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Motivation: Particle tracking is an important step of analysis in a variety of scientific fields, and is particularly
indispensable for the construction of cellular lineages from live images. Although various supervised machine
learning methods have been developed for cell tracking, the diversity of the data still necessitates heuristic
methods that require parameter estimations from small amounts of data. For this, solving tracking as a linear
assignment problem (LAP) has been widely applied and demonstrated to be efficient. However, there has been no
implementation that allows custom connection costs, parallel parameter tuning with ground truth annotations,
and the functionality to preserve ground truth connections, limiting the application to datasets with partial
annotations.

Results: We developed LapTrack, a LAP-based tracker which allows including arbitrary cost functions and
inputs, parallel parameter tuning, and ground-truth track preservation. Analysis of real and artificial datasets
demonstrates the advantage of custom metric functions for tracking score improvement. The tracker can be easily
combined with other Python-based tools for particle detection, segmentation, and visualization.

Availability and implementation: LapTrack is available as a Python package on PyPi, and the notebook
examples are shared at https://github.com/yfukai/laptrack. The data and code for this publication are hosted

at https://github.com/NoneqPhysLivingMatterLab/laptrack-optimization.

Contact: ysk@yfukai.net

I. INTRODUCTION

Automated tracking of particles in timelapse images is
important in a wide range of fields in science, and is es-
pecially crucial in creating large datasets of cell lineages
in biological studies. Recently there has been consider-
able development in tracking algorithms, where methods
based on supervised machine learning are increasingly
being developed [1-3]. The diverse nature of live imag-
ing tasks, however, frequently requires tracking without
large-scale ground-truth annotations, emphasizing the
need for a robust tracking algorithm with a small number
of parameters that can be tuned by manual annotations.

Defining and optimizing a global cost function to ap-
propriately penalize wrong connections is a common ap-
proach in robust tracking methods. If the cost func-
tion is a linear sum of the costs associated to connec-
tions, we can employ efficient algorithms [4] to solve the
global optimization problem called the linear assignment
problem (LAP). The LAP-based tracking method has
proven to be accurate and robust, especially for data
with higher particle density. To deal with particle split-
ting (by division or over-segmentation) or merging (by
under-segmentation), which is common in the data of
live-imaged cells, [5] further developed a two-stage LAP
method, with the second stage dedicated to the connec-
tion of splitting and merging branches. The cost function
in their case was the squared Euclidean distance between
the positions of the objects, with additional intensity-
associated costs for splitting and merging.

Tools have been developed to provide similar LAP-
based algorithms with splitting and merging detection;
TrackMate [6, 7], for example, provides distance-based
LAP-based tracking with particle detection and segmen-
tation workflow and a method to conduct manual cor-
rection, all within the Java-based framework in ImageJ
[8, 9]. Cell-ACDC [10], which was originally designed for
yeast analysis, also implements an overlap-based LAP
tracker with splitting detection, as well as various func-
tions ranging from image alignment to manual correction
that support the entire analysis workflow in Python.

Although other highly accurate methods have been
proposed to work for the tracking problem with cell di-
visions [11], no single tracking algorithm is likely to be
perfect for the diverse experimental situations. To obtain
near-perfect segmentation and tracking for specific data,
users must still optimize the segmentation and tracking
steps, automatically or manually. In this regard, the
LAP-based algorithm that robustly works with a small
number of parameters continues to play a key role in
generating the initial tracking data without large-scale
manual annotation.

An adaptive improvement to the original LAP-based
tracking with distance can be made by using additional
features taken from the cell images. For example, we can
extract the morphology of each cell such as its shape and
size from typical live cell images, as well as the signal
levels from multiple fluorescent channels. The consis-
tency of cell shape and fluorescent signals across time
frames is useful when tracking is conducted by human
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eyes, especially when the frame rate of the data is not
high enough. Therefore, it is desirable to be able to im-
plement arbitrary inputs and cost functions in the LAP-
based tracking scheme, as well as to tune the parameters
using partial ground-truth annotations.

These requirements motivated us to build a tool that
recapitulates the LAP algorithm [5, 6] with additional
flexibility and modularity; LapTrack is designed as a
simple intermediate in the whole tracking pipeline that
takes positions and features of the particles and returns
the LAP-optimized tracks. The three unique features
of LapTrack are: (1) arbitrary tunable cost functions for
particle connection, (2) integratability with other Python
tools, and (3) the functionality to preserve the ground-
truth (annotated) connections. Within this framework,
we can implement user-defined cost functions for connec-
tions that can take an arbitrary number of inputs. The
tracking function is modularized and documented as an
API so that it can be integrated into any custom work-
flow in Python, allowing parallel parameter optimization
as well as visualization of results in easy steps.

In this paper, we demonstrate how this pipeline can
be used not only to optimize the tracking in a supervised
manner, but how it is also useful for efficient manual
correction of the tracks when combined with visualization
tools such as napari [12].

II. METHODS

A. Datasets

We here describe the data that we used to demon-
strate the use cases of LapTrack: live cell images with
ground truth segmentation and tracking (mouse paw epi-
dermis and cell migration) as well as simulated data
(coloured particles), provided in https://github.com/
yfukai/laptrack-optimization. We also used the high-
density vesicles, yeast, and 3D Drosophilla data to show
that the tracking pipeline works for a broad range of ap-
plications.

1. Mouse paw epidermis

The segmentation data and ground truth tracking re-
sult collected and analyzed in [13, 14] were used for
benchmark. The dataset contains 236 to 327 cells in the
observation area.

2. Cell migration

The images, segmentation data for a portion of frames,
and the ground truth tracking result were downloaded
from Zenodo [15]. Segmentation was conducted by Cell-
pose [16] and manually corrected in napari [12]. The
ground truth tracking result was also manually validated
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and corrected. The dataset contains 218 to 434 cells in
the 648.95 pm x 648.95 pm observation area.

8. Coloured particles

We simulated the Brownian motion of four-hundred
particles with colours in a two-dimensional box of size
20 x 20 with periodic boundary conditions. The particles
were split into two species, a and b, where the interac-
tion between the particles was set as harmonic repul-
sion with the spring constants set as 1 for a and a pairs,
1.2 for a and b pairs, and 1.4 for b and b pairs. The
dynamics was simulated with the simulate.brownian
routine in Jax-MD [17] with the parameters kT = 0.1
and dt = 0.001, where the mass and friction coefficient
were set to the default values, 1 and 0.1. For each par-
ticle, labeled by i, a random integer n; between 0 to
7 is assigned. The feature vector ¢; € R3, correspond-
ing to RGB colours, of each particle at each time step
is then assigned as ¢; = (R (nf’) R (n?) R (nll)), where
n¥ is the k-th digit of n; in the binary representation and
R(z) = 6, 0N (2,0.5) + ;1N (6,0.5), where N (p,0) is
the normal random variable with mean g and the stan-
dard deviation o. When used for the tracking bench-
mark, the particles crossing the boundary are regarded
as disconnected and belong to different tracks.

4. Demonstration

The simulated single-molecule dataset was down-
loaded from the Particle Tracking Challenge website
http://bioimageanalysis.org/track/ [18]. We used the
high-density vesicles data set with SNR = 7. The
blobs were detected by the Laplacian-of-Gaussian detec-
tor, skimage.feature.blob_log function in scikit-image
[19], with the parameters min sigma=1,max_sigma=5,
num_sigma=5 and threshold=0.05. The detected points
were tracked by LapTrack with track_cost_cutoff=100.

The yeast dataset was downloaded from the
Yeast Image Toolkit website http://yeast-image-toolkit.
org/. The data in IT-Benchmark2/TestSet4/RawData
were segmented by Cellpose 0.7.2 [16] with the
parameters model_type="cyto", net_avg=True, and
diameter=30 in the eval function. The centroids
of each segmented region were tracked by LapTrack
with the default metric and track_cost_cutoff=100,
splitting_cost_cutoff=2500.

The 3D Drosophilla dataset (Fluo-N3DH-CE) was
downloaded from the Cell Tracking Challenge website
http://celltrackingchallenge.net/ [11]. The data in-
cluded marked cell positions in each time frame, which
were connected to generate tracks by LapTrack with
track_cost_cutoff=10000,splitting_cost_cutoff=
2500.
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FIG. 1. (a) The schematic for the tracking algorithm (See main text). (b) Expected workflow for cell segmentation, tracking
and analysis using tools in Python. The particle detection or segmentation results can be directly supplied to LapTrack.
The tracking result can be directly visualized and analyzed in Python. (¢) Examples of tracks generated by LapTrack. The
lines indicate the result tracks. (top) The dataset from Particle Tracking Challenge, detected by the Laplacian of Gaussian
detector. (middle) The dataset from the Yeast Image Toolkit website, detected by Cellpose. (bottom) The C.elegans developing
embryo dataset from the Cell Tracking Challenge website. (d) The schematic for the tracking algorithm with freezing annotated
connections. (top) Annotated connections (red lines). (middle) Connections from (to) a point that has an annotated connection
from (to) itself are forbidden. (bottom) The verified connections are added to the tracking tree. The split and merges are
treated similarly. (e) Illustration of the manual-correction-aware tracking with napari (See main text) using the cell migration
dataset. (left) Original tracking result with mistakes (gray lines). (middle) Annotation points are added in napari (red points)
to specify a correct connection (red line). (right) Updated tracking result after annotation. The annotated track as well as
tracks nearby are automatically corrected (gray lines).

B. Tracking implementation by minimizing the cost [5]:

The implemented particle tracking algorithm follows
the method proposed in [5], with modifications following Lg = Z (l;j +lo) + Dd + Bb (1
TrackMate [6, 7] and additional flexibility as we describe (i.j)ec
in the following sections.

~—

where C is the set of all connected index pairs, B and
1.  Frame-to-frame LAP D are the number of the points which does not have the
connection to the previous and next timesteps, respec-

In the first step, the points in successive frames are tiv§ly, and lo = min (1 {d’ b) (See Supplementary Ma-
connected by solving LAP, and then generating tracks terial for algorithm details). In the default setting, d

: : : : and b are calculated as 1.05 x ¢?°%, where ¢*°% is the
without splits and merges [Fig. 1(a) left top]. Specifically, - 5 -
for every pair of points with properties (such as Euclidean 90% percentile value of the all finite entries in {lij}z‘j
Coordinates) x,; and x; at frames t and t+1, the costs Zij = [5] The default metric for [ is set to the squared Eu-
l(z;,2;) are computed by a user-definable metric function  clidean distance I(x;,x;) = ||z; — ; ||§ [5-7] with which
l. Costs d and b are then assigned to the particles not the cost-minimizing association can be interpreted as the
connected to any of the particles in the next and previous maximum log-likelihood solution for Brownian particles
timesteps, respectively. The optimal assignment is found when we ignore splitting and merging [20].
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2.  Segment-connecting LAP

In the second step, another LAP is solved to predict
splitting, merging, and gap closing [Fig. 1(a) left bottom].
Gap closing connects free segment ends with allowing
frame skips. The gap closing cost gog = g(xa,zg) is cal-
culated by a user-definable metric g for all possible con-
nections between free ends up to a specified frame differ-
ence, and the splitting and merging costs sog = s(2a, )
and mqyg = m(zqa, xg) are calculated for all possible con-
nections between a free end and a track midpoint by
user-definable metrics s and m. The metrics g, s, and
m default to the squared Euclidean distance. Then the
optimal assignment is calculated by minimizing the over-
all cost

Le =) (9ap+1p)

(a,B)EG

+ Y (saptl)+ Y. (map+1h)

(a,B)ES (a,B)eM
+ Dd+ Bb+ D'd + BV, (2)

where G, § and M are the set of all gap-closing, split-
ting and merging index pairs, D and B are the num-
ber of the unconnected track ends and starts, D’ and
B’ are the number of the track middle points that are
not connected to other track ends as the split or merge
(costs d’ and b’ are assigned to them, respectively), and
I = min (gag, Sass Mas, d,b,d',b’) (See Supplementary
Material for details). In the default setting, d, b, d’, and
b’ are calculated analogously to the frame-to-frame LAP.

3. Freezing annotated tracks

We implemented an option to specify partial tracks
within the data to be fixed as ground-truth verified con-
nections [Fig. 1(d)]. Fixing the correct tracks is espe-
cially useful when conducting manual corrections using
visualization tools such as napari. As we demonstrate[21]
[Fig. 1(e)], track connections can be specified to be fixed
by annotating the cell regions before re-running the LAP-
based tracking. The resulting track preserves the training
data tracks due to the masking scheme [Fig. 1(d)].

4. Parameter optimization

In practice, we introduce the cutoff for the costs l;;,
9aB; Sap and mqg, above which those values are regarded
as infinity. The values of the cutoffs can affect the per-
formance as demonstrated in Sec. ITI A, but it is difficult
to optimize those values due to the non-differentiablity of
the LAP algorithm [22] and the high computational cost
for repeating the tracking routine. We therefore used
non-gradient optimization methods to optimize the spec-
ified sets of the parameters in parallel using the package
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Ray Tune [23] with the Optuna optimizer [24] and ran-
dom search. We selected the parameters that achieved
the highest connection Jaccard index value or true pos-
itive rate, depending on the type of the training data
(Sec. IIC1).

5. Analysis pipeline

LapTrack is written in Python with explicit API docu-
mentation and can be integrated with, for example, parti-
cle detectors in scikit-image and deep-learning-based seg-
mentation packages such as Cellpose [16] [Fig. 1(b,c)].
The output data is the networkx [25] directed tree,
which can be analyzed using network analysis functions
in the package. We also implemented utilities to con-
vert data into pandas dataframes [26, 27]. In this pa-
per, we used the ground truth segmentation for each
dataset as the input, and analyzed the result tracks
by networkx and pandas. The tracking and analy-
sis Python scripts are provided at https://github.com/
NoneqPhysLivingMatterLab /laptrack-optimization.

C. Metrics for the tracking results

To measure the performance of tracking, we employed
the following metrics, which can also be calculated within
LapTrack.

1. Qwerall tracking scores

To measure the overall track consistency, we calcu-
lated the target effectiveness (TE) and track purity (TP)
[1, 28], which penalize the false negative and the false
positive detections, respectively. Let us denote the set
of the ground truth tracks by {7;9 }j and the predicted

tracks by {7;7’}1 The TE for a single ground truth track

77 is calculated by finding the predicted track 77" that
overlaps with 77 in the largest number of the frames,
and then dividing the overlap frame counts by the total
frame counts for 7}9 . The TE for the total dataset is cal-
culated as the mean of TEs for all ground truth tracks,
weighted by the length of the tracks. The track purity
is analogously defined with 77 and 7;” being swapped in
the definition. We also measured the mitotic branching
correctness [1, 28], defined as the fraction of the number
of correctly detected divisions over the total number of
the divisions.

2. Owerlap between predicted and ground truth connections

During the parameter optimization, we used a less
computationally expensive quantity, the Jaccard in-
dex and the true positive rate of the connections
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FIG. 2. (a) An example snapshot for the mouse epidermis
dataset. The white lines indicate the centroid displacement
between frames. (b) TE as a function of max_distance and
splitting max _distance for the mouse epidermis dataset.
(¢) An example snapshot for the cell migration dataset. (d)
TE score for the cell migration dataset with skipped frames,
with or without the drift term in the metric. (e) An exam-
ple snapshot for the coloured particles dataset. (f) TE score
for the coloured particles dataset with different frame inter-
vals, with or without the feature difference term in the metric.
The error bar indicates the standard deviation of 5 trials. (g)
Mitotic branching correctness score for the mouse epidermis
dataset, tracked with the centroid distances (centroid) or the
overlap ratio (overlap). The error bar indicates the standard
deviation of 5 trials.

to measure how well the predicted connections over-
lap with the ground truth. The quantity is defined
by |EPNE|/|EPUE?| and |EP (N EY]| /|9, respectively,
where we denoted the set of predicted and ground-truth
connections by EP and &Y, respectively, and the size of a
set € by |£].
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III. RESULTS

A. Distance cutoffs can be optimized to increase
performance

We first investigated the performance against varied
cost cutoffs in the simplest cases where the costs for the
connecting, gap closing, and splitting are the squared
Euclidean distance between the centroids. Specifically,
we varied the maximum distance allowed for frame-to-
frame particle association (max_distance) and splitting
and gap-closing association (splitting max distance),
which defines the cutoff for I;; and sag (gag), respec-
tively, and investigated how the overall performance
changes. In the mouse epidermis dataset [Fig. 2(a)], we
conducted grid-search in the parameters max _distance
and splitting max_distance. We found that there ex-
ists a maxima in the TE around some finite length scale,
suggesting that optimization is useful in performance im-
provement even for the cutoff parameters [Fig. 2(b)]. We
also found that the correlation of the tracking scores
between mouse epidermis data from different regions
are high upon changing of the parameters (r = 0.96
(r =0.90) for TE (TP) using data with TE > 0.75 (TP >
0.75), respectively (Supplementary Material Fig. S1)),
meaning that the optimized parameters are transferable
within similar data.

B. Tunable cost function improves tracking
performance

We next investigated if variable cost functions help im-
prove the tracking score for different datasets.

In Fig. 2(c) we show a snapshot of the cell migration
dataset. Here, the cells are moving collectively toward
the upper open region. Due to this drift, the LAP-based
tracking based solely on Euclidean distance fails espe-
cially for large timesteps, as demonstrated in Fig. 2(d)
using datasets with skipped frames. This situation can
be easily fixed by changing the cost function by adding
a drift term to the FEuclidean distance as

i, xj) = o — a; +dlf; (3)
with the drift parameter d € R? and defining ¢ and s
analogously [Fig. 2(d), Supplementary Material Fig. S2].
We used 5% of the non-dividing and dividing connections
to tune d as well as the cutoffs so that they optimize the
true positive rate of the connections. The details are
summarized in the Supplementary Material.

Particles may have features to help identify the species,
such as sizes and fluorescent intensities. In those cases,
we can use those features in addition to the Euclidean
distances to improve the performance. To illustrate this,
we measured the tracking performance for simulated par-
ticles with 8 species, characterized by different sets of
feature values corresponding to RGB colours (See IT A 3


https://doi.org/10.1101/2022.10.05.511038
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.511038; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

for details). We then defined the cost function as
2 2
[{zi, i} {zg65}) = o — 25l +wlle =gl (4)

where ¢;,¢; € R3 are the feature vectors. We tuned the
parameter w as well as the distance cutoff using the train-
ing data with 100 frames so that the tracking result max-
imizes the connection Jaccard index. We then measured
the tracking scores for an independent dataset with 100
frames. As shown in Fig .2(f), with the features used in
the metric, the target effectiveness with large frame inter-
val remains above 0.8 while it drops to ~ 0.4 when only
Euclidean distance is in the metric (w = 0), illustrating
the performance improvement by including the particle
features. We also observed improvement of other scores
(Supplementary Material Fig. S3).

For segmented images, we can also use the overlap be-
tween segmented regions to calculate the cost [7, 10, 29].
The flexible implementation allows us to integrate the
overlap metric in addition to the distance in the LAP
framework.We defined [ (with g and s analogously) as

|Li L] + A

[L;] (5)

Z(Li,Lj)Z—IOg 1—|—A

which measures the overlap, where L; and L; are the set
of pixel coordinates of the segmentation area for the par-
ticle 4 and 7 and A is a parameter. By comparing the
tracking performance for the mouse epidermis dataset
with the squared centroid Euclidean distance cases, we
found that replacing the metric improves the mitotic
branching correctness by ~ 10% [Fig. 2(g)].

IV. CONCLUSION

In this paper, we showed how the LAP-based track-
ing pipeline with additional flexibility and optimizability
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can be useful in improving tracking performance in cer-
tain situations, can be easily combined with visualization
tools to conduct manual corrections. LapTrack, in large
part, is complementary to TrackMate [7], which has a
useful GUI and its own optimization pipeline. Compared
with TrackMate, LapTrack can take arbitrary inputs and
cost functions and is flexible in its output, making it
easier to connect with other upstream and downstream
analysis pipelines. The tracking function in LapTrack is
designed to help making accurate and validated tracks
quickly and efficiently, with hope to increase the amount
of ground-truth data that can be used in training more
sophisticated tracking methods.

With a sufficient amount of manually annotated
ground-truth data, machine learning-based approaches
will likely outperform the current parameter optimization
strategy of simple affinity metrics. Due to its flexibil-
ity, our package can be readily combined with strategies
such as one-to-one association affinity learning [30, 31],
structured learning [2], and the metric learning approach
combined with graph neural networks [32], serving as a
reusable platform for implementation.
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