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SUMMARY 

Oncogene-induced senescence (OIS) is a phenomenon in which aberrant oncogene expression causes 

non-transformed cells to enter a non-proliferative state. Cells undergoing OIS display phenotypic 

heterogeneity, with some cells senescing and others remaining proliferative. The causes of the 

heterogeneity remain poorly understood. We studied the sources of heterogeneity in the responses of 

human epithelial cells to oncogenic BRAFV600E expression. We found that a narrow expression range of 

BRAFV600E generated a wide range of activities of its downstream effector ERK. In population-level and 

single cell assays, ERK activity displayed a non-monotonic relationship to proliferation, with 

intermediate ERK activities leading to maximal proliferation. We profiled gene expression across a 

range of ERK activities over time and characterized four distinct ERK response classes, which we 

propose act in concert to generate the unique ERK-proliferation response. Altogether, our studies 

mapped the input-output relationships between ERK activity and proliferation providing important 

insights into how heterogeneity can be generated during OIS. 

 

INTRODUCTION 

Activation or aberrant regulation of oncogenes promotes cellular transformation and tumorigenesis, 

enabling cancer cells to grow and avoid programmed cell death (Hanahan and Weinberg, 2011). For 

instance, activating RAS or RAF mutations (found in ~27% and ~8% in all human cancers, respectively) 

bypass requirements for growth factors, resulting in constitutive mitogenic signaling through the MAPK 

pathway (Hobbs et al., 2016; Holderfield et al., 2014). However, when proteins carrying oncogenic 

mutations are expressed ectopically in non-transformed cells, they cause the cells to enter a state of 

stable cell cycle arrest, a phenomenon known as oncogene-induced senescence (OIS) (Collado and 

Serrano, 2010; Serrano et al., 1997). OIS, first reported in primary diploid fibroblasts with HRasG12V 

expression (Serrano et al., 1997), was later found to be caused by various oncogenes and reported in 

multiple in vitro cell systems as well as at the organismal level (Collado and Serrano, 2010). Moreover, 

in mouse models, low-level expression of HRasG12V drives hyper-proliferation whereas high-level 

expression drives cellular senescence (Sarkisian et al., 2007). In cultured melanocytes, expression of 

BRAFV600E initially stimulated moderate proliferation (3-7 days), which was followed by a progressive 

decrease in growth rate and eventual cell cycle arrest (Michaloglou et al., 2005). The cell cycle arrest 

typically involves the p53/p21WAF1 and p16INK4A/RB tumor suppressor genes and their interacting 

networks, although the roles of these proteins appears to be cell type- and context-dependent (Adams, 

2009; Mooi and Peeper, 2006). OIS is currently considered to represent a bona fide tumor suppressor 

mechanism, acting alongside cell death programs.  
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Cell-to-cell heterogeneity is often observed during OIS, with some cells in a culture arresting and others 

continuing to proliferate. In vivo, malignant tumors are found adjacent to benign tumors despite the 

presence of the same driver oncogene mutation in both (Adashek et al., 2020; Michaloglou et al., 

2008). In these cases, senescence-associated markers are only found in the benign or premalignant 

lesions and are progressively lost as the lesions become malignant. At a population level, the time 

between oncogene expression and OIS varies from a few days to several weeks and proceeds 

asynchronously (Michaloglou et al., 2005; Serrano et al., 1997). It remains unclear why a subset of cells 

in a population is better able to tolerate the negative effects of oncogene activation. Contributing factors 

are likely to include the type, strength and duration of the senescence-inducing signal, non-cell 

autonomous influences from oncogene expression, and the susceptibility of a cell to (epi)genetic 

reprogramming (Adams, 2009; Ruiz-Vega et al., 2020).  

 

Studying how heterogeneity arises in OIS is important for understanding the initiation of cancer and 

devising effective therapies. In the current study, we focus on OIS induced by BRAFV600E, an oncogenic 

variant of a MAPK serine/threonine kinase that lies immediately upstream of MEK and ERK. MAPK 

activity induces the expression of multiple transcription factors that promote expression of positive 

regulators of the cell cycle, leading to cell cycle entry (Meloche and Pouysségur, 2007). BRAFV600E is 

found in ~60% of cutaneous melanomas and is the primary target for the current standard of care for 

treating this disease. However, the same mutation is found in ~90% of melanocytic nevi, the benign, 

pigmented ‘moles’ found on the skin of most individuals. Thus, although activation of the MAPK 

cascades is a critical step in initiating melanocytic neoplasia it is not sufficient, perhaps because the 

induction of OIS prevents tumor formation (Fig 1A) (Davies et al., 2002; Pollock et al., 2003). 

Consistent with this idea, expression of BRAFV600E has been reported to induce senescence in a variety 

of cell lines including fibroblasts and melanocytes (Michaloglou et al., 2005; Vizioli et al., 2011; Zhu et 

al., 1998). ERK, the downstream effector of BRAF, plays a central role in proliferation decisions. 

Hyperactivation of the ERK pathway causes accumulation of cyclin-dependent inhibitors, but the overall 

input-output relationship between ERK activity and proliferation has not been established (Deschênes-

Simard et al., 2014; Meloche and Pouysségur, 2007).  

 

In this paper we investigated the relationship between BRAFV600E levels, ERK activity and cell 

proliferation in non-transformed human hTERT-immortalized retinal pigment epithelial (RPE) cells. We 

showed that a narrow expression range of BRAFV600E protein generated a wide range of ERK activities. 

We further showed a non-monotonic relationship between ERK activity level and proliferation response. 

We examined the source of the non-monotonic response through global transcriptional profiling, which 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511142
http://creativecommons.org/licenses/by-nc-nd/4.0/


revealed four categories of cellular responses across different ranges of ERK activities. Our study 

highlights the various networks of genes that are induced in response to differential ERK signaling, and 

provides important clues as to how individual or combinatorial classes of genes can generate a 

biphasic proliferation response. 

 

RESULTS 

The relationship between ERK activity and proliferation is non-monotonic  

To establish a model of oncogene-induced senescence, we expressed the oncogenic BRAFV600E 

variant carrying a C-terminal HA tag in RPE cells under the control of a doxycycline (DOX)-inducible 

promoter (Fig 1B). Activation of the MAPK cascade by BRAFV600E was assessed by measuring 

phospho-ERK (pERK) levels using western blotting. Time course analysis showed that, at a saturating 

dose of DOX (250ng/ml), BRAFV600E levels increased for the first 24 hr and then plateaued, while pERK 

levels plateaued around 2 hr, and pRB (a marker of cell cycle progression) was undetectable by 48 hr 

(Fig 1C). To determine if BRAFV600E expression induced senescence, cells were stained for �-

galactosidase. Cells exposed to �-irradiation, a well-established inducer of senescence, were used as a 

positive control. BRAFV600E induction for 7 days resulting in �-galactosidase expression in cells 

comparable to irradiated cells, and higher than untreated controls (Fig 1D). These results suggest 

BRAFV600E expression in RPE cells causes cell cycle exit and promotes senescence, consistent with 

induction of OIS. 

 

We next investigated the relationships between BRAFV600E expression, ERK activity, and proliferation 

outcomes. To induce variable BRAFV600E-HA expression levels, RPE/tet-BRAFV600E cells were treated 

with various doses of DOX for 72 hr and then stained for HA, pERK, and EdU incorporation (a marker 

for DNA synthesis) (Fig S1A-C). Consistent with Fig 1B, proliferation was inhibited by BRAFV600E 

expression in a DOX dose-dependent manner, with maximum proliferation occurring in the uninduced 

condition (Fig S1C). The data were then pooled for subsequent analysis of ERK activity, in which we 

binned BRAFV600E expression levels measured in single cells (irrespective of the DOX dose) and 

quantified the ERK activity in each bin. This analysis revealed that pERK levels increased with 

BRAFV600E expression at lower levels but then plateaued at higher levels, suggesting that ERK activity 

is saturated at intermediate levels of BRAFV600E overexpression (Fig 1E). Moreover, for any given 

level of BRAFV600E, pERK levels varied, demonstrating substantial cell-to-cell variability in activation of 

the MAPK cascade (Fig 1E). To determine the relationship between pERK levels and cell cycle 

progression, DOX was added to the RPE/tet-BRAFV600E cells at various doses for 24, 48 or 72 hours 

and the fraction of S-phase cells was then quantified by EdU incorporation (Fig 1F). Binning the data 
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on pERK levels (regardless of DOX dose), revealed that the fraction of cycling cells was highest at 

intermediate pERK levels, and decreased at higher and lower pERK values. This result suggests that a 

moderate induction of pERK enhances proliferation; however, beyond a certain level, proliferation is 

inhibited (Fig 1F). In the absence of BRAFV600E expression, ERK activity levels fell in the lower range 

(between 6-9 Log2 intensity), and the fraction of proliferating cells associated with these levels ranged 

from 15-25% (Fig S1B & S1D). After BRAFV600E induction, ERK activity levels fell into a higher range 

(between 8.5-11.5 Log2 intensity), and the associated proliferation frequencies ranged from 25% at the 

lower end of ERK activity to 1% at the higher end (Fig S1D). Because proliferation is highly sensitive to 

ERK activity in the range experienced by cells expressing BRAFV600E, it is likely that the heterogeneity 

in ERK activity during OIS (Fig S1B) leads to heterogeneous responses in terms of proliferation and 

senescence. To further confirm the non-monotonic relationship between ERK activity and cell 

proliferation, we over-expressed BRAFV600E at a level sufficient to arrest most cells, and treated them 

with a dose series of ERK inhibitor (ERKi) (SCH772984) to titrate down ERK activity. Consistent with 

Fig 1F, the fraction of cycling cells (indicated by the pRB+ fraction) was highest at an intermediate ERKi 

concentration. By contrast, the fraction of proliferating cells was reduced when cells were treated with 

higher or lower ERKi concentrations (Fig 1G), suggesting a non-monotonic relationship between 

proliferation and ERK activity. 

 

Establishment of a new cell cycle reporter that differentiates G1, S, and G2 phases 

Our data suggest that cells can make proliferation or arrest decisions in response to ERK activity. The 

data presented in Fig 1 show the average response of a population of cells. We hypothesized that at 

the single cell level, internal cellular states such as cell cycle phases or the level or dynamics of 

oncogenic signaling, may influence the proliferation status. We sought to monitor ERK activity and its 

relationship to cell cycle progression using live-cell imaging. Commonly used live-cell cell cycle 

reporters, such as Geminin, monitor the G1-S transition (Sakaue-Sawano et al., 2008) but growing 

evidence suggests that G2 plays a pivotal role in proliferation-quiescence decisions (Min et al., 2020; 

Spencer et al., 2013; Yang et al., 2017).  

 

To distinguish G1, S and G2 cell cycle phases we developed a biosensor based on the PCNA-

interacting-protein (PIP)-box motif. PIP boxes are recognized by Cul4Cdt2 E3 ubiquitin ligase and are 

degraded specifically at S-phase (Fig 2A) (Havens and Walter, 2009). Because ectopic expression of 

human PIP-box containing proteins has the potential to interfere with normal cell cycle progression, we 

developed a sensor based on the PIP-box motif of Drosophila E2F (dE2F) (Shibutani et al., 2008). The 

sensor includes the N-terminus of dE2F (amino acids 1-187) fused to the red fluorescent protein (FP) 
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mCherry. The resulting mCherry-PIP protein contains PIP boxes functional in humans as well as a 

naturally occurring nuclear localization signal. RPE cells stably expressing mCherry-PIP, a Turquoise 

FP- tagged nuclear histone marker (H2B-Turq), and a Venus FP-tagged Geminin (1-110) reporter were 

established. The Geminin (1-110) reporter accumulates in S-phase and is degraded in G1 phase 

(Sakaue-Sawano et al., 2008). mCherry-PIP exhibited periodic accumulation in the nucleus throughout 

48 hr of imaging (Fig 2B). 

 

When comparing both cell cycle reporter levels within the same cell, mCherry-PIP rapidly dropped in 

expression when Venus-Geminin (1-110) began to accumulate at the G1-S transition (Fig 2B & C). The 

mCherry-PIP fluorescence signal rose subsequently while Venus-Geminin continued to accumulate. 

Thus, the patterns of Venus-Geminin (1-110) and mCherry-PIP protein accumulation and degradation 

are consistent with the anticipated properties of the reporter proteins (Havens and Walter, 2009; 

Sakaue-Sawano et al., 2008). By labeling S-phase cells with EdU, we validated that mCherry-PIP 

proteins were lowest in S-phase (EdU positive) and were only present when cells were not in S-phase 

(Fig 2D). Thus, in live-cell experiments G2 can be identified by the presence of both Venus-Geminin (1-

110) and mCherry-PIP (Fig 2C). In addition, cell cycle phases can be computationally derived from live-

cell data by quantifying only the levels of the mCherry-PIP reporter as follows: G1 corresponds to the 

period between nuclear division and a rapid drop in mCherry-PIP fluorescence; S corresponds to the 

period between this rapid drop and right before resynthesis of mCherry-PIP occurs; and G2 is 

corresponds to the period in which mCherry-PIP accumulates prior to the next cell division (see 

material and methods for details of this analysis; Fig 2C). 

 

Live imaging traces revealed a bell-shaped relationship between ERK activity and cell cycle 

entry in single cells 

Given the presence of cell-to-cell heterogeneity in ERK levels and OIS induction, we sought to establish 

the relationship between ERK activity, cell cycle phase transitions, and cell fate at a single cell level. 

We therefore generated an RPE cell line stably expressing DOX-inducible BRAFV600E-HA, mCherry-PIP, 

and EKAREN5, a reporter for ERK activity. This line (which we termed BRAFV600E Dual Reporter cell 

line) allowed us to induce oncogenic BRAFV600E and simultaneously measure ERK activity and cell 

cycle progression in the same cell through long-term live imaging. EKAREN5 (Ponsioen et al., 2021) is 

a version of the widely used EKAREV FRET-based ERK activity reporter (Komatsu et al., 2011; 

Ponsioen et al., 2021) that has been engineered to make it insensitive to CDK1/cyclin B activity at G2 

and M phases. Control experiments confirmed that EKAREN5 sensor reflects ERK activity in our RPE 

line and that activation during G2/M phase is strongly reduced relative to EKAREV (Fig S2A).  
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We imaged asynchronous cultures of BRAFV600E Dual Reporter cells for 24h to obtain cell cycle phase 

information under unperturbed conditions and then added DOX to induce BRAFV600E expression, 

followed by live cell imaging for 3 days to monitor ERK activity and cell cycle progression. We used a 

semi-automated tracking method to label the timing of individual division events, and computationally 

derived the cell cycle phases and ERK activities (Fig 3A; see materials and methods). When BRAFV600E 

Dual Reporter cells were treated with DOX (24h post imaging), a rapid increase in ERK activity was 

observed within 2-4 hours (Fig 3B, consistent with data in Fig 1C) while control cells showed basal 

ERK activity with occasional pulses throughout the imaging period (Gerosa et al., 2020). Most DOX-

treated cells underwent one or two divisions prior to entering prolonged G1 arrest, whereas cells not 

treated with DOX continued to proliferate, serving as a control for the effects of long-duration imaging 

(Fig 3C). A detailed cell cycle duration analysis revealed that prior to the prolonged G1 arrest, the G1 

and S phase lengths of the preceding cell cycle remained unaltered while G2 lengths (orange blocks in 

Fig 3B) increased (Fig S2B). The increase in G2 phase length was ERK-dependent, as addition of 

ERK inhibitor shortened G2 duration (Fig S2C). 

 

To map the relationship between ERK activity and cell cycle progression, cells were treated with ERKi 

at different doses at the same time as BRAFV600E induction with DOX. While 77% of cells treated with 

DOX in the absence of ERKi underwent G1 cell cycle arrest with decreased total division numbers, the 

addition of 62.5nM ERKi rescued the arrest (Fig 3C & Fig S2D). However, at 500nM ERKi, the fraction 

of cells undergoing G1 arrest increased, consistent with a non-monotonic relationship between ERK 

levels and proliferation (Fig 3C & Fig S2D). To quantify this relationship in single cells, we pooled 

single-cell trajectories based on mean ERK activity, and then computed the fraction of cells that entered 

S-phase within the following 24 hr window. Mean ERK activity was determined between 8-12 hr post 

BRAFV600E induction when ERK activity levels stabilizes in cells (Fig 1C & Fig S3A). When the 

probability of S-phase entry was plotted against mean ERK activity, we again observed a non-

monotonic, bell-shaped response curve (Fig 3D). This relationship held for the subsequent time 

intervals measured between 12-16 hr and 16-24 hr post DOX addition (Fig S2E). The high sensitivity of 

OIS to increases in ERK activity above the optimum value likely explain cell-to-cell heterogeneity in 

response to BRAFV600E overexpression. 

  

Previous OIS studies have suggested that activation of p16INK4A and p53 are the two major 

mechanisms leading to cell cycle arrest (Adams, 2009; Mooi and Peeper, 2006). To investigate this 

possibility in RPE/tet-BRAFV600E cells, we used RNAi to acutely knock-down p16, p21 (a downstream 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511142
http://creativecommons.org/licenses/by-nc-nd/4.0/


target of p53) or p27 alone or in various combinations. The CDK inhibitor p27 was included due to its 

well-documented role in integrating diverse signals that regulate cell-cycle exit (Chu et al., 2008). Cells 

were then treated with DOX and the fraction of cycling cells was measured (Fig 3E). We found that 

knockdown of CDK inhibitors individually and in combination had a modest but reproducible effect on 

BRAFV600E-mediated arrest, but in no case was proliferation full restored to control levels. These results 

imply that additional proteins, beyond those suggested by previous studies, are involved in OIS, 

prompting us to apply a more systematic approach.  

 

Deep RNA sequencing identifies genes that respond to ERK activity levels 

We hypothesized that factors mediating ERK activity-dependent cell fate decisions must themselves 

undergo changes in expression or activity in response to varying levels of ERK activity. To 

systematically identify genes whose expression changes with ERK activity, we performed deep RNA 

sequencing of RPE/tet-BRAFV600E cells treated with a combination of DOX for varying times (including 0 

– an untreated control, and 1, 2, 4, 8, 16 and 24 hr) and ERKi at different concentrations (Fig 4A). The 

ERKi concentrations were chosen to sample the full range of proliferation responses based on previous 

titration experiments (Fig 1G). The time points were selected based on the observation that RPE cells 

showed a bell-shaped relationship between ERK activity and proliferation (Fig 1F) as early as 24h after 

BRAFV600E induction. The early time points allow identification of genes that are more directly 

responsive to ERK activity changes, while the later time points reveal long-term effects. Of note, the live 

imaging experiments using BRAFV600E Dual Reporter cells show that ERK activities peak 1-2 hr 

following DOX and ERKi treatment and then slowly decay while remaining at distinct levels during the 

subsequent 24h period of our experiments (Fig S3A). These results suggest our treatments resulted in 

fast and stable ERK responses. To evaluate the effects of ERK inhibition on normal cycling cells, cells 

were treated with different doses of ERKi for 24 hr without the induction of BRAFV600E. The resulting 

gene expression dataset involved 43 conditions assayed in duplicate. We detected ~13,000-14,000 

coding transcripts in each condition (available in GEO: GSE180210) with an average Pearson 

correlation coefficient of 0.99 for replicates, demonstrating high reliability across the data (Fig 4B & 

S3B).  

 

As a first step in validating the approach, we quantified the levels of two genes, EGR1 and DUSP4, 

whose expression is known to be responsive to ERK activation (Fig 4C) (Amit et al., 2007). EGR1 

exhibited a rapid and dramatic (~50-fold) induction within 2 hr of DOX treatment and then decreased 

rapidly, remaining at a level ~8-fold above its pre-induction levels for the duration of the experiment 

(Fig 4C, left). This time-course is consistent with its role as an immediate-early response gene. In 
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contrast, DUSP4 rose steadily by ~6-fold over a 24 hr period, consistent with its role as an early-

response gene mediating negative feedback in the MAPK signaling cascade (Fig 4C, left). Induction of 

EGR1 and DUSP4 fell in a dose-dependent manner when ERKi was present (Fig 4C, right). These 

results confirm that our transcript profiling studies have high dynamic range and can readily detect the 

induction of different ERK activity-dependent gene expression programs. 

 

While it is common to analyze RNA-seq data to identify changes in expression associated with a single 

experimental variable (e.g. time or drug dose as in Fig 4C), given the dynamics of ERK activity, we 

sought to identify genes differentially expressed as a function of both time and ERKi dose. 

Comprehensive cross-correlations between different treatment conditions showed that samples 

collected at different times and/ or different ERKi doses can have similar transcriptional programs (high 

correlation), whereas samples collected at similar times and/ or ERKi doses can have low correlation in 

their transcriptional programs, exemplifying the complexity of our datasets (Fig S3B). Thus, inferring 

differential expression using traditional approaches poses a substantial challenge, since both dose-

response and temporal dynamics need to be accounted for. To address the challenge, we used 

regression with quadratic terms to identify the best-fitting time-dose response for every gene using QR 

factorization of the Vandermonde regressor matrix (Macon and Spitzbart, 1958) (Fig 4D). This type of 

factorization is an effective way to compute least-squares fits for a large number of genes, as 

computationally expensive factorization only needs to performed once for a specific set of dose-time 

combinations. Gene-specific regression then only required computationally cheap matrix-matrix 

multiplication. The purpose of computing the quadratic surface approximation is to minimize noise 

across the landscape of treatments and emphasize time and dose-dependent trends in the data. 

 

To identify differentially expressed genes we compared the goodness of fit between the quadratic 

response surface for each gene and a flat surface. P-values were computed using standard likelihood 

ratio test and subjected to multiple-testing corrected using Bonferroni-Holm (Holm, 1979). Data for 

CDKN2B (the p15INK4b kinase inhibitor) is shown in Fig 4D by way of illustrating the approach: CDNK2B 

expression is induced steadily over 24 hr and exhibits a U-shaped response to ERKi concentration, with 

a minimum expression at 62.5 nM (Fig 4D, left). Quadratic regression on the data yields a smoothed 

surface (Fig 4D, right) that is significantly different from a flat surface (p = 1.1e-114, likelihood ratio test). 

Using this approach, we identified 1958 genes that exhibited significant (p< 1e-20, likelihood ratio test) 

differential expression over time and ERKi dose (Fig 4E). GO analysis showed that these genes fall 

into different functional categories including extracellular matrix signaling, cancer pathways, DNA 

replication, and cell cycle control (Fig S3C). We investigated the presence of known BRAFV600E, ERK, 
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and senescence signatures (Fig 1) in the 1958 differentially-induced genes using GSEA (Gene Set 

Enrichment Analysis) (Fig S3D). The differentially expressed genes identified by quadratic regression 

were significantly enriched for the senescence and MAPK signatures examined, validating the 

effectiveness of our analysis method.  

 

Characterization and clustering of gene expression in relation to ERK signaling dosage 

To identify overall trends in the data, we performed principal component analysis (PCA) with the 

transcriptional data from all 43 conditions for the previously identified differentially expressed genes. 

The first two principal components (PC1 and PC2) explained 81% of overall variance in the data, with 

PC1 and PC2 capturing 54.7% and 26.5% of the variance respectively (Fig 5A). When plotting weights 

of PC1 and PC2 separately for every time point post treatment (Fig 5A), the variance of weights 

increased in a time-dependent manner, starting at 4 hr (top right panel) and progressively forming a 

bell-shape that reached its full extent at the 24 hr time point (bottom right panel). Interestingly, the bell-

shaped curve at 24 hr closely resembled the phenotypic correlation between ERK activity and 

proliferation response (Fig 1F, 1G & Fig 3D). Based on these findings PC1 appeared to correspond to 

differences in ERK activity and PC2 to differences in proliferative index.  

 

To test this hypothesis, we measured the mean ERK activity and degree of proliferation at each 

condition assayed by RNA-seq. We treated BRAFV600E Dual Reporter cells with DOX and different 

doses of ERKi simultaneously (mirroring the experimental conditions in RNA seq). We then performed 

live-imaging experiments, and monitored mean ERK activity and fraction of cells in S-phase along the 

live imaging trajectories. PC1 values (Fig 5A, bottom right) were highly correlated (R=0.87) with mean 

ERK activities measured under the same conditions using the EKAREN5 reporter (Fig 5B, left). 

Moreover, the fraction of cells in S-phase (measured using mCherry-PIP) was highly correlated with the 

value of PC2 (R= 0.8; Fig 5B, right). Thus, we conclude that the first principal component is a proxy for 

ERK activity whereas the second principal component is a proxy for proliferation index. Moreover, we 

found that the value of PC2 was similar for conditions that had similar average ERK activity, regardless 

of how that activity level was achieved. For example, a PC2 value of approximately -30 was achieved in 

cells not expressing BRAFV600E and treated with low dose (250 nM) ERKi, as well as in cells with BRAF 

induced and treated with high dose ERKi (1000 nM) (Fig 5A, 24h plot, yellow and orange circles). 

These data also strongly suggest that the two primary drivers of gene expression, over a wide range of 

conditions, are the ERK activity level and the extent of proliferation.  
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To investigate the possibility of non-specific ERKi targets amongst the 1958 differentially expressed 

genes, we determined whether the effects of the inhibitor on these genes could be rescued by boosting 

ERK expression. Of the 1958 genes, many were differentially expressed in the presence of 250nM 

ERKi (compared to untreated cells). However, gene expression was restored to resemble that in the 

control when cells were treated with 250 nM ERKi plus DOX to induce BRAFV600E and ERK activity (Fig 

S4A). Furthermore, comparing two conditions with similar ERK activities (ERKi 250 nM -DOX vs ERKi 

1000 nM +DOX) (Fig S4B, left) revealed a high correlation (R2 = 0.97, Fig S4B, right), suggesting that 

the set of differentially expressed genes was primarily responding to ERK activity. These results 

together suggest that ERKi effects can be rescued by overexpression of BRAFV600E and that the 

potential off-target effects of ERKi are likely very minimal. 

 

We expected expression levels of genes to have a differential patterned response to varying levels of 

ERK signaling (PC1) and proliferation rates (PC2). To further subdivide gene expression programs, we 

used unsupervised k-medoids clustering based on PC1 and PC2 values at the 24 hr time point (Fig 

5C). K-medoids is a variant of k-means clustering which is robust to outliers and also allows the use of 

arbitrary distance metrics. We computed pairwise Euclidean distances for the log2 fold-changes 

(relative to an untreated control) in the set of 1958 genes and then performed k-medoids clustering. 

With k = 8 clusters, differences in relationship between changes in expression and PC1 or PC2 values 

were evident (Fig 5C). For instance, in the “full ERK-positive” cluster, the gene expression goes up with 

increasing PC1 value suggesting a strong positive correlation. Yet, in the same set of genes, a single 

PC2 value can have two different levels of gene expression (from treatments that have either high or 

low PC1 values) indicating a weak correlation between gene expression and PC2 value. Similar 

clustering results were obtained with data from all the time points. 

 

The results of k-medoids clustering yielded clusters that could be grouped by visual inspection into four 

qualitatively different response classes to ERK activity, each having two clusters with opposite trends 

(Fig 6). Class I included genes whose expression is correlated either positively (n=283, 14.5%) or 

negatively (n=296, 15.1%) with ERK activity across its full range, resulting in a linear relationship (" full-

range ERK responder"; Fig 6A red lines). Canonical negative feedback regulators of the MAPK 

pathway such as DUSP4/6 and SPRY2 belonged in this group (Amit et al., 2007). Class II genes were 

those in which differential gene expression fell with ERK activity in a non-linear, “convex” manner (blue 

lines). At low ERK activity levels, 248 (12.7%) were significantly upregulated and 404 (20.6%) were 

down regulated. Class II included genes involved in DNA replication, DNA damage repair and the G1/S 

cell cycle transition (e.g. G1 cyclins) (Fig S5A). Class III was similar to the Class II with the response 
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window shifted to higher ERK activity ranges (green lines). This class included 281 upregulated genes 

(14.4%) and 231 (11.8%) down-regulated genes. Class III included genes involved in differentiation, 

migration/motility, cytokine response and growth factor activity. Class IV (orange lines) comprised 

genes with a bell-shaped (n=71, 3.6%) or U-shaped (n=144, 7.4%) response curves, having the 

greatest differential gene expression at the lowest and highest ERK levels. This class included the CDK 

inhibitor CDKN2B (p15).  Expression of Class IV genes was highly dependent on PC2 as seen by a 

monophasic response where similar expression levels were obtained for a given PC2, regardless of 

PC1 value (Fig 5C, bottom). The classifications of gene expressions in Fig 6A exemplify different 

strategies cells utilize in response to varying levels of ERK activity. 

 

We also investigated the relationship between gene expression profiles and time. To obtain a simple 

measure of the timing of gene induction or repression, we considered the time at which each gene first 

reached half of its maximal differential gene expression value in a weighted average that aggregated 

data across different ERKi doses (see Materials and Methods). Genes were grouped according to the 

time of this absolute half-maximum change in expression (the “mid-induction time”). This analysis 

revealed genes responding on rapid (1-2 hr), intermediate (4-8 hr) and slow (16-24 hr) time scales (Fig 

S5B). For instance, the previously mentioned EGR1 and DUSP4 exhibit rapid and intermediate time 

scales of induction, respectively (Amit et al., 2007). In general, genes in any ERK response category 

from Fig 6 were found in any temporal response category.  However, we found that genes in the full-

range ERK responder group (Class I; red lines in Fig 6A) tended to respond at earlier times in 

BRAFV600E induction than genes in Class III or Class IV. Genes in the low-ERK responder group (Class 

II) responded most slowly to BRAFV600E induction (Fig 6C). These results suggest only modest 

correlations between time- and ERK activity-dependent gene regulation. 

  

We envision that combinations of different temporal and ERK dose-response classes contribute to the 

overall bell-shaped proliferation response. For instance, low G1 cyclin expression (low ERK down-

regulated group) combined with high CDK inhibitor expression (U-shape group) at low ERK activity 

could trigger cell cycle arrest. Similarly, upregulation of CDK inhibitor at high ERK activity (U-shaped 

group) could also trigger cell cycle arrest. Even though the proliferation response is stable over time 

(Fig 1F), the underlying mechanisms could vary over time, as we detected a large variation in the 

kinetics of ERK-responsive genes. Thus, a combination of ERK activity-responsive genes could 

function collaboratively to achieve heterogeneous proliferation responses within a population of cells, 

across time or ERK activity levels.  
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DISCUSSION 

While OIS is an efficient way to halt tumor development, it is not uncommon to see genetically 

homogenous cells respond to oncogenes in an asynchronous and heterogeneous manner. In this 

paper, we showed that cell to cell variability in OIS induction can be traced back to differences in ERK 

activity at a single cell level. A narrow range of ectopic BRAFV600E expression generates cells with a 

wide range of ERK activities. Such “noise” is common in intracellular signaling networks (Suderman et 

al., 2017) and it is well established that cell-to-cell differences in protein levels can arise from 

transcriptional bursting and unequal partitioning of cytoplasm at cell division. These generate a log-

normal distribution of protein concentrations across a population of cells that is sufficient to cause 

dramatic differences in their downstream protein activity and cell fate (Spencer et al., 2009). Using a 

newly developed single-cell PIP reporter and live-cell imaging, we found that entry into senescence is 

preceded by a prolonged G2 phase but not by a burst of proliferation as previously described (Courtois-

Cox et al., 2008; Ogrunc et al., 2014). Single cell imaging revealed a non-monotonic, bell-shaped 

relationship between ERK activity and cell proliferation. Our data showed that proliferation is highly 

sensitive across the entire range of ERK activity, and thus, a population of cells expressing BRAFV600E 

will continuously exhibit differences in ERK activity and heterogenous outcomes with some cells 

continuing to proliferate and others undergoing OIS. We speculate that cells that can proliferate in the 

presence of elevated BRAFV600E are likely to give rise to tumors. It is also possible that cells that are 

induced to arrest in the presence of high ERK activity could once again become proliferative in the 

presence of the BRAF and MEK inhibitors used therapeutically.  

 

Our data support a Goldilocks principle ("just the right amount") for ERK activity such that an 

intermediate amount promotes proliferation, whereas much higher or lower levels prevent it. 

Accordingly, hyperactivating mutations in ERK are much less common than those in RAS and RAF 

(Deschênes-Simard et al., 2014; Roberts and Der, 2007), as ERK mutations are likely to lead to OIS. 

On the contrary, hyperactivation of its upstream regulators, e.g. RAS and RAF, are commonly found as 

oncogenic drivers (Hobbs et al., 2016; Holderfield et al., 2014), suggesting they may promote complex 

gene expression programs that either limit ERK activity or bypass the arrest caused by high ERK 

levels. Based on the Goldilocks principle, one can also predict that increasing ERK activity in cancer 

cells will likely push cells into senescence or cause a growth disadvantage. Likewise, decreasing ERK 

activity in cells expressing oncogenic RAS or RAF will allow cells to resume proliferation again. Indeed, 

hyperactivation of MAPK signaling is deleterious to BRAFV600E melanoma cells (Leung et al., 2019). 

Moreover, melanomas with acquired resistance to RAF and MEK inhibitors become drug dependent for 

their continued proliferation due to elevation of their MAPK signaling (Thakur et al., 2013). On the 
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contrary, in normal cells, reducing ERK activity rescued cells from senescence and facilitated cell 

transformation by oncogenic RAS without the need of additional oncogene expression (Deschênes-

Simard et al., 2013). These results all pointed out a tumor-suppressive role of ERK signaling and 

support our bell-shaped ERK-proliferation model. 

 

Our study suggests that the intensity of ERK signaling plays a pivotal role in determining the final 

proliferation outcome. Yet, how the strength of ERK signaling connects to the outputs of this pathway is 

largely unclear. Induction of BRAFV600E for different amounts of time with and without treatment of cells 

with ERKi at different doses made it possible to generate cells with a wide range of ERK activities. RNA 

sequencing revealed the existence of four distinct classes of ERK-regulated genes which differed with 

respect to the relationship between ERK activity and the level of gene expression. The levels of Class I 

genes are linearly proportional (or inversely proportional) to ERK activity across the full range of ERK 

activity. Class II or III genes exhibit a convex relationship to ERK activity, and are most affected at 

either low or high ERK concentrations. Class IV genes exhibit a bell-shaped or U-shaped response, 

mimicking the response of proliferation to ERK activity. Previous studies that focused on gene 

expression at only high or low ERK levels would have been unable to resolve these 4 classes of ERK-

dependencies. For example, genes that increase with ERK activity in all 4 classes would have been 

categorized in a single group when assayed at a high ERK level. The methods used here enable further 

refining of specific ERK-dependent signatures by identifying whether the genes are full-range linear 

ERK responders, high-range ERK responders or U-shape ERK responders. This analysis suggests that 

suppression of proliferation at low and high ERK levels likely proceeds via distinct transcriptional 

programs. Our ERK activity- and time-dependent classifications pave the way for dissecting the 

relevant pathways at different levels of ERK activity. 

 

Our classification of genes also suggests that a single class of genes or a combination of multiple 

classes of genes could cooperate to reach the bell-shaped proliferation response. For instance, positive 

cell cycle regulators in a bell-shaped class or negative cell cycle regulators (e.g. p15INK4B) in a U-

shaped class can, on their own or in combination, generate a bell-shaped proliferation response. 

Likewise, in the low-range ERK responder class, positive cell cycle regulators (e.g. G1 cyclins) were 

down-regulated and CDK inhibitors were upregulated at low ERK levels. This combination could explain 

the reduced proliferation at low ERK activity. It is thus reasonable to assume that cells take a network 

approach rather than a single-gene strategy to regulate proliferation across a range of ERK activity 

levels. It is also important to note that our gene classes are not exhaustive and that additional types of 

regulations (e.g., protein levels or post-translational modifications) must co-exist for a robust bell-
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shaped proliferation response. For instance, high ERK activity can prevent cell cycle progression by 

inducing degradation of key regulators (Deschênes-Simard et al., 2013), by modulating senescence-

associated secretomes (Di Mitri and Alimonti, 2016) or by engaging homeostasis at tissue levels (Ruiz-

Vega et al., 2020). We envision a broader set of genes and diverse regulatory mechanisms are needed 

for cells to engage a robust and coherent bell-shape proliferation response. 

 

In summary, our studies provide a detailed and comprehensive map of the input-output relationship 

between ERK activity, proliferation response, and gene expression programs in non-transformed cells. 

In particular, the data provide an explanation for cell-to-cell heterogeneity in OIS induction in a 

nominally uniform population of proliferating cells. Our data help to explain the observed bell-shaped 

relationship between MAPK signaling and proliferation while also revealing substantial complexity in 

time and activity-dependent changes in gene expression. Such insights should improve our ability to 

study OIS in vivo and ultimately develop treatment regimens and therapeutics that exploit OIS to block 

the growth of human cancers. 
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Main Figures 

 

Figure 1. BRAFV600E-ERK pathway activation results in a non-monotonic proliferation response.  

(A) Schematics of pathways activated by oncogenic BRAF (* denotes oncogenic mutations in BRAF 

including V600E in this study). DDR, DNA damage response. ROS, reactive oxygen species. 

(B) Western blot analysis of levels of BRAF, active pERK, and the proliferation marker pRB 

following BRAFV600E induction by increasing doses of doxycycline (DOX, 0-250ng/ml, 2-fold dilution 

from the right) for 72h. Actin is shown as a loading control. 
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(C) Western blot analysis of levels of BRAF, active pERK, and the proliferation marker pRB at the 

indicated time points following BRAFV600E induction with 250ng/ml DOX. Actin is shown as a loading 

control. 

(D) Representative images of cells assayed for senescence associated �-galactosidase (SA-�-gal) 

activity 7 days after DOX induction of BRAFV600E-HA at 250ng/ml or after 10 Gy �-irradiation. 

(E) RPE/tet-BRAFV600E-HA cells were treated with serial doses of DOX (0-250ng/ml, 2-fold dilution, 

also see Fig S1A) for 72h and immunostained for BRAFV600E-HA and pERK. The immunofluorescence 

data from all DOX doses were pooled together and single-cell pERK levels were extracted for equally 

spaced bins of BRAFV600E expression. Each bin contains at least 400 cells. Each dot represents a 

single cell. 

(F) RPE/tet-BRAFV600E-HA cells were treated with serial doses of DOX as in (E) for 24h, 48h or 72h 

before immunostaining. The immunofluorescence data from all DOX doses were pooled together and 

the percent of cells in S phase (%S) was calculated for equally spaced bins of ERK activity (mean ± 

95% bootstrap confidence interval). 

(G) RPE/tet-BRAFV600E-HA cells were treated with DOX (250ng/ml) together with different doses of 

ERK inhibitor (ERKi) (SCH772984, 0-500nM, 2-fold dilution) for 72h and then stained for pRB as a 

marker of proliferation. The percentage of pRB+ cells at each dose of ERKi is shown (mean ± SD of 

three replicate wells).  
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Figure 2.  Development and characterization of a live-cell sensor that identifies G1, S, and G2 

cell cycle phases. 

(A) Schematic of PIP (PCNA-interacting protein) motif based S-phase biosensor. Drosophila E2F1 

undergoes S-phase specific degradation by the highly conserved PIP motif in E2F1 and the Cul4 (Cdt2) 

E3 ligase (top). The bottom diagram shows cell cycle progression with nuclear mCherry-dE2F PIP 

fluorescence changes. 

(B) Images of an RPE cell stably expressing Venus-Geminin (1-110), mCherry-dE2F PIP and H2B-

Turquoise proceeding through the cell cycle during the 48 hr imaging time.  

(C) Single cell trace of mCherry-dE2F PIP (red) and Venus-Geminin (1-110) (green) shown in (B). 

(D) RPE cells stably expressing mCherry-dE2F PIP were pulsed with EdU for 15min before fixation 

and detection of mCherry-dE2F PIP and EdU. Density scatter plots show mCherry-dE2F PIP intensity 

versus EdU fluorescence intensity. Each dot represents a single cell. The color scale represents the 

relative density. 
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Figure 3. Single-cell live imaging traces revealed a bell-shaped correlation between ERK activity 

and proliferation. 

(A) Sample single cell trace of Venus-dE2F PIP in RPE cells proceeding through the cell cycle. 

Blue, green and orange crosses mark the start of G1, S and G2 phase. Respective length of each cell 

cycle phase is shown above. 

(B) Heatmaps of ERK activity (EKAREN5) and cell cycle distribution (the same color scheme as 

shown in (A)) in RPE reporter cells treated with control vehicle (-DOX, left) or DOX (+DOX, right). RPE 

Dual Reporter cells stably expressing tet-regulated HA-tagged BRAFV600E, ERK reporter EKAREN5 and 
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mCherry-dE2F PIP were treated as indicated 24h after the start of imaging (white vertical line). Each 

horizontal line represents a single cell. 

(C) Frequency of G1 arrest in RPE Dual Reporter cells treated with control vehicle (-DOX) or DOX 

together with DMSO or ERKi. Cells and treatment schemes were the same as in (B) and the percent of 

G1-arresting cells was calculated following time-lapse imaging (mean ± 95% confidence interval, n>200 

cells per condition). 

(D) Fraction of S-phase entry in response to increasing ERK activity. The RPE Dual Reporter cells 

in (B) were treated with ERK inhibitors (0, 62.5, or 500nM) in the absence or presence of DOX and at 

24h after the start of live imaging. Cells were then imaged for another 72h. To broaden the sampling of 

ERK activity range, data from all treatments were pooled together and the mean ERK activity between 

8-12 hr post treatment was calculated. The probability of entering into S-phase was quantified within 24 

hr after the ERK span (mean ± 95% confidence interval, n>100 for each ERK activity bin). 

(E) Percentage of pRB positive cells after siRNA-mediated depletion of the indicated CDK inhibitors 

(individually or in combination) 2 days post ±DOX treatment in RPE cells stably expressing tet-HA-

tagged BRAFV600E (mean ± SD, n=4 replicates). 
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Figure 4. Deep RNA sequencing identifies genes with altered expression in response to different 

ERK activities. 

(A) RNA seq experimental design. RPE cells stably expressing tet-regulated HA-tagged BRAFV600E 

were treated with DOX and variable concentrations of ERKi for 1-24h as indicated (43 conditions). Each 

condition was performed in two independent replicates (n=12 for no-treatment control).  

(B) Box plots showing correlation coefficients for RNA seq replicates. Each dot represents a pair of 

replicates. 

(C) Transcript levels as measured by RNA seq of EGR1 and DUSP4 in response to variable time of 

treatment (left) or variable ERKi concentrations (right) (mean ± SD from two independent replicates, 

base-line was plotted from no-treatment control). 

(D) (Left) Log2 fold change of CDKN2B transcripts as a function of treatment time and ERK inhibitor 

dose. Values were normalized to untreated control. (Right) Smoothed quadratic surface fit for CDKN2B 

expression. P-value shows the goodness of fit between the quadratic surface and a flat surface. 

(E) Selection of differential expressed genes based on quadratic surface fits as shown in (D). 

Genes with a p-value less than 1e-20, calculated as shown in (D), were considered differentially 

expressed. 
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Figure 5. Gene classification by clustering of gene expression reveals different response types 

to changing levels of ERK activity and proliferation. 

(A) Principal-component analysis (PCA) of log2 fold-change in gene expression vs untreated control 

for each treatment (mean of two replicates) from RNA-seq. PC1 (principle component 1) and PC2 

(principle component 2) contribute 54.7% and 26.5% of the variance in the data, respectively. 

(B) Live imaging experiments revealed the correlation between PC1 and ERK activity (EKAREN5) 

and the correlation between PC2 and proliferation (percent of cells in S-phase, %S). BRAFV600E Dual 

Reporter cells were treated with ERKi (0, 3.9, 15.6, 62.5, 250, 1000nM) in the absence or presence of 

DOX at the start of live imaging and continued imaging for 43.5h (12 treatments). PC1 values obtained 

at 24h post treatments in (A) were plotted against the ERK activity measured at 24h with comparable 

treatments from live imaging experiments. Similarly, PC2 values at 24h post treatments were plotted 

against the percent of cells in S-phase measured at 43.5h from live imaging experiments. 43.5h was 

chosen to account for the time delay between gene expression and cell cycle entry. 

(C) K-medoids clustering of the 1958 differential expressed genes identified from RNA seq 

experiments. Log2 fold-change expression data of each differential expressed gene at 24h were 

clustered by k-medoids clustering (k=8). Each cluster has a characteristic gene expression pattern in 

response to varying levels of PC1(a proxy of ERK signaling) and PC2 (a proxy of proliferation index). 

Mean expression levels of each cluster are shown as multi-colored line (blue-yellow represents low-

high PC1 values). 
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Figure 6. Patterns of ERK-dependent gene expression clustered by ERK activity and time of 

induction. 

(A) Four distinct classes of gene expression patterns in response to variable ERK activity. Full-

range ERK responder class includes genes with gene expression proportional to ERK activity across

the entire range of activity levels. Low-range ERK responder class includes genes that up- or down-

regulate their expression at lower range of ERK activity but remain non-responsive at higher ERK 

activity. High-range ERK responder class shows differential gene expression only at higher ERK acti

levels. Full-range bell-shape ERK responder class includes genes that have a bell or a U-shaped 

ss 

-

ctivity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511142
http://creativecommons.org/licenses/by-nc-nd/4.0/


response with the most extreme responses happening at low and high ERK activity. For illustration 

purposes, we substituted ERK activity for PC1 value since the two are highly correlated. 

(B) Temporal dynamics of each class of genes shown in (A) in response to DOX/ERKi treatment. 

Genes in each class were grouped according to the earliest time-point at which they achieved 50% of 

the maximal change observed over the course of the experiment (see Materials and Methods). The 

time-point of mid-induction is shown on the x-axis and the number of genes falling into each category is 

shown on the y-axis. 

(C) Mean induction time of ERK responder classes. The violin plots show bootstrapped estimates of 

the mean for each cluster. Significant differences in the induction time between ERK-response clusters 

are highlighted with black bars. P-values are derived from ANOVA followed by Tukey's honest 

significant difference test.  
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STAR METHODS 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines 

Human retinal pigment epithelial (RPE) cells immortalized with human telomerase expression (RPE-

hTERT, a kind gift from S.J. Elledge, Harvard Medical School) were grown in DMEM/F12 supplemented 

with 10% fetal bovine serum (FBS), 2mM L-Glutamine, Antibiotic-Antimycotic (100U/ml penicillin, 

100μg/ml streptomycin and 250ng/ml Amphotericin B), and 50μg/ml hygromycin B.  

Cell line construction 

To establish RPE/tet-BRAFV600E-HA cell line, C-terminal HA-tagged BRAFV600E construct was made by 

cloning the full-length BRAFV600E expression cassette (Addgene plasmid # 15269) into a lentiviral 

backbone with tet-inducible promoter (Addgene plasmid # 41394, pLIX402). RPE cells were then 

infected with lentivirus carrying pLIX402-BRAFV600E-HA and selected with puromycin (2�g/ml) to obtain 

mixed cell clones. Single cell clones were expanded through limited dilution and subsequently screened 

for HA expression in the presence of doxycycline. To establish dE2F PIP reporter lines, expression 

cassette harboring Drosophila E2F1 PIP fragment (comprised of a.a. 1-187) fused to the C-terminus of 

Venus or mCherry fluorescent protein was cloned into the CSII-EF1 lentiviral vector. RPE cells 

transduced with lentiviruses carrying H2B-mTurquoise, mCherry-dE2F PIP and Venus-Geminin (1-110) 

or lentiviruses carrying H2B-mTurquoise and Venus-dE2F PIP were sorted on a BD FACSAria II high 

speed cell sorter to obtain pure populations expressing the desired fluorescent proteins. To establish 

RPE/EKAREV-NLS reporter line, RPE cells were co-transfected with pPB-CAG-EKAREV-NLS 

(Komatsu et al., 2011) and pCMV-hyPBase transposase vector (A. Bradley, Sanger Institute) and 

FACS sorted to obtain pure populations. To establish RPE/tet-BRAFV600E-HA + EKAREN5 + mCherry-

dE2F PIP dual reporter line, verified RPE/tet-BRAFV600E-HA single cell clone was transduced with 

EKAREN5 (ERK FRET reporter) (Ponsioen et al., 2021) and mCherry-dE2F PIP lentiviruses and single 

cell clones harboring both reporters were obtained through single-cell sorting and subsequent 

expansion. 
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Time-lapse microscopy 

Cells were plated in poly-D-lysine-coated glass-bottom plates (MatTek Corporation) and switched to 

phenol-red free culture medium supplemented with 10% FBS prior to live imaging. Cells were imaged 

using a Nikon Eclipse TE2000 microscope equipped with a chamber for controlled temperature (37%) 

and CO2 (5%) environment. All live-cell imaging was performed with a 10x Plan Apo objective (Nikon) 

and a Hamamatsu Orca ER camera using CFP, YFP, mCherry filter sets (Chroma). For EKAREV and 

EKAREN5 reporter imaging, the FRET signal was collected using customized ECFP/EYFP FRET filter 

sets with ET436/20x, ET535/30m, and T455lp mounting into the Nikon TE2000/Ti cube. 

siRNA knockdown 

Synthetic siRNAs used for this study were from Dharmacon siGenome SMART pool and were used at 

13.3nM with Lipofectamine 2000 reagents (Invitrogen) according to manufacturer’s 

protocol. The following siRNAs were used: control siRNA (non-targeting #2), siGenome pooled set of 

four siRNAs for p16, p21 and p27. Specific antibodies were used to verify the target knockdown. 

Western blot and senescence associated β-galactosidase assay 

Cells were harvested in Laemmli Sample Buffer (Bio-Rad, #1610737) for 5 min at 95°C. Protein 

samples were separated by electrophoresis using 4-20% polyacrylamide gels (Bio-Rad, #456-9036) 

and transferred to Immun-Blot PVDF membranes (Bio-Rad #1620177). Blots were incubated with 

primary antibodies (p-RB: Cell Signaling #8516; p-ERK: Cell Signaling #4370; Actin: Sigma-Aldrich 

#5316; HA: Roche #11867423001) overnight at 4oC and then with HRP conjugated secondary 

antibodies for 1 hour at room temperature. HRP was detected using ECL substrates (Thermo Scientific 

#34076) and myECL Imager (Thermo Scientific). 

Immunofluorescence 

Immunostaining was performed in 96-well plates and all washes were done with the EL406™ 

Microplate Washer (BioTek). In brief, cells were fixed with 4% paraformaldehyde for 20 min, 

permeabilized with 0.2% Triton X-100 for 15 min and blocked with Odyssey® blocking buffer (LI-COR) 

for 1h before applying different antibodies. Primary antibodies were incubated overnight at 4°C. 

Appropriate Alexa Fluor® conjugated secondary antibodies were then used. For EdU staining, cells 

were pulsed with 10�M EdU for 30 min (or as indicated) prior to fixation and processed according to 

manufacturer’s instructions (Invitrogen #C10340). Cells were imaged with a 10x objective using an 

Operetta High Content Imaging System (Perkin Elmer, CT) or ImageXpress Micro Confocal High-

Content Imaging System (Molecular Devices, CA). 9 sites were imaged in each well for 96-well plates. 
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Image analysis 

Images for the immunostaining experiments were analyzed using MATLAB image analysis programs 

(Salmeen et al., 2010). Briefly, nuclear centroids were identified in images of Hoechst staining after 

applying a low-pass Gaussian filter and local background subtraction. A nucleus mask was generated 

for each cell by expansion from the centroid to reach 30% of maximum intensity. The nuclear pERK, 

BRAFV600E-HA, EdU and pRB mean intensity were measured after local background subtraction. The 

threshold level used to determine pRB and EdU positive cells was set using a k-means clustering 

algorithm on a day-to-day experiment basis. 

Single-cell tracking and quantification following live-imaging 

For population analysis of individual time frames, images were quantified and analyzed using MATLAB 

scripts (Cappell et al., 2016). To track single-cells following long-term live imaging, cells were tracked 

semi-automatically using a combined method of EllipTrack (Tian et al., 2020) and p53Cinema Single 

Cell Tracking Software (Reyes et al., 2018). In brief, EllipTrack segments cells by fitting nuclear 

contours with ellipses and tracks cells using a machine learning algorithm. The cell tracks were then 

manually curated using p53Cinema Single Cell Tracking Software that allows for real-time user 

correction of tracking and annotation of division events. Finally, verified tracks were kept for 

downstream analysis and signals from each color channel were extracted in the cell nuclei. G1-S and 

S-G2 transition events were computationally identified based on the Venus (or mCherry)-dE2F PIP 

intensity changes (1st derivative of the intensity) between frames. Briefly, Venus (or mCherry)-dE2F 

PIP levels would sharply decline or rise up when G1-S or S-G2 transition occurs, respectively. 

ERK FRET reporter quantification 

To quantify ERK activity, CFP, YFP and FRET images were acquired in RPE/ tet-BRAFV600E-HA + 

EKAREN5 + mCherry-dE2F PIP dual reporter cells. FRET images were taken by CFP excitation and 

YFP emission. Images were then subjected to flat field correction (to eliminate uneven illumination) and 

local background subtraction. The FRET signal was calculated on a pixel-by-pixel basis as follows. 

First, a FRET image was corrected for bleed-through from CFP and YFP channels.  

[FRET]Corr = ([FRET]Raw- α [CFP] – β[YFP] 

α: bleed-through of CFP into FRET channel upon CFP excitation  

β: bleed-through of YFP into FRET channel upon CFP excitation of YFP  

The two microscope-specific bleed-through parameters, α (0.53) and β (0.23), were determined using 

cells transfected with CFP or YFP alone. Then, the corrected FRET image ([FRET]corr) was normalized 
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by the CFP image to obtain the FRET signal ([FRET]corr/[CFP]).  ERK activity was calculated from the 

median value from the nuclear compartment of the FRET signal of each cell. 

Statistical analysis 

Error bars represent the standard deviation, standard error of the mean, or 95% bootstrap 

confidence interval as indicated in the legends. Statistical comparisons (p values) were obtained from 

two-sided t tests or otherwise as noted. The Pearson’s correlation coefficients (R) were calculated as 

indicated. 

Total RNA sample preparation and quality control 

RPE/tet-BRAFV600E-HA cells were plated in 6-well plates (75,000 per well) and allowed to grow for 72 hr 

till 50% confluency. Cells were then treated with the indicated concentrations of ERK inhibitor 

(SCH772984) alone for 24h or in combination with DOX (250ng/ml) for variable length of time as 

indicated by the experimental design. Each condition was performed twice on two different days for a 

total of two biological replicates. Cells were lysed with 600�l Trizol per well and total RNA was 

prepared using Direct-zol-96 RNA Kits according to the manufacturer's protocol. Sample concentrations 

were determined by Nanodrop and RNA quality was assessed on a subset of samples by Bioanalyzer 

(Agilent); all samples scored RINs of > 9.0. 

RNA sequencing library preparation 

RNA sequencing library preparation was performed with the High Throughput TruSeq Stranded mRNA 

Library Prep Kit (Illumina) following the manufacturer’s protocol at half reaction volume. Input for each 

sample consisted of 300-500ng of RNA and 5μl of 1:500 diluted ERCC spike-in mix 1 (Ambion). 

Libraries were amplified for 12 cycles during the final amplification step. Libraries were quantified using 

the Qubit dsDNA HS assay (Thermo Fisher Scientific). Library size and quality were spot checked for a 

subset of samples by Bioanalyzer (Agilent). The average size of cDNA fragments in the libraries was 

370 base pairs. Libraries were pooled at equimolar concentrations then the pool was quantitated using 

the KAPA library quantification kit (KAPA Biosystems). Libraries were sequenced single end 114 base 

pairs using NovaSeq_SP full flow cell (Illumina) at the Bauer Core Facility (Harvard University).  

RNA-seq data processing 

Reads were processed to counts using the bcbio-Nextgen toolkit (https://github.com/chapmanb/bcbio-

nextgen) as follows: (1) Reads were trimmed and clipped for quality control in cutadapt v2.3; (2) Read 

quality was checked for each sample using FastQC v0.11.8; (3) High-quality reads were then aligned to 
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the human assembly and gene annotation GRCh38.97 using Hisat2 v2.1.0 (Kim et al., 2019); (4) Gene-

level transcript-counts were calculated using HTseq-count v0.9.1. Only data from genes annotated as 

protein-coding according to annotation from GRCh38.97 were kept for further analysis. Gene 

expression data (RNA seq) were deposited in the GEO (Gene Expression Omnibus, 

https://www.ncbi.nlm. nih.gov/geo/, accession number: GEO: GSE180210). 

Differential expression analysis 

Differential expression of genes was analyzed using DESeq2 (Love et al., 2014) by fitting a linear 

mixed effect that expressed the number of reads for each gene � using a negative binomial distribution 

of the form � �  ���	, ��� with mean 	 and dispersion �. The mean for each gene was modeled by a 

linear equation taking into account the sample treatments 
� and batch with the untreated sample at 

time zero as intercept. 

	 � ��������� � 
� � 
��. . . �
� � ����� 

Log-fold changes were adjusted using procedures implemented in apeglm (Zhu et al., 2019), which 

estimates posterior distributions of the coefficients in the linear models that were fitted by DESeq2.  

Selecting differentially expressed genes 

In this setting, inferring differential expression poses a substantial challenge, since both dose-response 

and temporal dynamics need to be accounted for. To account for dependency on both time and dose, 

we used multiple regression with quadratic terms to describe the time-dose response surface (Log-fold 

changes) for every gene. As the same time points and doses were measured for all genes, we only 

computed a single QR-decomposition of the Vandermonde regressor matrix (Macon and Spitzbart, 

1958) and then computed regression using matrix-matrix multiplication. To identify differential 

expression, we compared the goodness of fit between quadratic regression and constant approximation 

via the mean. P-values were computed using standard likelihood-ratio test and multiple-testing 

corrected using Bonferroni-Holm (Holm, 1979). 

Clustering ERK-dependent differences in gene expression 

Principal component analysis was performed on the matrix of moderated log2-fold changes of all 

samples compared to the baseline condition. The first principal component was strongly correlated with 

ERK activity across all samples. In order to find genes that have similar relationships between gene 

expression and ERK dose, we applied k-medoids clustering (Schubert and Rousseeuw, 2019) — a 

variation of the k-means clustering method that is robust to outliers — on the log2-fold changes at 24h. 

We found that choosing � � 8 resulted in easily interpretable clusters with different dynamics of ERK 
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signaling responses. The clusters we identified can be grouped into four different response types, each 

with two variants representing responses with opposite signs. 

Time series analysis 

In order to group genes into clusters depending on their time of induction or repression, we first 

normalized the time series log2-fold changes of each gene. First, we computed the range � of log2-fold 

changes � for each gene � and each ERKi concentration � across all time points � by subtracting the 

minimum log2-fold change from the maximum. 

���, �� � �� 
�

���, �, �� ! ���
�

���, �, �� 

Next, we aggregated the time series data across all ERKi doses by computing 33% and 67% quantiles 

of log2-fold changes at each time point, weighted by the time series range ���, ��, using the algorithm 

" described in (Harrel and Davis, 1982). 

#��, �� � "�$��� , ���, �, ��, ���, ��� 

with $��� ���� �� 
��	
.��,
.���

|"�$, ���, �, ��, ���, ���| 

At each timepoint, the quantile with the highest absolute value was selected as the aggregate log2-fold 

change #, analogous to the procedure used for aggregating expression data across cell lines in the 

cited reference (Subramanian et al., 2017). Finally, genes were grouped into clusters based on when in 

the time series the absolute aggregated log2-fold change exceeded half of the maximum value across 

the entire time series. The significance of differences in the induction time between ERK-response 

clusters were tested using ANOVA followed by Tukey's honest significant difference test. The 

distribution of the mean induction time for each ERK-response cluster was estimated using 

bootstrapping. The induction times of genes from each cluster were resampled 1000 times with 

replacement and the mean of each sample was computed. 

Gene set enrichment analysis 

Two variants of gene set enrichment analysis were performed. First, the enrichment of GO-terms in the 

ERK-response cluster gene sets was assessed using the R Bioconductor package topGO 

(https://bioconductor.org/packages/release/bioc/html/topGO.html). We considered all GO-terms in the 

Biological Process (“BP”) and Molecular Function (“MF”) categories. Enrichment was computed using 

the “weight01” algorithm and Fisher’s exact test. Second, gene set enrichment analysis was performed 

using gene sets from MSigDB (Liberzon et al., 2011). Specifically, gene sets from the Hallmark (H), 

curated pathways (C2:CP), and ontology (C5) categories, excluding Human Phenotype Ontology 

(HPO), were considered. We tested for significant enrichment using Fisher’s exact test on the overlap 
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between the 1958 differentially expressed genes and the gene set of interest. Additionally, we 

computed the enrichment of a collection of manually curated gene sets related to ERK signaling, 

containing all gene sets containing “ERK”, “MAPK”, “senescence”, or “melanoma” from MSigDB, as well 

as the set of differentially expressed genes from a BRAFV600E overexpression experiment (Capell et al., 

2016) from GEO (GSE46801). 

Replicate similarity 

In order to assess the quality of replicates, we computed the Pearson correlation coefficients between 

the normalized counts of our two replicates, considering the 1000 most differentially expressed genes 

across all conditions. The genes were ranked by the results of a likelihood-ratio test using DESeq2, 

comparing the full model described above against a reduced model of the form 	 � ��������� � �����. 

The correlation matrix was plotted using the R package ComplexHeatmap (Gu et al., 2016). 
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