

1 **Diverse photoperiodic gene expression patterns are likely mediated by distinct**
2 **transcriptional systems in *Arabidopsis***

3

4 **Authors:** Chun Chung Leung¹², Daniel A. Tarté¹², Lilijana S. Oliver¹², Joshua M. Gendron^{13*}

5

6 ¹Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511,
7 USA.

8 ²These authors contributed equally

9 ³Lead contact

10 *Correspondence: joshua.gendron@yale.edu (J.M.G.)

11

12 **ABSTRACT**

13

14 Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the
15 seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a
16 complete picture of the transcriptional networks and cellular processes that are photoperiodic. We
17 performed a transcriptomics experiment on *Arabidopsis* plants grown in 3 different photoperiods, and find
18 that nearly one-third of the known genes show photoperiodic alteration in gene expression. Gene
19 clustering, daily expression integral calculations and cis-element analysis then separate photoperiodic
20 genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the
21 possibility that many photoperiod measurement systems work in parallel in *Arabidopsis*. Then, functional
22 enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we
23 generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene
24 expression data and demonstrated that photoperiod intersects with the two major phenylpropanoid
25 pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a
26 new app that visualizes photoperiod transcriptomic data for the wider community.

27 **INTRODUCTION**

28

29 Photoperiod, or daylength, is a robust seasonal cue that is measured by organisms ranging from algae
30 (Serrano-Bueno et al., 2021) and fungi (Roenneberg and Merrow, 2001), to higher plants (Thomas and
31 Vince-Prue, 1996) and vertebrates (Gwinner, 2003). This circannual signal allows the anticipation of
32 environmental changes and thus the coordination of long-term developmental and reproductive processes,
33 such as tuberization in potatoes (Osnato et al., 2021) and maturation of animal gonads (Nakane and
34 Yoshimura, 2019). Sudden changes in photoperiod cause a distinct stress response in plants (Nitschke et al.,
35 2017). In humans, photoperiod influences mood variation and related conditions like seasonal affective
36 disorder (Garbazza and Benedetti, 2018).

37

38 Plants have proved an influential study system for photoperiodism, mainly because the control of flowering
39 time by photoperiod provides a readily observable and quantifiable phenotype. Photoperiodic flowering in
40 many higher plants is regulated by the circadian clock-controlled expression of the *CONSTANS* (*CO*) gene
41 (Song et al., 2015). In *Arabidopsis thaliana*, accumulation of *CO* mRNA occurs in late afternoon – a time
42 that is lit only during the long photoperiods of summertime. Therefore, only in long photoperiods can the
43 *CO* protein be stabilized by light and trigger the downstream inducers of flowering, namely *FLOWERING*
44 *LOCUS T* (*FT*). This overlap between photoperiod and the rhythmic expression of *CO* thus defines the
45 external coincidence mechanism. Transcriptionally, *CO* is proposed to control a small number of genes
46 directly yet maintains a large indirect effect on gene expression and development by triggering the
47 developmental switch from vegetative growth to flowering (Gnesutta et al., 2017; Samach et al., 2000;
48 Wigge et al., 2005).

49

50 Growth is also under the control of photoperiod in plants, and recently, two photoperiod measuring
51 mechanisms have been discovered that support or promote photoperiodic growth. Photoperiodic control of
52 hypocotyl elongation by phytochrome-interacting factors (PIFs) relies on a coincidence mechanism, similar
53 to the *CO-FT* regulon, although PIFs have a wide variety of functions apart from regulating genes in a
54 photoperiodic manner (Paik et al., 2017). The circadian clock phases the expression of *PIF4/5* to the
55 morning and late night, but the *PIF4/5* protein is only stabilized in the dark, in turn promoting expression
56 of growth regulating genes such as *YUCCA* (YUC) family genes (Cheng et al., 2021; Kunihiro et al., 2011;
57 Nozue et al., 2007; Soy et al., 2012). Therefore, *PIF4/5*-regulated hypocotyl elongation occurs in the latter
58 portion of the long night during short-day photoperiods.

59

60 Recently, a metabolic daylength measurement (MDLM) system was shown to support rosette fresh weight
61 generation in long days and short days (Liu et al., 2021). This system relies on the photoperiodic control of
62 sucrose and starch allocation to control expression of the genes *PHLOEM PROTEIN 2-A13* (*PP2-A13*) and
63 *MYO-INOSTOL-1 PHOSPHATE SYNTHASE 1* (*MIPS1*), which are required to support short- and long-day
64 vegetative growth, respectively (Wang et al., submitted). Like the *CO-FT* and *PIF-YUC* regulons, the
65 MDLM system requires a functional circadian clock for photoperiod measurement, although the molecular
66 connections between the clock and metabolism for this system have not been identified. Additionally, both
67 the transcription factor(s) that control MDLM-regulated gene expression and the full scope of MDLM-

68 regulated genes remain unknown.

69

70 In addition to the CO-FT, PIF-YUC regulons and MDLM, it has been recognized that the circadian clock
71 and circadian clock-controlled genes exhibit phase delays as photoperiod lengthens (Mockler et al., 2007).
72 Models predict that the multiple interlocking feedback loops of the clock allow for clock genes to track
73 dusk as it delays, relative to dawn (Edwards et al., 2010). Recently, *EMPFINDLICHER IM*
74 *DUNKELROten LICHT 1 (EID1)* was shown to be required for photoperiodic response of the circadian
75 clock in tomato, but detailed mechanistic understanding of this phenomenon is lacking in many plants
76 (Xiang et al., 2022).

77

78 In the last thirty years, transcriptomics has emerged as an important tool for understanding the breadth of
79 photoperiodic gene regulation. Subtractive hybridization was first used to identify photoperiod regulated
80 genes involved in flowering time (Samach et al., 2000), and subsequently microarray was used to identify
81 local and global gene expression changes in response to the floral transition (Schmid et al., 2003; Wilson
82 et al., 2005). Additionally, microarrays were used to track gene expression changes in *Arabidopsis* at dusk
83 and dawn under many photoperiods, and time course studies provided a view of the genes that had altered
84 phasing under long- and short-day photoperiods (Michael et al., 2008; Mockler et al., 2007).
85 Transcriptomics have now been implemented to study photoperiodic gene expression in *Arabidopsis*
86 *hallerii* (Aikawa et al., 2010), *Panicum hallii* (Weng et al., 2019), wheat (Kippes et al., 2020; Pearce et al.,
87 2016), *Medicago* (Thomson et al., 2019), sugarcane (Manechini et al., 2021), and soybean (Wu et al., 2019).
88 These studies have revealed that photoperiodic gene expression changes mainly manifest as changes in
89 phase (i.e. clock genes) or amplitude (i.e. *FT* or *PP2-A13*).

90

91 Recently, two studies reanalyzed older transcriptomic data and uncovered new photoperiod measurement
92 mechanisms. A meta-analysis of *Arabidopsis* transcriptomics led to the discovery that PhyA is important
93 for light sensing in short days (Seaton et al., 2018). Additionally, a study using relative daily expression
94 integral (rDEI = sum of 24 hour of expression in condition one/sum of 24 hour of expression in condition
95 two) followed by expression pattern clustering identified short-day induced genes in *Arabidopsis* and
96 precipitated the discovery of the MDLM system (Liu et al., 2021).

97

98 Despite these inroads towards understanding photoperiodic gene expression networks, we still have an
99 incomplete understanding of the genes and cellular processes regulated by photoperiod and the scope of
100 potential photoperiod measuring systems in plants. Deficiencies in studying photoperiodic transcriptomes
101 have been caused by variation in sampling frequency, time points, growth conditions, photoperiod length
102 and ease of data access. To address this, we performed RNA-seq on a 24-hour *Arabidopsis* time course
103 encompassing the three photoperiods, 8 hours light followed by 16 hours dark (8L:16D), 12L:12D, and
104 16L:8D. We used an rDEI and pattern clustering pipeline to identify and classify photoperiod-regulated
105 genes. Furthermore, cis-element analysis was performed to provide further evidence that co-clustered genes
106 share known and *de novo* transcription factor binding elements that point towards distinct photoperiod
107 transcriptional systems. Additionally, GO and KEGG enrichment analyses identified a host of cellular
108 pathways that are potentially controlled by photoperiod in *Arabidopsis*. We then followed one important

109 cellular pathway, phenylpropanoid biosynthesis, and found a complex regulatory network that differentially
110 controls separate branches of this pathway. Finally, we present “Photo-graph”, an app for user-friendly
111 visualization of photoperiod data. Together, this work provides a comprehensive examination of
112 photoperiod regulated gene networks in *Arabidopsis* and suggests that a multitude of networks control
113 important cellular pathways in response to daylength.

114

115

116 RESULTS

117

118 A Time Course Transcriptome Dataset for Identifying Photoperiodic Genes

119

120 To identify the genes, cellular pathways, and transcriptional networks that respond to photoperiod in
121 *Arabidopsis*, we performed RNA-seq on samples from plants grown in three photoperiods: short day (SD;
122 8 h of light and 16 h of darkness; 8L:16D), equinox (EQ; 12L:12D) and long day (LD; 16L:8D). *Arabidopsis*
123 seedlings were grown for 10 days in EQ to ensure equivalent developmental stage, and then transferred to
124 SD, EQ, or LD for 2 days prior to collection (Fig. 1A). Triplicate samples were harvested at 4-hour intervals
125 for sequencing.

126

127 To identify photoperiod-regulated genes, we developed a pipeline that identifies and groups photoperiod
128 genes based on their daily expression pattern and relative expression level in any photoperiod. We started
129 by identifying genes that had an expression difference at any time point amongst the three photoperiods.
130 8293 genes show differential expression in at least one time point between any two photoperiods and are
131 expressed in all three photoperiods. These were designated as photoperiod regulated genes (Fig. S1A-B;
132 **Dataset S1**). We then clustered these based on their daily expression patterns using affinity propagation,
133 and subsequently merged them with exemplar-based agglomerative clustering (Bodenhofer et al., 2011).
134 This method assembled the 8293 photoperiod regulated genes into 14 clusters (C1-C14) (Fig. 1B, S2). In
135 addition to clustering, we calculated the daily expression integral (DEI) ratio between the three
136 photoperiods by summing expression for each transcript across each photoperiod time course and then
137 calculating the scaled percent expression in each photoperiod (Fig. 1B “DEI ratio”). This provides a simple
138 metric and visual method to determine the photoperiod in which the transcript is most highly expressed:
139 blue for SD, green for EQ, and red for LD.

140

141 We next performed Gene Set Enrichment Analyses (GSEA) by ranking the photoperiod regulated genes by
142 their DEI and then tested gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG)
143 terms for association with the ranking. This allows us to visualize cellular pathways that are enriched in SD,
144 EQ, and LD (Fig. 1C, S3). Top annotation terms associated with SD-induction are “valine, leucine, and
145 isoleucine degradation,” “spliceosome,” “peptide transport,” and “gene silencing,” while those with LD-
146 induction fall into three biological categories: phenylpropanoid biosynthesis, NAD biosynthesis, and
147 microtubule-based movement. “Pentose and glucuronate interconversions” is associated with EQ-induction
148 and “SNARE interactions in vesicular transport” is associated with both EQ- and SD-induction. Some of
149 these categories were similarly enriched in previous studies, providing confidence that our results are

150 biologically relevant (Izumi et al., 2013; Liu *et al.*, 2021).

151

152 We next assessed the clusters based on expression pattern. Two large clusters, C3 (n = 3157) and C11 (n =
153 2883), encompass 73% of the photoperiod-regulated genes. C3 contains genes highly expressed in the light,
154 which generally results in higher expression in LD as measured by DEI (**Fig. 1B** “DEI ratio”), with the
155 notable exception of subgroup 3Y (**Table 1**). C11 contains genes highly expressed in the dark, which in
156 general results in higher expression in SD as measured by DEI (**Fig. 1B** “DEI ratio”). This light-dark
157 division is apparent in the principal component analysis, which oriented samples by the light condition and
158 the time of day (**Fig. S4**). Other prominent clusters include C4 (n = 982), which shows high expression in
159 the mid-day, i.e., Zeitgeber time 08 hour (ZT08) and ZT12, and C6 (n = 519), which has a prominent peak
160 at ZT20 in LD (**Fig. 1B**).

161

162 We noted that a diverse group of daily expression patterns were housed together within the larger clusters,
163 including C3 and C11. These could represent genes expressed under the control of distinct photoperiod
164 transcriptional systems. To extract subgroups within the 14 large clusters, we used dynamic tree cut
165 (Langfelder et al., 2008) and affinity propagation to select gene exemplars that best describe each subgroup
166 (**Fig. 1B bottom, 2A, S2, S5, Table 1**). This separated all photoperiod regulated genes into 99 subgroups
167 with a mean size of 84 genes (**Dataset S2**). We identified 19 “major” subgroups containing at least 100
168 genes. Although gene groups with smaller numbers of genes may be biologically meaningful, we opted to
169 focus downstream analyses on larger groups that might represent major photoperiod gene expression
170 systems in *Arabidopsis*. Importantly, tuning the dynamic tree cut at various depths breaks down the largest
171 subgroup 11O (n = 1398) into two large and visually distinctive groups, which we termed 11Oa (n = 587)
172 and 11Ob (n = 711), and other small subgroups (**Fig. 2B**). While both groups are dark induced and light
173 repressed, 11Oa has a strong post-dusk induction peak, similar to genes controlled by MDLM, while 11Ob
174 has a weaker post-dusk induction and a dominant dawn-phased peak, resulting in even expression across
175 the night.

176

177 To assess the validity of our dataset, we examined enrichment of published CO regulated genes in our
178 subgroups under the presumption that CO regulated genes would be enriched in the LD-induced clusters
179 (Gnesutta *et al.*, 2017). As predicted, CO regulated genes are grouped in cluster 3, which contains the
180 majority of LD-induced genes, giving us confidence that our dataset can detect transcriptional networks
181 from known photoperiod measurement systems (**Fig. S6**). We also compared our data to genes that are
182 differentially regulated in the *pifq* mutant (Pfeiffer et al., 2014), and as expected the genes are spread across
183 many subgroups, likely reflecting the numerous roles of PIF proteins in a variety of gene regulatory
184 networks (**Fig. S7**) (Paik *et al.*, 2017). The MDLM regulated genes are also located in the appropriate
185 subgroups. *PP2-A13* is located in 11Oa (Liu *et al.*, 2021) and *MIPS1* is located in 3M (Wang, submitted),
186 which match the previously demonstrated gene expression patterns (**Table 1**).

187

188 Subsequently, we performed enrichment tests of GO terms and KEGG pathways on the clusters (**Fig. 2C**,
189 **Dataset S3**). This allows us to identify potential cellular pathways regulated by photoperiod and to
190 characterize clusters based on cellular function. Additionally, we performed motif enrichment analysis on

191 the gene promoters from each subgroup using transcription factor binding sites (TFBSs) in the CIS-BP
192 database (**Fig. 3A, Dataset S4**) (Weirauch et al., 2014), in order to further characterize each subgroup based
193 on enrichment of common regulatory motifs.

194
195 In the following sections we will describe the large subgroups and provide evidence for their classification
196 into separate photoperiodic transcriptional groups.

197
198 **Circadian clock genes**

200 Lengthening photoperiod causes delayed phase of circadian clock genes (Mockler *et al.*, 2007). Four
201 subgroups have evidence that prompted us to classify them as clock genes associated with photoperiod: 3N,
202 4I, 4J and 11J (**Figure 2A**). 3N, 4I and 4J have a single expression peak phased to midday, while 11J has a
203 single expression peak phased to dawn. Groups 3N and 4I show the hallmark phase delay associated with
204 clock genes responding to lengthening photoperiod. Groups 4J and 11J do not show the same phase shift
205 but show an increase in magnitude in SD, resulting in a slight increase in the ratio of SD DEI to LD DEI
206 (rDEI_{SD:LD}) (**Table 1**). All four clusters contain known clock genes. 4J and 11J are enriched in GO terms
207 “circadian rhythm” and “rhythmic processes” (**Figure 2C**). 3N is enriched for the GO terms “response to
208 cold” and “cellular polysaccharide catabolic process”. 4I is enriched for GO terms related to protein
209 nitrosylation. 3N and 4J show statistically significant enrichment of the evening element, a well-studied
210 clock cis-element (Harmer *et al.*, 2000) (**Fig. 3A**). This is also seen in 4I despite the lower statistical
211 significance. 11J shows enrichment of the bZIP binding core sequence, ACGT (Ezer *et al.*, 2017). Our
212 results identified four photoperiodic subgroups that are likely linked to the circadian clock. Two showed
213 the hallmark phase shift associated with the clock response to photoperiod, and two show no phase shift
214 but slight amplitude increases in response to photoperiod. Together, the identification of photoperiod
215 regulated clock genes and the clock cis-elements confirms that our dataset can identify known photoperiod
216 responsive transcriptional networks.

217
218 **Short day-induced genes**

220 In the clustering performed here, 11O is the largest of the SD-induced subgroups, as determined by rDEI
221 (**Fig. 1B** and **Table 1**). However, further dynamic tree cutting suggests that 11O contains two separate
222 expression groups, which we termed 11Oa and 11Ob (**Fig. 2B**). Both groups have biphasic expression in
223 SD and are repressed in the light. 11Oa is distinguished by a dominant post-dusk peak and a weaker dawn
224 phased peak, while 11Ob is characterized by a weaker post-dusk peak and a more prominent dawn phased
225 peak.

226
227 The 11Oa subgroup contains the MDLM regulated gene *PP2-A13*, and the expression pattern of this
228 subgroup is identical to the *PP2-A13* daily expression pattern shown previously (Liu *et al.*, 2021).
229 Furthermore, it contains genes shown to be important for short-day physiology (*PP2-A13*, *EXORDIUM-*
230 *LIKE 1* and *HOMOGENTISATE 1,2-DIOXYGENASE*) (Han *et al.*, 2013; Liu *et al.*, 2021). In support of its
231 role in short-day plant physiology, 11Oa is enriched with genes involved in hypoxia and response to absence

232 of light (**Fig. 2C**). Conversely, 11Ob has a weaker post-dusk expression peak, but a more dominant dawn-
233 phased expression peak (**Fig. 2B**). 11Ob contains *TEMPRANILLO1* (*TEM1*), a gene known to repress *FT*
234 expression in short days, but 11Ob shows no enrichment of any individual cellular pathways (**Table 1**, **Fig.**
235 **2C**) (Castillejo and Pelaz, 2008; Hu et al., 2021).

236

237 We next inquired whether the two subgroups have enrichment of shared or distinct cis-elements. The entire
238 11O subgroup has two enriched cis-elements: the bZIP TFBS resembling the G-box (core sequence
239 CACGTC) (Ezer *et al.*, 2017), and the AP2/ERF TFBS resembling the GCC-box (core sequence
240 AGCCGCC) (Hao *et al.*, 1998) (**Fig. 3A**). Interestingly, 11Oa has the dominant post-dusk expression peak
241 but lacks enrichment of the bZIP sites, only containing that of the AP2/ERF sites. 11J has genes that are
242 dawn-phased, and is enriched with the bZIP sites but not the AP2/ERF binding sites. 11Ob contains genes
243 that have the post-dusk peak and the dawn-phased peak, and is enriched with both AP2/ERF and bZIP sites.
244 This correlation may indicate that the AP2/ERF sites are important for post-dusk phasing in short days, and
245 the bZIP sites are important for dawn phasing.

246

247 Cluster 3, which contains subgroups mostly induced in LD, also contains the outlier subgroup 3Y that is
248 induced in SD (**Fig. 2A**). This subgroup demonstrates monophasic peaking at ZT4 in all three photoperiods
249 but shows an increase in amplitude at the same time point in short days. This SD-induction in the light
250 rather than the dark makes 3Y unique. This subgroup was enriched with genes involved in hypoxia and
251 amino acid metabolism, sharing some similarity in cellular functions with the night-phased SD-induced
252 subgroup 11Oa (**Fig. 2C**). We were unable to identify any known cis-regulatory elements that were enriched
253 in this group (**Fig. 3A**). A search for *de novo* motifs identified one strongly enriched element containing the
254 sequence CCACAATCCTCA (**Fig. 3B**).

255

256 These results suggest that there are potentially three transcriptional networks controlling three major SD-
257 induced gene expression programs. One is characterized by strong post-dusk induction and is enriched with
258 an AP2/ERF binding site. A second potential program is exemplified by the dawn-phased genes enriched
259 with the bZIP core. bZIP transcription factors (TFs) play a number of roles in plants, including control of
260 the circadian clock and light signaling (Droge-Laser *et al.*, 2018; Jakoby *et al.*, 2002). And, a third major
261 subgroup, 3Y, shows high amplitude SD expression at ZT4 and contains a *de novo* motif. Little is known
262 about this network, but the enrichment of important cellular pathways, such as hypoxia and amino acid
263 metabolism, suggests this may be important for winter physiology in plants.

264

265 **Long day induced genes**

266

267 The majority of LD-induced genes reside in cluster 3, but in contrast to the SD-induced genes, cluster 3
268 contains a greater number of smaller subgroups rather than 1 large subgroup like 11O (**Fig. 2A**). This could
269 indicate that multiple photoperiod-measuring systems control gene expression in long days. This is
270 supported by evidence showing that the MDLM and CO systems can cause similar photoperiodic gene
271 expression changes (**Fig. S6**) (Wang *et al.*, submitted). To determine if there are possible transcriptional
272 networks that are driving LD-induced gene expression, we further analyzed 5 major subgroups from cluster

273 3 (3G, 3M, 3O, 3P, and 3R). All are expressed mainly in the light period of the day, hence their presence in
274 cluster 3, but only 3M, 3O, and 3R are strongly repressed by the dark in all three photoperiods (**Fig. 2A**).
275 3M is enriched in genes related to pigment metabolic process, desiccation, chlorophyll metabolic process,
276 response to oxidative stress, response to red light, and water homeostasis (**Fig. 2C**). 3O is enriched in genes
277 involved in protein folding, glucosinolate metabolic process, response to heat, and protein processing in the
278 ER. 3R is enriched in genes involved in blue light signaling, response to light intensity, and photosynthesis.
279 *cis*-element analyses did not identify any single site enriched in subgroups 3G, 3O and 3P (**Fig. 3A**).
280 Conversely, 3M and 3R are weakly enriched in bZIP and AP2/ERF sites, similar to 11Oa, 11Ob and 11J.
281 3M and 3R have a similar expression pattern, resembling that of the MDLM controlled gene *MIPS1*, which
282 is located in 3M (Wang et al, submitted). Because of the shared enrichment of *cis*-elements in the subgroups
283 that contain the LD and SD MDLM genes, it is possible that the same families of TFs are in play to control
284 gene expression in both photoperiods.

285
286 In addition to the aforementioned subgroups that result in higher gene expression in LD and are expressed
287 mostly in the light period, there is one night-phased LD-induced subgroup, 6G (**Fig. 2A**). Also displaying
288 higher expression in LD is the day-phased subgroup, 2C, which achieves this through a peak magnitude
289 increase at ZT4. Similar to 3G, 6G and 2C have no enrichment of any biological pathways or known *cis*-
290 elements (**Fig. 2C, 3A, 3B**), suggesting they may contain genes that are regulated in the same way by
291 multiple photoperiod measurement systems.

292
293 In sum, we can identify target genes from known photoperiod measurement systems intermingling in the
294 large C3 subgroup. The CO regulated genes are spread across many subgroups, but it seems that the MDLM
295 regulated genes are clustered in 3M and possibly 3R, based on *cis*-element enrichment analysis and
296 expression pattern. Additionally, there may be photoperiod measurement systems that have not been
297 identified that could account for other modes of expression.

298
299 **Photoperiod regulation of ribosomal genes**
300
301 One large subgroup, 3I, is defined by a ZT8 specific trough in LD which causes a biphasic expression
302 pattern only in LDs (**Fig. 2A**). Furthermore, this subgroup is strongly enriched with genes involved in
303 ribosome biogenesis and translation (**Fig. 2C**). In support of this, *cis*-element analysis showed enrichment
304 of the binding site for the Myb-type TF TELOMERE REPEAT BINDING FACTOR (TRB) 2 and
305 AT1G72740 (**Fig. 3A**), both belonging to a TF family of evolutionarily conserved regulators of ribosome
306 gene expression (Marian et al., 2003; Schrumpfova et al., 2016). This subgroup is unique because it was
307 the only major subgroup defined by an expression trough rather than an expression peak, and it will be
308 worthwhile in the future to determine if the TRB site plays a role in this process.

309
310 **Equinox induced genes**
311
312 It is conceivable, and demonstrated in some cases, that some biological processes may be induced or
313 repressed specifically in the equinox photoperiods in plants (Thomas and Vince-Prue, 1996). We included

314 a 12L:12D equinox photoperiod in order to test this idea. We found few genes that were expressed highly
315 in LD and SD but repressed in EQ, but we found a greater number of genes that are expressed specifically
316 in EQ but reduced in LD and SD. These included clusters 3A (n = 82), 4C (n = 92), 4D (n = 126), 9A (n =
317 56), 11B (n = 41), and 11C (n = 39). These were spread across a variety of peak times, but only 4D contained
318 more than 100 genes (**Fig. S5**). In 4D we found enrichment of electron transport chain genes, suggesting it
319 is important for photosynthetic processes (**Fig. 2C**). This subgroup showed enrichment of the evening
320 element, which matches the subgroup's ZT8 peak time in the EQ photoperiod (**Fig. 3A**). We did not identify
321 additional elements that point towards an EQ specific mechanism, but this could be investigated further in
322 follow-up studies.

323
324 In the previous sections, we defined a variety of photoperiod expression patterns and tentatively linked
325 some of these expression patterns to enriched cis-elements. What is clear is that photoperiod gene
326 expression changes can manifest with a diverse array of daily expression patterns that cannot be accounted
327 for with our current knowledge of photoperiod measurement systems in plants.

328

329 **Photoperiodic control of phenylpropanoid biosynthesis**

330
331 We next tested if our pipeline is effective at identifying and classifying *bona fide* photoperiod regulated
332 cellular pathways. GSEA identified phenylpropanoid biosynthesis as the top cellular process enriched with
333 photoperiod regulated genes (**Fig. 1C**). Anthocyanin production is controlled by photoperiod in many plants
334 (Zoratti *et al.*, 2014), but in Arabidopsis it is not clear if they are induced by short or long days, nor if other
335 byproducts of the phenylpropanoid pathway, such as other flavonoids or lignin, are also regulated by
336 photoperiod (Lepisto *et al.*, 2009; Seaton *et al.*, 2018). To address this, we curated a catalog of genes
337 involved in phenylpropanoid synthesis in Arabidopsis using KEGG, GO and an extensive literature search
338 (**Dataset S5**). Each gene was annotated according to its predicted effect on the phenylpropanoid pathway,
339 mode of action, and the branch of the pathway in which it acts. To determine how photoperiod regulates
340 the transcription of positive and negative regulators of the phenylpropanoid pathway, both groups were
341 plotted according to their rDEI_{SD:LD} (**Fig. 4A**). The expression of positive regulators of phenylpropanoid
342 biosynthesis, especially that of the flavonoid branches, was found to be significantly higher in LD. To
343 visualize the seasonal induction of phenylpropanoid genes more precisely, we mapped the rDEI_{SD:LD} of key
344 enzymes to the phenylpropanoid biosynthesis pathway (**Fig. 4B**). Notably, enzymes specific to the
345 flavonoid branches are more highly LD-induced than those specific to the lignin branch, which also contains
346 the SD-induced gene *CINNAMOYL COA REDUCTASE 1* (*CCR*).

347
348 Our expression analyses indicate that flavonoids are potentially induced in LDs, while the photoperiodic
349 control of the lignin branch is weaker. To test if the observed pattern of phenylpropanoid gene expression
350 corresponds to seasonal regulation of metabolites, we quantified various phenylpropanoid compounds in
351 LD- and SD-grown plants (**Fig. 4C, Dataset S6**). In agreement with observed gene expression patterns,
352 liquid chromatography–mass spectrometry (LC-MS) detection revealed higher levels of most flavonoid
353 compounds in LD rather than in SD photoperiod. Again, in agreement with gene expression,
354 quantification of acetyl bromide soluble lignin (ABSL) found lignin polymer accumulation to be

355 unaffected by photoperiod (**Fig. 4C**). Together, these data provide a holistic view of the photoperiodic
356 regulation of phenylpropanoids and suggest differential regulation of the lignin and anthocyanin/flavonol
357 branches of the phenylpropanoid pathway with respect to photoperiod. Specifically, anthocyanins and
358 flavonol genes are induced in LDs and the corresponding metabolites respond accordingly, while the
359 lignin genes do not show consistent photoperiodic regulation and lignin content in cells remains constant
360 across photoperiods.

361

362 **The “Photo-graph” app provides a user-friendly way to access and analyze photoperiod 363 transcriptomics data**

364

365 The daily expression pattern and rDEI are informative for understanding photoperiodic gene expression,
366 but there is currently not a user-friendly online tool to visualize this. We created an app and named it “Photo-
367 graph” (<https://gendron-lab.shinyapps.io/PhotoGraph/>) that allows access to the data with a user-friendly
368 interface. Users may query the gene expression pattern and rDEI of *Arabidopsis* genes through simple input
369 of TAIR identifiers (**Fig. 5A**). Additionally, data can be plotted by rDEI, allowing for easy identification of
370 genes induced in specific photoperiods (**Fig. 5B**).

371

372 Furthermore, the Photo-graph app has the potential to display any photoperiod-specific time course data
373 from multiple sources and is not restricted by organism or data type. We show this by including long- and
374 short-day microarray data from the DIURNAL site (Mockler *et al.*, 2007). One can choose to look at
375 expression of their gene of interest in previously published microarray data alongside the RNA-seq data
376 provided here.

377

378 **DISCUSSION**

379

380 Cellular and physiological health in plants relies on accurately measuring daylength to predict seasonal
381 change. In plants, photoperiod measurement is particularly important for ensuring fecundity in offspring,
382 but also for optimizing fitness and growth. Studies of flowering time in plants have dominated research in
383 photoperiodism, but here we provide transcriptomic data and analyses which indicate that multiple
384 transcriptional networks are communicating photoperiod information to control a wide variety of important
385 cellular processes through regulation of gene expression.

386

387 Using an agglomerative approach, we identified that nearly one-third of the *Arabidopsis* genes have
388 expression changes dependent on photoperiod. Photoperiodic gene expression changes can be conceptually
389 grouped into two broad categories: changes in phase and changes in amplitude, demonstrating the need to
390 analyze time course data that spans at least 24 hours. Next, using a dynamic tree cutting approach we were
391 able to group the genes into 19 co-expressed subgroups that encompass diverse expression patterns (**Table**
392 **1** and **Fig. 2A**).

393

394 Perhaps most strikingly, many photoperiod regulated genes fall into two large classes: genes induced in
395 light and repressed in dark, and the opposite, genes induced in dark and repressed in light. Interestingly,

396 within these categories there seem to be multiple transcriptional networks at play. For instance, genes
397 induced in SD in the dark fall into three major categories: genes containing a dominant post-dusk peak of
398 expression, genes containing a dominant dawn-phased peak of expression, and genes with both. This aligns
399 with cis-element enrichment, suggesting that bZIP binding sites are enriched in dawn-phased genes and
400 AP2/ERF binding sites are enriched in post-dusk phased genes (**Fig. 3A**). It is tempting to speculate that
401 these enriched binding sites are indicating the transcriptional control points for genes that are regulated by
402 MDLM, given that genes such as *PP2-A13* fall into these categories and are known MDLM targets (Liu *et*
403 *al.*, 2021) (**Fig. S9A**).

404

405 Genes induced in LDs during daylight fall into a variety of subgroups. Intriguingly, subgroup 3M and 3R
406 have very similar expression patterns and also show enrichment of the AP2/ERF and bZIP sites (**Fig. 3A**).
407 These clusters also contain genes known to be induced by MDLM in LDs, allowing us to speculate that
408 MDLM may be utilizing the AP2/ERF and bZIP cis-elements for control of LD and SD genes (**Fig. S9B**).
409 It will be important in future studies to determine the TFs that bind them to potentially provide insights into
410 how MDLM controls gene expression in response to photoperiod. Outside of 3M and 3R, other LD light-
411 induced subgroups showed apparent enrichment of genes that could benefit plant fitness in summertime
412 (**Fig. 2B**), but clearly enriched cis-elements were not apparent (**Fig. 3A**). This may be due to the co-
413 clustering of genes with similar expression patterns that are controlled by different photoperiod measuring
414 systems. This is supported by evidence showing that CO regulated genes are distributed across a variety of
415 LD subgroups (**Fig. S6**).

416

417 It is well known that circadian clock genes have delayed phases as days lengthen. In this study, we not only
418 identified this class of genes, but also putative clock genes that display an amplitude increase in SDs and
419 enrichment of the bZIP TFBS (**Fig. 2A, S9C**). Together, the presence of these two classes indicate that the
420 clock can respond to photoperiod through both phase and amplitude changes, suggesting that multiple
421 mechanisms connect the clock to photoperiod. Future studies should focus on understanding the molecular
422 components required for these changes.

423

424 Outside of these major expression groups there are also interesting smaller groups, such as SD-induced
425 genes that are phased to the light period of the day or a cluster of genes defined by a LD trough that is
426 enriched with ribosomal genes (**Fig. S9D**). Similar to other photoperiod study systems, understanding these
427 networks will require the development of tools where genetics and molecular biology can be used to study
428 their photoperiodic expression in greater detail. But what is clear is that a variety of interesting and
429 previously unrecognized photoperiod transcriptional networks are functioning in *Arabidopsis*, and likely
430 other plants as well.

431

432 In addition to LD and SD, we included an EQ time course in our studies to increase the resolution across
433 different seasons. Although there were far fewer EQ-induced genes than LD- or SD-induced genes, EQ
434 subgroups are enriched in genes involved in photosynthesis, matching the developmental strategy of an
435 understory plant, such as *Arabidopsis*, which must often grow quickly in spring to beat shade produced by
436 canopy trees (**Fig S5**). Again, it will be interesting to create tools to track EQ specific gene expression to

437 understand how these patterns are controlled at a molecular level.

438

439 In addition to identifying a diversity of photoperiodic expression patterns, this work also enhances our
440 knowledge of the cellular systems that are controlled by photoperiod. Importantly, we see a division of
441 light-related and dark-related biological processes between the large clusters C3 and C11 (**Fig. 2C**).
442 Pathways related to photosynthesis, metabolism of pigments and other secondary metabolites are enriched
443 in the light-induced C3, whereas response to darkness and amino acid catabolic processes are enriched
444 terms in C11.

445

446 Scrutiny into the subgroups shows that genes in some pathways are highly co-regulated. Genes that encode
447 components of the photosynthetic machinery are enriched in 3M (e.g. *PSAN* and *CAB2*) and 3R (e.g.
448 *LHCA1/2/3* and *CAB1/3*) (**Table 1**). The double peak subgroup 3M is also enriched in genes involved in
449 oxidative stress, pigment metabolism and desiccation. A major regulator of phenylpropanoid biosynthesis,
450 *MYB3* (Kim *et al.*, 2022), and a key gene in the dehydration stress response, *MYC2*, can be found in 3M
451 (Abe *et al.*, 2003). On the other hand, genes related to response to hypoxia, lipid and darkness are highly
452 enriched in the double peak dark-induced subgroup 11Oa but not in 11Ob, which shows a similar pattern
453 but without the SD-specific peak at ZT12. Importantly, this implies that the biological response towards the
454 earlier dusk of SD is different from a general response to darkness.

455

456 Given our functional enrichment analysis identified a variety of potentially photoperiodic cellular processes,
457 we sought to demonstrate the predictive power of the dataset. Much is known about the genes involved in
458 phenylpropanoid biosynthesis and this pathway emerged as highly photoperiod-regulated. Furthermore,
459 reports have demonstrated photoperiodic regulation of anthocyanin, a major class of phenylpropanoids, but
460 there are some discrepancies about whether they are induced in LDs or SDs (Lepisto *et al.*, 2009; Seaton *et*
461 *al.*, 2018). Additionally, less is known about photoperiod regulation of two other major phenylpropanoid
462 classes, flavonols and lignins. By creating a comprehensive catalog of phenylpropanoid genes and
463 overlaying our photoperiod data, we were able to predict that anthocyanins and flavonols will be higher in
464 LDs, while lignins will be less affected by photoperiod (**Fig. 4B**). Quantitative measurements of these
465 compounds confirmed this and demonstrated that our gene expression studies have the potential to predict
466 physiologically relevant changes in response to photoperiod (**Fig. 4C**).

467

468 In addition to generation of a dataset and analytical tools for photoperiod data, we also developed an app
469 that can be used to visualize photoperiod expression data by plotting individual expression patterns or rDEI
470 of gene groups. We named the app “Photo-graph”. This tool is not limited to *Arabidopsis* or plant time
471 course data. We expect that other photoperiod time course data will be incorporated with this tool for use
472 as a community resource as shown by our initial incorporation of photoperiod microarray data (Mockler *et*
473 *al.*, 2007).

474

475 The presence of a diverse set of transcriptional networks and a large number of genes that respond to
476 photoperiod indicate that plants are highly attuned to the length of day. Furthermore, this work provides a
477 foundation on which to study the molecular components that drive this diverse set of seasonal expression

478 patterns. This is especially important in the context of climate change where the photoperiod is rapidly
479 becoming uncoupled from important seasonal signals, such as temperature and water availability.
480 Understanding photoperiod sensing networks will allow us to pre-empt the negative effect of climate change
481 on plants.

482

483 **ACKNOWLEDGEMENTS**

484

485 We would like to thank Christopher Adamchek for technical support. We would also like to thank Sandra
486 Pariseau and Jenny Pengsavath for administrative support. Additionally, we would like to thank Chris
487 Bolick, Nathan Guzzo, and the staff at Marsh Botanical Gardens for their support in maintaining plant
488 growth spaces. This work was supported by the National Institutes of Health (R35 GM128670) to J.M.G.,
489 and D.A.T. was supported by the National Institutes of Health (T32GM007223-44). This research made
490 use of the Chemical and Biophysical Instrumentation Center at Yale University (RRID:SCR_021738) and
491 the Yale Center for Genome Analysis.

492

493 **AUTHOR CONTRIBUTIONS**

494

495 C.C.L. designed, performed and analyzed the RNA-seq experiments. C.C.L., D.A.T. and L.S.O. designed,
496 performed and analyzed phenylpropanoid experiments. C.C.L., D.A.T., L.S.O., and J.M.G. wrote the
497 article.

498

499 **DECLARATION OF INTERESTS**

500

501 All authors claim no competing interests.

502

504 **MAIN FIGURE TITLES AND LEGENDS**

505

506 **Figure 1. Comparison of gene expression between three photoperiods.** **A)** The experimental design.
507 Grey and dark bars represent light and dark periods, respectively. The first time point is zeitgeber time
508 hour 0 (ZT00). In this experiment, zeitgeber time is equal to the number of hours from dawn. **B)** (Top)
509 Agglomerative clustering of 8293 photoperiodic genes. (Top-middle) Stacked bar chart of the daily
510 expression integral (DEI) of each gene, transformed with: $(DEI_{SD})^4/k + (DEI_{EQ})^4/k + (DEI_{LD})^4/k = 1$.
511 (Middle) Heatmap of scaled gene expression pattern. (Bottom) Assignment of subgroups with dynamic
512 tree cut, with depth = 2 or 3. Position of subgroups mentioned in text are labelled. **C)** Top gene ontology
513 and KEGG pathway terms of GSEA using DEI ratio (rDEI) between LD and SD as ranking metric. *p*-
514 value was adjusted using the Benjamini-Hochberg procedure. Only the top 10 terms ordered by absolute
515 normalized enrichment score (NES) are shown.

516

517 **Figure 2. Photoperiod-regulated genes display expression patterns and associate with biological**
518 **processes.** **A)** Gene exemplars of major subgroups (at least 100 genes) generated by affinity propagation.
519 *n* refers to the number of genes in subgroup. Blue: SD expression; green: EQ expression; red: LD
520 expression. **B)** Gene exemplars of divisions of 11O, 11Oa and 11Ob, selected by increasing the depth of
521 dynamic tree cut from 2 to 3. **C)** Enrichment of GO and KEGG pathway terms in gene subgroups. *p*-value
522 was adjusted using the Benjamini-Hochberg procedure. GO and KEGG term enrichment of divisions of
523 11O, 11Oa and 11Ob were also shown.

524 **Figure 3. Enrichment of AP2/ERF-, bZIP- and Myb/SANT-class transcription factor binding sites in**
525 **photoperiod-regulated genes.** **A)** Enrichment of TF binding sites in CIS-BP in promoters of gene
526 subgroups, including 11Oa and 11Ob. Only the top 3 enriched motifs of each subgroup that pass the
527 statistical threshold (Benjamini-hochberg adjusted *p*-value < 0.001) are shown. Dot size represents fold
528 enrichment and color represents statistical significance of enrichment. Sequence logos of the corresponding
529 motifs are shown on the right. Sequence logos are scaled to the information content of motif bases. **B)** Top
530 *de novo* motifs of clusters 3Y and 6G. The unadjusted *p*-values and fold enrichment reported by HOMER
531 are shown. Sequence logos are scaled to the information content of motif bases.

532

533 **Figure 4. Photoperiod regulates phenylpropanoid gene expression and metabolite**
534 **accumulation.** **A)** Distribution of rDEI_{SD:LD} in genes involved in phenylpropanoid production (*n* =
535 189). Genes are grouped according to positive/negative effect on the phenylpropanoid pathway,
536 molecular function as an enzyme (EZ), transcription factor (TF) or post-translational (PT) regulator,
537 or lignin (LIG) vs flavonoid (FLA) branch. Red bars indicate mean. *, *p* ≤ 0.05, ***, *p* ≤ 0.0001 (one
538 sample Wilcoxon signed rank test). Blue shading, SD-induced genes or compound accumulation; red
539 shading, LD-induced genes or compound accumulation (**Dataset S5**). **B)** Simplified phenylpropanoid
540 biosynthesis pathway. Box labeling corresponds to biosynthetic enzyme names; box shading
541 corresponds to log₂(rDEI_{SD:LD}) of the coding biosynthetic gene. **C)** Precursor modifications and
542 relative compound accumulation. Box labeling corresponds to compound name; box shading
543 corresponds to SD:LD relative peak area ratios. *†The indicated pairs of compounds could not be

544 fully resolved from one another.

545

546 **Figure 5. The “Photo-graph” app provides a user-friendly visualization of gene expression patterns.**

547 **A)** Visualization of RNA-seq expression pattern. **B)** Plot of $rDEI_{SD:LD}$ in this dataset against the

548 $rDEI_{shortday:longday}$ of the DIURNAL database of input genes.

549 **SUPPLEMENTARY FIGURE TITLES AND LEGENDS**

550

551 **Figure S1. Differentially expressed genes between time points and photoperiods.** **A)** Upset plot of
552 differentially expressed (DE) genes in each time point. **B)** Upset plot of DE genes in each photoperiod.

553

554 **Figure S2. Gene exemplars from the 14 major clusters selected from affinity propagation.** n refers to
555 the number of genes in cluster. Blue: SD expression; green: EQ expression; red: LD expression.

556

557 **Figure S3. Gene set enrichment analysis (GSEA) with rDEI_{LD:EQ} and rDEI_{EQ:SD} as ranking metric.**

558 **A)** Top gene ontology and KEGG pathway terms of GSEA using rDEI between LD and EQ as ranking
559 metric. **B)** Top gene ontology and KEGG pathway terms of GSEA using rDEI between EQ and SD as
560 ranking metric. *p*-value was adjusted using the Benjamini-Hochberg procedure.

561

562 **Figure S4. Principal component analysis plot of sample triplicates.** Numbers represent the ZT hour of
563 sample collection. Color indicates photoperiod condition.

564

565 **Figure S5. Gene exemplars from subgroups where EQ-induced peaks were observed.** Blue: SD
566 expression; green: EQ expression; red: LD expression.

567

568 **Figure S6. Distribution of CO-regulated genes in the photoperiod-regulated gene subgroups.** **A)**

569 Distribution of down-regulated genes in the *co-9* mutant compared to the wild type (Gnesutta *et al.*,
570 2017). **B)** Distribution of up-regulated genes in the *co-9* mutant compared to the wild type.

571

572 **Figure S7. Distribution of PIF-regulated genes in the photoperiod-regulated gene subgroups.** **A)**

573 Distribution of down-regulated genes in the *pifq* mutant compared to the wild type (Pfeiffer *et al.*, 2014).

574 **B)** Distribution of up-regulated genes in the *pifq* mutant compared to the wild type.

575

576 **Figure S8. Simplified phenylpropanoid biosynthesis pathway with gene subgroup membership.** Box

577 labeling corresponds to biosynthetic enzyme names (**Dataset S5**). Genes with no subgroup labels or

578 shading did not display photoperiodic expression patterns or consist of multiple homologs that do not

579 show consistent expression patterns.

580

581 **Figure S9. Schematic model of the control of photoperiodic gene expression and downstream**

582 **biological processes.** **A)** In SD, genes are induced in 3 major ways: A1) an unknown mechanism

583 increases expression amplitude of a day-phased peak, upregulating genes involved in hypoxia response

584 and amino acid metabolism; A2) MDLM likely induces gene expression after the earlier dusk in SD

585 through the AP2/ERF-family TFs, in turn upregulating genes involved in processes like hypoxia response,

586 amino acid catabolism and response to darkness; A3) TFs binding to G-box and AP2/ERF TFBS trigger

587 gene induction in darkness, leading to upregulation of genes involved in various processes. **B)** In LD,

588 genes are induced in 4 major ways: B1) MDLM likely induces an expression peak in the latter part of

589 daytime via G-box binding TFs, causing an upregulation of genes involved in processes such as

590 desiccation response; B2) an unknown mechanism drives the expression of genes under light, leading to
591 an upregulation of genes involved in glucosinolate metabolism; B3) G-box binding TFs induce higher
592 expression in the latter part of daytime, in a manner similar to (B1), causing upregulation of
593 photosynthesis genes; B4) an unknown mechanism causes an expression peak in the dark, upregulating
594 genes involved in various processes. **C)** Photoperiod controls expression of circadian clock- and rhythmic
595 process-related genes in 4 major ways: C1) evening element-containing genes display a SD-specific mid-
596 day peak, thus also causing SD-induction; C2) G-box binding TFs trigger the increase in magnitude of a
597 dawn-phased peak in SD; in (C3) and (C4), evening element-containing genes with a mid-day phase show
598 a phase delay with lengthening photoperiod; the SD phase may be restricted to light in (C3) or extend to
599 the dark in (C4). **D)** In LD, ribosomal genes containing the TFBS for TRB-related TFs display an
600 expression trough in the middle of the daytime period.

601

602 **Dataset S1: edgeR differential expression analysis results.**

603 **Dataset S2: cluster membership of genes and gene daily expression integral.**

604 **Dataset S3: GSEA results and GO enrichment data of gene subgroups.**

605 **Dataset S4: cis-element enrichment analysis of gene subgroups by HOMER.**

606 **Dataset S5: catalog of phenylpropanoid biosynthesis genes.**

607 **Dataset S6: LC-MS ion count quantification of phenylpropanoid-related compounds in LD and SD
608 and sample dry weight.**

609

610 **Table 1: Description of the 19 gene subgroups with at least 100 genes.**

Cluster	Number of genes	Mean $\log_2(rDEI_{SD:LD})$	Mean $\log_2(rDEI_{SD:EQ})$	Mean $\log_2(rDEI_{EQ:LD})$	Notable genes
2C	207	-0.348	-0.167	-0.180	-
3G	277	-0.675	-0.291	-0.384	-
3I	133	-0.268	-0.207	-0.061	AT1G14320 <i>RPL10</i> AT1G14320 <i>RPL27A</i> AT1G72370 <i>RP40</i> AT2G39460 <i>RPL23A</i>
3M	492	-0.235	-0.138	-0.097	AT1G29920 <i>CAB2</i> AT4G39800 <i>MIPS1</i> AT5G64040 <i>PSAN</i> AT1G22640 <i>MYB3</i> AT1G32640 <i>MYC2</i> AT2G37040 <i>PAL1</i> AT3G51240 <i>TT6</i>
3N	358	-0.166	-0.076	-0.09	AT2G40080 <i>ELF4</i> AT4G25480 <i>DREB1A</i> AT4G25490 <i>DREB1B</i>
3O	482	-0.404	-0.25	-0.154	AT1G12140 <i>FMO</i> AT1G24100 <i>UGT74B1</i> AT1G74090 <i>SOT18</i> AT2G04030 <i>HSP90.5</i> AT4G24190 <i>HSP90.7</i>
3P	166	-0.621	-0.481	-0.14	-
3R	439	-0.129	-0.01	-0.119	AT1G29910 <i>CAB3</i> AT1G29930 <i>CAB1</i> AT1G61520 <i>LHCA3</i> AT2G43010 <i>PIF4</i> AT3G61470 <i>LHCA2</i> AT3G47470 <i>LHCA4</i> AT3G54890 <i>LHCA1</i> AT5G62430 <i>CDF1</i>
3Y	227	0.469	0.447	0.022	AT4G08870 <i>ARGAH2</i> AT4G39950 <i>CYP79B2</i> AT1G17290 <i>AlaAT1</i>
4D	126	-0.29	-0.491	0.201	-
4I	161	-0.291	-0.165	0.126	AT5G60100 <i>PRR3</i>
4J	316	0.235	0.248	0.013	AT2G25930 <i>ELF3</i> AT3G26740 <i>CCL</i>

					AT5G42900 <i>COR27</i> AT4G33980 <i>COR28</i>
6F	117	-0.522	-0.228	0.294	-
6G	202	-0.522	-0.376	0.147	-
11J	521	0.254	0.068	0.186	AT1G01060 <i>LHY</i> AT2G46830 <i>CCA1</i> AT5G02840 <i>RVE4</i> AT5G17300 <i>RVE1</i>
11L	100	-0.121	-0.063	0.058	-
11O	1398	0.557	0.327	0.23	AT1G25560 <i>TEM1</i> AT3G47340 <i>DIN6</i> AT3G61060 <i>PP2-A13</i> AT5G54080 <i>HGO</i>
11Oa	587	0.76267877	0.48590304	0.2767757	AT3G47340 <i>DIN6</i> AT3G61060 <i>PP2-A13</i> AT5G54080 <i>HGO</i>
11Ob	711	0.36874602	0.1847722	0.1839738	AT1G25560 <i>TEM1</i>
11P	111	0.687	0.394	0.293	-
11X	107	-0.15	-0.179	0.03	-

611

612

613 **MATERIALS AND METHODS**

614

615 **Plant materials and growth conditions**

616

617 Arabidopsis Col-0 seeds were sterilized for 20 minutes in 70% ethanol and 0.01% Triton X-100 before
618 being sown onto ½ Murashige and Skoog medium plates (2.15 g/L Murashige and Skoog medium, pH
619 5.6, Cassion Laboratories, cat. # MSP01, and 0.8% bacteriological agar, AmericanBio cat. # AB01185)
620 lined with autoclaved filter papers. Seeds were stratified in dark at 4°C for 48 hours before transferring to
621 a growth chamber under 12L:12D photoperiod at 22°C and 130 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light intensity for
622 germination. After germination, seedlings were kept in the same condition for 10 days. On day 11, the
623 seedlings were transferred to 16L:8D, 12L:12D or 8L:16D photoperiod. On day 13, whole seedlings with
624 shoots and roots were harvested and snap frozen in liquid nitrogen. Approximately 50 seedlings from a
625 single plate were pooled to generate one biological replicate, and three biological replicates in total were
626 generated for each treatment group. For ABSL quantification, seedlings were stratified and germinated
627 under identical conditions but were grown in 16L:8D or 8L:16D photoperiods for 14 days post-
628 germination using the same growth medium.

629

630 **RNA extraction and library preparation**

631

632 Total RNA was extracted from approximately 200 mg of pulverized Arabidopsis seedling shoot and roots
633 using TRIzol reagent (ThermoFisher, 15596026) according to manufacturer's protocol. RNA samples
634 were treated with RNase-free DNase (QIAGEN, 79254) to remove DNA contaminants. Protein
635 contaminants were removed by extraction with phenol-chloroform mixture (phenol:chloroform:isoamyl-
636 alcohol 25:24:1; ThermoFisher, AM9730) followed by precipitation using 3 M sodium acetate solution.
637 The resulting RNA was delivered to Yale Center for Genome Analysis for library preparation. Agilent
638 Bioanalyzer was used to analyze sample quality. Samples with > 7.0 RNA integration number were used
639 for the sequencing library preparation with the mRNA Seq Kit (Illumina, cat. # 1004814) following
640 manufacturer's instruction with alteration for mRNA extraction. mRNA was isolated from total RNA
641 using 7 microliters of oligo dT on Sera-magnetic beads and 50 μL of binding buffer. The mRNA was
642 fragmented in the presence of divalent cations at 94°C. Next, reverse transcription of the fragmented
643 mRNA was performed with SuperScriptII reverse transcriptase (ThermoFisher, cat. # 18064014), followed
644 by end repair and ligation to Illumina adapters. The adaptor ligated DNA was amplified by PCR and then
645 purified on Qiagen PCR purification kit (QIAGEN, 28104) to produce the libraries for sequencing. The
646 libraries were sequenced on the Illumina NovaSeq6000 platform with S1 flow cells in paired end mode.

647

648 **RNA-sequencing analysis**

649 Raw reads were trimmed using Trimmomatic (v.0.39) to remove low quality reads and adapters (Bolger et
650 al., 2014); the parameters were: -phred33 ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8 TRUE
651 SLIDINGWINDOW:4:20 LEADING:5 TRAILING:5 MINLEN:36. The trimmed reads were aligned to
652 the TAIR10 *Arabidopsis thaliana* genome (Ensembl version 47) with HISAT2 (Kim et al., 2019) with the
653 parameters: --rna-strandness FR --no-mixed -I 100 -X 800 -x -p 10. Mapped reads were annotated with

654 stringtie with the command: stringtie -v -e -B -G, using the TAIR 10 genome annotation. The resulting
655 gene counts were formatted using the Stringtie function: prepDE.py.

656

657 **Identification of photoperiodic genes**

658 Genes were considered photoperiodic if they are differentially expressed at one or more time points
659 between any two photoperiods. Differential expression analysis was performed with the edgeR software
660 (Robinson et al., 2010). A relaxed statistical threshold ($p < 0.2$) was used to define differential expression.
661 The daily expression integral (DEI), i.e. total expression of a gene across a 24-hour day, was estimated
662 with the area under the curve of the time course. The first data point at ZT 00 h was duplicated to extend
663 the time course to ZT 24 h. The area under the curve was estimated using the trapezoid rule with the
664 function “auc(method=‘t’, design=‘ssd’)” from the PK package to account for the serial sampling (Jaki
665 and Wolfsegger, 2010).

666

667 **Expression pattern analysis**

668 Gene expression across three photoperiods were clustered with affinity propagation using Pearson’s
669 correlation as similarity measure. Clusters were merged with agglomerative clustering of the exemplars
670 with the APCluster R package (Bodenhofer et al., 2011). A similarity cutoff of 0.82 was used to yield 14
671 major gene clusters. Detection of smaller clusters within the hierarchical clustering was performed with
672 the DynamicTreeCut R package using the hybrid method with the deep split level set to 2 and 3.
673 Expression patterns were plotted with ComplexHeatmap (Gu et al., 2016) and ggplot2 (Wickham, 2009).

674

675 **Functional annotation analysis**

676 All curated gene sets for *Arabidopsis thaliana* were downloaded from the “Plant Gene Set Enrichment
677 Analysis Toolkit” online database (Yi et al., 2013). GSEA of GO and KEGG terms was performed with
678 the “gseGO” and “gseKEGG” function from the R package clusterProfiler (Yu et al., 2012). For GO term
679 GSEA only gene sets with a minimum size of 20 genes under the “biological process” categories were
680 used. For GO and KEGG term enrichment analysis, the clusterProfiler function “enrichGO” was used and
681 only gene sets with 10 – 500 genes were tested for enrichment.

682

683 **Motif Enrichment and Discovery**

684 HOMER (Heinz et al., 2010) was used to perform both enrichment of known motifs in CIS-BP and *de novo*
685 motif discovery in gene promoters, defined as sequence from 1500 bp upstream to 500 downstream of
686 transcription start site in the TAIR10 gene annotation. CIS-BP motifs were downloaded from
687 <http://cisbp.ccbr.utoronto.ca/> and converted to HOMER format using the R package “universalmotif,”
688 (Tremblay, 2021) and a mapping threshold of 8 was used to perform enrichment test. For *de novo* motif
689 discovery default parameters were used.

690

691 **LC-MS analysis of secondary metabolites**

692 Flavonols and anthocyanins were extracted from 150 mg of homogenized, flash-frozen whole seedlings
693 in 750 μ L of methanol:water:acetic acid (9:10:1 v/v). Cell debris was removed by centrifugation for 10 min
694 at 14 000 g. The supernatants were transferred into new conical tubes and centrifuged again. Mass

695 spectrometric measurements were performed with a Shimadzu Scientific Instruments QToF 9030 LC-MS
696 system, equipped with a Nexera LC-40D xs UHPLC, consisting of a CBM-40 Lite system controller, a
697 DGU-405 Degasser Unit, two LC-40D XS UHPLC pumps, a SIL-40C XS autosampler and a Column Oven
698 CTO-40S. The samples were held at 4 deg C in the autosampler compartment. UV data was collected with
699 a Shimadzu Nexera HPLC/UHPLC Photodiode Array Detector SPD M-40 in the range of 190 - 800nm.
700 10uL of each sample were injected into a sample loop and separated on a Shim-pack Scepter C18-120,
701 1.9um, 2.1x100mm Column (Shimadzu), equilibrated at 40 deg C in a column oven. A binary gradient was
702 used with Solvent A (Water, HPLC grade Chromasolv, with 0.1% Formic Acid) and Solvent B (Acetonitrile,
703 HPLC grade Chromasolv, with 0.1% Formic Acid). Flow was held constant at 0.3000 mL/min and the
704 composition of the eluent was changed according to the following gradient:

705 0 to 2 min, held at 95% A, 5% B

706 2 to 10 min, change to 2% A, 98% B

707 10 to 18 min, held at 2% A, 98% B

708 18 to 18.01 min, change to 95% A, 5% B

709 18.01 to 20min, held at 95% A, 5% B

710

711 Mass spectra were subsequently recorded with the quadrupole time-of-flight (QToF) 9030 mass
712 spectrometer in the range from 100-2000m/z in negative ion mode (event time 0.1s with 194 pulser
713 injections) with subsequent data dependent MS/MS acquisition (DDA) for all ions in the range from 100 to
714 2000m/z with a collision energy of 35 +/-17 internal units (event time 0.1s with 194 pulser injections). The
715 ionization source was run in "ESI" mode, with the electrospray needle held at +4.5kV. Nebulizer Gas was
716 at 2 L/min, Heating Gas Flow at 10 L/min and the Interface at 300 deg C. Dry Gas was at 10 L/min, the
717 Desolvation Line at 250 deg C and the heating block at 400 deg C. Measurements and data post-processing
718 based on accurate masses of the most abundant isotope (+/- 20ppm) were performed with LabSolutions
719 5.97 Realtime Analysis and PostRun. Integrated peak areas representing mass spectral ion counts were
720 normalized to the sample dry weight.

721

722 **ABSL Quantification**

723 Percent acetyl bromide soluble lignin (%ABSL) was quantified following a previously described
724 protocol (Foster et al., 2010). One gram of fresh weight seedling samples from plants grown as
725 described was frozen in liquid nitrogen and ground using a Retsch MM400. Samples were then
726 washed in 70% ethanol, chloroform/methanol (1:1 v/v), and acetone. Starch was removed from the
727 samples via suspension in 0.1 M sodium acetate buffer pH 5.0, heating for 20 min at 80°C, and
728 addition of 35 μ l amylase (MP Biomedicals, LLC, Lot # SR01157) and 17 μ l pullulanase (Sigma-
729 Alrich, Lot # SLCC1055). Samples were left shaking overnight at 37°C before termination of
730 digestion. The samples were washed using water and acetone, dried, then ground to a powder to
731 facilitate accurate mass measurements for lignin quantification. Between 1-1.5mg of cell wall
732 material was suspended in 100 μ l acetyl bromide solution (25% v/v acetyl bromide in glacial acetic
733 acid) and heated at 50°C for 3hrs with vortexing every 15 minutes during the third hour. Samples
734 were cooled to room temperature before addition of 400 μ l of 2 M sodium hydroxide, 70 μ l of 0.5 M
735 hydroxylamine hydrochloride, and 1430 μ l of glacial acetic acid. 200 μ l of the resulting solution was

736 used to measure absorbance at 280 nm and calculate %ABSL using Beer's law with a coefficient of
737 15.69 for *Arabidopsis thaliana*.

738

739

740 **REFERENCES**

741

742 Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and
743 AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. *Plant Cell* **15**, 63-78.
744 10.1105/tpc.006130.

745 Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K., and Kudoh, H. (2010). Robust control of the seasonal
746 expression of the Arabidopsis FLC gene in a fluctuating environment. *Proc Natl Acad Sci U S A* **107**, 11632-11637.
747 10.1073/pnas.0914293107.

748 Bodenhofer, U., Kothmeier, A., and Hochreiter, S. (2011). APCluster: an R package for affinity propagation
749 clustering. *Bioinformatics* **27**, 2463-2464. 10.1093/bioinformatics/btr406.

750 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data.
751 *Bioinformatics* **30**, 2114-2120. 10.1093/bioinformatics/btu170.

752 Castillejo, C., and Pelaz, S. (2008). The balance between CONSTANS and TEMPRANILLO activities determines FT
753 expression to trigger flowering. *Curr Biol* **18**, 1338-1343. 10.1016/j.cub.2008.07.075.

754 Cheng, M.C., Kathare, P.K., Paik, I., and Huq, E. (2021). Phytochrome Signaling Networks. *Annu Rev Plant Biol* **72**,
755 217-244. 10.1146/annurev-arplant-080620-024221.

756 Droege-Laser, W., Snoek, B.L., Snel, B., and Weiste, C. (2018). The Arabidopsis bZIP transcription factor family-an
757 update. *Curr Opin Plant Biol* **45**, 36-49. 10.1016/j.pbi.2018.05.001.

758 Edwards, K.D., Akman, O.E., Knox, K., Lumsden, P.J., Thomson, A.W., Brown, P.E., Pokhilko, A., Kozma-Bognar, L.,
759 Nagy, F., Rand, D.A., and Millar, A.J. (2010). Quantitative analysis of regulatory flexibility under changing
760 environmental conditions. *Mol Syst Biol* **6**, 424. 10.1038/msb.2010.81.

761 Ezer, D., Shepherd, S.J.K., Brestovitsky, A., Dickinson, P., Cortijo, S., Charoensawan, V., Box, M.S., Biswas, S., Jaeger,
762 K.E., and Wigge, P.A. (2017). The G-Box Transcriptional Regulatory Code in Arabidopsis. *Plant Physiol* **175**, 628-640.
763 10.1104/pp.17.01086.

764 Foster, C.E., Martin, T.M., and Pauly, M. (2010). Comprehensive compositional analysis of plant cell walls
765 (Lignocellulosic biomass) part I: lignin. *J Vis Exp*. 10.3791/1745.

766 Garbazza, C., and Benedetti, F. (2018). Genetic Factors Affecting Seasonality, Mood, and the Circadian Clock. *Front
767 Endocrinol (Lausanne)* **9**, 481. 10.3389/fendo.2018.00481.

768 Gnesutta, N., Kumimoto, R.W., Swain, S., Chiara, M., Siriwardana, C., Horner, D.S., Holt, B.F., 3rd, and Mantovani, R.
769 (2017). CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer. *Plant Cell* **29**, 1516-
770 1532. 10.1105/tpc.16.00864.

771 Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional
772 genomic data. *Bioinformatics* **32**, 2847-2849. 10.1093/bioinformatics/btw313.

773 Gwinner, E. (2003). Circannual rhythms in birds. *Curr Opin Neurobiol* **13**, 770-778. 10.1016/j.conb.2003.10.010.

774 Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., Peng, W., and Xie, D. (2013). Disruption of fumarylacetoacetate
775 hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis. *Plant Physiol* **162**, 1956-1964.
776 10.1104/pp.113.216804.

777 Hao, D., Ohme-Takagi, M., and Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of
778 ethylene-responsive element-binding factor (ERF domain) in plant. *J Biol Chem* **273**, 26857-26861.
779 10.1074/jbc.273.41.26857.

780 Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000).

781 Orchestrated transcription of key pathways in *Arabidopsis* by the circadian clock. *Science* 290, 2110-2113.
782 10.1126/science.290.5499.2110.

783 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K.
784 (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required
785 for macrophage and B cell identities. *Mol Cell* 38, 576-589. 10.1016/j.molcel.2010.05.004.

786 Hu, H., Tian, S., Xie, G., Liu, R., Wang, N., Li, S., He, Y., and Du, J. (2021). TEM1 combinatorially binds to FLOWERING
787 LOCUS T and recruits a Polycomb factor to repress the floral transition in *Arabidopsis*. *Proc Natl Acad Sci U S A* 118.
788 10.1073/pnas.2103895118.

789 Izumi, M., Hidema, J., Makino, A., and Ishida, H. (2013). Autophagy contributes to nighttime energy availability for
790 growth in *Arabidopsis*. *Plant Physiol* 161, 1682-1693. 10.1104/pp.113.215632.

791 Jaki, T., and Wolfsegger, M.J. (2010). Estimation of pharmacokinetic parameters with the R package PK. *Pharm Stat*
792 10, 284-288. 10.1002/pst.449.

793 Jakoby, M., Weisshaar, B., Droege-Laser, W., Vicente-Carabajosa, J., Tiedemann, J., Kroj, T., Parcy, F., and b, Z.I.P.R.G.
794 (2002). bZIP transcription factors in *Arabidopsis*. *Trends Plant Sci* 7, 106-111. 10.1016/s1360-1385(01)02223-3.

795 Kim, D., Jeon, S.J., Yanders, S., Park, S.C., Kim, H.S., and Kim, S. (2022). MYB3 plays an important role in lignin and
796 anthocyanin biosynthesis under salt stress condition in *Arabidopsis*. *Plant Cell Rep* 41, 1549-1560. 10.1007/s00299-
797 022-02878-7.

798 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping
799 with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37, 907-915. 10.1038/s41587-019-0201-4.

800 Kippes, N., VanGessel, C., Hamilton, J., Akpinar, A., Budak, H., Dubcovsky, J., and Pearce, S. (2020). Effect of phyB
801 and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. *BMC
802 Plant Biol* 20, 297. 10.1186/s12870-020-02506-0.

803 Kunihiro, A., Yamashino, T., Nakamichi, N., Niwa, Y., Nakanishi, H., and Mizuno, T. (2011). Phytochrome-interacting
804 factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence
805 mechanism underlying photoperiodic control of plant growth of *Arabidopsis thaliana*. *Plant Cell Physiol* 52, 1315-
806 1329. 10.1093/pcp/pcr076.

807 Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the Dynamic Tree
808 Cut package for R. *Bioinformatics* 24, 719-720. 10.1093/bioinformatics/btm563.

809 Lepisto, A., Kangasjarvi, S., Luomala, E.M., Brader, G., Sipari, N., Keranen, M., Keinanen, M., and Rintamaki, E.
810 (2009). Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in *Arabidopsis*. *Plant
811 Physiol* 149, 1261-1276. 10.1104/pp.108.133777.

812 Liu, W., Feke, A., Leung, C.C., Tarte, D.A., Yuan, W., Vanderwall, M., Sager, G., Wu, X., Schear, A., Clark, D.A., et al.
813 (2021). A metabolic daylength measurement system mediates winter photoperiodism in plants. *Dev Cell* 56, 2501-
814 2515 e2505. 10.1016/j.devcel.2021.07.016.

815 Manechini, J.R.V., Santos, P., Romanel, E., Brito, M.D.S., Scarpari, M.S., Jackson, S., Pinto, L.R., and Vicentini, R.
816 (2021). Transcriptomic Analysis of Changes in Gene Expression During Flowering Induction in Sugarcane Under
817 Controlled Photoperiodic Conditions. *Front Plant Sci* 12, 635784. 10.3389/fpls.2021.635784.

818 Marian, C.O., Bordoli, S.J., Goltz, M., Santarella, R.A., Jackson, L.P., Danilevskaya, O., Beckstette, M., Meeley, R., and
819 Bass, H.W. (2003). The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a
820 protein that binds telomere DNA repeats in vitro. *Plant Physiol* 133, 1336-1350. 10.1104/pp.103.026856.

821 Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan,

822 C.M., et al. (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
823 PLoS Genet 4, e14. 10.1371/journal.pgen.0040014.

824 Mockler, T.C., Michael, T.P., Priest, H.D., Shen, R., Sullivan, C.M., Givan, S.A., McEntee, C., Kay, S.A., and Chory, J.
825 (2007). The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and
826 promoter analysis. Cold Spring Harb Symp Quant Biol 72, 353-363. 10.1101/sqb.2007.72.006.

827 Nakane, Y., and Yoshimura, T. (2019). Photoperiodic Regulation of Reproduction in Vertebrates. Annu Rev Anim
828 Biosci 7, 173-194. 10.1146/annurev-animal-020518-115216.

829 Nitschke, S., Cortleven, A., and Schmülling, T. (2017). Novel Stress in Plants by Altering the Photoperiod. Trends
830 Plant Sci 22, 913-916. 10.1016/j.tplants.2017.09.005.

831 Nozue, K., Covington, M.F., Duek, P.D., Lorrain, S., Fankhauser, C., Harmer, S.L., and Maloof, J.N. (2007). Rhythmic
832 growth explained by coincidence between internal and external cues. Nature 448, 358-361. 10.1038/nature05946.

833 Osnato, M., Cota, I., Nebhnani, P., Cereijo, U., and Pelaz, S. (2021). Photoperiod Control of Plant Growth: Flowering
834 Time Genes Beyond Flowering. Front Plant Sci 12, 805635. 10.3389/fpls.2021.805635.

835 Paik, I., Kathare, P.K., Kim, J.I., and Huq, E. (2017). Expanding Roles of PIFs in Signal Integration from Multiple
836 Processes. Mol Plant 10, 1035-1046. 10.1016/j.molp.2017.07.002.

837 Pearce, S., Kippes, N., Chen, A., Debernardi, J.M., and Dubcovsky, J. (2016). RNA-seq studies using wheat
838 PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering
839 and shade-avoidance pathways. BMC Plant Biol 16, 141. 10.1186/s12870-016-0831-3.

840 Pfeiffer, A., Shi, H., Tepperman, J.M., Zhang, Y., and Quail, P.H. (2014). Combinatorial complexity in a
841 transcriptionally centered signaling hub in Arabidopsis. Mol Plant 7, 1598-1618. 10.1093/mp/ssu087.

842 Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression
843 analysis of digital gene expression data. Bioinformatics 26, 139-140. 10.1093/bioinformatics/btp616.

844 Roenneberg, T., and Merrow, M. (2001). Seasonality and photoperiodism in fungi. J Biol Rhythms 16, 403-414.
845 10.1177/074873001129001999.

846 Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000).
847 Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616.
848 10.1126/science.288.5471.1613.

849 Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D., and Lohmann, J.U. (2003). Dissection
850 of floral induction pathways using global expression analysis. Development 130, 6001-6012. 10.1242/dev.00842.

851 Schrumpfová, P.P., Vychodilová, I., Hapala, J., Schorová, S., Dvoráček, V., and Fajkus, J. (2016). Telomere binding
852 protein TRB1 is associated with promoters of translation machinery genes in vivo. Plant Mol Biol 90, 189-206.
853 10.1007/s11103-015-0409-8.

854 Seaton, D.D., Toledo-Ortiz, G., Ganpudi, A., Kubota, A., Imaizumi, T., and Halliday, K.J. (2018). Dawn and
855 photoperiod sensing by phytochrome A. Proc Natl Acad Sci U S A 115, 10523-10528. 10.1073/pnas.1803398115.

856 Serrano-Bueno, G., Sanchez de Medina Hernandez, V., and Valverde, F. (2021). Photoperiodic Signaling and
857 Senescence, an Ancient Solution to a Modern Problem? Front Plant Sci 12, 634393. 10.3389/fpls.2021.634393.

858 Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., and Imaizumi, T. (2015). Photoperiodic flowering: time measurement
859 mechanisms in leaves. Annu Rev Plant Biol 66, 441-464. 10.1146/annurev-arplant-043014-115555.

860 Soy, J., Leivar, P., Gonzalez-Schain, N., Sentandreu, M., Prat, S., Quail, P.H., and Monte, E. (2012). Phytochrome-
861 imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in
862 Arabidopsis. Plant J 71, 390-401. 10.1111/j.1365-313X.2012.04992.x.

863 Thomas, B., and Vince-Prue, D. (1996). Photoperiodism in Plants, 2nd Edition (Academic Press).

864 Thomson, G., Taylor, J., and Putterill, J. (2019). The transcriptomic response to a short day to long day shift in leaves
865 of the reference legume *Medicago truncatula*. *PeerJ* 7, e6626. 10.7717/peerj.6626.

866 Tremblay, B.J.M. (2021). *universalmotif*: Import, Modify, and Export Motifs with R. R package version 1.8.5.

867 <https://bioconductor.org/packages/universalmotif/>.

868 Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A.,
869 Mann, I., Cook, K., et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity.
870 *Cell* 158, 1431-1443. 10.1016/j.cell.2014.08.009.

871 Weng, X., Lovell, J.T., Schwartz, S.L., Cheng, C., Haque, T., Zhang, L., Razzaque, S., and Juenger, T.E. (2019). Complex
872 interactions between day length and diurnal patterns of gene expression drive photoperiodic responses in a
873 perennial C4 grass. *Plant Cell Environ* 42, 2165-2182. 10.1111/pce.13546.

874 Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*. Use R, 1-212. 10.1007/978-0-387-98141-3.

875 Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of
876 spatial and temporal information during floral induction in *Arabidopsis*. *Science* 309, 1056-1059.
877 10.1126/science.1114358.

878 Wilson, I.W., Kennedy, G.C., Peacock, J.W., and Dennis, E.S. (2005). Microarray analysis reveals vegetative molecular
879 phenotypes of *Arabidopsis* flowering-time mutants. *Plant Cell Physiol* 46, 1190-1201. 10.1093/pcp/pci128.

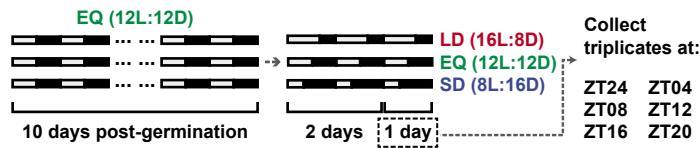
880 Wu, F., Kang, X., Wang, M., Haider, W., Price, W.B., Hajek, B., and Hanzawa, Y. (2019). Transcriptome-Enabled
881 Network Inference Revealed the GmCOL1 Feed-Forward Loop and Its Roles in Photoperiodic Flowering of Soybean.
882 *Front Plant Sci* 10, 1221. 10.3389/fpls.2019.01221.

883 Xiang, Y., Sapir, T., Rouillard, P., Ferrand, M., and Jimenez-Gomez, J.M. (2022). Interaction between photoperiod and
884 variation in circadian rhythms in tomato. *BMC Plant Biol* 22, 187. 10.1186/s12870-022-03565-1.

885 Yi, X., Du, Z., and Su, Z. (2013). PlantGSEA: a gene set enrichment analysis toolkit for plant community. *Nucleic
886 Acids Res* 41, W98-103. 10.1093/nar/gkt281.

887 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). *clusterProfiler*: an R package for comparing biological themes
888 among gene clusters. *OMICS* 16, 284-287. 10.1089/omi.2011.0118.

889 Zoratti, L., Karppinen, K., Luengo Escobar, A., Haggman, H., and Jaakola, L. (2014). Light-controlled flavonoid
890 biosynthesis in fruits. *Front Plant Sci* 5, 534. 10.3389/fpls.2014.00534.


891

892

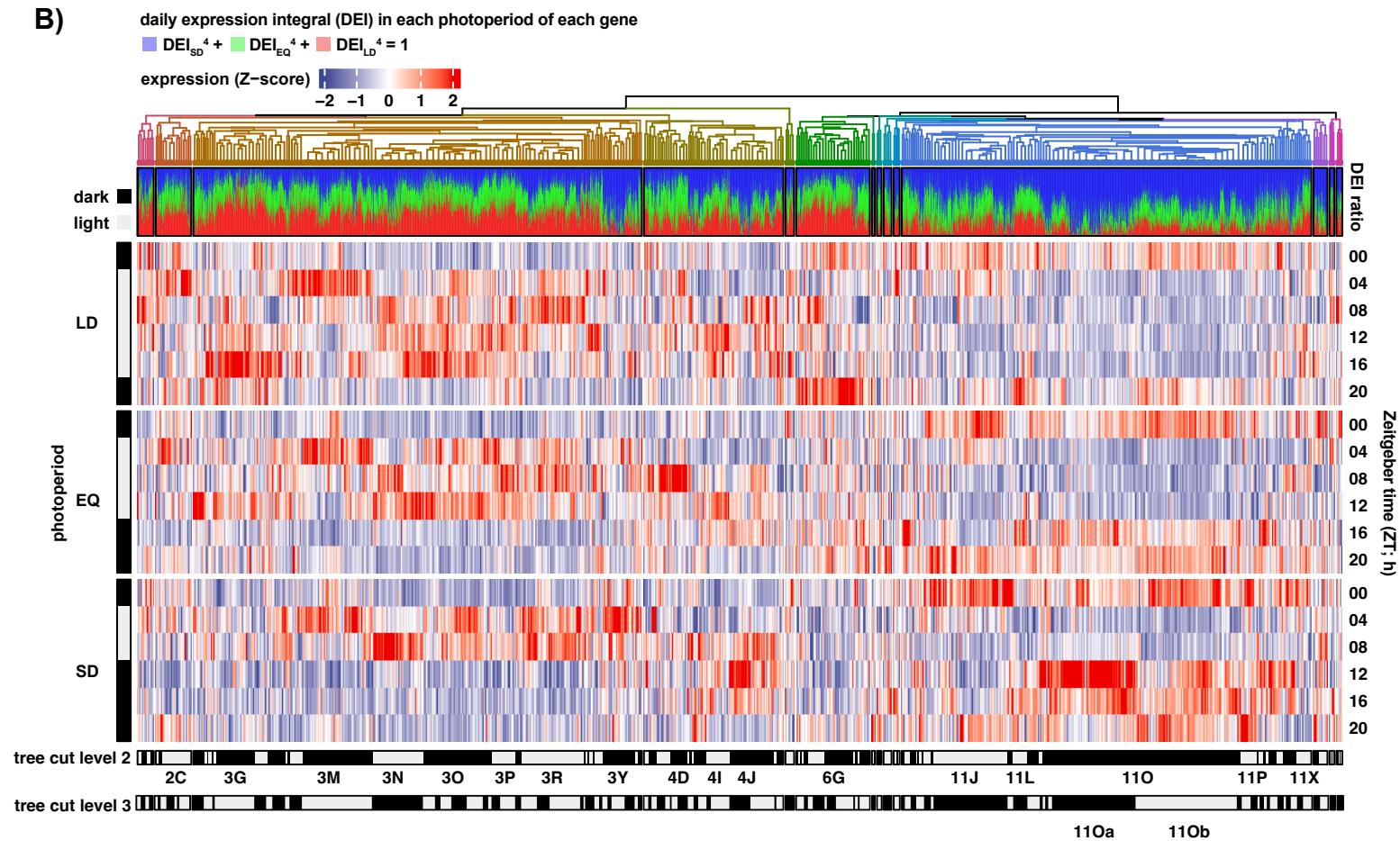
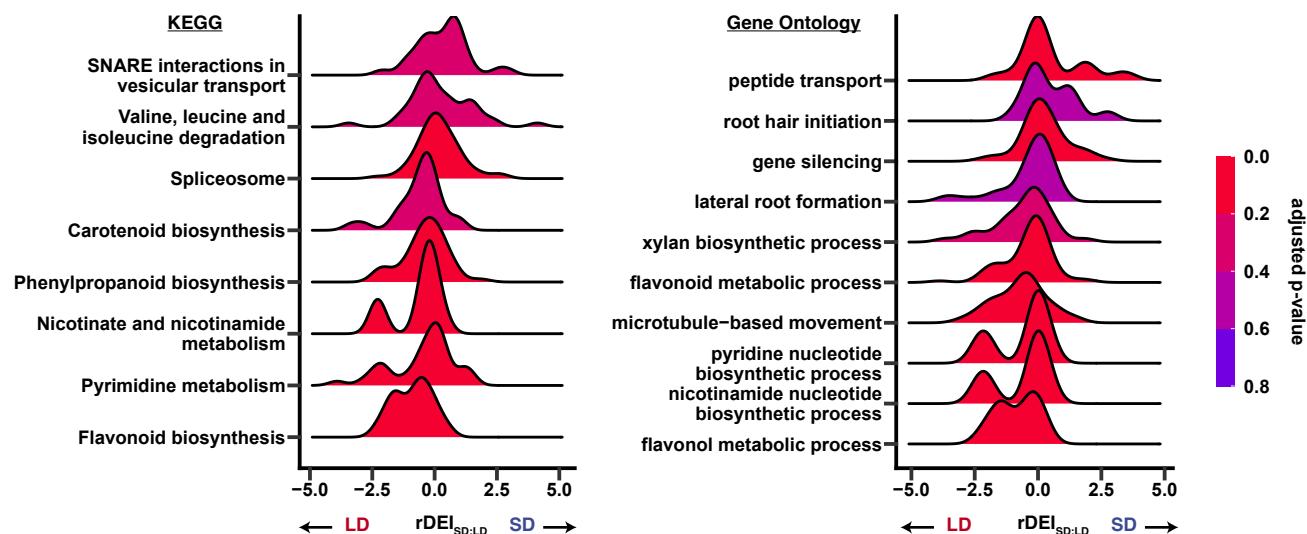
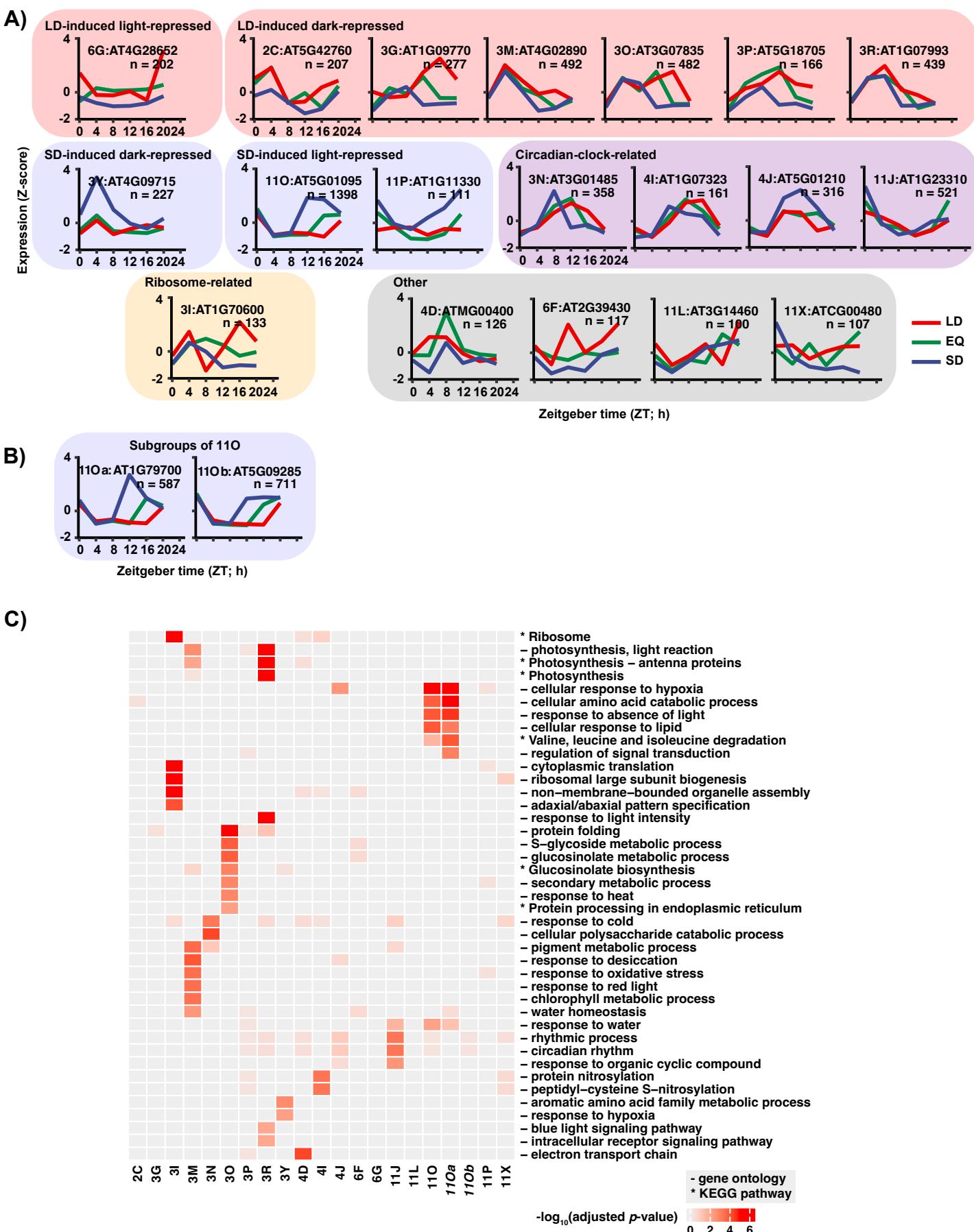

893

Figure 1


A)


B)

C)

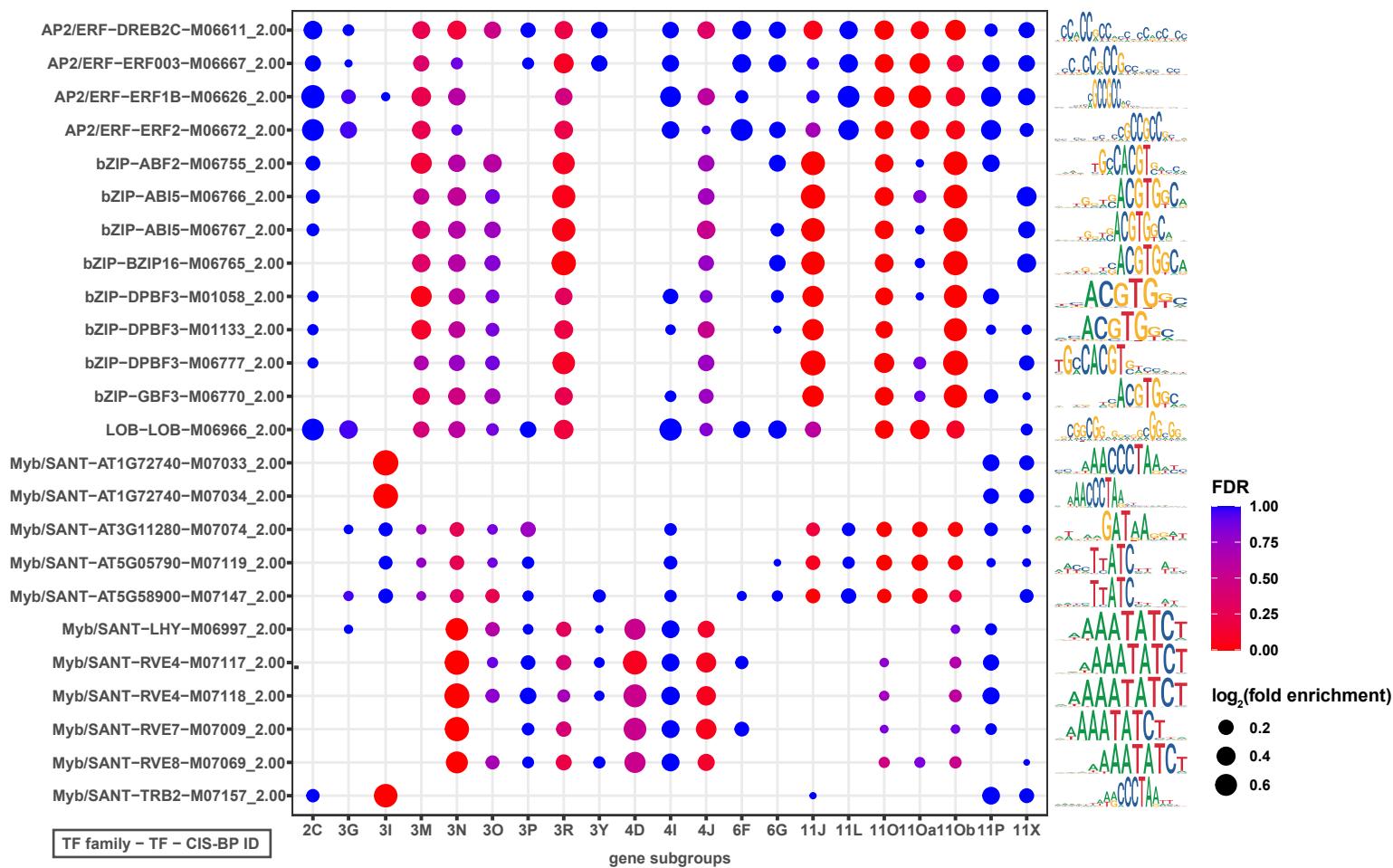


Figure 2

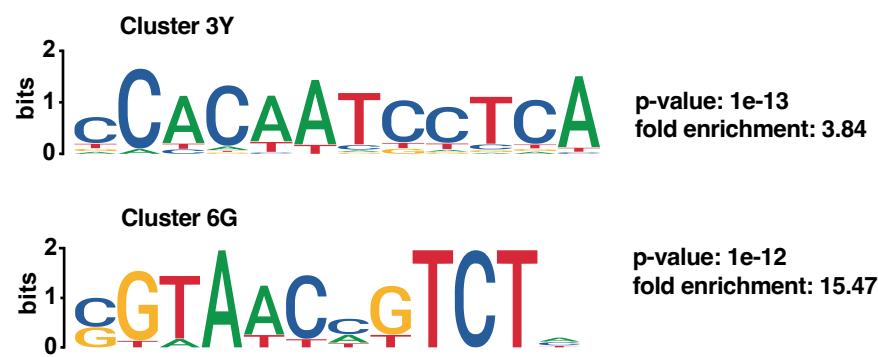
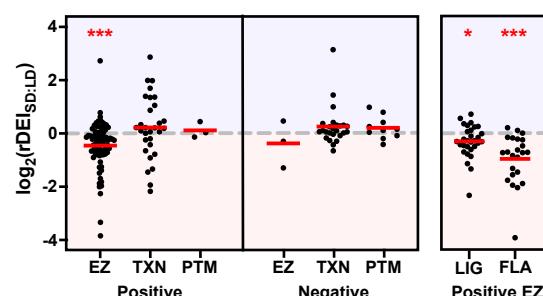


Figure 3

A)



B)

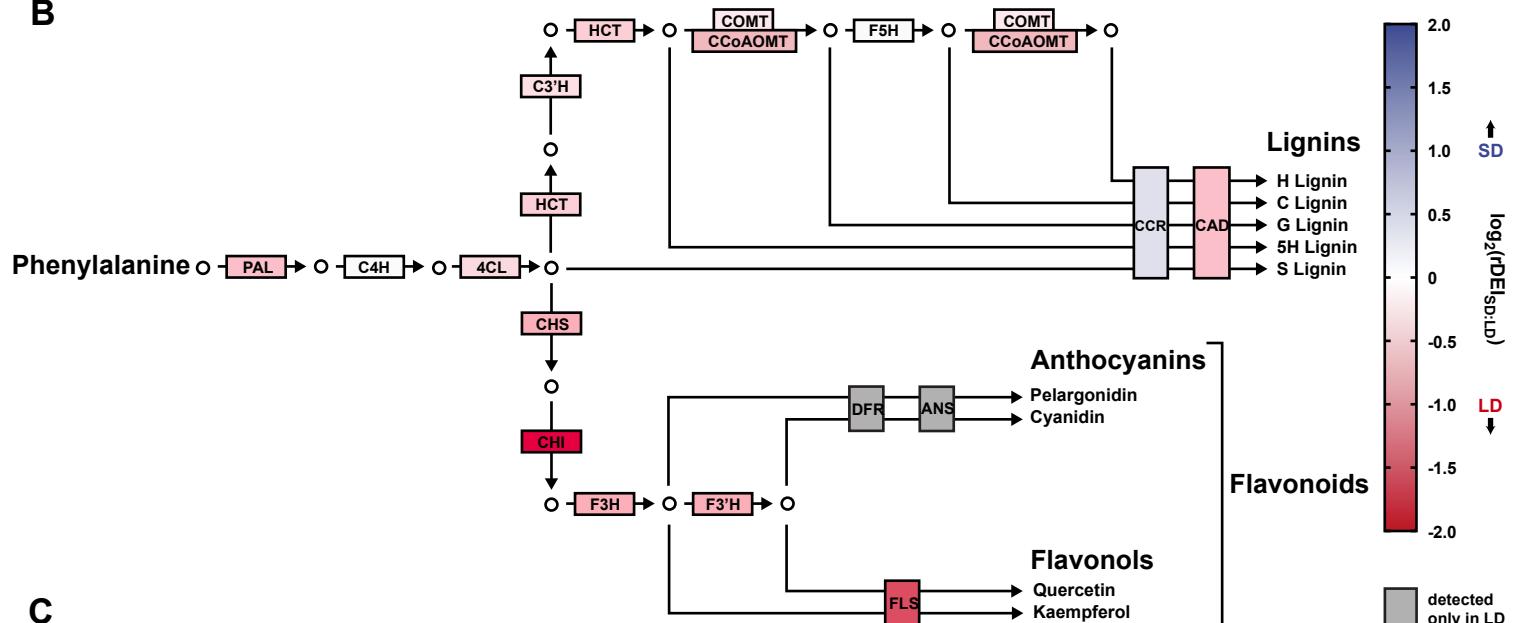
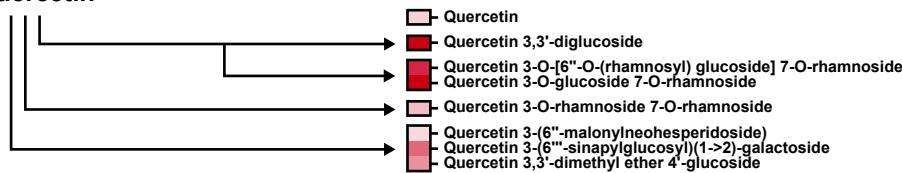


Figure 4

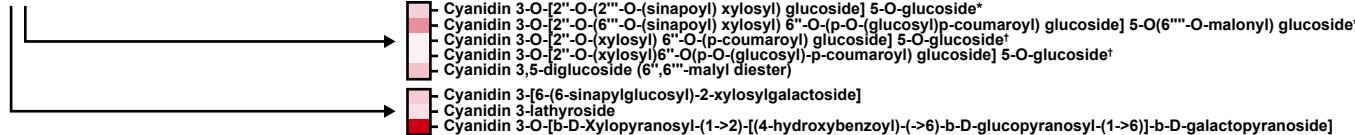
A



B



C


Kaempferol

Quercetin


Cyanidin

Pelargonidin

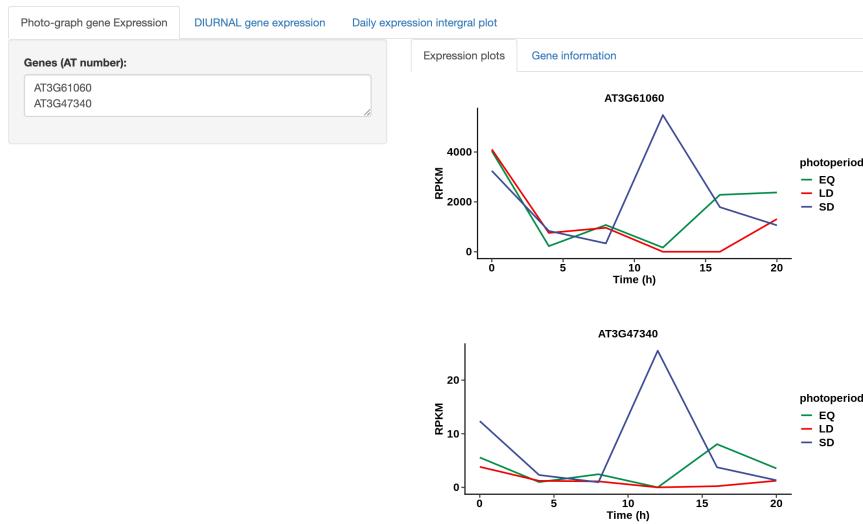

Lignin

Figure 5

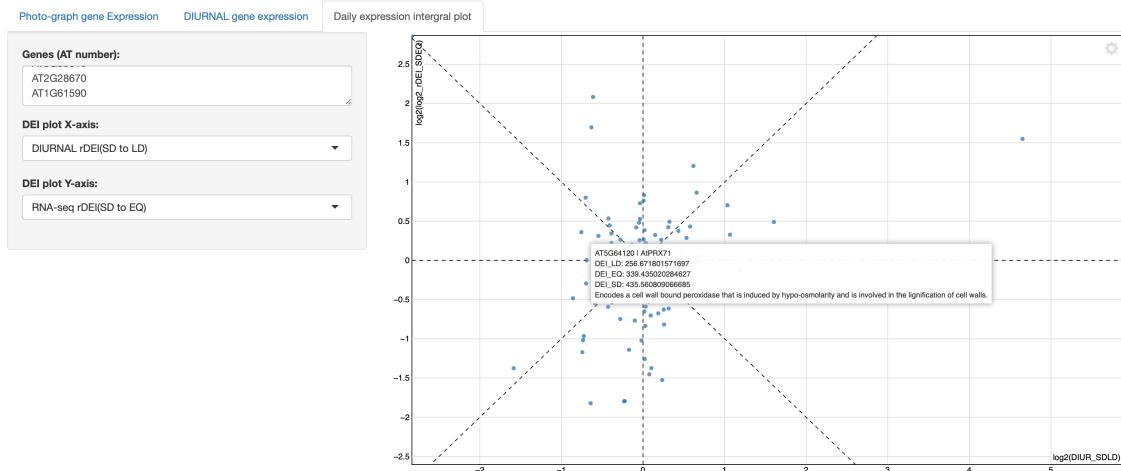
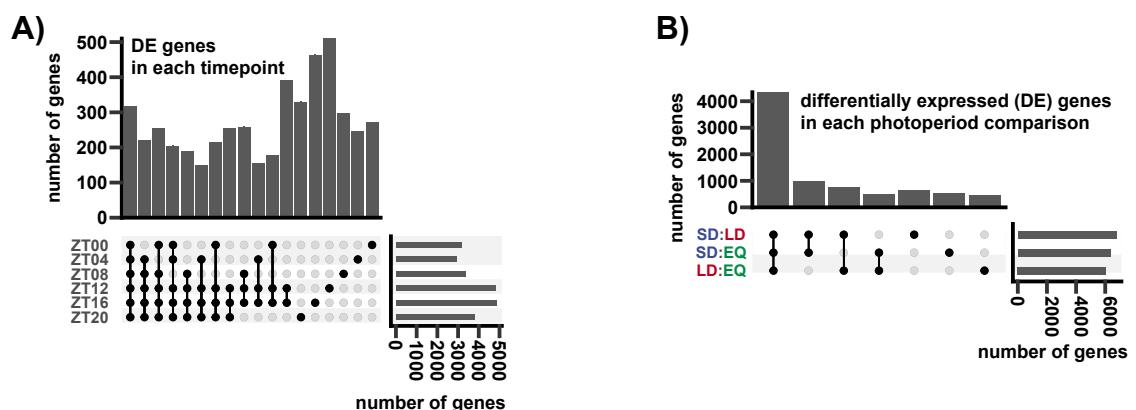
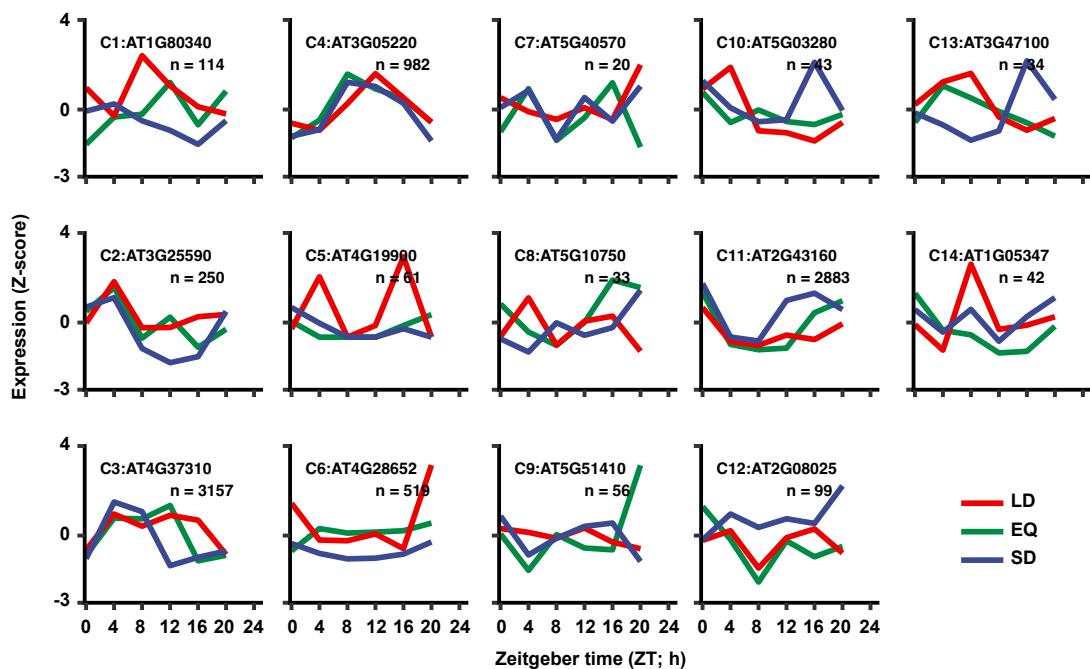
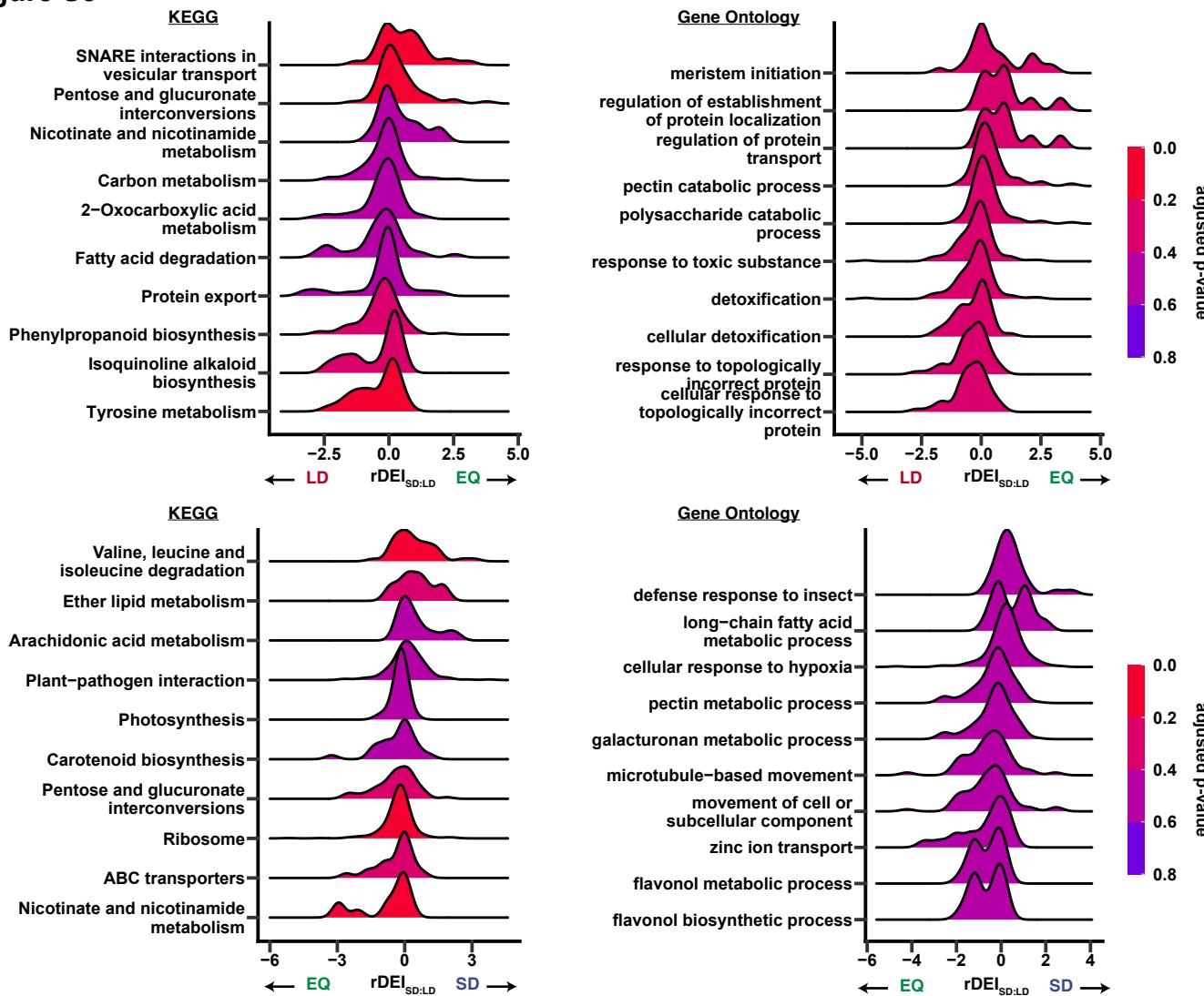

A

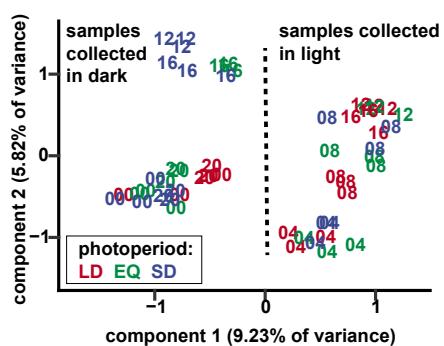
Photo-graph

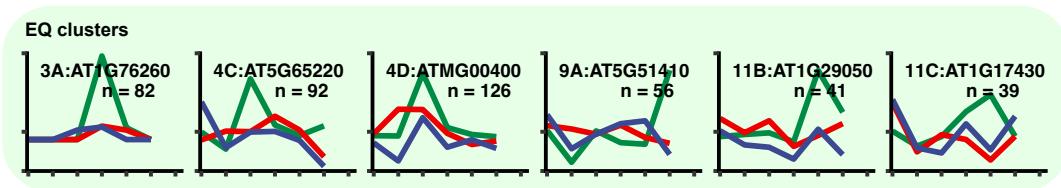


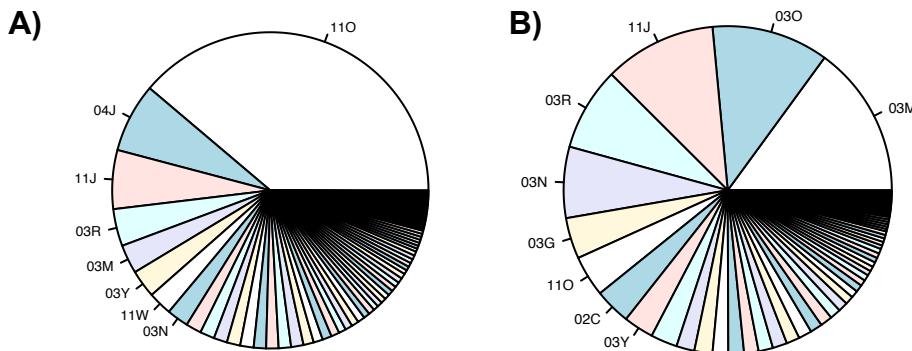
B

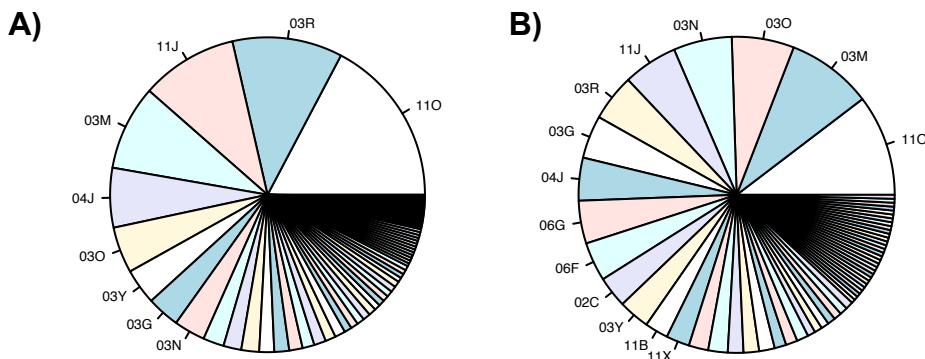

Photo-graph


Figure S1


Figure S2


Figure S3


Figure S4


Figure S5

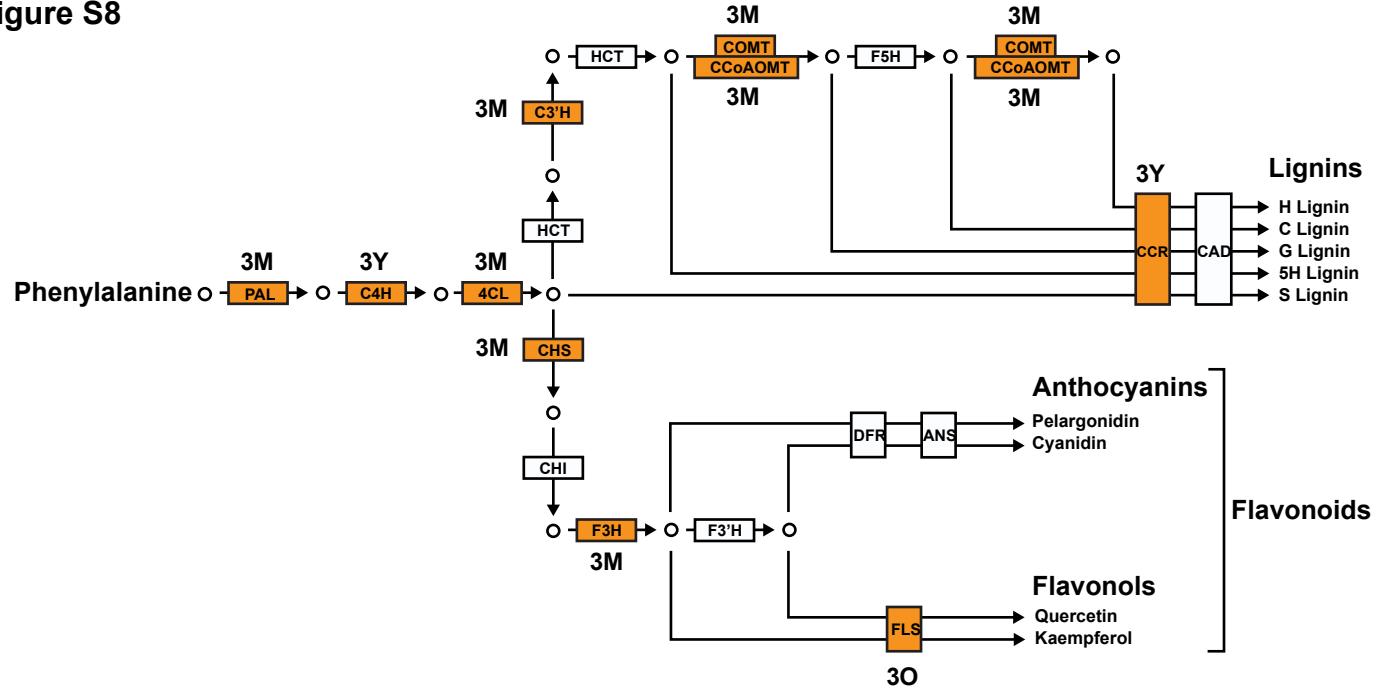

Figure S6

Figure S7

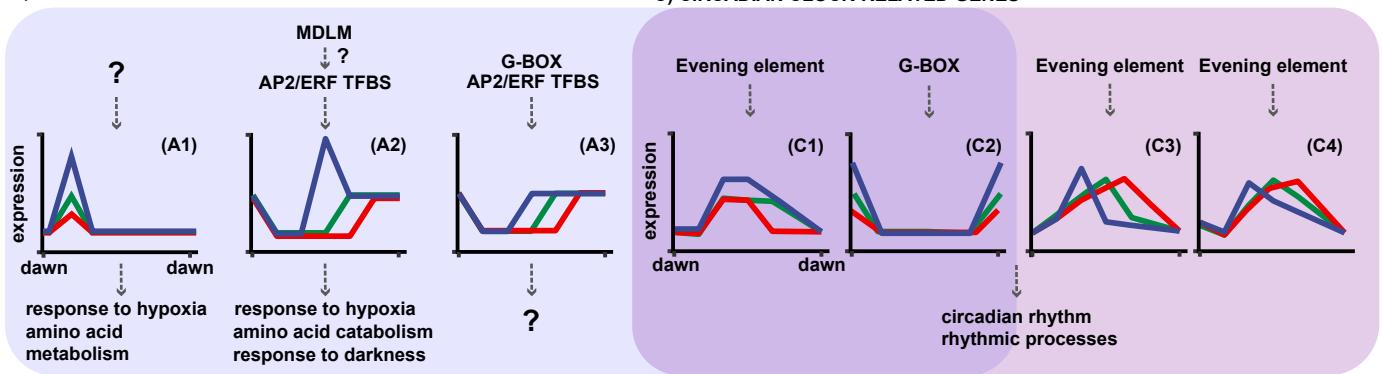


Figure S8

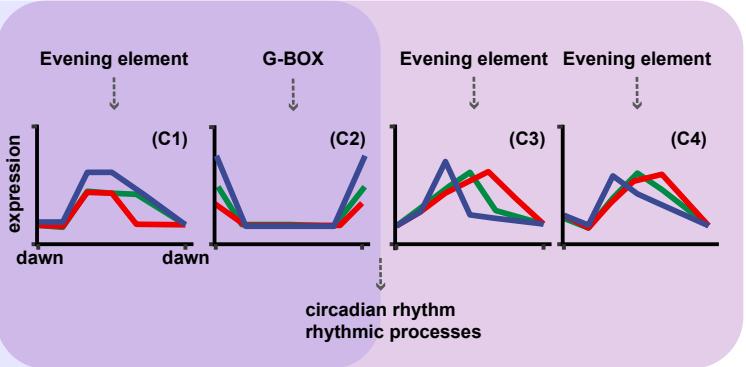
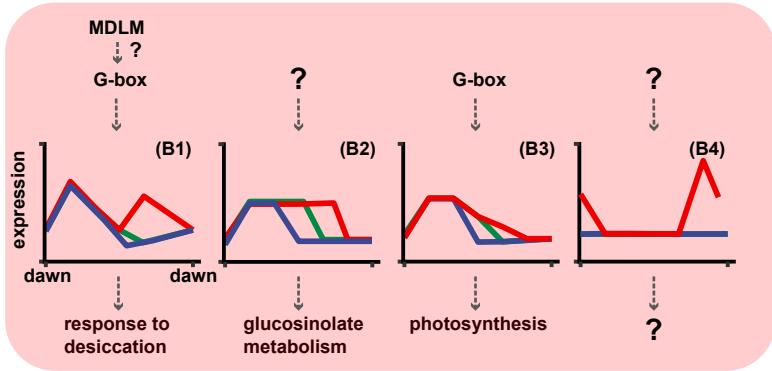
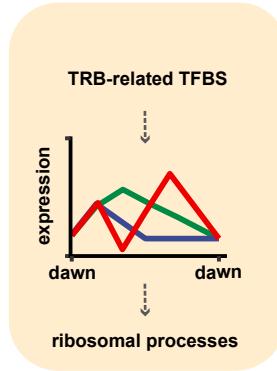


Figure S9


A) SD-INDUCED GENES


C) CIRCADIAN CLOCK-RELATED GENES

B) LD-INDUCED GENES

D) RIBOSOME-RELATED GENES

