

1 **Title: Structural basis of epitope selectivity and potent protection from**
2 **malaria by PfCSP antibody L9**

3

4 **One sentence summary:** The L9 light chain is crucial for potency by conferring multivalent,
5 high affinity binding to the NPNV minor repeats of PfCSP.

6

7 **Authors:** Gregory M. Martin¹, Monica L. Fernández Quintero², Wen-Hsin Lee¹, Tossapol
8 Pholcharee^{1†}, Lisa Eshun-Wilson¹, Klaus R. Liedl², Marie Pancera³, Robert A. Seder⁴, Ian A.
9 Wilson^{1,5}, Andrew B. Ward¹

10

11 **Affiliations:**

12 ¹Department of Integrative Structural and Computational Biology, The Scripps Research
13 Institute; La Jolla, CA 92037; USA.

14 ²Department of General, Inorganic, and Theoretical Chemistry, Center for Chemistry and
15 Biomedicine, The University of Innsbruck; Innrain 80-82/III, 6020 Innsbruck, Austria.

16 ³Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle,
17 WA 98109; USA.

18 ⁴Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National
19 Institutes of Health; Bethesda, MD 20892; USA.

20 ⁵The Skaggs Institute for Chemical Biology, The Scripps Research Institute; La Jolla, CA 92037;
21 USA.

22 [†]Present address: Department of Biochemistry; University of Oxford; Oxford OX1 3DR; UK.

23

24 **Abstract:**

25 A primary objective in malaria vaccine design is the generation of high-quality antibody
26 responses against the circumsporozoite protein of the malaria parasite, *Plasmodium falciparum*
27 (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent
28 anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds
29 multivalently to the CSP minor (NPNV) repeats, which is stabilized by a novel set of affinity-
30 matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a
31 critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts
32 CSP affinity and protective efficacy. These findings reveal the molecular mechanism of the
33 unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity
34 maturation in protective immunity against *P. falciparum*.

35

36

37

38

39

40

41

42

43

44

45

46

47 **Main Text:**

48 Malaria remains one of the world's deadliest infectious diseases, and in 2021 was responsible for
49 241 million clinical infections and 627,000 deaths worldwide (1), primarily among young
50 children in sub-Saharan Africa. RTS,S/AS01B (RTS,S), the only approved malaria vaccine, is
51 only partially effective, providing ~30% protection from clinical infection after four years in
52 children aged 5-17 months (2, 3). Thus new tools, like next-generation vaccines and highly
53 potent monoclonal antibodies (mAbs), the latter of which can provide prolonged, sterilizing
54 immunity, are needed for prevention and elimination of malaria.

55

56 PfCSP, the primary surface antigen of *P. falciparum* sporozoites, is a major target for vaccines and
57 mAbs as it is both highly conserved and critical for the initiation of malaria infection. PfCSP
58 contains an immunodominant central repeat region composed of repeating four-amino-acid units,
59 structurally defined as DPNA, NPNV, and NPNA (4-11). These roughly define the junctional,
60 minor repeat, and major repeat epitopes, respectively. Each epitope can generate potent antibodies
61 that prevent malaria infection in animal models (12-14), with the junctional mAb cis43LS
62 demonstrating high-level protection against controlled human malaria infection (CHMI) in
63 humans (15). Recently, we identified the minor-repeat-specific mAb L9 as one of the most potent
64 anti-PfCSP mAbs isolated to date (16), which can also confer high-level sterilizing immunity
65 against CHMI in humans (17). Like many of the most potent NPNA-specific mAbs, L9 is also
66 encoded by the *IGHV3-33/IGKV1-5* heavy/light chain gene combination. However, L9 is highly
67 specific for the NPNV (minor) repeats and relies on critical contributions from the light chain for
68 both NPNV selectivity and high potency (6).

69

70 To understand the molecular basis of these unique functional properties, we solved a 3.36 Å cryo-
71 EM structure of L9 Fab in complex with a recombinant PfCSP construct, rsCSP, which contains
72 the full N-terminal, junctional, and C-terminal regions, and about half the number of NPNA repeats
73 as the 3D7 reference strain (Fig. 1, fig. S1, table S1). In the cryo-EM map, we observe three tightly
74 packed Fabs bound to a central rsCSP, with each Fab simultaneously interacting with the peptide
75 and the adjacent Fab via homotypic interactions (8, 11, 18, 19). In general, the complex is
76 homogeneous and the density is well-resolved for each L9 variable region (Fv) as well as the rsCSP
77 peptide (Fig. 1B). The structure of rsCSP, built *de novo* based on the EM density, consists solely
78 of the minor repeat region (Fig. 1F). The modeled antigen sequence comprises 26 residues
79 encompassing three complete NPNV and DPNA repeats, i.e. NA(NPNVDPNA)₃; there is no
80 additional density observed that would correspond to N-terminal, C-terminal, or major repeat
81 regions. The L9 Fab and peptide cryo-EM structures correspond well with our recent X-ray
82 structures of two chimeric precursors of L9 (L9_K/F10_H and F10_K/L9_H) in complex with a short
83 minor repeat peptide (NANPNVDP) (6) (fig. S2). Relative to the L9 cryo-EM structure, RMSD
84 values for both chimeric Fvs are ~0.5 Å, and ~0.1 Å over the NPNV peptide.

85
86 In the cryo-EM structure, each L9 Fab primarily engages a single NPNV repeat, while the DPNA
87 repeats are largely unbound and serve as a linker between each NPNV (Fig. 1C and E). Thus, the
88 full epitope bound by a single L9 Fab is NPNVD (Fig. 1G). Each NPNV motif adopts a type 1 β-
89 turn, which is frequently observed for DPNA and NPNA motifs bound to anti-PfCSP antibodies
90 from a variety of heavy chain lineages (4, 8, 20). The DPNA repeats in the L9 structure, however,
91 are more extended and lack clear secondary structure elements (Fig. 1,F and H). The L9 epitope is
92 centered on the NPNV type 1 β-turn, which resides in a deep, central pocket on the Fab formed

93 primarily from CDRL1, CDRL3, and CDRH3, with smaller contributions from CDRH1 and H2
94 (Fig. 2A). Interestingly, overall buried surface area (BSA) on L9 is slightly biased toward the light
95 chain (LC; L9_K) (fig. S3, A and B). Of the 550 Å² total BSA on a single L9 Fab, L9_K contributes
96 294 Å² (53.5%), while the heavy chain (HC; L9_H) contributes 256 Å² (46.5%), indicating a critical
97 role of L9_K in PfCSP binding.

98

99 As frequently observed in anti-NPNA major repeat mAbs, many direct antigen contacts are with
100 germline-encoded aromatic residues, which in L9 create a hydrophobic cage surrounding the
101 NPNV motif (Fig. 2B, table S2). In particular, W32^L in CDRL1 stacks closely against the N-
102 terminal Asn of the NPNV motif (N1) forming a CH-π bond, while Y94^L in CDRL3 engages the
103 repeat Pro (P2) (Fig. 2C, fig. S3, C and D). L9 also utilizes the strictly conserved *IGHV3-33*
104 germline residue W52^H in CDRH2, which in all structures of *IGHV3-33* mAbs solved to date forms
105 a critical CH-π interaction with P6 of the second NPNA repeat in the NPNA₂ epitope (7, 8, 11,
106 20). However, in L9, this role is assumed by Y94^L, and W52^H principally acts to stabilize the
107 Y94^L:P2 interaction through a π-π stacking interaction with the Y94^L side chain (Fig. S3D-F).

108

109 This paratope structure is distinct from most other *IGHV3-33* mAbs targeting both major and
110 minor repeats. In L9, a repositioning of the HC and LC CDR3 loops, along with a rearrangement
111 of W52^H and CDRH2, creates a compact, central CSP binding pocket bounded by each of the HC
112 and LC CDRs (Fig. 2B). A somatically mutated residue, R96^L in CDRL3, is found at the base of
113 the pocket and creates a highly basic cavity (Fig. S3G). This basic binding pocket is nearly fully
114 occupied by the N3 side chain, which forms key H-bonds with R96^L (Fig. 2C), while V4 occupies
115 a hydrophobic cavity at the interface of CDRL1, L3, and CDRH3 (fig. S3C). With this unique

116 CDR conformation, L9 appears optimally disposed to bind the bulkier minor repeat residue V4,
117 which is the only difference between the NPNA and NPNV epitopes.

118
119 Another unique property of L9 is the ability to “crosslink” two NPNV motifs within the minor
120 repeat region of PfCSP, which improves binding affinity (6). Our cryo-EM structure reveals that
121 L9 achieves this through multivalent Fab binding to sequential NPNV repeats stabilized by an
122 extensive antibody-antibody, or homotypic, interface between adjacent Fabs (Fig. 3A). Homotypic
123 interactions have now been identified in several anti-NPNA mAbs and appear to be a characteristic
124 feature of the *IGHV3-33* antibody family (8, 11, 18-20). Importantly, we demonstrate L9 as the
125 first non-NPNA targeting anti-PfCSP mAb to also utilize homotypic interactions, suggesting that
126 both the major and minor PfCSP repeats can facilitate their development.

127
128 The L9 homotypic interface is distinct from that observed in NPNA-specific *IGHV3-33* mAbs,
129 which is generally conserved and derives primarily from the heavy chain (11, 19) (fig. S5). In
130 contrast, L9_K contributes numerous critical homotypic contacts, and total BSA in the interface is
131 evenly distributed between heavy and light chains (905Å² and 839Å², respectively) (Fig. 3, E and
132 F). In the cryo-EM structure, L9_K of FabC packs tightly against L9_H of FabB, and extensive polar
133 and hydrophobic contacts are made between CDRL1 and the LC framework region 3 of FabC
134 (LFR3) with HFR1, CDRH1, and CDRH3 of FabB (Fig. 3A; fig. S4; table S3). The interface
135 between FabB and FabA is nearly identical. Importantly, several residues mediating critical
136 homotypic interactions (Fig. 3, B to D) correlate with somatic hypermutation of the germline
137 *IGHV3-33* and *IGKV1-5* genes (Fig. 3E and F; fig. S5). Four somatically mutated residues in L9_K,

138 F28^L and R31^L in CDRL1, and E68^L and H70^L in LFR3, account for the majority of BSA
139 contributed by the LC to the homotypic interface (Fig. 3E).

140
141 E68^L lies at the core of the homotypic interface in L9, where it forms a key salt bridge with the
142 germline-encoded R94^H of CDRH3_B (Fig. 3B; fig. S4). In L9_H, R94^H forms a conserved interaction
143 with Y102^H to stabilize the base of CDRH3; thus E68^L may also indirectly impact antigen binding
144 through stabilization of the CDRH3 loop in the adjacent Fab. F28^L coordinates a series of π - π
145 stacking interactions in the opposing CDRH1_B (Y32^H) and CDRH3_B (F96^H and F100c^H) while also
146 packing against the E68^L side chain. This pi network culminates in a cation- π bond between R31^L
147 from CDRL1_C and F100c^H from the opposing CDRH3_B (Fig. 3C). On the other side of the
148 homotypic interface from E68^L, a mutated framework residue H70^L forms a hydrogen bond with
149 the side chain of Q1^H in FabA in addition to multiple van der Waals contacts with CDRH1_B (Fig.
150 3D). Each of these homotypic contacts are not encoded in the germline sequence, and none directly
151 contact rsCSP (fig. S3, A and B). These findings provide strong evidence for affinity maturation
152 to optimize antibody-antibody binding, which may in turn enhance CSP avidity and protective
153 efficacy, as we have shown recently for multiple NPNA-specific *IGHV3-33* mAbs (11).

154
155 The four somatic mutations in L9_K are atypical: F28^L, E68^L, and H70^L are observed in less than
156 1% percent of all human *IGKV1* light chain sequences, while R31^L is observed in only 2% (Fig.
157 S5A) (21). Strikingly, F28 and H70 also correspond to two of the five amino-acid differences
158 between mature L9 and the chimeric L9 mAb F10_K/L9_H (S28 and D70 in F10_K). As F28 and H70
159 both mediate key homotypic interactions in L9, which would likely be lost in F10_K, these residues
160 may explain the functional differences of F10_K/L9_H from L9, namely (1) reduced avidity to CSP

161 minor repeats, (2) loss of the ability to bind two adjacent NPNV repeats, and (3) significantly
162 reduced protection *in vivo* ($p<0.001$) (6).

163
164 To test this hypothesis, and to understand the role of homotypic contacts in L9_K in general, we
165 used molecular dynamics simulations to characterize WT L9 and a series of L9_K variants. L9_K
166 residues were reverted to either the germline *IGKV1-5* gene (R31S, E68G) or to the L9_K precursor
167 F10_K (F28S, H70D). We first compared the free energy landscapes of the CDR loops of individual
168 Fv domains unbound to rsCSP (Fig. 4; fig. S6). We find that the R31S, E68G and H70D mutations
169 in L9_K result in a broader conformational space and additional highly probable minima compared
170 to the WT L9 Fv, indicating that these residues are critical for determining the shape and the
171 conformational flexibility of the paratope (Fig. 4, B and C; fig. S6). These minima correspond to
172 a substantial shift away from the binding competent conformation in combination with a higher
173 conformational entropy, suggesting a decrease in stability and/or binding affinity (Fig. 4D).
174 Importantly, when combined (R31S-E68G-H70D), these mutations significantly destabilize the
175 homotypic interface (table S4; $p<0.001$), substantiating their key role in mediating homotypic
176 interactions. Interestingly, the H70D single mutant *stabilizes* the homotypic interface (table S4),
177 suggesting the germline E70 or F10_K D70 may have initialized the evolution of homotypic
178 interactions during L9 maturation. Unlike other LC mutants, the F28S Fv reveals a similar
179 conformational space and diversity in the CDR loops compared to the WT L9 Fv. However, F28S
180 leads to formation of a new *intramolecular* salt bridge between residues R31^L and E68^L, with
181 simultaneous loss of the *intermolecular* salt bridge between E68^L and R94^H and the cation-π bond
182 between R31^L and F100c^H (Fig. 4A). Thus, in addition to direct homotypic interactions, F28 acts
183 indirectly through E68^L and R31^L to further stabilize antibody-antibody binding. This is reflected

184 in the significantly decreased interaction energies of the homotypic interface in the F28S mutant
185 relative to WT L9 (table S4) and is visualized in Movie S1. To understand the molecular basis of
186 key functional differences between L9 and F10, we next modelled the F10 chimeras in the context
187 of the trimeric Fab-rsCSP complex. Compared to WT L9 and L9_K/F10_H, the homotypic interface
188 is strongly destabilized in F10_K/L9_H (table S4). This suggests that F10_K/L9_H would not bind
189 multivalently to the minor repeats and would have overall reduced binding affinity, which is
190 consistent with our previous functional data on this chimera (6). Five residues differ between L9_K
191 and F10_K: F28S, L33V, P40A, H70D, and E90Q (Fig. 3E). We find that the F28S mutation alone
192 accounts for ~80% of the destabilization of the homotypic interface observed with F10_K/L9_H
193 compared to WT L9, while the H70D single mutant and the L33V-P40A-E90Q triple mutant Fvs
194 both slightly *increase* stability of the complex (table S4). Taken together, these data suggest that
195 the dramatic destabilization seen in MD simulations of the F10_K/L9_H chimera is primarily the result
196 of the F28S mutation. Therefore, this rare mutation in L9_K (S28F), and the network of homotypic
197 contacts it mediates, may underlie the key functional differences between L9 and F10_K/L9_H.

198

199 Overall, this study reveals the structural basis for the extraordinary selectivity and binding affinity
200 of L9 for the NPNV minor repeats and highlights the critical role of L9_K for both functions. We
201 find that rare, somatically mutated residues in L9_K mediate extensive homotypic contacts between
202 adjacent L9 Fabs and thus multivalent binding to adjacent NPNV motifs. These contacts
203 underscore the requirement of at least two NPNV motifs for high affinity CSP binding by L9 (1000
204 nM vs 13 nM for CSP peptides with one and two NPNV, respectively) (6); Based on our recent
205 finding that affinity-matured homotypic interactions in three potent NPNA-specific *IGHV3-33*
206 mAbs are critical for both high NPNA avidity and protective efficacy (11), it is likely that L9_K-

207 mediated homotypic interactions are also critical for the potency of L9. Notably, these L9_K residues
208 (F28, R31, E68, H70) make no direct contacts with rsCSP (fig. S3; table S2), indicating that the
209 minor repeat region facilitates antibody-antibody affinity maturation in the context of multiple
210 adjacent NPNV motifs, as has been observed for extended NPNA repeats (11, 18, 19). L9 is one
211 of the most potent anti-PfCSP mAbs and is currently undergoing clinical development as a
212 monoclonal therapy for malaria prevention (17). Thus, these structural data will be useful for
213 rational antibody engineering to improve both the protective efficacy and pharmacokinetic
214 properties of this mAb. The discovery of L9 and the NPNV minor repeat region as a highly
215 protective epitope on PfCSP has led to new efforts to re-design PfCSP-based vaccines to elicit L9-
216 like antibodies (22, 23). The cryo-EM structure presented here now enables a structure-based
217 approach, which may be instrumental in developing the next-generation malaria vaccine. Future
218 studies to identify related, NPNV-specific mAbs should enhance our understanding of this class
219 of antibodies and their important contribution to protective immunity against malaria.

220

221 **REFERENCES AND NOTES:**

- 222 1. Geneva: World Health Organization (2021). World malaria report 2021. License: CC
223 BY-NC-SA 3.0 IGO. pp. xv-xvi.
- 224 2. RTS,S Clinical Trials Partnership *et al.*, First results of phase 3 trial of RTS,S/AS01
225 malaria vaccine in African children. *N Engl J Med* **365**, 1863-1875 (2011).
- 226 3. RTS,S Clinical Trials Partnership, Efficacy and safety of RTS,S/AS01 malaria vaccine
227 with or without a booster dose in infants and children in Africa: final results of a phase 3,
228 individually randomised, controlled trial. *Lancet* **386**, 31-45 (2015).

- 229 4. N. K. Kisalu *et al.*, A human monoclonal antibody prevents malaria infection by targeting
230 a new site of vulnerability on the parasite. *Nat Med* **24**, 408-416 (2018).
- 231 5. J. Tan *et al.*, A public antibody lineage that potently inhibits malaria infection through
232 dual binding to the circumsporozoite protein. *Nat Med* **24**, 401-407 (2018).
- 233 6. L. T. Wang *et al.*, The light chain of the L9 antibody is critical for binding
234 circumsporozoite protein minor repeats and preventing malaria. *Cell Rep* **38**, 110367
235 (2022).
- 236 7. D. Oyen *et al.*, Structural basis for antibody recognition of the NANP repeats in
237 Plasmodium falciparum circumsporozoite protein. *Proc Natl Acad Sci U S A* **114**,
238 E10438-E10445 (2017).
- 239 8. T. Pholcharee *et al.*, Structural and biophysical correlation of anti-NANP antibodies with
240 in vivo protection against P. falciparum. *Nat Commun* **12**, 1063 (2021).
- 241 9. T. Pholcharee *et al.*, Diverse Antibody Responses to Conserved Structural Motifs in
242 Plasmodium falciparum Circumsporozoite Protein. *J Mol Biol* **432**, 1048-1063 (2020).
- 243 10. D. Oyen *et al.*, Structure and mechanism of monoclonal antibody binding to the
244 junctional epitope of Plasmodium falciparum circumsporozoite protein. *PLoS Pathog* **16**,
245 e1008373 (2020).
- 246 11. G. M. Martin *et al.*, Affinity-matured homotypic interactions induce spectrum of PfCSP-
247 antibody structures that influence protection from malaria infection. *bioRxiv* doi:
248 <https://doi.org/10.1101/2022.09.20.508747> (2022).
- 249 12. Y. Flores-Garcia *et al.*, Optimization of an in vivo model to study immunity to
250 Plasmodium falciparum pre-erythrocytic stages. *Malar J* **18**, 426 (2019).

- 251 13. R. Raghunandan *et al.*, Characterization of two in vivo challenge models to measure
252 functional activity of monoclonal antibodies to *Plasmodium falciparum* circumsporozoite
253 protein. *Malar J* **19**, 113 (2020).
- 254 14. Y. Flores-Garcia *et al.*, The *P. falciparum* CSP repeat region contains three distinct
255 epitopes required for protection by antibodies in vivo. *PLoS Pathog* **17**, e1010042 (2021).
- 256 15. M. R. Gaudinski *et al.*, A Monoclonal Antibody for Malaria Prevention. *N Engl J Med*
257 **385**, 803-814 (2021).
- 258 16. L. T. Wang *et al.*, A Potent Anti-Malarial Human Monoclonal Antibody Targets
259 Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver.
260 *Immunity* **53**, 733-744 e738 (2020).
- 261 17. R. L. Wu *et al.*, Low-Dose Subcutaneous or Intravenous Monoclonal Antibody to Prevent
262 Malaria. *N Engl J Med* **387**, 397-407 (2022).
- 263 18. K. Imkeller *et al.*, Antihomotypic affinity maturation improves human B cell responses
264 against a repetitive epitope. *Science* **360**, 1358-1362 (2018).
- 265 19. D. Oyen *et al.*, Cryo-EM structure of *P. falciparum* circumsporozoite protein with a
266 vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. *Sci Adv*
267 **4**, eaau8529 (2018).
- 268 20. R. Murugan *et al.*, Evolution of protective human antibodies against *Plasmodium*
269 *falciparum* circumsporozoite protein repeat motifs. *Nat Med* **26**, 1135-1145 (2020).
- 270 21. M. B. Swindells *et al.*, abYsis: Integrated Antibody Sequence and Structure-
271 Management, Analysis, and Prediction. *J Mol Biol* **429**, 356-364 (2017).

- 272 22. L. Jelinkova *et al.*, A vaccine targeting the L9 epitope of the malaria circumsporozoite
273 protein confers protection from blood-stage infection in a mouse challenge model. *NPJ*
274 *Vaccines* 7, 34 (2022).
- 275 23. M. D. Langowski *et al.*, Restricted valency (NPNA)_n repeats and junctional epitope-
276 based circumsporozoite protein vaccines against *Plasmodium falciparum*. *NPJ Vaccines*
277 7, 13 (2022).

278

279 **Acknowledgments:**

280 The authors thank B. Anderson for maintenance and administration of the cryo-EM facility at
281 The Scripps Research Institute, and H.L. Turner and C.A. Bowman for technical support. We
282 also thank L.T. Wang and N.K. Hurlburt for sharing of reagents and insightful discussions, and
283 J.R. Riccabona and Y. Wang for fruitful discussions and technical support. The computational
284 results presented here have been achieved (in part) using the Vienna Scientific Cluster (VSC).
285 We acknowledge PRACE for awarding us access to Piz Daint at CSCS, Switzerland.

286 **Funding:** National Institutes of Health grant 1F32AI150216-01A1 (GMM); The Bill and
287 Melinda Gates Foundation grant INV-004923 (IAW, ABW); Austrian Academy of sciences
288 APART-MINT postdoctoral fellowship, Austrian Science Fund grant: P34518 (MFQ).

289 **Author contributions:** GMM, MP, RAS, IAW, and ABW conceived the project. GMM, MFQ,
290 WHL, and TP designed and performed experiments, and analyzed the data. LEW analyzed data.
291 KRL, MP, RAS, IAW, and ABW acquired funding and supervised the project. GMM and MFQ
292 wrote the original manuscript draft. All authors contributed to manuscript review and editing.

293 **Competing interests:** The authors declare they have no competing interests.

294 **Data and materials availability:** The coordinates for the L9-rsCSP structure and the
295 corresponding cryo-EM map have been deposited to the Protein Data Bank (PDB) and Electron
296 Microscopy Data Bank (EMDB), respectively, with the accession codes 8EH5 and EMD-28135.

297

298 **Supplementary Materials**

299 Materials and Methods

300 Figures S1-S4

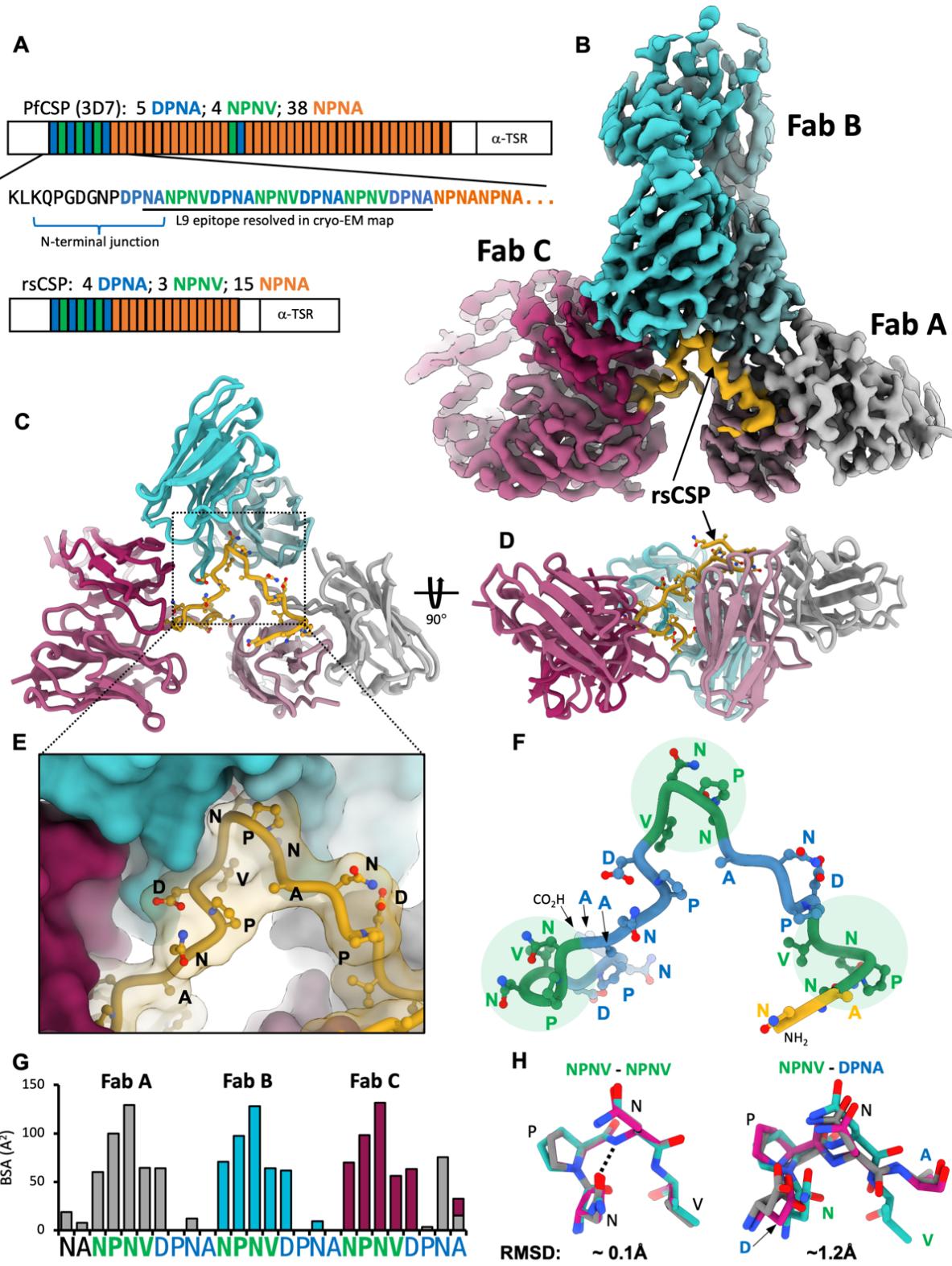
301 Tables S1-S4

302 References 23-58

303 Movie S1

304

305


306

307

308

309

310

312 **Figure 1. Cryo-EM structure of the L9 Fab-rsCSP complex. (A)** Schematic of protein
313 sequence of full-length PfCSP and rsCSP (recombinant). Each box corresponds to a single
314 repeat. The minor repeat region is in blue and green. **(B)** Cryo-EM map of L9-rsCSP at 3.36Å.
315 **(C)** Ribbon diagram of the atomic model; only the Fab variable region (Fv) was built into the
316 density. **(D)** Rotated view of (C). **(E)** Zoomed-in view of (C), shown in a surface representation.
317 **(F)** Model of the minor repeat peptide, colored as in (A). NPNV type-1 β -turns are highlighted
318 with a green circle. **(G)** Buried surface area on rsCSP, color-coded to the Fab with which each
319 rsCSP residue interacts. **(H)** Alignment of the three NPNV motifs (left), or the three DPNA
320 motifs aligned to the central NPNV motif (right).

321

322

323

324

325

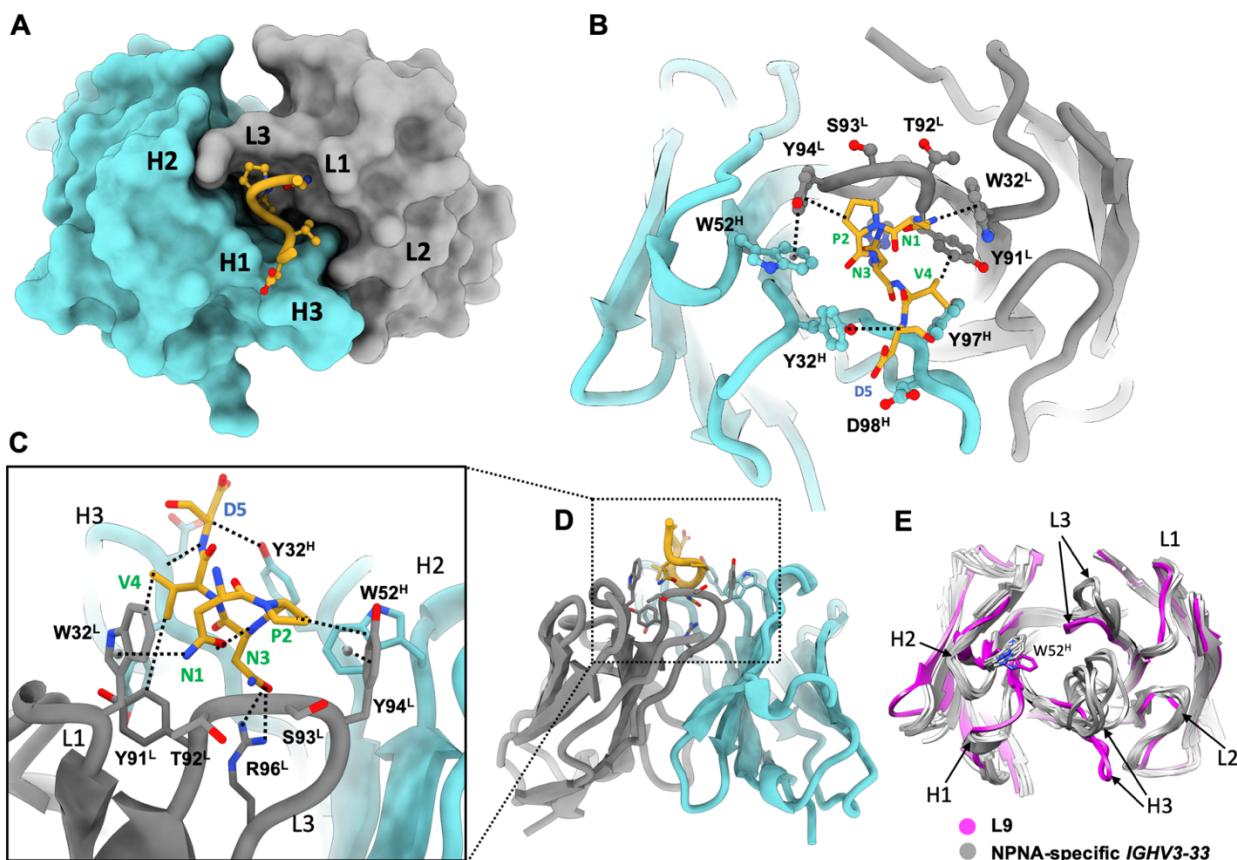
326

327

328

329

330


331

332

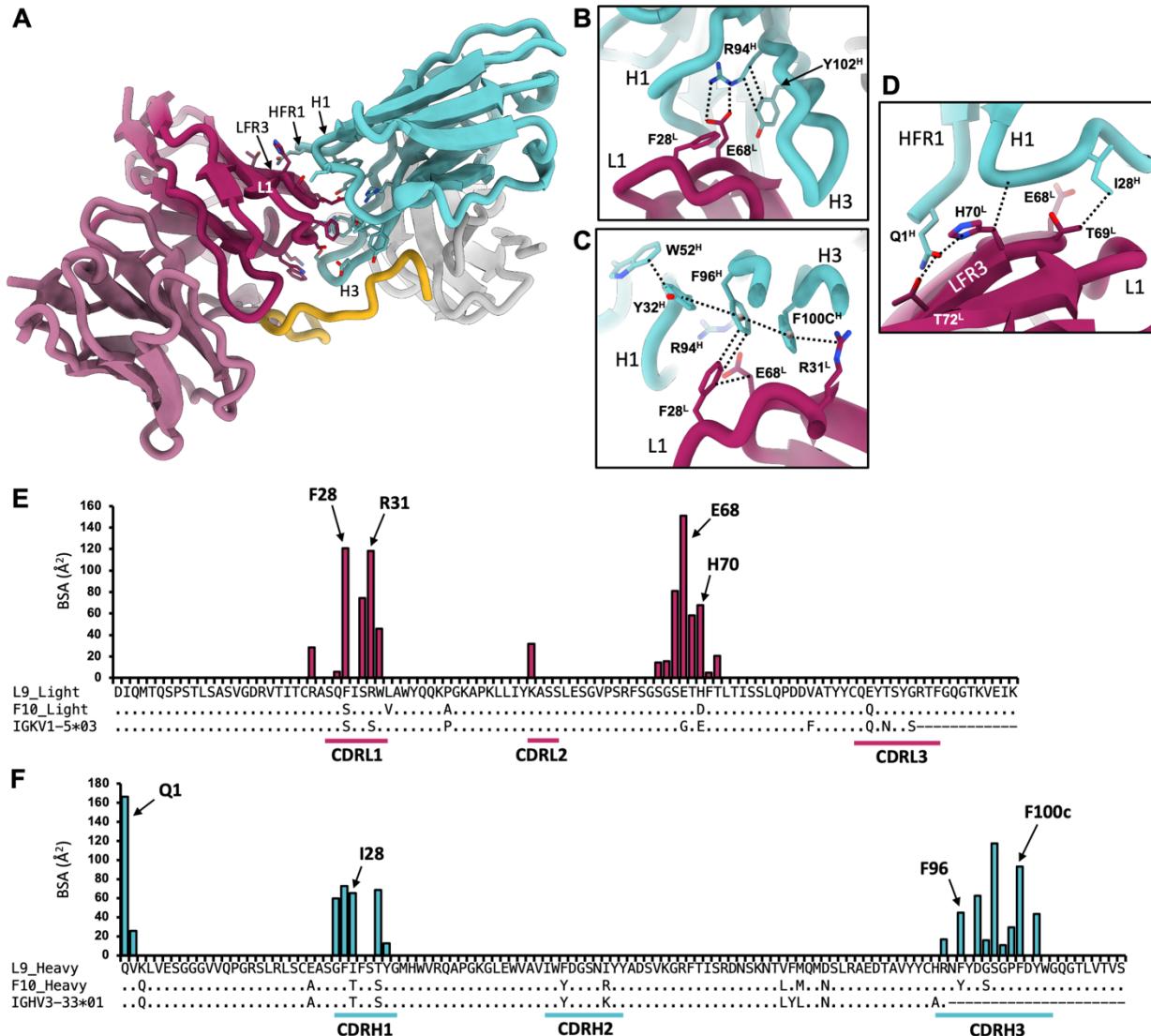
333

334

335

336

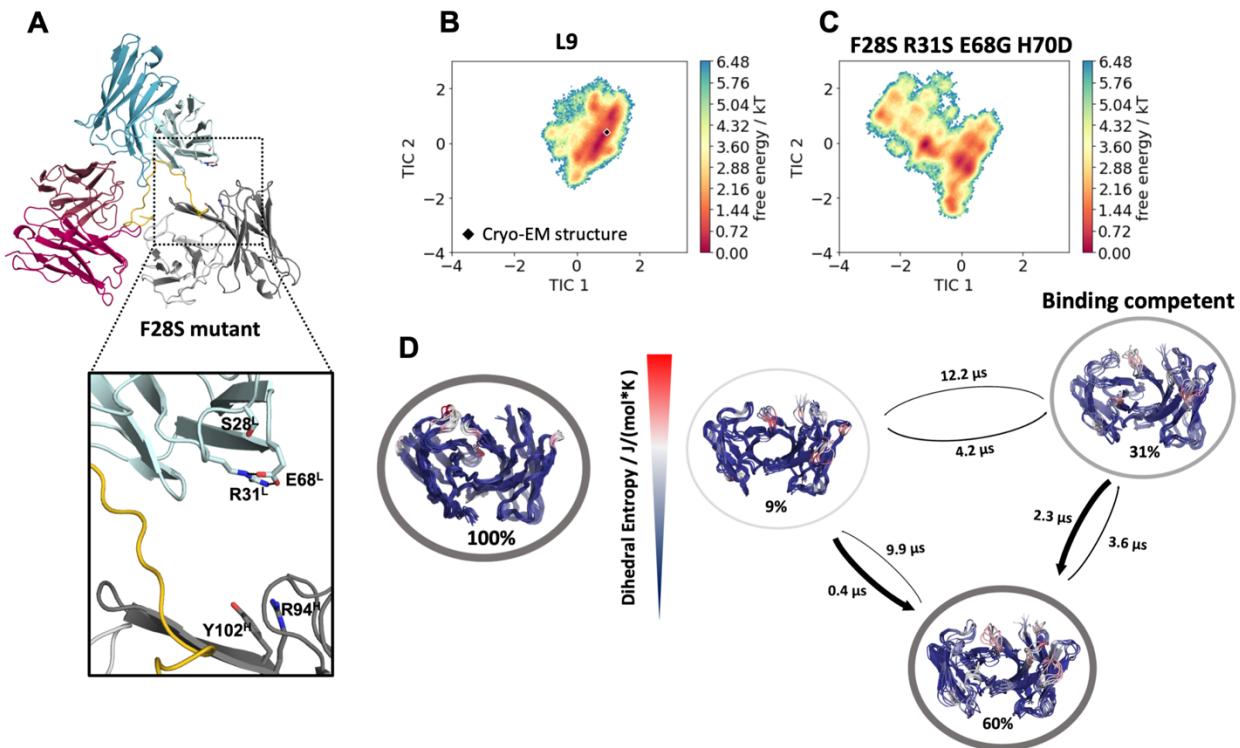
337 **Figure 2. The L9 PfCSP epitope comprises NPNVD.** (A) Surface representation of L9 Fab,
338 with central NPNVD shown in gold. CDR loops are specified. (B) Structural details of CSP
339 binding pocket. Key interactions are highlighted with dashed lines. (C) Rotated view of (B),
340 zoomed in from (D). (D) Rotated view of (A), shown in ribbon diagram. (E) Alignment of L9
341 Fab (magenta) with a panel of NPNA-specific *IGHV3-33* Fabs; sequences in fig. S5.


342

343

344

345


346

347

348 **Figure 3. L9_K mediates extensive homotypic interactions. (A)** Ribbon diagram of Fab B
 349 (cyan) and C (maroon); side chains of interacting residues are shown. **(B-D)** Structural details of
 350 key homotypic interactions. Dashed lines indicate specific contacts. **(E)** Buried surface area
 351 (BSA) contributions of individual residues to the homotypic interface in L9 light chain. Sequence
 352 alignment with F10_K and germline *IGKV1-5* gene is shown below. **(F)** Same as in (E), for L9
 353 heavy chain, with sequence alignment to F10_H and germline *IGHV3-33* gene.

354

355

356 **Figure 4. Molecular dynamics reveals L9_K residues critical for stability of the homotypic**

357 interface and CSP binding. (A) Most populated structure for the F28S variant, highlighting the

358 loss of critical homotypic interactions. (B-C) Free energy landscapes of the L9 WT and

359 the F28S/R31S/E68G/H70E variant projected in the same coordinate system, revealing a

360 substantial increase in conformational space and a population shift due to the mutations. Cryo-

361 EM structure is depicted as black diamond. (D) Conformational ensemble representatives, state

362 probabilities and transition kinetics for the WT and the quadruple mutant, color-coded according

363 to their dihedral entropy (blue-low flexibility, red-high variability).

364