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Abstract: The human frontal cortex and hippocampus play critical roles in learning and cognition.
We investigated the epigenomic and 3D chromatin conformational reorganization during the
development of the frontal cortex and hippocampus, using more than 53,000 joint single-nucleus
profiles of chromatin conformation and DNA methylation (sn-m3C-seq). The remodeling of DNA
methylation predominantly occurs during late-gestational to early-infant development and is
temporally separated from chromatin conformation dynamics. Neurons have a unique Domain-
Dominant chromatin conformation that is different from the Compartment-Dominant conformation
of glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type
differentiation and found putatively causal common variants for schizophrenia strongly overlap
with chromatin loop-connected, cell-type-specific regulatory regions. Our data demonstrate that
single-cell 3D-regulome is an effective approach for dissecting neuropsychiatric risk loci.

Main text: The adult human brain contains hundreds of cell types that display an extraordinary
diversity of molecular, morphological, anatomic, and functional characteristics (7-3). Although the
vast majority of cortical neurons are generated during the first and second trimesters, the highly
distinct molecular signatures of cell types emerge between the third trimester and adolescence
(4-6). Single-cell and bulk transcriptome analyses implicated dramatic gene expression
remodeling in late prenatal and early postnatal development (7, 8). The pervasive transcriptome
dynamics during human brain development is associated with genome-wide reconfiguration of
DNA methylome and chromatin conformation (9—172). The brain-specific hon-CG methylation
(mCH, H=A, C or T) emerges in the human dorsal prefrontal cortex (PFC) during prenatal
development in a cell type-specific pattern, with the average level of mCH increasing through
adolescence (9, 13). This global reconfiguration of DNA methylation could profoundly shape
neuronal development, for example, through the binding of mCH by MECP2, a gene implicated
in neuropsychiatric disorders (74-18). In parallel with the accumulation of DNA methylation,
chromatin architecture undergoes extensive remodeling in the first post-natal month of mouse
brain development (72), which can potentially be mediated by neuronal activity-induced 3D
genome rearrangement (79). The dynamic trajectory of DNA methylation and chromatin
conformation changes have not been characterized with single-cell resolution in primary human
brain tissues at the critical developmental stages of mid-gestation, late-gestation, and infancy.
This study investigated the epigenomic dynamics in the developing human frontal cortex and
hippocampus (HPC) using the multi-omic sn-m3C-seq approach to jointly profile chromatin
conformation and DNA methylation in single nuclei (20).

We generated 29,691 sn-m3C-seq profiles (including 3,321 previously published (20)) from 13
developing and adult human frontal cortex samples, and 23,372 sn-m3C-seq profiles from 9
hippocampus samples (Fig. 1A, Fig. S1A-B, Table S1-2). We identified a total of 139 cell
populations across all developmental stages by a fusion of three data modalities: mCH, CG
methylation (mCG), and chromatin conformation (Fig. 1B, Table S3). These cell types are
organized into 10 major groups (Fig. 1C). Excitatory neurons had distinct epigenomic types in the
human PFC and HPC, which is consistent with their spatially separated in situ neurogenesis (Fig.
1D and Fig. S1C). By contrast, inhibitory neurons originating in the ventral portion of the
embryonic brain, and non-neuronal cell types, are broadly shared between the two brain regions
(Fig. 1D and Fig. S1C). Neuronal cell types, astrocytes, and oligodendrocyte progenitors were
strongly separated by developmental stages based on their methylation and chromatin
conformation patterns, whereas oligodendrocytes and other non-neural cell types showed similar
epigenomic patterns across development (Fig. 1E). The developmental hierarchy of cortical and
hippocampal cell types was reconstructed using hypo-methylation (either mCG or mCH) at cell-
type marker genes, and computational integration of cells derived from different age groups using
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batch balanced k-nearest neighbor (BBKNN) based integration approaches (217) (Fig. 1F & Fig.
S1D).

The developmental increase of mCH in neuronal cells is an epigenomic hallmark of neuronal
maturation (9). The accumulation of mMCH in HPC excitatory and inhibitory neurons occurs earlier
than that in PFC neurons (Fig. 1G), with HPC CA and inhibitory neurons containing significant
amounts of mCH (>1% mean mCH/mCH) in two independent GW39 samples, whereas
comparable mCH levels were not observed in PFC neurons until the infant stage (4 & 7 mo, Fig.
1G, Fig. S1E-G). Although genome-wide mCG levels only show moderate dynamics in neuronal
populations (Fig. 1H), clustering of gene body mCG readily separates PFC neuronal populations
into prenatal and postnatal groups (Fig. S1H), suggesting major reconfiguration of intragenic mCG
between late-gestation and infant stages in PFC. A similar clustering analysis of HPC neuronal
populations found that the remodeling of gene body mCG occurs in HPC between mid-gestation
and late-gestation. The majority of neuronal populations in the late-gestational HPC, including
CA1, CA3, dentate gyrus (DG), Mossy cell, and medial ganglionic eminence derived inhibitory
neurons (Inh-MGE), were grouped with infant and adult cells rather than with mid-gestational cell
types (Fig. S1l). To ask whether methylation remodeling in HPC also precedes that in PFC at
individual loci, we selected genes whose mCG changes showed the strongest correlations with
genome-wide mCG dynamics (see methods). All selected genes that show a gain of mCG during
development underwent mCG remodeling in HPC ahead of PFC, as well as the vast majority
(20/25) of genes showing developmental loss of mCG (Fig. S1J, K). Together, we found the
remodeling of CH and CG methylome predominantly occurs between late gestation and infant
stages, starting in the HPC and proceeding shortly thereafter in PFC.

Cell-type classification based on DNA methylation and chromatin conformation are largely
concordant (Fig. S2A-D), with DNA methylation profiles providing a greater resolution for cell-type
classification (Fig. S2D) (20). However, we found a notable exception in mid-gestational brains
where a single neural progenitor radial glia (RG) population defined by DNA methylation
signatures can be further divided using chromatin conformation signatures (Fig. S2E). Using
chromatin conformation, we grouped RG cells into a neurogenic population RG-1 and a putative
astrocyte progenitor population RG-2 (Fig. S2E) (22). This result was validated by an iterative
classification of cells from mid-gestational brains, which found the gliogenic RG-2 more discretely
defined by chromatin conformation than by DNA methylation (Fig. S2F). RG-1 can be further
separated into an undifferentiated subpopulation, as well as cells that were primed for various
excitatory cell-type trajectories (e.g. RG-CA, Fig. S2F). This observation led us to speculate that
chromatin conformation dynamics precede the remodeling of DNA methylation during the
differentiation of astrocytes. To test this hypothesis, we employed pseudotime analysis (23) to
explore the temporal dynamics of chromatin conformation and DNA methylation by a more
continuous time quantification than discrete donor ages. We computed pseudotime scores for
RG-1, RG-2 and astrocyte cells using either gene body mCG or the interaction frequency of
genomic bin pairs (Fig. S2G-H). In addition, to quantify chromatin conformation at individual loci,
we devised “3C (Chromatin Conformation Capture) gene score” representing the sum of
intragenic chromatin contact frequency. The results suggest littte mCG dynamics in RG-1 and
RG-2 populations, and substantial remodeling of mCG in differentiated astrocytes (Fig. S2G). In
contrast, the reconfiguration of chromatin interactions was more continuous across the
differentiation of RG to astrocytes (Fig. S2H), which resulted in a drastically different distribution
of pseudotime scores computed from mCG or chromatin interactions (Fig. S2I). The comparison
of pseudotime scores of the two data modalities in the same cells further revealed a dramatic
separation of the temporal dynamics of mCG and chromatin conformation (Fig. S2J-K). The
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differentiation of RG to astrocytes can be divided into a stage of rapid chromatin conformation
remodeling in RG-1 and RG-2 that predominantly occurs during mid-gestation, followed by a
notably protracted maturation of CG methylome that extends into the adult brain (Fig. S2I-J).
Consistent with genome-wide pseudotime patterns, gene-specific analyses found the remodeling
of 3C gene score generally occurs in RG-1 and RG-2 populations and precedes mCG dynamics
in differentiated astrocytes (Fig. S2L-O). The protracted mCG dynamics in astrocytes were also
supported by a chromatin loop analysis that identified 5,904 differential loops overlapping with
1,432 genes during astrocyte differentiation (Fig. S2P-Q, Table S4). While the majority of
chromatin loops were reconfigured in mid-gestation when RG-1 differentiates to RG-2 (Fig. S2P),
the gain or loss of gene body mCG did not occur until the infant or adult stages (Fig. S2Q).
Consistent with the transition from RG-1 to glial progenitor RG-2 and further to astrocytes, the
genes overlapping with gained chromatin loops are enriched in gene ontology terms such as
“axon target recognition” (Fig. S2R), whereas genes overlapping with lost chromatin loops are
enriched in terms such as “glial cell fate specification” (Fig. S2S). The differentiation of astrocytes
is also associated with rearrangements of chromatin domain boundaries. We identified 684
differential domain boundaries during astrocyte differentiation (Table S5). For example, the
developmental strengthening of a domain overlapping with astrocyte marker gene SLC1A2 is
associated with considerable loss of gene body mCG in the infant stage (Fig. S3A). In contrast,
the early developmental gene SOX11 locates at the boundary of two domains in RG-1. The
boundary is diminished during development and becomes undetectable in late gestation (Fig.
S3B).

We asked whether the temporal separation of DNA methylation and chromatin conformation
dynamics is shared by other cell-type differentiation trajectories focusing on MGE-derived
inhibitory neurons that are shared between PFC and HPC (Fig. 2A-B). We calculated pseudotime
scores using both gene body mCG and the interaction frequency of genomic bin pairs and
observed a dramatic difference in the distribution of pseudotime scores for methylation and
chromatin conformation in inhibitory maturation (Fig. 2C). Unlike the protracted methylation
remodeling observed in astrocyte differentiation (Fig. S2J), the pseudotime of mCG exhibited a
bimodal distribution during the maturation of MGE-derived inhibitory neurons, suggesting a rapid
transition between the methylation states of developing and mature cells (Fig. 2C). Indeed, the
vast majority of mCG pseudotime range was traversed by a single cell type, Inh-MGE, and
predominantly during late gestation (Fig. 2D-E). Conversely, the pseudotime for 3C gene score
was more uniformly spaced in a trimodal distribution, presenting two distinct transitory events
(Fig. 2C). Chromatin conformation pseudotime traverses the least amount of pseudotime distance
in Inh-MGE with the majority of distance traveled before, in Inh-eMGE during mid-gestation (stage
1 in Fig. 2D-E), or after, in Inh-MGE-ERBB4 during infant to adult stages (stage 2 in Fig. 2D-E).
Further, in agreement with our earlier analyses, we saw in the pseudotime scores that MGE-
derived inhibitory neurons located in HPC matured more quickly than those located in PFC, with
the difference being more pronounced for mCG than for chromatin conformation (Fig. 2F-G).
Consistent with the two stages of chromatin conformation dynamics (Fig. 2D-E), we found loci
primarily lost 3C gene score during mid-gestation (Stage 1, Fig. 2H) and predominantly gained
3C gene score during infant and adult stages (Stage 2, Fig. 2I). A parallel analysis on a caudal
ganglionic eminence (CGE) derived inhibitory neuron trajectory found similar results (Fig. S4), but
with a more uniform distribution in chromatin conformation pseudotime than in the MGE-derived
analyzed trajectory (Fig. S4B-C).

We devised a “3D chromatin potential” analysis based on the “chromatin potential” approach
originally developed to temporally order chromatin accessibility and gene expression changes
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(24), to ask whether the genome-wide chromosome conformation at a developmental stage could
indicate its future methylation landscape. For each cell, we identified 5 cells whose methylation
profiles are the most compatible with its 3C profile (mCG neighbors of a 3C profile). Each arrow
represents the distance between the true mCG profile of a single cell to its mCG neighborhood,
best predicted by its chromatin conformation state (Fig. 2J-K). During the differentiation of MGE-
derived inhibitory cells, 3D chromatin potential initially flows from mid-gestation to late-gestation
(Fig. 2J-K), which corresponds to the chromatin conformation rearrangement in mid-gestation and
a lag of mCG remodeling (stage 1 in Fig. 2D-E). Following the abrupt mCG change during late-
gestation, significant reversal flows of 3D chromatin potential from the adult and infant stage to
late-gestation were observed and were likely driven by the chromatin conformation remodeling
during infant and adult development (stage 2 in Fig. 2D-E).

The prediction of cell-type-specific gene expression using mCH in the adult brain is well-
established (25, 26). Here we have extended the approach to the developing brain taking
advantage of the inverse correlation between gene expression and mCG or mCH (Fig. S5A-D).
We used single-molecule fluorescent in situ hybridization to investigate the RNA expression
patterns of cell-type markers identified by the methylation analyses. TLL1, a gene that shows
reduced gene body mCG in granule cell layer (GCL) neurons, was localized to the GCL in the
hippocampus in the third trimester (GW 30) (Fig. S5B, E). There were overlaps with RBFOXS3, a
molecular marker for mature neurons, and PROX1, a transcription factor found in granule neurons
of the hippocampus (Fig. S5E). TRPS1 mRNA was expressed in excitatory (GAD1-negative) cells
in the hilus and CAS3 regions, supporting it as expressed in mossy cells and CA3 pyramidal
neurons in the third trimester (Fig. S5C,F). Lastly, we identified an increased 3C gene score at
the LRIG1 locus in the putative astrocyte progenitor population RG-2 and reduced mCG in
astrocytes (Fig. S2N-O and Fig. S5D). We found a significant fraction (40%) of cells expressing
a canonical astrocyte marker ALDH1L1 also express LRIG1 (Fig. S5G-H), supporting the dynamic
expression of LRIG1 during astrocyte differentiation.

Chromatin conformation capture techniques produce snapshots of 3D genome architecture at
multiple scales, including A/B compartments and more local features such as chromatin domains
and loops (27). While A/B compartments are detected through long-range interactions (e.g. > 10
Mb distance between interacting loci), chromatin domains and loops are primarily detected by
median-range interaction with less than 5 Mb distance. We clustered single-cell 3C profiles by the
distribution of the distance between interacting loci using k-means clustering and found single
brain cells range from mainly containing median-range interaction (Cluster 1) to primarily
containing long-range interactions (Cluster 10) (Fig. 3A-B, Fig. S6A-B). Strikingly, neuronal cell
types are strongly enriched in Clusters 1-6, dominated by median-range interactions, whereas
glial and non-neural cell types are enriched in Clusters 8-10 that are dominated by long-range
interactions (Fig. 3C and Fig. S6C). We have developed thresholds to categorize the global
chromatin conformation of each cell into Domain Dominant (DD), Compartment Dominant (CD)
as well as Intermediate (INT) (Fig. 3D and Fig. S6D-E). We analyzed a published bulk Hi-C
dataset generated from primary human tissues and found bulk chromatin conformation profiles
from all 10 tissues show CD signature (28), suggesting that DD is a global chromatin conformation
specific to neuronal cells (Fig. 3D). Interestingly, although Hi-C profiles generated from bulk
human cortical and hippocampal tissues show a greater fraction of median-range interaction than
other somatic tissues, they were nevertheless classified as CD-type samples likely due to the
abundant non-neuronal cells in the analyzed tissue (Fig. 3D). This observation highlights the
advantage of single-cell 3C profiling in discerning cell-type specific chromatin conformation profile
in heterogeneity tissues. The differentiation of neurons and astrocytes involved distinct
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remodelings of the global chromatin conformation (Fig. 3E-G, Fig. S6F-J). The neural progenitor
RG-1 population is depleted of CD conformation but is not enriched in either DD or INT
conformations. The chromatin conformation was rapidly remodeled in progenitors committed to
producing upper-layer excitatory neurons (RG-UL) and young neurons in the mid-gestational
brain (2T-Exc-UL) and showed a comparable enrichment in DD conformation as in adult neurons
(Fig. 3E,G). The differentiation of astrocytes involved a transition to CD conformation, which was
completed during late-gestation (Fig. 3F-G).

Differentially methylated regions are a reliable marker of dynamic regulatory activity, with loss of
methylation indicating an increase in regulatory activity and gaining of methylation associated with
repression (29, 30). We investigated the global regulatory dynamics of human cortical and
hippocampal development by identifying over 2.5 million differentially methylated regions (DMRs)
across all cell types and developmental stages (Fig. 4A, Fig. S7A), followed by the analysis of
transcription factor (TF) binding motif enrichment (Fig. 4B, Fig. S7B). Excitatory and inhibitory
cells from the prenatal brain and glial cells from all stages share a large amount of DMRs that are
enriched in binding motifs for EMX, LHX2, SOX, and DLX TFs (cluster 1 in Fig. 4A). This is
consistent with earlier analyses in Fig. S1H-I showing that the epigenomic difference between
excitatory and inhibitory neurons are moderate in the pre-natal brain and becomes much more
pronounced in infant and adult brains (Fig. STH-I). While all excitatory populations share a group
of pan-excitatory DMRs that are enriched in the Neurogenin and RFX binding motifs (cluster 3),
most excitatory subtypes such as HPC-CA, PFC-DL (Deep-Layer), PFC-UL (Upper-Layer), and
Mossy cells are associated with their sub-population specific DMRs (clusters 4-7). Consistent with
a higher expression of LHX2 in the developing hippocampus (37), Exc-CA and Exc-DG show a
stronger enrichment of LHX2 motifs than in cortical excitatory cells (Fig. 4B, Fig. S7B).

Although epigenomic analyses of adult mammalian brains have identified lineage-specific TF
activities (26, 32, 33), the developmental dataset generated in this study allows us to infer the
temporal sequence of TF activity. We have identified dynamic DMRs across the stages of cell-
type specification (trajectory-DMRs, Fig. 4C-H, Fig. S8-9) and DMRs that distinguish daughter
cell populations derived from a common mother cell type (branch-DMRs, Fig. 41-N, Fig. S10-11).
A distinct wave of repression of regulatory elements (gain of mCG DMRs) during the late-
gestation was found during the differentiation of cortical inhibitory neurons (Fig. 4C-D and Fig.
S9). Consistent with the early maturation of hippocampal neurons, the wave of repression for
regulatory elements was found during mid-gestation for hippocampal inhibitory neurons (Fig.
S9C,E,F,H). The differentiation of RG to diverse excitatory neurons during mid-gestation is
associated with pervasive activation of regulatory elements, as shown by the numerous DMRs
that lose mCG (Fig. 4F-G and Fig. S8B-C,F,G-l). Consistent with the protracted maturation of
astrocyte methylome (Fig. S2I-J), the maturation of astrocytes between infant and adult brains is
associated with a loss of mCG at 57,783 regions, far exceeding the scale of mCG remodeling in
earlier stages of astrocyte differentiation (Fig. S8D). Using TF binding motif analysis, we found
the regulatory landscape of both excitatory and inhibitory neurons is shaped by the sequential
action of lineage-specific and activity-dependent TFs. Regulatory elements that become activated
(loss of mCG) in the mid-gestation are enriched in the binding motifs of lineage-specific TFs such
as Maf and MEF-2 for inhibitory cells (Fig. 4E), or Neurogenin, MEF-2 and POU3 for excitatory
neurons (Fig. 4H). Following lineage specification, the binding motif of activity-dependent TFs
(FOS, JUN, EGR1, CREB) is strongly enriched in regulatory elements activated in late-gestation
to infant stages in both excitatory and inhibitory populations (Fig. 4E,H) (34). This result suggests
late-gestational to early-infant development as a key stage during which the epigenome is shaped
by neuronal activity. The analysis of branch-DMRs supported the wave of repression for
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regulatory elements in diverse subtypes of inhibitory neurons during late gestation (Fig. 4I-K).
Furthermore, the analysis of RG2 differentiation supports the gliogenic characteristic of this
progenitor pool as the binding motif of Neurogenic TFs is strongly depleted in regions losing mCG
in RG-2 (Fig. 4L-N).

Using DMRs and chromatin loops identified from adult and developmental cell types, we
systematically localized the heritability signals of neuropsychiatric disorders across
developmental stages and cell populations. The polygenic heritability enrichment of annotations
defined by DMR and/or chromatin loops was quantified for each cell type using stratified linkage
disequilibrium score regression (S-LDSC) (35) (Figure S12-13). We found significantly greater
enrichment of heritability in loop-connected DMRs (DMRs that overlap with a chromatin loop) than
in all DMRs (Fig. 5A and Fig. S14A-F, p = 1.8x10™° via paired t-test), supporting the utility of
chromatin loops in locating potential causal variants. The specificity of our analysis was validated
by the specific enrichment of the heritability of Alzheimer’s disease in microglia and the absence
of strong enrichment for height heritability across analyzed cell types (Fig. S12). We also
overlapped fine-mapped putative causal loci of schizophrenia (36) to DMRs and loop-connected
DMRs (190 independent loci containing 569 high-confidence putative causal SNPs with posterior
inclusion probability (PIP) > 0.1, Table S6). Out of 190 schizophrenia fine-mapped loci, 111 and
81 loci contain at least one putative causal SNPs that overlap with a DMR or loop-connected
DMR, respectively (Fig. 5B). We found a strong correlation between the odds ratio of overlapping
with a putative causal SNP, and the enrichment of polygenic heritability across cell types (Fig.
5C, Spearman’s correlation = 0.74, p = 8.6x103"). As an example, we showcase rs500102
(PIP=0.27), a putative causal variant for schizophrenia, that overlaps with a loop-connected DMR
in L4-5 excitatory neurons (Fig. 5D). The variant is also a fine-mapped eQTL of RORB detected
in the brain tissue by GTEXx studies (Table S6) (37). The region where rs500102 is localized is
connected by a loop domain to RORB promoter, specifically in L4-5 excitatory neurons (Fig. 5D).
The loop domain is associated with cell-type-specific reduction of mCG in RORB gene body as
well as in the region surrounding rs500102 (Fig. 5D). The example demonstrates the utility of
single-cell multi-omic profiles to generate mechanistic hypotheses regarding the function of
GWAS-associates variants.

Next, we assessed the developmental dynamics of enrichment for neuropsychiatric disorder
heritability in various neuronal populations (Fig. 5E-F and Fig. S14G-L). For schizophrenia and
bipolar disorder, the enrichment of polygenic heritability increases from neuroprogenitor (RG-1)
to early post-mitotic neurons (e.g. 2T Exc-UL-1) and further to post-mitotic neurons in late-
gestational brains for both excitatory (Fig. 5E-F, Fig. S14H-J) and inhibitory populations (Fig.
S14K-L). We also found a trend of decreased heritability enrichment in adult neurons for
schizophrenia and bipolar disorder, although the decreases are not statistically significant except
for in a L5-6 excitatory population (Fig. 5E-F). Using meta-analyses of all excitatory (Fig. 5G, Fig.
S14M) or inhibitory populations (Fig. S14N), we found a consistent developmental increase of
enrichment for schizophrenia and bipolar disorder between neuroprogenitors and neurons in
infant brains, followed by a decrease in the adult brain. Taken together, our results suggest that
the genetic risk of schizophrenia and bipolar disorder more strongly affects post-mitotic neurons
than the neuroprogenitor population in developing human brains.

Genome-wide rearrangements of DNA methylome is crucial for the normal development of
mammalian brains. The disruption of the de novo “writer” of DNA methylation DNMT3A (38, 39),
or the “reader” of DNA methylation MECP2, cause molecular to behavioral alterations in animal
models (39) and lead to human neuropsychiatric conditions such as the DNMT3A-associated
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Tatton Brown Rahman Syndrome, or the MECP2-associated Rett Syndrome (40, 41). Using
single-cell multi-omic profiling, our study found the remodeling of neuronal methylome
predominantly occurs during late-gestational and early-post-natal development, suggesting the
human brain is particularly vulnerable to genetic and environmental perturbations that impact DNA
methylation functions in these developmental stages. In addition to the exceptional abundance of
non-CG methylation, we found another layer of unique epigenomic regulation in neurons, that is,
the unusually strong chromatin domain strength that is different from glial cells or non-brain
tissues. The finding raises interesting questions regarding whether cohesin-dependent enhancer-
promoter loops are regulated differently in neurons than in non-neuronal cell types (42). The
single-cell multi-omic dataset generated by sn-m3C-seq provides cell-type-specific functional
annotations (i.e. DMRs and chromatin loops) to more than half of fine-mapped schizophrenia-
associated loci, highlighting the application of sn-m3C-seq profiles in dissecting the
developmental context and molecular mechanism of non-coding variants associated with
neuropsychiatric disorders.

Data Access

Datasets generated by this study can be accessed interactively through https://brain-
epigenome.cells.ucsc.edu/. Processed chromatin conformation data for all samples, and
processed single-cell DNA methylation data for unrestricted access samples can be downloaded
at NCBI GEO accession GSE213950. Raw sequencing reads for both controlled and unrestricted
access samples can be downloaded from NeMO Archive.

Code Availability

Codes for the demultiplexing of sn-m3C-seq fastq files are available at
https://github.com/luogenomics/demultiplexing. Modified TAURUS-MH for mapping of sn-m3C-
seq data is available at https://github.com/luogenomics/Taurus-MH. Codes for the generation and
imputation of methylation features is available at
https://github.com/luogenomics/snm3Cseq_feature processing.
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Figure Legends

Figure 1. Profiling of epigenomic and chromatin conformation dynamics during human
brain development using sn-m3C-seq. (A) Schematics of the study. (B-E) Dimensionality
reduction using UMAP distinguishes cell types (B), major cell lineages (C), brain regions (D), and
developmental stages (E). (F) Reconstructed developmental hierarchy of excitatory neurons and
glial cells. (G-H) Dynamics of genome-wide non-CG methylation (G) and CG methylation (H)
during human brain development.

Figure 2. Temporal ordering of DNA methylation and chromatin conformation
reconfiguration during the maturation of MGE-derived inhibitory neurons. (A-B) Distribution
of pseudotime scores computed from gene body mCG (A) or interaction frequency of genomic
bin pairs (B) in MGE-derived inhibitory neurons. (C) Distinct distributions of pseudotime scores
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computed from mCG or chromatin conformation. (D-E) Direct comparison of pseudotime scores
computed from mCG or chromatin conformation in individual cells, labeled by developmental age
groups (D) and cell types (E). (F-G) Comparison of mCG (F) or chromatin conformation (G)
pseudotime score distributions for MGE-derived inhibitory neurons located in PFC and HPC,
using three late-gestational brain samples from which both PFC and HPC were analyzed. (H)
mCG and 3C gene scores changes at loci associated with pre-natal chromatin conformation
dynamics. (I) mCG and 3C gene scores changes at loci associated with pot-natal chromatin
conformation dynamics. (J-K) 3D chromatin potential analysis of inhibitory neuron differentiation.
Dimensionality reduction plots were labeled for developmental stages (J) or cell types (K).
Reverse flows from adult and infant stages to late-gestation were highlighted.

Figure 3. Remodeling of global chromatin conformation during human brain development.
(A) K-means clustering analysis groups single-cell 3C profiles by the distribution of the distance
between interacting loci. (B) Merged chromatin interaction profiles of odd clusters identified in (A).
(C) Cell-type specific enrichments of clusters identified in (A). (D) Comparison of Domain-
Dominant (DD), Compartment-Dominant (CD), and Intermediate (INT) chromatin conformation
found in single brain cells to bulk Hi-C profiles of diverse human tissues. (E-F) Remodeling of
global chromatin conformation during the differentiation of upper-layer excitatory neurons (Exc-
L1-3-CUX2) (E) and astrocytes (Astro) (F) from the common RG-1 progenitor. (G) Merged
chromatin interaction profiles of developing cell populations across the differentiation of upper-
layer excitatory and astrocytes.

Figure 4. Regulatory dynamics during brain cell type differentiation. (A) K-means clustering
of differentially methylation regions (DMRs) reveals specificities for cell lineages and
developmental stages. (B) Transcription binding motif enrichment analysis of DMRs. (C)
Schematics of the maturation of MGE-derived ERBB4-expressing inhibitory neurons (Inh-MGE-
ERBB4). (D) Numbers of trajectory-DMRs identified for Inh-MGE-ERBB4 maturation between
adjacent developmental stages. (E) Enriched transcription factor binding motifs in trajectory-
DMRs for the maturation of Inh-MGE-ERBB4 neurons. (F) Schematics of the differentiation of
FOXP2-expressing excitatory neurons (Exc-L4-5-FOXP2). (G) Numbers of trajectory-DMRs
identified throughout the differentiation of Exc-L4-5-FOXP2 neurons. (H) Transcription factor
binding motif enrichments in trajectory-DMRs for the differentiation of Exc-L4-5-FOXP2. ()
Schematics of the specification of MGE-derived inhibitory neuron types. (J) Numbers of branch-
DMRs found during the specification of MGE-derived inhibitory neuron types. (K) Transcription
factor binding motif enrichments in branch-DMRs for MGE-derived inhibitory neuron types. (L)
Schematics of the specification of RG-1 derived cell types. (M) Numbers of branch-DMRs found
during RG-1 differentiation. (N) Transcription factor binding motif enrichments in branch-DMRs
associated with RG-1 differentiation.

Figure 5. Localizing the heritability signals of neuropsychiatric disorders across
developmental stages and cell populations. (A) The enrichment of schizophrenia polygenic
heritability in DMRs and loop-connected DMRs. (B) Numbers of schizophrenia-associated loci
containing at least one fine-mapped variant that overlaps with DMRs or loop-connected DMRs.
(C) Correlation between the enrichments of polygenic heritability and fine-mapped schizophrenia
variants. (D) The genomic region overlapping with a putative causal variant for schizophrenia
rs500102 is connected to the RORB promoter through a cell-type-specific loop domain. (E)
Enrichment of polygenic heritability for schizophrenia and bipolar disorder in PDZRN4-expressing
Layer 5-6 excitatory neurons across developmental stages. (F) Statistical significance of
differential heritability enrichment between development stages. P-values were computed using
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two-sides t-tests. Red and blue colors show developmentally increase or decrease of heritability
enrichment, respectively. (G) Meta-analysis of heritability enrichment for schizophrenia and
bipolar disorder in excitatory neuron populations.

Supplementary Figure Legends:

Supplementary Figure 1. Related to Figure 1. (A-B) Numbers of sn-m3C-seq profiles generated
from each specimen. (C) Brain regional specificity of identified cell types. (D) Reconstructed
developmental hierarchy of inhibitory neurons and non-neuronal cells. (E-G) Comparison of
genome-wide mCH level in cortical and hippocampal excitatory neurons (E), CGE-derived
inhibitory neurons (F), and MGE-derived inhibitory neurons (G) in the late-gestational samples.
(H) Correlation matrix of PFC neuronal populations computed with gene body mCG. ()
Correlation matrix of HPC neuronal populations computed with gene body mCG. (J-K)
Comparison of the timing of mMCG remodeing in PFC and HPC for genes showing developmentally
loss of MCG (J) and gain of mCG (K).

Supplementary Figure 2. Related to Figure 2. (A) Methylation dimensionality reduction using
UMARP distinguishes, from left to right, cell types, major cell lineages, brain regions, and sample
age groups. (B) Chromatin conformation dimensionality reduction using UMAP distinguishes,
from left to right, cell types, major cell lineages, brain regions, and sample age groups. (C)
Riverplot to show extensive consistency in adult major cell lineage annotation between DNA
methylation and chromatin conformation modalities. (D) Dimensionality reduction using UMAP
shows resolution difference in cell-type classification using DNA methylation and chromatin
conformation modalities in adult inhibitory neurons; CGE-derived (top), MGE-derived (bottom).
(E) Showing distinction of RG-1 and RG-2 populations in methylation space (left), chromatin
conformation space (middle), and joint dimensionality reduction space (right). (F) Dimensionality
reduction of z-scored mCG feature matrix for cells from mid-gestational brains (left). Chromatin
conformation dimensionality reduction of cells from mid-gestational brains (right). (G-H)
Distribution of pseudotime scores computed from gene body mCG (G) or chromatin conformation
(H) in neural progenitor RG-1, astrocyte progenitor RG-2 and astrocyte populations. (I) Distinct
distributions of pseudotime scores computed from mCG or chromatin conformation. (J-K) Direct
comparison of pseudotime scores computed from mCG or chromatin conformation labeled by
sample age group (J) and cell types (K). (L-M) Highest ranking genes by mCG correlation to the
pseudotime displayed as mCG gene body (L) and 3C gene score (M). (N-O) Highest ranking
genes by mCG anticorrelation to the pseudotime displayed as mCG gene body (N) and 3C gene
score (O). (P) Chromatin contact frequency at differential chromatin loops identified during
astrocyte differentiation. (Q) Intragenic mCG for genes overlapping with differential chromatin
loops identified during astrocyte differentiation. (R-S) Gene ontology term enrichments for genes
overlapping with gained chromatin loops (R) and lost chromatin loops (S).

Supplementary Figure 3. Related to Figure 2. Differential chromatin domain boundaries were
identified during the differentiation of astrocytes at SLC1A2 (A) and SOX11 (B) loci.

Supplementary Figure 4. Related to Figure 2. (A-B) Distribution of pseudotime scores
computed from gene body mCG (A) or chromatin conformation (B) in CGE-derived inhibitory
neurons. (C) Distinct distributions of pseudotime scores computed from mCG or chromatin
conformation. (D-E) Direct comparison of pseudotime scores computed from mCG or chromatin
conformation in individual cells, labeled by developmental age groups (D) and cell types (E). (F)
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mCG and 3C gene scores changes at loci associated with pre-natal chromatin conformation
dynamics. (G) mCG and 3C gene scores changes at loci associated with pot-natal chromatin
conformation dynamics.

Supplementary Figure 5. Related to Figure 1-2. (A) UMAP of brain cells derived from late-
gestational HPC samples. (B) UMAP showing TLL1 CH hypomethylation for more matured
granule neurons. (C) UMAP showing TRPS1 CG hypomethylation in Mossy Cells and partially in
CA3 neurons. (D) UMAP showing LRIG1 hypomethylation in astrocytes. (E) single molecular RNA
in situ detection of TLL1, PROX1 and RBFOX3 transcripts in the hippocampus in the third
trimester (GW 30 GW). (F) single molecular RNA in situ detection of TPRS1, GAD1 and RBFOX3
transcripts in the hippocampus in the third trimester. (G) single molecular RNA in situ detection of
LRIG1 and ALDH1L1 transcripts in the hippocampus in the third trimester. (H) Quantification of
LRIG1/ALDH1L1 co-expression.

Supplementary Figure 6. Related to Figure 3. (A) Merged chromatin interaction profiles of even
clusters identified in Fig. 3A. (B) Distribution of the distance between interaction loci of clusters
identified in Fig. 3A. (C) Percentage of each brain cell type assigned to clusters identified in Fig.
3A. (D) Cell-type specific enrichments of DD (Domain Dominant), CD (Compartment Dominant),
and INT (Intermediate) chromatin conformation. (E) Percentage of each brain cell type classified
as DD, CD, or INT conformation. (F-J) Remodeling of global chromatin conformation during the
differentiation of Exc-CA-1 (F), Exc-DG (G), Inh-MGE-ERBB4 (H), Inh-CGE-CHRNAZ (), and
MGC-1 & MGE-2 (J).

Supplementary Figure 7. Related to Figure 4. (A) K-means clustering of CG-DMRs as shown
in Fig. 4A with individual cell populations labeled. (B) Transcription binding motif analysis of DMRs
including statistically insignificant values (FDR > 1x107).

Supplementary Figure 8. Related to Figure 4. (A) Reconstructed developmental hierarchy of
excitatory neurons and glial cells. (B-I) The number of trajectory-DMRs identified between
developmental stages of several cell-type trajectories (left). Transcription factor binding motif
enrichments between developmental stages of each trajectory. Displayed trajectories are PFC-
Exc-NP-TSHZ2 (B), PFC-Exc-L1-2-CUX2 (C), PFC Astro (D), HPC-OPC (E), HPC-Exc-DG (F),
HPC-Exc-CA1 (G), HPC-Exc-CA3 (H), and HPC-Exc-Mossy (I).

Supplementary Figure 9. Related to Figure 4. (A) Reconstructed developmental hierarchy of
CGE- and MGE-derived inhibitory neurons. (B-H) Trajectory-DMRs identified between
developmental stages of cell-type trajectories (left).  Transcription factor binding motif
enrichments between developmental stages of the trajectory. Displayed trajectories are PFC-Inh-
CGE-SOX13 (B), HPC-Inh-CGE-SOX13 (C), PFC-Inh-CGE-CHRNA2 (D), HPC-Inh-CGE-
CHRNA2 (E), HPC-Inh-MGE-ERBB4 (F), PFC-Inh-MGE-MAN1A1 (G), HPC-Inh-MGE-MAN1A1

(H).

Supplementary Figure 10. Related to Figure 4. (A) Reconstructed developmental hierarchy of
excitatory neurons and glial cells labeled for the branching of a mother cell type in an earlier
developmental stage to daughter cell types in a later development stage. (B-J) The number of
hypo-methylated branch-DMRs identified at cell-type branches and transcription factor binding
motif enrichments in DMRs. Displayed cell-type branches are associated with mother cell
populations PFC-2T-Exc-UL-1 (B), PFC-3T-Exc-DL-GRIK4-TSHZ2 (C), PFC-3T-Exc-L1-3-CUX2
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(D), PFC-3T-Exc-L4-RORB (E), PFC-infant-Exc-L4-5-FOXP2 (F), HPC-2T-Exc-ENT (G), HPC-
2T-Exc-CA (H), HPC-3T-Exc-CA1 (1) and HPC-infant-Exc-ENT-GRIK4-TSHZ2 (J).

Supplementary Figure 11. Related to Figure 4. (A) Reconstructed developmental hierarchy of
inhibitory neurons labeled for the branching of a mother cell type in an earlier developmental stage
to daughter cell types in a later development stage. (B-J) The number of hypo-methylated branch-
DMRs identified at cell-type branches and transcription factor binding motif enrichments in DMRs.
Displayed cell-type branches are associated with mother cell populations PFC-3T-Inh-CGE (B),
HPC-3T-Inh-CGE (C), PFC-3T-Inh-MGE (D), PFC-infant-Inh-CGE-CHRNAZ (E), HPC-infant-Inh-
CGE-CHRNA2 (F), PFC-infant-Inh-MGE-ERBB4 (G), HPC-infant-Inh-MGE-ERBB4 (H), PFC-
infant-Inh-MGE-MAN1A1 (1).

Supplementary Figure 12. Related to Figure 5. Enrichment of polygenic heritability for seven
traits in DMRs (blue bars) and loop-connected DMRs (orange bars) across cell types.

Supplementary Figure 13. Related to Figure 5. Proportion of polygenic heritability for seven
traits in DMRs (blue bars) and loop-connected DMRs (orange bars) across cell types.

Supplementary Figure 14. Related to Figure 5. (A-F) The enrichment of polygenic heritability
for bipolar disorder (A), major depression (B), ADHD (C), ASD (D), Alzheimers’ disease (E) and
height (F) in DMRs and loop-connected DMRs. (G-L) Enrichment of polygenic heritability for
neuropsychiatric disorders across developmental stages in PFC-Exc-L5-6-PDZRN4 (G), PFC-
Exc-L1-3-CUX2 (H), PFC-Exc-L4-5-FOXP2 (l), HPC-Exc-CA1 (J), PFC-Inh-MGE-ERBB4 (K),
PFC-Inh-CGE-CHRNAZ2 (L). (M-N) Meta-analysis of heritability enrichment for neuropsychiatric
disorders in excitatory (M) and inhibitory (N) neuron populations.

Methods

Brain Specimen

Human Tissue Collection: Specimens were collected from autopsy with previous patient consent
to institutional ethical regulations of the University of California San Francisco Committee on
Human Research. Collection was at post-mortem intervals (PMI) less than 24 hours. Tissue was
collected at the following institutions with previous patient consent to institutional ethical
regulations of the University of California, San Francisco (UCSF) Committee on Human
Research. Protocols were approved by the Human Gamete, Embryo and Stem Cell Research
Committee (Institutional Review Board GESCR# 10-02693) at UCSF. Specimens were evaluated
by a neuropathologist as control samples. Tissues were cut coronally and areas of interest were
sampled. 1 mm tissue blocks used for chromatin and methylation assays were flash frozen in
liquid nitrogen and stored in -80 C. Blocks used for histological analyses were fixed with 4%
paraformaldehyde for two days, and cryoprotected in a 30% sucrose gradient. The tissue was
then frozen in OCT and blocks were cut at 30 um with a cryostat and mounted onto glass slides.
For each case used, we cresyl stained three sections spanning the block to ensure our position
using anatomical landmarks, such as the lateral ventricle, presence of the caudate, thalamus and
hippocampus.

sn-m3C-seq
For prenatal brain samples, sn-m3C-seq was performed without the labeling of neuronal nuclei
using anti-NeuN antibody, whereas post-natal samples were labeled by anti-NeuN antibody
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during the nuclei isolation procedure. For sn-m3C-seq performed without labeling, frozen powder
of brain tissue was resuspended in 10 mL of DPBS with 2% formaldehyde and incubated at room
temperature for 10 mins with slow rotation. The crosslinking reaction was quenched with 1.17 mL
of 2M Glycine for 5 mins at room temperature. The crosslinked tissue sample was pellet by
centrifugation with 2,000 x g for 10 mins at 4°C. The same centrifugation condition was used to
pellet nuclei throughout the sn-m3C-seq procedure. The pellet was resuspended in 3mL of NIBT
(10mM Tris-HCI pH=8.0, 0.25M Sucrose, 5mM MgClz, 25mM KCI, 1mM DTT, 0.1% Triton X-100
and 1:100 Protease Inhibitor Cocktail (Sigma #P8340). The resuspended tissue sample was
dounced with a dounce homogenizer (Sigma #D9063) for 40 times with a loose pestle and 40
times with a tight pestle. The lysate was mixed with 2 mL of 50% lodixanol (prepared by mixing
OptiPrep™ Density Gradient Medium (Sigma #D1556) with diluent (120 mM Tris-Cl pH=8.0, 150
mM KCI and 30mM MgCl,) with a volume ratio of 5:1). The lysate was gently layered on top of
25% lodixanol cushion and centrifuged at 10,000 x g for 20 min at 4°C using a swing rotor. The
nuclei pellet was resuspended in 1mL of cold DPBS followed by the quantification of nuclei using
a Biorad TC20 Automated Cell Counter (Biorad #1450102).

In situ 3C reaction was performed using Arima Genomics Arima-HiC+ Kit. Each in situ 3C
reaction uses 300K to 450K nuclei. Nuclei aliquots were pellet and resuspended in 20 ul H20
mixed with 24 pl Conditioning Solution and incubated at 62°C for 10 min. After the incubation, 20
ul of Stop Solution 2 was added to the reaction and incubated at 37°C for 15 min. A restriction
digestion mix containing 7 pl of 10X NEB CutSmart Buffer (NEB #B7204), 4.5 ul of Nlalll (NEB
#R0125), 4.5 pl of Mbol (NEB #R0147) and 12 yl of 1X NEB CutSmart Buffer was added to the
reaction followed by incubation at 37°C for 1 hr. The restriction digestion reaction was stopped by
incubation at 65°C for 20 mins. A ligation mix containing 70 yl of Buffer C and 12 pl of Enzyme C
was added and was followed by incubation at room temperature for 15 min. The reaction was
then placed at 4°C overnight.

Prior to fluorescent-activated nuclei sorting (FANS), 900 pl of cold DPBS supplemented
with 100 pl of Ultrapure BSA (50 mg/mL, Invitrogen #AM2618) was added to the in situ 3C
reaction. To fluorescently stain nuclei, 1 pl of 1 mg/mL Hoechst 33342 was added prior to sorting.
FANS was performed at UCLA Broad Stem Cell Research Center Flow Cytometry core using BD
FACSAria sorters. Single nuclei were sorted into 384 well plates containing 1 pl M-Digestion
Buffer containing proteinase K and ~0.05 pg Lambda DNA isolated from dcm+ E.Coli (Promega
#D1501).

Single-nucleus DNA methylome library preparation with snhmC-seq3

snmC-seq3 is a modification of snmC-seq2 (43) that provides improved throughput and reduced
cost. Key differences between snmC-seq3 and snmC-seq2 include the usage of 384 instead 8
barcoded degenerated (RP-H) primers (Table S7) for the initiation of random-primed DNA
synthesis using bisulfite converted DNA as template. The expanded multiplexing allows the
combining of 64 single nuclei into the downstream enzymatic reactions, which provided a 8-fold
reduction of the usage of Adaptase™ and PCR reagents. In addition, the amounts of Klenow exo-,
Exonuclease 1 and rSAP were reduced by 10-folds compared to snmC-seq2, providing further
reduction of reagent cost.

Processing of sn-m3C-seq data

Sequencing reads were first demultiplexed by matching the first 8 base pairs of R1 reads to the
predefined well barcodes (https://github.com/luogenomics/demultiplexing). Demultiplexed reads
were trimmed to remove sequencing adaptors using Cutadapt 1.18 with the following parameters
in paired-end mode: -f fastq -9 20 -m 50 -a AGATCGGAAGAGCACACGTCTGAAC -A
AGATCGGAAGAGCGTCGTGTAGGGA. 18 bp and 10 bp were further trimmed from the 5’- and
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3’- end of R1 reads, respectively. 10 bp were trimmed from both 5’- and 3’- ends of R2 reads. sn-
m3C-seq reads were mapped to hg38 reference genome using a modified Taurus-MH package
(https://github.com/luogenomics/Taurus-MH) (20). Briefly, each read end (R1 or R2) is mapped
separately using Bismark with Bowtie1 with read1 as complementary (always G to A converted)
and read2 (always C to T converted) as original strand. After the first alignment, unmapped reads
are retained and split into 3 pieces by 40bp, 42bp, and 40bp resulting in six subreads (read1 and
read2). The subreads derived from unmapped reads were mapped separately using Bismark
Bowtie1. All aligned reads are merged into BAM using Picard SortSam tool with query names
sorted. For each fragment, the outermost aligned reads are chosen for the chromatin
conformation map generation. The chromatin contacts with both ends mapped to the same
positions were considered duplicates and removed for further analysis. Duplicates reads were
removed from BAM files using Picard MarkDuplicates tool before the generation of allc files using
Allcools bam-to-allc tool (https://Ihging.github.io/ALLCools/).

Single molecule fluorescent in situ hybridization

smFISH was performed according to the RNAscope manual (multi-plex details). Sequences of
target probes, preamplifier, amplifier, and label probe are proprietary and commercially available
(Advanced Cell Diagnostics (ACD), Hayward, CA). Typically, the probes contain 20 ZZ probe
pairs (approx. 50 bp/pair) covering 1000bp. Here, we used probes against human genes as
single-plex probes, outlined below: Hs-MEF2C (452881), Hs-GAD1-C2 (404031-C3) , Hs-
RBFOX3-C2 (415591-C2), Hs-TLL1-C3 (439211), Hs-TRPS1 (831611-C3), Hs-PROX1
(530241), Hs-ALDH1L1-C3 (438881-C3), Hs-LRIG1-C2 (407421-C2).

Slides were dried at 60°C for 1 h and fixed in 4% PFA for 2 h. After several washes in PBS, slides
were treated with ACD Hydrogen peroxide for 10 min and then washed in water 2x before
treatment in 1x target retrieval buffer (ACD) for 5 min (at 95-100°C). After washing in water and
then 100% alcohol, the slides were baked at 60°C for 30 min. After moistening samples with
water, protease treatment was performed for 15 min at 40°C in the HybEZ™ oven. Hybridization
of probes and amplification was performed according to the manufacturer’s instructions. In short,
tissue sections were incubated in desired probe (2-3 drops/section) for 2 h at 40°C in the
HybEZ™ oven. The slides were washed twice in 1x wash buffer (ACD) for 2 min each and
incubated in 5X SSC at RT overnight. Amplification and detection steps were performed using
the Multiplex kit (ACD, 320293) for single-plex probes. The following was performed in repeated
cycle for each probe. ~4 DROPS of AMP x-FL was added to entirely cover each section and slide
placed in the HypbEZ™ Oven. The slide was incubated for 30 MIN at 40°C. Slides were removed
from HybEZ™ Slide Rack and excess liquid removed before being submerged in the Tissue-Tek®
Staining Dish filled with 1X WASH BUFFER. Slides were washed in 1X Wash Buffer for 2 MIN at
RT. The next AMP x-FL was added and the cycle was repeated. Slides were washed in PBST,
incubated with DAPI for 30 sec at RT and mounted in Aqua Mount (Lerner). Images were taken
using 100x objective on the Leica Stellaris confocal microscope.

Single-cell bimodal data quality control and preprocessing
Cells were filtered on the basis of several metadata metrics: (1) mCCC level <0.03; (2) global

mCG level >0.5; (3) global mCH level < 0.2; and (4) Total 3C interactions >100,000. Methylation
features were calculated as fractions of methylcytosine over total cytosine across gene bodies +
2kb flanking regions and 100kb bins spanning the entire genome. Methylation features were

further split into CG and CH methylation types. These features were then filtered on mean
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coverage 210 and values with coverage <5 were imputed as the mean feature value by sample.

Principal component analysis was then run using Scanpy(44) default parameters followed by k-

nearest neighbors (knn) using only the top 20 principal components by the amount of variance
explained and k=15. lterative clustering was then performed with a combination of leiden
unsupervised clustering and UMAP dimensionality reduction, identifying clusters as cell types by
marker gene hypomethylation. We observe certain batch effects in our dataset that are associated
with the time the data was generated. Harmony (45) is used on metadata features to mitigate
batch occurring between samples in the principal component feature space.

Pseudotime Analysis

Pseudotime analysis was run following the methods outlined in (Wolf et al. 2019)(23). Each
pseudotime analysis had clustering preprocessing steps, PCA, knn with k=15 using 20 PCs, and
leiden, recomputed for its respective subset of the data.The computed leiden clusters were then
used to initialize a partition-based graph abstraction (PAGA). This PAGA is used as the
precomputed initialization coordinates for the visualization with force-directed graph drawing by
the ForceAtlas2 package. (46) A root node is then set in the leiden cluster furthest from the adult
cell types and Scanpy’s implementation of diffusion-based pseudotime was used. Genes are
selected for display compared to the pseudotime scores by sorting by correlation and
anticorrelation to the pseudotime score as well as requiring the 3C gene score to have
variance >.1. For Fig. 2H and Fig. S4F, gene examples were selected by highest gene body mCG
correlation to the pseudotime and 3C gene score anticorrelation. For Fig. 21 and Fig. S4G, gene
examples were selected by highest gene body mCG anticorrelation to the pseudotime and 3C
gene score correlation to the pseudotime. Distribution comparisons are computed by the Wilcoxon
rank-sum test.

DMR and Transcription Factor (TF) Binding Motif Analysis

Al CG-DMRs were identified from pseudobulk allc files wusing Methylpy
(https://github.com/yupenghe/methylpy) (47). DMRs identified from a multi-sample comparison of
all cell types were used for analyses in Fig. 4A-B and Fig S7, as well as disease heritability
enrichment analyses shown in Fig. 5 and Fig. S12-14. Trajectory-DMRs were identified using
pairwise comparisons of adjacent development stages of a cell-type trajectory. Branch-DMRs
were identified using multi-sample comparisons, including the mother cell population from an
earlier developmental stage, and daughter populations from a later developmental stage. TF
binding motif enrichment analysis was performed similarly as previously described (73, 25, 48).
DMR regions were liftovered to hg19 reference genome for the TF binding motif enrichment
analysis. TF binding position weight matrices (PWM) were obtained from the MEME motif
database and scanned across the human hg19 reference genome to identify hits using FIMO (--
output-pthresh 1E-5, -- max-stored-scores 500000 and --max-strand) (49, 50). DMRs were
extended 250 bp both upstream and downstream for overlapping with TF binding motif hits. The
overlap between TF binding motif hits and DMRs (extended +250 bp) were determined requiring
a minimal of 1 bp overlap. The enrichment of TF binding motifs in DMSs was assessed using
DMRs (extended 250 bp from center) identified across adult human tissues (tissue DMRs) as the
background (47). The overlaps between TF binding motif hits and the foreground DMR list was
compared to the overlaps between TF binding motifs hits and tissue DMRs (background) using
the hypergeometric test (MATLAB hygecdf).

Single-cell Embedding Based on Chromatin Contact
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Single-cell contact matrices at 100 kb resolution were imputed by scHiCluster (67) with pad = 1.
The imputed contacts with distance >=100 kb and <=1 Mb were used as features for singular
value decomposition (SVD) dimension reduction. Principal components were normalized by
singular values and L2 norms per cell, and then used for k-NN graph construction (k=25) and
UMAP. 25 dimensions were used for the full dataset (Fig. 1, S2B, E), 20 dimensions were used
for the RG subtypes (Fig. S2F), and 10 dimensions were used for the MGE or astrocyte lineage
(Fig. S2D, H).

Chromatin Loop and Differential Loop Analysis

Chromatin loops were identified with scHiCluster (57) for every cell type identified in this study.
To identify loops from a group of cells, single cell contact matrices at 10kb resolution were imputed
by scHiCluster with pad = 2 for the contacts within 5.05 Mb (result denoted as Qcei). We only
performed loop calling between 50 kb and 5 Mb, given that increasing the distance only leads to
a limited increase on the number of significant loops. For each single cell, the imputed matrix of
each chromosome was log-transformed, and Z-score normalized at each diagonal (result denoted
as Ecar) and subtract a local background between >=30kb and <=50kb (result denoted as Tce),
similar to SnapHiC (52). A pseudobulk level t-statistic was computed to quantify the deviation of
E and T from 0 across single cells from the cell group, where larger deviations represent higher
enrichment against global (E) or local (T) background. Ece is also shuffled across each diagonal
to generate Eshufiecen, and then Tshuiiecell, 10 €stimate a background of the t-statistics. An empirical
FDR can be derived by comparing the t-statistics of observed cells versus shuffled cells. We
required the pixels to have average E >0, fold change >1.33 against donut and bottom left
backgrounds, fold change >1.2 against horizontal and vertical backgrounds (52), and FDR <0.01
compared to global and local background.

Differential loops were identified between age groups within the same major lineage. To compare
the interaction strength of loops between different groups of cells, we adopt an analysis of
variance (ANOVA) framework to compute the F statistics for each loop identified in at least one
cell group using either Qcer (result denoted as Fq) or Teer (result denoted as Fr). We log-
transformed and then Z-scored Fq and Fr across all the loops being tested and selected the ones
with both Fq and Fr > 1.036 (85th percentile of standard normal distribution) as differential loops.
The threshold was decided by visually inspecting the contact maps as well as the correlation of
interaction and loop anchor CG methylation.

Identification of domains and differential domain boundaries

Single cell contact matrices at 25kb resolution were imputed by scHiCluster (57) with pad = 2 for
the contacts within 10.05 Mb. Domains were identified within each single cell. Insulation scores
were computed in each cell group (major type or major type within a brain region) for each bin
with the pseudobulk imputed matrices (average over single cells) and a window size of 10 bins.
Boundary probability of a bin is defined as the proportion of cells having the bin called as a domain
boundary among the total number of cells from the group.

To identify differential domain boundaries between n cell groups, we derived an nx2 contingency
table for each 25kb bin, where the values in each row represent the number of cells from the
group that has the bin called as a boundary or not as a boundary. We computed the Chi-square
statistic and p-value of each bin, and used the peaks of the statistics across the genome as
differential boundaries. The peaks are defined as local maximum of Chi-square statistics, within
FDR <1e-3 (Benjamini and Hochberg procedure). If two peaks are within 5 bins to each other, we
only kept the peak with a higher Chi-Square statistic. We also require the peaks to have a Z-score
transformed Chi-square statistic >1.960 (97.5 percentile of standard normal distribution), fold-
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changes between maximum and minimum insulation score >1.2, and differences between
maximum and minimum boundary probability >0.05.

3C Gene Score
3C gene score is defined as the sum of off-diagonal values from the row and column of the TSS
bin to the row and column of the TES bin in the imputed 10kb contact matrices.

Chromatin Potential Analysis

We considered the methylation and 3C profile of a cell separately as a 3C cell and a mC cell, then
projected the mC cells and 3C cells to the same low-dimensional space based on their molecular
similarities across 100kb genome bins. This is achieved by a 3-step method analogous to Seurat
v3 (53): 1) Using canonical correlation analysis (CCA) to capture the shared variance between
3C cells and mC cells; 2) finding anchors as 5 mutual nearest neighbors (MNN) between the two
modalities; 3) pulling the two modalities into the same space. Specifically, we started from all the
100kb-bin-pairs with both anchors passed methylation read coverage filters, and used ALLCools
to select group (cell type by age group) enriched features. For mC cells, we used the average
mCG level of the two anchors after normalizing the global mCG level of each cell. For 3C cells,
we used the imputed contact values at 100kb resolution. CCA was performed as USV' =

Yc XcYc, where Xc and Yc are cell-by-binpair matrices representing the feature matrix of
chromosome c after Z-score normalization of each feature across cells. U and V were normalized
by dividing the L2-norm of each row, and used to find MNN anchors and score anchors using the
same method as Seurat v3. Xc and Y¢ were also combined vertically and the PCs of this combined
matrix were integrated together using the same method as Seurat v3 through the anchors
generated from the previous step. This integration step projects the PCs of 3C cells to mC cells
while keeping the PCs of mC cells unchanged.

After joint embedding of mC cells and 3C cells, for each 3C cell (query), we find its nearest 5 mC
cells on the embedding space, representing the cells whose methylation profiles are the most
similar to the 3C profile of the query cell, and thus define a “3D chromatin potential” by an arrow
pointing from the 3C cell to the average of its mC neighbors. The discrepancy between the real
corresponding mC-3C profile (from the same cell) and the inferred correspondence suggest the
timing differences between the two modalities during development. For instance, an arrow
pointing from mid-gestation to late-gestation represents that the 3C profile of the mid-gestation
cell is more correlated with the methylation profile of late-gestation cells than the methylation
profile of itself, suggesting 3C changes earlier than methylation. It is worth noting that the result
shows a general pattern between the two modalities across the genome, while the dynamics at
individual genes could be different, which needs to be studied specifically.

Distribution of the distance between interacting loci analysis

In order to count the number of cis (intra-chromosomal) contacts in each cell and bulk Hi-C data
(28), we divided the contacts into 143 logarithmic bins, the first of which was for contacts that
were separated by less than 1 Kb. Each subsequent bin covered an exponent step of 0.125, using
base 2. Contacts in bins 1-37 were determined to be noisy and were eliminated, leaving bins 38-
141 as the valid bins.

The following metrics were used for the following analysis.
* % near - percentage of contacts in bins 38-89 out of all valid bins
* % long - percentage of contacts in bins 90-141 out of all valid bins
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Cells were clustered by the distribution of their distance between interacting loci (k-means, k =
10) and reordered by the average value of log2(% near/% long) of each cluster (Fig. 3A-D and
Fig. S6B-C).

Each cell was assigned to a group by following criteria (Fig. 3E-F and Fig. S6D-J):

* Domain dominant (DD): log2(% near/% long) >=0.4

* Intermediate (INT): -0.4 > log2(% near/% long) >0.4

» Compartment dominant (CD): log2(% near/% long) <=-0.4

To find the cluster enriched in each cell type, we first calculated the percentage belonging to each
cluster by cell type (Fig. S6C,E). The enrichment score was obtained by normalizing the fraction
of each cell type by the relative cluster sizes (Fig. 3C,E,F and Fig. S6D,F-J)).

Polygenic heritability enrichment analysis. Polygenic heritability enrichment of DMR and/or
chromatin loop was performed using S-LDSC partitioned heritability analysis (54). GWAS
summary statistics included Schizophrenia (36), Bipolar’s disorder (55), Major Depressive
Disorder (56), ADHD (57), ASD (58), Alzheimer’s disease (59), Height GWAS in UK Biobank
(60) (downloaded from https://alkesgroup.broadinstitute.org/sumstats _formatted/). For each cell
type, binary annotations were created using DMR and/or chromatin loop. We considered two
types of genomic regions: (1) DMR: including all DMRs for a given cell type. (2) loop-connected
DMR: including the subset of DMRs that overlap with any of the chromatin loop called in the
matching cell types. To create binary annotations, SNPs in these genomics regions were
assigned as 1 and otherwise 0. Then we assessed the heritability enrichment of each of these
annotations conditional on the “baseline model” (35). We reported heritability enrichment and
proportion of heritability using 'Enrichment’, 'Enrichment_std_error', ‘Prop._h2’,
‘Prop._h2_std_error’ columns in S-LDSC results. To assess statistical significance for heritability
enrichment differences across annotations (e.g., differences between cell types in a
developmental trajectory), we used t-test to test the differences of heritability enrichment of two
cell types with d.o.f. = 200 + 200 - 2, where 200 corresponds to the number of jackknife samples
in S-LDSC block jackknife procedure.

Overlap between fine-mapped variants and DMR / chromatin loop for schizophrenia. We
used statistical fine-mapping results that were previously performed in the latest PGC
schizophrenia study (36). We filtered for autosomal high-confidence putative causal SNPs with
PIP > 10%, and retained 190 independent association loci (containing 569 SNPs in total), with
each loci containing a credible set with 3.0 SNPs on average. We used Fisher’s exact test to
assess the overlap between these 569 fine-mapped SNPs and DMR/chromatin loop annotations
using all SNPs in GWAS summary statistics as background (see above for constructing
DMR/chromatin loop annotations). We reported odds ratios of the overlap. We also assessed
the overlap between 190 schizophrenia fine-mapped loci (as aggregates of 569 putative causal
SNPs) and DMR/chromatin loop annotations (Fig. 5B). We define the overlap between fine-
mapped loci and DMR/chromatin loop annotations based on whether any high-confidence
putative causal SNP in the fine-mapped loci located in the annotation. Furthermore, we
overlapped putative causal SNP and DMR/chromatin loop annotations to GTEx high-confidence
fine-mapped cis-eQTL data (downloaded from
https://storage.googleapis.com/gtex_analysis v8/single tissue qtl data/GTEx v8 finemapping
CAVIAR.tar): we first identified SNP-gene pairs such that the putative causal SNP is located in
DMRs and connected to transcription start site of any gene via chromatin loops, and then we
overlapped these SNP-gene pairs with eQTL cis-eQTL/eGene pairs.
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Figure 1.

Profiling of epigenomic and chromatin conformation dynamics during human brain development using sn-m3C-seq.

(A) Schematics of the study. (B-E) Dimensionality reduction using UMAP distinguishes cell types (B), major cell lineages (C), brain
regions (D), and developmental stages (E). (F) Reconstructed developmental hierarchy of excitatory neurons and glial cells. (G-H)
Dynamics of genome-wide non-CG methylation (G) and CG methylation (H) during human brain development.
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Figure 2.
Temporal ordering of DNA methylation and chromatin conformation reconfiguration during the maturation of MGE-derived inhibitory
neurons.

(A-B) Distribution of pseudotime scores computed from gene body mCG (A) or interaction frequency of genomic bin pairs (B) in MGE-derived
inhibitory neurons. (C) Distinct distributions of pseudotime scores computed from mCG or chromatin conformation. (D-E) Direct comparison of
pseudotime scores computed from mCG or chromatin conformation in individual cells, labeled by developmental age groups (D) and cell types (E).
(F-G) Comparison of mCG (F) or chromatin conformation (G) pseudotime score distributions for MGE-derived inhibitory neurons located in PFC and
HPC, using three late-gestational brain samples from which both PFC and HPC were analyzed. (H) mCG and 3C gene scores changes at loci
associated with pre-natal chromatin conformation dynamics. (I) mCG and 3C gene scores changes at loci associated with pot-natal chromatin
conformation dynamics. (J-K) 3D chromatin potential analysis of inhibitory neuron differentiation. Dimensionality reduction plots were labeled for

developmental stages (J) or cell types (K). Reverse flows from adult and infant stages to late-gestation were highlighted.
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Figure 3.

Remodeling of global chromatin conformation during human brain development.

(A) K-means clustering analysis groups single-cell 3C profiles by the distribution of the distance between
interacting loci. (B) Merged chromatin interaction profiles of odd clusters identified in (A). (C) Cell-type
specific enrichments of clusters identified in (A). (D) Comparison of Domain-Dominant (DD), Compart-
ment-Dominant (CD), and Intermediate (INT) chromatin conformation found in single brain cells to bulk
Hi-C profiles of diverse human tissues. (E-F) Remodeling of global chromatin conformation during the
differentiation of upper-layer excitatory neurons (Exc-L1-3-CUX2) (E) and astrocytes (Astro) (F) from the
common RG-1 progenitor. (G) Merged chromatin interaction profiles of developing cell populations
across the differentiation of upper-layer excitatory and astrocytes.
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Figure 4.

Regulatory dynamics during brain cell type differentiation.

(A) K-means clustering of differentially methylation regions (DMRSs) reveals specificities for cell lineages and developmental stages.
(B) Transcription binding motif enrichment analysis of DMRs. (C) Schematics of the maturation of MGE-derived ERBB4-expressing
inhibitory neurons (Inh-MGE-ERBB4). (D) Numbers of trajectory-DMRs identified for Inh-MGE-ERBB4 maturation between adjacent
developmental stages. (E) Enriched transcription factor binding motifs in trajectory-DMRs for the maturation of Inh-MGE-ERBB4
neurons. (F) Schematics of the differentiation of FOXP2-expressing excitatory neurons (Exc-L4-5-FOXP2). (G) Numbers of trajecto-
ry-DMRs identified throughout the differentiation of Exc-L4-5-FOXP2 neurons. (H) Transcription factor binding motif enrichments in
trajectory-DMRs for the differentiation of Exc-L4-5-FOXP2. (I) Schematics of the specification of MGE-derived inhibitory neuron
types. (J) Numbers of branch-DMRs found during the specification of MGE-derived inhibitory neuron types. (K) Transcription factor
binding motif enrichments in branch-DMRs for MGE-derived inhibitory neuron types. (L) Schematics of the specification of RG-1
derived cell types. (M) Numbers of branch-DMRs found during RG-1 differentiation. (N) Transcription factor binding motif enrich-
ments in branch-DMRs associated with RG-1 differentiation.
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Localizing the heritability signals of neuropsychiatric disorders across developmental stages and cell populations.
(A) The enrichment of schizophrenia polygenic heritability in DMRs and loop-connected DMRs. (B) Numbers of schizophre-
nia-associated loci containing at least one fine-mapped variant that overlaps with DMRs or loop-connected DMRs. (C) Correla-
tion between the enrichments of polygenic heritability and fine-mapped schizophrenia variants. (D) The genomic region overlap-
ping with a putative causal variant for schizophrenia rs500102 is connected to the RORB promoter through a cell-type-specific
loop domain. (E) Enrichment of polygenic heritability for schizophrenia and bipolar disorder in PDZRN4-expressing Layer 5-6
excitatory neurons across developmental stages. (F) Statistical significance of differential heritability enrichment between devel-
opment stages. P-values were computed using two-sides t-tests. Red and blue colors show developmentally increase or
decrease of heritability enrichment, respectively. (G) Meta-analysis of heritability enrichment for schizophrenia and bipolar
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Supplementary Figure 1. Related to FIQW@bie under aCC-BY-NC-ND 4.0 International license.

(A-B) Numbers of sn-m3C-seq profiles generated from each specimen. (C) Brain regional specificity of identified cell types. (D)
Reconstructed developmental hierarchy of inhibitory neurons and non-neuronal cells. (E-G) Comparison of genome-wide mCH
level in cortical and hippocampal excitatory neurons (E), CGE-derived inhibitory neurons (F), and MGE-derived inhibitory
neurons (G) in the late-gestational samples. (H) Correlation matrix of PFC neuronal populations computed with gene body mCG.
() Correlation matrix of HPC neuronal populations computed with gene body mCG. (J-K) Comparison of the timing of mCG
remodeing in PFC and HPC for genes showing developmentally loss of mCG (J) and gain of mCG (K).
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(A) Methylation dimensionality reduction using UMAP distinguishes, from left to right, cell types, major cell lineages, brain regions,
and sample age groups. (B) Chromatin conformation dimensionality reduction using UMAP distinguishes, from left to right, cell
types, major cell lineages, brain regions, and sample age groups. (C) Riverplot to show extensive consistency in adult major cell
lineage annotation between DNA methylation and chromatin conformation modalities. (D) Dimensionality reduction using UMAP
shows resolution difference in cell-type classification using DNA methylation and chromatin conformation modalities in adult
inhibitory neurons; CGE-derived (top), MGE-derived (bottom). (E) Showing distinction of RG-1 and RG-2 populations in methyla-
tion space (left), chromatin conformation space (middle), and joint dimensionality reduction space (right). (F) Dimensionality
reduction of z-scored mCG feature matrix for cells from mid-gestational brains (left). Chromatin conformation dimensionality
reduction of cells from mid-gestational brains (right). (G-H) Distribution of pseudotime scores computed from gene body mCG (G)
or chromatin conformation (H) in neural progenitor RG-1, astrocyte progenitor RG-2 and astrocyte populations. (I) Distinct distribu-
tions of pseudotime scores computed from mCG or chromatin conformation. (J-K) Direct comparison of pseudotime scores
computed from mCG or chromatin conformation labeled by sample age group (J) and cell types (K). (L-M) Highest ranking genes
by mCG correlation to the pseudotime displayed as mCG gene body (L) and 3C gene score (M). (N-O) Highest ranking genes by
mCG anticorrelation to the pseudotime displayed as mCG gene body (N) and 3C gene score (O). (P) Chromatin contact frequency
at differential chromatin loops identified during astrocyte differentiation. (Q) Intragenic mCG for genes overlapping with differential
chromatin loops identified during astrocyte differentiation. (R-S) Gene ontology term enrichments for genes overlapping with
gained chromatin loops (R) and lost chromatin loops (S).

Figure S2


https://doi.org/10.1101/2022.10.07.511350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.07.511350; this version posted October 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
Chi2 sc SLC1A2 Chi2 sc SOX11
Chi2 200 T 200
Statistics 0 . j\w | OL A _AM AN

PFC_2T_RG-1

PFC_2T_RG-1

~ Insulation Score 0.25 = = & i e -
/ 7 — 3 0.2
~— Boundary Probability 0.00 L/M‘, e SN e, S S S e }0.2 0-0? | — “”’V\MJ\ T v*v“‘/'\ﬂw/:\& - — —_— 'MI'
1
0.1 — 0.1 I
Mot o | - | | 00 | e ‘ L ; |
o PFC_2T_RG-2 ' ' ' PFC_PT_RG-2
g ) ' <,
& . p ' 3 ),

kol e abibiadld )

| 0.0 : ; - ; ; 4 i
37.0M 0675M 1675M 2675M 3675M 4.675M 5675M 6675M 7.675M 8.675M 9.675M 10.675M

Supplementary Figure 3.
Differential chromatin domain boundaries were identified during the differentiation of astrocytes at SLC1A2 (A) and SOX11 (B)
loci.
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Supplementary Figure 4. Related to Figure 2.
(A-B) Distribution of pseudotime scores computed from gene body mCG (A) or chromatin conformation (B) in CGE-derived
inhibitory neurons. (C) Distinct distributions of pseudotime scores computed from mCG or chromatin conformation. (D-E)
Direct comparison of pseudotime scores computed from mCG or chromatin conformation in individual cells, labeled by devel-
opmental age groups (D) and cell types (E). (F) mCG and 3C gene scores changes at loci associated with pre-natal chromatin
conformation dynamics. (G) mCG and 3C gene scores changes at loci associated with pot-natal chromatin conformation

dynamics.
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Supplementary Figure 5. Related to Figure 1-2.

(A) UMAP of brain cells derived from late-gestational HPC samples. (B) UMAP showing TLL1 CH hypomethylation for more
matured granule neurons. (C) UMAP showing TRPS1 CG hypomethylation in Mossy Cells and partially in CA3 neurons. (D)
UMAP showing LRIG1 hypomethylation in astrocytes. (E) single molecular RNA in situ detection of TLL1, PROX1 and
RBFOXS transcripts in the hippocampus in the third trimester (GW 30 GW). (F) single molecular RNA in situ detection of
TPRS1, GAD1 and RBFOX3 transcripts in the hippocampus in the third trimester. (G) single molecular RNA in situ detection
of LRIG1 and ALDH1L1 transcripts in the hippocampus in the third trimester. (H) Quantification of LRIG1/ALDH1L1 co-ex-
pression.
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Supplementary Figure 6. Related to Figure 3.

(A) Merged chromatin interaction profiles of even clusters identified in Fig. 3A. (B) Distribution of the distance between interaction
loci of clusters identified in Fig. 3A. (C) Percentage of each brain cell type assigned to clusters identified in Fig. 3A. (D) Cell-type
specific enrichments of DD (Domain Dominant), CD (Compartment Dominant), and INT (Intermediate) chromatin conformation.
(E) Percentage of each brain cell type classified as DD, CD, or INT conformation. (F-J) Remodeling of global chromatin conforma-
tion during the differentiation of Exc-CA-1 (F), Exc-DG (G), Inh-MGE-ERBB4 (H), Inh-CGE-CHRNAZ2 (1), and MGC-1 & MGE-2 (J).
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Supplementary Figure 8. Related to Figure 4.
(A) Reconstructed developmental hierarchy of excitatory neurons and glial cells. (B-1) The number of trajectory-DMRs identified
between developmental stages of several cell-type trajectories (left). Transcription factor binding motif enrichments between
developmental stages of each trajectory. Displayed trajectories are PFC-Exc-NP-TSHZ2 (B), PFC-Exc-L1-2-CUX2 (C), PFC Astro
(D), HPC-OPC (E), HPC-Exc-DG (F), HPC-Exc-CA1 (G), HPC-Exc-CA3 (H), and HPC-Exc-Mossy (1).
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Supplementary Figure 9. Related to Figure 4.

(A) Reconstructed developmental hierarchy of CGE- and MGE-derived inhibitory neurons. (B-H) Trajectory-DMRs identified between
developmental stages of cell-type trajectories (left). Transcription factor binding motif enrichments between developmental stages of
the trajectory. Displayed trajectories are PFC-Inh-CGE-SOX13 (B), HPC-Inh-CGE-SOX13 (C), PFC-Inh-CGE-CHRNA2 (D),
HPC-Inh-CGE-CHRNAZ2 (E), HPC-Inh-MGE-ERBB4 (F), PFC-Inh-MGE-MAN1A1 (G), HPC-Inh-MGE-MAN1A1 (H).
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Supplementary Figure 10. Related to Figure 4.
(A) Reconstructed developmental hierarchy of excitatory neurons and glial cells labeled for the branching of a mother cell type
in an earlier developmental stage to daughter cell types in a later development stage. (B-J) The number of hypo-methylated
branch-DMRs identified at cell-type branches and transcription factor binding motif enrichments in DMRs. Displayed cell-type
branches are associated with mother cell populations PFC-2T-Exc-UL-1 (B), PFC-3T-Exc-DL-GRIK4-TSHZ2 (C),
PFC-3T-Exc-L1-3-CUX2 (D), PFC-3T-Exc-L4-RORB (E), PFC-infant-Exc-L4-5-FOXP2 (F), HPC-2T-Exc-ENT (G),
HPC-2T-Exc-CA (H), HPC-3T-Exc-CA1 (l) and HPC-infant-Exc-ENT-GRIK4-TSHZ2 (J).
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Supplementary Figure 11. Related to Figure 4.
(A) Reconstructed developmental hierarchy of inhibitory neurons labeled for the branching of a mother cell type in an earlier
developmental stage to daughter cell types in a later development stage. (B-J) The number of hypo-methylated branch-DMRs
identified at cell-type branches and transcription factor binding motif enrichments in DMRs. Displayed cell-type branches are
associated with mother cell populations PFC-3T-Inh-CGE (B), HPC-3T-Inh-CGE (C), PFC-3T-Inh-MGE (D), PFC-in-
fant-Inh-CGE-CHRNAZ2 (E), HPC-infant-Inh-CGE-CHRNAZ2 (F), PFC-infant-Inh-MGE-ERBB4 (G), HPC-infant-Inh-MGE-ERBB4
(H), PFC-infant-Inh-MGE-MAN1A1 (1).
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Supplementary Figure 12. Related to Figure 5.
Enrichment of polygenic heritability for seven traits in DMRs (blue bars) and loop-connected DMRs (orange bars) across cell types.
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Supplementary Figure 13. Related to Figure 5.

Proportion of polygenic heritability for seven traits in DMRs (blue bars) and loop-connected DMRs (orange bars) across cell types.
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Supplementary Figure 14. Related to Figure 5.

(A-F) The enrichment of polygenic heritability for bipolar disorder (A), major depression (B), ADHD (C), ASD (D), Alzheimers’
disease (E) and height (F) in DMRs and loop-connected DMRs. (G-L) Enrichment of polygenic heritability for neuropsychiatric
disorders across developmental stages in PFC-Exc-L5-6-PDZRN4 (G), PFC-Exc-L1-3-CUX2 (H), PFC-Exc-L4-5-FOXP2 (1),
HPC-Exc-CA1 (J), PFC-Inh-MGE-ERBB4 (K), PFC-Inh-CGE-CHRNAZ2 (L). (M-N) Meta-analysis of heritability enrichment for
neuropsychiatric disorders in excitatory (M) and inhibitory (N) neuron populations.
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