

1 **Main Manuscript for**

2 **The primordial knot: the deep-rooted origin of the disulfide-rich spider venom toxins**

3 Naeem Yusuf Shaikh¹ and Kartik Sunagar¹

4 Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science,
5 Bangalore 560012, Karnataka, India.

6 Corresponding author: Kartik Sunagar

7 **Email:** ksunagar@iisc.ac.in

8

9 **Author Contributions:** Conceptualisation: KS and NYS; Formal analysis: NYS and KS;
10 Funding acquisition: KS; Investigation: NYS and KS; Visualisation: NYS and KS; Original
11 draft: NYS and KS; Review & editing: KS.

12 **Competing Interest Statement:** The authors declare that the research was conducted in
13 the absence of any commercial or financial relationships that could be construed as a
14 potential conflict of interest.

15 **Classification:** Evolutionary Biology

16

17

18

19

20 **Keywords:** Spider venom; disulphide-rich peptides; venom evolution; toxin superfamily.

21

22

23

24

25

26

27 **Abstract**

28 Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts and disulfide-rich
29 peptides (DRPs). Although DRPs are widely distributed and abundant, their evolutionary origin has
30 remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a
31 lack of sequence and structural data from diverse lineages. By evaluating DRPs under a
32 comprehensive phylogenetic, structural and evolutionary framework, we have not only identified over
33 70 novel spider toxin superfamilies but also provide the first evidence for their common origin. We
34 trace the origin of these toxin superfamilies to a primordial knot - the 'Adi Shakti' - nearly ~375 MYA in
35 the common ancestor of Araneomorphae and Mygalomorphae. As these lineages constitute over 50%
36 of the extant spiders, our findings provide fascinating insights into the early evolution and
37 diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all
38 spiders is in complete contrast to most other venomous animals that have recruited into their venoms
39 diverse toxins with independent origins. Moreover, by comparatively evaluating araneomorph and
40 mygalomorph spiders that differentially depend on their ability to secrete silk for prey capture, we
41 highlight the prominent role of predatory strategies in driving the evolution of spider venom.

42

43 **Significance Statement**

44 Venoms are concoctions of biochemicals that function in concert to incapacitate prey or predators of
45 venom-producing animals. Most venomous animals secrete a complex venom cocktail, constituted by
46 toxins with independent evolutionary origins. In complete contrast, we trace the origin of diverse toxin
47 superfamilies in spiders to a single molecular scaffold. The common origin of these disulphide-rich
48 peptides that constitute three-quarters of nearly all spider venoms, therefore, represents a unique
49 scenario of weaponization, where a single motif was recruited and extensively diversified to generate
50 a plethora of superfamilies with distinct activities. Remarkably, the evolution of spider venom was also
51 found to be driven by prey capture (i.e., reliance on silk versus venom) and venom deployment
52 (predation or self-defence) strategies.

53

54 **Main Text**

55

56 **Introduction**

57 With their killer instinct and deadly toxins, spiders have been at the centre of many myths and
58 folktales from times immemorial. They are an archetypal arthropod group with mid-Cambrian or early
59 Ordovician origin, nearly 495 million years ago (MYA) (1). Because of their unique ability to secrete
60 silk and venom, spiders have successfully colonised diverse ecological niches. They are amongst the
61 most successful predators on the planet, with over 50,000 species and 129 families described to date
62 (2, 3). The majority of spiders are equipped with chelicerae harbouring venom glands, with
63 Symphytognathidae, Uloboridae, and certain primitive Mesothelae species being the only exceptions
64 (2, 4).

65

66 Spider venoms are a concoction of enzymes, polyamines, nucleic acids, inorganic salts and disulfide-
67 rich peptides (DRPs) (5, 6). They are predominantly rich in DRPs that are characterised by a diversity
68 of structural motifs, including Kunitz (7), disulfide-directed β -hairpin (8), disulfide-stabilised antiparallel
69 β -hairpin stack (DABS) (9) and inhibitor cystine knot (ICK) (10, 11). Despite the fact that DRPs
70 constitute three-quarters of the spider venom, our evolutionary understanding of their origin and
71 diversification has remained elusive. This knowledge gap stems from a lack of sequence and
72 structural data for DRPs from diverse spider lineages and the prevalence of significant sequence
73 divergence in these toxins.

74

75 Here, we examined DRP sequences from the Mygalomorphae infraorder and the Retrolateral Tibial
76 Apophysis (RTA) Araneomorphae, which constitute over 52% of spider genera (2,200 genera)
77 described to date. A molecular phylogenetic framework implemented in this study resulted in the
78 identification of over 70 novel toxin superfamilies and suggests a deep-rooted origin of venom DRPs
79 in spiders. Our findings also highlight the role of distinct prey capture strategies of Araneomorphae
80 and Mygalomorphae in shaping the recruitment and diversification of venom DRPs. Furthermore, by
81 comparatively evaluating spider venom toxins employed for anti-predatory defensive and prey
82 capture, we also unravel the impact of the purpose of venom deployment on the evolution of spider
83 venoms. Thus, sequence, phylogenetic, structural and evolutionary assessments in this study have
84 provided insights into the fascinating origin and early diversification of this predominant spider venom
85 component.

86

87

88 **Results**

89 **Novel spider toxin superfamilies**

90 Superfamilies (SF) of venom toxins in spiders have been classified based on their signal peptide and
91 propeptide sequences (12). This premise was first used to describe the Shiva superfamily of toxins
92 from Atracidae spiders (12). Recently, using a similar approach, 33 novel spider toxin superfamilies
93 have been identified from the venom of the Australian funnel-web spider, *Hadronyche infensa* (9).
94 Since gene phylogenies have not been extensively utilised while classifying spider venom toxins, our
95 understanding of their origin and diversification has been severely limited.

96

97 In this study, we relied on the strong conservation of signal peptide and propeptide sequences in
98 identifying several novel spider venom toxin superfamilies. Blast searches were used to identify the
99 homology between largely divergent toxin superfamilies. Toxin sequences were found to share strong
100 sequence conservation within a superfamily. Cysteine residues, which are involved in the formation of
101 disulphide bonds and, thereby, are extremely vital in determining protein structure and function, were
102 used as guides to manually refine sequence alignments. This approach enabled the identification of
103 33 novel toxin superfamilies along the breadth of Mygalomorphae (Figures S1 and S2). Among these,
104 31 superfamilies belonged to the DRP class, whereas, the other two were enzymatic non-DRP toxins,

105 including the first report of Neprilysin (SF103) and CAP (CRISP/Allergen/PR-1; SF104) from Atracidae
106 spiders (Dataset S1).

107
108 Moreover, analyses of Araneomorphae toxin sequences using the strategy above resulted in the
109 identification of 38 novel toxin superfamilies from Araneomorphae, all of which belonged to the DRP
110 class of toxins (Figures S3 and S4). Overall, among all novel spider toxin superfamilies identified in
111 this study, the majority (n=69) were DRPs, reinstating the dominance of this toxin type in spider
112 venoms. Based on the arrangement of cysteine residues involved in the formation of disulphide
113 bonds, these DRPs could be further segregated into ICK-like (n=26), DABS (n=13) and novel
114 disulphide patterned non-ICK (n=30) superfamilies (9).

115
116 The identification of novel toxin superfamilies was further supported by phylogenetic and principal
117 component analyses. Reconstruction of evolutionary histories using Bayesian inference (BI) and
118 maximum-likelihood (ML) approaches retrieved monophyletic clades of toxin superfamilies (Figures 1
119 and 2; node support: ML: >80/100; BI: >0.95; refer to figures S5, S6 and S9 for complete phylogeny
120 with branch lengths). Interestingly, the plesiomorphic DRP scaffold seems to have undergone lineage-
121 specific diversification in Mygalomorphae, where the selective diversification of the scaffold has led to
122 the origination of novel toxin superfamilies corresponding to each genus (Figure 1). In our Bayesian
123 and maximum-likelihood phylogenetic tree reconstructions, these toxin scaffolds were found to form
124 distinct monophyletic clades, further supporting this claim (Figure S5; node support: ML: ML:
125 >80/100; BI: >0.95).

126
127 A similar pattern was also observed in the case of Araneomorphae, where certain toxin SFs (n=6)
128 were found to have diversified within individual genera (Figure 2). However, we also documented a
129 large number of DRP toxins (n=32) that were found to have diversified in a family-specific manner,
130 wherein, a toxin scaffold seems to be recruited at the level of the spider family, rather than the genus.
131 As a result, and in contrast to mygalomorph DRPs, araneomorph toxin superfamilies were found to be
132 scattered across spider lineages (Figure 2; Figure S6; node support: ML: >80/100; BI: >0.95).
133 Moreover, Principal component analysis (PCA) of toxin sequences further provided evidence for the
134 monophyly of mygalomorph and araneomorph SFs, where each toxin superfamily formed a distinct
135 group in PCA plots (Figures S7 and S8).

136
137 Furthermore, sequence alignments of DRPs clearly highlighted the homology among DRP toxin
138 superfamilies (Figure 3; Figure S9; node support: ML: >50/100; BI: >0.95). Six cysteine residues were
139 found to be nearly universally conserved across 101 DRP toxin SFs (Figure 3b; Figure S10). Our
140 findings enabled us to trace the origin of spider venom DRPs in Opisthothelae, the most recent
141 common ancestor (MRCA) of Araneomorphae and Mygalomorphae (13). Thus, we highlight for the
142 first time that all DRP toxins in spiders may have had a common molecular origin, nearly 375 MYA. It
143 should be noted, however, that functional analyses have been performed only on a handful of
144 mygalomorph toxins, with even fewer studies focusing on araneomorph toxin superfamilies, and that it
145 would be inaccurate to speculate the functions of these toxins based on homology.

146
147 **Molecular evolution of spider venom DRP toxins**
148 To evaluate the nature and strength of the selection that has shaped spider venom DRPs, we
149 employed site-specific models that detect selection across nucleotide sites. Our findings suggest that
150 the majority of Mygalomorphae toxin superfamilies (12/19 SFs) have evolved under the influence of
151 positive selection [ω ranging between 1.1 to 2.9; positively selected sites (PS): 0 to 26], while the
152 remaining few have experienced negative or purifying selection (ω ranging between 0.7 to 0.8; PS: 0
153 to 13; Figure 4, Table S1). In stark contrast, nearly all of the Araneomorph toxin superfamilies that we
154 investigated here were found to have evolved under a strong influence of negative selection (ω
155 ranging between 0.2 to 1.0; PS: 0 to 10; Figure 4, Table S2). We further assessed whether these
156 changes documented across sites have a significant effect on the biochemical and structural

157 properties of amino acids using TreeSAAP (Tables S1 and S2). Outcomes of these analyses revealed
158 the accumulation of replacement changes in Mygalomorphae toxin superfamilies that result in radical
159 shifts in amino acid properties, potentially influencing their structure and function (Table S1).

160
161 To comparatively evaluate the nature of selection that shapes venom components deployed either for
162 prey capture or antipredator defence, we employed maximum-likelihood and Bayesian approaches. In
163 these analyses, we identified toxin superfamilies SF74, SF77, SF79, SF89, SF90, SF92 and SF99 as
164 predatory toxins (i.e., toxins deployed for prey capture - refer to the discussion section for the principle
165 considered for this classification), whereas SF13 (i.e., Ares SF) was classified as a defensive spider
166 venom toxin superfamily (i.e., toxins deployed for antipredator defence) as described previously (14).
167 Assessment of molecular evolutionary regimes identified a significant influence of positive selection
168 on venom toxins that are employed for prey capture (ω ranging between 1.2 to 2.9; PS: 0 to 11, Table
169 S1, Figure S11), relative to those that are chiefly or exclusively used for antipredatory defence
170 ($\omega=0.8$; PS: 3; Table S1, Figure S11).

171

172 Discussion

173 The deep evolutionary origin and diversification of the primordial knot

174 Prior attempts to explore the phylogenetic and evolutionary histories of spider venom DRPs have
175 hypothesised independent origin and lineage-specific diversification of DRP venom toxins (15). In
176 contrast, recent literature, primarily focusing on *Hadronyche infensa*, suggests that the diverse
177 disulfide-rich venom arsenal of this Australian funnel-web spider is a derivative of an ancestral ICK
178 motif that underwent several rounds of duplication and diversification (9). Often restricted to a specific
179 spider lineage, or given the inconsistent ways of classifying spider venom toxins, previous attempts
180 have failed to provide a broader perspective on the evolution of these peptides (16, 17). Given their
181 very long evolutionary histories, genes encoding DRP toxins have undergone significant
182 diversification, making it difficult to precisely trace their phylogenies. Together with the lack of
183 structural and functional data for these toxins, all of the aforementioned factors have impeded our
184 understanding of the origin and evolution of this predominant spider venom component.

185

186 To address this knowledge gap, we employed sequence comparisons, phylogenetic inferences and
187 evolutionary analyses. Our findings strongly suggest a deep-rooted origin of DRP spider venom
188 superfamilies, possibly from a single ancestral DRP or knottin scaffold, which we name 'Adi Shakti',
189 the original creator of the universe according to Hindu mythology (Figure 3a). We propose that all of
190 the extant spider toxin superfamilies in Mygalomorphae and Araneomorphae (n=102), which include
191 those that were previously reported (n=33), as well as the ones identified in the present study (n=69),
192 have originated from this 'primordial knot', further undergoing lineage-specific gene duplication and
193 diversification (Figure 1 - 3). The origin and diversification of these superfamilies can be explained by
194 a mechanism that is similar to the combinatorial peptide strategy, wherein certain venomous animals,
195 such as cone snails, generate a remarkable diversity in their mature toxin peptides while preserving
196 the signal and propeptide regions (18-20). Rapid events of diversification, preceded by repeated
197 rounds of gene duplication, form the basis of the combinatorial peptide library strategy (21). These
198 hyper-mutational events have been previously shown to be restricted to the mature peptide region of
199 toxins (22). In contrast, the signal and propeptide regions, which are vital for the precise secretion and
200 folding of proteins, respectively, evolve under the strong influence of negative selection pressures
201 (23) - a molecular evolutionary trend also reported in venom coding genes of snakes (24). Spider
202 venom coding genes appear to have followed a similar strategy. However, unlike the cone snail
203 venom coding genes that have a recent evolutionary origin (<35 to 50 MYA; (25, 26)), spider venom
204 toxins have likely originated from an ancestral scaffold in Opisthothelae, the MRCA of
205 Mygalomorphae and Araneomorphae spiders, nearly 375 MYA (13). Given their significant sequence
206 divergence since their deep-rooted evolutionary origin, the entire protein-coding gene, including the
207 signal and propeptide regions, has accumulated significant divergence. Consistent with this

208 hypothesis, the majority of positively selected (~96%) identified in spider venom DRP toxins (all sites
209 in Araneomorphae, and all but two sites in Mygalomorphae) were restricted to the mature peptide
210 region, whereas the signal and propeptide regions harboured a minor proportion of these sites (1%
211 and 3%, respectively; Tables S1 and S2).

212

213 **The many ways to skin a cat: innovation versus diversification of venoms**

214 Venom is an intrinsically ecological trait that has underpinned the evolutionary success of many
215 animals. The ability of venomous organisms to incapacitate prey and predators emanates from toxins
216 that exhibit an array of biochemical activities and target divergent pathways. Many venomous
217 lineages deploy a wide range of toxins from phylogenetically unrelated superfamilies. Venomous
218 snakes, for example, have 'recruited' a myriad of toxins, including snake venom metalloproteinases,
219 snake venom serine proteases, three-finger toxins, phospholipase A₂s, L-amino acid oxidases,
220 Kunitz-type serine protease inhibitors, kallikreins, lectins, DNases and hyaluronidases [(27, 28),
221 Figure 5]. Similarly, spider venoms typically possess many forms of enzymes (e.g., phospholipases,
222 proteases and chitinases), polyamines, salts and disulphide-rich toxins [(6), Figure 5]. Astonishingly,
223 however, spider venom DRPs with diverse ion channel targeting activities, such as sodium,
224 potassium, calcium, and chloride ion channels, predominate the venoms of nearly all spiders,
225 constituting three-quarters of the venom (Figure 5). Phylogenetic and evolutionary assessments in
226 this study trace the evolutionary origin of DRPs in Opisthothelae, the common ancestor of all extant
227 spiders. This recruitment strategy, where a molecular scaffold with a single deep-rooted evolutionary
228 origin, constitutes the major content of the venom, is unique to spiders. Venoms of most other animals
229 are instead composed of unrelated toxin types in distinct proportions. These findings not only shed
230 light on the fascinating evolutionary history of spider venoms but also highlight an unrealized potential
231 of molecular scaffolds in underpinning the dramatic structural and functional diversification of the
232 venom arsenal.

233

234 **Distinct prey-capture strategies have underpinned the recruitment and diversification of spider 235 venoms**

236 In addition to suggesting the common evolutionary origin of DRP toxins, Bayesian and maximum-
237 likelihood phylogenies provided fascinating insights into the early diversification of DRPs in spiders.
238 Mygalomorph DRP toxin superfamilies formed genus-specific toxin clades that suggested the
239 recruitment of unique DRP scaffolds at the level of genera (Figure 1), while the majority of unique
240 DRP scaffolds seemed to be recruited at the level of families in Araneomorphae (Figure 2). Only a
241 minor fraction (6/38) of araneomorph toxin superfamilies were recruited at the genus level.

242

243 When the nature and strength of selection on venom DRPs were assessed, a strong influence of
244 positive selection was identified on the evolution of these toxin superfamilies in mygalomorph spiders.
245 Only a minority of these toxin superfamilies were found to be evolving under negative selection (6/19),
246 or under near neutral evolution (1/19), while the majority (12/19) experienced diversifying selection (ω
247 between 1.19 to 2.95; PS: 0 to 26, Figure 4). In complete contrast, the evolution of venom DRPs
248 (13/14) in Araneomorphae was constrained by purifying selection (ω between 0.03 to 0.96; PS: 1 to 3,
249 Figure 4), and a single superfamily was found to be evolving nearly neutrally (ω of 1.0; PS: 10). We
250 further investigated the impact of these amino acid replacements on the structure and function of
251 spider venom toxins. Outcomes of these evaluations suggest that the majority of replacements in
252 mygalomorph spiders (between 0 to 29 properties) had a radical effect on the structure and/or
253 biochemical property of the encoded toxin, while none were identified in most toxin superfamilies of
254 Araneomorphae. Only a minor proportion of non-synonymous substitutions in two toxin superfamilies
255 (SF40 and 68) of this lineage were reported to be radically different (Tables S1 and S2). Differences
256 in the evolutionary histories of mygalomorph and the araneomorph DRP toxin superfamilies became
257 apparent as we further evaluated them for the signatures of episodic diversification. We detected a
258 greater prevalence of episodic diversifying selection on mygalomorph DRP toxin superfamilies than
259 their araneomorph counterparts (0-34 versus 0-6 events, respectively).

260
261 Such starkly contrasting phylogenetic and evolutionary patterns are indicative of differential
262 recruitment and diversification of DRPs in spiders. While mygalomorph spiders appear to have
263 recruited DRPs post divergence of family members, Araneomorphae may have accomplished this
264 before. Since most araneomorph spiders heavily rely on their foraging web for prey capture, and
265 because these spiders mostly prey on insects (29), their venom DRPs may have become relatively
266 less diverse (Figure 4, Table S2). In complete contrast, venom DRPs in mygalomorph spiders that
267 mostly rely on venom, and not silk being either ambush or sit-and-wait predators, to capture a much
268 diverse prey base, appear to have experienced a significantly greater influence of the diversifying
269 selection [(30), Figure 4, Table S1]. These observations clearly highlight the important role of ecology
270 and venom deployment in shaping the evolution of the spider venom arsenal. Though it should be
271 noted that the current literature and our investigation are limited to the most diverse lineage in
272 Araneomorphae - the RTA clade. Surprisingly, however, despite being the most speciose spider
273 lineage, and having a significantly higher genomic diversification rate in comparison to other
274 araneomorphs (31), the lack of toxin sequence diversity in the RTA clade is intriguing (Figure 4, Table
275 S2). Since venom toxins from the foraging web-building araneomorphs outside the RTA clade are
276 very poorly studied (e.g., only a handful of species are investigated from a biodiscovery perspective,
277 and not a single toxin has been sequenced at the nucleotide level to date), the lack of venom toxin
278 sequence diversity in the RTA clade remains intriguing and warrants further investigation.
279

280 **Deployment strategies dictate spider venom evolution**

281 The current literature is replete with findings that support the strong influence of positive selection on
282 genes encoding venom toxins in diverse animal lineages (32-35). Venom proteins are theorised to
283 follow a 'two-speed' mode of evolution, wherein they readily diversify in animals that experience
284 drastic shifts in ecology and/or environment - a prominent feature of evolutionarily younger lineages
285 [e.g., cone snails and advanced snakes with evolutionary origins dating back to <35-50 MYA (36)].
286 This rapid expansion or the 'expansion phase' is shaped by a strong influence of positive selection
287 that underpins the transition of organisms into novel ecological niches. Post these adaptive changes,
288 the influence of diversifying selection is replaced by effects of purifying selection (the 'purification
289 phase') that preserve potent toxins generated during the expansion phase. This, perhaps, explains
290 the contrasting evolutionary regimes documented in evolutionarily younger and ancient lineages (36).
291 Venom coding genes in evolutionarily ancient lineages are said to re-enter the expansion phase if
292 they re-encounter dramatic shifts in ecology and environment. The only exceptions to this hypothesis
293 are toxins that non-specifically interact with their molecular targets or those that are deployed for
294 antipredatory defence (36). The latter hypothesis, however, mostly stems from the analyses of venom
295 proteins that are deployed for predation. A dearth of sequence information for venom components
296 majorly employed for antipredator defence has impeded our understanding of their evolutionary
297 diversification.
298

299 Spiders of the genera, *Hadronyche* and *Atrax* (family Atracidae), are known to deploy their DRP toxin
300 superfamily (SF13: Ares) predominantly for antipredatory defence (14). In contrast, tarantulas of the
301 family Theraphosidae are known to chiefly employ their venom to capture prey animals. This provided
302 us with a unique opportunity to comparatively investigate the molecular evolution of spider venom
303 proteins chiefly deployed for predation (SF74, SF77, SF79, SF89, SF90, SF92 and SF99) and self-
304 defence (SF13: Ares). Our analyses of the molecular evolutionary histories of theraphosid spider
305 venom DRPs deployed for prey capture reveal a strong influence of diversifying selection (ω : 1.2 to
306 2.9; PS: 0 to 11; Table S1, Figure S11), whereas those employed for self-defence in Atracidae
307 spiders were constrained by negative selection (ω : 0.8; PS: 3; Table S1, Figure S11). Outcomes of
308 FUBAR and MEME analyses further corroborated these findings. FUBAR identified numerous sites
309 (~10%) in defensive toxins as evolving under the pervasive influence of negative selection, while
310 MEME detected several episodically diversifying sites (~22%) in theraphosid toxins deployed for prey
311 capture (Table S1).

312
313 Such contrasting modes of diversification could be attributed to the ‘two-speed’ mode of venom
314 evolution, where the offensive toxins gain an evolutionary advantage over prey by amplifying their
315 sequence and functional diversity (36). In contrast, as defensive venoms are infrequently deployed, or
316 have evolutionarily conserved molecular targets across predatory lineages, they experience relatively
317 reduced effects of diversifying selection. In the absence of a need for sequence variation, purifying
318 selection pressures instead ensure the preservation of broadly effective toxins.
319

320 **Methods**

321 **Sequence data curation and assembly**

322 Nucleotide datasets consisting of Mygalomorphae DRP sequences were assembled from the National
323 Center for Biotechnology Information’s Non-redundant and Transcriptome Shotgun Assembly
324 databases using manual search and exhaustive BLAST iterations (37). Sequences for
325 Araneomorphae toxins were retrieved from Cole, T. J., & Brewer, M. S. (2021) (38). Translated
326 sequences were aligned in MEGA X using MUSCLE (39, 40) before back-translation to nucleotides.
327 Alignment was further refined by using structurally conserved cysteines as guides.
328

329 **Phylogenetic analyses**

330 Phylogenetic histories of toxin families were reconstructed using Bayesian and maximum-likelihood
331 inferences implemented in MrBayes 3.2.7a (41, 42) and IQ-TREE v1.6.12 (43, 44f), respectively.
332 Bayesian analyses were run for a minimum of ten million generations using twelve Markov chains
333 across four runs, sampling every 100th tree. Twenty-five percent of the total trees sampled were
334 discarded as burn-in. The log-likelihood score for each tree was plotted against the number of
335 generations to assess whether the analysis has reached an asymptote. A stop value of 0.01 was used
336 for the average standard deviation of split frequencies. Bayesian Posterior Probability (BPP) was
337 used to evaluate node support for the branches of Bayesian trees. ML analyses were performed using
338 IQ-TREE with an edge-proportional partition model and 100 Bootstrap replicates. Phylogenetic trees
339 were rooted with non-venom nucleolar cysteine-rich protein sequences from *Mastigoproctus*
340 *giganteus*, *Stenochrus portoricensis*, *Prokoenenia wheeleri*, *Phrynos marginemaculatus* and
341 *Cryptocellus centralis* from the class Arachnida that fall outside of the suborder Opisthothelae.
342

343 **Principal Component Analysis**

344 PCA of signal peptide sequences from spider toxin superfamilies was performed in R [v 4.1.2; (45)]
345 using a previously published script [(46)]. Sequences were aligned using MUSCLE in MEGA X (39,
346 40) and further digitising in R utilising boolean vectors. The scaled principal component values (sPC)
347 were calculated using conventional PCA prior to plotting.
348

349 **Assessment of molecular evolution**

350 The nature of selection shaping the evolution of DRP toxins was determined using a maximum-
351 likelihood inference implemented in CodeML of the PAML package (47). The ratio of non-synonymous
352 substitutions (nucleotide changes that alter the coded amino acid) to synonymous substitutions
353 (nucleotide changes that do not alter the coded amino acid), also known as omega (ω), was
354 estimated. A likelihood ratio test (LRT) for the nested models - M7 (null model) and M8 (alternate
355 model) - was performed to assess the statistical significance of the findings. The Bayes Empirical
356 Bayes (BEB) approach implemented in M8 was used to calculate the posterior probabilities for site
357 classes (48). Amino acid sites with a posterior probability of over 95% ($PP \geq 95\%$) were inferred as
358 positively selected. The episodic and pervasive nature of selection was determined using the Mixed
359 Effect Model of Evolution (MEME) (49) and the Fast Unconstrained Bayesian AppRoximation
360 (FUBAR) (50), respectively.
361

362 **Evaluation of selection on amino acid properties**

363 The influence of positive selection on the biochemical and structural properties of amino acids was
364 evaluated using TreeSAAP [v 3.2; (51)]. TreeSAAP estimates the rate of selection using a modified
365 MM01 model (McClellan and McCracken, 2001). Statistical probabilities corresponding to a range of
366 properties are further calculated for each amino acid. BASEML was set to run with the REV model
367 and eight evolutionary pathway categories were defined for evolutionary pathway analyses with a
368 sliding window size set to one. Data acquired from TreeSAAP was further visualised and processed
369 with IMPACT_S (52).

370

371 **Structural analyses**

372 Structural homologues of spider toxin superfamilies were identified via blast searches against the
373 RCSB Protein Data Bank (<https://www.rcsb.org/>) and subsequently modelled using the SWISS-
374 MODEL web server via user template mode (53). The resultant models were validated using
375 MolProbity (v 4.4; <https://github.com/rlabduke/MolProbity>) and general Ramachandran plot. Regimes
376 of evolutionary selection pressures were evaluated and mapped onto homology models using the
377 Consurf webserver [(54), <http://consurf.tau.ac.il/>]. PyMOL v2.5.2 (Schrödinger, LLC, USA) was used
378 to visualise and generate the images of homology models.

379

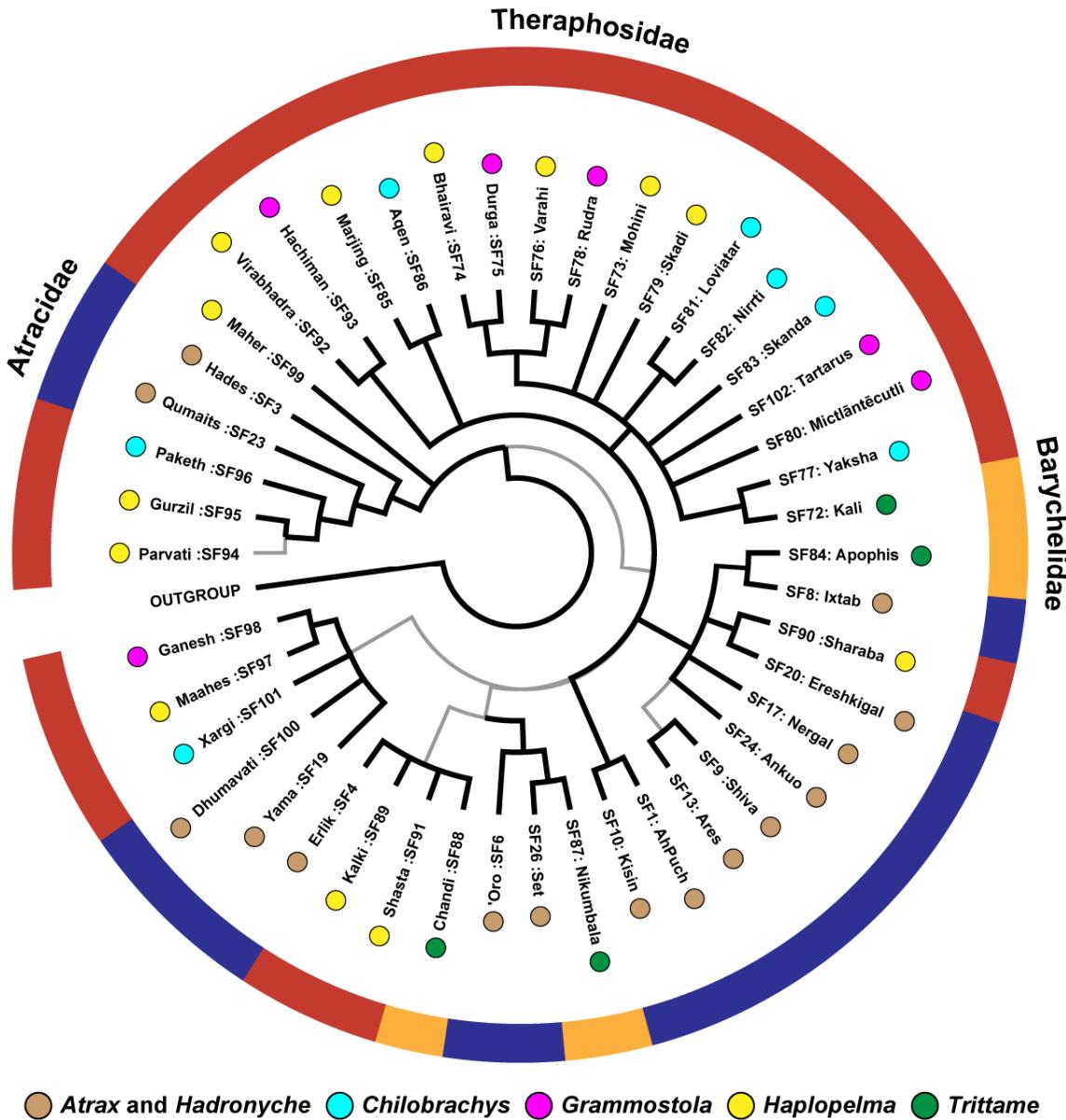
380 **Acknowledgements**

381 This work was supported by the DBT/Wellcome Trust India Alliance Fellowship [grant number
382 IA/I/19/2/504647] awarded to KS. NYS is thankful to Vivek Suranse and Senji Laxme R. R. (Indian
383 Institute of Science) for insightful discussions.

384

385

386


387

388

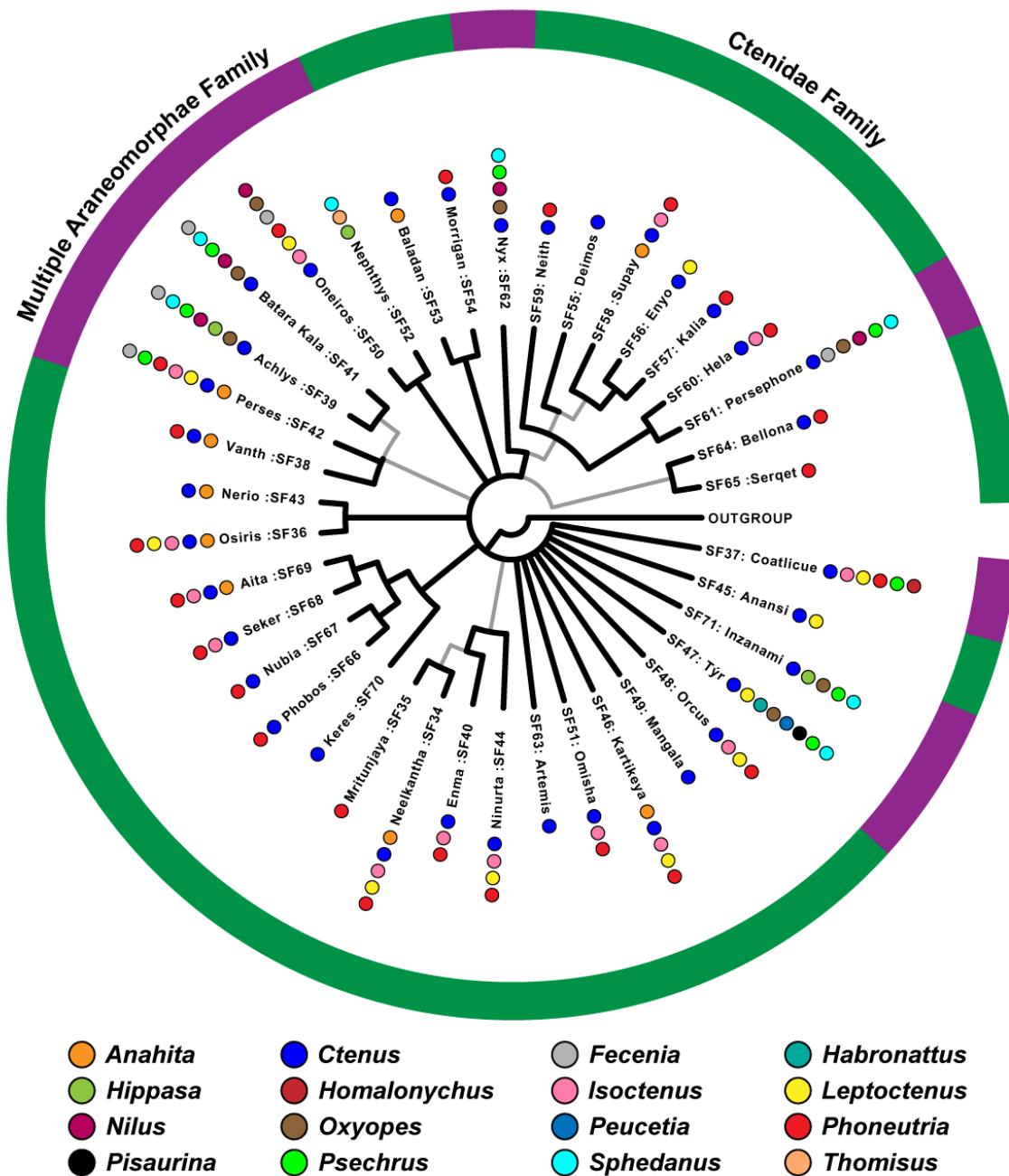
389 **Figures**

390

391 **Figure 1.** The Bayesian phylogeny of mygalomorph spider venom toxin superfamilies

392

393

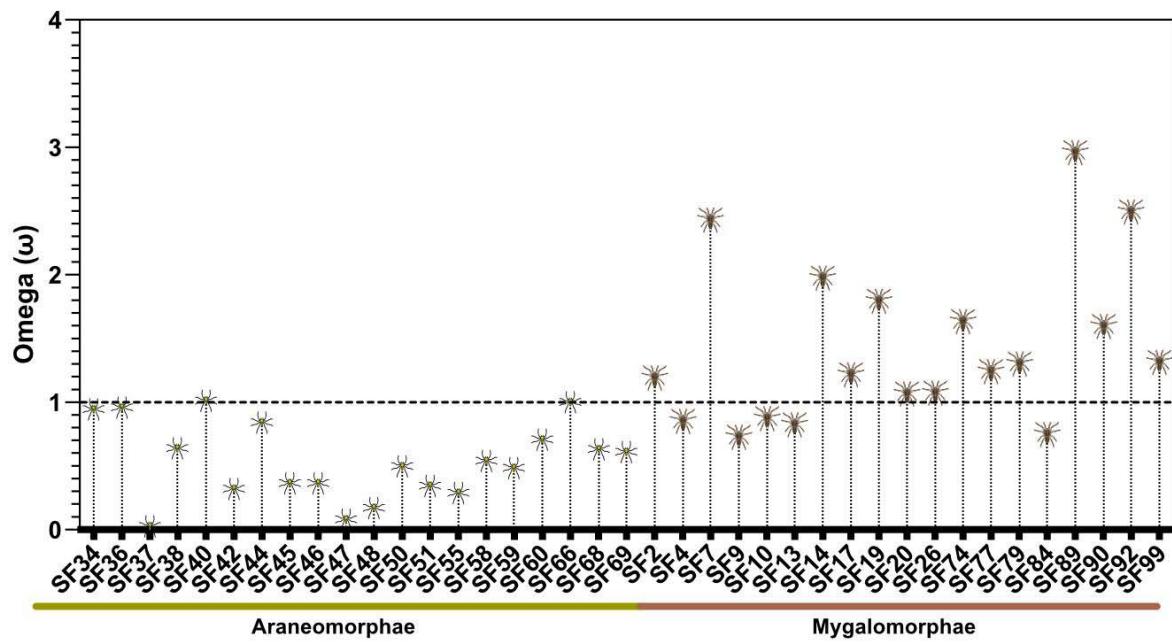

394

395

396

Legend: This figure represents the Bayesian phylogeny of Mygalomorphae spider toxin superfamilies. Coloured spheres alongside tree tips represent the spider genera, while the coloured outer circle indicates the spider family in which the respective toxin superfamily has been identified [Atracidae (red), Barychelidae (orange) and Theraphosidae (blue)].

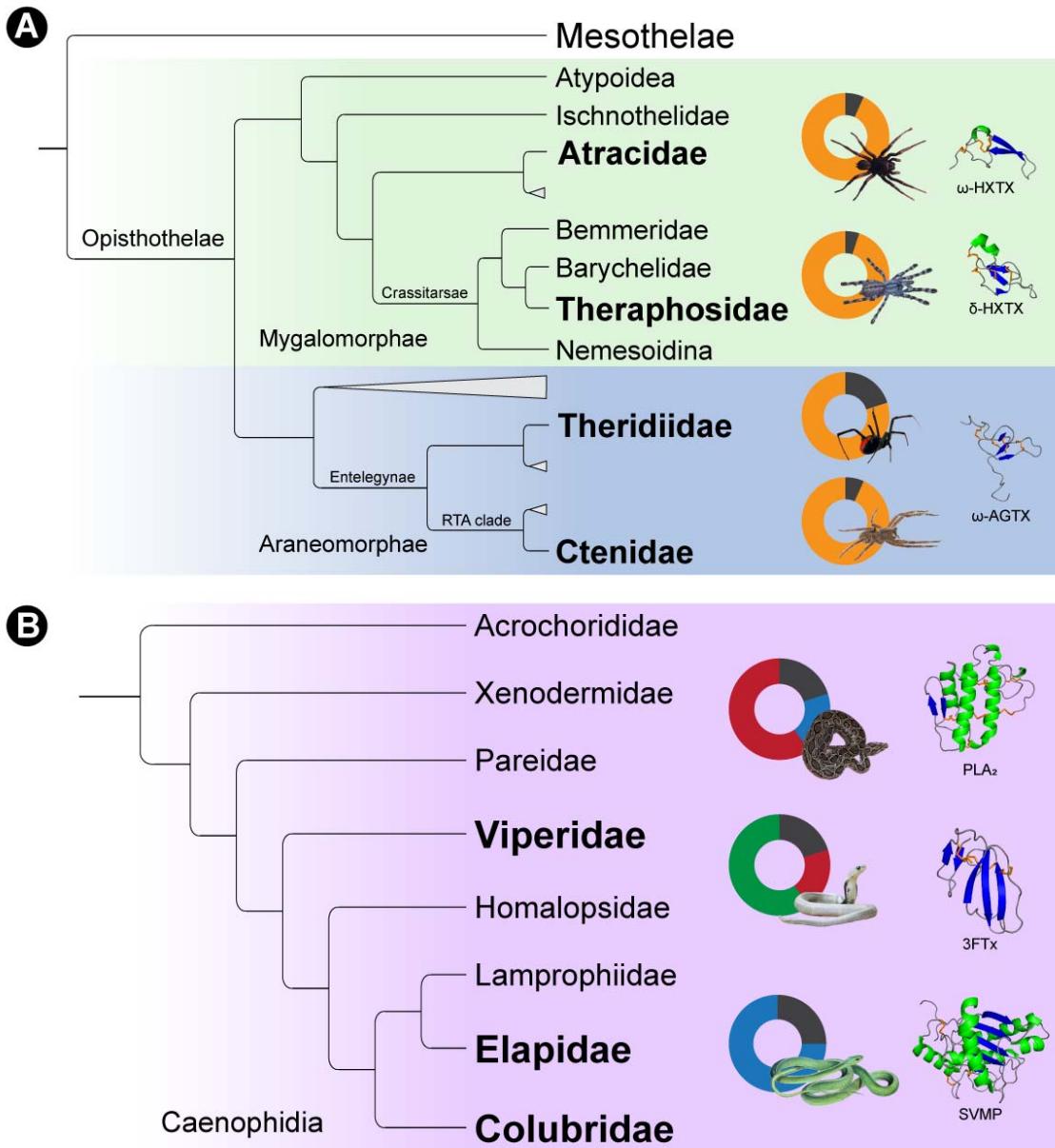
398 **Figure 2.** The Bayesian phylogeny of araneomorph spider venom toxin superfamilies



404 **Figure 3.** The Bayesian phylogeny and cysteine sequence alignment of spider venom DRPs

Legend: This figure depicts the Bayesian phylogeny and alignment of representative sequences of Araneae DRP toxin superfamilies. The coloured outer circle in panel A indicates the infraorder of spiders (Mygalomorphae and Araneomorphae shown in dark and light brown, respectively) in which the respective DRP superfamily was identified. In panel B, cysteine residues that are conserved across toxin SFs are highlighted in blue.

412 **Figure 4.** Molecular evolution of spider toxin superfamilies



413

414

415 **Legend:** This figure shows the distribution of ω values (Y-axis) for araneomorph and mygalomorph
416 spider venom toxin superfamilies (X-axis). The horizontal dotted red line represents neutral evolution
417 ($\omega=1$), with ω values above and below it indicating positive ($\omega>1$) and negative ($\omega<1$) selection,
418 respectively.

419 **Figure 5.** Distinct toxin scaffold recruitment strategies in spiders and snakes

420

421 **Legend:** The figure depicts distinct toxin scaffold recruitment strategies in (A) spiders (55-57) and (B)
422 advanced snakes (58-60). The Araneae spider phylogeny highlights the domination of disulfide-rich
423 peptide toxins, whereas venoms of advanced snakes are constituted by diverse phylogenetically
424 unrelated toxin superfamilies. Doughnut charts, portraying the major molecular scaffolds in venom are
425 also shown: disulfide-rich peptides (yellow), snake venom metalloproteinases (SVMP, blue),
426 phospholipase A₂ (PLA₂, red), three-finger toxins (3FTx, green) and other minor components (grey).
427 Structures of the major scaffolds are also shown, with helices coloured in green, β -strands in blue and
428 disulfide bonds in orange.

429 References

- 430 1. Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M, Vinther J, et al. A
431 molecular palaeobiological exploration of arthropod terrestrialization. *Philosophical*
432 *Transactions of the Royal Society B: Biological Sciences*. 2016;371(1699):20150133.
- 433 2. King GF. The wonderful world of spiders: preface to the special *Toxicon* issue on spider
434 venoms. Elsevier; 2004. p. 471-5.
- 435 3. WSC. World Spider Catalog. Version 23.0 date accessed 08/04/2022: Natural History
436 Museum, Bern; 2022.
- 437 4. Mullen GR, Vetter RS. Spiders (Araneae). *Medical and veterinary entomology*: Elsevier;
438 2019. p. 507-31.
- 439 5. Laxme RS, Suranse V, Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution.
440 *Toxicon*. 2019;158:84-103.
- 441 6. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for
442 control of insect pests. *Annual review of entomology*. 2013;58:475-96.
- 443 7. Yuan C-H, He Q-Y, Peng K, Diao J-B, Jiang L-P, Tang X, et al. Discovery of a distinct
444 superfamily of Kunitz-type toxin (KTT) from tarantulas. *PLoS one*. 2008;3(10):e3414.
- 445 8. Wang X-h, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, et al.
446 Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal
447 disulfide bridge. *Nature structural biology*. 2000;7(6):505-13.
- 448 9. Pineda SS, Chin YK-Y, Undheim EA, Senff S, Mobli M, Dauly C, et al. Structural venomics
449 reveals evolution of a complex venom by duplication and diversification of an ancient peptide-
450 encoding gene. *Proceedings of the National Academy of Sciences*. 2020;117(21):11399-408.
- 451 10. Pallaghy PK, Norton RS, Nielsen KJ, Craik DJ. A common structural motif incorporating a
452 cystine knot and a triple-stranded β -sheet in toxic and inhibitory polypeptides. *Protein*
453 *Science*. 1994;3(10):1833-9.
- 454 11. Undheim EA, Mobli M, King GF. Toxin structures as evolutionary tools: Using conserved 3D
455 folds to study the evolution of rapidly evolving peptides. *BioEssays*. 2016;38(6):539-48.
- 456 12. Pineda SS, Sollod BL, Wilson D, Darling A, Sunagar K, Undheim EA, et al. Diversification of a
457 single ancestral gene into a successful toxin superfamily in highly venomous Australian
458 funnel-web spiders. *BMC genomics*. 2014;15(1):1-16.
- 459 13. Magalhaes IL, Azevedo GH, Michalik P, Ramírez MJ. The fossil record of spiders revisited:
460 implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic.
461 *Biological Reviews*. 2020;95(1):184-217.
- 462 14. Herzig V, Sunagar K, Wilson DT, Pineda SS, Israel MR, Dutertre S, et al. Australian funnel-
463 web spiders evolved human-lethal δ -hexatoxins for defense against vertebrate predators.
464 *Proceedings of the National Academy of Sciences*. 2020;117(40):24920-8.
- 465 15. Rodríguez de la Vega RC. A note on the evolution of spider toxins containing the ICK-motif.
466 *Toxin Reviews*. 2005;24(3-4):383-95.
- 467 16. Ferrat G, Darbon H. An overview of the three dimensional structure of short spider toxins.
468 *Toxin Reviews*. 2005;24(3-4):359-81.
- 469 17. Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, et al. Molecular diversity and evolution of
470 cystine knot toxins of the tarantula *Chilobrachys jingzhao*. *Cellular and Molecular Life*
471 *Sciences*. 2008;65(15):2431-44.
- 472 18. Escoubas P, Rash L. Tarantulas: eight-legged pharmacists and combinatorial chemists.
473 *Toxicon*. 2004;43(5):555-74.
- 474 19. Zhu S-Y, Li W-X, Zeng X-C, Liu H, Jiang D-H, Mao X. Nine novel precursors of *Buthus*
475 *martensi* scorpion α -toxin homologues. *Toxicon*. 2000;38(12):1653-61.
- 476 20. Olivera BM, Hillyard DR, Marsh M, Yoshikami D. Combinatorial peptide libraries in drug
477 design: lessons from venomous cone snails. *Trends in biotechnology*. 1995;13(10):422-6.
- 478 21. Sollod BL, Wilson D, Zhaxybayeva O, Gogarten JP, Drinkwater R, King GF. Were arachnids
479 the first to use combinatorial peptide libraries? *Peptides*. 2005;26(1):131-9.
- 480 22. Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for
481 evolving hypervariability: the case of conopeptides. *Molecular biology and evolution*.
482 2001;18(2):120-31.
- 483 23. Duda TF, Palumbi SR. Molecular genetics of ecological diversification: duplication and rapid
484 evolution of toxin genes of the venomous gastropod *Conus*. *Proceedings of the National*
485 *Academy of Sciences*. 1999;96(12):6820-3.

486 24. Brust A, Sunagar K, Undheim EA, Vetter I, Yang DC, Casewell NR, et al. Differential evolution
487 and neofunctionalization of snake venom metalloprotease domains. *Molecular & Cellular*
488 *Proteomics*. 2013;12(3):651-63.

489 25. Olivera BM. EE Just Lecture, 1996: Conus venom peptides, receptor and ion channel targets,
490 and drug design: 50 million years of neuropharmacology. *Molecular biology of the cell*.
491 1997;8(11):2101-9.

492 26. Duda Jr TF, Kohn AJ. Species-level phylogeography and evolutionary history of the
493 hyperdiverse marine gastropod genus *Conus*. *Molecular phylogenetics and evolution*.
494 2005;34(2):257-72.

495 27. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary
496 novelty of venoms. *Trends in ecology & evolution*. 2013;28(4):219-29.

497 28. Suranse V, Srikanthan A, Sunagar K. Animal venoms: Origin, diversity and evolution. *eLS*.
498 2018:1-20.

499 29. Pérez-Miles F, Perafán C. Behavior and biology of Mygalomorphae. *Behaviour and ecology*
500 of spiders: Springer; 2017. p. 29-54.

501 30. Beydizada N, Řezáč M, Pekár S. Use of conditional prey attack strategies in two generalist
502 ground spider species. *Ethology*. 2022;128(4):351-7.

503 31. Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, et al.
504 Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider
505 tree of life. *Current Biology*. 2018;28(9):1489-97. e5.

506 32. Župunski V, Kordiš D. Strong and widespread action of site-specific positive selection in the
507 snake venom Kunitz/BPTI protein family. *Scientific reports*. 2016;6(1):1-12.

508 33. Juarez P, Comas I, Gonzalez-Candelas F, Calvete JJ. Evolution of snake venom disintegrins
509 by positive Darwinian selection. *Molecular biology and evolution*. 2008;25(11):2391-407.

510 34. Sunagar K, Jackson TN, Undheim EA, Ali S, Antunes A, Fry BG. Three-fingered RAVERS:
511 Rapid Accumulation of Variations in Exposed Residues of snake venom toxins. *Toxins*.
512 2013;5(11):2172-208.

513 35. Sunagar K, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs
514 associated with toxicofuran-reptilian venom and mammalian reproduction. *Molecular biology*
515 and evolution. 2012;29(7):1807-22.

516 36. Sunagar K, Moran Y. The rise and fall of an evolutionary innovation: contrasting strategies of
517 venom evolution in ancient and young animals. *PLoS genetics*. 2015;11(10):e1005596.

518 37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool.
519 *Journal of molecular biology*. 1990;215(3):403-10.

520 38. Cole TJ, Brewer MS. Killer Knots: Molecular evolution of Inhibitor Cystine Knot toxins in
521 wandering spiders (Araneae: Ctenidae). *bioRxiv*. 2021.

522 39. Edgar RC, Batzoglou S. Multiple sequence alignment. *Current opinion in structural biology*.
523 2006;16(3):368-73.

524 40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics
525 analysis across computing platforms. *Molecular biology and evolution*. 2018;35(6):1547.

526 41. Altekar G, Dwarkadas S, Hulsenbeck JP, Ronquist F. Parallel metropolis coupled Markov
527 chain Monte Carlo for Bayesian phylogenetic inference. *Bioinformatics*. 2004;20(3):407-15.

528 42. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2:
529 efficient Bayesian phylogenetic inference and model choice across a large model space.
530 *Systematic biology*. 2012;61(3):539-42.

531 43. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic
532 algorithm for estimating maximum-likelihood phylogenies. *Molecular biology and evolution*.
533 2015;32(1):268-74.

534 44. Chernomor O, Von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic
535 inference from supermatrices. *Systematic biology*. 2016;65(6):997-1008.

536 45. R Development Core Team. R: A language and environment for statistical computing. 4.2.0
537 ed: R Foundation for Statistical Computing; 2021.

538 46. Konishi T, Matsukuma S, Fuji H, Nakamura D, Satou N, Okano K. Principal component
539 analysis applied directly to sequence matrix. *Scientific Reports*. 2019;9(1):1-13.

540 47. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular biology and*
541 *evolution*. 2007;24(8):1586-91.

542 48. Yang Z, Wong WS, Nielsen R. Bayes empirical Bayes inference of amino acid sites under
543 positive selection. *Molecular biology and evolution*. 2005;22(4):1107-18.

544 49. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting
545 individual sites subject to episodic diversifying selection. *PLoS genetics*. 2012;8(7):e1002764.

546 50. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a
547 fast, unconstrained bayesian approximation for inferring selection. *Molecular biology and*
548 *evolution.* 2013;30(5):1196-205.

549 51. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA. TreeSAAP: selection on amino
550 acid properties using phylogenetic trees. *Bioinformatics.* 2003;19(5):671-2.

551 52. Maldonado E, Sunagar K, Almeida D, Vasconcelos V, Antunes A. IMPACT_S: integrated
552 multiprogram platform to analyze and combine tests of selection. *PLoS one.* 2014;9(10):e96243.

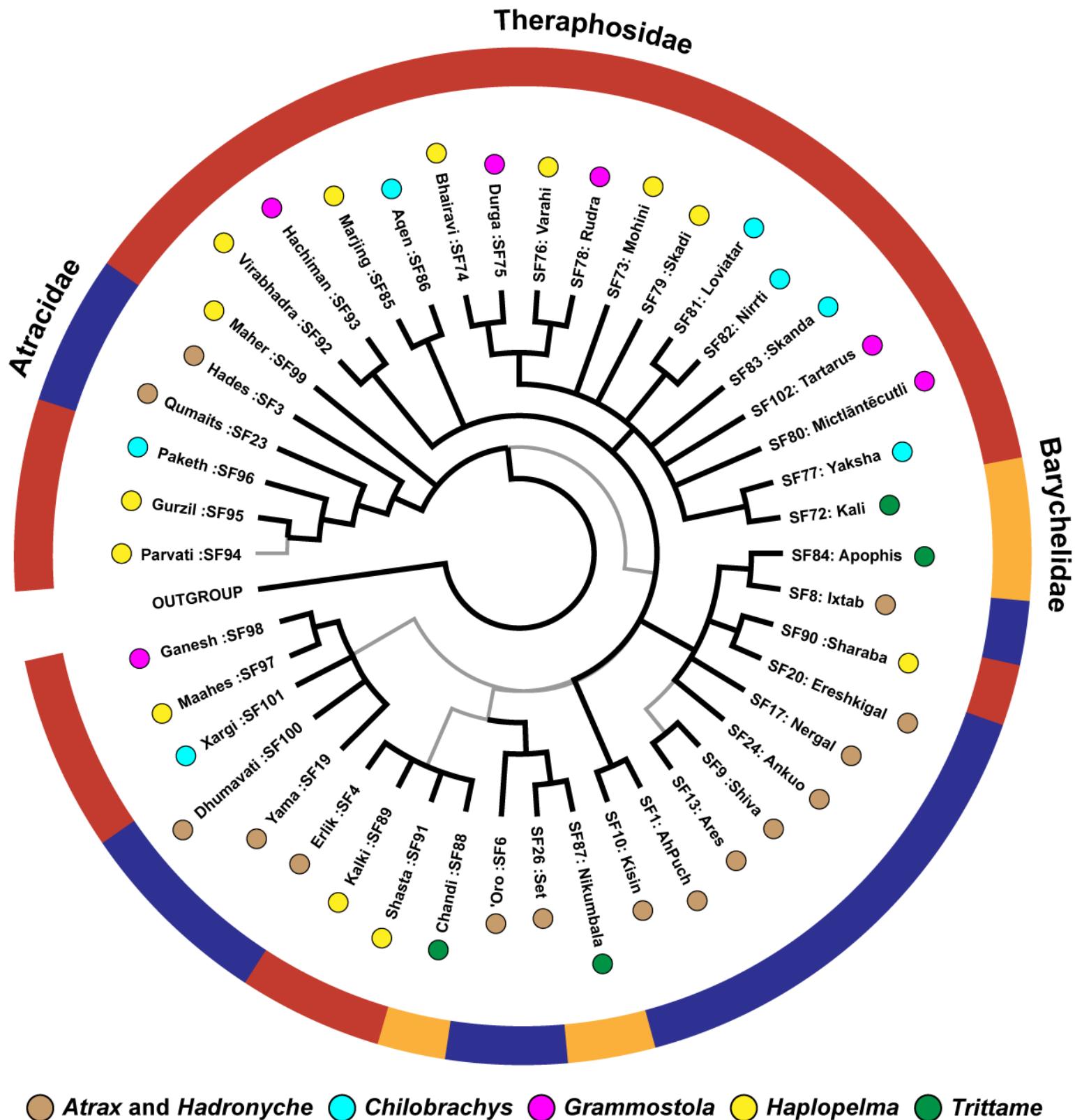
553 53. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-
554 MODEL: homology modelling of protein structures and complexes. *Nucleic acids research.*
555 2018;46(W1):W296-W303.

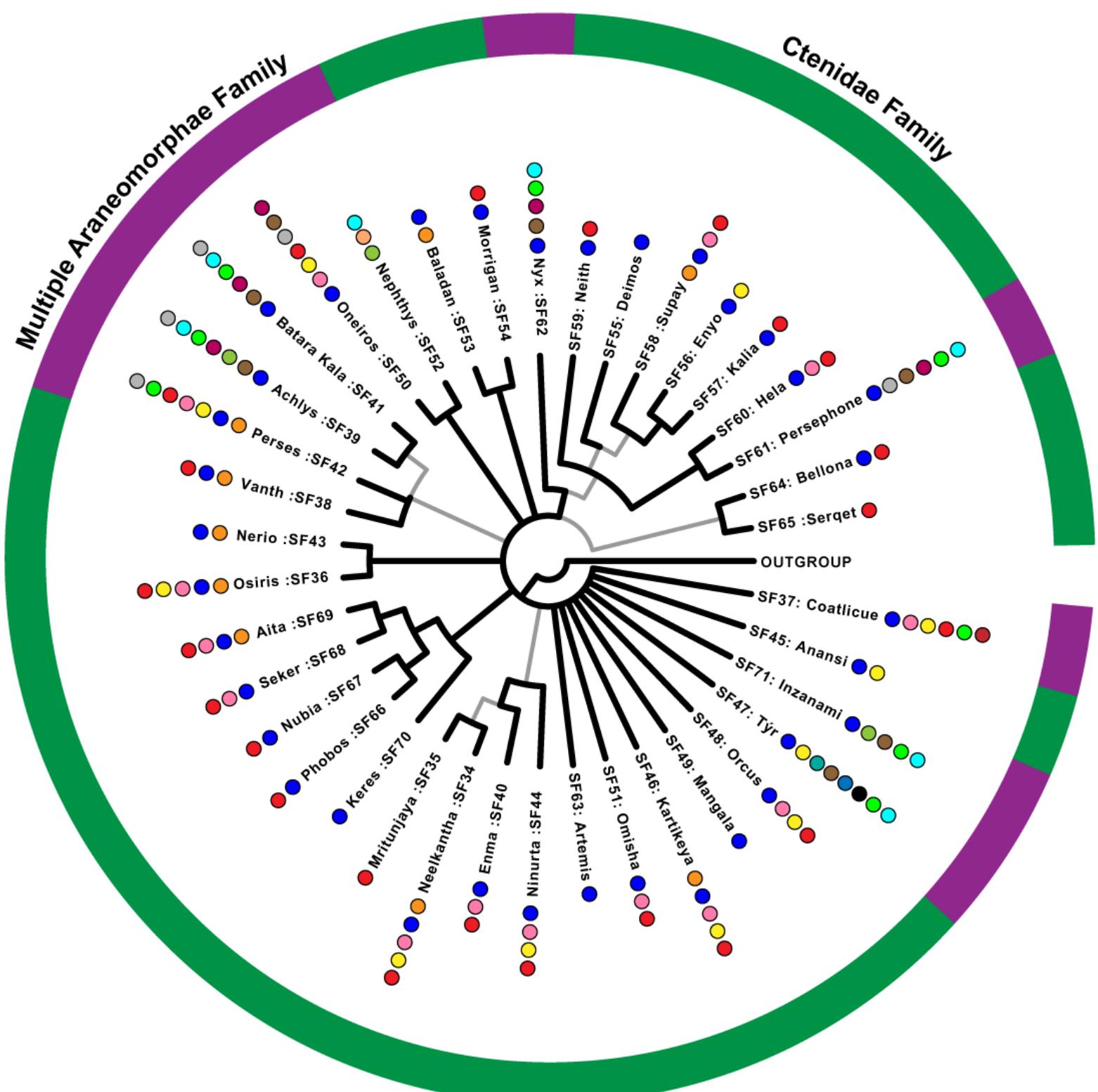
556 54. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an
557 improved methodology to estimate and visualize evolutionary conservation in
558 macromolecules. *Nucleic acids research.* 2016;44(W1):W344-W50.

559 55. Palagi A, Koh JM, Leblanc M, Wilson D, Dutertre S, King GF, et al. Unravelling the complex
560 venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using
561 LC-MALDI-TOF mass spectrometry. *Journal of proteomics.* 2013;80:292-310.

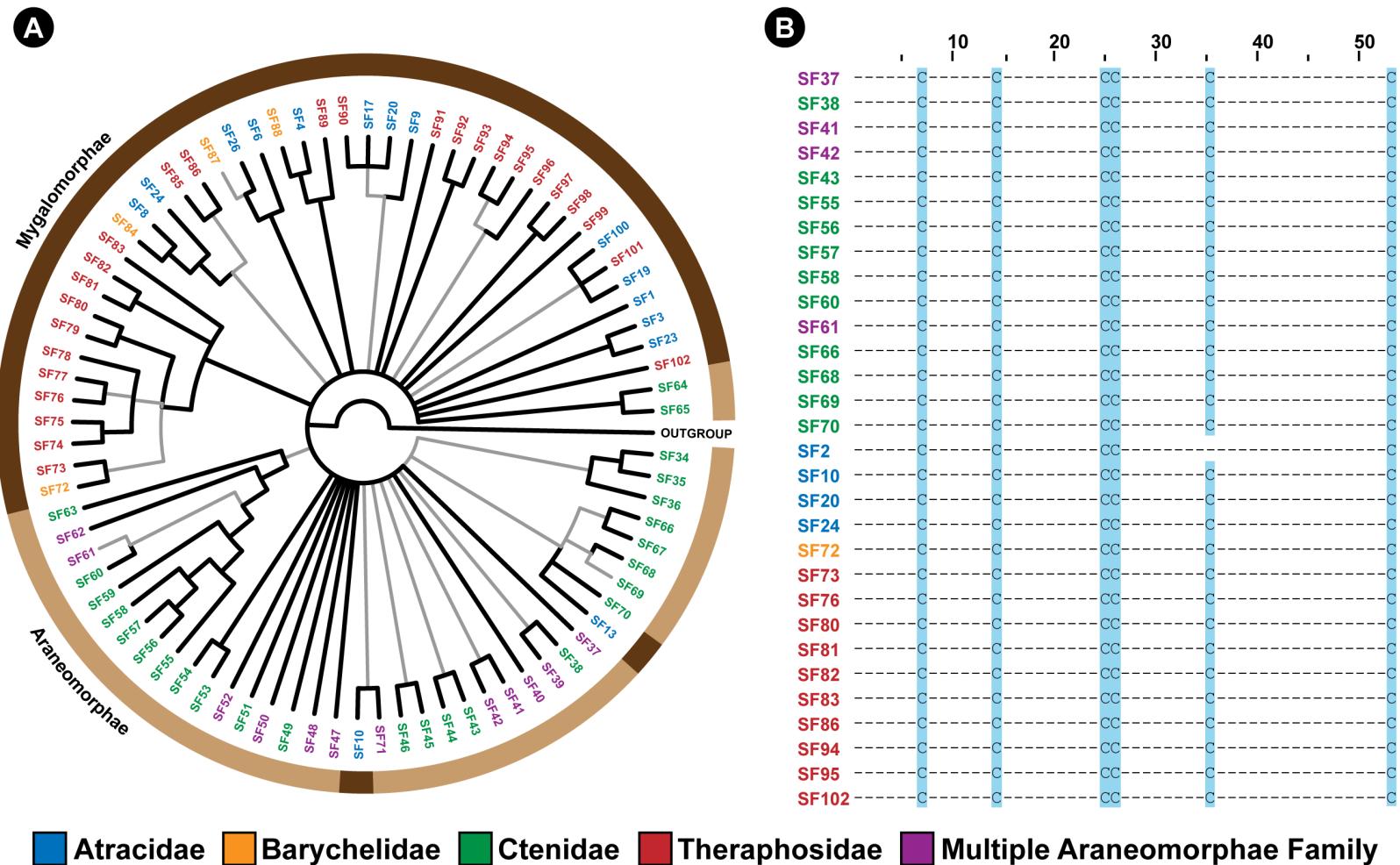
562 56. Oldrati V, Koua D, Allard P-M, Hulo N, Arrell M, Nentwig W, et al. Peptidomic and
563 transcriptomic profiling of four distinct spider venoms. *PLoS one.* 2017;12(3):e0172966.

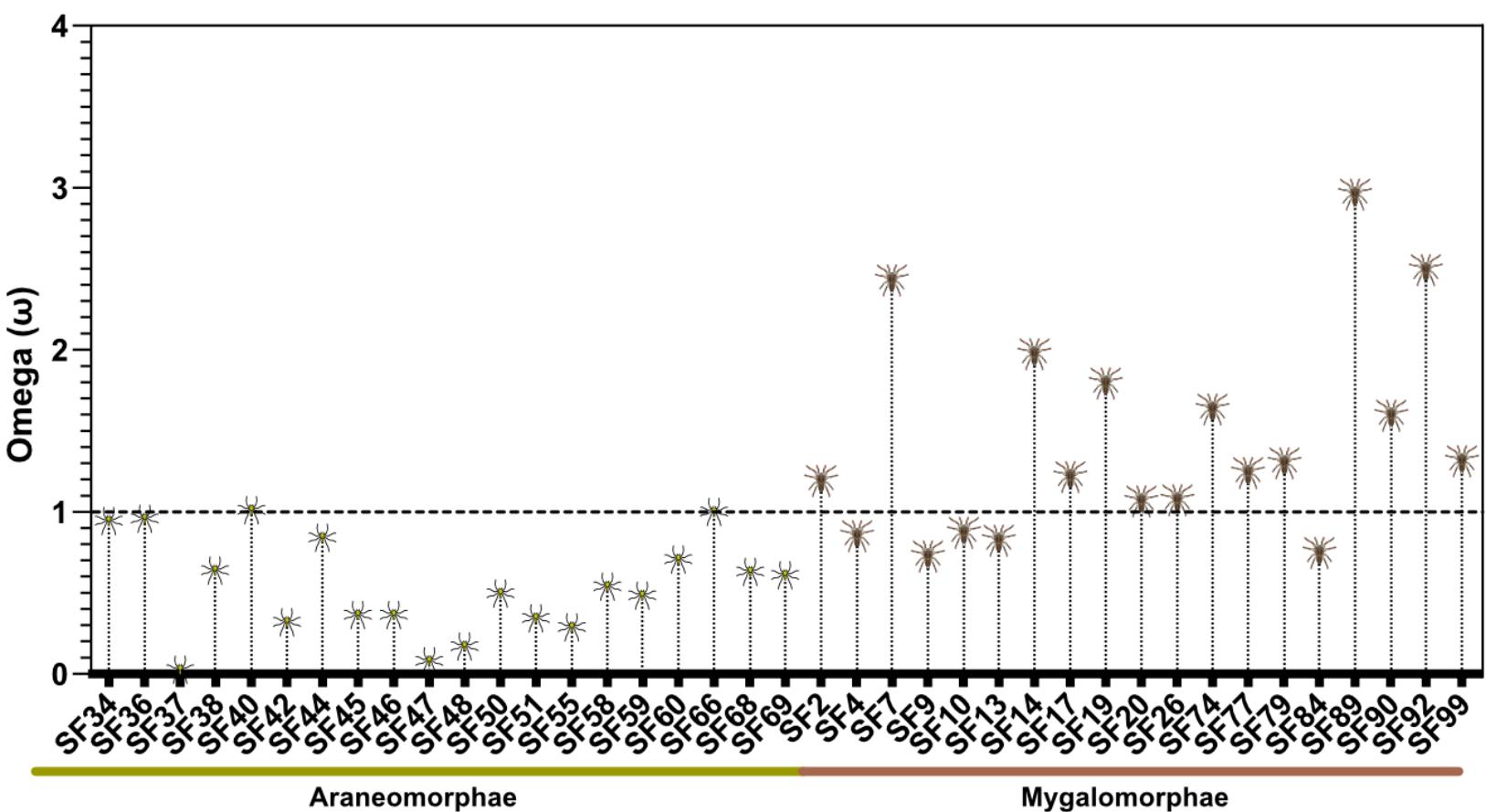
564 57. Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama Jr MY, Mudadu MA, Oliveira Ud, et al. An
565 overview of *Phoneutria nigriventer* spider venom using combined transcriptomic and
566 proteomic approaches. *PLoS one.* 2018;13(8):e0200628.

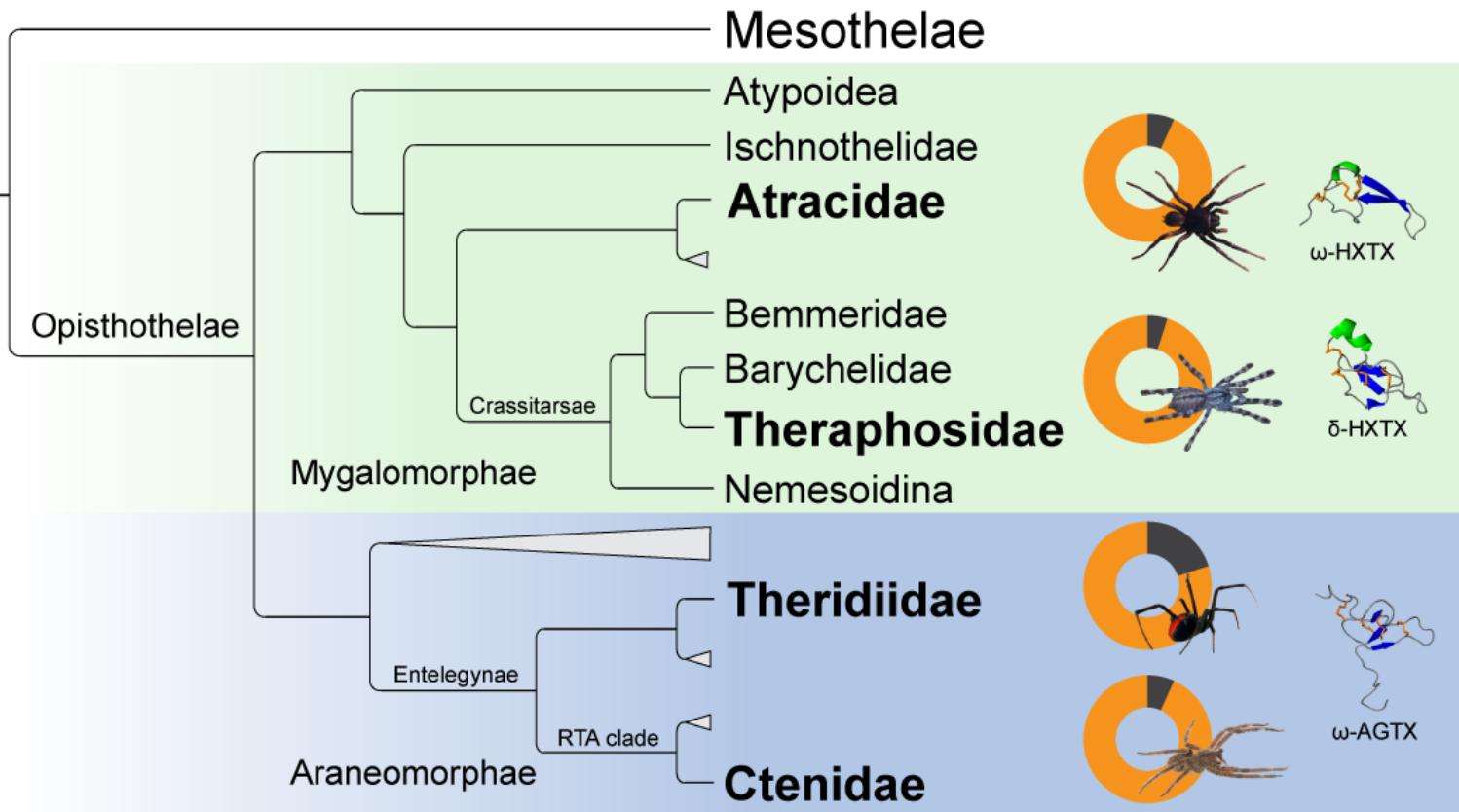

567 58. Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH. Proteomics, toxicity and
568 antivenom neutralization of Sri Lankan and Indian Russell's viper (*Daboia russelii*) venoms.
569 *Journal of Venomous Animals and Toxins including Tropical Diseases.* 2021;27.


570 59. Dutta S, Chanda A, Kalita B, Islam T, Patra A, Mukherjee AK. Proteomic analysis to unravel
571 the complex venom proteome of eastern India *Naja naja*: Correlation of venom composition
572 with its biochemical and pharmacological properties. *Journal of proteomics.* 2017;156:29-39.

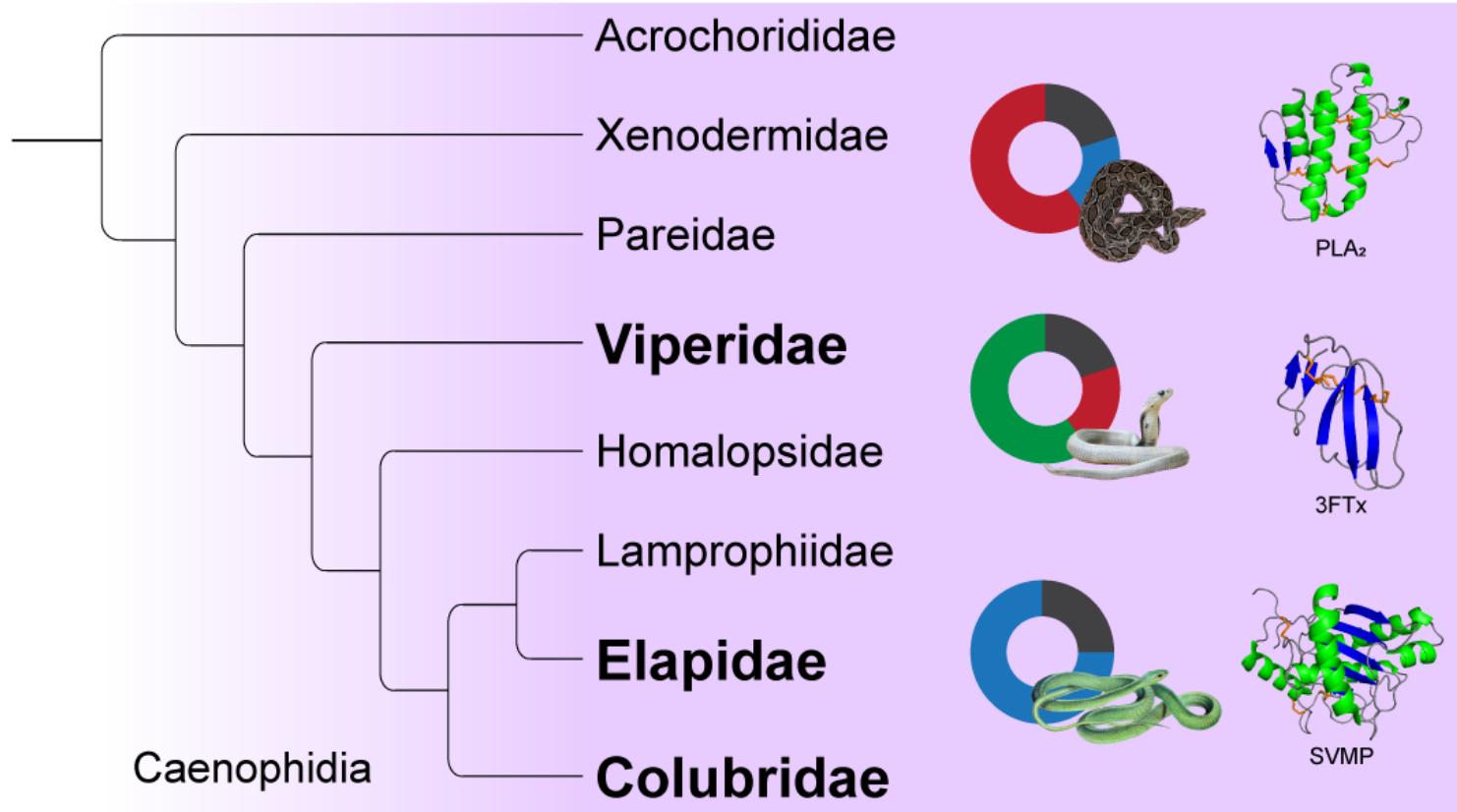
573 60. Pla D, Sanz L, Whiteley G, Wagstaff SC, Harrison RA, Casewell NR, et al. What killed Karl
574 Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic
575 analysis of the South African green tree snake (the boomslang), *Dispholidus typus*.
576 *Biochimica et Biophysica Acta (BBA)-General Subjects.* 2017;1861(4):814-23.


577


578



● <i>Anahita</i>	● <i>Ctenus</i>	● <i>Fecenia</i>	● <i>Habronattus</i>
● <i>Hippasa</i>	● <i>Homalonychus</i>	● <i>Isoctenus</i>	● <i>Leptoctenus</i>
● <i>Nilus</i>	● <i>Oxyopes</i>	● <i>Peucetia</i>	● <i>Phoneutria</i>
● <i>Pisaurina</i>	● <i>Psechrus</i>	● <i>Sphedanus</i>	● <i>Thomisus</i>



A

B

Supplementary Information for

The primordial knot: Deep-rooted origin of the disulfide-rich spider venom toxins

Naeem Yusuf Shaikh¹ and Kartik Sunagar¹

Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India.

Corresponding author: Kartik Sunagar

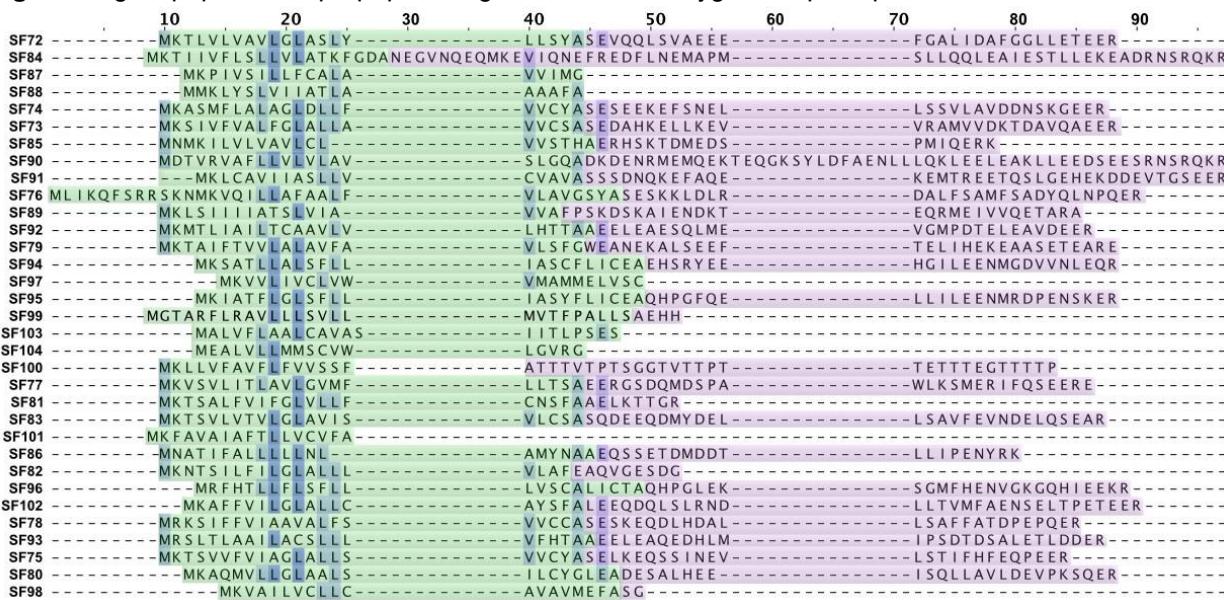
Email: ksunagar@iisc.ac.in

Author Contributions: Conceptualisation: KS and NYS; Formal analysis: NYS and KS; Funding acquisition: KS; Investigation: NYS and KS; Visualisation: NYS and KS; Original draft: NYS and KS; Review & editing: KS.

Competing Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Classification: Evolutionary Biology

Keywords: Spider venom; disulphide-rich peptides; venom evolution; toxin superfamily


This Supplementary file includes:

Figures S1 to S11

Tables S1 to S2

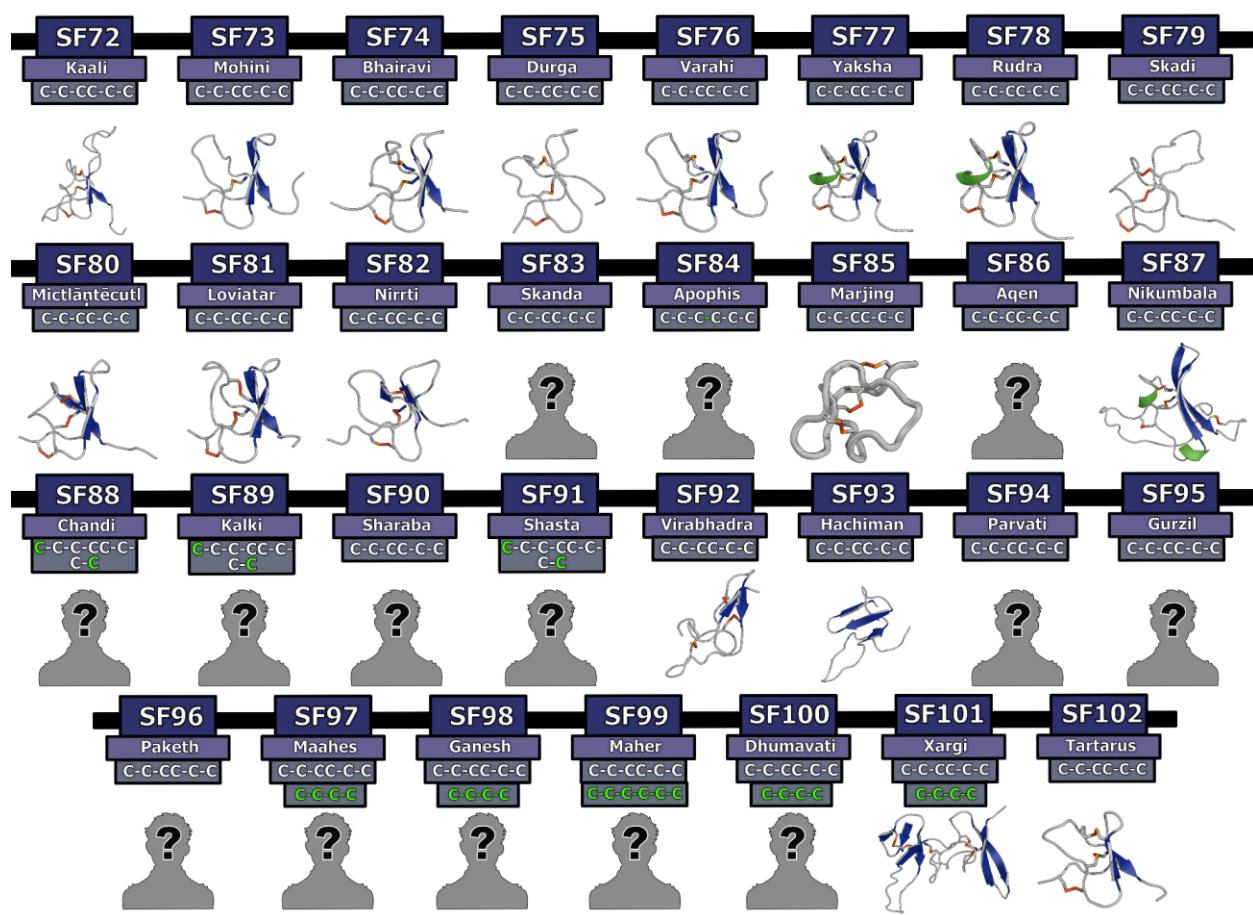

Legend for Dataset S1

Fig. S1. Signal peptide and propeptide alignment of novel mygalomorph superfamilies

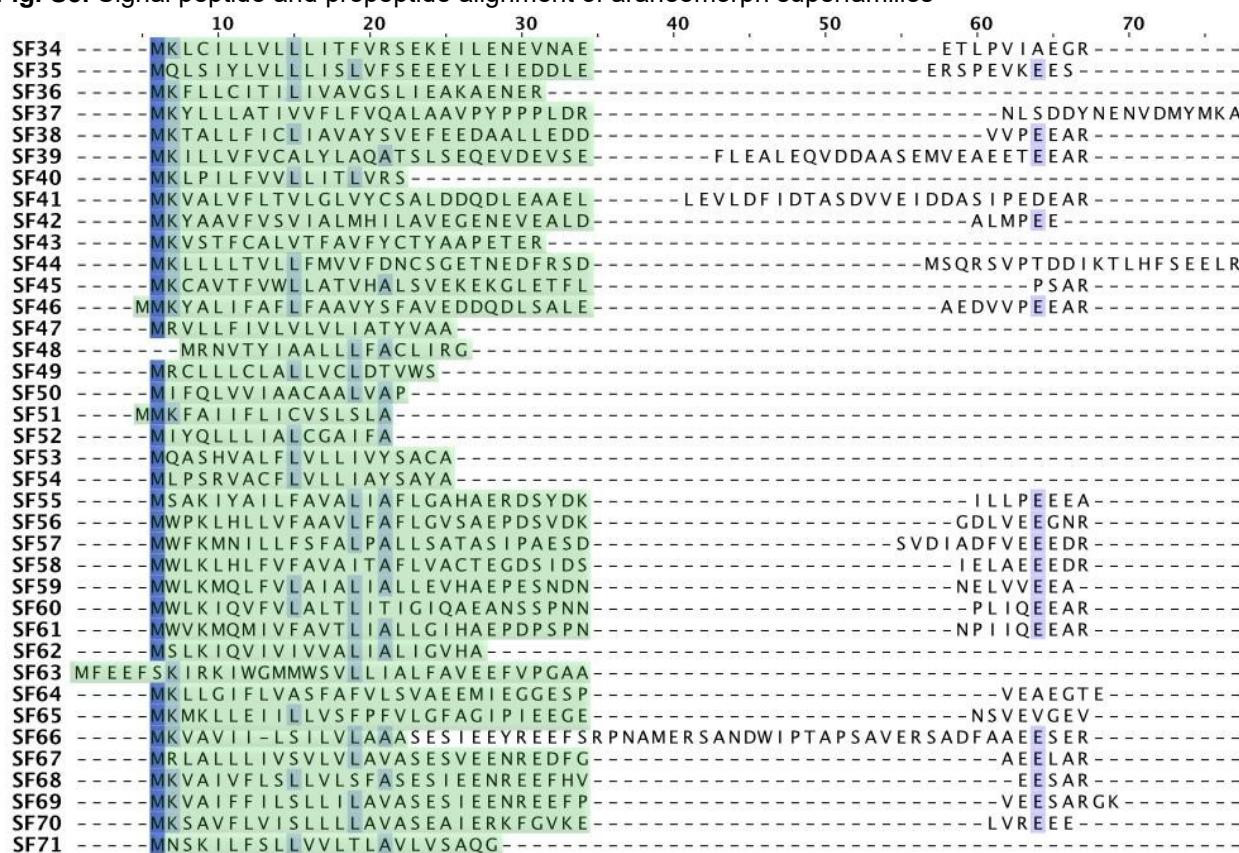

This figure shows the alignment of signal peptide and propeptide sequences from novel mygalomorph spider toxin superfamilies identified in this study. The signal peptide region is highlighted in green, while the propeptide region is represented in purple colour. Conserved sites are shaded in blue.

Fig. S2. Homology models of novel Mygalomorphae toxin superfamilies

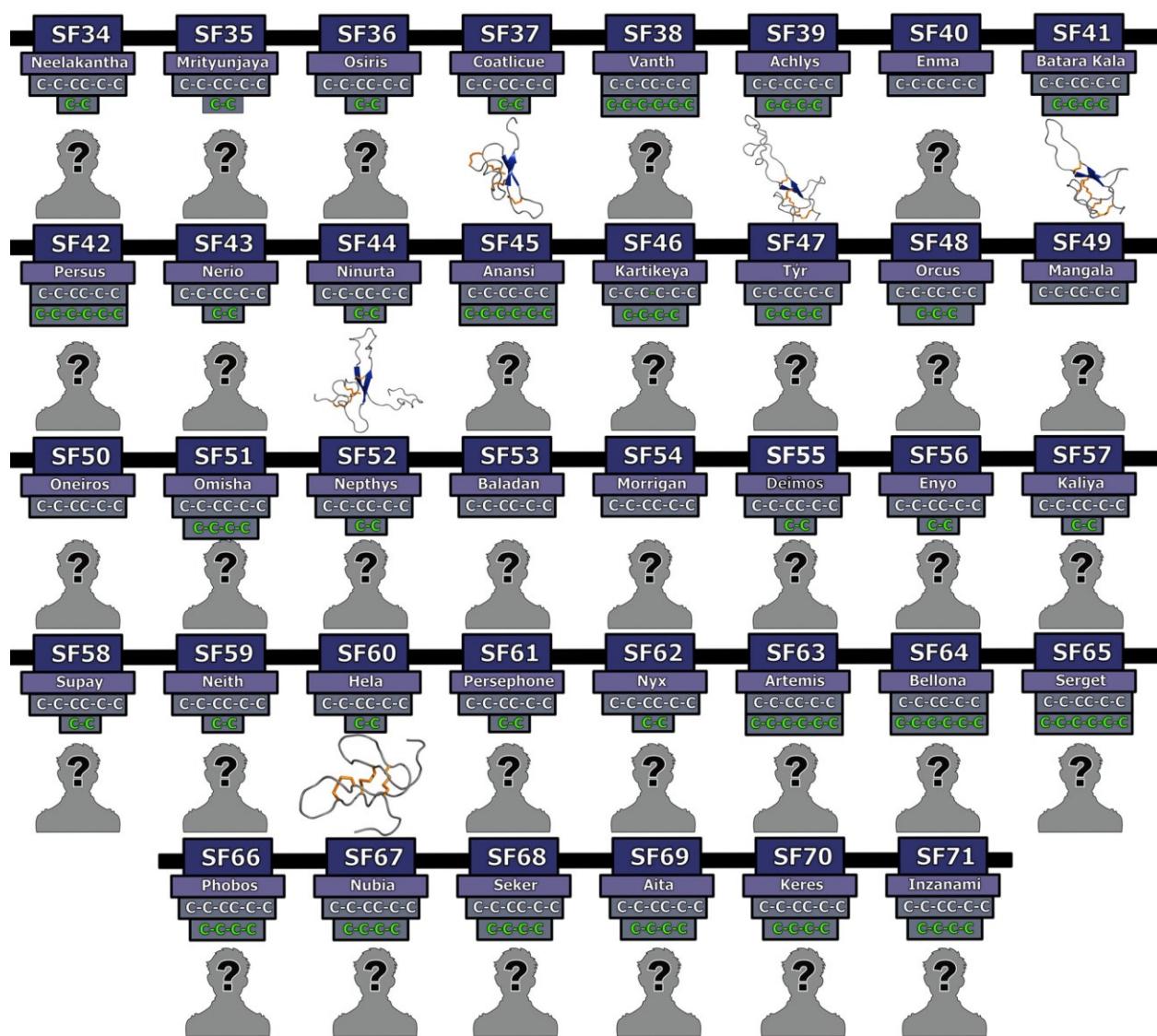

This figure depicts the 3D homology models of Mygalomorphae toxin superfamilies. Here, helices are shown in green, β -strands in blue and disulfide bonds in orange. Cysteine arrangements in scaffolds are also provided above the model, where novel cysteines are shown in green text. Toxin SFs that lack structural data are indicated with a '?' symbol.

Fig. S3. Signal peptide and propeptide alignment of araneomorph superfamilies

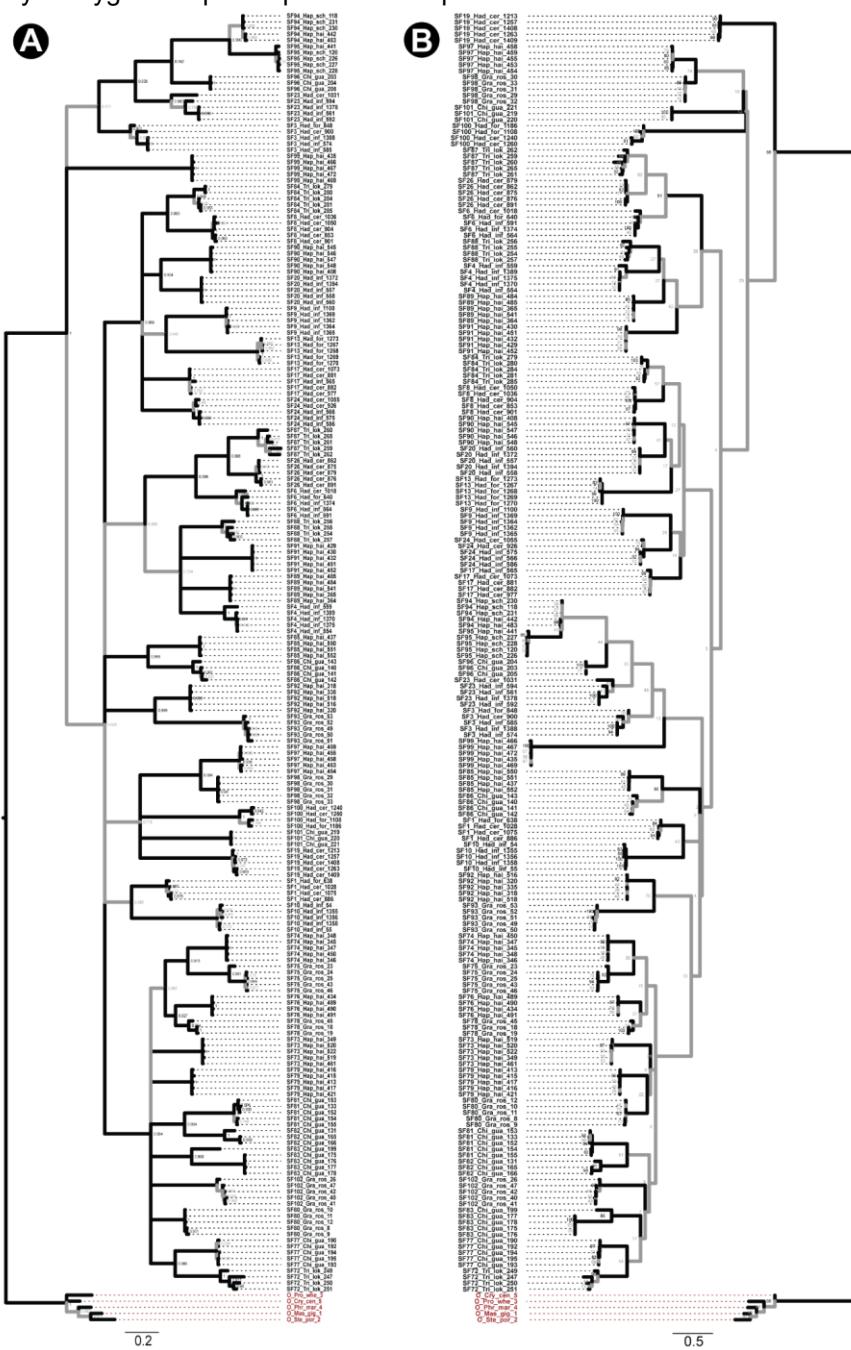

This figure shows the alignment of signal peptide and propeptide sequences from novel araneomorph toxin superfamilies identified in this study. The signal peptide region is highlighted in green, while the conserved amino acid positions are shaded in blue. It should be noted that the propeptide region boundary could not be identified for all Araneomorphae toxin superfamilies.

Fig. S4. Homology models of novel Araneomorphae toxin superfamilies

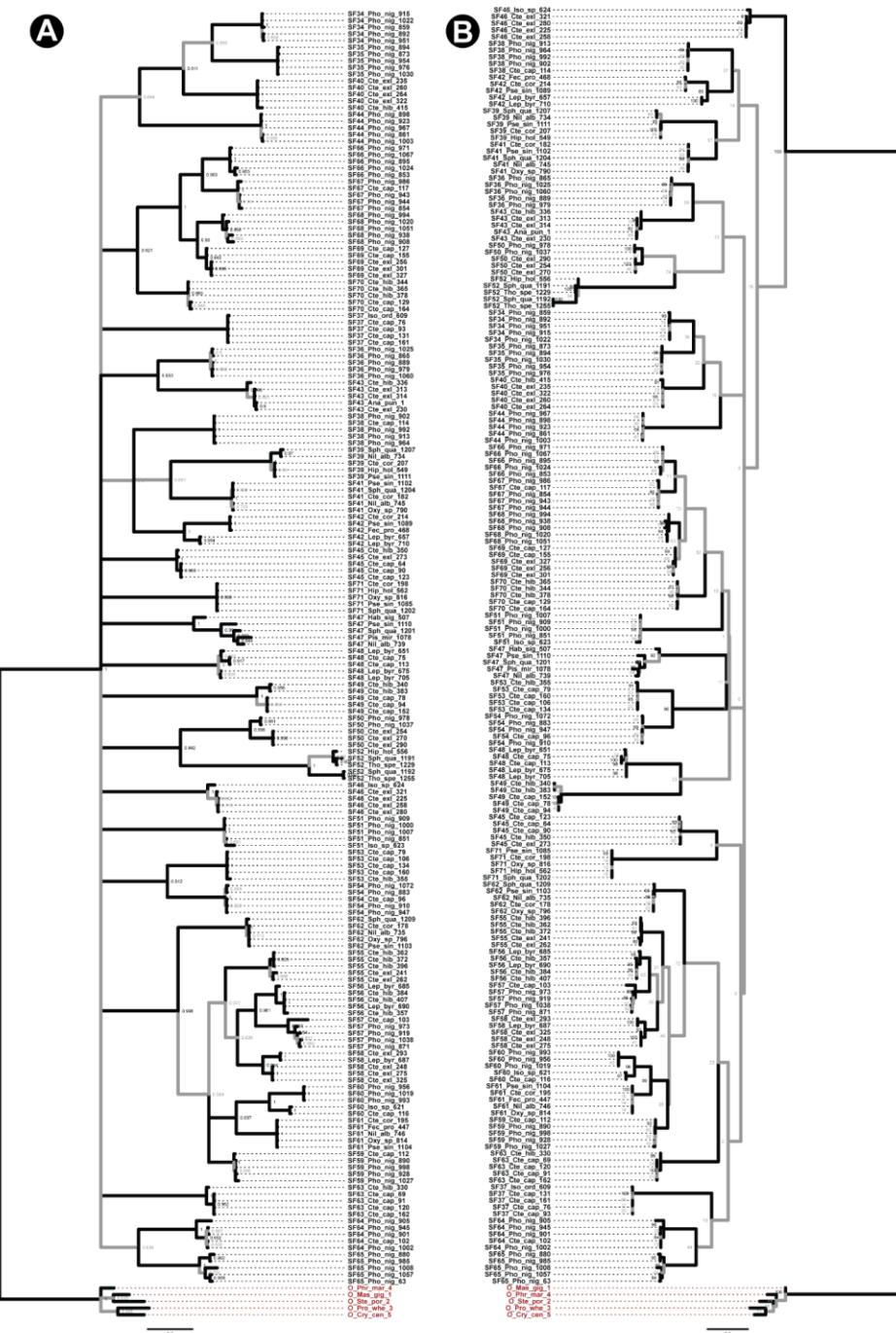

3D homology models of Araneomorphae toxin superfamilies are depicted in this figure. Here, helices are shown in green, β -strands in blue and disulfide bonds in orange. Cysteine arrangements in scaffolds are also provided above the model, where novel cysteines are shown in green text. Toxin SFs that lack structural data are indicated with a '?' symbol.

Fig. S5: Phylogeny of Mygalomorphae spider toxin superfamilies

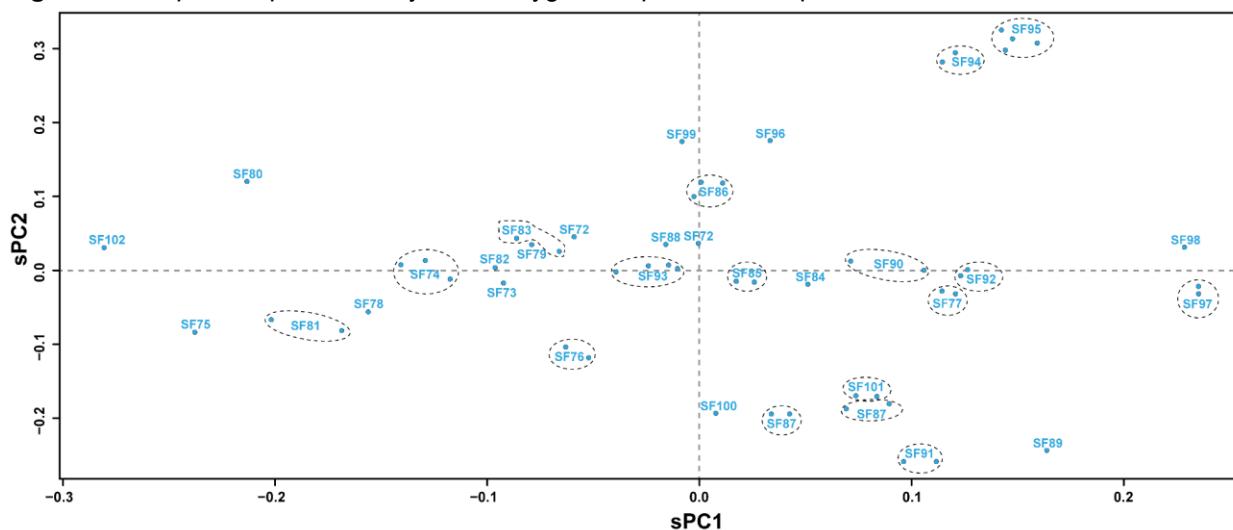

Phylogenetic relationships of Mygalomorphae spider toxin superfamilies, assessed using Bayesian (BI; panel A) and maximum likelihood (ML; panel B) inferences, are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

Fig. S6: Phylogeny of Araneomorphae spider toxin superfamilies

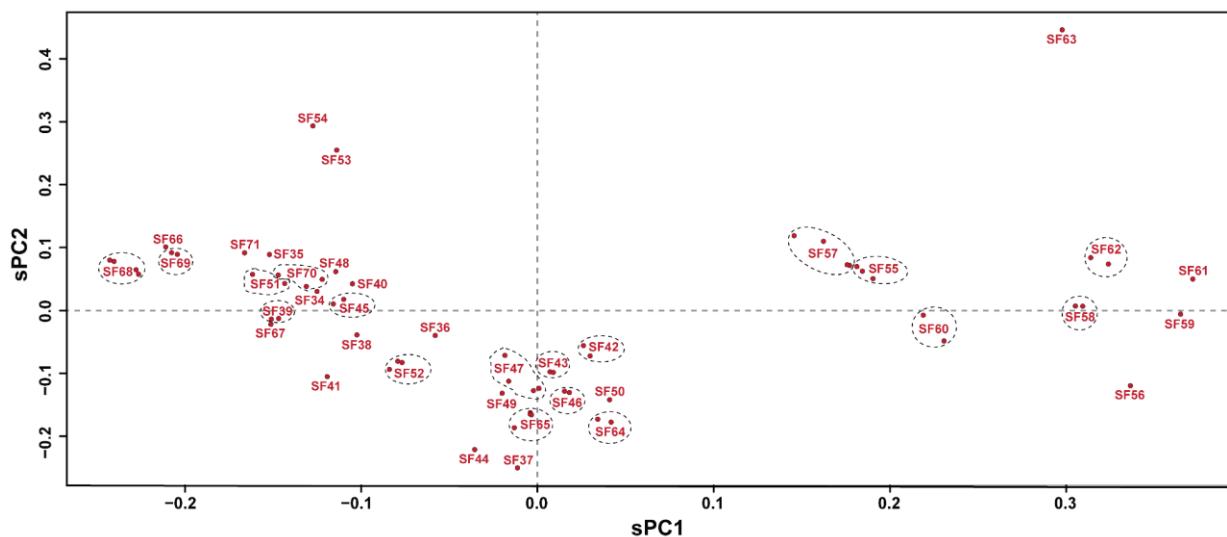

Phylogenetic relationships of Araneomorphae spider toxin superfamilies, assessed using Bayesian (BI; panel A) and maximum likelihood (ML; panel B) inferences, are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

Fig. S7: Principal component analyses for Mygalomorphae toxin superfamilies

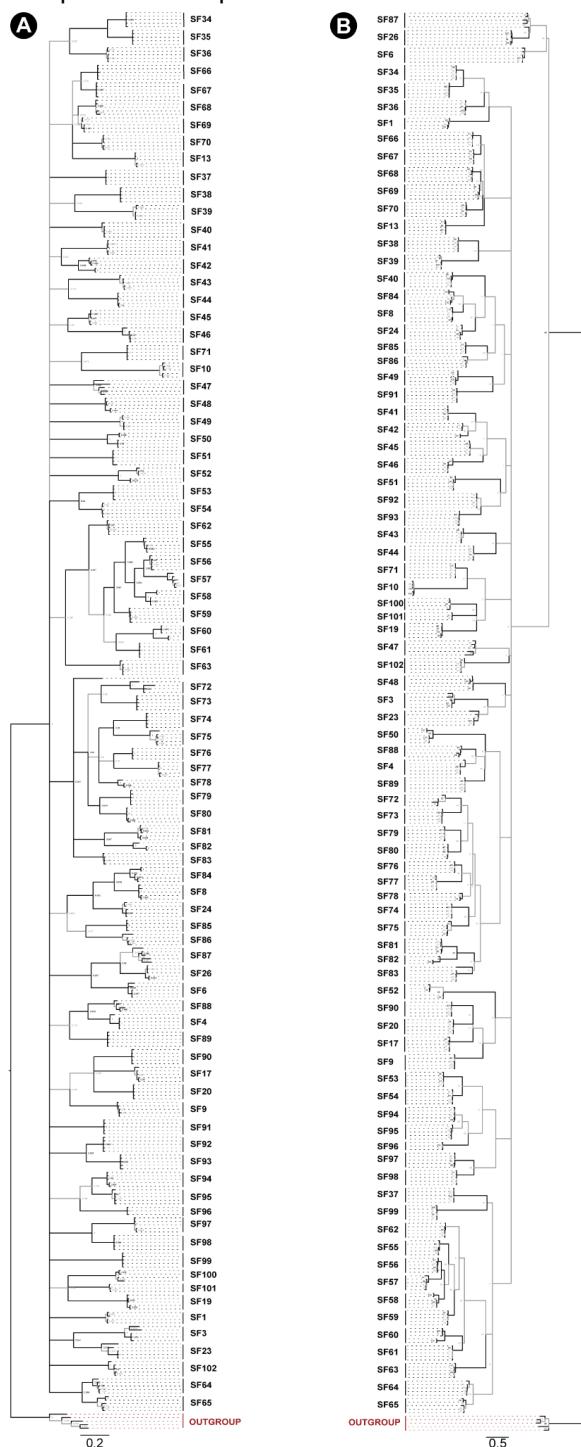

A scatter plot of scaled principal components, sPC1 and sPC2, for the signal peptide sequences of novel mygalomorph toxin superfamilies identified in this study is shown here. Signal peptide sequences belonging to a superfamily with overlapping sPC values are represented as a single dot, while others are marked with a dotted circle.

Fig. S8: Principal component analyses for Araneomorphae toxin superfamily

Scaled principal components, sPC1 and sPC2, for signal peptide sequences of novel araneomorph toxin superfamilies identified in this study are shown here in the form of a scatter plot. Signal peptide sequences belonging to a superfamily with overlapping sPC values are represented as a single dot, while others are marked with a dotted circle.

Fig. S9: Phylogeny of Araneae spider toxin superfamilies

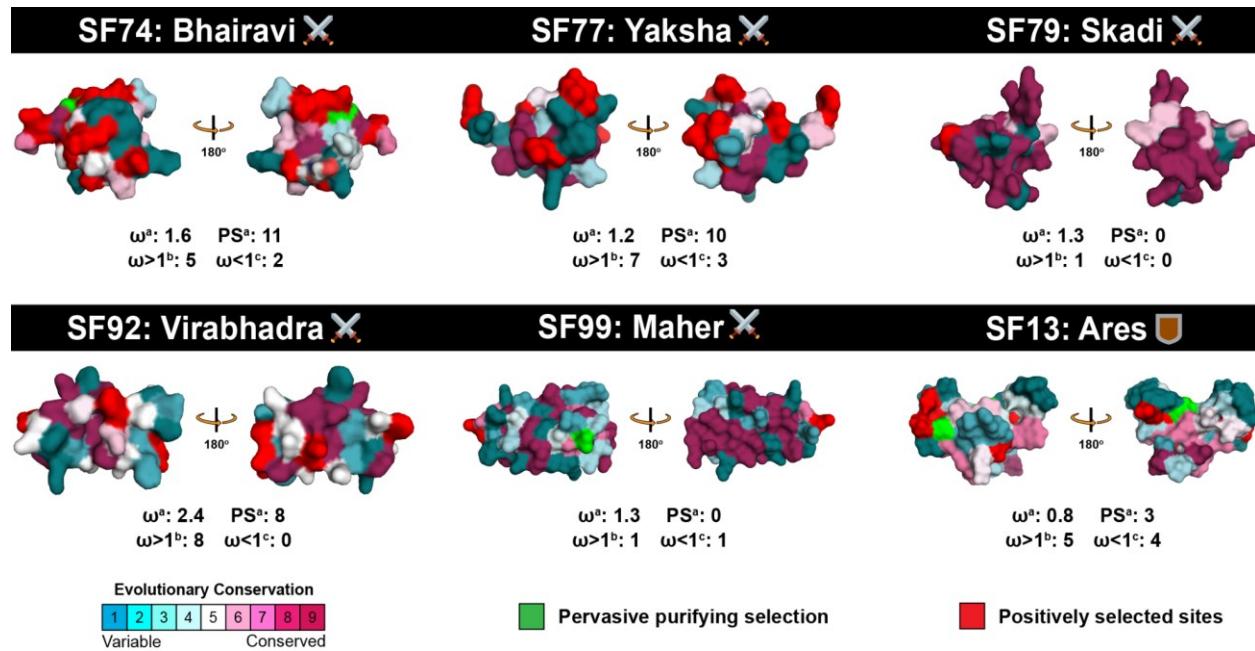

Phylogenetic relationships of Araneae toxin superfamilies built using Bayesian (BI; panel A) and maximum likelihood (ML; panel B) inferences are shown in this figure. Node supports were estimated using Bayesian posterior probability (BPP) for the BI tree and bootstrapping replication (BS) for the ML tree. Branches with BPP lower than 0.95 in BI tree and BS lower than 90 in the ML tree are shown in grey. Cysteine-rich non-toxin outgroup sequences are coloured red.

Fig. S10: Mature peptide alignment of mygalomorph and araneomorph DRP superfamilies

An alignment of mature peptide sequences from mygalomorph and araneomorph spider toxin superfamilies is shown here. Conserved amino acid positions (sequence identity $\geq 89\%$) are shaded orange.

Fig. S11: Deployment strategies dictate the evolution of spider venom

This figure highlights the distinct regimes of evolutionary selection pressures acting on defensive and offensive spider venom superfamilies. Positively selected sites detected by PAML (M8) and FUBAR are highlighted in red, while sites under the effect of pervasive purifying selection (FUBAR) are shown in green. A colour code indicating strength of selection is also provided. Here, ω : ratio of non-synonymous to synonymous substitutions; **a**: ω and positively selected sites (Bayes Empirical Bayes) detected by model 8 of PAML; **b**: sites experiencing pervasive influence of positive selection identified by FUBAR ($\omega > 1$); and **c**: sites experiencing pervasive influence of negative selection identified by FUBAR ($\omega < 1$).

Table S1. Molecular evolution of Mygalomorphae toxin superfamilies

PAML ^a (M8)		FUBAR ^b	MEME ^c	TreeSAAP			
AA	ω			Radical Property			
				Chemical	Physical		
SF2							
R60	1.1963	$\omega > 1^d:6$ $\omega < 1^e:6$	34		F, Mv, Mw, V ^o , Ra, Hp, Ht		
S62					V ^o , Ra, Hp, an		
L63				pK	V ^o , Ra, Hp		
A66					F, Ra, Hp, an, K ^o		
C68					ac, Mv, an, K ^o		
D69					ac, K ^o		
SF4							
T101	0.8469	$\omega > 1^d:3$ $\omega < 1^e:11$	33				
V102							
G103					Pa		
G105					Pa		
SF7							
N89	2.428	$\omega > 1^d:4$ $\omega < 1^e:0$	6				
K90							
N92							
A93							
S94							
S95							
N96							
N97							

L98					
SF9					
T73	0.7316	$\omega > 1^d:9$ $\omega < 1^e:11$	25		Bl, an
S79					
SF10					
0	0.8767	$\omega > 1^d:4$ $\omega < 1^e:4$	3		
SF13					
N100	0.8252	$\omega > 1^d:5$ $\omega < 1^e:4$	6		
G110					
L111					
SF14					
G86	1.9715	$\omega > 1^d:2$ $\omega < 1^e:4$	34		
H90					Ra
R91					
L97					
G98					
Q99					
A100					
I101					Bl
L102					Bl
T103					
G104					Ra
F105				Esm	Ra, an
S106				h, Esm	an, RF
T107				h	an, RF

V108					an
T109					
N110					RF
G111					Ra, RF
L112				h, Esm	Ra
S113				h, Esm	Bl, an
A114					Bl, an
I115					
F116					
C117					RF
A118					RF
A119					
SF17					
W100					
T105					am
R106					am
L107					
S110					
L111					
SF19					
Q19					
R38					
D47					
K51					
A52					

F62									
Q63									
D66									
Y68									
S70									
SF20									
S25	1.0695	$\omega > 1^d:0$ $\omega < 1^e:3$	12		Pc				
V37									
I55									
V92									
E95									
P96									
T97									
L98									
T99									
W100									
Y102									
A103									
S104					Pc				
Y106									
C107									
Y108									
K111									
S112									

SF26					
N59					
E60				p	Bl, Hp
K61				p	Bl, Hp
E62					Hp, an
S64				p	Bl, Hp, an
S65				p	Bl, Hp
G68					
R69					
T70					
A75				p	
G77					Bl, an
V79				p	Hp
N80					an
E81					an
SF74					
K51					
F54					
D55					
T58					
P33					
N67					
R68					
D72					
H74					

W79					
K80					
SF77					
M57	1.2384	$\omega > 1^d:7$ $\omega < 1^e:3$	6		
S62					
K63					
E65					
R75					
T76				Esm	
F77				Esm	
N78					
G84					
S87					
SF79					
0	1.3007	$\omega > 1^d:1$ $\omega < 1^e:0$	0		
SF84					
N76	0.7488	$\omega > 1^d:6$ $\omega < 1^e:7$	4		an
K78					
A84					ac
N85					ac
S87					ac
P88					ac
S91					
S94					
E97					an

L104					
K106					
I112					
N115					
SF89					
S67	2.9549	$\omega > 1^d:1$ $\omega < 1^e:0$	0		
S104					Mv
F105					Mv
S106					
C108					an
V109					an
SF90					
E32	1.5977	$\omega > 1^d:3$ $\omega < 1^e:11$	1		
K38					
L60					
D63					
K112					
SF92					
V3	2.4954	$\omega > 1^d:8$ $\omega < 1^e:0$	3		
L9					
P49					
F54					
K64					Hp, an, K ^o
P65					Hp, an, K ^o
K68					ac, K ^o

V85					
SF99					
0	1.3179	$\omega > 1^{\text{d}:1}$ $\omega < 1^{\text{e}:1}$	0		

Legend: **a:** Positively selected sites detected by the Bayes Empirical Bayes approach implemented in M8; **b:** Fast Unconstrained Bayesian AppRoximation **c:** Sites detected as experiencing episodic diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME). Sites detected at 0.99 and 0.95 significance are indicated in the parenthesis; **d:** number of sites under pervasive diversifying selection at the posterior probability ≥ 0.9 (FUBAR); **e:** Number of sites under pervasive purifying selection at the posterior probability ≥ 0.9 (FUBAR); **ω :** mean dN/dS.

Biochemical properties evaluated: Equilibrium Const. – ionisation, COOH (pK); Hydropathy (h); Long-range n.b. energy (El); Polarity (p); Total n.b. energy (Et). Structural properties: α -helical tendencies (P α); β -structure tendencies (P β); Average # surrounding residues (Ns); Bulkiness (Bl); Chromatographic index (RF); Coil tendencies (Pc); Compressibility (K 0); Helical contact energy (Ca); Mean r.m.s. fluctuation displacement. (F); Molecular volume (Mv); Molecular weight (Mw); Partial specific volume (V 0); Polar requirement (Pr); Power to be – C-term. α -helix (ac); Power to be – middle, α -helix (am); Power to be – N-term., α -helix (an); Refractive index (μ); Solvent accessible reduct. ratio (Ra); Thermodynamics transfer hydrophobicity (Ht)

Table S2. Molecular evolution of Araneomorphae toxin superfamilies

PAML ^a (M8)		FUBAR ^b	MEME ^c	TreeSAAP			
AA	ω			Radical Property			
				Chemical			
SF34		0.9494	ω>1 ^d :6 ω<1 ^e :7	2			
L57							
R83		0.9638	ω>1 ^d :3 ω<1 ^e :6	2			
SF36							
T34		0.9638	ω>1 ^d :3 ω<1 ^e :6	2			
V56							
SF37		0.0318	ω>1 ^d :0 ω<1 ^e :9	0			
0							
SF38		0.6467	ω>1 ^d :0 ω<1 ^e :2	2			
0							
SF40		1.0142	ω>1 ^d :2 ω<1 ^e :12	4			
D41							
I42							
S44							
G45							
Q46							
F58							
N64							
N67							
G69							
Q70							
SF42							

0	0.3161	$\omega > 1^d:1$ $\omega < 1^e:12$	1		
SF44					
0	0.8503	$\omega > 1^d:2$ $\omega < 1^e:2$	2		
SF45					
0	0.3662	$\omega > 1^d:2$ $\omega < 1^e:4$	0		
SF46					
D103	0.3635	$\omega > 1^d:3$ $\omega < 1^e:11$	0		
SF47					
0	0.0861	$\omega > 1^d:0$ $\omega < 1^e:57$	0		
SF48					
0	0.1674	$\omega > 1^d:1$ $\omega < 1^e:20$	1		
SF50					
0	0.4939	$\omega > 1^d:0$ $\omega < 1^e:20$	6		
SF51					
0	0.3475	$\omega > 1^d:2$ $\omega < 1^e:4$	0		
SF55					
0	0.2892	$\omega > 1^d:0$ $\omega < 1^e:2$	0		
SF58					
0	0.5436	$\omega > 1^d:1$ $\omega < 1^e:4$	1		
SF59					
0	0.4836	$\omega > 1^d:0$ $\omega < 1^e:2$	0		
SF60					
0	0.7111	$\omega > 1^d:2$ $\omega < 1^e:5$	2		
SF66					

G62	0.997	$\omega > 1^d:1$ $\omega < 1^e:1$	2		
E83					
E91					
S112					
SF68					
N61	0.6302	$\omega > 1^d:2$ $\omega < 1^e:6$	4		
I76					ac
E79					
SF69					
0	0.6077	$\omega > 1^d:1$ $\omega < 1^e:10$	1		

Legend: **a:** Positively selected sites detected by the Bayes Empirical Bayes approach implemented in M8
b: Fast Unconstrained Bayesian AppRoximation **c:** Sites detected as experiencing episodic diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME). Sites detected at 0.99 and 0.95 significance are indicated in the parenthesis **d:** number of sites under pervasive diversifying selection at the posterior probability ≥ 0.9 (FUBAR) **e:** Number of sites under pervasive purifying selection at the posterior probability ≥ 0.9 (FUBAR) ω : mean dN/dS.

Biochemical properties: Equilibrium Const. – ionisation, COOH (pK); Hydropathy (h); Long-range n.b. energy (El); Polarity (p); Total n.b. energy (Et). Structural properties: α -helical tendencies (P α); β -structure tendencies (P β); Average # surrounding residues (Ns); Bulkiness (Bl); Chromatographic index (RF); Coil tendencies (Pc); Compressibility (K 0); Helical contact energy (Ca); Mean r.m.s. fluctuation displacement. (F); Molecular volume (Mv); Molecular weight (Mw); Partial specific volume (V 0); Polar requirement (Pr); Power to be – C-term. α -helix (ac); Power to be – middle, α -helix (am); Power to be – N-term., α -helix (an); Refractive index (μ); Solvent accessible reduct. ratio (Ra); Thermodynamics transfer hydrophobicity (Ht)

Dataset S1 (separate file). List of accession numbers of sequences analysed in this study with superfamily annotations.