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Abstract: Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds,
citrus and olives, causing economically devastating damage. There is, however, little
understanding of the genes that contribute to resistance, the genomic architecture of resistance,
and the potential role of climate in shaping resistance, in part because major crops like
grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine
species, Vitis arizonica, that segregates for resistance to X. fastidiosa. Using genome-wide
association, we identified candidate genes that mediate the host response to X. fastidiosa
infection. We uncovered evidence that resistance requires genes from multiple genomic regions,
based on data from breeding populations and from additional Vitis species. We also inferred that
resistance evolved more than once in the wild, suggesting that wild Vitis species may be a rich
source for resistance alleles and mechanisms. Finally, resistance in V. arizonica was climate
dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter
were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these
climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as
some genetic markers. This work underscores that pathogen pressure is likely to increase with
climate, but it also provides genetic insight and tools for breeding and transforming resistant

Crops.
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INTRODUCTION

Climate change is impacting crop yields by shifting temperatures, weather extremes, and
water availability (Zhao et al. 2017), thereby affecting the distribution of arable lands
(Ramankutty et al. 2002). There is, however, another important effect of climate change, which
is the altered distribution of plant pathogens (Veldsquez et al. 2018; Burdon and Zhan 2020).
One especially prominent pathogen is the bacterium Xylella fastidiosa. X. fastidiosa is a
generalist that colonizes > 300 plant species (Sicard et al. 2018; European Food Safety Authority
(EFSA) 2020), but it is pathogenic on major crops like citrus, coffee, almonds and grapevines
(Vitis vinifera ssp. vinifera). Until recently, X. fastidiosa had been limited to the Americas, but
human-mediated migration has led to its colonization of Europe, where it causes > ~$100M of
damage per year to the olive industry (Schneider et al. 2020). This olive example illustrates that
the bacterium is more than a persistent threat in the Americas; it is also an emerging and
expanding global threat to Europe, the Middle East (Frem et al. 2021) and beyond (Su et al.
2013). Accordingly, there are urgent needs to better understand the genetic mechanisms of plant
resistance (National Research Council et al. 2004), particularly in the wild where both pathogens
and hosts evolve (Bartoli and Roux 2017).

Thus far, studies of X. fastidiosa-mediated diseases have focused primarily on citrus and on
Pierce’s Disease (PD) in domesticated grapevines. In grapevines, PD manifests by colonizing the
xylem, leading to vascular blockages and eventual plant death after several years. In the course
of infection, PD causes other detrimental symptoms, including marginal leaf necrosis, berry
desiccation, irregular maturation of canes and abnormal petiole abscission (Rapicavoli et al.
2018). The bacterium is spread from plant to plant by xylem-feeding insect vectors, which affect
the severity and spread disease. The distribution of these insect vectors is being affected by
changing climate (Hoddle 2004) and by anthropomorphic activity. One pertinent example is the
glassy-winged-sharpshooter (GWSS; Homalodisca vitripennis), which was introduced to
Southern California in the late 1990s. The GWSS has a higher transmission efficiency compared
to native vectors and fueled a large PD outbreak that has permanently altered viticulture in the
region.

Although all domesticated grapevines (V. vinifera ssp. vinifera) are susceptible to PD, some
wild relatives of grapevines segregate for PD resistance, likely reflecting the evolution of
resistance in regions of persistent X. fastidiosa pressure (Ruel and Andrew Walker 2006).

Among wild grapevines, Vitis arizonica merits particular interest because it exhibits strong
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resistance to PD and because it contains the only characterized plant locus to segregate for
Xylella fastidiosa resistance, the Pierce’s disease resistance 1 (PdR1) locus (Krivanek et al.
2006; Riaz et al. 2006). PdR1 was identified by genetic mapping of a segregating family, defined
by simple-sequence-repeat (SSR) markers, and backcrossed into susceptible grapevine cultivars
to introduce resistance (Riaz et al. 2009). A recent study utlized BAC sequences of the region to
identify two candidate genes for resistance (Agtiero et al. 2022). Both genes were canonical
leucine-rich receptor (LRR) loci, but neither conferred resistance after single-gene
transformation into V. vinifera (Agiiero et al. 2022). Additional candidates have been identified
based on comparative transcriptomics in V. vinifera (Zaini et al. 2018), olives (Olea europaea)
(Giampetruzzi et al. 2016) and citrus (Citrus reticulata) (Rodrigues et al. 2013).

Despite the enormous economic impact of X. fastidiosa infection, the genomic architecture of
resistance has not yet been investigated in any species, and the genomic basis of resistance
remains unclear. Here we address this shortcoming by performing genome-wide association
(GWA) analyses for X. fastidiosa resistance in V. arizonica. In addition to identifying several
novel candidate genes for resistance in PdR/ and in other genomic regions, our work begins to
fill another surprising gap. Although GWA and similar approaches are commonly used to study
disease resistance in crops, surprisingly few studies have focused on the wild relatives of crops
(Bartoli and Roux 2017). [One notable exception is the wild relative of soybean, Glycine soja
(Leamy et al. 2017; Zhang et al. 2017).] This dearth of studies is surprising both because crop
wild relatives are a proven and valuable source of resistance genes for crop improvement
(Migicovsky and Myles 2017) and because studying resistance in wild samples may provide
insights into the evolution of resistance and the ecological and climatic factors that shape
resistance (Bartoli and Roux 2017).

In this study, we generate landscape genomic data from a sample of V. arizonica from
throughout its native range and perform GWA based on a resistance phenotype - i.e., bacterial
load after experimental inoculation. In doing so, we identify several genomic regions, including
the PdR1 region, that are associated with resistance, and we identify candidate genes in these
regions based on an improved V. arizonica reference. We combine GWA with several types of
evidence — including population genetic analyses, gene expression assays, comparisons among
wild Vitis species, investigation of V. vinifera cultivars bred for PD resistance and bioclimatic
modeling - to address three sets of questions. First, which and how many genic regions

contribute to resistance, and what are some of the likely candidate resistance genes within these
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regions? Second, are these regions implicated in resistance across Vitis species and also in
cultivars that were specifically bred for PD resistance? What do these inter-species analyses
imply about the origin of resistance? Finally, does plant resistance correlate with bioclimate? If
so, what might this climatic relationship imply about the potential effects of climate change?
Overall, our work provides information about the genetics, evolution and ecology of PD
resistance, all of which will help inform strategies to manage an economically damaging and

expanding pathogen (Frem et al. 2020).

RESULTS
Genome-wide associations for resistance to Pierce’s Disease

We studied the genetics of PD resistance in V. arizonica by combining three sources of
information: an updated reference genome (accession b40-14, which is homozygous for PD
resistance) (Morales-Cruz et al. 2021), whole-genome resequencing data from 167 accessions
sampled across the species’ native range (Fig. S1), and previously published phenotypic data
about PD resistance on the same set of 167 accessions (Riaz et al. 2020; Morales-Cruz et al.
2021). We used PD resistance as a quantitative variable - i.e., the log-transformed number of
colony forming units (CFUs/ml) 12-14 weeks after experimental X. fastidiosa inoculations
(Table S1). However, following precedence (Riaz et al. 2020), we also characterized individual
accessions as resistant if they had Xylella fastidiosa concentrations below 13.0 CFUs/ml. Based
on this threshold, our sample contained 135 resistant and 32 susceptible individuals, with the
susceptible individuals more common in the northern region of the geographic distribution (Fig.
1).

We first performed genome-wide association (GWA) analyses based on SNP variants. To do
so, we mapped resequencing data to the reference haplotype of the phased diploid genome and
then tested for associations using two distinct methods that correct for genetic structure (Hao et
al. 2021; Caye et al.). On the reference haplotype (hap 1), we identified 74 and 40 associated
SNPs (Bonferroni p < 0.05) with the two methods, of which 25 were significant with both
methods. We used these 25 SNPs to conservatively define eight peaks across five chromosomes
(Fig. 2, Figs. S2-S4, Table S2). The most evident peaks were on chromosomes 14 and 15, with
the former located between the SSR markers that define the PdR1 locus. We also called SNPs

independently to the second haplotype (hap2) and identified 11 significant SNPs in five peaks
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(Figs. S5-S7, Table S2). One of these peaks was also on chromosome 14 between the PdR1
flanking markers.

Previous studies have suggested that PdR1 alleles differ in size among V. arizonica
accessions (Riaz et al. 2008), suggesting structural variants contribute to resistance. We therefore
investigated associations using copy number variants (CNVs), identifying 14,294 CNVs
throughout the genome, of which 60 were in the 8 PD-significant peaks (Table S3). The 60
CNVs included 19 deletions and 41 duplications, with means of 1.3 and 3.3 copies. We also
performed GWA on the complete CNV set, finding four that were significantly (Bonferroni p <
0.05) associated with bacterial load (Fig. 2, Figs. S8-S9). Two of these four CNVs mapped to
two SNP-defined peaks: CNV10605 within PdRI (mean copy number= 0.88, size= 6kb, R= -
0.36, p=1.77e-06) and CNV10806 within peak 7 of chromosome 15 (mean copy number = 2.83,
size = 17 kb, R=-0.38, p=3.61e-07). The negative correlations for both CNVs indicated that a
higher number of copies had lower bacterial loads and higher PD resistance. Both CNVs had
homology to long-terminal repeat transposable elements and so provided few insights into the
functional basis of resistance. To further account for potential structural variation among
accessions, we also applied GWA to 31bp kmers, using a reference-free approach (Voichek and
Weigel 2020) (Fig. 2, Fig. S10). Of 115 significant kmers (Bonferroni p < 0.05) (Table S4), 79
mapped to the reference genome (Table S5) and 62 mapped uniquely to either hap1 or hap?2.
Among the uniquely mapped kmers, 57 of 62 were located on hap1 near PdR! and five were on
the chromosome 15 peak. Altogether, CNV and kmer analyses corroborated four of the eight
SNP-based peaks while confirming PdR] as a major locus (Krivanek et al. 2006; Riaz et al.
20006).

We manually reannotated genes under the eight hap1 peaks, using boundaries defined by
100kb windows, since genome-wide LD decayed to background levels (+<0.05) within this
distance (Fig. S11). The eight peaks included 124 genes, and several had annotations that
implied a role in plant immunity (Table S6). For example, peak 4 included a calmodulin-binding
gene (g226310) that is involved in the regulation of plant disease response through changes in
phytohormone biosynthesis (Levy et al. 2005; Lv et al. 2019), and a “syntaxin of plants 41" gene
(g226360) that acts in plant resistance against bacterial pathogens (Kalde et al. 2007). At PdR1
(peak 5), we identified 7 leucine-rich repeat receptor-like protein (LRR-RLP) genes, one LRR
receptor-like protein kinase (RLK) gene, and one lysin motif (LysM ) RLK gene, that are

commonly involved in pathogen detection and initiate the plant response (Liu et al. 2017). Peak
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7 contained two nucleotide-binding site leucine-rich repeat proteins (NBS-LRR; g243780, and
£243820) that also detect pathogens and initiate a host response, as well as a Phloem protein 2-
like (PP2) protein with antimicrobial properties (Du et al. 2022). We also identified eight genes
of interest on chromosome 15 (peak 8). Two of those genes have functional annotations related
to phytohormone interactions (g252710, Ethylene-responsive transcription factor CRF4, and
2252790, Abscisic Acid Insensitive-like 1 or ABIL 1), and thus may play a role in plant
immunity. Another four genes encode acidic endochitinases, which provide defense against
fungal pathogens (Samac et al. 1990). Finally, we studied the potential function of the 36
significant kmers that did not map to the reference genome by assembling reads containing the
kmers and then aligning assemblies to the NCBI Transcript Reference Sequences (“refseq_rna”).
Of the assembled contigs, 80% had high similarity to three specific Receptor-like proteins
(RLPs) (“ XM _010648495.2”, “XM 034852027.1” and “XM_019224733.17). Overall, the set of
candidate genes suggest that multiple diverse functions contribute to PD resistance, but with
likely involvement of classic disease resistance (R) genes.

We used SSR markers to define the PdR 1 locus as a 361 kb region on hapl chromosome 14
(with a corresponding 360kb region on hap2), but we further characterized the locus in three
ways. First, we evaluated linkage disequilibrium (LD) across chromosome 14. We observed two
large blocks (~ 7 Mb in size) in high LD that contained the three PD-significant peaks of
chromosome 14 (peaks 4, 5, and 6), even though peaks 5 and 6 were located on opposite ends of
the chromosome from peak 4 (Fig. 3A). This striking pattern may simply reflect properties of our
sample, but it also suggests that PD-related alleles co-segregate across peaks, implying that
additive or epistatic interactions contribute to resistance in nature. Second, we focused on the
location of significantly associated PdR I markers, which fell into a narrower 103.6kb region
containing six genes, three of which were RLPs (Fig. 3B&C).

Finally, we assayed gene expression in the region. One RLP (g238150) was expressed in
b40-14 leaves, as was a receptor-like-kinase (RLK; g238290) that fell outside the 103.6kb region
(Fig. 3C). We also assayed gene expression in three resistant full-sibs that were inoculated with
X. fastidiosa and a control (water). The stems above the inoculation site were sampled weekly
for up to four weeks. Both g238150 and g238290 were expressed at higher levels than the
control in at least one weekly stage, although not significantly so (p>0.05). Two additional genes
- an RLP (g238180) and an RLK (g239250) - also exhibited this pattern, and g238180 also co-

located with several associated kmers (Fig. 2). All four of the expressed R genes were also
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present on the hap2 version of PdR 1. Importantly, none of these four candidates were the closest
homologs of the candidate genes that failed to confer resistance when transformed into V.

vinifera (Agiiero et al. 2022) (see Discussion).

The genetic basis of resistance in breeding

The complex LD pattern on chromosome 14 suggests that resistance may require genic
action from more than one locus - i.e., multigenic (horizontal) resistance. To investigate this
possibility, we examined the distribution of kmers across accessions (Table S7). Among the 117
kmers associated with bacterial load, 99 were common among resistant accessions; they were
found in 65.0% of resistant plants, on average, but in only 9.5% of susceptible accessions. We
labeled these kmers as resistant (R-kmers). In contrast, 16 kmers were detected in 67.2% and
10.1% of susceptible and resistant accessions, on average, suggesting associations with disease
susceptibility (S-kmers). Interestingly, 10 of the 16 S-kmers mapped to a region on chromosome
15 that was ~12 kb upstream of a Jasmonic Acid-Amido Synthetase gene (JARI, g252600).
Changes in the expression of JAR! are associated with a reduction of host defenses (Jiang et al.
2016). We hypothesize that S-kmers are linked to variants that affect the expression of JAR/ and
promote susceptibility to Xylella fastidiosa. An important goal for breeding may be to avoid
these S-kmers (Zaidi et al. 2018).

We then investigated the genomic content of five resistant cultivars (Ambulo Blanc,
Caminante Blanc, Camminare noir, Errante noir and Paseante noir) derived from backcrosses to
V. arizonica (accession b43-17) (Anon) to test whether the basis of resistance lay solely in PdR1
or included additional genomic regions. After resequencing the five cultivars, we detected all 99
R-kmers in each cultivar but no S-kmers (Fig. 4B, Table S8). In contrast, a control dataset from
four susceptible V. vinifera cultivars (Cabernet Sauvignon cl. 08, Chardonnay cl. 04, Zinfandel
cl. 03 and Petite Sirah) contained neither R-kmers or S-kmers (Table S8). Although our analyses
used a reference (b40-14) that was not the source of PD resistance in backcrossed cultivars (b43-
17), we found 56 kmers mapped to b40-14 hap1, 44 to hap2, and 53 to unplaced contigs.
Importantly, the hapl kmers mapped to both PdRI (51 kmers) and to peak 8 on chromosome 15
(5 kmers), suggesting these two regions contribute to (and may be necessary for) resistance. As a
complementary method, we scanned SNP heterozygosity in resistant cultivars, reasoning that
backcrossed regions should be heterozygous for V. arizonica specific alleles. As expected, this

analysis revealed that portions of chromosome 14 were heterozygous across a region that
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encompassed Peak 5, Peak 6 (PdR1) and beyond (Fig. S12). However, the proximal peak (peak
4) on chromosome 14 was also heterozygous (spanning from ~6.43Mbp to 6.59 Mbp on
chromosome 14; Fig. S12). Another prominent peak of heterozygosity on chromosome 9 did not
correspond to peaks detected in our GWA. In short, both kmer and SNP analyses suggest that

resistance backcrossed from V. arizonica encompassed multiple genomic regions.

Resistance markers across Vitis species

These observations raise additional questions about the evolution of PD resistance: Did PD
resistance arise only once in wild Vitis and, if so, is there evidence for the involvement of
multiple genic regions? These questions are especially pertinent because all North American
wild Vitis species can hybridize, with their genomes containing relics of introgression events that
are enriched for RLK and RLP genes (Morales-Cruz et al. 2021). To address these questions, we
extended kmer analyses to a population genomic sample of 105 individuals from six wild North
American Vitis, all of which were assayed for resistance (Riaz et al. 2020; Morales-Cruz et al.
2021) (Fig. 4C, Table S8 & Fig. S13). The six species were estimated to have a common
ancestor ~25 million years ago (mya) (Morales-Cruz et al. 2021).

We hypothesized that PD resistance was introgressed across species and therefore predicted
that the same R-kmers were present across species. We found (as expected) that R-kmers were at
significantly higher frequencies in a subset of resistant vs. susceptible individuals for V.
arizonica (Welch Two Sample WTS t-test, p = 4.50e-16), and also for its sister species, V.
girdiana (p = 0.007) (Fig. S14). Interestingly, five of the R-kmers within V. girdiana mapped to
the chromosome 15 peak, again suggesting a multigenic component to resistance. These five
kmers were detected in ~67% (12/18) of the V. girdiana individuals. These data suggests V.
arizonica and V. girdiana share the basis for resistance, with due to introgression or (more
parsimoniously) common ancestry. For the remaining four species, no resistant individuals had >
50% of R-kmers (Fig. 4C), with no difference in R-kmer frequency between resistant and
susceptible accessions (Fig. S14). In fact, we detected R-kmers less often in these species than
for a set of random V. arizonica kmers chosen to have similar population genetic frequencies as
the R-kmers. Contrary to our hypothesis, the R-kmer distribution in these more distant species
provide no evidence that the genetic mechanism of PD resistance (or at least the kmers linked to

resistance) was introgressed from V. arizonica/V. girdiana to the remaining four species.
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Predicting PD resistance with climate data

Because our plant accessions were sampled across a geographic range (Fig 1), we can use
the resequencing data to investigate relationships to climate. We utilized gradient forest (GF) to
detect bioclimatic factors related to resistance. GF is a machine learning method that models the
turnover in genetic composition and frequency across the climate landscape (Fitzpatrick and
Keller 2015) while identifying bioclimatic variables that are important to the construction of the
model. As is common for GF applications (Jonas A. Aguirre-Liguori et al. 2021), we applied it to
candidate SNPs, specifically the 25 SNPs associated with resistance. To test for robustness, we
also repeated GF analysis 1000 times. In all 1000 runs, GF identified BIO8 (Mean Temperature
of Wettest Quarter) as the most important model contributor among 10 bioclimatic variables,
followed by BIO3 (Isothermality), BIO4 (Temperature Seasonality) and BIO17 (Precipitation of
Driest Quarter) (Fig. 5A). Moreover, the turnover function revealed a bias in which susceptible
individuals were from locations where BIO8 was <10°C (Fig. 5B), which was confirmed by a
significant pairwise comparison between resistant and susceptible individuals (Fig. S15).

We performed two additional analyses to assess the generality between resistance and
BIOS. First, we examined our complete dataset of all assayed Vitis individuals (n=275) across six
species. The dataset was highly skewed, because 30% of susceptible individuals — but only 1.6%
of resistant individuals — had BIOS8 < 10°C (FET, p = 8.2e-12). This result held separately for V.
arizonica (FET, p = 8.2e-12) and when V. arizonica was not included in the analysis (FET, p =
0.03). Second, we constructed a global dataset of known X. fastidiosa geographic locations that
integrates across plant families and all X. fastidiosa subspecies (European Food Safety Authority
(EFSA) 2018). Unfortunately, the dataset had few exact locations suitable for analysis, leaving
only 61 reputable observations. Of these, fewer than 5% had BIOS values < 10°C (Fig. S15),
reflecting the previously reported relationship between temperature and X. fastidiosa presence
(Purcell 1980; Lieth et al. 2011; Bosso et al. 2016; Sicard et al. 2018).

Given an association between plant resistance and temperature, we explored whether
genetic or climatic factors better predicted bacterial load in V. arizonica. We assessed individual
predictors with linear models, focusing on 10 bioclimatic predictors and nine genomic predictors
(Fig. 5C). The genomic predictors included kmers, CNVs, assignments into genetic groups (K1
and K2), randomly chosen SNPs, and SNPs associated with PD. We summarized SNPs
associated with PD with Sy, a measure that ranged from 0.0 to 1.0 and reflected the average

proportion of alleles associated with resistance (where 0.0 is no resistance-associated alleles).
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Focusing on the performance of each of the 19 predictors, Sy calculated across PdR1 SNPs (10
total SNPs) had the strongest predictive power (R?= 0.599), followed by related Sy scores based
on all candidate SNPs on chromosome 14 (16 SNPs, R?=0.592), all candidate SNPs across the
genome (25 SNPs, R?= 0.576) and finally all candidate SNPs on chromosome 15 (6 SNPs, R>=
0.412) (Fig. 5C). Among the bioclimatic variables, BIO8 had an R? of 0.370 in the linear model,
which was much higher than the median value for 1000 randomly chosen sets of SNPs (R?
=0.196) and similar to the predictive power of Kmers (R?>= 0.410) and CNVs (R? =0.307). Thus,
BIOS was a reasonable predictor of resistance, even in the absence of genetic data. Notably, the
other bioclimatic variables that were identified by GF were not strongly predictive by themselves

- e.g., BIO4, BIO17 and BIO3 had lower predictive power than random sets of SNPs (Fig. 5C).

DISCUSSION

X fastidiosa causes Pierce’s Disease in domesticated grapevines (V. vinifera) and
economically devastating diseases in other crops like citrus, coffee and almonds (Rapicavoli et
al. 2018). A diverse body of work has investigated the basis of resistance across diverse crop
species but few plausible candidate resistance genes (Rodrigues et al. 2013; Giampetruzzi et al.
2016; Zaini et al. 2018; Agiiero et al. 2022). To date, however, no studies of X. fastidiosa
resistance have taken advantage of full-scale genomic approaches like GWA. Indeed GWA
studies in the wild relatives of crops are surprisingly rare, despite the importance of
understanding the basis of resistance in ecological settings (Bartoli and Roux 2017) and the
transformative potential of such knowledge for crop breeding (Migicovsky and Myles 2017).
Here we have applied GWA to resistance in V. arizonica, based on an improved reference
genome, on resequencing data from 167 wild-sampled accessions and on phenotypic data
measured from X. fastidiosa infection assays (Riaz et al. 2020; Morales-Cruz et al. 2021).
Together, these analyses have yielded information about genomic regions associated with PD
resistance and also identified candidate genes within those regions. Moreover, the landscape
scale of the resequencing data has allowed us to explore relationships between plant resistance

and climate.

Genome-wide associations with PD resistance
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Not surprisingly, GWA identified several significant SNP and kmer markers on
chromosome 14 between the genetic boundaries that define the PdR1 locus (Fig. 2). This locus
was originally identified by genetic mapping and QTL analyses (Doucleff et al. 2004; Krivanek
et al. 2006) and it was subsequently backcrossed into susceptible V. vinifera to produce resistant
cultivars (Riaz et al. 2009). There had been no insights into causative genes that lie within this
region, until Aguero et al. (2022) (Agiiero et al. 2022) identified five putative R genes and
transformed two LRR genes separately into V. vinifera, failing to find evidence of enhanced
resistance. Our study of a different accession (b40-14) provides further insights. First, based on
careful genomic annotation combined with association and gene expression analyses, we have
identified a narrower PdR1 region with two strong candidates (g238150 and g238180), along
with two additional candidates (2238250 and g238290) within the traditional PdR1 locus (Fig.
3). Second, we have mapped the two transformed LRR genes from Aguero et al. (2022) to our
genome (see Methods); neither of the two transformed genes are closest homologs to candidate
genes in b40-14 and neither are highly expressed in b40-14 (Table S9). Overall, our candidate
genes, which are present on both b40-14 haplotypes, differ substantially from those identified in
b43-17. It is possible, of course, that different genes confer resistance in different accessions,
given that structural variants are common in Vitis genomes (Zhou et al. 2019) and that allelic
heterogeneity for resistance is also common (Karasov et al. 2020). A reasonable next step is to
knock-out our candidates in V. arizonica, but unfortunately transformation in Vitis is currently
efficient primarily for a narrow set of V. vinifera cultivars (Zhang et al. 2021). An important
challenge for viticulture is to improve transformation techniques for application to more cultivars
and to agronomically valuable wild species.

One interesting possibility is that candidate genes within PdR] are not sufficient to confer
resistance. There is evidence consistent with and against this hypothesis. Some of the evidence is
historical. In an early study of PD resistance among Vitis species, Mortensen (1968) performed
controlled hybrid crosses and concluded that complementary gene action among three
independent genes best explained his results (Mortensen). Our data also hint at the contribution
of multiple genomic regions. For example, the striking LD pattern on chromosome 14 suggests
additive or epistatic interactions between distinct regions on the chromosome (Fig 3A).
Similarly, V. girdiana and V. arizonica share R-kmers that map to at least two different
chromosomes, further reflecting multi-genic composition (Fig. 4B). Finally, genomic

investigation of resistant V. vinifera cultivars demonstrate that they include backcrossed
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contributions from V. arizonica across the PdR1 region, as expected, but also across additional
peaks on chromosomes 8, 9, 14 and 15 (Fig. 4A). In contrast to this multigenic interpretation,
we have observed that most significantly associated markers lie within the PdR region (Fig 2)
and also that resistance can be best predicted using SNP data from within PdR] (Fig. 5B). We
have not estimated the effect sizes of SNP and kmer markers directly, because the gold standard
for effect estimation requires a second independent dataset (Burghardt et al. 2017). However,
our prediction results are consistent with the loci of largest effect residing within PdR /. Finally,
a QTL study based on another V. arizonica parent found that 55.5% of phenotypic variation of
resistance is explained by markers on chromosome 14 (Huerta-Acosta and Riaz), consistent with
a major but not complete PdR] effect. Overall, we interpret these complex observations to
predict: 7) that a combination of the correct candidate genes within PdR ] may confer substantial
resistance but i7) that resistance at levels mimicking those in the wild will require allelic variants

from additional genomic regions.

Evolutionary and ecological insights into plant resistance

Inferring the spatial distribution of disease resistance is critical for understanding its
evolution and ecology (Karasov et al. 2020). We have investigated resistance across the
landscape of V. arizonica (Fig. 1) and across six wild species that segregate for PD resistance.
Given that all North American Vitis species are interfertile and that there is ample genomic
evidence for historical introgression of resistance genes among species (Morales-Cruz et al.
2021), we predicted that the genetic solution to PD would yield clear signals of introgression.
We find that R-kmers are commonly shared between V. arizonica and its closest species in our
sample, V. girdiana, but not across the other species (Fig. 4C). It is possible that we cannot
detect introgression events because causative loci and associated R-kmers have become
uncoupled over evolutionary time. At a minimum, however, our results provide no evidence that
PD resistance has introgressed from V. arizonica to the non-girdiana species in our sample. If
true, this implies that other wild Vitis species have independently evolved mechanisms of PD
resistance; hence further study of these species may provide additional insights into alternative
genetic causes of PD resistance. In this vein, one particularly interesting species is V.
mustangensis (syn V. candicans), which has not been widely utilized agronomically as a

rootstock or for hybrid scion breeding, but it does segregate for PD resistance and also contains
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alleles that may be useful for viticulture in the context of climate change (J. A. Aguirre-Liguori
etal. 2021).

We have taken advantage of our geographic sampling to investigate correlates between
resistance and climate, finding that resistance-associated SNP markers correlate with climatic
variables, especially temperature in the wettest quarter (BIOS8). More specifically, susceptible
plants tend to be found where BIOS is <10°C; this is true within V. arizonica, within our
expanded sample of Vitis species and across wider (although still quite limited) geographic
samples of X. fastidiosa that integrate across plant hosts and bacterial subspecies (European Food
Safety Authority (EFSA) 2018) (Fig 5D). Somewhat remarkably, this simple climatic measure
predicts bacterial load nearly as well as some genetic markers (kmers) and better than others
(CNVs) (Fig 5D). This is, to our knowledge, the first time that genomic data have been used to
associate plant resistance and climate, yielding a useful bioclimatic predictor. Our findings are
not without precedent, however, because temperature has previously been identified as a strong
predictor of X. fastidiosa distribution and presence (Purcell 1980; Lieth et al. 2011; Sicard et al.
2018; Raffini et al. 2020). Combining these observations, we suspect that individuals with low
(<10°C) BIOS8 temperatures lack resistance because X. fastidiosa growth is hampered at low
temperatures (Hopkins and Purcell 2002; Bosso et al. 2016) and/or because temperature affects
its insect vectors (Hoddle 2004; M. Godefroid et al. 2022). Plant resistance will not be favored
by natural selection in regions where the pathogen does not persist, particularly if there is a
fitness cost to resistance [as has been demonstrated for R-gene mediated resistance in 4. thaliana
(Tian et al. 2003)].

Previous work has modeled the distribution of X. fastidiosa under climate change (Purcell
1980; Lieth et al. 2011; Sicard et al. 2018; Raffini et al. 2020; Martin Godefroid et al. 2022), but
these models have depended primarily on incomplete X. fastidiosa surveys and have not been
informed by data on the distribution of plant resistance. To illustrate how such information may
be useful, we have employed climate models to predict where BIOS8 will shift in the future. More
specifically, we have identified regions where BIO8 will transition across the threshold of BIO8
= 10°C (Fig. 6A), as informed by plant resistance. By categorizing regions where BIOS is
predicted to move from below (or above) 10°C in the present to above (or below) 10°C in the
future and by assuming the distribution of resistance informs on pathogen presence, we can
identify regions where X. fastidiosa pressure is likely to expand or contract. We performed these

categorizations across 54 climate models to consider uncertainty in global circulation models,

14


https://doi.org/10.1101/2022.10.08.511428
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.08.511428; this version posted October 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

shifts in greenhouse gas emissions and time (see Methods). Summarizing across models, we
have found that most of the globe will not transition - i.e., it will remain either above or below
10°C during the wettest quarters (Fig. 6A). Perhaps unsurprisingly (Cohen et al. 2021), large
portions of Canada, Eastern Europe, Russia and Northern Asia climate are predicted to move
beneath the BIOS8 threshold, suggesting that these regions may be less likely to have pathogen
pressure in the future. There are, however, discrete areas of the Western Americas, Western
Europe, Central Asia, Southern Australia and elsewhere that are predicted to transition above the
10°C threshold in most models, suggesting increasing X. fastidiosa pressure in these regions (Fig.
6A). These models of course make numerous assumptions. Some are common to all climate
models (e.g., a reliance on accuracy of the climate predictions) and to previous X. fastidiosa
species distribution models [e.g., which ignore the potential of X. fastidiosa to evolve to new
temperature regimes (Jonas A. Aguirre-Liguori et al. 2021; Martin Godefroid et al. 2022)]. Some
are more specific to this work - i.e., that X. fastidiosa is not dispersal limited and also that the
BIOS threshold has importance beyond V. arizonica, as suggested by our analysis of data that
includes different plant hosts (Fig. 5C). Importantly, however, our climate modeling illustrates
how data about plant resistance can help inform the potential distribution of disease under a
shifting climate.

In fact, we can proceed one step further by assessing the potential effects of climate on
specific plant taxa - i.e., wild V. arizonica and five affected crops (grapes, coffee, almonds, citrus
and olives). To do so, we first downloaded the global locations where each species is grown and
then used climate projections to estimate the proportion of locations that will transition over the
10°C BIOS threshold under climate models (see Methods). Using this approach, we predict that
few locations for these crops will transition below the 10°C threshold. In citrus and grapes, for
example, the average estimate across the 54 climate models is that only 0.97% (of 7,853)
locations and 2.10% (of 40,075) locations will transition below 10°C under climate models (Fig.
6B). Perhaps not unexpectedly, a much higher proportion of locations are estimated to exceed the
10°C threshold over time (Fig. 6C). For example, we estimate that >38% of regions of almond
and grapevine cultivation will transition above the 10°C threshold thus, given our assumptions,
providing X. fastidiosa more favorable conditions and hence potentially subjecting these crops to
higher pathogen pressure. Similarly, 18% of olive growing locations are expected to transition
above the 10°C threshold, which adds future concern to models that strongly predict the spread

of the bacterium to olive growing regions under current climates (Schneider et al. 2020). These
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calculations treat X. fastidiosa subspecies similarly, even though there are some differences in
their host specificity (Sicard et al. 2018; Batarseh et al. 2022) and distributions (Godefroid et al.
2019; Schneider et al. 2020), but emphasize that climate change is unlikely to affect all crops
similarly with respect to X. fastidiosa exposure.

Overall, our study has considered the genomic, climate and evolutionary context of
resistance to a pathogen that is an emerging global pest and that already causes devastating
economic damage to several crops. By studying the complex genetic architecture of PD
resistance in a wild grapevine, we have implicated several genomic regions in resistance and
identified genes that are fitting candidates for genetic introduction into susceptible crops.
Furthermore, by comparing features across wild Vitis species we have uncovered hints about the
origins of this critical trait. Finally, our work has highlighted the potential of combining
landscape-scale resequencing data and climate models to predict the shifting pressures of a
damaging plant pathogen. These results underscore the urgent need to identify additional X.
fastidiosa management and containment methods, potentially via enhanced information about

resistance mechanisms and genes.

MATERIALS AND METHODS
Plant material and PD disease evaluations

We studied 167 accessions of V. arizonica collected across the southwestern states of the
US and northern Mexico, covering the distribution of the species (Figure 1A and Fig. S1). The
sampling location was available for all 167 V. arizonica accessions, which are part of a living
collection of Southwest Vitis accessions maintained at the University of California, Davis; all
Vitis accessions used in this paper were from that collection. PD resistance in these 167
accessions were previously assayed in controlled greenhouse trials (Riaz et al. 2020; Morales-
Cruz et al. 2021), following previously published protocols (Krivanek and Walker 2005; Riaz et
al. 2020). Briefly, accessions were inoculated with Xylella fastidiosa, and the susceptible V.
vinifera cultivar Chardonnay as a reference control. Nineteen screens were carried out from 2011
to 2020, with a minimum of four biological replicates per accession. Disease severity was
assessed 10 to 14 weeks after inoculation using categorical phenotypes for disease severity, and
ELISA was used to measure bacterial load (colonizing forming units or CFUs/ml) in the stem
above the inoculation site from 12 to 14 weeks. The ELISA data were log-transformed and

statistical analysis was performed using JMP Pro14 software (Copyright 2020, SAS Institute
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Inc.) to determine the variability of ELISA for the reference control plants across experiments. In
this study, we used the quantitative measure of plant bacterial load (Least Squared Means of
colonizing forming units or CFUs/ml) as an indicator of disease resistance. Lower bacterial load

reflects higher PD resistance.

Genomic reference, resequencing data and SNP calling

Version 1 of the V. arizonica sequence (b40-14 v1) was published previously (Massonnet
et al. 2020; Morales-Cruz et al. 2021), but this study relied on an updated version (b40-14 v2).
Version 2 was a complete re-assembly based on the application of Haplosync (Minio et al. 2022)
combined with ~ 2000 thAmpSeq Vitis markers (Zou et al. 2020), independent of any single
reference genome assembly. This new version of V. arizonica genome chromosome haplotypes
are better phased, with fewer unplaced sequences (~ 65 Mb; 3,035 gene loci). The correct
phasing of the locus was assessed during the assembly quality control steps based on genome
and locus-specific markers, and gene content. The gene annotation was ported between versions
1 and 2. The genome now contains 57,003 gene loci, a number slightly changed due to gene
model corrections and homozygous filling of the haplotypes during the assembly. The version 2
assembly represents the most contiguous genome assembly of any wild Vitis genome released to
date and was used as the reference for all analyses. The genome is available for browsing at
grapegenomics.com, but the v2. assembly and fasta files are also available from #### (will be
freely available before publication).

Our V. arizonica resequencing dataset consisted of short-read, whole genome data from
167 V. arizonica individuals, for which a subset of n=22 had been sequenced previously
(Morales-Cruz et al. 2021). The data for this subset was available from NCBI BioProject
PRINA607282. For the remaining 145 individuals, genomic DNA was extracted from leaf
samples with the Qiagen DNeasy plant kit. Sequencing libraries were constructed with an insert
size of ~300 bp using [llumina library preparation kits and were sequenced using the Illumina
HiSeq 2500 platform with 2 x 150 bp paired reads to a target coverage of 10x. The raw
sequencing data for this study has been deposited in the Short Read Archive at NCBI under
BioProject ID: PRINA842753.

We filtered and evaluated raw reads from 167 individuals using Trimmomatic-0.36
(Bolger et al. 2014) and FastQC (Andrews and Others 2010). Filtered reads were then mapped to
the reference genome (independently to Hapl and Hap2) with the BWA-MEM algorithm (Li
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2013) implemented in bwa-0.78. Joint SNP calling was conducted using the GATK v.4.2.2.0
pipeline (McKenna et al. 2010) for Hap1 and Hap2 independently. We first used the integrated
version of Picard tools (Institute 2016) to remove duplicated reads with the “MarkDuplicates”
function, followed by the “AddOrReplaceReadGroups” function to label the reads for each
individual. For the SNP prediction we used the HaplotypeCaller algorithm with a sample ploidy
of 2 and a mapping base quality score threshold of 20 (Q > 20). We combined the VCF files of
all individuals to make the final SNP calls using the “GenotypeGVCFs” function with default
parameters. We then filtered raw SNPs with bcftools v1.9 (Li et al. 2009)
(https://samtools.github.io/bcftools/) and vcftools v0.1.17 (https://veftools.github.io/) (Danecek

et al. 2011). We kept SNP sites for downstream analysis if they were biallelic, had quality higher
than 30, had a depth of coverage higher than five reads, had no more than three times the median
coverage depth across accessions, and had no missing data among individuals. Additionally, the
following expression was applied under the exclusion argument of the filter function in beftools:
“QD <2.0|FS>60.0 | MQ <40.0 | MQRankSum < -12.5 | ReadPosRankSum < -8.0 | SOR >
3.0”.

Population Structure and genome-wide associations

We transformed VCF the file into BEAGLE format using vcftools 0.1.17. We used
BEAGLE files as input to evaluate the genetic structure of the V. arizonica using the NGSAdmix
software included in the ANGSD package version 0.931-21-g13af014 (Korneliussen et al. 2014).
We ran NGSadmix for 1 to 10 ancestral populations (K), repeating analyses 10 times for each K
value and including variants with a minimum minor allele frequency > 0.05 (Fig. S16). We then
employed the Cluster Markov Packager Across K (Clumpak) software (Kopelman et al. 2015) to
detect the K value with the highest likelihood of K = 2.

The NGSadmix results were used to help guide controlling for genetic structure in
genome-wide association (GWA). We performed GWA to identify significant associations
between SNP allelic frequencies and bacterial load (Xylella fastidiosa CFU’s), using two
different methods that control for population structure using different approximations. First, we
used LFMM?2, which uses latent factors to control for genetic structure (Frichot et al. 2013). The
number of latent factors were chosen based on a visual observation of the screenplot of the
percentage of variance explained by the loadings of the genetic PCA of all individuals. The PCA

was obtained using all loci with no missing data and with the prcomp function in R
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(Kassambara). In total, we defined K=4 latent factors. Next, we ran LFMM2 using a ridge
penalty (function Ifmm_ridge), and we controlled for genomic inflation factor (function
Ifmm_test, with calibrate= “gif”’). We corroborated that the p values had a flat distribution, and
we corroborated that the genetic structure was well controlled based on a qqplot (Fig. S4 & S7).
In addition, we used the variance component algorithm Efficient Mixed-Model
Association eXpedited (EMMAX) version beta-07Mar2010 (Kang et al. 2010). We converted
the set of filtered SNPs with no missing data from VCF format to transposed ped format using
PLINK version 1.90b6.16 (Purcell et al. 2007). Using the transposed ped files as input, we
calculated the Balding-Nichols (BN) kinship matrix using the "emmax-kin” script and default
parameters. Finally, we ran the associations using the SNPs data (as transposed ped), the BN
matrix, and the phenotype as Least Squares Means of CFU/ml of X. fastidiosa for each
accession. Both methods (EMMAX and LFMM2) were adjusted for multiple comparisons using
the Bonferroni correction of the program “p.adjust” from the stats package version 4.1.2 in R.

We focused only on SNPs and candidate regions that were detected by both methods.

Kmer-based GWA

To perform GWA based on kmers, we followed a previously published pipeline (Voichek
and Weigel 2020) (https://github.com/voichek/kmersGWAS). Briefly, we extracted all kmers
and canonized (i.e. reverse complement is assumed to be the same kmer) kmers of 31 bp in size
using KMC version 3 (Kokot et al. 2017). We extracted the kmers directly from the paired and
unpaired filtered reads for each of the 167 V. arizonica samples independently. We compared the
kmers across samples and created a table of kmers that were found in at least 5 individuals (“*-
mac 5”) and in each canonized/non-canonized form in at least 20% of individuals from which it
appeared in (“-p 0.2”). We used the script “emma_kinship_kmers” included in the pipeline with
a MAF < 0.05 filter to create a kinship matrix based on the kmer table. Finally, we ran the kmer-
GWAS with the script “kmers_gwas.py” and GEMMA version 0.98.5 (Zhou and Stephens 2012)
with the kinship matrix, the kmer table, and the phenotype data as Least Squares Means of
CFU/ml of X. fastidiosa for each accession. The script provided a list of 9991 kmers that passed
a parametric test as an initial filter. To filter more stringently, we used the number provided in
the file “pheno.tested kmers”, which was 967066440, to adjust the p-values with a Bonferroni
correction using the program “p.adjust” from the stats package version 4.1.2 in R. To create a

textual version of the presence/absence kmers of the significant Kmers we used the
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“filter_kmers” from the pipeline. Given 115 significant kmers, we mapped them to the V.
arizonica genome using BLASTN (Zhang and Madden 1997) and a word size of 8 bp. We
filtered all the BLASTN results and kept alignments, allowing a maximum of 1 mismatch.

We further explored the sequences of the 36 kmers that did not map to our reference
genome. We first searched and extracted the reads matching these 36 kmers across the 167 V.
arizonica accessions. We then used SPADES v3.15.4 (Bankevich et al. 2012) to assemble the
matching reads into contigs independently for each kmer. Finally, we aligned the resulting
contigs to the Reference RNA Sequences database (Refseq rna) using BLASTN (visited on
06/10/2022) and recorded the top hit gene.

Copy Number variation analysis and associations
To identify Copy Number Variants (CNVs), we used the program CNVcaller version 2.0
(https://github.com/JiangYuLab/CNVcaller) (Wang et al. 2017). CNVcaller uses normalized

read-depth values across windows in the genome to identify CNVs and it is especially suited for
large population data like our V. arizonica sample. First, we generated a duplicated window
record file specifically from our genome reference V. arizonica b40-14 v2 using a window size
of 2 kb and for each chromosome independently. We then analyzed the individual read depth in
2 kb non-overlapping windows using the “Individual.Process.sh” script and the alignment files of
all 167 accessions in bam format with the PCR duplicated reads removed during the SNP calling
pipeline (see section above). The script produces normalized values of read depth across the
genome for each genotype. We then used the normalized read depth values of all genotypes as
input to the script “CNV.Discovery.sh”, excluding windows with a lower frequency of gain/loss
individuals of 0.1 (“-f 0.1”) and with Pearson’s correlation coefficient lower than 0.3 (“-r 0.3”).
Finally, we used “Genotype.py” to classify genotypes across the population according to their
CNV profiles.

To explore the associations between CNVs and PD-resistance, we used the CNVcaller
estimation of diploid copy number for each CNV and tested for correlations with X. fastidiosa
bacterial levels, while taking into account the genetic structure of the V. arizonica population.
We used the R library “ppcor” v1.1 (Kim 2015) to run a partial correlation for each of the CNVs,
using genotype assignment (Q¥) values from the genetic structure analysis (see section above) as
the confounding variable. To account for multiple testing we imposed a Bonferroni correction

and identified significant CN'Vs with adjusted p< 0.05.
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Defining PD-associated peaks

We performed a total of four association analyses: LFMM2 based on SNPs, EMMAX
based on SNPs, kmer-based GWA, and CNV-based GWA. From these analyses we defined eight
GWA peaks of interest in the genome (Figure 2). To define these peaks, we required that a peak
contains at least one SNP that was significant with both LFMM2 and EMMAX. However, most
peaks had multiple pieces of evidence - i.e., either more than one SNPs, significant kmers and/or
CNV variants. When applying this logic, we focused only on kmers that mapped uniquely to the
genome and so excluded 17 kmers that mapped to multiple places in the genome with the same

identity and alignment length.

Analyses of PD-associated kmers in other Vitis species

We identified kmers associated with resistance in V. arizonica sample and then
characterized their presence in three different resequencing datasets: i) a multiple species Vitis
dataset, i7) a dataset generated from scion cultivars bred for PD resistance by backcrossing to the
b43-17 accession of V. arizonica, and iii) a set of PD susceptible cultivars. The first dataset
included 105 accessions from five species: V. arizonica (n =22), V. candicans (n = 24), V.
berlandieri (n =22), V. girdiana (n = 18) and V. riparia (n = 19) (Morales-Cruz et al. 2021). All
of these accessions had been assayed for PD resistance, and categorized as resistant if CFU/mls
were <13.0 at the time of assay. In this dataset, 20 V. arizonica were resistant (n=20), 21 V.
candicans (n = 25), 3 V. berlandieri (n =21), 9 V. girdiana (n = 17), 2 V. monticola (n=5) and 2
V. riparia (n = 20). The resistance assay data and sampling locations of the accessions are
available (Morales-Cruz et al. 2021). For the second dataset, we generated resequencing data for
five PD resistant cultivars (Ambulo Blanc, Caminante Blanc, Camminare noir, Errante noir and
Paseante noir). DNA extraction, library preparation and Illumina sequencing followed the
protocols mentioned above, and the data were deposited into Bioproject: PRINA842753. Finally,
the ‘control’ dataset of PD susceptible accessions was downloaded from public databases
(Cabernet Sauvignon cl. 08: SRR3346862; Chardonnay cl. 04: SRR5627799; Zinfandel cl. 03:
SRR8727823; and Petite Sirah: SRR12328988 ). For each of the datasets, we generated kmers of
31 bp for each sample as described above. We then searched for the presence of 115 associated
kmers from V. arizonica using the “filter kmers” script from the kmer-GWAS pipeline (Voichek

and Weigel 2020) (https://github.com/voichek/kmersGWAS).
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To compare the R-kmers with random sequences in other Vitis species, we first extracted
100,000 unique and random kmers from the V. arizonica population. We then calculated the
frequency of these sequences across all individuals and selected kmers with similar frequencies
as the R-kmers mean (0.52), resulting in 38,523 kmers. We then created 100 subsets of 99
random kmers from the set with similar frequencies as R-kmers. Finally, we searched for the
presence of each set of other Vitis species and calculated the mean frequencies of the 99 kmers in
each random set. We report the average and standard error of means across the 100 sets in Fig.

4C.

Linkage disequilibrium

We calculated the genome-wide LD decay across the V. arizonica population with the
software PopLDdecay v3.40 (Zhang et al. 2019). We used the filtered SNPs of the 167
individuals from hap1, allowing a maximum distance of 1 Mb (Fig. S11). We used the perl script
“Plot_OnePop.pl” included in the package to create the decay graph.

To explore the LD landscape of the regions around PdR1 and chromosome 14 as a whole

we used Tomahawk v0.7.0 (https://github.com/mklargvist/tomahawk). We used as input the
filtered SNPs of chromosome 14 for hapl as input, containing the 167 V. arizonica accessions.
We converted the VCF file into a custom format file (“.twk”) for the package and calculated the
LD with the “calc” function. We then filtered LD values using the “view” function, keeping
regions with R? > 0.5 and p-values < 0.001. Given that we were interested in the LD at the
chromosome-scale (~30Mb) we used the “aggregate” function. Using this function we
aggregated R? values in 1000 bins for both the x and y-axis, and used 5 as the minimum cut-off
value in the reduction function. Finally, we used the “rtomahawk” R package

(https://github.com/mklarqvist/rtomahawk) to create the chomosome-scale LD landscape plot

using the aggregated R? values.

Functional annotation and Refinement of PdR1 gene models

Gene models located within the two haplotypes of Pdrl were manually refined by
visualizing alignments of RNA-seq reads from V. arizonica b40-14 leaves (Morales-Cruz et al.
2021) using Integrative Genomics Viewer (IGV) v.2.4.14 (Robinson and Others 2017). RNA-seq
reads were aligned onto the diploid genome of V. arizonica b40-14 using HISAT2 v.2.1.0 (Kim
et al. 2015) and the following settings: --end-to-end --sensitive -k 50.
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Predicted proteins of Pdrl genes were scanned with hmmsearch from HMMER v.3.3.1
(http://hmmer.org/) and the Pfam-A Hidden Markov Models (HMM) database (El-Gebali et al.
2019) (downloaded on January 29th, 2021). Protein domains with an independent E-value less
than 1.0 and an alignment covering at least 50% of the HMM were selected. Transmembrane
helices were predicted with TMHMM2 v2.0c (Krogh et al. 2001). Proteins with a predicted
Leucine Rich Repeat (LRR) domain and a transmembrane helix were classified as LRR receptor-
like proteins. Proteins having a predicted LRR or lysin motif (LysM), a kinase domain, and
transmembrane helices were categorized as receptor-like kinases.

Predicted proteins of Pdrl genes were aligned onto the predicted proteome of A. thaliana
and the grape PN40024 (V1 annotation) using BLASTP v.2.2.28+ (Altschul et al. 1990).
Alignments with an identity greater than 30% and a reciprocal target:query coverage between
75% and 125% were kept. For each V. arizonica protein, best hit in the A. thaliana and PN40024
proteomes was determined using the highest product of identity, query coverage, and reference
coverage. The sequences of the two ORFs (V.ari-RGA14 and V.ari-RGA18) (Agiiero et al.
2022)were aligned onto the b40-14 genome using blastn v. 2.2.28+ (Altschul et al. 1990). For
V.ari-RGA 14, the alignments had highest coverage of 99.46% and and identity of 100% and
located at 26.666 Mb on chromosome 14, which was within the PdR1 locus but not a strong
candidate based expression analyses (Fig. 3BC). For V.ari-RGA18, the alignment with the
highest coverage (99.76%) and identity (100%) was located at position 24.283 Mb, well outside
the PdR1 region based on our b40-14 reference (Fig. 3B).

Gene expression analyses

To evaluating the transcript abundance of candidate genets, plants from three PD-
resistant genotypes and three PD-susceptible genotypes of the 07744 population ([ V. rupestris
Wichita refuge x V. arizonica b40-14] x V. vinifera Airen) were propagated in a controlled
environment and inoculated with either Xylella fastidiosa or water. Pieces of green stem at 10,
20, 30 and 40 cm above the inoculation were collected from each plant at 1, 2, 3, and 4 weeks
post inoculation. Pieces of green stem from each genotype were pooled together. Each genotype
constitutes a biological replicate. All plant material was immediately frozen in liquid nitrogen
after collection and ground into powder. Total RNA were extracted as described in Massonnet et
al. (2017) (Massonnet et al. 2017). cDNA libraries were prepared using the Illumina TruSeq
RNA sample preparation kit v.2 (Illumina, CA, USA) and sequenced in single-end 100-bp reads
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on an [llumina HiSeq4000. RNA-seq reads were parsed using Trimmomatic v.0.3 (Bolger et al.
2014) with the following settings: LEADING:7 TRAILING:7 SLIDINGWINDOW:10:20
MINLEN:36. Transcript abundance was evaluated with Salmon v.1.5.1 (Patro et al. 2017) with
the parameters: --gcBias --seqBias --validateMappings. A transcriptome index file was built
using a k-mer size of 31 and the combined transcriptomes of V. arizonica b40-14 (v2.1), V.
vinifera cv. Cabernet Sauvignon (Massonnet et al. 2020), with their genomes as decoy.

Quantification files were imported using the R package tximport v.1.20.0 (Soneson et al. 2015).

Bioclimatic variables associated with resistance

To identify the association between SNPs associated with resistance and the
environmental landscape, we applied gradient forest (GF) (Ellis et al. 2012), which models the
turnover in genetic composition across the landscape (Fitzpatrick and Keller 2015) and identifies
both the bioclimatic variables that contribute to the construction of the model and the ‘turnover
function’ - i.e., the change of genetic composition across the landscape (Fitzpatrick and Keller
2015; Capblancq et al. 2020; Waldvogel et al. 2020). To estimate the GF model, we used the
gradient forest package in R, using the 25 SNPs identified by LFMM?2 and EMMAX as response
variables and using bioclimatic variables as predictive variables. The 19 bioclimatic variables
were filtered to retain any correlations < 0.80, based on a variance inflation factor calculated by
corSelect from the R package fuzzySim (Barbosa 2015). After filtering, we retained 10 of 19
bioclimatic variables (BIO1, BIO2, BIO3, BIO4, BIOS, BIO9, BIO12, BIO14, BIO17, BIO19).
We performed the GF analysis using SNP frequencies from each individual (i.e., 0, 1 and 0.5 for
heterozygotes) (J. A. Aguirre-Liguori et al. 2021) and repeated the analysis 1,000 times. We also
plotted the turnover functions for each bioclimatic variable to show how populations with

different resistance to PD are distributed across allele frequency change (Fig. S15).

Predicting PD resistance

To determine whether genetic and environmental variables predicted PD resistance, we
first ran a linear model individually for each bioclimatic and genetic variable to determine their
individual predictive power, using the /m function in R. We performed 1,000 bootstrap replicates
for each model to estimate the variance in predictive ability.

For the bioclimatic variables, we estimated the individual linear models between the 10

bioclimatic values from where the arizonica individuals were sampled and their bacterial load.
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For some genetic variables, we first estimated a polygenic score across SNPs that associated with
bacterial load. This polygenic score, which we called the PD score (Sp4), was calculated as the
proportion of alleles that contribute to resistance to PD in a given individual. The state of these
contributing alleles was inferred from the GWA results. S,z was designed after the population
adaptive index, which measures the proportion of alleles that show patterns of local adaptation
(Bonin et al. 2007). Sps assumes that alleles contribute equally to PD resistance and that a higher
proportion of resistance alleles correlates with lower CFU in the individuals. Sysranges from 0
when no resistance alleles are present to 1 when all alleles across loci are homozygous for the
resistant state. We estimated S, for different sets of SNPs: i) all candidate SNPs across the
genome (25 SNPs), ii) all candidate SNPs on chromosome 14 (16 of the 25 SNPs); iii) all
candidate SNPs in the region defined by PdR1 (10 of 25 SNPs); iv) all candidate SNPs on
chromosome 15 (6 of 25 SNPs). To control for potential ancestry effects, we also tested an
analogous S,s score, which we called the reference PD scores (Ryq). For R,s we sampled 25
random reference SNP (SNPs that were not significant for any of the two GWA methods) and
obtained a R,qdistribution based on 1,000 R,s values. Following the concept of S,s, we also
estimated a Kmer score (K,«), which consisted of the proportion of Kmers associated with
resistance across populations. A value of 1 indicates that the individual has all the resistant
Kmers and none of the susceptible Kmers (see Above), while a value of 0 indicates that the
individual has all the susceptible kmers and none of the resistant ones. Finally, we also estimated
a CNV score (Cpa) that corresponds to the number of adaptive copy variants in an individual,
where a higher number of CN variants indicates that the individual is more resistant to PD. For
the Spa, Kpa and Cpa scores, we estimated the fit between the scores and the bacterial load.
Finally, for the genetic independent variables, we also analyzed the linear model between the
assignments into genetic groups (K1 and K2) based on the admixture analyses and the

concentration of bacterial load.

Climatic modeling

Given the predictive power of BIOS and its general association with locations where
Xylella fastidiosa has been detected, we used BIOS to model the future distribution of Xylella
fastidiosa. Assuming that 10°C is a predictive threshold of where Xylella fastidiosa is more likely
to be present or absent, we identified areas in the globe that currently have BIO8 <10°C in the

present but are predicted to have BIO8 >10°C in the future. We interpret these areas could
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become susceptible to Xylella fastidiosa in the future. We also detected the conversion - i.e.
regions across the globe that currently have BIO8 >10°C in the present but are predicted to have
BIOS8 <10°C in the future - which we interpret as regions becoming less apt to harbor Xylella
fastidiosa in the future. To make these predictions, we downloaded the BIOS data at a 2.5
minutes resolution from Worldclim 2 (Fick and Hijmans 2017) for the present and for 54
climatic models in the future to consider the uncertainty in future climate projections. These
future climate models included five global circulation models (GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL), three time periods (2041-2060; 2061-2080;
2081-2100) and 4 shared socioeconomic pathways (SSPs: 126, 245, 370, 585 ). To plot the areas
where climate is expected to change across the 10°C threshold, for the present and the 54 future
layers we set the raster layers to 1 and 0 if they were above or below 10°C, respectively. Next,
we subtracted each future layer to the present layer. Areas with values of -1 indicate that a region
in the future layer is expected to be <10°C but is >10°C in the present (0-1). Regions with values
of 0 indicate that both the present and future layers have values >10°C (1-1). Regions with values
of +1 indicate that the future layer is expected to be >10°C but the present layer is <10°C (1-0).
We did this for the 54 layers, and we created a sum_raster object by adding the 54 raster layers.
Positive values (1 to 60) indicate the number of layers for which the prediction is that the region
will become warmer than the 10°C threshold. Negative values (-1 to -60) indicate the number of
future layers for which the prediction is that the region will become colder than the 10°C
threshold. Values of 0 indicate that for all layers, the area is >10°C and will remain >10°C or that
it is <10°C and will remain <10°C for all the layers.

Finally, we tested how BIOS will change in the future in areas where V. arizonica, V.
vinifera (grapevines), Citrus sp Olea europea (olives), Prunnus amygdalus (almond) and Coffea
sp grow. For this, we first used the gbif function in the R dismo package (Hijmans et al.) to
download all the known locations of V arizonica, grapevines, olives, almonds, coffee sp. and
Citrus sp (gbif.org; download data: 2022-06-06). Next, for each species we used the
CoordinateCleaner package in R (Zizka et al. 2019) to remove locations that 1) were duplicated;
2) had equal longitude and latitude; 3) were next to country centroids, capitals of countries,
biological stations or gbif headquarters; 4) were in the sea; 5) were outliers based on the
“quantile” option. Finally, we also removed locations if they were the only report in a given
country, suggesting they may be outliers. After cleaning the data, we retained 6,204 locations

(from 11,834) for Coffee sps.; 3,386 locations (from 9,992) for almonds; 1,111 locations (from
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1,155) for V. arizonica; 5,256 locations (from 7,853) for Citrus sps.; 174,713 locations (from
204,775) for olives; and 33,225 locations (from 47,075) for grapevines.

For each species, we used the extract function in the raster R package (Hijmans 2021) to
obtain for each location whether climate is expected to change across the 10°C layer (values -1,0
and 1; as detailed above). For each species we estimated the percentage of locations that are

expected to move below and above the 10°C threshold across the 54 layers.
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Vitis arizonica sampling and phenotypes. A map of the Southwestern United States and
Northern Mexico indicates sampling locations of the n=167 V. arizonica accessions used in this
study. The color of sample locations (circles) are colored according to their resistance phenotype,
as measured by bacterial load (CFU/mL). The histogram of phenotypes (in CFU/mL) is to the
right of the map.
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Fig. 2.

A Manhattan plot of the V. arizonica genome showing markers associated with bacterial
load. The plot denotes each of the 19 chromosomes for haplotype 1. Each circle represents a
SNP with a corresponding p-value, based on EMMAX genome-wide association analysis. The
25 SNPs that were detected in two separate GWA analyzes are circled in red and define the 8
peaks of association, which are numbered as P1, P2, etc., and referred to in the text. In addition
to SNPs, the locations of significantly associated kmers and CNVs are provided when they
overlap with a SNP-defined peak. The colored horizontal lines represent the cut-off p-values

(P<0.05, Bonferroni corrected) for the different marker types.
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Fig. 3.

Genetic analyses of the PdR1 region. A. A plot of linkage disequilibrium (LD) across
chromosome 14, where darker colors represent higher levels of LD. The two dark squares on the
diagonal include GWA peak 4 (on the left, from 0 to 7 Mb on the chromosome) and the GWA
peak that corresponds to PdR1 (on the right, from 22 to 28 Mb on the chromosome). The two
off-diagonal squares reflect LD between these two distinct regions. B. A Manhattan plot of
chromosome 14 indicating the locations of peak 4 and the PdR1 region. C. An expanded
representation of the PdR/ region showing the location of significant SNPs (red circles denote
SNP significant with two GWA methods), significant kmers (green triangles) and CNVs (blue
triangles). The dashed vertical lines represent the 361 kb region defined by SSR markers and the
106kb region defined by the location of significant markers. D. A representation of genes in
PdR1 with a summary of gene expression results. Genes are colored if they are related to R
genes, with the category of R gene indicated by its color. Expression information shows

expression, in transcripts per million (TPM) for leaves, for stems during four stages after

infection and for mock controls.
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Fig. 4.

The presence of resistance and susceptibility kmers in different data sets. A. Analyses
within the V. arizonica sample set. The top-left graph indicates the 99 different resistance (R-
kmers) kmers across the x-axis, with their detection frequency across the resistant (CFU/mL <
13) accessions. The top-right graph plots the average detection frequency of susceptibility kmers
(S-kmers). The bottom-left and bottom-right graph are similar, but show R-kmer and S-kmer
detection frequencies among susceptible accessions. B. The same graphs as in B, but the top
graphs plot R-kmer and S-kmer detection frequencies for the five V. vinifera cultivars bred for
PD resistance by backcrossing to V arizonica, while the bottom graphs represent susceptible V.
vinifera cutlivars. C. Plots of kmer frequencies in six Vitis species. The species phylogeny is
shown on the left, with the average detection frequency of R-kmers shown in red. The gray bars
represent detection frequencies of randomly chosen kmers that had similar population

frequencies in V. arizonica as the set of R kmers. Whiskers denote standard deviations.
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Fig. S.

Relationships among resistance, genetic markers and bioclimatic data. A. The estimated
importance, from GF modeling, of each of the bioclimatic variables tested. The y-axis is a
measure of the importance. The histograms denote the average inferred importance of the
bioclimatic variable, with the whiskers plotting the standard deviation of 1000 separate analyses.
BIOS8 was estimated to have the biggest impact on the model in all 1000 analyses. B. The

turnover function showing the temperature range of BIOS8 on the x-axis and the change in the
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genetic composition on the y-axis. The circles represent individuals that are colored by resistance
(gray) or susceptible (white). C. Individual predictors in a linear model to predict resistance
levels (CFU/ml). The label score_ref represents sets of 1000 randomly chosen sets of 25 SNPs.
The other sets of predictors include bioclimatic variables and genomic data, as listed in the text,
each evaluated 1,000 times with bootstrapped datasets. Each boxplot reports the minimum and
maximum values in the whiskers, the quartiles and median values in the square, with the circles
showing outliers. The dashed horizontal line reflects the median value of 1,000 replicates of the
Rpascore. D. The density distribution of BIOS for a global database of locations of Xylella

fastidiosa detection.
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Fig. 6.

Climate predictions and projections of the prevalence of Xylella fastidiosa for focal crops.
A. The map portrays the number of climate models (out of 54 total) that support movement
across the BIO8 = 10°C threshold. The warmer colors reflect regions that are moving from below
(in the present) to above the threshold, while the cooler colors portray ares that that are moving

from above (in the present) to below the threshold. B. A summary of the percentage of locations
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associated with movement from above the 10°C threshold (in the present) to below the threshold
for five crops and V. arizonica. C. A summary of the percentage of locations associated with
movement from above the 10°C threshold (in the present) to below the threshold for five crops
and V. arizonica. Both B and C are based on 6,204 locations for coffee; 3,386 locations for
almonds, 1,111 locations for V. arizonica; 5, 256 locations for Citrus species; 174,713 locations

for olives and 33,225 location for grapevines.
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