

1 **Copy number variation on *ABCC2-DNMBP* loci impacts the diversity and**
2 **composition of the gut microbiota in pigs**

3
4 Yulixais Ramayo-Caldas^{1+*}, Daniel Crespo-Piazuelo¹⁺, Jordi Morata², Olga González-
5 Rodríguez¹, Cristina Sebastià^{3,4}, Anna Castello^{3,4}, Antoni Dalmau⁵, Sebastian Ramos-
6 Onsins³, Konstantinos G. Alexiou³, Josep M. Folch^{3,4}, Raquel Quintanilla¹, Maria
7 Ballester^{1*}

8

9 ¹ Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology
10 (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain

11 ² CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and
12 Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain

13 ³ Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics
14 (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Spain

15 ⁴Animal and Food Science Department, University Autonomous of Barcelona (UAB),
16 Bellaterra 08193, Spain

17 ⁵ Animal Welfare Program, IRTA, 17121, Monells, Girona, Spain

18 ⁺ equal contribution

19 ^{*} corresponding authors

20

21

22 **Abstract**

23 **Background**

24 Genetic variation in the pig genome partially modulates the composition of porcine
25 gut microbial communities. Previous studies have been focused on the association
26 between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is
27 known about the relationship between structural variants and gut microbial traits.

28

29 **Results**

30 The main goal of this study was to assess the effect of porcine genome copy
31 number variants (CNVs) on the diversity and composition of pig gut microbiota. For this
32 purpose, we used whole-genome sequencing data to undertake a comprehensive
33 identification of CNVs followed by a genome-wide association analysis between the
34 estimated CNV status and the gut bacterial diversity in a commercial Duroc pig population.
35 A CNV predicted as gain (DUP) partially harboring *ABCC2-DNMBP* loci was associated
36 with richness ($p\text{-value}=5.41\times 10^{-5}$) and Shannon α -diversity ($p\text{-value}=1.42\times 10^{-4}$). The *in-*
37 *silico* predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its
38 segregation, and positive association with the richness and Shannon α -diversity of the
39 porcine gut bacterial ecosystem was confirmed in an unrelated F1 (Duroc×Iberian) cross.
40 Furthermore, despite genetic and environmental differences between both populations, the
41 gut microbiota of DUP samples showed a significant over-abundance of the *Desulfovibrio*,
42 *Blautia*, *Phascolarctobacterium*, *Faecalibacterium*, *Succinivibrio* and *Anaerovibrio* genera.

43

44 **Conclusions**

45 In summary, this is the first study that evaluate the putative modulatory role of CNVs
46 on pig gut microbiota. Our results advice the relevance of considering the role of host-
47 genome structural variants as modulators of microbial ecosystems, and suggest the
48 *ABCC2-DNMBP* CNV as a host-genetic factor for the modulation of the diversity and
49 composition of the gut microbiota in pigs.

50

51 **Key words:** microbiota, diversity, structural variants, CNVs, modulators, porcine

52

53

54

55

56

57 **BACKGROUND**

58 Gut microbiomes have a profound impact on many aspects of pig health, such as
59 the modulation of metabolic functions, physiological processes, and relevant porcine traits
60 like growth [1], feed efficiency [2] [3], and immunocompetence [4]. Host-microbiome
61 interactions are mediated by both environmental and host factors. Among them, genetic
62 variation in the pig genome can modulate, in a taxa-specific manner, the composition and
63 function of the pig gut eukaryotic and prokaryotic communities. Pig gut microbiota is
64 heritable to an extent, showing low to medium heritabilities [2] [5] [6]. Quantitative trait loci
65 (QTLs), genetic variants, and candidate genes associated to pig gut microbiota have been
66 reported [7] [8] [9] [10].

67 However, since previous studies were focused on the association between SNPs
68 and microbial traits, little is known about the relationship between the gut microbiota and
69 structural variants in the porcine genome. Copy-number variants (CNVs) are structural
70 variants that produce a change in the number of copies (gain or loss) of a genomic region.
71 Compared to SNPs, CNVs involve large DNA segments that span a significant proportion
72 of the genome, and account for greater genomic variability than SNPs. Consequently,
73 CNVs are a relevant source of genetic variation that contribute to evolutionary adaptations,
74 variation in gene expression and phenotypic traits in human and domestic animals [11]
75 [12]. In humans, gain of copies of salivary amylase (*AMY1*) gene was associated with oral
76 and gut microbiome composition [13]. In this seminal study, Poole et al. found that
77 individuals with greater number of copies of *AMY1* showed greater levels of salivary
78 *Porphyromonas*, followed by an increased abundance of resistant starch-degrading
79 microbes in the gut.

80

81 We hypothesized that alike humans, CNVs are likely to contribute to animal gut
82 microbial variability. However, to the best of our knowledge, such associations have not
83 been documented in livestock. Consequently, the putative modulatory role of CNVs on the
84 diversity, composition and function of livestock gastrointestinal microbiota remains to be
85 elucidated. The main goal of this study was to assess the effect of porcine CNVs on the
86 diversity and composition of pig gut microbiota.

87

88

89

90

91

92

93 MATERIAL AND METHODS

94 Animal samples

95 Samples employed in this study are a subset of pigs reported in [14] and [9]. In
96 brief, a total of 100 weaned piglets (50 males and 50 females) from a commercial Duroc
97 pig line were used as a discovery dataset (Table 1). The pigs were distributed in three
98 batches, all animals were raised on the same farm and had *ad libitum* access to the same
99 commercial cereal-based diet. Furthermore, a subset of 24 unrelated F1 (DurocxIberian)
100 crossbred pigs with phenotypically extreme gut microbial diversity index (12 high and 12
101 low) from [7] were employed as independent validation dataset (Table 1).

102

103 Microbial DNA extraction, sequencing, and bioinformatics analysis

104 Fecal samples were collected from the Duroc piglets at 60 ± 8 days of age and
105 microbial DNA was extracted with the DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany).
106 Extracted DNA was sent to the University of Illinois Keck Center for paired-end (2×250
107 bp) sequencing on an Illumina NovaSeq (Illumina, San Diego, CA, USA). The 16S rRNA
108 gene fragment was amplified using the primers V3_F357_N: 5'-
109 CCTACGGNGGCWGCAG-3' and V4_R805: 5'-GACTACHVGGTATCTAATCC-3'.
110 Sequences were analysed with QIIME2 [15]; barcode sequences, primers, and low-quality
111 reads (Phred score < 30) were removed. The quality control process also trimmed
112 sequences based on expected amplicon length and removed chimeras. Afterwards,
113 sequences were clustered into Amplicon Sequences Variants (ASVs) at 99% of identity.
114 ASVs were classified to the lowest possible taxonomic level based on a primer-specific
115 trained version of GreenGenes Database 13.8 [16]. Before the estimation of the diversity
116 indices, to correct for the sequencing depth, samples were rarefied at 10,000 reads.
117 Diversity metrics were estimated with the vegan R package v2.6-2 [17]. The α -diversity
118 was evaluated with the Shannon index [18], and the β -diversity was assessed using the
119 Whittaker index [19].

120

121

122 Host-genome data analysis and CNV-calling

123 Simultaneously with fecal sampling, blood was collected at 60 ± 8 days of age via
124 the external jugular vein. Host genomic DNA was extracted from blood using the
125 NucleoSpin Blood (Macherey–Nagel). Whole genome was paired-end sequenced (2×150

126 bp) in an Illumina NovaSeq6000 platform (Illumina) at *Centro Nacional de Análisis*
127 *Genómico* (CNAG-CRG; Barcelona, Spain). Reads were mapped to the porcine reference
128 assembly *Sscrofa.11.1* with BWA-MEM 0.7.17 [20]. Alignment files containing only properly
129 paired, uniquely mapping reads without duplicates were processed using Picard [
130 <http://broadinstitute.github.io/picard/>] to add read groups and to remove duplicates.
131 Variant calling was performed with the HaplotypeCaller tool from Genome Analysis Tool Kit
132 (GATK 4.1.8.0) [21]. Applying GATK Best Practices, variants with minimum read depth of
133 5 on at least one sample were retained. Joint genotyping was conducted with combined
134 gVCFs. Functional annotations were added using SnpEff v.5 [22] against the *Sscrofa.11.1*
135 reference database. CNV prediction was performed with ControlFREEC 11.5 [23], using a
136 pool of samples as CNV baseline and using intervals of 20kb windows. CNV calls from all
137 samples that were less than 10kb apart were merged with Survivor [24]. Individual CNV-
138 calls were combined into copy number variant regions (CNVR) following the reciprocal
139 overlap approach [11] with CNVRrange [25]. Therefore, contiguous CNVs intervals with at
140 least 50% of mutual overlap were merged into the same CNVR.

141

142 Nucleotide diversity pattern estimates were calculated considering the SNPs
143 present in each individual separately. Here we tested two estimators: (i) Tajima's theta
144 estimator (π or nucleotide diversity, called **ATajima** hereafter), that is simply the number of
145 variants present in the individual; (ii) **RTajima** estimator, which considers the frequency
146 observed in the entire sample but calculated given the SNPs present in each individual.
147 This estimate is equivalent to **ATajima** but needs to be corrected by the probability that
148 only a portion of the total SNPs from a sample are present in each of the samples (by
149 using a hypergeometrical distribution). Specifically, the calculation for a single individual is:

$$\hat{\theta} = \frac{1}{\sum_{i=1}^{n-1} (n-i)} \sum_{i=1}^{n-1} (n-i) i \xi_i \left(1 - \frac{\binom{n-i}{2}}{\binom{n}{2}}\right)^{-1}$$

150

151 where n is the number of samples in the population (2xnumber of individuals) and ξ_i is the
152 number of SNPs observed in this individual that are at frequency i in the whole population.

153

154 The dataset in VCF format was converted to FASTA and from FASTA to transposed
155 FASTA (tFASTA). This tFASTA file was read with the software *mstatspop*
156 (<https://github.com/CRAGENOMICA/mstatspop>) to obtain the frequencies of SNPs from
157 each of the pigs at the desired region. Finally, we calculated **RTajima** per fragment using

158 self-made R scripts. All these estimates were finally divided by the effective length size of
159 the studied region to obtain comparative estimates per nucleotide.

160 **CNV-wide association analysis**

161 A genome-wide association analysis between the estimated CNV-status and gut
162 bacterial diversity index was done using the following mixed model:

163

164
$$y_{ijk} = \text{sex}_j + b_k + u_i + \text{cnv}_{li} + e_{ijk}$$

165

166 where y_{ijk} corresponds to the microbial index under scrutiny (richness or Shannon α -
167 diversity) of the i -th individual animal of sex j in the k -th batch; sex_j and b_k correspond to
168 the systematic effects of j -th sex (2 levels) and k -th batch (3 levels), respectively; u_i is the
169 random additive genetic effect of the i -th individual, collectively distributed as $u_i \sim N(0, G\sigma_u^2)$ where σ_u^2 is the additive genetic variance and G is the numerator of the genomic
170 relationship matrix calculated using the autosomal SNPs; cnv_{li} is the genotype (recoded as
171 11=loss, 12=diploid and 22=gain) for the l -th CNV of the i -th individual, and e_{ijk} is the
172 residual.

173

174

175 **Quantitative real time PCR**

176 Real-time quantitative PCR (qPCR) was used to validate the CNV on the *ABCC2*
177 gene in a total of 72 samples including a subset of 48 Duroc samples (24 diploid and 24 *in*
178 *silico* predicted as DUP), and 24 unrelated F1 DurocxIberian cross (Table 1). The CNV
179 breakpoint was re-estimated with Manta: v1.6.0 [26]. All primers were designed using the
180 Primer Express 2.0 software (Applied Biosystems). The pair of primers ABCC2_CNV_F 5'-
181 *TGGCATCATTATGTGGCTGTT-3'* and ABCC2_CNV_R 5'-
182 *AGGAAGGAGCTTGGGCTTTA-3'* amplify a specific region of the *ABCC2* gene
183 containing the CNV, while the pair of primers ABCC2_F 5'-
184 *TGGACAAGAACCGAGTCAAAGC-3'* and ABCC2_R 5'-
185 *ACATAGAGCGCATTGAACGAA-3'* amplify a region outside of the estimated CNV
186 breakpoint that was used as single copy control region. The 2- $\Delta\Delta Ct$ method for relative
187 quantification (RQ) of CNVs was used as previously described in [27]. qPCRs were carried
188 out using SYBR Green chemistry (SYBRTM Select Master Mix, Applied Biosystems) and
189 the instruments ABI PRISM® 7900HT and 7500 Real-Time PCR System (Applied
190 Biosystems, Inc.; Foster City, CA). The reactions were carried out in a 20 μ l volume
191 containing 10ng of genomic DNA. All primers were used at 900 nM. The thermal cycle
192 was: 10 min at 95°C, 40 cycles of 15 sec at 95°C and 1 min at 60°C. Each sample was

193 analyzed in quadrupled. PCR efficiencies (<95%) were evaluated with standard curves
194 and dissociation curves were drawn for each primer pair to assess for the specificity of the
195 PCR reactions. Three samples without CNV were used as reference. Results were
196 analyzed with Thermo Fisher Cloud software 1.0 (Applied Biosystems), and qBase Plus
197 v3.2 (Biogazelle).

198 **Identification of microbial signatures**

199 The identification of ASVs that discriminate samples according to the number of
200 copies of the *ABCC2-DNMBP* loci was performed based on the compositional kernel as
201 implemented the function 'classify' of *kernInt* R package [28]. The 'classify' function run a
202 supervised classification model based on Support Vector Machine. For that purpose, the
203 available dataset was split at random into training set (80% of data) and validation set
204 (20%). The C hyperparameter's optimal value was obtained by 10×10 cross-validation on
205 the training set. To estimate the mean classification accuracy the 'classify' function was run
206 ten times using different training/test splits of the dataset. Microbial signatures were
207 obtained from the hyperplane vector w, and the importance of the ASV k was computed by
208 *kernInt* as $(wk)^2$ [29]. Initially, the top 5% relevant taxa were retained, but a conservative
209 approach was applied afterwards, keeping for subsequent analyses only the ASVs
210 reported as relevant in at least the 50% of the replicates. Finally, to identify
211 overrepresentation at genus level, the list of selected features was submitted to a taxa-set
212 enrichment analysis [30].

213

214

215 **RESULTS**

216 **Detection of copy number variants and association analysis**

217 In this study we used whole-genome sequencing data from 100 healthy 60-day-old
218 Duroc pigs to undertake a comprehensive identification of CNVs. A total of 1,292 CNVs
219 distributed across 531 CNVR on autosomal pig chromosomes were identified (Figure 1,
220 Supplementary table 1). After quality control, 1,005 CNVs grouped into 291 CNVR,
221 presented in at least the 5% of the samples, were used for the association analysis.
222 Among them, a CNV predicted as gain (DUP) located on CNVR454 (SSC14:111000000-
223 111075999) that partially contain the ATP Binding Cassette Subfamily C Member 2
224 (*ABCC2*) and the Dynamin Binding Protein (*DNMBP*) genes showed a significant
225 association with richness ($p\text{-value}= 5.41\times 10^{-5}$) and the Shannon α -diversity ($p\text{-}$
226 $\text{value}=1.42\times 10^{-4}$) (Figure 2).

227

228 **Validation by quantitative PCR**

229 Since the *in silico* identification of CNVs may result in both false positive and
230 negative results [27] [31], we conducted a qPCR assay with primers located on the *ABCC2*
231 gene for the experimental validation of the CNV. The *in silico* predicted genotype was
232 confirmed by qPCR in 46 out of the 48 Duroc samples, corresponding to an accuracy of
233 95.83%. To be noted, all the 24 samples *in silico* predicted as DUP presented the gain in
234 number of copies. Thus, deviations from the diploid status were observed in two out of the
235 24 animals, where variation in the number of copies was not *in silico* predicted by
236 ControlFREEC [23].

237
238 Because the existence of false negative sample assignation of CNV status could
239 impact the GWAS results, and therefore, to avoid spurious associations and confirm our
240 findings, we repeated the diversity index comparison using the subset of samples
241 analyzed by qPCR (2N=22 vs DUP=26). In agreement with the CNV-GWAS, qPCR results
242 corroborated that DUP pigs significantly had greater richness ($p=1.8\times10^{-3}$) and α -diversity
243 values ($p=3.8\times10^{-3}$) (Table 1). Furthermore, RQ of the number of copies was positively
244 correlated with the richness ($r=0.474$, p -value= 6.72×10^{-4}) and the α -diversity ($r=0.401$, p -
245 value= 7.77×10^{-3}) (Figure 3). We also observed a positive relationship between the RQ of
246 the number of copies and the nucleotide variability of the CNV genomic interval estimators
247 **ATajima** ($r=0.43$) and **RTajima** ($r=0.71$). The high correlation observed between **RTajima**
248 and the RQ values (Supplementary Fig 1) can be explained by the characteristic of
249 RTajima statistic, which gives more importance to intermediate frequencies observed in
250 the whole population, indicating that intermediate frequency diversity in this CNV is over-
251 represented at greater number of copies.

252
253 Remarkably, variation in the number of copies of the *ABCC2-DNMBP loci* was also
254 segregating in an unrelated commercial F1 Duroc×Iberian crossbred pigs, with 13 out of
255 24 pigs showing a gain of copies. Moreover, despite differences on genetic background,
256 age, or other environmental factors such as diet of farm of origin, the association between
257 the *ABCC2-DNMBP loci* and the gut microbial diversity was replicated in the F1
258 Duroc×Iberian cross (Table 1, Figure 4). Indeed, in both Duroc and F1 Duroc×Iberian cross
259 datasets, the qPCR reaffirmed that a gain of copies of the *ABCC2-DNMBP loci* was
260 positively associated to the richness and Shannon α -diversity of the pig gut microbiota
261 (Table 1).

263 **Microbial signatures linked to variation in the number of copies**

264 Results from the supervised classification model showed that the relative
265 abundance of 122 ASVs allowed the classification between groups of DUP vs 2N samples
266 (Supplementary table 2). The taxa-set enrichment analysis pointed out a higher overall
267 discriminant importance of ASVs members of the *Desulfovibrio*, *Blautia*,
268 *Phascolarctobacterium*, *Fibrobacter*, *Roseburia*, *Faecalibacterium*, *Megasphaera*,
269 *Succinivibrio*, *Coprococcus*, *RFN20*, and *Anaerovibrio* genera (Figure 5A). Furthermore,
270 supporting their discriminative role, we observed that compared to their diploid
271 counterparts, the gut microbiota of DUP pigs exhibited a higher relative abundance
272 (FDR<0.05) of the *Desulfovibrio*, *Blautia*, *Phascolarctobacterium*, *Faecalibacterium*,
273 *Megasphaera*, *Succinivibrio* and *Anaerovibrio* genera, but lower relative abundance of the
274 *Fibrobacter* and *RFN20* genera (Figure 5B). To be noted, the results obtained from the
275 differential abundance analysis done on the unrelated F1 Duroc×Iberian crossbred
276 population confirmed a higher relative abundance of the *Desulfovibrio*, *Blautia*,
277 *Phascolarctobacterium*, *Faecalibacterium*, *Succinivibrio* and *Anaerovibrio* genera in the gut
278 microbiota of samples with a gain of copies of the *ABCC2-DNMBP loci* (Figure 6).

279

280 **DISCUSSION**

281 In this study we report, for the first time in a livestock species, a CNV partially
282 containing the *ABCC2* and *DNMBP* genes associated to the diversity and composition of
283 the pig gut microbiota. *ABCC2* encodes a multidrug resistance-associated protein 2
284 (MRP2) that plays a relevant role preserving hepatic and intestinal homeostasis [32].
285 *ABCC2* is involved in the excretion of conjugated bile acids (BAs), bilirubin, xenobiotics,
286 and the transport of other organic anions [33][34]. In pigs, *ABCC2* has reported as co-
287 associated to the intramuscular profile of fatty acid composition in an Iberian×Landrace
288 cross [35]. In addition, the genomic interval harboring the *ABCC2-DNMBP loci* overlapped
289 with QTLs associated to muscle profile of palmitic (QTLId: 95385), stearic (QTLId: 95386)
290 and palmitoleic (QTLId: 95387) fatty acids content in a Duroc×(Landrace×Yorkshire) cross
291 [36]. In other species such as mice, rat or humans, mutations in *ABCC2* are related to
292 hereditary liver diseases. *Mrp2*^{-/-} mice are viable [37] [38], but like *ABCC2*-knockout rats,
293 showed chronic hyperbilirubinemia followed by a reduction in biliary excretion of bilirubin
294 glucuronides [39] [37]. Meanwhile, mutations in the human *ABCC2* gene results in the
295 Dubin-Johnson syndrome, an autosomal recessive disorder characterized by a defect in
296 the transport of endogenous and exogenous anionic conjugates from hepatocytes into the
297 bile [40]. It is worth to highlight that a genomic duplication of 5,299 base pairs comprising

298 exons 24 and 25 of human *ABCC2* gene was predicted to result in the insertion of a
299 premature stop codon [41].
300

301 Considering the key role of *ABCC2* on the excretion of bilirubin and conjugated
302 BAs, we hypothesize that variation in the number of copies of *ABCC2* may influence gut
303 levels of conjugated BAs and/or bilirubin. A bidirectional crosstalk between gut microbiota
304 and the metabolism of bilirubin and conjugated BAs has been documented. Bilirubin can
305 regulate the composition of gut microbiota by being potentially toxic towards Gram-positive
306 bacteria, while promoting the proliferation of Gram-negative species [42]. In a similar way,
307 a higher BA tolerance is evidenced by Gram-negative bacteria [43]. In agreement with
308 these studies, the gut microbiota of DUP samples in both the discovery and validation
309 datasets showed a higher relative abundance of Gram-negative bacteria, such as
310 members of the *Desulfovibrio*, *Phascolarctobacterium*, *Faecalibacterium*, *Succinivibrio*,
311 and *Anaerovibrio* genera. On another note, gut microbiota composition can regulate BA
312 and bilirubin production and signaling. Evidence from germ-free (GF) rats reveals that gut
313 microbiota is a key player in the reduction of bilirubin to urobilinoids with significant lower
314 fecal urobilin levels in GF rats compared with conventional ones [44]. Regarding BAs, GF
315 mice showed significant differences on enterohepatic circulation and BA composition
316 compared with conventional mice [45] with a lower proportion of secondary and tertiary
317 unconjugated and glycine-conjugated BA in tissues of GF rats [46]. In addition, conjugated
318 BAs can have a protective role on gut barrier integrity [47]. The oral administration of two
319 major conjugated BAs, tauro-cholic acid and β -tauro-murocholic acid, increased the
320 richness of neonatal small intestinal microbiota with a positive effect on the postnatal
321 microbiota maturation [48]. To be noted, among the top discriminant ASVs we observed
322 butyrate producer species with a potential beneficial effect for the host, such as *Blautia*
323 *obueum* (ASV2433, ASV2171, ASV2278), *Faecalibacterium prausnitzi* (ASV2371,
324 ASV2378), *Butyrivibrio pullicaecorum* (ASV2567) and *Roseburia faecis* (ASV1822).
325 Interestingly, the genome of all these species encodes bile salt hydrolases (*BSH*, EC
326 3.5.1.24) [49] [50], enzymes that mediate the primary BA deconjugation and successive
327 conversion to secondary BAs. Therefore, partly determining the amount of secondary BAs
328 in the colonic epithelium, which in turn acts as signaling molecules mediating different
329 metabolic processes interconnected with health and diseases [51] [52].
330

331 The CNVR454 also included *DNMBP*, a gene that regulates the structure of apical
332 junctions through F-actin organization in epithelial cells [53]. *DNMBP* is also involved in

333 luminal morphogenesis and enterocyte polarization [54] [55], thus potentially contributing
334 to the function and homeostasis of intestinal epithelial barrier (IEB). In fact, the crosstalk
335 between IEB and the gut microbiota is crucial for the maintenance of intestinal
336 homeostasis. For example, enterocytes, which are the most abundant population among
337 intestinal epithelial cells, express a range of pattern recognition receptors for sensing the
338 microbe-associated molecular patterns. Further, enterocyte apex is covered by thousands
339 of microvilli that are vital in colonic wound repair and the transport of molecules and
340 nutrients such as bile salts, electrolytes and vitamins [56] [57] [58] [59]. Interestingly,
341 depletion of microbiota in mice resulted in altered patterns of microvilli formation [60].
342 Likewise, compared with conventional piglets, germ-free (GM) pigs displayed aberrant
343 intestinal morphology with longer villi and shorter crypts. Meanwhile, the oral
344 administration of commensal bacteria increased crypt depth, and induced enterocyte brush
345 border microvilli enzyme activities on these GM piglets [61] [62] [63] [64]. Therefore,
346 considering the functional roles of *DNMBP* in the IEB, we cannot rule out the contribution
347 of *DNMBP* to the modulation of the diversity and composition of the pig gut microbiota.
348

349 Altogether, our results pinpointed a positive association of the variation in the
350 number of copies of the *ABCC2-DNMBP* loci with the richness, α -diversity, and
351 composition of the pig gut microbial ecosystems. Such findings open the possibility to
352 modulate the gut microbiota, which has emerged as a promising breeding or therapeutic
353 tool to optimize livestock production efficiency, animal health and well-being. A greater gut
354 microbial diversity is usually desired, and generally accepted as an indicator of a resilient
355 microbial ecosystem, gut, and host health. Indeed, a diverse and healthy gut has a positive
356 effect on the absorption of dietary nutrients, feed efficiency and animal well-being.
357

358 We are aware of some limitations of our study like the limited taxonomic resolution
359 achieved by targeting the V3-V4 16S rRNA genomic region with short-read sequencing.
360 We are also aware about the convenience of performing further analyses to confirm the
361 raised hypotheses by assessing the metabolic profile of BAs as well as evaluating the role
362 of the CNV on gene expression (at both microbial and host-level) of genes involved in BA
363 metabolism. Despite these limitations, our findings contribute to the understanding of host-
364 microbiome interactions. Moreover, our results open the possibility to breed the holobiont
365 via the incorporation of this source of variation on custom-made arrays that can be used in
366 routine genotyping tasks applied to breeding programs, and together with nutritional or

367 management strategies, will favor the simultaneous improvement of microbial traits, gut
368 health, and host-performance.

369

370

371

372

373

374

375

376 CONCLUSIONS

377

378 Here we report the first study exploring associations between porcine CNV and the
379 diversity and composition of the pig gut microbiota. We identified, functionally validated,
380 and replicated in an unrelated population a positive association between the gain of copies
381 of *ABCC2-DNMBP* loci and the composition and diversity of the pig gut microbiota. These
382 results suggest a role of the host-genome structural variants in the modulation of microbial
383 ecosystems, and open the possibility of including CNVs in selection programs to
384 simultaneously improve microbial traits, gut health and host-performance.

385

386 **Table 1.** Descriptive statistics, mean and standard deviation (SD), of the richness and α -
387 diversity in the discovery and validation datasets.

388

Population	Dataset (n)	Groups	Richness (SD)	α -diversity (SD)
Duroc (Discovery)	Complete (100)		604.92 (98.17)	6.05 (0.22)
	Validate qPCR (48)	Diploid	553.73 (92.71)	5.95 (0.21)
		DUP	657.85 (89.70)	6.16 (0.17)
Duroc x Iberic (Validation)	Complete (285)		459.65 (104.33)	5.82 (0.25)
	Validate qPCR (24)	Diploid	292.36 (67.18)	5.36 (0.27)
		DUP	543.19 (158)	6.06 (0.33)

389

390

391 Figure legends

392

393 **Figure 1.** Graphical representation of the CNVRs detected. Green circles represent loss
394 predicted status, gains are indicated in blue, and regions with either loss or gain status are
395 represented in red. Chromosome sizes are represented in proportion to sequence length
396 of the *Sus scrofa* 11.1 reference assembly.

397

398 **Figure 2.** Results from the association analyses of CNVs identified across the pig genome
399 with gut bacterial richness (A) and Shannon α -diversity (B). The x-axis represents the
400 CNV position in the pig autosomal chromosomes (1–18), and the y-axis reflects the
401 significance level represented as the $-\log_{10}$ (p-value).

402

403 **Figure 3.** Relationship between the CNV relative quantification of the number of copies
404 (RQ) with the richness and Shannon α -diversity index.

405

406 **Figure 4.** Results from the replication analysis comparing mean RQ and Shannon α -
407 diversity in the F1 Duroc×Iberian cross. Green represents diploid (2N) samples, and
408 purples ones DUP samples.

409

410 **Figure 5.** Results from microbial signature analyses at Genus level. A) Taxa-set
411 enrichment. B) Patterns of differential abundance analysis between DUP and 2N pigs in
412 the purebred Duroc population.

413

414 **Figure 6.** Differential abundance patterns at genus level between DUP and 2N samples in
415 the F1 Duroc×Iberian crossbred population.

416

417

418 **Supplementary Data**

419

420 **Table S1.** Description of the 531 Copy Number Variant Regions.

421

422

423 **Figure S1.** Correlation coefficients between CNV relative quantification (RQ) and the
424 nucleotide variability of the CNV genomic interval estimators ATajima and RTajima.

425

426

427 **Table S2.** Taxonomic composition at family level of the 122 discriminant ASVs.

428 **ABBREVIATIONS**

429 **QIIME2:** Quantitative insights into microbial ecology

430 **GWAS:** Genome-wide association studies

431 **SNP:** Single nucleotide polymorphisms

432 **CNV:** Copy number variants

433 **CNVR:** Copy number variant region

434 **DUP:** CNV predicted as gain

435 **BA:** Bile acids

436 **ATajima:** Tajima's theta estimator or nucleotide diversity

437 **RTajima:** Relative Tajima's theta estimator

438

439

440 **DECLARATIONS**

441 **Ethics approval and consent to participate**

442 Animal care and experimental procedures were carried out following the institutional
443 guidelines for the Good Experimental Practices and the Spanish Policy for Animal
444 Protection RD 53/2013, which meets the European Union Directive 2010/63/EU for
445 protection of animals used in experimentation, and were approved by the IRTA Ethical
446 Committee. Consent to participate is not applicable in this study.

447

448 **Consent for publication**

449 Not applicable.

450

451

452 **Availability of supporting data**

453 The raw sequencing data employed in this article has been submitted to the NCBI's
454 sequence read archive (<https://www.ncbi.nlm.nih.gov/sra>); BioProject: PRJNA608629.

455

456 **Competing Interests**

457 The authors declare no competing interests

458

459 **Funding**

460 The project was funded by the Spanish Ministry of Science and Innovation-State Research
461 Agency (AEI, Spain, 10.13039/501100011033) grant number PID2020-112677RB-C21 to
462 MB, PID2021-126555OB-I00 to YRC, and the GENE-SWiCH project (<https://www.gene->

463 switch.eu) funded by the European Union's Horizon 2020 research and innovation
464 programme under the grant agreement n° 817998 to MB and DCP. SRO is supported by
465 grant PID2020-119255GB-I00 (MICINN, Spain) and by the CERCA Programme/Generalitat
466 de Catalunya. CRAG acknowledges financial support from the Spanish Ministry of
467 Economy and Competitiveness, through the Severo Ochoa Programme for Centers of
468 Excellence in R&D 2016-2019 and 2020-2023 (SEV-2015-0533, CEX2019-000917) and
469 the European Regional Development Fund (ERDF). YRC is recipient of a Ramon y Cajal
470 post-doctoral fellowship (RYC2019-027244-I) funded by the Spanish Ministry of Science
471 and Innovation. CS is funded by AGUAR (2020FI_B 00225). DCP, MB, OGR, RQ, and
472 YRC belonged to a Consolidated Research Group AGAUR, ref. 2017SGR-1719
473

474 **Author Contributions**

475 YRC, DCP and MB designed the study. OGP and MB carried out the DNA extractions.
476 YRC, MB, OGP and RQ, performed the sampling. YRC, DCP, MB, JM, CS, SRO, and KGA
477 analyzed the data. YRC, DCP, RQ, JMF, SRO and MB interpreted the results and wrote
478 the manuscript. All the authors read and approved the final version of the manuscript.
479

480 **Acknowledgements**

481 The authors warmly thank all technical staff from *Selección Batallé S.A* for providing the
482 animal material and their collaboration during the sampling.
483

484

485 **REFERENCES**

- 486 1. Ramayo-Caldas Y, Mach N, Lepage P, Levenez F, Denis C, Lemonnier G, et al. Phylogenetic
487 network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth
488 traits. *ISME J* [Internet]. 2016;10:2973–7. Available from:
489 <https://www.ncbi.nlm.nih.gov/pubmed/27177190>
- 490 2. Camarinha-Silva A, Maushammer M, Wellmann R, Vital M, Preuss S, Bennewitz J. Host
491 Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in
492 Pigs. *Genetics* [Internet]. 2017;206:1637–44. Available from:
493 <https://www.ncbi.nlm.nih.gov/pubmed/28468904>
- 494 3. McCormack UM, Curião T, Metzler-Zebeli BU, Magowan E, Berry DP, Reyer H, et al. Porcine
495 Feed Efficiency-Associated Intestinal Microbiota and Physiological Traits: Finding Consistent
496 Cross-Locational Biomarkers for Residual Feed Intake. *mSystems* [Internet]. 2019;4. Available
497 from: <https://www.ncbi.nlm.nih.gov/pubmed/31213524>
- 498 4. Ramayo-Caldas Y, Zingaretti LM, Pérez-Pascual D, Alexandre PA, Reverter A, Dalmau A, et al.
499 Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs. *Anim*
500 *Microbiome* [Internet]. 2021;3:74. Available from: <https://doi.org/10.1186/s42523-021-00138-9>
- 501 5. Bergamaschi M, Maltecca C, Schillebeeckx C, McNulty NP, Schwab C, Shull C, et al.
502 Heritability and genome-wide association of swine gut microbiome features with growth and
503 fatness parameters. *Sci Rep* [Internet]. 2020;10:10134. Available from:
504 <https://doi.org/10.1038/s41598-020-66791-3>
- 505 6. Aliakbari A, Zemb O, Cauquil L, Barilly C, Billon Y, Gilbert H. Microbiability and microbiome-
506 wide association analyses of feed efficiency and performance traits in pigs. *Genetics Selection*
507 *Evolution* [Internet]. 2022;54:29. Available from: <https://doi.org/10.1186/s12711-022-00717-7>
- 508 7. Crespo-Piazuelo D, Migura-Garcia L, Estellé J, Criado-Mesas L, Revilla M, Castelló A, et al.
509 Association between the pig genome and its gut microbiota composition. *Sci Rep* [Internet].
510 2019;9:8791. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/31217427>
- 511 8. Ramayo-Caldas Y, Prenafeta-Boldú F, Zingaretti LM, Gonzalez-Rodriguez O, Dalmau A,
512 Quintanilla R, et al. Gut eukaryotic communities in pigs: diversity, composition and host genetics
513 contribution. *Anim Microbiome* [Internet]. 2020;2:18. Available from:
514 <https://doi.org/10.1186/s42523-020-00038-4>
- 515 9. Reverter A, Ballester M, Alexandre PA, Márquez-Sánchez E, Dalmau A, Quintanilla R, et al. A
516 gene co-association network regulating gut microbial communities in a Duroc pig population.
517 *Microbiome* [Internet]. 2021;9:52. Available from:
518 <https://www.ncbi.nlm.nih.gov/pubmed/33612109>
- 519 10. Ryu EP, Davenport ER. Host Genetic Determinants of the Microbiome Across Animals: From
520 *Caenorhabditis elegans* to Cattle. *Annu Rev Anim Biosci* [Internet]. 2022;10:203–26. Available
521 from: <https://doi.org/10.1146/annurev-animal-020420-032054>
- 522 11. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional
523 impact of copy number variation in the human genome. *Nature* [Internet]. 2010;464:704–12.
524 Available from: <https://www.ncbi.nlm.nih.gov/pubmed/19812545>
- 525 12. Clop A, Vidal O, Amills M. Copy number variation in the genomes of domestic animals. *Anim*
526 *Genet* [Internet]. 2012;43:503–17. Available from: <https://doi.org/10.1111/j.1365-2052.2012.02317.x>
- 528 13. Poole AC, Goodrich JK, Youngblut ND, Luque GG, Ruaud A, Sutter JL, et al. Human Salivary
529 Amylase Gene Copy Number Impacts Oral and Gut Microbiomes. *Cell Host Microbe* [Internet].
530 2019;25:553–564.e7. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/30974084>
- 531 14. Ballester M, Ramayo-Caldas Y, González-Rodríguez O, Pascual M, Reixach J, Díaz M, et al.
532 Genetic parameters and associated genomic regions for global immunocompetence and other
533 health-related traits in pigs. *Sci Rep* [Internet]. 2020;10:18462. Available from:
534 <https://doi.org/10.1038/s41598-020-75417-7>

535 15. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.
536 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. *Nat*
537 *Biotechnol* [Internet]. 2019;37:852–7. Available from:
538 <https://www.ncbi.nlm.nih.gov/pubmed/31341288>

539 16. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a
540 chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Appl Environ*
541 *Microbiol* [Internet]. 2006;72:5069–72. Available from:
542 <https://www.ncbi.nlm.nih.gov/pubmed/16820507>

543 17. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin P, O’Hara RB, et al. *vegan: Community*
544 *Ecology Package*. R package version 2.0-9 [Internet]. 2009. Available from: <http://CRAN.R-project.org/package=vegan>

545 18. Shannon C. A mathematical theory of communication. 1948.

546 19. Whittaker RH. *EVOLUTION AND MEASUREMENT OF SPECIES DIVERSITY*. *Taxon*
547 [Internet]. 1972;21:213–51. Available from: <https://doi.org/10.2307/1218190>

548 20. H. L. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013.

549 21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome
550 Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
551 *Genome Res* [Internet]. 2010;20:1297–303. Available from:
552 <https://www.ncbi.nlm.nih.gov/pubmed/20644199>

553 22. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating
554 and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
555 *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* [Internet]. 2012;6:80–92.
556 Available from: <https://www.ncbi.nlm.nih.gov/pubmed/22728672>

557 23. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a
558 tool for assessing copy number and allelic content using next-generation sequencing data.
559 *Bioinformatics* [Internet]. 2012;28:423–5. Available from:
560 <https://www.ncbi.nlm.nih.gov/pubmed/22155870>

561 24. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations
562 have strong effects on quantitative traits and reproductive isolation in fission yeast. *Nat Commun*
563 [Internet]. 2017;8:14061. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/28117401>

564 25. da Silva V, Ramos M, Groenen M, Crooijmans R, Johansson A, Regitano L, et al. CNVRanger:
565 association analysis of CNVs with gene expression and quantitative phenotypes. *Bioinformatics*
566 [Internet]. 2020;36:972–3. Available from: <https://doi.org/10.1093/bioinformatics/btz632>

567 26. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid
568 detection of structural variants and indels for germline and cancer sequencing applications.
569 *Bioinformatics* [Internet]. 2016;32:1220–2. Available from:
570 <https://www.ncbi.nlm.nih.gov/pubmed/26647377>

571 27. Ramayo-Caldas Y, Castelló A, Pena RN, Alves E, Mercadé A, Souza CA, et al. Copy number
572 variation in the porcine genome inferred from a 60 k SNP BeadChip. *BMC Genomics* [Internet].
573 2010;11:593. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/20969757>

574 28. Ramon E, Belanche-Muñoz L, Molist F, Quintanilla R, Perez-Enciso M, Ramayo-Caldas Y. : A
575 Kernel Framework for Integrating Supervised and Unsupervised Analyses in Spatio-Temporal
576 Metagenomic Datasets. *Front Microbiol* [Internet]. 2021;12:609048. Available from:
577 <https://www.ncbi.nlm.nih.gov/pubmed/33584612>

578 29. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using
579 Support Vector Machines. *Mach Learn* [Internet]. 2002;46:389–422. Available from:
580 <https://doi.org/10.1023/A:1012487302797>

581 30. Zingaretti LM, Renand G, Morgavi DP, Ramayo-Caldas Y. Link-HD: a versatile framework to
582 explore and integrate heterogeneous microbial communities. *Bioinformatics* [Internet].
583 2020;36:2298–9. Available from: <https://doi.org/10.1093/bioinformatics/btz862>

585 31. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, et al. Sequence-based
586 characterization of structural variation in the mouse genome. *Nature* [Internet]. 2011;477:326–9.
587 Available from: <https://doi.org/10.1038/nature10432>

588 32. Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). *Pflugers Arch*
589 [Internet]. 2007;453:643–59. Available from: <https://doi.org/10.1007/s00424-006-0109-y>

590 33. Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a
591 multispecific transporter with dominant excretory functions. *Drug Metab Rev* [Internet].
592 2010;42:402–36. Available from: <https://doi.org/10.3109/03602530903491741>

593 34. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and
594 regulation. *Pharmacol Rev* [Internet]. 2010;62:1–96. Available from:
595 <https://www.ncbi.nlm.nih.gov/pubmed/20103563>

596 35. Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castelló A, Noguera JL, et al.
597 From SNP co-association to RNA co-expression: novel insights into gene networks for
598 intramuscular fatty acid composition in porcine. *BMC Genomics* [Internet]. 2014;15:232. Available
599 from: <https://www.ncbi.nlm.nih.gov/pubmed/24666776>

600 36. Zhang W, Zhang J, Cui L, Ma J, Chen C, Ai H, et al. Genetic architecture of fatty acid
601 composition in the longissimus dorsi muscle revealed by genome-wide association studies on
602 diverse pig populations. *Genet Sel Evol* [Internet]. 2016;48:5. Available from:
603 <https://www.ncbi.nlm.nih.gov/pubmed/26796620>

604 37. Chu XY, Strauss JR, Mariano MA, Li J, Newton DJ, Cai X, et al. Characterization of mice
605 lacking the multidrug resistance protein MRP2 (ABCC2). *J Pharmacol Exp Ther* [Internet].
606 2006;317:579–89. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/16421286>

607 38. Vlaming ML, Mohrmann K, Wagenaar E, de Waart DR, Elferink RP, Lagas JS, et al.
608 Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout
609 mice. *J Pharmacol Exp Ther* [Internet]. 2006;318:319–27. Available from:
610 <https://www.ncbi.nlm.nih.gov/pubmed/16611851>

611 39. Jansen PL, Peters WH, Lamers WH. Hereditary chronic conjugated hyperbilirubinemia in
612 mutant rats caused by defective hepatic anion transport. *Hepatology* [Internet]. 1985;5:573–9.
613 Available from: <https://www.ncbi.nlm.nih.gov/pubmed/4018730>

614 40. DUBIN IN, JOHNSON FB. Chronic idiopathic jaundice with unidentified pigment in liver
615 cells; a new clinicopathologic entity with a report of 12 cases. *Medicine (Baltimore)* [Internet].
616 1954;33:155–97. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/13193360>

617 41. Dixon PH, Sambrotta M, Chambers J, Taylor-Harris P, Syngelaki A, Nicolaides K, et al. An
618 expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in
619 intrahepatic cholestasis of pregnancy. *Sci Rep* [Internet]. 2017;7:11823. Available from:
620 <https://www.ncbi.nlm.nih.gov/pubmed/28924228>

621 42. Nobles CL, Green SI, Maresso AW. A product of heme catabolism modulates bacterial function
622 and survival. *PLoS Pathog* [Internet]. 2013;9:e1003507. Available from:
623 <https://www.ncbi.nlm.nih.gov/pubmed/23935485>

624 43. Ridlon JM, Harris SC, Bhowmik S, Kang D-J, Hylemon PB. Consequences of bile salt
625 biotransformations by intestinal bacteria. *Gut Microbes* [Internet]. Taylor & Francis; 2016;7:22–39.
626 Available from: <https://doi.org/10.1080/19490976.2015.1127483>

627 44. GUSTAFSSON BE, LANKE LS. Bilirubin and urobilins in germfree, ex-germfree, and
628 conventional rats. *J Exp Med* [Internet]. 1960;112:975–81. Available from:
629 <https://www.ncbi.nlm.nih.gov/pubmed/13709962>

630 45. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota
631 regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally
632 occurring FXR antagonist. *Cell Metab* [Internet]. 2013;17:225–35. Available from:
633 <https://www.ncbi.nlm.nih.gov/pubmed/23395169>

634 46. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial
635 modulation of bile acid metabolism in host tissue compartments. *Proceedings of the National*

636 Academy of Sciences [Internet]. 2011;108:4523–30. Available from:
637 <https://doi.org/10.1073/pnas.1006734107>

638 47. Li DK, Chaudhari SN, Sojoodi M, Lee Y, Adhikari AA, Zukerberg L, et al. Inhibition of
639 microbial deconjugation of micellar bile acids protects against intestinal permeability and liver
640 injury. bioRxiv [Internet]. 2021;2021.03.24.436896. Available from:
641 <http://biorxiv.org/content/early/2021/11/09/2021.03.24.436896.abstract>

642 48. van Best N, Rolle-Kampczyk U, Schaap FG, Basic M, Olde Damink SWM, Bleich A, et al. Bile
643 acids drive the newborn's gut microbiota maturation. Nat Commun [Internet]. 2020;11:3692.
644 Available from: <https://doi.org/10.1038/s41467-020-17183-8>

645 49. Molinero N, Ruiz L, Sánchez B, Margolles A, Delgado S. Intestinal Bacteria Interplay With Bile
646 and Cholesterol Metabolism: Implications on Host Physiology. Front Physiol [Internet].
647 2019;10:185. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/30923502>

648 50. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, et al. Taxonomic profiling and populational
649 patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.
650 Microbiome [Internet]. 2019;7:9. Available from: <https://doi.org/10.1186/s40168-019-0628-3>

651 51. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health
652 and disease. Journal of Experimental Medicine [Internet]. 2018;215:383–96. Available from:
653 <https://doi.org/10.1084/jem.20171965>

654 52. Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, et al. The Bile Acid
655 Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to
656 Experimental Colitis. PLoS One [Internet]. 2011;6:e25637. Available from:
657 <https://doi.org/10.1371/journal.pone.0025637>

658 53. Otani T, Ichii T, Aono S, Takeichi M. Cdc42 GEF Tuba regulates the junctional configuration of
659 simple epithelial cells. J Cell Biol [Internet]. 2006;175:135–46. Available from:
660 <http://europepmc.org/abstract/MED/17015620>

661 54. Qin Y, Meisen WH, Hao Y, Macara IG. Tuba, a Cdc42 GEF, is required for polarized spindle
662 orientation during epithelial cyst formation. J Cell Biol [Internet]. 2010;189:661–9. Available from:
663 <http://europepmc.org/abstract/MED/20479467>

664 55. Ubelmann F, Chamaillard M, El-Marjou F, Simon A, Netter J, Vignjevic D, et al. Enterocyte
665 loss of polarity and gut wound healing rely upon the F-actin–severing function of villin.
666 Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy
667 of Sciences; 2013;110:E1380–9. Available from: <https://doi.org/10.1073/pnas.1218446110>

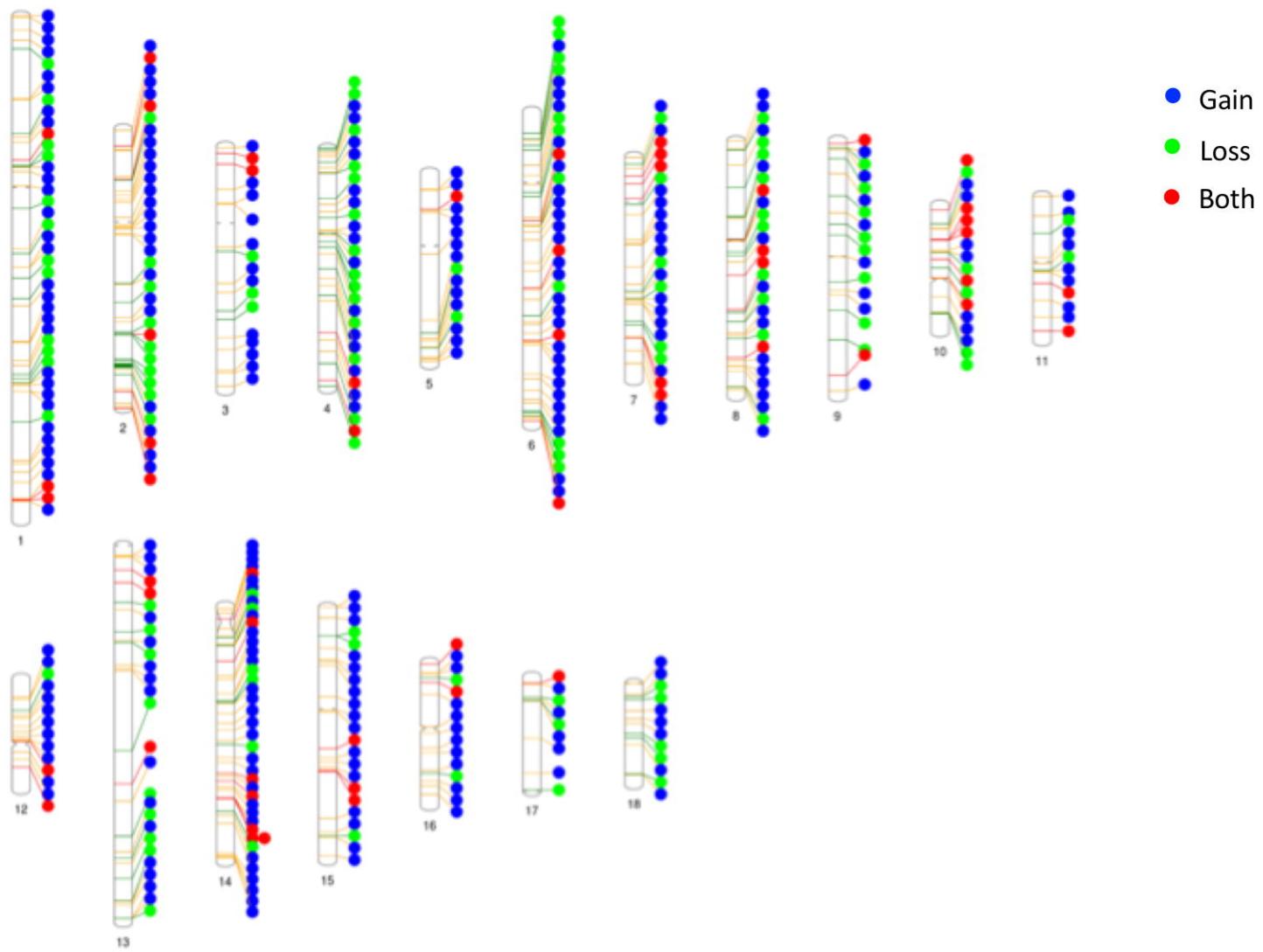
668 56. M BK, L WS, D LD. Epithelial Microvilli Establish an Electrostatic Barrier to Microbial
669 Adhesion. Infect Immun [Internet]. American Society for Microbiology; 2014;82:2860–71.
670 Available from: <https://doi.org/10.1128/IAI.01681-14>

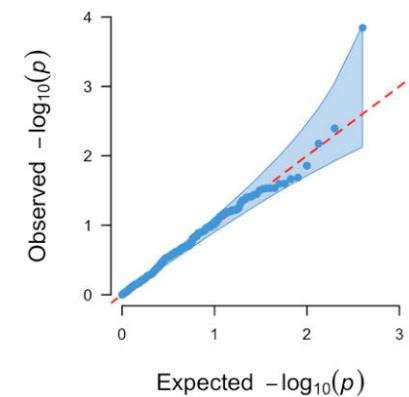
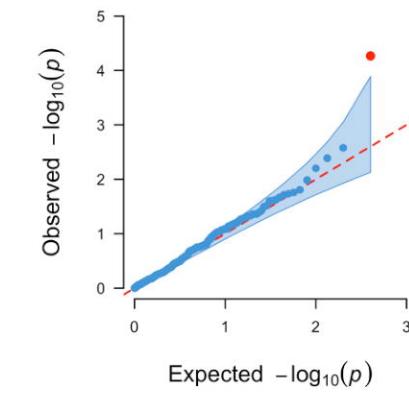
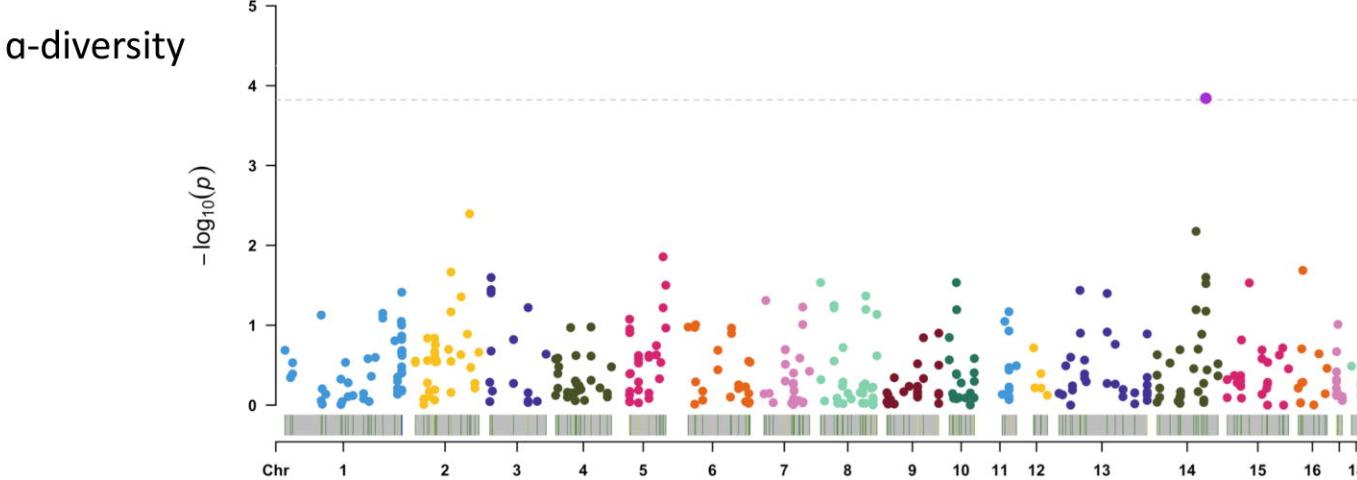
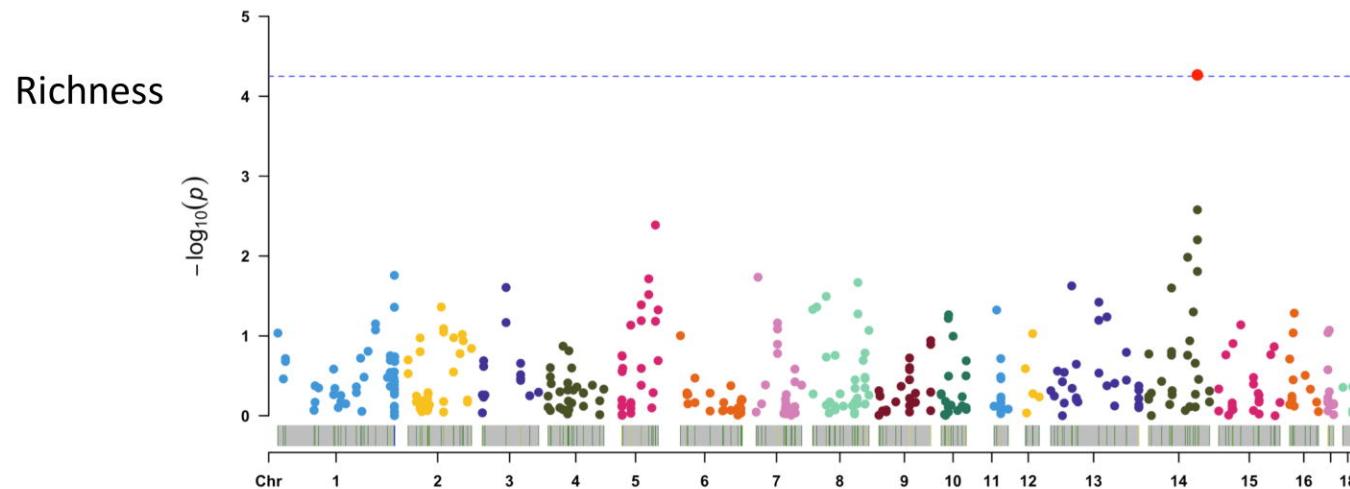
671 57. Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, et al. In
672 vivo, villin is required for Ca(2+)-dependent F-actin disruption in intestinal brush borders. J Cell
673 Biol [Internet]. 1999;146:819–30. Available from: <http://europepmc.org/abstract/MED/10459016>

674 58. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota–mucosal
675 interface. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National
676 Academy of Sciences; 2011;108:4607–14. Available from:
677 <https://doi.org/10.1073/pnas.1000092107>

678 59. Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP.
679 Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual
680 Relationship. Animals (Basel). 2022;12.

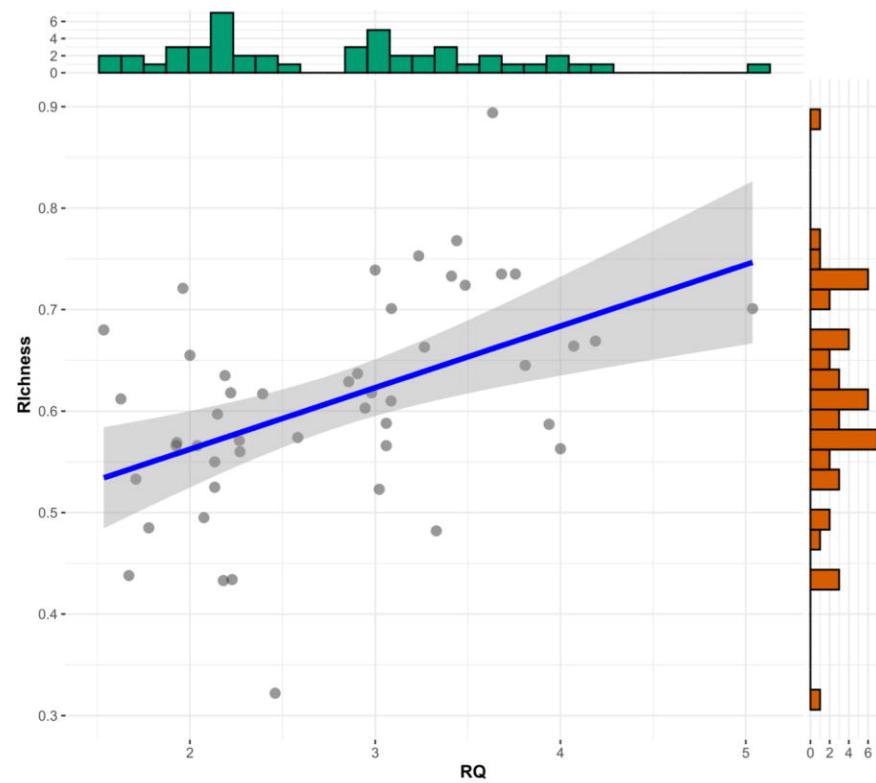
681 60. Yu LC-H, Wang J-T, Wei S-C, Ni Y-H. Host-microbial interactions and regulation of intestinal
682 epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol.
683 2012;3:27–43.

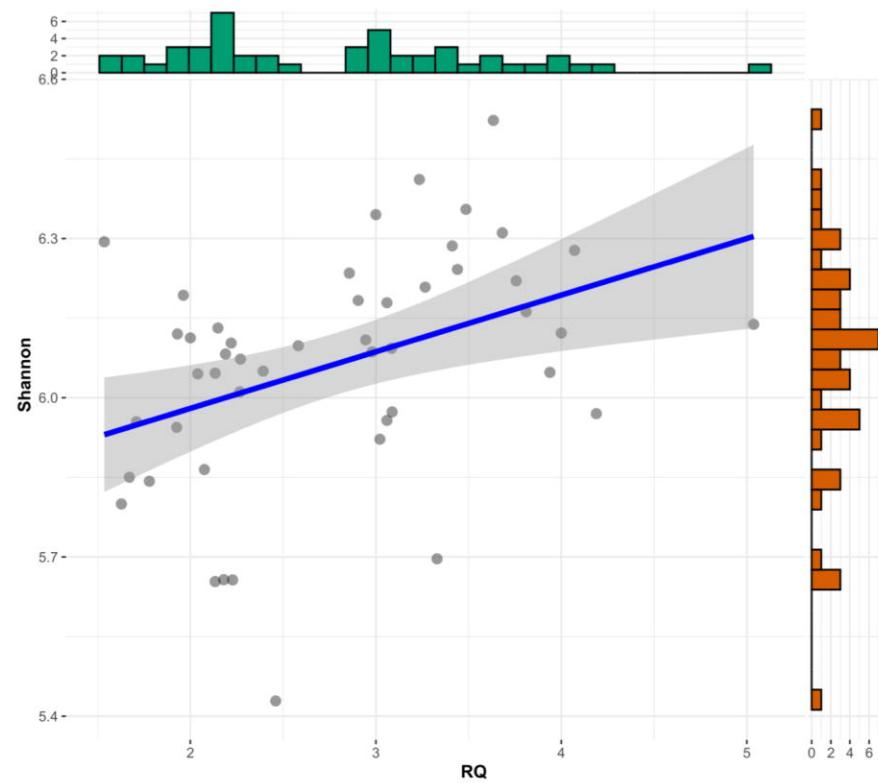

684 61. Willing BP, van Kessel AG. Enterocyte proliferation and apoptosis in the caudal small intestine
685 is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig.
686 J Anim Sci [Internet]. 2007;85:3256–66. Available from: <https://doi.org/10.2527/jas.2007-0320>

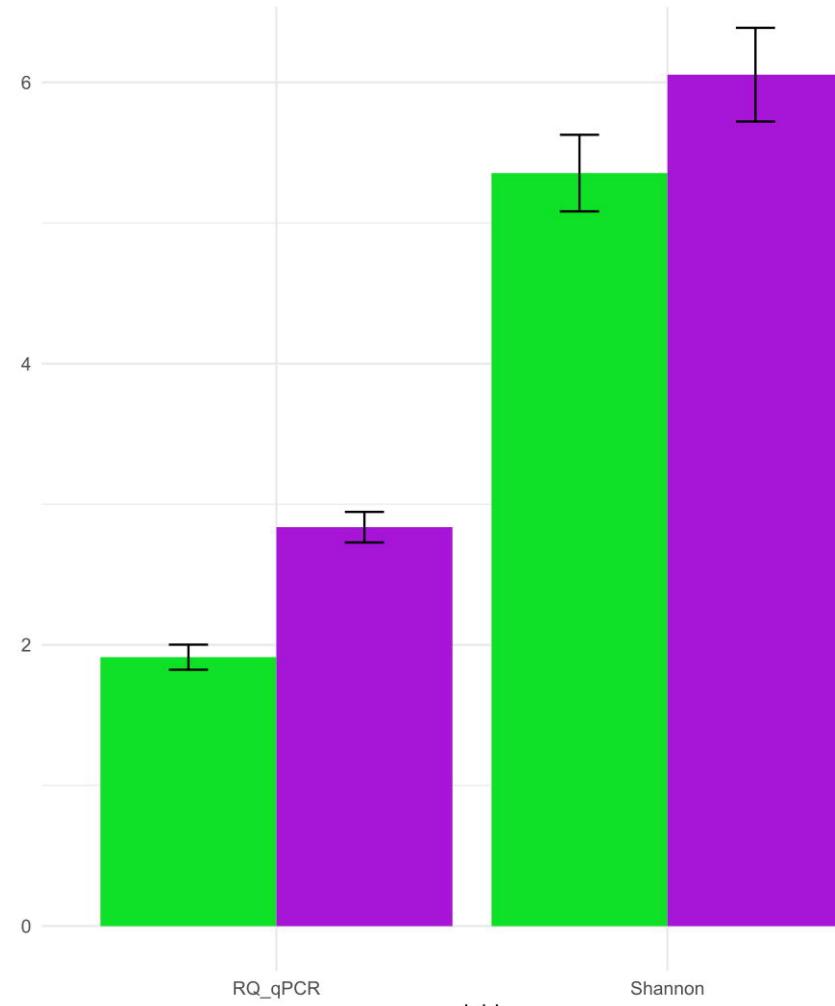




687 62. Shirkey TW, Siggers RH, Goldade BG, Marshall JK, Drew MD, Laarveld B, et al. Effects of
688 Commensal Bacteria on Intestinal Morphology and Expression of Proinflammatory Cytokines in
689 the Gnotobiotic Pig. *Exp Biol Med [Internet]*. SAGE Publications; 2006;231:1333–45. Available
690 from: <https://doi.org/10.1177/153537020623100807>

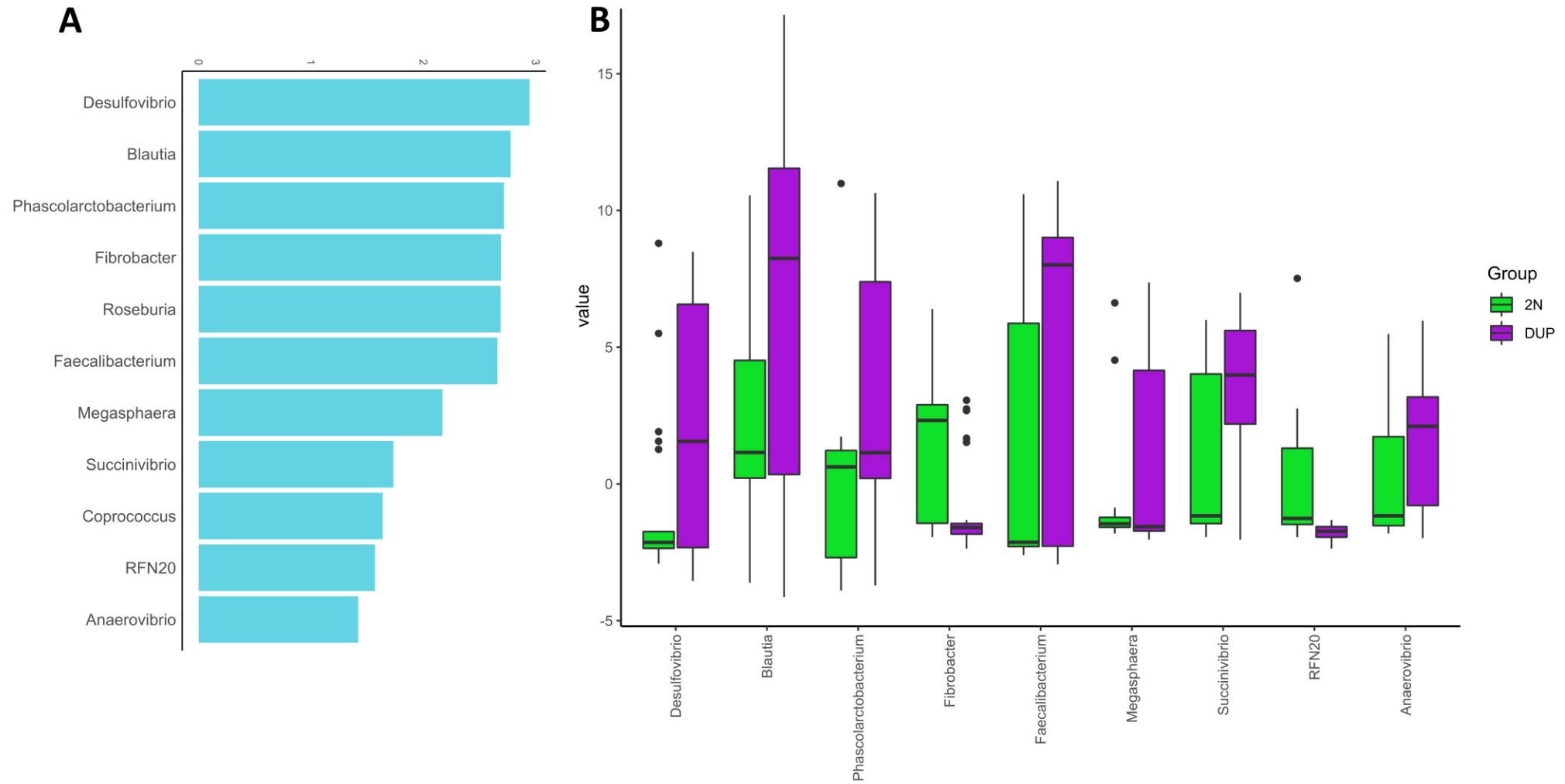
691 63. Danielsen M, Hornshøj H, Siggers RH, Jensen BB, van Kessel AG, Bendixen E. Effects of
692 Bacterial Colonization on the Porcine Intestinal Proteome. *J Proteome Res [Internet]*. American
693 Chemical Society; 2007;6:2596–604. Available from: <https://doi.org/10.1021/pr070038b>

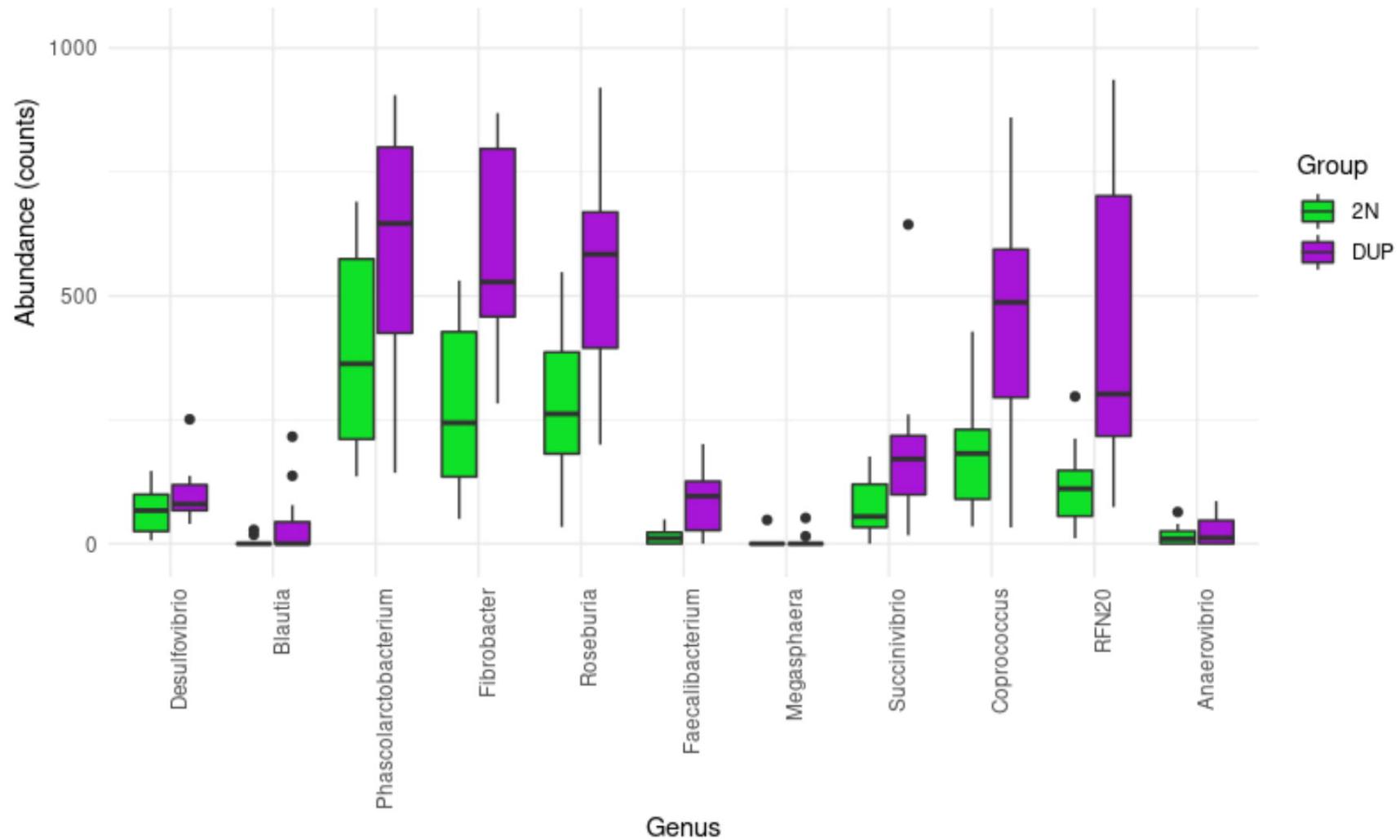
694 64. Kozakova H, Kolinska J, Lojda Z, Rehakova Z, Sinkora J, Zakostelecka M, et al. Effect of
695 bacterial monoassociation on brush-border enzyme activities in ex-germ-free piglets: comparison of
696 commensal and pathogenic *Escherichia coli* strains. *Microbes Infect*. 2006;8:2629–39.


697


Richness


$r=0.474$, $p\text{-value}=6.72\times 10^{-4}$




α -diversity

$r=0.401$, $p\text{-value}=7.77\times 10^{-3}$

