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Abstract: Xylella fastidiosa is a bacterium that infects crops like grapevines, coffee, almonds, 

citrus and olives, causing economically devastating damage. There is, however,  little 

understanding of the genes that contribute to resistance, the genomic architecture of resistance, 

and the potential role of climate in shaping resistance, in part because major crops like 

grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine 

species, Vitis arizonica, that segregates for resistance to X. fastidiosa. Using genome-wide 

association, we identified candidate genes that mediate the host response to X. fastidiosa 

infection. We uncovered evidence that resistance requires genes from multiple genomic regions, 

based on data from breeding populations and from additional Vitis species. We also inferred that 

resistance evolved more than once in the wild, suggesting that wild Vitis species may be a rich 

source for resistance alleles and mechanisms. Finally, resistance in V. arizonica was climate 

dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter 

were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these 

climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as 

some genetic markers. This work underscores that pathogen pressure is likely to increase with 

climate, but it also provides genetic insight and tools for breeding and transforming resistant 

crops.   
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INTRODUCTION 

Climate change is impacting crop yields by shifting temperatures, weather extremes, and 

water availability (Zhao et al. 2017), thereby affecting the distribution of arable lands 

(Ramankutty et al. 2002). There is, however, another important effect of climate change, which 

is the altered distribution of plant pathogens (Velásquez et al. 2018; Burdon and Zhan 2020). 

One especially prominent pathogen is the bacterium Xylella fastidiosa. X. fastidiosa is a 

generalist that colonizes > 300 plant species (Sicard et al. 2018; European Food Safety Authority 

(EFSA) 2020), but it is pathogenic on major crops like citrus, coffee, almonds and grapevines 

(Vitis vinifera ssp. vinifera). Until recently, X. fastidiosa had been limited to the Americas, but 

human-mediated migration has led to its colonization of Europe, where it causes > ~$100M of 

damage per year to the olive industry (Schneider et al. 2020). This olive example illustrates that 

the bacterium is more than a persistent threat in the Americas; it is also an emerging and 

expanding global threat to Europe, the Middle East (Frem et al. 2021) and beyond (Su et al. 

2013). Accordingly, there are urgent needs to better understand the genetic mechanisms of plant 

resistance (National Research Council et al. 2004), particularly in the wild where both pathogens 

and hosts evolve (Bartoli and Roux 2017).  

Thus far, studies of X. fastidiosa-mediated diseases have focused primarily on citrus and on 

Pierce’s Disease (PD) in domesticated grapevines. In grapevines, PD manifests by colonizing the 

xylem, leading to vascular blockages and eventual plant death after several years. In the course 

of infection, PD causes other detrimental symptoms, including marginal leaf necrosis, berry 

desiccation, irregular maturation of canes and abnormal petiole abscission (Rapicavoli et al. 

2018). The bacterium is spread from plant to plant by xylem-feeding insect vectors, which affect 

the severity and spread disease.  The distribution of these insect vectors is being affected by 

changing climate (Hoddle 2004) and by anthropomorphic activity. One pertinent example is the 

glassy-winged-sharpshooter (GWSS; Homalodisca vitripennis), which was introduced to 

Southern California in the late 1990s. The GWSS has a higher transmission efficiency compared 

to native vectors and fueled a large PD outbreak that has permanently altered viticulture in the 

region.  

Although all domesticated grapevines (V. vinifera ssp. vinifera) are susceptible to PD, some 

wild relatives of grapevines segregate for PD resistance, likely reflecting the evolution of 

resistance in regions of persistent X. fastidiosa pressure (Ruel and Andrew Walker 2006). 

Among wild grapevines, Vitis arizonica merits particular interest because it exhibits strong 
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resistance to PD and because it contains the only characterized plant locus to segregate for 

Xylella fastidiosa resistance, the Pierce’s disease resistance 1 (PdR1) locus (Krivanek et al. 

2006; Riaz et al. 2006). PdR1 was identified by genetic mapping of a segregating family, defined 

by simple-sequence-repeat (SSR) markers, and backcrossed into susceptible grapevine cultivars 

to introduce resistance (Riaz et al. 2009).  A recent study utlized BAC sequences of the region to 

identify two candidate genes for resistance (Agüero et al. 2022). Both genes were canonical 

leucine-rich receptor (LRR) loci, but neither conferred resistance after single-gene 

transformation into V. vinifera  (Agüero et al. 2022). Additional candidates have been identified 

based on comparative transcriptomics in V. vinifera (Zaini et al. 2018), olives (Olea europaea) 

(Giampetruzzi et al. 2016) and citrus (Citrus reticulata) (Rodrigues et al. 2013).   

Despite the enormous economic impact of X. fastidiosa infection, the genomic architecture of 

resistance has not yet been investigated in any species, and the genomic basis of resistance 

remains unclear.  Here we address this shortcoming by performing genome-wide association 

(GWA) analyses for X. fastidiosa resistance in V. arizonica. In addition to identifying several 

novel candidate genes for resistance in PdR1 and in other genomic regions, our work begins to 

fill another surprising gap. Although GWA and similar approaches are commonly used to study 

disease resistance in crops, surprisingly few studies have focused on the wild relatives of crops 

(Bartoli and Roux 2017).  [One notable exception is the wild relative of soybean, Glycine soja 

(Leamy et al. 2017; Zhang et al. 2017).] This dearth of studies is surprising both because crop 

wild relatives are a proven and valuable source of resistance genes for crop improvement 

(Migicovsky and Myles 2017) and because studying resistance in wild samples may provide 

insights into the evolution of resistance and the ecological and climatic factors that shape 

resistance (Bartoli and Roux 2017).  

In this study, we generate landscape genomic data from a sample of V. arizonica from 

throughout its native range and perform GWA based on a resistance phenotype - i.e., bacterial 

load after experimental inoculation. In doing so, we identify several genomic regions, including 

the PdR1 region, that are associated with resistance, and we identify candidate genes in these 

regions based on an improved V. arizonica reference. We combine GWA with several types of 

evidence – including population genetic analyses, gene expression assays, comparisons among 

wild Vitis species, investigation of V. vinifera cultivars bred for PD resistance and bioclimatic 

modeling - to address three sets of questions. First, which and how many genic regions 

contribute to resistance, and what are some of the likely candidate resistance genes within these 
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regions?  Second, are these regions implicated in resistance across Vitis species and also in 

cultivars that were specifically bred for PD resistance?  What do these inter-species analyses 

imply about the origin of resistance?  Finally, does plant resistance correlate with bioclimate?  If 

so, what might this climatic relationship imply about the potential effects of climate change?  

Overall, our work provides information about the genetics, evolution and ecology of PD 

resistance, all of which will help inform strategies to manage an economically damaging and 

expanding pathogen (Frem et al. 2020).  

 

RESULTS  

Genome-wide associations for resistance to Pierce’s Disease 

We studied the genetics of PD resistance in V. arizonica by combining three sources of 

information: an updated reference genome (accession b40-14, which is homozygous for PD 

resistance) (Morales-Cruz et al. 2021), whole-genome resequencing data from 167 accessions 

sampled across the species’ native range (Fig. S1), and previously published phenotypic data 

about PD resistance on the same set of 167 accessions (Riaz et al. 2020; Morales-Cruz et al. 

2021). We used PD resistance as a quantitative variable - i.e., the log-transformed number of 

colony forming units (CFUs/ml) 12-14 weeks after experimental X. fastidiosa inoculations 

(Table S1). However, following precedence (Riaz et al. 2020), we also characterized individual 

accessions as resistant if they had Xylella fastidiosa concentrations below 13.0 CFUs/ml. Based 

on this threshold, our sample contained 135 resistant and 32 susceptible individuals, with the 

susceptible individuals more common in the northern region of the geographic distribution (Fig. 

1).  

We first performed genome-wide association (GWA) analyses based on SNP variants. To do 

so, we mapped resequencing data to the reference haplotype of the phased diploid genome and 

then tested for associations using two distinct methods that correct for genetic structure (Hao et 

al. 2021; Caye et al.). On the reference haplotype (hap 1), we identified 74 and 40 associated 

SNPs (Bonferroni p < 0.05) with the two methods, of which 25 were significant with both 

methods. We used these 25 SNPs to conservatively define eight peaks across five chromosomes 

(Fig. 2, Figs. S2-S4, Table S2). The most evident peaks were on chromosomes 14 and 15, with 

the former located between the SSR markers that define the PdR1 locus. We also called SNPs 

independently to the second haplotype (hap2) and  identified 11 significant SNPs in five peaks 
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(Figs. S5-S7, Table S2).  One of these peaks was also on chromosome 14 between the PdR1 

flanking markers.  

Previous studies have suggested that PdR1 alleles differ in size among V. arizonica 

accessions (Riaz et al. 2008), suggesting structural variants contribute to resistance. We therefore 

investigated associations using copy number variants (CNVs), identifying 14,294 CNVs 

throughout the genome, of which 60 were in the 8 PD-significant peaks (Table S3). The 60 

CNVs included 19 deletions and 41 duplications, with means of 1.3 and 3.3 copies. We also 

performed GWA on the complete CNV set, finding four that were significantly (Bonferroni p < 

0.05) associated with bacterial load (Fig. 2, Figs. S8-S9). Two of these four CNVs mapped to 

two SNP-defined peaks: CNV10605 within PdR1 (mean copy number= 0.88, size= 6kb, R= -

0.36, p=1.77e-06) and CNV10806 within peak 7 of chromosome 15 (mean copy number = 2.83, 

size = 17 kb, R= -0.38, p= 3.61e-07). The negative correlations for both CNVs indicated that a 

higher number of copies had lower bacterial loads and higher PD resistance. Both CNVs had 

homology to long-terminal repeat transposable elements and so provided few insights into the 

functional basis of resistance. To further account for potential structural variation among 

accessions, we also applied GWA to 31bp kmers, using a reference-free approach (Voichek and 

Weigel 2020) (Fig. 2, Fig. S10). Of 115 significant kmers (Bonferroni p < 0.05) (Table S4), 79 

mapped to the reference genome (Table S5) and 62 mapped uniquely to either hap1 or hap2. 

Among the uniquely mapped kmers, 57 of 62 were located on hap1 near PdR1 and five were on 

the chromosome 15 peak. Altogether, CNV and kmer analyses corroborated four of the eight 

SNP-based peaks while confirming PdR1 as a major locus (Krivanek et al. 2006; Riaz et al. 

2006).  

We manually reannotated genes under the eight hap1 peaks, using boundaries defined by 

100kb windows, since genome-wide LD decayed to background levels (r2<0.05) within this 

distance (Fig. S11). The eight peaks included 124 genes, and several had annotations that 

implied a role in plant immunity (Table S6). For example, peak 4 included a calmodulin-binding 

gene (g226310) that is involved in the regulation of plant disease response through changes in 

phytohormone biosynthesis (Levy et al. 2005; Lv et al. 2019), and a “syntaxin of plants 41” gene 

(g226360) that acts in plant resistance against bacterial pathogens (Kalde et al. 2007). At PdR1 

(peak 5), we identified 7 leucine-rich repeat receptor-like protein (LRR-RLP) genes, one LRR 

receptor-like protein kinase (RLK) gene, and one lysin motif (LysM ) RLK gene, that are 

commonly involved in pathogen detection and initiate the plant response (Liu et al. 2017). Peak 
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7 contained two nucleotide-binding site leucine-rich repeat proteins (NBS-LRR; g243780, and 

g243820) that also detect pathogens and initiate a host response, as well as a Phloem protein 2-

like (PP2) protein with antimicrobial properties (Du et al. 2022). We also identified eight genes 

of interest on chromosome 15 (peak 8). Two of those genes have functional annotations related 

to phytohormone interactions (g252710, Ethylene-responsive transcription factor CRF4, and 

g252790, Abscisic Acid Insensitive-like 1 or ABIL 1), and thus may play a role in plant 

immunity. Another four  genes encode acidic endochitinases, which provide defense against 

fungal pathogens (Samac et al. 1990). Finally, we studied the potential function of the 36 

significant kmers that did not map to the reference genome by assembling reads containing the 

kmers and then aligning assemblies to the NCBI Transcript Reference Sequences (“refseq_rna”). 

Of the assembled contigs, 80% had high similarity to three specific Receptor-like proteins 

(RLPs) (“ XM_010648495.2”, “XM_034852027.1” and “XM_019224733.1”). Overall, the set of 

candidate genes suggest that multiple diverse functions contribute to PD resistance, but with 

likely involvement of classic disease resistance (R) genes.  

We used SSR markers to define the PdR1 locus as a 361 kb region on hap1 chromosome 14 

(with a corresponding 360kb region on hap2), but we further characterized the locus in three 

ways. First, we evaluated linkage disequilibrium (LD) across chromosome 14. We observed two 

large blocks (~ 7 Mb in size) in high LD that contained the three PD-significant peaks of 

chromosome 14 (peaks 4, 5, and 6), even though peaks 5 and 6 were located on opposite ends of 

the chromosome from peak 4 (Fig. 3A). This striking pattern may simply reflect properties of our 

sample, but it also suggests that PD-related alleles co-segregate across peaks, implying that 

additive or epistatic interactions contribute to resistance in nature. Second, we focused on the 

location of significantly associated PdR1 markers, which fell into a narrower 103.6kb region 

containing six genes, three of which were RLPs (Fig. 3B&C).  

Finally, we assayed gene expression in the region. One RLP (g238150) was expressed in 

b40-14 leaves, as was a receptor-like-kinase (RLK; g238290) that fell outside the 103.6kb region 

(Fig. 3C). We also assayed gene expression in three resistant full-sibs that were inoculated with 

X. fastidiosa and a control (water). The stems above the inoculation site were sampled weekly 

for up to four weeks. Both g238150 and g238290 were expressed at higher levels than the 

control in at least one weekly stage, although not significantly so (p>0.05). Two additional genes 

- an RLP (g238180) and an RLK (g239250) - also exhibited this pattern, and g238180 also co-

located with several associated kmers (Fig. 2). All four of the expressed R genes were also 
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present on the hap2 version of PdR1. Importantly, none of these four candidates were the closest 

homologs of the candidate genes that failed to confer resistance when transformed into V. 

vinifera (Agüero et al. 2022) (see Discussion).  

 

The genetic basis of resistance in breeding  

The complex LD pattern on chromosome 14 suggests that resistance may require genic 

action from more than one locus - i.e., multigenic (horizontal) resistance. To investigate this 

possibility, we examined the distribution of kmers across accessions (Table S7). Among the 117 

kmers associated with bacterial load, 99 were common among resistant accessions; they were 

found in 65.0% of resistant plants, on average, but in only 9.5% of susceptible accessions. We 

labeled these kmers as resistant (R-kmers). In contrast, 16 kmers were detected in 67.2% and 

10.1% of susceptible and resistant accessions, on average, suggesting associations with disease 

susceptibility (S-kmers). Interestingly, 10 of the 16 S-kmers mapped to a region on chromosome 

15 that was ~12 kb upstream of a Jasmonic Acid-Amido Synthetase gene (JAR1, g252600). 

Changes in the expression of JAR1 are associated with a reduction of host defenses (Jiang et al. 

2016). We hypothesize that S-kmers are linked to variants that affect the expression of JAR1 and 

promote susceptibility to Xylella fastidiosa. An important goal for breeding may be to avoid 

these S-kmers (Zaidi et al. 2018). 

We then investigated the genomic content of five resistant cultivars (Ambulo Blanc, 

Caminante Blanc, Camminare noir, Errante noir and Paseante noir) derived from backcrosses to 

V. arizonica (accession b43-17) (Anon) to test whether the basis of resistance lay solely in PdR1 

or included additional genomic regions. After resequencing the five cultivars, we detected all 99 

R-kmers in each cultivar but no S-kmers (Fig. 4B, Table S8). In contrast, a control dataset from 

four susceptible V. vinifera cultivars (Cabernet Sauvignon cl. 08, Chardonnay cl. 04, Zinfandel 

cl. 03 and Petite Sirah) contained neither R-kmers or S-kmers (Table S8). Although our analyses 

used a reference (b40-14) that was not the source of PD resistance in backcrossed cultivars (b43-

17), we found 56 kmers mapped to b40-14 hap1, 44 to hap2, and 53 to unplaced contigs. 

Importantly, the hap1 kmers mapped to both PdR1 (51 kmers) and to peak 8 on chromosome 15 

(5 kmers), suggesting these two regions contribute to (and may be necessary for) resistance. As a 

complementary method, we scanned SNP heterozygosity in resistant cultivars, reasoning that 

backcrossed regions should be heterozygous for V. arizonica specific alleles. As expected, this 

analysis revealed that portions of chromosome 14 were heterozygous across a region that 
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encompassed Peak 5, Peak 6 (PdR1) and beyond (Fig. S12). However, the proximal peak (peak 

4) on chromosome 14 was also heterozygous (spanning from ~6.43Mbp to 6.59 Mbp on 

chromosome 14; Fig. S12). Another prominent peak of heterozygosity on chromosome 9 did not 

correspond to peaks detected in our GWA. In short, both kmer and SNP analyses suggest that 

resistance backcrossed from V. arizonica encompassed multiple genomic regions.  

 

Resistance markers across Vitis species 

These observations raise additional questions about the evolution of PD resistance: Did PD 

resistance arise only once in wild Vitis and, if so, is there evidence for the involvement of 

multiple genic regions? These questions are especially pertinent because all North American 

wild Vitis species can hybridize, with their genomes containing relics of introgression events that 

are enriched for RLK and RLP genes (Morales-Cruz et al. 2021). To address these questions, we 

extended kmer analyses to a population genomic sample of 105 individuals from six wild North 

American Vitis, all of which were assayed for resistance (Riaz et al. 2020; Morales-Cruz et al. 

2021) (Fig. 4C, Table S8 & Fig. S13). The six species were estimated to have a common 

ancestor ~25 million years ago (mya) (Morales-Cruz et al. 2021). 

 We hypothesized that PD resistance was introgressed across species and therefore predicted 

that the same R-kmers were present across species. We found (as expected) that R-kmers were at 

significantly higher frequencies in a subset of resistant vs. susceptible individuals for V. 

arizonica (Welch Two Sample WTS t-test, p = 4.50e-16), and also for its sister species, V. 

girdiana (p = 0.007) (Fig. S14). Interestingly, five of the R-kmers within V. girdiana mapped to 

the chromosome 15 peak, again suggesting a multigenic component to resistance. These five 

kmers were detected in ~67% (12/18) of the V. girdiana individuals.  These data suggests V. 

arizonica and V. girdiana share the basis for resistance, with due to introgression or (more 

parsimoniously) common ancestry. For the remaining four species, no resistant individuals had > 

50% of R-kmers (Fig. 4C), with no difference in R-kmer frequency between resistant and 

susceptible accessions (Fig. S14). In fact, we detected R-kmers less often in these species than 

for a set of random V. arizonica kmers chosen to have similar population genetic frequencies as 

the R-kmers. Contrary to our hypothesis, the R-kmer distribution in these more distant species 

provide no evidence that the genetic mechanism of PD resistance (or at least the kmers linked to 

resistance) was introgressed from V. arizonica/V. girdiana to the remaining four species. 
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Predicting PD resistance with climate data 

Because our plant accessions were sampled across a geographic range (Fig 1), we can use 

the resequencing data to investigate relationships to climate. We utilized gradient forest (GF) to 

detect bioclimatic factors related to resistance. GF is a machine learning method that models the 

turnover in genetic composition and frequency across the climate landscape (Fitzpatrick and 

Keller 2015) while identifying bioclimatic variables that are important to the construction of the 

model. As is common for GF applications (Jonás A. Aguirre-Liguori et al. 2021), we applied it to 

candidate SNPs, specifically the 25 SNPs associated with resistance. To test for robustness, we 

also repeated GF analysis 1000 times. In all 1000 runs, GF identified BIO8 (Mean Temperature 

of Wettest Quarter) as the most important model contributor among 10 bioclimatic variables, 

followed by BIO3 (Isothermality), BIO4 (Temperature Seasonality) and BIO17 (Precipitation of 

Driest Quarter) (Fig. 5A). Moreover, the turnover function revealed a bias in which susceptible 

individuals were from locations where BIO8 was <10ºC (Fig. 5B), which was confirmed by a 

significant pairwise comparison between resistant and susceptible individuals (Fig. S15).  

We performed two additional analyses to assess the generality between resistance and 

BIO8. First, we examined our complete dataset of all assayed Vitis individuals (n=275) across six 

species. The dataset was highly skewed, because 30% of susceptible individuals – but only 1.6% 

of resistant individuals – had BIO8 < 10ºC (FET, p = 8.2e-12). This result held separately for V. 

arizonica (FET, p = 8.2e-12) and when V. arizonica was not included in the analysis (FET, p = 

0.03). Second, we constructed a global dataset of known X. fastidiosa geographic locations that 

integrates across plant families and all X. fastidiosa subspecies (European Food Safety Authority 

(EFSA) 2018). Unfortunately, the dataset had few exact locations suitable for analysis, leaving 

only 61 reputable observations. Of these, fewer than 5% had BIO8 values < 10ºC (Fig. S15), 

reflecting the previously reported relationship between temperature and X. fastidiosa presence 

(Purcell 1980; Lieth et al. 2011; Bosso et al. 2016; Sicard et al. 2018).  

Given an association between plant resistance and temperature, we explored whether 

genetic or climatic factors better predicted bacterial load in V. arizonica. We assessed individual 

predictors with linear models, focusing on 10 bioclimatic predictors and nine genomic predictors 

(Fig. 5C). The genomic predictors included kmers, CNVs, assignments into genetic groups (K1 

and K2), randomly chosen SNPs, and SNPs associated with PD. We summarized SNPs 

associated with PD with Spd, a measure that ranged from 0.0 to 1.0 and reflected the average 

proportion of alleles associated with resistance (where 0.0 is no resistance-associated alleles). 
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Focusing on the performance of each of the 19 predictors, Spd calculated across PdR1 SNPs (10 

total SNPs) had the strongest predictive power (R2 = 0.599), followed by related Spd scores based 

on all candidate SNPs on chromosome 14 (16 SNPs, R2 = 0.592), all candidate SNPs across the 

genome (25 SNPs, R2 = 0.576) and finally all candidate SNPs on chromosome 15 (6 SNPs, R2 = 

0.412) (Fig. 5C). Among the bioclimatic variables, BIO8 had an R2 of 0.370 in the linear model, 

which was much higher than the median value for 1000 randomly chosen sets of SNPs (R2 

=0.196) and similar to the predictive power of Kmers (R2 = 0.410) and CNVs (R2 =0.307). Thus, 

BIO8 was a reasonable predictor of resistance, even in the absence of genetic data. Notably, the 

other bioclimatic variables that were identified by GF were not strongly predictive by themselves 

- e.g., BIO4, BIO17 and BIO3 had lower predictive power than random sets of SNPs (Fig. 5C).  

 

 

 

DISCUSSION 

   X. fastidiosa causes Pierce’s Disease in domesticated grapevines (V. vinifera) and 

economically devastating diseases in other crops like citrus, coffee and almonds (Rapicavoli et 

al. 2018).  A diverse body of work has investigated the basis of resistance across diverse crop 

species but few plausible candidate resistance genes (Rodrigues et al. 2013; Giampetruzzi et al. 

2016; Zaini et al. 2018; Agüero et al. 2022). To date, however, no studies of X. fastidiosa 

resistance have taken advantage of full-scale genomic approaches like GWA. Indeed GWA 

studies in the wild relatives of crops are surprisingly rare, despite the importance of 

understanding the basis of resistance in ecological settings (Bartoli and Roux 2017) and the 

transformative potential of such knowledge for crop breeding (Migicovsky and Myles 2017). 

Here we have applied GWA to resistance in V. arizonica, based on an improved reference 

genome, on resequencing data from 167 wild-sampled accessions and on phenotypic data 

measured from X. fastidiosa infection assays (Riaz et al. 2020; Morales-Cruz et al. 2021). 

Together, these analyses have yielded information about genomic regions associated with PD 

resistance and also identified candidate genes within those regions. Moreover, the landscape 

scale of the resequencing data has allowed us to explore relationships between plant resistance 

and climate.  

 

Genome-wide associations with PD resistance 
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Not surprisingly, GWA identified several significant SNP and kmer markers on 

chromosome 14 between the genetic boundaries that define the PdR1 locus (Fig. 2). This locus 

was originally identified by genetic mapping and QTL analyses (Doucleff et al. 2004; Krivanek 

et al. 2006) and it was subsequently backcrossed into susceptible V. vinifera to produce resistant 

cultivars (Riaz et al. 2009). There had been no insights into causative genes that lie within this 

region, until Aguero et al. (2022) (Agüero et al. 2022) identified five putative R genes and 

transformed two LRR genes separately into V. vinifera, failing to find evidence of enhanced 

resistance. Our study of a different accession (b40-14) provides further insights. First, based on 

careful genomic annotation combined with association and gene expression analyses, we have 

identified a narrower PdR1 region with two strong candidates (g238150 and g238180), along 

with two additional candidates (g238250 and g238290) within the traditional PdR1 locus (Fig. 

3). Second, we have mapped the two transformed LRR genes from Aguero et al. (2022) to our 

genome (see Methods); neither of the two transformed genes are closest homologs to candidate 

genes in b40-14 and neither are highly expressed in b40-14 (Table S9). Overall, our candidate 

genes, which are present on both b40-14 haplotypes, differ substantially from those identified in 

b43-17. It is possible, of course, that different genes confer resistance in different accessions, 

given that structural variants are common in Vitis genomes (Zhou et al. 2019) and that allelic 

heterogeneity for resistance is also common (Karasov et al. 2020). A reasonable next step is to 

knock-out our candidates in V. arizonica, but unfortunately transformation in Vitis is currently 

efficient primarily for a narrow set of V. vinifera cultivars (Zhang et al. 2021).  An important 

challenge for viticulture is to improve transformation techniques for application to more cultivars 

and to agronomically valuable wild species.  

One interesting possibility is that candidate genes within PdR1 are not sufficient to confer 

resistance. There is evidence consistent with and against this hypothesis. Some of the evidence is 

historical. In an early study of PD resistance among Vitis species, Mortensen (1968) performed 

controlled hybrid crosses and concluded that complementary gene action among three 

independent genes best explained his results (Mortensen). Our data also hint at the contribution 

of multiple genomic regions. For example, the striking LD pattern on chromosome 14 suggests 

additive or epistatic interactions between distinct regions on the chromosome (Fig 3A). 

Similarly, V. girdiana and V. arizonica share R-kmers that map to at least two different 

chromosomes, further reflecting multi-genic composition (Fig. 4B). Finally, genomic 

investigation of resistant V. vinifera cultivars demonstrate that they include backcrossed 
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contributions from V. arizonica across the PdR1 region, as expected, but also across additional 

peaks on chromosomes 8, 9, 14 and 15 (Fig. 4A).  In contrast to this multigenic interpretation, 

we have observed that most significantly associated markers lie within the PdR1 region (Fig 2) 

and also that resistance can be best predicted using SNP data from within PdR1 (Fig. 5B). We 

have not estimated the effect sizes of SNP and kmer markers directly, because the gold standard 

for effect estimation requires a second independent dataset (Burghardt et al. 2017).  However, 

our prediction results are consistent with the loci of largest effect residing within PdR1.  Finally, 

a QTL study based on another V. arizonica parent found that 55.5% of phenotypic variation of 

resistance is explained by markers on chromosome 14 (Huerta-Acosta and Riaz), consistent with 

a major but not complete PdR1 effect. Overall, we interpret these complex observations to 

predict: i) that a combination of the correct candidate genes within PdR1 may confer substantial 

resistance but ii) that resistance at levels mimicking those in the wild will require allelic variants 

from additional genomic regions.   

 

Evolutionary and ecological insights into plant resistance 

Inferring the spatial distribution of disease resistance is critical for understanding its 

evolution and ecology (Karasov et al. 2020). We have investigated resistance across the 

landscape of V. arizonica (Fig. 1) and across six wild species that segregate for PD resistance.  

Given that all North American Vitis species are interfertile and that there is ample genomic 

evidence for historical introgression of resistance genes among species (Morales-Cruz et al. 

2021), we predicted that the genetic solution to PD would yield clear signals of introgression.  

We find that R-kmers are commonly shared between V. arizonica and its closest species in our 

sample, V. girdiana, but not across the other species (Fig. 4C). It is possible that we cannot 

detect introgression events because causative loci and associated R-kmers have become 

uncoupled over evolutionary time. At a minimum, however, our results provide no evidence that 

PD resistance has introgressed from V. arizonica to the non-girdiana species in our sample. If 

true, this implies that other wild Vitis species have independently evolved mechanisms of PD 

resistance; hence further study of these species may provide additional insights into alternative 

genetic causes of PD resistance. In this vein, one particularly interesting species is V. 

mustangensis (syn V. candicans), which has not been widely utilized agronomically as a 

rootstock or for hybrid scion breeding, but it does segregate for PD resistance and also contains 
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alleles that may be useful for viticulture in the context of climate change (J. A. Aguirre-Liguori 

et al. 2021).  

We have taken advantage of our geographic sampling to investigate correlates between 

resistance and climate, finding that resistance-associated SNP markers correlate with climatic 

variables, especially temperature in the wettest quarter (BIO8).  More specifically, susceptible 

plants tend to be found where BIO8 is <10ºC; this is true within V. arizonica, within our 

expanded sample of Vitis species and across wider (although still quite limited) geographic 

samples of X. fastidiosa that integrate across plant hosts and bacterial subspecies (European Food 

Safety Authority (EFSA) 2018) (Fig 5D).  Somewhat remarkably, this simple climatic measure 

predicts bacterial load nearly as well as some genetic markers (kmers) and better than others 

(CNVs) (Fig 5D). This is, to our knowledge, the first time that genomic data have been used to 

associate plant resistance and climate, yielding a useful bioclimatic predictor.  Our findings are 

not without precedent, however, because temperature has previously been identified as a strong 

predictor of X. fastidiosa distribution and presence (Purcell 1980; Lieth et al. 2011; Sicard et al. 

2018; Raffini et al. 2020).  Combining these observations, we suspect that individuals with low 

(<10ºC) BIO8 temperatures lack resistance because X. fastidiosa growth is hampered at low 

temperatures (Hopkins and Purcell 2002; Bosso et al. 2016) and/or because temperature affects 

its insect vectors (Hoddle 2004; M. Godefroid et al. 2022). Plant resistance will not be favored 

by natural selection in regions where the pathogen does not persist, particularly if there is a 

fitness cost to resistance [as has been demonstrated for R-gene mediated resistance in A. thaliana 

(Tian et al. 2003)].    

Previous work has modeled the distribution of X. fastidiosa under climate change (Purcell 

1980; Lieth et al. 2011; Sicard et al. 2018; Raffini et al. 2020; Martin Godefroid et al. 2022), but 

these models have depended primarily on incomplete X. fastidiosa surveys and have not been 

informed by data on the distribution of plant resistance. To illustrate how such information may 

be useful, we have employed climate models to predict where BIO8 will shift in the future. More 

specifically, we have identified regions where BIO8 will transition across the threshold of BIO8 

= 10ºC (Fig. 6A), as informed by plant resistance. By categorizing regions where BIO8 is 

predicted to move from below (or above) 10ºC in the present to above (or below) 10ºC in the 

future and by assuming the distribution of resistance informs on pathogen presence, we can 

identify regions where X. fastidiosa pressure is likely to expand or contract. We performed these 

categorizations across 54 climate models to consider uncertainty in global circulation models, 
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shifts in greenhouse gas emissions and time (see Methods). Summarizing across models, we 

have found that most of the globe will not transition - i.e., it will remain either above or below 

10ºC during the wettest quarters (Fig. 6A). Perhaps unsurprisingly (Cohen et al. 2021), large 

portions of Canada, Eastern Europe, Russia and Northern Asia climate are predicted to move 

beneath the BIO8 threshold, suggesting that these regions may be less likely to have pathogen 

pressure in the future. There are, however, discrete areas of the Western Americas, Western 

Europe, Central Asia, Southern Australia and elsewhere that are predicted to transition above the 

10ºC threshold in most models, suggesting increasing X. fastidiosa pressure in these regions (Fig. 

6A). These models of course make numerous assumptions. Some are common to all climate 

models (e.g., a reliance on accuracy of the climate predictions) and to previous X. fastidiosa 

species distribution models [e.g., which ignore the potential of X. fastidiosa to evolve to new 

temperature regimes (Jonás A. Aguirre-Liguori et al. 2021; Martin Godefroid et al. 2022)]. Some 

are more specific to this work - i.e., that X. fastidiosa is not dispersal limited and also that the 

BIO8 threshold has importance beyond V. arizonica, as suggested by our analysis of data that 

includes different plant hosts (Fig. 5C).  Importantly, however, our climate modeling illustrates 

how data about plant resistance can help inform the potential distribution of disease under a 

shifting climate.  

 In fact, we can proceed one step further by assessing the potential effects of climate on 

specific plant taxa - i.e., wild V. arizonica and five affected crops (grapes, coffee, almonds, citrus 

and olives). To do so, we first downloaded the global locations where each species is grown and 

then used climate projections to estimate the proportion of locations that will transition over the 

10ºC BIO8 threshold under climate models (see Methods). Using this approach, we predict that 

few locations for these crops will transition below the 10ºC threshold. In citrus and grapes, for 

example, the average estimate across the 54 climate models is that only 0.97% (of 7,853) 

locations and 2.10% (of 40,075) locations will transition below 10ºC under climate models (Fig. 

6B). Perhaps not unexpectedly, a much higher proportion of locations are estimated to exceed the 

10ºC threshold over time (Fig. 6C). For example, we estimate that >38% of regions of almond 

and grapevine cultivation will transition above the 10ºC threshold thus, given our assumptions, 

providing X. fastidiosa more favorable conditions and hence potentially subjecting these crops to 

higher pathogen pressure. Similarly, 18% of olive growing locations are expected to transition 

above the 10ºC threshold, which adds future concern to models that strongly predict the spread 

of the bacterium to olive growing regions under current climates (Schneider et al. 2020). These 
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calculations treat X. fastidiosa subspecies similarly, even though there are some differences in 

their host specificity (Sicard et al. 2018; Batarseh et al. 2022) and distributions (Godefroid et al. 

2019; Schneider et al. 2020), but emphasize that climate change is unlikely to affect all crops 

similarly with respect to X. fastidiosa exposure.     

Overall, our study has considered the genomic, climate and evolutionary context of 

resistance to a pathogen that is an emerging global pest and that already causes devastating 

economic damage to several crops. By studying the complex genetic architecture of PD 

resistance in a wild grapevine, we have implicated several genomic regions in resistance and 

identified genes that are fitting candidates for genetic introduction into susceptible crops.  

Furthermore, by comparing features across wild Vitis species we have uncovered hints about the 

origins of this critical trait. Finally, our work has highlighted the potential of combining 

landscape-scale resequencing data and climate models to predict the shifting pressures of a 

damaging plant pathogen. These results underscore the urgent need to identify additional X. 

fastidiosa management and containment methods, potentially via enhanced information about 

resistance mechanisms and genes.  
 

MATERIALS AND METHODS 

Plant material and PD disease evaluations 

We studied 167 accessions of V. arizonica collected across the southwestern states of the 

US and northern Mexico, covering the distribution of the species (Figure 1A and Fig. S1). The 

sampling location was available for all 167 V. arizonica accessions, which are part of a living 

collection of Southwest Vitis accessions maintained at the University of California, Davis; all 

Vitis accessions used in this paper were from that collection. PD resistance in these 167 

accessions were previously assayed in controlled greenhouse trials (Riaz et al. 2020; Morales-

Cruz et al. 2021), following previously published protocols (Krivanek and Walker 2005; Riaz et 

al. 2020). Briefly, accessions were inoculated with Xylella fastidiosa, and the susceptible V. 

vinifera cultivar Chardonnay as a reference control. Nineteen screens were carried out from 2011 

to 2020, with a minimum of four biological replicates per accession. Disease severity was 

assessed 10 to 14 weeks after inoculation using categorical phenotypes for disease severity, and 

ELISA was used to measure bacterial load (colonizing forming units or CFUs/ml) in the stem 

above the inoculation site from 12 to 14 weeks. The ELISA data were log-transformed and 

statistical analysis was performed using JMP Pro14 software (Copyright 2020, SAS Institute 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.08.511428doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.08.511428
http://creativecommons.org/licenses/by-nc/4.0/


 

17 
 

Inc.) to determine the variability of ELISA for the reference control plants across experiments. In 

this study, we used the quantitative measure of plant bacterial load (Least Squared Means of 

colonizing forming units or CFUs/ml) as an indicator of disease resistance. Lower bacterial load 

reflects higher PD resistance. 

 

Genomic reference, resequencing data and SNP calling 

Version 1 of the V. arizonica sequence (b40-14 v1) was published previously (Massonnet 

et al. 2020; Morales-Cruz et al. 2021), but this study relied on an updated version (b40-14 v2). 

Version 2 was a complete re-assembly based on the application of Haplosync (Minio et al. 2022) 

combined with ~ 2000 rhAmpSeq Vitis markers (Zou et al. 2020), independent of any single 

reference genome assembly. This new version of V. arizonica genome chromosome haplotypes 

are better phased, with fewer unplaced sequences (~ 65 Mb; 3,035 gene loci). The correct 

phasing of the locus was assessed during the assembly quality control steps based on genome 

and locus-specific markers, and gene content. The gene annotation was ported between versions 

1 and 2. The genome now contains 57,003 gene loci, a number slightly changed due to gene 

model corrections and homozygous filling of the haplotypes during the assembly. The version 2 

assembly represents the most contiguous genome assembly of any wild Vitis genome released to 

date and was used as the reference for all analyses. The genome is available for browsing at 

grapegenomics.com, but the v2. assembly and fasta files are also available from #### (will be 

freely available before publication).  

Our V. arizonica resequencing dataset consisted of short-read, whole genome data from 

167 V. arizonica individuals, for which a subset of n=22 had been sequenced previously 

(Morales-Cruz et al. 2021). The data for this subset was available from NCBI BioProject 

PRJNA607282. For the remaining 145 individuals, genomic DNA was extracted from leaf 

samples with the Qiagen DNeasy plant kit. Sequencing libraries were constructed with an insert 

size of ~300 bp using Illumina library preparation kits and were sequenced using the Illumina 

HiSeq 2500 platform with 2 × 150 bp paired reads to a target coverage of 10x. The raw 

sequencing data for this study has been deposited in the Short Read Archive at NCBI under 

BioProject ID: PRJNA842753.  

We filtered and evaluated raw reads from 167 individuals using Trimmomatic-0.36 

(Bolger et al. 2014) and FastQC (Andrews and Others 2010). Filtered reads were then mapped to 

the reference genome (independently to Hap1 and Hap2) with the BWA-MEM algorithm (Li 
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2013) implemented in bwa-0.78. Joint SNP calling was conducted using the GATK v.4.2.2.0 

pipeline (McKenna et al. 2010) for Hap1 and Hap2 independently. We first used the integrated 

version of Picard tools (Institute 2016) to remove duplicated reads with the “MarkDuplicates” 

function, followed by the “AddOrReplaceReadGroups” function to label the reads for each 

individual. For the SNP prediction we used the HaplotypeCaller algorithm with a sample ploidy 

of 2 and a mapping base quality score threshold of 20 (Q > 20). We combined the VCF files of 

all individuals to make the final SNP calls using the “GenotypeGVCFs” function with default 

parameters. We then filtered raw SNPs with bcftools v1.9 (Li et al. 2009) 

(https://samtools.github.io/bcftools/) and vcftools v0.1.17 (https://vcftools.github.io/) (Danecek 

et al. 2011). We kept SNP sites for downstream analysis if they were biallelic, had quality higher 

than 30, had a depth of coverage higher than five reads, had no more than three times the median 

coverage depth across accessions, and had no missing data among individuals. Additionally, the 

following expression was applied under the exclusion argument of the filter function in bcftools: 

“QD < 2.0 | FS > 60.0 | MQ < 40.0 | MQRankSum < -12.5 | ReadPosRankSum < -8.0 | SOR > 

3.0”.  

 

Population Structure and genome-wide associations 

We transformed VCF the file into BEAGLE format using vcftools 0.1.17. We used 

BEAGLE files as input to evaluate the genetic structure of the V. arizonica using the NGSAdmix 

software included in the ANGSD package version 0.931-21-g13af014 (Korneliussen et al. 2014). 

We ran NGSadmix for 1 to 10 ancestral populations (K), repeating analyses 10 times for each K 

value and including variants with a minimum minor allele frequency > 0.05 (Fig. S16). We then 

employed the Cluster Markov Packager Across K (Clumpak) software (Kopelman et al. 2015) to 

detect the K value with the highest likelihood of K = 2.  

The NGSadmix results were used to help guide controlling for genetic structure in 

genome-wide association (GWA). We performed GWA to identify significant associations 

between SNP allelic frequencies and bacterial load (Xylella fastidiosa CFU’s), using two 

different methods that control for population structure using different approximations. First, we 

used LFMM2, which uses latent factors to control for genetic structure (Frichot et al. 2013). The 

number of latent factors were chosen based on a visual observation of the screenplot of the 

percentage of variance explained by the loadings of the genetic PCA of all individuals. The PCA 

was obtained using all loci with no missing data and with the prcomp function in R 
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(Kassambara). In total, we defined K=4 latent factors. Next, we ran LFMM2 using a ridge 

penalty (function lfmm_ridge), and we controlled for genomic inflation factor (function 

lfmm_test, with calibrate= “gif”). We corroborated that the p values had a flat distribution, and 

we corroborated that the genetic structure was well controlled based on a qqplot (Fig. S4 & S7).  

In addition, we used the variance component algorithm Efficient Mixed-Model 

Association eXpedited (EMMAX) version beta-07Mar2010 (Kang et al. 2010). We converted 

the set of filtered SNPs with no missing data from VCF format to transposed ped format using 

PLINK version 1.90b6.16 (Purcell et al. 2007). Using the transposed ped files as input, we 

calculated the Balding-Nichols (BN) kinship matrix using the "emmax-kin” script and default 

parameters. Finally, we ran the associations using the SNPs data (as transposed ped), the BN 

matrix, and the phenotype as Least Squares Means of CFU/ml of X. fastidiosa for each 

accession. Both methods (EMMAX and LFMM2) were adjusted for multiple comparisons using 

the Bonferroni correction of the program “p.adjust” from the stats package version 4.1.2 in R. 

We focused only on SNPs and candidate regions that were detected by both methods. 

 

Kmer-based GWA  

To perform GWA based on kmers, we followed a previously published pipeline (Voichek 

and Weigel 2020) (https://github.com/voichek/kmersGWAS). Briefly, we extracted all kmers 

and canonized (i.e. reverse complement is assumed to be the same kmer) kmers of 31 bp in size 

using KMC version 3 (Kokot et al. 2017). We extracted the kmers directly from the paired and 

unpaired filtered reads for each of the 167 V. arizonica samples independently. We compared the 

kmers across samples and created a table of kmers that were found in at least 5 individuals (“-

mac 5”) and in each canonized/non-canonized form in at least 20% of individuals from which it 

appeared in (“-p 0.2”). We used the script “emma_kinship_kmers” included in the pipeline with 

a MAF < 0.05 filter to create a kinship matrix based on the kmer table. Finally, we ran the kmer-

GWAS with the script “kmers_gwas.py” and GEMMA version 0.98.5 (Zhou and Stephens 2012) 

with the kinship matrix, the kmer table, and the phenotype data as Least Squares Means of 

CFU/ml of X. fastidiosa for each accession. The script provided a list of 9991 kmers that passed 

a parametric test as an initial filter. To filter more stringently, we used the number provided in 

the file “pheno.tested_kmers”, which was 967066440, to adjust the p-values with a Bonferroni 

correction using the program “p.adjust” from the stats package version 4.1.2 in R. To create a 

textual version of the presence/absence kmers of the significant Kmers we used the 
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“filter_kmers” from the pipeline. Given 115 significant kmers, we mapped them to the V. 

arizonica genome using BLASTN (Zhang and Madden 1997) and a word size of 8 bp. We 

filtered all the BLASTN results and kept alignments, allowing a maximum of 1 mismatch.  

We further explored the sequences of the 36 kmers that did not map to our reference 

genome. We first searched and extracted the reads matching these 36 kmers across the 167 V. 

arizonica accessions. We then used SPADES v3.15.4 (Bankevich et al. 2012) to assemble the 

matching reads into contigs independently for each kmer. Finally, we aligned the resulting 

contigs to the Reference RNA Sequences database (Refseq_rna) using BLASTN (visited on 

06/10/2022) and recorded the top hit gene.  

  

Copy Number variation analysis and associations  

To identify Copy Number Variants (CNVs), we used the program CNVcaller version 2.0 

(https://github.com/JiangYuLab/CNVcaller) (Wang et al. 2017). CNVcaller uses normalized 

read-depth values across windows in the genome to identify CNVs and it is especially suited for 

large population data like our V. arizonica sample. First, we generated a duplicated window 

record file specifically from our genome reference V. arizonica b40-14 v2 using a window size 

of 2 kb and for each chromosome independently. We then analyzed the individual read depth in 

2 kb non-overlapping windows using the “Individual.Process.sh” script and the alignment files of 

all 167 accessions in bam format with the PCR duplicated reads removed during the SNP calling 

pipeline (see section above). The script produces normalized values of read depth across the 

genome for each genotype. We then used the normalized read depth values of all genotypes as 

input to the script “CNV.Discovery.sh”, excluding windows with a lower frequency of gain/loss 

individuals of 0.1 (“-f 0.1”) and with Pearson’s correlation coefficient lower than 0.3 (“-r 0.3”). 

Finally, we used “Genotype.py” to classify genotypes across the population according to their 

CNV profiles.  

To explore the associations between CNVs and PD-resistance, we used the CNVcaller 

estimation of diploid copy number for each CNV and tested for correlations with X. fastidiosa 

bacterial levels, while taking into account the genetic structure of the V. arizonica population. 

We used the R library “ppcor” v1.1 (Kim 2015) to run a partial correlation for each of the CNVs, 

using genotype assignment (Qi) values from the genetic structure analysis (see section above) as 

the confounding variable. To account for multiple testing we imposed a Bonferroni correction 

and identified significant CNVs with adjusted p< 0.05.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.08.511428doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.08.511428
http://creativecommons.org/licenses/by-nc/4.0/


 

21 
 

 

Defining PD-associated peaks  

We performed a total of four association analyses: LFMM2 based on SNPs, EMMAX 

based on SNPs, kmer-based GWA, and CNV-based GWA. From these analyses we defined eight 

GWA peaks of interest in the genome (Figure 2). To define these peaks, we required that a peak 

contains at least one SNP that was significant with both LFMM2 and EMMAX. However, most 

peaks had multiple pieces of evidence - i.e., either more than one SNPs, significant kmers and/or 

CNV variants. When applying this logic, we focused only on kmers that mapped uniquely to the 

genome and so excluded 17 kmers that mapped to multiple places in the genome with the same 

identity and alignment length.  

 

Analyses of PD-associated kmers in other Vitis species  

We identified kmers associated with resistance in V. arizonica sample and then 

characterized their presence in three different resequencing datasets: i) a multiple species Vitis 

dataset, ii) a dataset generated from scion cultivars bred for PD resistance by backcrossing to the 

b43-17 accession of V. arizonica, and iii) a set of PD susceptible cultivars. The first dataset 

included 105 accessions from five species: V. arizonica (n =22), V. candicans (n = 24), V. 

berlandieri (n = 22), V. girdiana (n = 18) and V. riparia (n = 19) (Morales-Cruz et al. 2021). All 

of these accessions had been assayed for PD resistance, and categorized as resistant if CFU/mls 

were <13.0 at the time of assay. In this dataset, 20 V. arizonica were resistant (n=20), 21 V. 

candicans (n = 25), 3 V. berlandieri (n = 21), 9 V. girdiana (n = 17), 2 V. monticola (n=5) and 2 

V. riparia (n = 20). The resistance assay data and sampling locations of the accessions are 

available (Morales-Cruz et al. 2021). For the second dataset, we generated resequencing data for 

five PD resistant cultivars (Ambulo Blanc, Caminante Blanc, Camminare noir, Errante noir and 

Paseante noir). DNA extraction, library preparation and Illumina sequencing followed the 

protocols mentioned above, and the data were deposited into Bioproject: PRJNA842753. Finally, 

the ‘control’ dataset of PD susceptible accessions was downloaded from public databases 

(Cabernet Sauvignon cl. 08: SRR3346862; Chardonnay cl. 04: SRR5627799; Zinfandel cl. 03: 

SRR8727823; and Petite Sirah: SRR12328988 ). For each of the datasets, we generated kmers of 

31 bp for each sample as described above. We then searched for the presence of 115 associated 

kmers from V. arizonica using the “filter_kmers” script from the kmer-GWAS pipeline (Voichek 

and Weigel 2020) (https://github.com/voichek/kmersGWAS). 
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To compare the R-kmers with random sequences in other Vitis species, we first extracted 

100,000 unique and random kmers from the V. arizonica population. We then calculated the 

frequency of these sequences across all individuals and selected kmers with similar frequencies 

as the R-kmers mean (0.52), resulting in 38,523 kmers. We then created 100 subsets of 99 

random kmers from the set with similar frequencies as R-kmers. Finally, we searched for the 

presence of each set of other Vitis species and calculated the mean frequencies of the 99 kmers in 

each random set. We report the average and standard error of means across the 100 sets in Fig. 

4C.  

 

Linkage disequilibrium  

We calculated the genome-wide LD decay across the V. arizonica population with the 

software PopLDdecay v3.40 (Zhang et al. 2019). We used the filtered SNPs of the 167 

individuals from hap1, allowing a maximum distance of 1 Mb (Fig. S11). We used the perl script 

“Plot_OnePop.pl” included in the package to create the decay graph.  

 To explore the LD landscape of the regions around PdR1 and chromosome 14 as a whole 

we used Tomahawk v0.7.0 (https://github.com/mklarqvist/tomahawk). We used as input the 

filtered SNPs of chromosome 14 for hap1 as input, containing the 167 V. arizonica accessions. 

We converted the VCF file into a custom format file (“.twk”) for the package and calculated the 

LD with the “calc” function. We then filtered LD values using the “view” function, keeping 

regions with R2 > 0.5 and p-values < 0.001. Given that we were interested in the LD at the 

chromosome-scale (~30Mb) we used the “aggregate” function. Using this function we 

aggregated R2 values in 1000 bins for both the x and y-axis, and used 5 as the minimum cut-off 

value in the reduction function. Finally, we used the “rtomahawk” R package 

(https://github.com/mklarqvist/rtomahawk) to create the chomosome-scale LD landscape plot 

using the aggregated R2 values.  

 

Functional annotation and Refinement of PdR1 gene models 

Gene models located within the two haplotypes of Pdr1 were manually refined by 

visualizing alignments of RNA-seq reads from V. arizonica b40-14 leaves (Morales-Cruz et al. 

2021) using Integrative Genomics Viewer (IGV) v.2.4.14 (Robinson and Others 2017). RNA-seq 

reads were aligned onto the diploid genome of V. arizonica b40-14 using HISAT2 v.2.1.0 (Kim 

et al. 2015) and the following settings: --end-to-end --sensitive -k 50. 
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Predicted proteins of Pdr1 genes were scanned with hmmsearch from HMMER v.3.3.1 

(http://hmmer.org/) and the Pfam-A Hidden Markov Models (HMM) database (El-Gebali et al. 

2019) (downloaded on January 29th, 2021). Protein domains with an independent E-value less 

than 1.0 and an alignment covering at least 50% of the HMM were selected. Transmembrane 

helices were predicted with TMHMM2 v2.0c (Krogh et al. 2001). Proteins with a predicted 

Leucine Rich Repeat (LRR) domain and a transmembrane helix were classified as LRR receptor-

like proteins. Proteins having a predicted LRR or lysin motif (LysM), a kinase domain, and 

transmembrane helices were categorized as receptor-like kinases. 

Predicted proteins of Pdr1 genes were aligned onto the predicted proteome of A. thaliana 

and the grape PN40024 (V1 annotation) using BLASTP v.2.2.28+ (Altschul et al. 1990). 

Alignments with an identity greater than 30% and a reciprocal target:query coverage between 

75% and 125% were kept. For each V. arizonica protein, best hit in the A. thaliana and PN40024 

proteomes was determined using the highest product of identity, query coverage, and reference 

coverage. The sequences of the two ORFs (V.ari-RGA14 and V.ari-RGA18) (Agüero et al. 

2022)were aligned onto the b40-14 genome using blastn v. 2.2.28+ (Altschul et al. 1990). For 

V.ari-RGA14, the alignments had highest coverage of 99.46% and and identity of 100% and 

located at 26.666 Mb on chromosome 14, which was within the PdR1 locus but not a strong 

candidate based expression analyses (Fig. 3BC).  For V.ari-RGA18, the alignment with the 

highest coverage (99.76%) and identity (100%) was located at position 24.283 Mb, well outside 

the PdR1 region based on our b40-14 reference (Fig. 3B).  

 

Gene expression analyses 

To evaluating the transcript abundance of candidate genets, plants from three PD-

resistant genotypes and three PD-susceptible genotypes of the 07744 population ([V. rupestris 

Wichita refuge x V. arizonica b40-14] x V. vinifera Airen) were propagated in a controlled 

environment and inoculated with either Xylella fastidiosa or water. Pieces of green stem at 10, 

20, 30 and 40 cm above the inoculation were collected from each plant at 1, 2, 3, and 4 weeks 

post inoculation. Pieces of green stem from each genotype were pooled together. Each genotype 

constitutes a biological replicate. All plant material was immediately frozen in liquid nitrogen 

after collection and ground into powder. Total RNA were extracted as described in Massonnet et 

al. (2017) (Massonnet et al. 2017). cDNA libraries were prepared using the Illumina TruSeq 

RNA sample preparation kit v.2 (Illumina, CA, USA) and sequenced in single-end 100-bp reads 
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on an Illumina HiSeq4000. RNA-seq reads were parsed using Trimmomatic v.0.3 (Bolger et al. 

2014) with the following settings: LEADING:7 TRAILING:7 SLIDINGWINDOW:10:20 

MINLEN:36. Transcript abundance was evaluated with Salmon v.1.5.1 (Patro et al. 2017) with 

the parameters: --gcBias --seqBias --validateMappings. A transcriptome index file was built 

using a k-mer size of 31 and the combined transcriptomes of V. arizonica b40-14 (v2.1), V. 

vinifera cv. Cabernet Sauvignon (Massonnet et al. 2020), with their genomes as decoy. 

Quantification files were imported using the R package tximport v.1.20.0 (Soneson et al. 2015). 

 

Bioclimatic variables associated with resistance 

To identify the association between SNPs associated with resistance and the 

environmental landscape, we applied gradient forest (GF) (Ellis et al. 2012), which models the 

turnover in genetic composition across the landscape (Fitzpatrick and Keller 2015) and identifies 

both the bioclimatic variables that contribute to the construction of the model and the ‘turnover 

function’ - i.e., the change of genetic composition across the landscape (Fitzpatrick and Keller 

2015; Capblancq et al. 2020; Waldvogel et al. 2020). To estimate the GF model, we used the 

gradient forest package in R, using the 25 SNPs identified by LFMM2 and EMMAX as response 

variables and using bioclimatic variables as predictive variables. The 19 bioclimatic variables 

were filtered to retain any correlations < 0.80, based on a variance inflation factor calculated by 

corSelect from the R package fuzzySim (Barbosa 2015). After filtering, we retained 10 of 19 

bioclimatic variables (BIO1, BIO2, BIO3, BIO4, BIO8, BIO9, BIO12, BIO14, BIO17, BIO19). 

We performed the GF analysis using SNP frequencies from each individual (i.e., 0, 1 and 0.5 for 

heterozygotes) (J. A. Aguirre-Liguori et al. 2021) and repeated the analysis 1,000 times. We also 

plotted the turnover functions for each bioclimatic variable to show how populations with 

different resistance to PD are distributed across allele frequency change (Fig. S15).  

 

Predicting PD resistance 

To determine whether genetic and environmental variables predicted PD resistance, we 

first ran a linear model individually for each bioclimatic and genetic variable to determine their 

individual predictive power, using the lm function in R. We performed 1,000 bootstrap replicates 

for each model to estimate the variance in predictive ability.  

  For the bioclimatic variables, we estimated the individual linear models between the 10 

bioclimatic values from where the arizonica individuals were sampled and their bacterial load. 
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For some genetic variables, we first estimated a polygenic score across SNPs that associated with 

bacterial load. This polygenic score, which we called the PD score (Spd), was calculated as the 

proportion of alleles that contribute to resistance to PD in a given individual. The state of these 

contributing alleles was inferred from the GWA results. Spd was designed after the population 

adaptive index, which measures the proportion of alleles that show patterns of local adaptation 

(Bonin et al. 2007). Spd assumes that alleles contribute equally to PD resistance and that a higher 

proportion of resistance alleles correlates with lower CFU in the individuals. Spd ranges from 0 

when no resistance alleles are present to 1 when all alleles across loci are homozygous for the 

resistant state. We estimated Spd for different sets of SNPs: i) all candidate SNPs across the 

genome (25 SNPs), ii) all candidate SNPs on chromosome 14 (16 of the 25 SNPs); iii) all 

candidate SNPs in the region defined by PdR1 (10 of 25 SNPs); iv) all candidate SNPs on 

chromosome 15 (6 of 25 SNPs). To control for potential ancestry effects, we also tested an 

analogous Spd score, which we called the reference PD scores (Rpd). For Rpd we sampled 25 

random reference SNP (SNPs that were not significant for any of the two GWA methods) and 

obtained a Rpd distribution based on 1,000 Rpd values. Following the concept of Spd, we also 

estimated a Kmer score (Kpd), which consisted of the proportion of Kmers associated with 

resistance across populations. A value of 1 indicates that the individual has all the resistant 

Kmers and none of the susceptible Kmers (see Above), while a value of 0 indicates that the 

individual has all the susceptible kmers and none of the resistant ones. Finally, we also estimated 

a CNV score (Cpd) that corresponds to the number of adaptive copy variants in an individual, 

where a higher number of CN variants indicates that the individual is more resistant to PD. For 

the Spd, Kpd and Cpd scores, we estimated the fit between the scores and the bacterial load. 

Finally, for the genetic independent variables, we also analyzed the linear model between the 

assignments into genetic groups (K1 and K2) based on the admixture analyses and the 

concentration of bacterial load.  

 

Climatic modeling 

Given the predictive power of BIO8 and its general association with locations where 

Xylella fastidiosa has been detected, we used BIO8 to model the future distribution of Xylella 

fastidiosa. Assuming that 10ºC is a predictive threshold of where Xylella fastidiosa is more likely 

to be present or absent, we identified areas in the globe that currently have BIO8 <10ºC in the 

present but are predicted to have BIO8 >10ºC in the future. We interpret these areas could 
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become susceptible to Xylella fastidiosa in the future. We also detected the conversion - i.e. 

regions across the globe that currently have BIO8 >10ºC in the present but are predicted to have 

BIO8 <10ºC in the future - which we interpret as regions becoming less apt to harbor Xylella 

fastidiosa in the future. To make these predictions, we downloaded the BIO8 data at a 2.5 

minutes resolution from Worldclim 2 (Fick and Hijmans 2017) for the present and for 54 

climatic models in the future to consider the uncertainty in future climate projections. These 

future climate models included five global circulation models (GFDL-ESM4, IPSL-CM6A-LR, 

MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL), three time periods (2041-2060; 2061-2080; 

2081-2100) and 4 shared socioeconomic pathways (SSPs: 126, 245, 370, 585 ). To plot the areas 

where climate is expected to change across the 10ºC threshold, for the present and the 54 future 

layers we set the raster layers to 1 and 0 if they were above or below 10ºC, respectively. Next, 

we subtracted each future layer to the present layer. Areas with values of -1 indicate that a region 

in the future layer is expected to be <10ºC but is >10ºC in the present (0-1). Regions with values 

of 0 indicate that both the present and future layers have values >10ºC (1-1). Regions with values 

of +1 indicate that the future layer is expected to be >10ºC but the present layer is <10ºC (1-0). 

We did this for the 54 layers, and we created a sum_raster object by adding the 54 raster layers. 

Positive values (1 to 60) indicate the number of layers for which the prediction is that the region 

will become warmer than the 10ºC threshold. Negative values (-1 to -60) indicate the number of 

future layers for which the prediction is that the region will become colder than the 10ºC 

threshold. Values of 0 indicate that for all layers, the area is >10ºC and will remain >10ºC or that 

it is <10ºC and will remain <10ºC for all the layers. 

     Finally, we tested how BIO8 will change in the future in areas where V. arizonica, V. 

vinifera (grapevines), Citrus sp Olea europea (olives), Prunnus amygdalus (almond) and Coffea 

sp grow. For this, we first used the gbif function in the R dismo package (Hijmans et al.) to 

download all the known locations of V arizonica, grapevines, olives, almonds, coffee sp. and 

Citrus sp (gbif.org; download data: 2022-06-06). Next, for each species we used the 

CoordinateCleaner package in R (Zizka et al. 2019) to remove locations that 1) were duplicated; 

2) had equal longitude and latitude; 3) were next to country centroids, capitals of countries, 

biological stations or gbif headquarters; 4) were in the sea; 5) were outliers based on the 

“quantile” option. Finally, we also removed locations if they were the only report in a given 

country, suggesting they may be outliers. After cleaning the data, we retained 6,204 locations 

(from 11,834) for Coffee sps.; 3,386 locations (from 9,992) for almonds; 1,111 locations (from 
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1,155) for V. arizonica; 5,256 locations (from 7,853) for Citrus sps.; 174,713 locations (from 

204,775) for olives; and 33,225 locations (from 47,075) for grapevines.  

  For each species, we used the extract function in the raster R package (Hijmans 2021) to 

obtain for each location whether climate is expected to change across the 10ºC layer (values -1,0 

and 1; as detailed above). For each species we estimated the percentage of locations that are 

expected to move below and above the 10ºC threshold across the 54 layers.  
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FIGURES and LEGENDS: 

 

 

 
 
 

Fig. 1. 

Vitis arizonica sampling and phenotypes. A map of the Southwestern United States and 

Northern Mexico indicates sampling locations of the n=167 V. arizonica accessions used in this 

study. The color of sample locations (circles) are colored according to their resistance phenotype, 

as measured by bacterial load (CFU/mL). The histogram of phenotypes (in CFU/mL) is to the 

right of the map.  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.08.511428doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.08.511428
http://creativecommons.org/licenses/by-nc/4.0/


 

37 
 

 

 

 
 

Fig. 2.  

A Manhattan plot of the V. arizonica genome showing markers associated with bacterial 

load. The plot denotes each of the 19 chromosomes for haplotype 1. Each circle represents a 

SNP with a corresponding p-value, based on EMMAX genome-wide association analysis. The 

25 SNPs that were detected in two separate GWA analyzes are circled in red and define the 8 

peaks of association, which are numbered as P1, P2, etc., and referred to in the text. In addition 

to SNPs, the locations of significantly associated kmers and CNVs are provided when they 

overlap with a SNP-defined peak. The colored horizontal lines represent the cut-off p-values 

(P<0.05, Bonferroni corrected) for the different marker types.  
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Fig. 3. 

Genetic analyses of the PdR1 region. A. A plot of linkage disequilibrium (LD) across 

chromosome 14, where darker colors represent higher levels of LD. The two dark squares on the 

diagonal include GWA peak 4 (on the left, from 0 to 7 Mb on the chromosome) and the GWA 

peak that corresponds to PdR1 (on the right, from 22 to 28 Mb on the chromosome). The two 

off-diagonal squares reflect LD between these two distinct regions. B. A Manhattan plot of 

chromosome 14 indicating the locations of peak 4 and the PdR1 region. C. An expanded 

representation of the PdR1 region showing the location of significant SNPs (red circles denote 

SNP significant with two GWA methods), significant kmers (green triangles) and CNVs (blue 

triangles). The dashed vertical lines represent the 361 kb region defined by SSR markers and the 

106kb region defined by the location of significant markers. D. A representation of genes in 

PdR1 with a summary of gene expression results. Genes are colored if they are related to R 

genes, with the category of R gene indicated by its color. Expression information shows 

expression, in transcripts per million (TPM) for leaves, for stems during four stages after 

infection and for mock controls.  
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Fig. 4.  

The presence of resistance and susceptibility kmers in different data sets. A. Analyses 

within the V. arizonica sample set. The top-left graph indicates the 99 different resistance (R-

kmers) kmers across the x-axis, with their detection frequency across the resistant (CFU/mL < 

13) accessions. The top-right graph plots the average detection frequency of susceptibility kmers 

(S-kmers). The bottom-left and bottom-right graph are similar, but show R-kmer and S-kmer 

detection frequencies among susceptible accessions. B. The same graphs as in B, but the top 

graphs plot R-kmer and S-kmer detection frequencies for the five V. vinifera cultivars bred for 

PD resistance by backcrossing to V arizonica, while the bottom graphs represent susceptible V. 

vinifera cutlivars. C. Plots of kmer frequencies in six Vitis species. The species phylogeny is 

shown on the left, with the average detection frequency of R-kmers shown in red. The gray bars 

represent detection frequencies of randomly chosen kmers that had similar population 

frequencies in V. arizonica as the set of R kmers. Whiskers denote standard deviations.  
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Fig. 5.  

Relationships among resistance, genetic markers and bioclimatic data. A. The estimated 

importance, from GF modeling, of each of the bioclimatic variables tested. The y-axis is a 

measure of the importance. The histograms denote the average inferred importance of the 

bioclimatic variable, with the whiskers plotting the standard deviation of 1000 separate analyses. 

BIO8 was estimated to have the biggest impact on the model in all 1000 analyses. B. The 

turnover function showing the temperature range of BIO8 on the x-axis and the change in the 
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genetic composition on the y-axis. The circles represent individuals that are colored by resistance 

(gray) or susceptible (white). C. Individual predictors in a linear model to predict resistance 

levels (CFU/ml). The label score_ref represents sets of 1000 randomly chosen sets of 25 SNPs. 

The other sets of predictors include bioclimatic variables and genomic data, as listed in the text, 

each evaluated 1,000 times with bootstrapped datasets. Each boxplot reports the minimum and 

maximum values in the whiskers, the quartiles and median values in the square, with the circles 

showing outliers. The dashed horizontal line reflects the median value of 1,000 replicates of the 

Rpd score.  D. The density distribution of BIO8 for a global database of locations of Xylella 

fastidiosa detection.  
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Fig. 6.  

Climate predictions and projections of the prevalence of Xylella fastidiosa for focal crops. 

A. The map portrays the number of climate models (out of 54 total) that support movement 

across the BIO8 = 10ºC threshold. The warmer colors reflect regions that are moving from below 

(in the present) to above the threshold, while the cooler colors portray ares that that are moving 

from above (in the present) to below the threshold. B. A summary of the percentage of locations 
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associated with movement from above the 10ºC threshold (in the present) to below the threshold 

for five crops and V. arizonica. C. A summary of the percentage of locations associated with 

movement from above the 10ºC threshold (in the present) to below the threshold for five crops 

and V. arizonica. Both B and C are based on 6,204 locations for coffee; 3,386 locations for 

almonds, 1,111 locations for V. arizonica; 5, 256 locations for Citrus species; 174,713 locations 

for olives and 33,225 location for grapevines.  
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