, the approach provides a means of linking exposure104

variables, high-dimensional brain measures, and behavioral outcomes into a single unified model. Importantly, our105

proposed algorithm is flexible enough to allow researchers to ‘plug in’ various different types of machine learning106
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algorithms, depending on the type of data assumed to mediate the relationship between exposure and outcome. In107

this work we explore a variety of such plug-ins, including a deep learning model, a shallow learning model, support108

vector regression, and a connectome-based predictive model [37]. Research on high-dimensional mediation analysis is109

in its infancy and this is to the best of our knowledge the first application of deep learning to the field.110

We illustrate the performance of the proposed method through a simulation study and application to two different111

fMRI datasets. In the first application, we use data from eight different heat pain studies (N=284) to investigate112

the role of brain mediators on the generation of pain experience. Here a series of thermal stimuli were applied at113

various temperatures to each subject. In response, subjects gave subjective pain ratings at a specific time point114

following the offset of the stimulus. During the course of the experiment, brain activity in response to the thermal115

stimuli was measured across the entire brain using fMRI. The goal is to determine brain regions whose activity level116

act as potential mediators of the relationship between temperature and pain rating. In this application we use the117

proposed algorithm together with a deep learning model. Seven out of the eight studies (N=209) were used as training118

data, and the final study (N=75) was used as test data. Here the model parameters estimated in the training data119

are used to validate model performance in new set of individuals. Figure 2A provides an overview of the proposed120

setup. Importantly, the test data set not only included heat pain stimuli, but also physically and emotionally aversive121

sounds, providing a test of whether brain mediators of pain are specific to pain or general across pain and aversive122

sounds. While the derived mediators should generalize to different pain data sets, they are not expected to mediate123

the relationship between sound levels and perceived sound intensity. We benchmark the performance of our approach124

against [35], which used the same data to find high-dimensional brain patterns that mediate pain using the linear125

PDM approach, and mass-univariate mediation effect parametric mapping.126

In the second application, we use behavioral and resting-state fMRI (rs-fMRI) data from the Human Connectome127

Project (HCP) 900 release [38] to investigate the relationship between fluid intelligence and working memory, measured128

using performance on an N-back task. In particular, we sought to explore whether resting-state brain connectivity129

measures mediated the relationship between these two variables. In this application we use the proposed algorithm130

together with a connectome-based predictive model [39]. For each subject we extracted the mean time series from131

268 regions of the Shen atlas [40], and computed a connectivity matrix where each element represents the Pearson132

correlation between the time series from two regions. We sought to investigate whether the elements of the correlation133

matrix mediated the relationship between intelligence and accuracy. In total we had 798 subjects with complete data,134

where 70% were used for training the model and 30% for testing. Figure 2B provides an overview of the proposed135

setup. These two examples illustrate the ability of our approach to handle different types of data and utilize different136

types of models, highlighting the strength and flexibility of the proposed approach.137

III. METHODS138

A. Mediation model139

Mediation analysis is an analytic technique used to make statistical inferences on the path coefficients (see Figure 1),140

particularly on the proportion of the total effect of x on y is mediated through m. The effects of the exposure on141

the outcome are decomposed into separable direct and indirect effects, representing the influence of the variables x142

on y unmediated and mediated by m, respectively. Using the notation in Figure 1, the indirect effect is given by the143

product of the coefficients α and β, and the direct effect by the coefficient γ. Together, their sum represents the total144

effect of x on y.145

Here we introduce our machine learning-based method for identifying high-dimensional mediators; see Figure 1B.146

For i = 1, ..., n, where n denotes the number of trials, let xi and yi denote the univariate exposure and outcome147

variables, respectively, and let mi be a high-dimensional object consisting of p elements where p >> n. Further, let148

Φ(.) denote an arbitrary machine learning model that operates on the variables mi. Our proposed approach takes the149

output of the algorithm zi = Φ(mi) and places it into a standard 3-variable mediation model together with xi and150

yi. Importantly, we consider the true value of zi to be a latent variable, and the machine learning model is instead151

trained to maximize the likelihood of the underlying mediation path analysis model (see (3)), rather than based on152

predicting z. Our proposed approach achieves this goal by using an iterated maximization algorithm that alternates153

between fitting the machine learning algorithm and the mediation model. Thus, all three variables xi, mi, and yi are154

part of the loss function. To elaborate, we assume that the relationship between the variables is given by two sets of155

equations. First, the mediator model links the exposure to the output of the machine learning model as follows:156

Φ(mi) = α0 + xiα+ ϵ
(1)
i (1)

where α0 is the intercept, α is the coefficient describing the exposure-to-mediator relationship, and the error term157

ϵ(1) ∼ N(0, σ2
(1)). Second, the outcome model links the exposure and the output of the machine learning model to the158
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FIG. 1. (A) An overview of the standard three-variable mediation model. The variables x, m, and y are all scalars along with
the associated path coefficients, α, β, and γ. (B) Schematic representation of the proposed mediation analysis framework using
deep learning. Here a deep learning model links the high-dimensional mediators (brain activation maps) to a standard path
analysis model used to access mediation. The output of the deep learning model is a latent intermediate mediating variable
between in the input stimulus intensity(x) and the reported pain (y). The goal is to evaluate whether there is a significant
indirect effect αβ.

FIG. 2. (A) Overview of Pain data. Studies 1− 7, which comprise of 209 subjects and 13,372 trials, are used to train the deep
learning model. The model is tested independently on Study 8 which consists of 75 subjects and 2,296 trials. Additionally,
Study 8 not only includes the type of thermal pain stimuli used to train the model, but also aversive sounds. We tested our
model and hypothesized that the estimated brain mediators of pain should generalize to the new pain dataset, but not to the
sound dataset. (B) Overview of the HCP dataset. We used rs-fMRI data with LR polarity (rfMRI_REST1_LR) from the
HCP 900 release to investigate the relationship between working memory accuracy, measured using performance on an N-back
task, and fluid intelligence. We excluded subjects with missing time points. We used 70% of the selected subjects for training
and 30% for testing the model

outcome as follows:159

yi = β0 +Φ(mi)β + xiγ + ϵ
(2)
i (2)

where β0 is the intercept, β is the coefficient representing the mediator-to-output relationship, γ is the direct effect160

of the exposure on the outcome, and the error term ϵ(2) ∼ N(0, σ2
(2)). Once the parameters have been estimated we161

can express the total effect τ as the sum of the direct and indirect effects as follows: τ = γ + αβ. This is equivalent162
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to the decomposition obtained in a standard univariate mediation analysis [2], and one can investigate whether there163

exists a significant mediation effect by testing: H0 : αβ = 0.164

We propose to jointly fit all model parameters, including those in the machine learning model, through a single165

unified modeling approach. Combining the error terms from equations (1) and (2), the global loss function contribution166

over all observations is given by:167

L =
n∑

i=1

(||yi − β0 − Φ(mi)β − xiγ||2 + ||Φ(mi)− α0 − xiα||2) (3)

The solution to the global loss function corresponds to the maximum likelihood estimate of the three variable path168

model under normality assumptions.169

In order to estimate the model parameters we propose an iterative algorithm that alternates between fitting the170

machine learning model Φ and the three-variable mediation model. Let us begin by assuming that the parameters171

α0, β0, α, β, and γ are known, the goal is to find an optimal solution for equation (3). Let ei = yi − β0 − xiγ and172

hi = α0 + xiα. Then, keeping track of only those terms that involve Φ and completing the square, equation (3)173

becomes:174

L =
n∑

i=1

(||ei − Φ(mi)β||2 + ||Φ(mi)− hi||2)

∝
n∑

i=1

(Φ(mi)
2(β2 + 1)− 2Φ(mi)(βei + hi))

∝
n∑

i=1

(||Φ(mi)−
(βei + hi)

(β2 + 1)
||2(β + 1))

(4)

Under the assumption that β, ei and hi are known, minimizing the loss L is now equivalent to minimizing175

n∑
i=1

||di − Φ(mi)||2 (5)

where di = (βei+hi)
(β2+1) . This provides an appropriate loss function to fit the machine learning algorithm. Under the176

assumptions discussed above, the values of di are known and thus the model can be fit using standard estimation177

techniques.178

Next, under the assumption that zi = Φ(mi) is known, the parameters α0, β0, α, β, and γ can be estimated using179

a standard 3-variable path analysis model [2]. This involves fitting the regression models:180

zi = α0 + xiα+ ϵi (6)
yi = β0 + βzi + γxi + ηi (7)

Solving the equations provides estimates of both the direct effect γ and the indirect effect αβ used to assess mediation.181

Initial estimates of zi are computed using a given starting value for the the machine learning algorithm Φ. In the182

proposed framework the sign of zi is not identifiable. Hence, we fix the sign so that the correlation between zi and yi183

is positive across observations i to simplify interpretation. A similar constraint is used when estimating the principal184

directions of mediation [35] and in independent components analysis (ICA). In addition, we normalize the variable zi185

to avoid overshooting or shrinking of the prediction while iteratively minimizing the loss function expressed in Eq. 5.186

Thus, zi is known up to sign and scale. Importantly, neither of these constraints affect the total amount of variance187

explained by the mediators. Using the exposure variable xi, outcome yi and mediator zi, we fit the standard path188

analysis model to obtain the coefficients α0, β0, α, β, γ. Thereafter, we update the parameters of the machine learning189

model by fitting the model using di as the outcomes and mi as the predictors. The proposed approach utilizes an190

iterative maximization algorithm that alternates between fitting the machine learning algorithm and the path analysis191

model. The pseudocode for the algorithm is described in Algorithm 1.192

It is important to note that Algorithm 1 is agnostic to the choice of machine learning model. In this work, using193

simulated data, we show the flexibility of Algorithm 1 using: (1) a deep learning model; (2) a shallow learning model;194

and (3) support vector regression. As a demonstration, we apply the same deep learning model to the pain data to195

determine brain regions mediating the relationship between input stimuli and pain ratings. Additionally, we apply a196

ridge regression connectome-based predictive model [39] to the HCP data to determine the functional networks that197

mediate the relationship between fluid intelligence and working memory accuracy. Below we describe each model in198

turn.199
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Algorithm 1: Block maximization algorithm
1 Predict zi = Φ(mi)
2 Set the sign of zi so that the correlation across observations with yi is positive, i.e. if corr(z,y) < 0; then zi = zi ×−1
3 Set z = zscore(z)
4 Fit a path analysis model to obtain α0, β0, α, β, γ using the outcome yi, mediator zi and exposure variable xi.
5 Create ei = yi − α− xiθ
6 Create hi = δ + xiγ

7 Create di =
(βei+hi)

(β2+1)

8 Update Φ using di as the outcome and mi as the predictor.
9 Repeat Steps 1 to 8

Deep learning model200

We built a 3-dimensional convolutional neural network (CNN) based deep learning model that uses a residual201

architecture (ResNet) [41]. For the application to the pain data set, the input of the CNN consists of 3-dimensional202

volumes of size 91×109×91. Each volume corresponds to the brain activation map from a single trial. The CNN203

architecture consists of 5 residual blocks, each followed by a max pooling layer and a fully connected layer. The max204

pooling layer uses a stride of 2 with a kernel size of 3. Our model is inspired by a 3D-CNN based deep learning205

model used for brain age prediction [42]. However, our proposed model differs in two key areas. First, since we206

want a generalized model, we did not include information about sex and scanner type to the final layer. Second,207

we replaced the Batch re-normalization layer with a Batch normalization layer. The convolutional part of the CNN208

reduces the input image from dimensions 91 × 109 × 91 to 128 feature maps of size 3 × 4 × 3. The model was trained209

by minimizing the mean absolute error (MAE) using Adam optimization. The final fully connected part uses these210

feature maps to predict the lower-dimensional mediators. A flowchart of the model is shown in Figure S1. The CNN211

architecture is implemented using Keras version 2.4.0 [43] and Tensorflow version 2.3.1 [44] as the backend. We fit212

the deep learning models on the Oracle cluster using NVIDIA V100 Tensor core GPU. For the simulation study, the213

model was altered based on the dimensions of the input images; see below for a thorough description of the simulations214

performed.215

Shallow learning model216

We used a shallow CNN-based learning model with fewer layers than the deep learning model. The model consists217

of two convolutional layers, each with filter size 32 and 64 respectively, with kernel size 3 and using the rectified linear218

unit (ReLu) activation function [45]. The convolutional layers are followed by a max pooling layer with stride 2 and219

a dropout layer to reduce overfitting. Thereafter, a dense layer with filter size 128 and ReLu activation function is220

added followed by a dropout layer with keep rate equal to 0.5 and the final output layer with no activation function.221

Thus, the final layer performs a linear regression on the features of the hidden layers. Similar to the deep learning222

model, the MAE is used as the loss function and Adam optimization is used to ensure that the architecture converges.223

Further details about the training process is described in Section III D. The shallow learning model is used only in224

the simulation study for comparison purposes and to demonstrate the flexibility of our proposed approach.225

Support vector regression226

We used a non-linear support vector regression (SVR) using a radial basis function kernel. The python library227

scikit-learn [46] was used to implement the SVR and its regularization parameter was set to 1. Similar to the shallow228

learning model, SVR is only used in the simulation study for comparison purposes and to demonstrate the flexibility229

of our proposed approach.230

Ridge regression connectome-based predictive modeling (rCPM)231

We used a ridge regression connectome-based predictive model [39], which is an approach that has proven useful for232

developing predictive models of brain-behavior relationships from connectivity data. Here the features are obtained233

from a connectivity matrix where the edge of the matrix represents the Pearson correlation between the time series234
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from two regions. Each edge in the connectivity matrix is related to the behavioral measures using a form of linear235

regression and a set of edges are selected using a significance test. Thereafter, a multivariate ridge regression model236

is fit to evaluate the brain-behavior relationship using the selected edges. The hyper-parameter corresponding to237

regularization strength is tuned using a 5-fold cross-validation grid search strategy which allows for an exhaustive238

search over the specified grid of parameters values (λ is allowed to take 100 evenly spaced values between 5e − 3 to239

5e9).240

B. Simulations241

We performed three simulations to evaluate the performance of the proposed algorithm. We simulated a situation
in which the latent mediator scores z are a complex, nonlinear function of an observed set of mediator variables.
To accomplish this, in our simulations, we embedded the mediator in an image whose pixels represent the values
of handwritten digits. In order to create a simulated dataset, we first fixed values of α0, α, β0, β, and γ for each
simulation as described below. Next, we randomly generated input data x using a standard normal distribution
with mean 0 and standard deviation 1. Thereafter, we used the input data as an explanatory variable in the linear
regression model:

z = α0 + αx+ ϵ1

where ϵ1 ∼ N(0, 1). This allowed us to generate the low-dimensional mediators z. In order to create a high-
dimensional set of mediators m that encode this information in a nonlinear fashion, we computed the cumulative
distribution function of z, which gives us a value between 0 and 1. Next, we took the first 4 digits after the decimal
point and found images of these digits in the MNIST dataset [47]. We concatenate the 4 images into a larger image
to create the high dimensional mediators. Next, we simulated the outcome using the linear regression model:

y = β0 + γx+ βz + ϵ2

where ϵ2 ∼ N(0, 1). Steps for creating the dataset are summarized in Figure S1.242

Using this framework for data generation, we performed three simulations, where for each, we evaluated the perfor-243

mance of Algorithm 1 using three different machine learning models: (1) a deep learning model; (2) a shallow learning244

model; and (3) support vector regression. The details of the implementation of each machine learning model are245

described above. The input to each of the models are the high-dimensional mediators m (computed using simulated246

data as illustrated in Figure S1) and d. The output is the model with tuned hyper-parameters that will be used for247

estimating the parameters of the path analysis model expressed in Algorithm 1.248

In Simulation 1, we sought to evaluate how the sample size effects the ability to estimate the parameters of the249

mediation model shown in Figure S1. We varied the number of observations (subjects) while keeping the dimensions of250

the mediator constant. We used the MNIST data with image size 28× 28 pixels, thereby creating a high-dimensional251

mediator with dimensions 28× 112, for 100, 500 and 1000 observations. The model parameters were set to α = 0.2,252

α0 = −0.1, β0 = 6, β = 4, γ = 5, and αβ = 0.8.253

In Simulation 2, we sought to evaluate how the size of the high-dimensional mediator impacts the ability to estimate254

the parameters of the mediation model. We fixed the number of observations to 1000, but varied the dimensions of255

the MNIST data. We scaled the MNIST images to 8× 8, 32× 32, 64× 64 pixels, thus changing the dimension of the256

high-dimensional mediator variable to 8×32, 32×128, and 64×256. The values of the parameters α, β, γ, and α×β257

remained the same as in Simulation 1.258

Finally, in Simulation 3, we sought to evaluate the performance of the model in a null-setting, where there is no259

significant mediation effect. We removed the link between the exposure and the mediator variable by setting the value260

of α to 0. The values of all other parameters remained the same as in Simulation 1. Similar to Simulation 1, we varied261

the number of observations (100, 500 and 1000 subjects) while keeping the dimensions of the simulated mediators262

constant (28× 112).263

For each simulation we fit the model for each of the three machine learning methods for 20 iterations. These264

iterations are used for estimating the coefficients α, β, γ, and the indirect effect αβ. It was noticed that the value265

of the coefficients converge in less than 5 iterations. This procedure was repeated 100 times for each model and266

simulation.267

For comparison purposes, we also fit the PDM approach [34, 35] to the simulated data. This approach linearly268

combines information across images into a smaller number of orthogonal components that are chosen based on the269

proportion of the indirect effect that they explain. To facilitate comparisons with the proposed approach, we only use270

the first PDM which corresponds to the direction (or linear combination of features) that maximizes the proportion271

of the indirect effect explained. Subsequent PDMs, which maximize the remaining indirect effect conditional on being272

orthogonal to previous PDMs, are not used in this analysis.273
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C. Experimental data274

Participants275

Pain Data: The data consisted of 284 healthy participants from eight independent studies [48–52] of thermal pain.276

The sample size in each study varied between N = 17 to N = 75 subjects. All participants were recruited from the277

New York City and Denver/Boulder areas and provided written informed consent. The institutional review board of278

Columbia University and the University of Colorado Boulder approved all studies. An online questionnaire, a pain279

safety screening form, and an fMRI safety screening form were used to determine the eligibility of all the participants.280

Any participant with psychiatric, physiological or pain disorders, neurological conditions, and MRI contraindications281

were excluded prior to enrollment. Additionally, participants were required to have at least 30 trials [35] with low282

variance inflation factors (< 3.5), non-missing ratings, and stimulation intensity data. Based on these criteria, 18283

participants were excluded from Study 8.284

HCP Data: The data consisted of subjects from the Human Connectome Project (HCP) 900 release [38] from the285

Washington University - University of Minnesota (WU-Minn HCP) Consortium. All participants gave full consent286

to the WU-Minn HCP Consortium, and research procedures and ethical guidelines were followed in accordance with287

Washington University institutional review board approval. Here resting state fMRI (rsfmri) data with LR polarity288

(rfMRI_REST1_LR) with 1200 time-points were used. Any subject with less than 1200 time-points or with289

missing data (i.e., with ‘nan’ values in the time series) were excluded from the analysis. Further, any participant290

with a missing fluid intelligence score or accuracy measure on the working memory task were also excluded. After291

excluding all such participants (n = 102 exclusions), 798 subjects remained and were included in our analysis.292

Procedure293

Pain Data: All participants received varying levels of thermal stimuli and rated their experienced pain while they294

underwent fMRI scanning. The number of trials, stimulation sites, rating scales, stimulus duration and intensities,295

inter-trial intervals varied across the studies, but were comparable; see [53] for further information. During fMRI296

scanning, the temperature of the heat stimulus (exposure variable) and pain rating (outcome variable) were recorded297

for each participant. Single trial brain activation maps were estimated using a general linear model (GLM) approach.298

In addition to the heat stimulus, participants in Study 8 also received an aversive sound stimuli during the fMRI299

scanning. The aversive sounds are taken from the the International Affective Digital Sounds database [54]. Example300

sounds include those of a knife scraping a plate (the single most aversive sound in the database) and emotionally301

aversive sounds like attacks, screaming and crying. Trials specific to aversive sounds were used to test the specificity302

of brain mediator patterns to thermal stimulus intensity and pain.303

HCP Data: In addition to extensive MRI scanning, all HCP subjects performed a battery of cognitive tasks. Here304

we focus on measures of fluid intelligence and working memory accuracy. Fluid intelligence, a measure of higher order305

relational reasoning, was assessed using a 24-item version of the Penn Progressive Matrices test [55]. Working memory306

accuracy was measured using the mean accuracy across all conditions in an n-back task, described in detail in [56],307

and consisted of values between 0-100. During fMRI scanning, four 15-minute fMRI scans (runs) with a temporal308

resolution of 0.72 seconds and a spatial resolution of 2-mm isotropic were collected. Data from a single scan was used309

to create a resting-state connectivity matrix, described in more detail below.310

fMRI data processing311

Pain Data: Structural T1-weighted images were co-registered to the mean of the functional image. Thereafter, the312

registered image was normalized to MNI space using SPM(http://www.fil.ion.ucl.ac.uk/spm/). Studies 1 and 6313

used SPM5, while SPM8 was used for all other studies. Following initial normalization, an additional normalization314

step based on the genetic algorithm-based normalization [57, 58] was performed in Studies 1 and 6. The first few315

volumes (ranging from 3-5) of each functional dataset was removed from the analysis to allow for image stabilization;316

see [53] for more detail. Mean and standard deviation of intensity values across each slice was used to identify outlier317

slices. Additionally, the Mahalanobis distance was computed for slice-wise mean and standard deviation of functional318

volumes. After false detection rate (FDR) correction for multiple comparisons, values with a significant χ2 value319

were considered as outliers. In total less than 1% of the total images were considered as outliers. The output of320

this procedure was included as nuisance covariates in subject-level models. Next, except for Study 8 (multiband data321
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with a short TR of 480 ms), slice timing correction and motion correction was performed on the functional images322

using SPM. Functional images were warped to SPM’s normative atlas, interpolated to to 2 × 2 × 2mm3 voxels, and323

smoothed with an 8 mm FWHM Gaussian kernel.324

For all studies except Studies 3 and 6, a single trial design and analysis approach was used to model the data325

by constructing a GLM design matrix with separate regressors for each trial [59, 60]. To model the cue and rating326

periods for each study, boxcar regressors were convolved with the canonical hemodynamic response function (HRF).327

Regressors for each trial, as well as several types of nuisance covariates were also included. Trial-by trial variance328

inflation factors (VIF) were calculated, and any trials with VIFs exceeding 2.5 were excluded from the analyses (VIF329

threshold for Study 8 was 3.5 as in the primary publication). For Study 1, global outliers (trials that exceeded330

three standard deviations above the mean) were also excluded, and a principal component based denoising step was331

employed during preprocessing to minimize artifacts. This generated single trial estimates that reflect the amplitude332

of the fitted HRF on each trial and represent the magnitude pain-period activity for each trial in each voxel. For333

Studies 3 and 6, rather than using a canonical HRF, single trial analyses were based on fitting a set of three basis334

functions. This allowed the shape of the modeled HRF to vary across trials and voxels. This procedure differed from335

that used in other studies because it maintains consistency with the procedures used in the original publications [58].336

The pain period basis set consisted of three curves shifted in time and was customized for thermal pain responses337

based on previous studies [58, 61]. For Study 6, the pain anticipation period was modeled using a boxcar epoch338

convolved with a canonical HRF to estimate the cue-evoked responses. This epoch was truncated at 8 s to ensure339

that fitted anticipatory responses were not affected by noxious stimulus-evoked activity. Similar to other Studies, the340

nuisance covariates were included and trials with VIFs larger than 2.5 were excluded. In Study 6 trials that were341

global outliers (more than 3 standard deviations above the mean) were also excluded. The fitted basis functions from342

the flexible single trial approach were used to reconstruct the HRF and compute the area under the curve (AUC) for343

each trial and in each voxel. These trial-by-trial AUC values were used as estimates of trial-level pain-period activity.344

Together, these single trial maps of pain-period activity were used for model development and validation. The brain345

activation map for each participant was z-scored for each study. The final dimensions of the maps were 91× 109× 91.346

These maps were used as the high-dimensional mediators in our analysis.347

HCP Data: For each subject, four 15 minute rs-fMRI scans with a temporal resolution of 0.72 seconds and a spatial348

resolution of 2-mm isotropic were available. We used the preprocessed and artifact-removed rs-fMRI data provided349

through the HCP900-PTN data release. This data has been extensively described in multiple other publications, so we350

only briefly discuss it here. The preprocessing pipeline followed the procedure outlined in [62]. Spatial preprocessing351

was applied using the procedure described by [63]. Independent component analysis (ICA), followed by FMRIBs352

ICA-based X-noisefier (FIX) from the FMRIB Software Library (FSL) [64], was used for structured artifact removal,353

removing more than 99 percent of the artifactual ICA components in the dataset.354

Functional parcellation of each subject’s data was performed using the Shen atlas [40], which consists of 268 regions.355

For each region, the mean time series was extracted and shifted to 0 mean and unit variance. Any subject with less356

than 1200 time-points or with missing data (i.e., with ‘nan’ values in the time series) were excluded from the analysis.357

The Pearson correlation between each regions time course was computed, resulting in a 268× 268 correlation matrix358

depicting functional connectivity between regions. Since these correlation matrices are symmetric, we vectorized the359

lower triangle of the matrix and used these values as the high-dimensional mediator in our analysis.360

D. Model fit and training procedure361

The same general training procedure was used for both the simulated data and fMRI data, with the main difference362

lying in the number of iterations that were performed. For the simulated data Steps 1-8 of Algorithm 1 was iterated363

20 times, while for the fMRI data it was only iterated 10 times to reduce computational burden.364

In the simulation study, we evaluated the deep learning model, the shallow learning model, and support vector365

regression within our framework. Since the simulated data was created using MNIST data, all the layers of the deep366

and shallow learning models were constructed for 2D input data. For each simulation, 30% of the data was used as a367

validation data set, allowing us to judge how well the model generalized. The parameters of the mediation model α, β368

and γ were computed and compared with the ground truth value after the 20th iteration. Both the deep and shallow369

learning models use the MAE as the loss function and the Adam optimization [65] method to ensure the architecture370

converges. The Adam parameters are set as follows: learning rate = 0.001, decay = 10−6 , β1 = 0.9, β2 = 0.999,371

and batch size = 32. The model weights were initialized using the He initialization strategy [66] and a regularization372

parameter [67] λ = 5 x10−5 is added to each trainable node in the CNN.373

For the pain data, we combined our proposed algorithm with a deep learning model. In contrast to the stimulation374

study, the layers of the deep learning model were constructed for 3D input data. The first seven studies (N = 209)375
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were used as training data, while the eighth (N=75) was used as the testing data [48–52]. Further, 30% of the training376

data were used as a validation set. The validation set is used to provide insight into whether or not the model is377

overfitting. To further check for overfitting, we stop training the model [68] if the validation error does not improve in378

25 epochs and the weights with the lowest validation error were used for making the prediction in the test data. To379

evaluate the stability of the findings, we performed a leave-one-study out cross-validation where we alternated which380

of the eight studies were used as the validation dataset, while training on the remaining seven studies. In addition,381

we also ran multiple iterations of k-fold cross validation.382

The input data consisted of a set of processed fMRI activation maps in response to the painful stimuli registered383

to MNI space along with the corresponding temperature and pain report. During each epoch, training and validation384

data were kept separate. For each potential mediator model, we performed a multi-level mediation analysis [69] on385

the test data and obtained p-values using a bootstrap approach with 5000 iterations. We chose the model with the386

most stable indirect effect for mediating thermal pain. Finally, we compared the results to those obtained using both387

mediation effect parametric mapping and the PDM approach.388

For the HCP data, we combined our proposed algorithm with rCPM to find potential elements that mediate389

the relationship between fluid intelligence and accuracy of working memory task. We used 70% of the subjects for390

training and 30% for testing the model. The input data consisted of a set of vectorized connectivity values along391

with the corresponding fluid intelligence and working memory accuracy scores. We ran Steps 1-8 of the algorithm392

for 10 iterations. During each iteration, we used a 5-fold cross-validation grid search strategy on the training data393

to tune the model hyper-parameter. Thereafter, for each iteration, we fit the model with tuned parameters to the394

training data. Each iteration yields a potential mediator model, and similar to the analysis used for the pain data,395

we performed a multi-level mediation analysis on the test data to obtain p-values using a bootstrap procedure with396

5000 iterations. Finally, we chose the model with the most stable indirect effect.397

E. Model interpretation398

For both datasets, we used SHAP (SHapley Additive exPlanations) [70] to interpret the model fit. Shapley values399

are based on game theory which determines a ‘fair’ way to attribute the total gain to the players in a coalition game400

based on the individual contribution. The approach has recently been used to interpret deep learning models in a401

number of different medical applications [71–73].402

In our application, the goal of SHAP is to explain the prediction obtained by the deep learning model by computing403

the relative contribution of each feature (e.g., voxel or connectivity edge) to the prediction. The Shapley values take404

into account the marginal distribution of every feature to the final prediction, making sure that the contributions405

of these features are optimally assessed. One drawback of using Shapley values is that they are computationally406

expensive. However, we used the Deep Shap implementation in python (https://github.com/slundberg/shap)407

which makes computation acceptable without compromising any inherent properties of the Shapley values.408

IV. RESULTS409

A. Simulations410

Figure 3 shows the results of Simulation 1. Here we investigated how increasing the number of observations411

influenced the performance of our approach. We kept the dimensions of the mediator constant, but allowed the412

number of observations to vary. Clearly, as the number of observations increase the error bars become narrower,413

providing more accurate estimates of α, β, γ, and αβ. All three models perform roughly equivalently, though for414

small samples sizes the error bars for the deep learning model are somewhat larger, particularly when estimating β,415

indicating increased error variance. In contrast, the PDM approach shows a consistent bias in estimation of the β416

coefficient which leads to a slight underestimation (overestimation) of the indirect (direct) effect.417

Figure 4 shows the results of Simulation 2. Here we investigated the ability of our approach to handle increased418

dimensions of the mediator variable. The values of all other variables remain the same as in Simulation 1. Again,419

all three models perform roughly equally. Interestingly, the error bars are constant across all dimensions. This420

indicates that the difficulty of the estimation problem is not directly related to the size of the mediator, but rather421

the information content which is constant as the images are simply scaled versions of one another. Again, the422

PDM approach shows a consistent bias in estimation of the β coefficient which leads to a slight underestimation423

(overestimation) of the indirect (direct) effect.424

Figure 5 shows the results of Simulation 3. Here we investigated the performance of our approach in a ‘null’ setting425

where the indirect effect is 0. We used the same dimension of the mediator variables as described in Simulation 1,426
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FIG. 3. Results of Simulation 1, where we varied the number of observations (subjects) while keeping the dimensions of mediator
constant. Each violin plot shows the estimated model parameters for the training dataset using deep learning model, shallow
learning model and support vector regression. The red dotted line represents the ground truth data.

however we changed the value of α to be equal to 0. Each of the three models were able to handle this situation and427

on average found the indirect effect to be 0. Again, as the number of observations increase the error bars become428

narrower, providing more accurate estimates of α, β, γ, and αβ. Here, while the PDM approach shows a bias in429

estimation of both the α and β coefficients, both the direct and indirect effects appear unbiased.430

B. Pain Data431

Algorithm 1 was combined with a deep learning algorithm and fit to the training data, consisting of 209 subjects432

with a total of 13372 trials from Studies 1-7. Each trial consisted of a temperature, a pain rating, and a 3-dimensional433

activation map. To validate the model fit, it was evaluated using an independent test dataset consisting of 75 subjects434

with a total of 2296 trials. Validation was performed by applying the trained deep learning model to the activation435

maps in the test dataset to obtain low-dimensional mediators. These were then placed into a standard three-variable436

path model together with the associated temperature and pain ratings. A multi-level mediation analysis [69] was437

performed on this data set, and the significance of α, β, and αβ was tested using a bootstrap procedure with 5000438

iterations.439

Figure 6A shows scatter plots illustrating the positive relationship between the low-dimensional mediator z and440

the input temperature, the pain ratings and the mediator, and the pain ratings and the temperature, respectively.441

Figure 6B shows the estimated α (stimulus intensity to brain path), β (brain to pain report path), and αβ (indirect)442

effects when applying the model fit to the training data. All results are significant (p < 0.05) when applied to the443

heat pain data, suggesting that the deep learning results are reliably related to pain and generalize across cohorts.444

To determine which regions are driving the mediation, Shapley values were computed for all heat pain trials in the445
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FIG. 4. Results of Simulation 2, where we varied the dimension of mediator while keeping the number of observation constant
(n=1000). Similar to simulation 1, each violin plot shows the estimated model parameters for the training dataset using deep
learning model, shallow learning model and support vector regression. The red dotted line represents the ground truth data.

training data set. Figure 6C shows the voxels with the 5% largest absolute values. Brain regions shown are com-446

monly associated with pain processing, such as multiple cerebellar regions, anterior cingulate and surrounding medial447

prefrontal cortex (MPFC), posterior medial orbito-frontal cortex (OFC)/ventromedial prefrontal cortex (vmPFC),448

lateral prefrontal cortex (area 47, inferior frontal sulcus [IFS], area 6), multiple temporal regions (temporal pole, TA2,449

entorhinal cortex), hippocampus, and Bed nucleus of Stria Terminalis (BST). It should be noted that the threshold450

was chosen arbitrarily, though it was determined that the maps were relatively stable on the range of 3-7%. Optimally,451

one could determine the significance of the regions that contribute to mediation effects using a bootstrap procedure.452

However, combining the Shapley analysis and bootstrap is computationally quite expensive in practice.453

When considering the signs of the Shapley values, it is first worth noting that four different kinds of relationship are454

possible: (1) an increase in temperature leads to an increase in pain; (2) a decrease in temperature leads to a decrease455

in pain; (3) an increase in temperature leads to a decrease in pain; and (4) a decrease in temperature leads to an456

increase in pain. Here, type (1) is the standard, positive mediator case expected from nociceptive coding regions and457

type (2) represents a negative mediator, in which greater deactivation to stimulus mediates increased pain. Finally,458

types (3) and (4) are known as suppresor effects. Voxels shown in warm colors in Figure 6C correspond to those with459

positive values. As both α and β are positive, these regions represent positive mediators. They include brain regions460

commonly associated with pain processing, such as the dorsal posterior and mid-insula, S2, and MCC. Brain regions461

with negative weights represent negative mediators and are shown in cool colors, and include prefrontal regions,462

medial occipital, V1/V2/V3 and left sensorimotor cortex/parietal cortex, left S1/M1, parts of cerebellum, and the463

right amygdala/hippocampal border. Negative mediators are those that show less activation (or deactivation) with464

increasing temperatures, and lower regional activation is related to higher pain ratings. These types of relationships465

can be expected in brain regions whose function is inhibited by nociceptive input or that are deactivated with increased466

pain-related processing but are not considered as suppressor effects.467
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FIG. 5. Results of Simulation 3, where we varied the number of observations (subjects) and removed the effect of mediation.
Similar to simulation 1, each violin plot shows the estimated model parameters for the training dataset using the deep learning
model, shallow learning model and support vector regression. The red dotted line represents the ground truth data.

The test data also included trials with physically (e.g., knife on plate) and emotionally (e.g., screaming and crying)468

aversive sounds at three different pre-defined intensity levels. These trials were randomly intermixed with the heat469

pain trials. To test whether the results are specific for thermal pain, we applied the fitted model to these aversive non-470

painful stimuli. Application of the model fits on the sound data revealed no significant effects at the 0.05 significance471

level, see Figure 6B, indicating that the model does not mediate the relationship between sound intensity and intensity472

ratings. Thus, the results indicate a specificity to somatic pain compared to sound.473

To further validate the findings we performed a number of follow-up analyses. First, we performed leave-one-study474

out cross-validation. Here we alternated which of the eight studies were used as the validation dataset, while training475

on the remaining seven studies. Results can be seen in Figure S3. In total five of the eight pain datasets were476

significant when used as the test dataset. Interestingly, the three studies that were not significant (EXP, IE, and477

SCEBL) are the ones with the strongest psychological interventions, and the effect of pain depends strongly on these478

interventions. For EXP and IE, there are cues prior to pain stimulus that state whether high or low pain is coming.479

For SCEBL there is a cue that states how other subjects responded to the upcoming stimuli. Much of the pain480

response is likely linked to these cues, and therefore in each case it is not entirely surprising that the β-pathway is481

non-significant. Second, we also ran multiple iterations of k-fold cross validation. Due to computational constraints482

we restricted the number of replications to 3 times. During the k-fold cross validation, the training dataset is split483

into 3 folds. Figure S4 shows the estimated α, β and αβ values obtained when applying the fitted machine learning484

model to the left-out fold for the pain trials. As seen in the figure, all coefficients were strongly significant.485

Next, we compared the results with those obtained using two competing approaches: the PDM approach and a486

mass univariate mediation effect parametric mapping approach. In Figure S5 we show significant voxels obtained487

through both analyses. Both maps are thresholded at a false discovery rate (FDR) of q < 0.05. The PDM approach488

linearly combines information across images into a smaller number of orthogonal components that are chosen based489
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FIG. 6. Validation on independent data (n=75). (A) Scatter plots show the relationship between the low-dimensional mediator
and input temperature, pain ratings and mediator, and pain ratings and temperature of input stimuli, respectively. Lines show
the least-squares fit between variables for each independent validation subject. (B) The estimated α, β, and αβ values obtained
when applying the fitted machine learning model to the independent validation dataset, both for the pain and sound trials.
These reflect the brain increases as a function of stimulus intensity, the relationship between brain and pain controlling for
stimulus intensity, and the mediation effect, respectively. Error bars indicate SEM. *** p < 0.001. All coefficients were strongly
significant for heat pain but non-significant for sound, indicating specificity to pain when compared with aversive sounds. (C)
Voxel maps representing the 5% largest (in absolute value) Shapley values, indicating the regions involved in mediating the
relationship between stimulus intensity and pain in the independent validation dataset. The majority of identified regions
are targets of pain-related ascending pathways (e.g., somatosensory S1/S2, medial thalamus, Anterior Cingulate, and mid
insular-opercular areas). Some regions are not generally considered to be related to primary pain pathways but play important
modulatory roles (e.g., Ventromedial Prefrontal Cortex, Cerebellum, Anterior Temporal Cortices).

on the proportion of the indirect effect that they explain. Here we only use the first PDM which corresponds to the490

linear combination that maximizes the proportion of the indirect effect explained. Similar to the proposed approach,491

the PDM approach found mid insular-opercular areas, somatosensory S1, S2 and medial thalamus mediated the492

temperature-pain relationship; see Figure S5(a). In contrast, mediation effect parametric mapping fits an independent493

mediation model on each individual voxel in the fMRI data. Thereafter, brain regions corresponding to the intersection494

of voxels with significant paths α, β and αβ are interpreted as mediators. The mass univariate analysis found the495

cerebellum, posterior and midinsula, MCC, S2 and S1 were significant mediators; see Figure S5(b). Comparing496

these results to the proposed approach found both similarities and differences. For example, both maps included497

somatosensory regions of MCC, mid insula, S2 and cerebellum. Additionally, negative mediators in prefrontal regions,498

medial occipital, S1 and right amygdala/hippocampal border region were not identified by the univariate mediation499

model.500

C. HCP data501

Algorithm 1 was combined with a ridge regression connectome-based predictive model and fit to the training data,502

consisting of 558 subjects. Each subject’s data consisted of fluid intelligence, a 1-dimensional vectorized functional503

connectivity matrix, and a working memory accuracy score. To validate the results, they were applied to a test dataset504

consisting of 240 subjects. Validation was performed by applying the trained rCPM model to the elements of the505
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FIG. 7. Results on test data (n=240). (A) The high dimensional functional connectivity matrix which serves as a mediator
(M) of the relationship between fluid intelligence (X) and the accuracy on the working memory task (Y ). (B) Scatter plots
show the relationship between the low-dimensional mediator z and fluid intelligence, accuracy and the mediator, and accuracy
and fluid intelligence, respectively. Lines show the least-squares fit between variables for each test subject (n = 240). (C)
Shapley values averaged over voxels connecting each pair of large-scale networks. High connectivity within the Frontoparietal
(FPN) and Default Mode Networks (DMN), and low/negative connectivity between FPN and DMN and between FPN and
subcortical regions (among other connections) mediated the relationship between fluid intelligence and accuracy of working
memory task. This demonstrates links between brain connectivity and both working memory performance and fluid intelligence.
MF: Medial frontal, FP: Frontoparietal, DMN: Default model network, SCC: Subcortical-cerebellum, V1: Visual I, V2: Visual
II, VA: Visual association. *** p < 0.001 and ** p < 0.01.

functional connectivity matrices in the test data to obtain low-dimensional mediators. These were then placed into a506

standard three-variable path model together with the associated fluid intelligence and accuracy scores. A multi-level507

mediation analysis [69] was performed on this data set, and the significance of α, β, and αβ was tested using a508

bootstrap procedure with 5000 iterations. Note that in practice, the mediation analysis could have been run in either509

direction (i.e., with working memory accuracy as the X variable and fluid intelligence as the Y variable). Hence, there510

is no strong causal interpretation to be made here, but rather this is an example of mediation analysis can identify511

brain patterns jointly related to two variables that are part of the same system.512

Figure 7 shows the results of applying the fitted rCPM mediation model to a test data set from the HCP dataset.513

Figure 7A shows scatter plots illustrating the positive relationship between the low-dimensional mediator and fluid514

intelligence, accuracy and the mediator, and accuracy and fluid intelligence, respectively. Figure 7B shows that the515
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effects are significant in the test dataset, indicating that the functional connectivity matrix mediates the relationship516

between fluid intelligence and working memory performance (accuracy) in a manner that generalizes across cohorts.517

Next, we determined the SHAP values in order to determine which connections are driving the mediation. Fig-518

ure 7C shows the SHAP values in the test dataset averaged over subjects and components in each of seven pre-defined519

networks [74]. Connections with positive weights are shown in warm colors. As both α and β are positive, these520

connections represent positive mediators. They include brain networks such as the Frontoparietal and Default Model521

Network, and connectivity between Frontoparietal and Medial Frontal Networks, Motor and Subcortical-Cerebellum522

Networks, and Motor and Visual Association Networks. Connections with negative weights represent negative medi-523

ators and are shown in cool colors. They include the motor network, and connectivity between Frontoparietal and524

Subcortical-Cerebellum Networks, Frontoparietal and Default Mode Networks, and Default Mode and Subcortical-525

Cerebellum Networks. The negative weights indicate that these connections show lower values with increasing fluid526

intelligence, and that lower connectivity is related to higher working memory accuracy.527

DISCUSSION528

In this work we introduce a novel analytic approach for identifying high dimensional mediators that links exposure529

variables, high-dimensional brain measures, and behavioral outcomes into a single unified model. Using the approach,530

the effects of the exposure on the outcome are decomposed into separable direct and indirect effects, representing the531

influence of the variables x on y unmediated and mediated by m, respectively. The indirect effect is determined by532

the product of the coefficients α and β, while the direct effect is determined by the coefficient γ; see Figure 1 for more533

detail. Our approach is flexible, allowing for easy plug-and-play with different machine learning models depending534

on the type of data being analyzed. We demonstrate this flexibility in two applications, that necessitate using two535

different classes of machine learning models.536

In the pain application, we used the proposed approach together with a deep learning model to identify brain537

networks that mediate the relationship between stimulus intensity and pain reports. To interpret the results and538

determine which regions mediated the temperature-rating relationship we computed maps of Shaply values; see539

Figure 6. We arbitrarily chose the largest 5% Shapley values when presenting our findings, but found that the maps540

were relatively stable across a range from 3-7%. Optimally, one would determine the significance of the regions that541

contribute to mediation effects using a bootstrap procedure. However, combining Shapley analysis and the bootstrap542

is extremely computationally expensive in practice.543

Importantly, the derived mediators generalized to independent pain data, but not to aversive sound data, which544

indicates a degree of specificity of the model for pain. Several previous studies [29, 58] have identified brain mediators545

of pain in a univariate manner by investigating each voxel separately. A shortcoming of this approach is that it can546

potentially miss brain regions whose contributions to pain perception are conditional on other regions. In addition,547

researchers have found that functional information in the brain is likely encoded in distributed patterns across neural548

ensembles and systems [75, 76]. This implies that brain information should ideally be treated in a multivariate549

fashion [77, 78], highlighting the importance of using multivariate brain mediators to characterize these patterns.550

Thus, we believe our approach provides a more comprehensive picture of pain processing in the human brain than551

studies that use univariate analyses, or focus solely on the stimulation-brain or brain-outcome relationships.552

It should be noted that the pain data was previously analyzed using the principal directions of mediation (PDM)553

approach [35], which is an alternative method for performing high-dimensional mediation developed by our group.554

As both the machine learning-based approach and the PDM approach seek to estimate distributed, network-level555

patterns that formally mediate the relationship between stimulus intensity and pain, this allows for a convenient556

comparison between methods. The PDM approach linearly combines activity in different mediators into a smaller557

number of orthogonal components, with components ranked based upon the proportion of the indirect effect that558

each accounts for. In contrast, the proposed approach provides a non-linear combination of mediators as defined by559

the deep learning architecture. The results obtained using both methods are roughly equivalent, with both methods560

highlighting the same regions as mediators and providing results specific for pain vs. aversive sounds. Using the PDM561

results as a benchmark, we believe this provides evidence of the efficacy of our new machine-learning based approach.562

That said, the proposed approach has several benefits over the PDM approach. One is the aforementioned ability to563

study non-linear combinations of the original high-dimensional mediators. Another is its flexibility to be applied to a564

wide array of different data, for example, brain connectivity data.565

In this application we used a deep learning model to investigate its ability uncover brain regions that mediate the566

relationship between temperature and pain rating. In general, we believe that a simpler machine learning approach567

is preferable when the more complicated models do not show empirical evidence for improvement. Therefore, for568

completeness we repeated the analysis using both SVR and Ridge regression in place of the deep learning model.569

We found that the deep learning model outperformed both SVR and Ridge regression. Moreover, we did not obtain570
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interpretable results when studying the model weights for either SVR and Ridge regression, even though both are571

linear models.572

In the application to HCP data, we used the proposed algorithm together with a connectome-based predictive573

model [37] to find elements of the resting-state connectivity matrix that mediate the relationship between fluid574

intelligence and working memory accuracy. The link between fluid intelligence and working memory capacity has long575

been established [79, 80]. In recent work, [81] fit separate connectome-based predictive models to predict working576

memory performance and fluid intelligence, respectively, from whole-brain functional connectivity patterns observed577

in HCP participants. They found that overlap between the working memory and fluid intelligence networks were578

limited to connections between prefrontal, parietal, and motor regions. Additionally, [82] have found that activity in579

“multiple demand" networks (i.e. lateral and dorsomedial frontal areas, anterior insular areas, and areas along the580

intra-parietal sulcus regions) was robustly associated with more accurate and faster responses on a spatial working581

memory task and fluid intelligence. Our approach extends this approach by providing a unified model that links582

working memory accuracy, fluid intelligence, and functional connectivity. Using our approach, we found the strongest583

connections within Frontoparietal, Default Mode, and Motor networks, and between Frontoparietal, Default Mode,584

and Subcortical-Cerebellum networks. This evidence aligns well with findings from lesion studies that have also585

reported a selective relationship between fronto-parietal regions and working memory task as well as fluid cognitive586

abilities [83, 84]. However, it is a further challenge to identify and interpret if these connections are statistically587

significant in mediating the relationship between fluid intelligence on working memory accuracy.588

Interpreting the indirect effect is an important part of mediation analysis. The proposed high-dimensional mediation589

approach can be placed into a potential outcome framework to access the conditions necessary for causal mediation590

analysis. In short, using potential outcomes notation, let M(x) denote the value of the mediators if treatment X is set591

to x. In our example, this represents the brain activation corresponding to a temperature set to a particular value x.592

Similarly, let Y (x,m) denote the outcome if X is set to x and M is set to m. This is the reported pain corresponding593

to both temperature and brain activation set to x and m, respectively. Using this notation, the natural unit indirect594

effect can be defined as Y (x,M(x)) − Y (x,M(x∗)). This corresponds to the change in pain rating that arises when595

brain activation is switched from M(x) to M(x∗). The αβ-effect represents the average indirect effect, which is596

equivalent to the natural direct effect when there is no treatment-mediator interaction. In other words, when M(x)597

and Y (x,m) are well defined and a series of assumptions hold, αβ can be used to identify causal mediation effects.598

In practice, it is difficult to test whether these assumptions hold. Hence, we refrain from any causal interpretations599

of our results in this work. This material is discussed in the context of high-dimensional mediation in greater detail600

in earlier work by our group [30, 34].601

Though our proposed framework is versatile and provides an option to test any number of machine learning models602

to find mediators using high dimensional data, it has its limitations. For example, the outcome of our framework603

depends on the performance of the underlying machine learning model. This implies that one needs to build a model604

that is able to accurately represent the relationship between the high dimensional mediator and the outcome. A605

failure to yield an expected result might be linked to a poor model selection and one needs to be careful before606

drawing conclusions especially in clinical applications. It should be noted that problems associated with building a607

good machine learning model for predicting outcome is an overall challenge for the entire field that is not unique to608

the proposed method. In addition, there is reason to believe that there are situations where prior knowledge about609

the data or its acquisition plays an important role in the mediation analysis. For instance, prior knowledge about the610

brain function and structure couldbe a crucial factor in constraining mediation analysis. In our initial implementation,611

we have not considered such prior knowledge, but these factors can be incorporated into the machine learning model612

and thus utilized in our approach. We leave this for future research.613

In conclusion, we have developed a new approach for identifying high dimensional mediators. Our proposed method614

provides a potential way for overcoming challenges with finding mediators in high dimensional data. Our single unified615

deep learning method reduces the high dimensional mediator to a single latent intermediate mediation measure. Such616

a measure can be used to study how dimensional mediators mediate the relationship between various traits and be617

applied to a variety of clinical applications. We applied our method to two different types of data, thus illustrating618

the robustness of the method. The development of methods for dealing with high dimensional mediation is in its619

infancy and this is the first application of deep learning to the field.620
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V. SUPPLEMENTAL MATERIAL825

FIG. S1. Overview of simulation. Generate x from a standard normal distribution. For known values of α0, α
and ϵ1, compute z using z = α0 + αx + ϵ1. In order to generate high dimensional mediators m, first, compute the
cumulative distribution function of z (i.e., norm.cdf(z)). Thereafter, take the first 4 digits after the decimal point and
replace these digits by images from the MNIST data [47]. Concatenate the four images to create a high dimensional mediator.
For known values β0, β, γ and ϵ2 generate y using y = β0 + γx+ βz + ϵ2. The image size of MNIST data can be re-scaled to
modify the overall dimension of the mediator.
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FIG. S2. A flowchart of the deep learning model architecture. The input to the model is the single trial brain activation maps.
Thereafter, the architecture comprises a series of ResNet and max pooling blocks. Finally, it has a fully connected block which
eventually predicts the mediators of pain. The backbone of the deep learning model architecture is the residual block which
is concatenated to a max pooling layer. Together these two blocks are repeated five times and the output of the last block is
concatenated to a fully connected block. The fully connected block consists of a fully connected layer with an exponential linear
unit (ELU) activation function. Its output is connected to a dropout layer [85] which randomly drop units from the neural
network during training in order to avoid over-fitting. The ResNet block consists of a 3-D convolutional layer with kernel size
3×3×3 and stride 1×1×1 followed by a batch normalization layer and an ELU activation function. The convolutional layer
and batch normalization layers are repeated twice and concatenated to the output of skip connection.
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FIG. S3. Result on a leave-one-study-out validation. During the leave-one-study-out validation, each study was left out during
training the model and used only during testing the model. The estimated α, β and αβ values obtained when applying the
fitted machine learning model to the left out study dataset for the pain trials. Error bars indicate SEM. *** p < 0.001. In
total five of the eight pain datasets are significant when used as the test dataset. The three studies that were not significant
(EXP, IE, and SCEBL) are the ones with the strongest psychological interventions, and the effect of pain depends strongly on
these interventions. For EXP and IE, there are cues prior to pain stimulus that state whether high or low pain is coming. For
SCEBL there is a cue that states how other subjects responded to the upcoming stimuli. Much of the pain response is likely
linked to these cues, and therefore in each case it is not entirely surprising that the β-pathway is non-significant.
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FIG. S4. Results from multiple iterations of k-fold cross validation. Due to computational constraints we restricted the
number of replications to 3 times. During the k-fold cross validation, the training dataset is split into 3 folds. The estimated
α, β and αβ values obtained when applying the fitted machine learning model to the left out fold for the pain trials. Error
bars indicate SEM. *** p < 0.001. All coefficients were strongly significant for pain trials.

(a) Principal Direction of Mediation

(b) Univariate mediation analysis.

FIG. S5. Comparison with PDM and a mass univariate approach (mediation effect parametric mapping) approach. Panels
(a) and (b) show maps with individually significant voxels at FDR q < 0.05 from a PDM and univariate mediation analysis,
respectively. These results were previously discussed in [35].

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.10.511329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511329
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 A machine learning based approach towards high-dimensional mediation analysis 
	Abstract
	Highlights
	Introduction
	Methods
	Mediation model
	Deep learning model
	Shallow learning model
	Support vector regression
	Ridge regression connectome-based predictive modeling (rCPM)

	Simulations
	Experimental data
	Participants
	Procedure
	fMRI data processing

	Model fit and training procedure
	Model interpretation

	Results
	Simulations
	Pain Data
	HCP data

	Discussion
	Acknowledgement
	References
	References
	Supplemental material


