bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510975; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Original Article: Artificial Intelligence Guided Discovery of
Gastric Cancer Continuum

Authors: Daniella Vo!, Pradipta Ghosh?* and Debashis Sahoo .2°t

Affiliations:

!Department of Pediatrics, University of California San Diego.

2Moores Cancer Center, University of California San Diego.

3Department of Cellular and Molecular Medicine, University of California San Diego.
“Department of Medicine, University of California San Diego.

*Department of Computer Science and Engineering, Jacob’s School of Engineering, University
of California San Diego.

TEqual contribution:

Debashis Sahoo, Ph.D.; Associate Professor, Department of Pediatrics, University of California
San Diego; 9500 Gilman Drive, MC 0703, Leichtag Building 132; La Jolla, CA 92093-
0703. Phone: 858-246-1803: Fax: 858-246-0019: Email: dsahoo@ucsd.edu

Running Head: Al Guided Discovery of GC Continuum

Word Count: 3163 words


mailto:dsahoo@ucsd.edu
https://doi.org/10.1101/2022.10.05.510975
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510975; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ABSTRACT

Background: Detailed understanding of pre, early and late neoplastic states in gastric cancer
helps develop better models of risk of progression to Gastric Cancers (GCs) and medical

treatment to intercept such progression.

Methods: We built a Boolean Implication network of gastric cancer and deployed machine
learning algorithms to develop predictive models of known pre-neoplastic states, e.g., atrophic
gastritis, intestinal metaplasia (IM) and low- to high-grade intestinal neoplasia (L/HGIN), and GC.
Our approach exploits the presence of asymmetric Boolean Implication relationships that are likely
to be invariant across almost all gastric cancer datasets. Invariant asymmetric Boolean Implication
relationships can decipher fundamental time series underlying the biological data. Pursuing this

method, we developed a healthy mucosa—GC continuum model based on this approach.

Results: Our model performed better against publicly available models for distinguishing healthy
versus GC samples. Although not trained on IM and L/HGIN datasets, the model could identify
the risk of progression to GC via the metaplasia—dysplasia—neoplasia cascade in patient
samples. The model could rank all publicly available mouse models for their ability to best

recapitulate the gene expression patterns during human GC initiation and progression.

Conclusions: A Boolean implication network enabled the identification of hitherto undefined
continuum states during GC initiation. The developed model could now serve as a starting point

for rationalizing candidate therapeutic targets to intercept GC progression.
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We developed predictive models of early and late neoplastic states in gastric cancer and

identified gene clusters that are up/down-regulated at various points along the gastric cancer

disease continuum.
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INTRODUCTION

Gastric cancer (GC) often presents as an advanced disease with patients either having inoperable
conditions or surgery as the only potentially curative treatment [1]. There is evidence that 75% of
all GCs are initiated by Helicobacter pylori, a known carcinogenic pathogen [2, 3]. Risk factors
also include age, sex, smoking and family history [4]. This oncogenesis leads to Correa’s cascade,
a stepwise progression from normal, chronic active gastritis, atrophic gastritis, intestinal
metaplasia, dysplasia then adenocarcinomas [3]. Intestinal metaplasia also has two subtypes,
incomplete and complete intestinal metaplasia (IIM and CIM, respectively), with 1IM having a

higher probability of developing GC compared to CIM [5].

Research into GCs has used impactful approaches to investigate the genome [6],
therapeutics [7] and survival [8], but these methods have not translated into actionable biomarkers
of prognostication, targets, novel therapeutics, or changes in screening strategies. These genomic
insights also have not provided insight into which genes are important in the progression of GC

for preneoplastic detection and treatment.

Here we present a network-based approach for biomarker and target discovery that uses
artificial intelligence (Al) to select genes and then perform rigorous validation in multiple
independent GC datasets. Previously, we have successfully exploited this approach to identify
biomarkers in IBD [9], COVID-19 [10] and macrophages [11]. We demonstrate how Boolean
implications allow us to develop models that provide insight into the gastric cancer disease

continuum.

METHODS

Detailed methods for computational modeling and Al-guided target identification are presented in

Online Resource 1 and mentioned in brief here.
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Construction of a Network of Boolean Implications

Modeling continuum states within the metaplasia — dysplasia — neoplasia cascade was
performed using Boolean Network Explorer (BoNE) [9]. We created an asymmetric gene
expression network, for the progression from normal to gastric cancer (GC), using a computational
method based on Boolean logic [12]. To build the GC network, we analyzed a publicly available

gastric cancer transcriptomic dataset, GSE66229[13] (n = 400; 300 GC tumor and 100 patient-

matched normal tissue). A Boolean Network Explorer (BoNE; see Online Resource 1 for more
details) computational tool was introduced, which uses asymmetric properties of Boolean
implication relationships (BIRs as in MIiDReG algorithm [12]) to model natural progressive time-
series changes in major cellular compartments that initiate, propagate, and perpetuate cellular
state change and are likely to be important for GC progression. BoNE provides an integrated
platform for the construction, visualization and querying of a network of progressive changes much
like a disease map (in this case, GC map) in three steps: First, the expression levels of all genes
in these datasets were converted to binary values (high or low) using the StepMiner algorithm
[14]. Second, gene expression relationships between pairs of genes were classified into one-of-
six possible BIRs and expressed as Boolean implication statements; two symmetric Boolean
implications “equivalent” and “opposite” are discovered when two diagonally opposite sparse
quadrants are identified and four asymmetric relationships, each corresponding to one sparse
guadrant. While conventional symmetric analysis of transcriptomic datasets can recognize the
latter 2 relationships, such an approach ignores the former. BooleanNet statistics are used to
assess the significance of the Boolean implication relationships [12]. Prior work [9] has revealed
how the Boolean approach offers a distinct advantage from currently used conventional
computational methods that rely exclusively on symmetric linear relationships from gene
expression data, e.g., differential, correlation-network, coexpression-network, mutual information-

network, and the Bayesian approach. The other advantage of using BIRs is that they are robust
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to the noise of sample heterogeneity (i.e., healthy, diseased, genotypic, phenotypic, ethnic,
interventions, disease severity) and every sample follows the same mathematical equation, and
hence is likely to be reproducible in independent validation datasets. Third, genes with similar
expression architectures, determined by sharing at least half of the equivalences among gene
pairs, were grouped into clusters, and organized into a network by determining the overwhelming
Boolean relationships observed between any two clusters. In the resultant Boolean implication
network, clusters of genes are the nodes, and the BIR between the clusters are the directed edges;
BoNE enables their discovery in an unsupervised way while remaining agnostic to the sample
type. All gene expression datasets were visualized using Hierarchical Exploration of Gene

Expression Microarrays Online (HEGEMON) framework [9].

Ordering samples based on composite score of Boolean path

A Boolean path contains one or more clusters. A composite score is computed for each cluster
and combined later. To compute the final score, first the genes present in each cluster were
normalized and averaged. Gene expression values were normalized according to a modified Z-
score approach centered around StepMiner threshold (formula = (expr - SThr)/3/stddev). A
weighted linear combination of the averages from the clusters of a Boolean path was used to
create a score for each sample. The weights along the path either monotonically increased or
decreased to make the sample order consistent with the logical order based on BIR. The samples
were ordered based on the final weighted and linearly combined score. A cluster highly expressed
in a disease setting received a positive weight (ex: 1, 2, 3, etc.) and healthy setting received a

negative weight (ex: -1, -2, -3, etc.).

Multivariate Analysis for Model Selection
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Two microarray datasets (GSE37023 (only samples on GPL96 Affymetrix Human Genome U133A
Array used for analysis), n = 65, non-malignant = 36, GC tumor = 29; GSE122401, n = 160, patient-
matched normal = 80, GC tumor = 80) are used to train a network model to distinguish normal vs
GC samples. Using Ordinary Least Squares (OLS) regression in Python statsmodels (version
0.12.2), we performed multivariate analysis to determine which models performed best in the two

training datasets.

Statistical Analysis

Statistical significance between experimental groups was determined using Python
scipy.stats.ttest_ind package (version 0.19.0) with Welch’s Two Sample t-test (two-tailed,
unpaired, unequal variance (equal_var=False), and unequal sample size). For all tests, a p-value
of 0.05 was used as the cutoff to determine significance. Violin and bar plots are created using

Python seaborn package version 0.10.1.

RESULTS

Machine learning identified two possible Boolean paths in the GC disease map

Using a publicly available GC dataset (GSE66229) with tumor (T) and adjacent normal (AN)
samples, we built a Boolean implication network (See Methods and Online Resource 1; Fig. 1a).
Each cluster was evaluated to determine whether they fall on the healthy versus GC side of the
disease map based on whether the average gene expression value of a cluster in healthy samples
is up or down, yielding a GC map (Fig. 1b). We then used machine learning to identify Boolean
paths (clusters connected by Boolean implication relationships) in the GC map that can distinguish
tumor from AN samples in the training datasets (Figure 1C top graphic). Clusters #11-2-4-14
(C#11-2-4-14) performed the best with an ROC-AUC of 0.96 in training dataset #1 (GSE37023

AN versus T), while clusters #7-13-14 (C#7-13-14) performed best in training dataset #2
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(GSE122401 AN vs T) with an ROC-AUC of 0.98 (Fig. 1c). Specific violin plots for both datasets
and Boolean paths are presented in Fig. 1d. We performed Reactome pathway analysis on
clusters in both paths to identify the top five biological processes associated with the clusters (Fig.
1e). Cluster 11 involves the downregulation of genes related to muscle contraction in GC. Cluster
2 represents genes relevant to cell cycle as many other studies pointed out their relevance in the
context of GC [15, 16]. Cluster 4 had genes from the immune system including neutrophil
degranulation as linked in other papers [17, 18]. Clusters 7 and 13 had genes involved in the
downregulation of ion channel transport in GC [19, 20]. Cluster 14 represents genes increased in
extracellular matrix processes [21, 22]. Since both Boolean paths C#11-2-4-14 and C#7-13-14
can distinguish AN versus GC samples, we identified a gene signature called GC-BoNE uses the
path that best characterized the different samples (highest ROC-AUC score out of both paths) for

classification of samples.

We tested how well the clusters identified by our Boolean approach would compare to
previously established gene signatures (Fig. 2a). C#11-2-4-14 and C#7-13-14 individually (Fig.
2b) could classify the tumor and normal/adjacent normal samples in the 21 validation datasets
(see Online Resource 2 for a list of GSE IDs; ROC-AUC ranges from 0.57 - 1.00 in C#11-2-4-14,
and 0.66 - 1.00 in C#7-13-14). We then compared GC-BoNE to other gene signatures (see Online
Resource 3 for list of genes in signatures; Fig. 2c¢) and found that our signature outperformed the
others (average ROC-AUC for GC-BoNE is 0.933, and other signatures range from 0.690 - 0.921).
There were minimal overlaps between clusters 11-2-4 (Fig. 2d), 7-13 (Fig. 2e) and the top three
signatures (DEA (Li 2015), DEA+PPIN and Japanese GC). Cluster 14 and the Japanese GC
signature had 8 overlapping genes (Fig. 2f). These findings suggest GC-BoNE provides a new

list of potential biomarkers for GC that differ from previous signatures.

GC-BoNE identifies progressively increasing risk of GC along the metaplasia-dysplasia continuum
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We next asked if the GC-BoNE signature is induced during the progression from normal to GC
through the normal—inflammation (gastritis)>metaplasia—dysplasia—neoplasia cascade. In one
dataset (E-MTAB-8889), we looked at the normal—inflammation (gastritis) >metaplasia cascade
by comparing pairwise each sequential step, i.e., non-atrophic gastritis (NAG) vs chronic active
gastritis (CG), CG vs chronic atrophic gastritis (CAG) and CAG vs intestinal metaplasia (IM) (Fig.
3a). We also looked at the first step in the cascade vs the other steps, i.e., NAG vs CAG and NAG
vs IM (Fig. 3a). In another dataset (GSE55696), we studied the dysplasia—neoplasia cascade,
which is typically scored by histopathological examination, as per the Vienna classification [23];
the latter comprises a continuum extending from low to high grade dysplasia to intramucosal
carcinoma. Here, we looked at chronic gastritis (CG) vs low-grade intestinal neoplasia (LGIN),
LGIN vs high-grade intestinal neoplasia (HGIN), HGIN vs early gastric cancer (EGC), CG vs HGIN
and CG vs EGC (Fig. 3b). We compared GC-BoNE to the other signatures (Fig. 3c) and found
that our signature again outperformed the others when looking at progression (see Online
Resource 2 for a list of GSE IDs; average ROC-AUC for GC-BoNE is 0.828, and other signatures
range from 0.633 - 0.806). These findings suggest the genes identified in GC-BoNE may provide

further insight into what initiates GC progression.

GC-BoNE can objectively assess the appropriateness of mouse models for studying human GC

Next, we wanted to identify mouse models that recapitulated human normal versus GC. We
analyzed 38 mouse models [24-41] from 20 NCBI GEO datasets using C#11-2-4-14 and C#7-13-
14 (see Online Resource 2 for a list of GSE IDs; Fig. 3d). Many of the mouse models had a
perfect ROC-AUC of 1.00 using C#11-2-4-14 and C#7-13-14 (see Online Resource 4). We then
looked at which mouse models are significantly different using a t-test to determine the top ten
models (Fig. 3e). It is noteworthy that the top two models represent the two common risk factors

for GC in humans. The model that ranked #1 (GSE13873) is one in which the H. pylori
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infection—GC cascade is modeled in C57BI6 mouse model of experimental infection with the
closely related H. felis. The authors showed that while most infected mice develop premalignant
lesions such as gastric atrophy, compensatory epithelial hyperplasia and IM, a minority is
completely protected from preneoplasia. The models that ranked #2-6 (GSE103639 (NGE vs

pCP_GC), GSE45956, GSE103639 (NGE vs pChePS_GC), GSE16902, GSE93774) were all

genetically engineered mouse models (GEMMSs) in which targeted deletions were performed on
genes (CDH1, SMAD4, CLDN18 etc.) that are associated with risk of GC, by virtue of being either
the most common germline mutation in GC (CDH1 [42]), or for harboring disease-associated
SNPs (SMAD4 [43]) or being the target of the most frequent somatic genomic rearrangements
[44] (CLDN18). These results suggest that GC-BoONE can objectively assess the degree of
similarity between mouse models (both infection-induced and genetically-induced types) and
human GC. In doing so, it can pinpoint which mouse models best recapitulate the patterns of gene

expression that is observed during the transformation from healthy to GC in human samples.

GC-BoNE (C#11-2-4-14) can prognosticate the risk of IM—GC progression

Because we want to identify genes responsible for the progression of GC, we looked at a dataset
that curated samples from a prospective study [45] with long-term follow-up (a mean of 12+3.4
years) to evaluate risk of progression to GC among patients with incomplete or complete intestinal
metaplasia (IIM and CIM respectively) (Fig. 4a). It is known that among the types of intestinal
metaplasia, IIM carries a greater risk for progression to GC compared to CIM [46]. A recent meta-
analysis showed that compared with CIM, pooled RR of cancer/dysplasia in IIM patients was 4.48
(95% CI 2.50-8.03), and the RR was 4.96 (95% CI 2.72—9.04) for cancer, and 4.82 (95% CI 1.45—
16.0) for dysplasia [47]. We found that C#11-2-4-14 best distinguished the healthy control patients
(HC), patients with high risk-carrying IIM that progressed (IIM-GC) and those that did not progress

(IIM-C) (ROC-AUC values: HC vs IIM-C: 0.86, HC vs IIM-GC: 0.94, IIM-C vs IIM-GC: 0.95; Fig.

10
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4b). C#11-2-4-14 was not able to significantly distinguish (using Student’s t-test) low risk-carrying
CIM from HC. C#7-13-14 also could distinguish HC vs IIM-C (ROC-AUC = 0.80) and HC vs IIM-
GC (ROC-AUC = 0.88), but not IIM-C vs IIM-GC (ROC-AUC = 0.71), however C#11-2-4-14
performed better (Fig. 4c). The DEA (Li 2015) gene signature similarly separates HC vs [IM-C
(ROC-AUC =0.90) and HC vs IIM-GC (ROC-AUC = 0.87) but is not able to distinguish 1IM-C vs
IIM-GC (ROC-AUC =0.38) (Fig. 4d). The Japanese GC signature cannot significantly distinguish
any of the samples (ROC-AUC values range from 0.42 - 0.74; Fig. 4e). These findings suggest

genes in C#11-2-4-14 might be key to understanding why some IIM patients progress to GC.

GC-BoNE provides insights into the changes in cellular continuum states during

healthy—IIM— GC progression

To understand which cellular processes change during cell transformation and which genes
contribute to the progression of GC, we checked how clusters in C#11-2-4-14 and C#7-13-14
perform separately (Fig. 4f). When looking at HC vs IIM-C (Fig. 4f row i), cluster 14 is not able to
distinguish the samples (ROC-AUC = 0.63), but both C#11-2-4 and C#7-13 are able to separate
the samples (ROC-AUC = 0.87, 0.89 respectively). However, when you compare IIM-C vs IIM-GC
(Fig. 4f row ii), cluster 14 is better able to distinguish the samples (ROC-AUC = 0.86), with C#11-
2-4-14 best able to classify the samples (ROC-AUC = 0.95). These results show genes in C#11-
2-4 might be responsible for the progression from HC to IIM, while C#14 is important for [IM to
GC. Findings thereby suggest that the progression from HC to IIM may be impacted by genes
related to muscle contraction, cell cycle and immune system, while the progression from IIM to

GC is affected by extracellular matrix processes.

DISCUSSION
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Although the incidence rates of GC have been decreasing around the world [4], there have not
been any significant improvements in terms of new therapeutics, diagnostics and changes in
screening designed for preneoplastic stages. In this study, we built a Boolean implication network

using GSE66229 and used machine learning (on GSE37023 and GSE122401) to identify a gene

signature (GC-BoNE) which could classify normal and gastric samples. Reactome pathway
analysis of GC-BoNE revealed the following biological processes in the GC tumor samples:
decrease in muscle contraction and ion transport, and increase in cell cycle, immune system and
extracellular matrix functions (Fig. 1e). Although previous studies have identified most of these
pathways [15-22], muscle contraction has not been widely identified, providing a new area to focus
on researching. We then tested how GC-BoNE compares to gene signatures from past studies in

both normal vs GC samples (Fig. 2c) and GC progression samples (Fig. 3c and 4f).

Our Boolean network-based approach improves upon past studies by First, identifying a
gene signature (GC-BoNE) that is better able to classify samples along the GC disease continuum
compared to previous signatures. When looking at normal vs GC samples, many of the signatures
performed well (Fig. 2c). However, we are more interested in finding a gene signature that can
distinguish samples earlier in the GC disease continuum. When looking at GC progression, our
signature outperforms the other gene signatures (Fig. 3c). Since the genes in GC-BoNE do not
overlap with many genes from the other gene signatures (Fig. 1e), this provides a list of new

potential biomarkers for targeting therapeutics at different points along the GC disease continuum.

Second, we identified C#11-2-4 as important in the progression for HC to IIM-C, while
C#14 is important for the progression from [IM-C to IIM-GC (Fig. 4f). Although the model was built
and trained on N vs GC samples, using a Boolean network-based approach allows us to identify
paths that can also determine the intermediate states of disease progression. The invariant
asymmetric Boolean implications present in the GC-BoNE signature provide insight into the

cellular changes occurring at various time points along the disease continuum. These findings
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provide a list of gene targets that can be tested using the mouse models we identified (Fig. 3e) or
other models. Genes in C#11-2-4 with cellular processes affecting muscle contraction, cell cycle
and immune system can be targeted for drug development in patients with IIM before they
advance to GC. Genes affecting extracellular matrix processes in C#14 can be targeted for

patients with GC.

Overall, we demonstrate that the genes identified from our Boolean network-based
approach were better able to classify samples along the GC disease continuum compared to the
genes from previous work. The genes from GC-BoNE provide more opportunities to research the
cellular processes behind GC progression. Results from this paper can be used to rationalize gene

targets for diagnostics and therapeutics.
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FIGURE LEGENDS

Fig. 1 Generation and validation of Boolean implication network-derived gastric cancer

(GC) signature

a. Schematic summarizing the workflow to build a Boolean map using a gastric cancer microarray

dataset containing tumor and adjacent normal samples (GSE66229)

b. Disease map representing the continuum from normal stomach to gastric cancer

c. Selection of Boolean path using machine learning on two training datasets (GSE37023 and
GSE122401). Multivariate regression was used to determine which path best separated the tumor
from the adjacent normal samples. Coefficient of each path score (at the center) with 95%
confidence intervals (as error bars) and the p values were illustrated in the bar plot. The p value

for each term tests the null hypothesis that the coefficient is equal to zero (no effect)

d. Violin plots showing the top Boolean paths in each of the training datasets

e. Reactome pathway analysis of the gene clusters in the GC-BoNE signature

Fig. 2 Comparison of classification accuracy using GC-BoNE signature versus gene
signatures from previous literature for normal versus GC samples

a. Schematic summarizing the workflow to compare GC-BoNE to other gene signatures

b. Bar plots of GC datasets comparing normal (N)/AN vs T showing the ROC-AUC values for the
Boolean paths in the GC-BoNE signhature (11-2-4-14 and 7-13-14). Asterisks (*) after the ROC-
AUC values represent the following: *p<=0.05, **p<=0.01, **p<=0.001, no asterisk: p-value>0.05
c. Comparison of average ROC-AUC values for the datasets in B. using GC-BoNE and other gene

signatures [6, 48-54] (DEA: Differential Expression Analysis, PPIN: Protein-Protein Interaction

22


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66229
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37023
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122401
https://doi.org/10.1101/2022.10.05.510975
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.05.510975; this version posted October 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Network, INGP: Ingenuity Pathway analysis, ISS: Immune Scoring System, SI: Stromal-Immune
score; See Online Resource 3 for the complete list of genes in these signatures)
d-f. Venn diagrams showing the overlaps in genes in the top four gene signatures (GC-BoNE,

DEA (Li 2015), DEA+PPIN and Japanese GC)

Fig. 3 GC-BoNE signature in GC progression and mouse models

a. Violin plots for GC progression of normal active gastritis (NAG) — chronic active gastritis (CG)
— chronic atrophic gastritis (CAG) — intestinal metaplasia (IM) (E-MTAB-8889) using the GC-
BoNE signature: 11-2-4-14 (left) and 7-13-14 (right)

b. Violin plots for chronic gastritis (CG) — low-grade intestinal neoplasia (LGIN) — high-grade
intestinal neoplasia (HGIN) — early gastric cancer (EGC) (GSE55696) using the GC-BoNE
signature: 11-2-4-14 (left) and 7-13-14 (right)

c. Comparison of average ROC-AUC values for GC progression datasets using GC-BoNE and
other gene signatures

d. Schematic summarizing comparison of 38 mouse models from 20 GEO datasets using GC-
BoNE

e. Top ten mouse models according to —logio(p-value) from Welch’'s Two Sample t-test separated

by path (7-13-14: blue, 11-2-4-14: orange)

Fig. 4 GC-BoNE signature predicts outcome

a. Schematic summarizing GSE78523: samples collected from healthy patients (HC) and patients
with incomplete IM (1IM) or complete IM (CIM). After a mean of 12 += 3.4 years, patients with IM

were diagnosed as non-progressors (control: C) or progressors (GC)

b-e. Violin plots showing classification of samples using GC-BoNE, DEA (Li 2015), and Japanese

GC signatures (b: 11-2-4-14, c: 7-13-14, d: DEA (Li 2015), e: Japanese GC)
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f. GSE78523 is visualized as bubble plots of ROC-AUC values (radius of circles is based on the
ROC-AUC) demonstrating the direction of gene regulation (Up: red, Down: blue) for the
classification of samples (GC-BoNE clusters in columns; sample comparison in rows). P-values
based on Welch’s T-test (of composite score of gene expression values) are provided using the

standard code (*p<=0.05, **p<=0.01, ***p<=0.001) next to the ROC-AUC

ONLINE RESOURCES

Online Resource 1 Supplementary methods

Online Resource 2 List of GSE IDs used in the analysis along with sample type (human vs

mouse), use (network, training, validation) and figure panel

Online Resource 3 Complete list of genes used in all gene signatures (GC-BoNE and signatures

from other sources)

Online Resource 4 Bubble plots of ROC-AUC values (radius of circles is based on the ROC-
AUC) demonstrating the direction of gene regulation (Up: red, Down: blue) for the classification of
samples in 38 mouse models (GC-BoNE clusters in columns; sample comparison in rows). P-
values based on Welch’s T-test (of composite score of gene expression values) are provided using

the standard code (*p<=0.05, **p<=0.01, ***p<=0.001) next to the ROC-AUC
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