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BRIEF SUMMARY 

Ineffective erythropoiesis in MDS mice correlates with aberrant iron trafficking within bone marrow 

erythroblasts, consistent with findings in MDS patient progenitors, reversed after iron chelation. 
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ABSTRACT 
 
Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell disorders 

characterized by ineffective hematopoiesis and cytopenias, most commonly anemia. Red cell 

transfusion therapy for anemia in MDS results in iron overload, correlating with reduced overall 

survival. Whether treatment of iron overload benefits MDS patients remains controversial. We 

evaluate underlying iron-related pathophysiology and the effect of iron chelation using deferiprone 

on erythropoiesis in NUP98-HOXD13 transgenic mice, a highly penetrant well-established MDS 

mouse model. Our results characterize an iron overload phenotype with aberrant erythropoiesis 

in these mice which was reversed by deferiprone-treatment. Serum erythropoietin level decreased 

while erythroblast erythropoietin receptor expression increased in deferiprone-treated MDS mice. 

We demonstrate, for the first time, normalized expression of the iron chaperones Pcbp1 and Nco4 

and increased ferritin stores in late stage erythroblasts from deferiprone-treated MDS mice, 

evidence of aberrant iron trafficking in MDS erythroblasts. Importantly, erythroblast ferritin is 

increased in response to deferiprone, correlating with decreased erythroblast ROS. Finally, we 

confirmed increased expression of genes involved in iron uptake, sensing, and trafficking in stem 

and progenitor cells from MDS patients. Taken together, our findings provide evidence that 

erythroblast-specific iron metabolism is a novel potential therapeutic target to reverse ineffective 

erythropoiesis in MDS. 
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INTRODUCTION  
 

Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell 

disorders characterized by ineffective hematopoiesis leading to blood cytopenias and increased 

incidence of transformation to acute myeloid leukemia (AML) [1,2]. In the US, MDS affects 

approximately 100,000 people with a median age of 65 years at diagnosis and an incidence of 40 

/ 100,000 per year thereafter [3,4]. Most MDS patients suffer from the accumulating 

consequences of marrow failure compounded by other age-related diseases. Several categories 

of MDS patients are low risk subtypes according to the revised International Prognostic Scoring 

System and have a longer median survival with the lowest rate of progression to AML [5,6]. Low 

risk MDS patients account for approximately two-thirds of all MDS patients with 30-50% requiring 

regular red blood cell (RBC) transfusions [7,8]. The main goals of therapy in low risk MDS patients 

are to alleviate cytopenias and their associated symptoms and thereby improve quality of life [9]. 

RBC transfusions remain the mainstay of therapy in low risk MDS [10] and are the main source 

of progressive iron overload and consequent end-organ damage in transfusion-dependent 

patients. Because of the low rates of progression to AML in low risk MDS patients, these patients 

have a substantial life expectancy and theoretically warrant screening for transfusional iron 

overload, known to increase morbidity and mortality in chronic RBC transfusion-dependent 

anemias [4,11,12]. Furthermore, although it is generally accepted that transfusional iron overload 

develops in low risk transfusion-dependent MDS patients and methods to diagnose and treat iron 

overload are available, the risk benefit ratio of treating iron overload in MDS patients remains 

controversial.  

A correlation between iron overload and reduced survival has been demonstrated mostly 

by retrospective studies [13,14]. RBC transfusion-dependence correlates strongly with decreased 

survival in MDS patients [15,16], and MDS patients with elevated serum ferritin have significantly 

fewer Burst Forming Units (BFU-Es) but normal Granulocyte Macrophage Colony Forming Units 

(CFU-GM) [17]. Iron overload has been shown to inhibit BFU-E colony formation and erythroblast 
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differentiation in both murine and human hematopoietic progenitors in vitro [18]. Finally, cells 

exposed to excess iron exhibit dysplastic changes with increased intracellular reactive oxygen 

species (ROS) and decreased expression of anti-apoptotic genes [18], and the addition of iron to 

MDS patients’ peripheral blood mononuclear cells resulted in increased ROS and DNA damage, 

triggering apoptosis [19,20]. These data suggest that iron overload may lead to a deleterious 

effect on hematopoiesis, worsening disease in MDS [21].  

Along these lines, more recent studies demonstrate the potential benefit of iron chelation 

therapy on the overall survival in low risk MDS patients. Iron chelation is associated with improved 

hemoglobin (Hb) and reduced RBC transfusion requirements in some patients [10,22]. Most 

recently, the TELESTO trial demonstrated prolonged event-free survival in iron overloaded lower 

risk MDS patients treated with iron chelation (i.e. deferasirox) [23]. However, no clear 

improvement in Hb or reduction in RBC transfusions and no effect on overall survival was 

observed in deferasirox-treated MDS patients; this may be a consequence of the specific iron 

chelator selected. Mechanistically, iron chelation with deferiprone (DFP) results in increased 

hepcidin expression [24,25], changing the distribution of iron by moving it out of parenchymal cells 

and loading it onto circulating transferrin to enhance iron-mediated signaling to hepcidin 

expression. The relative affinities of iron chelators in comparison with transferrin determine 

whether the chelator can donate iron to transferrin [26]. As a consequence, only DFP, with a 

relatively lower iron binding capacity, can increase transferrin saturation and stimulate signaling 

to increase hepcidin expression in the liver. The physiologic effect of increased hepcidin in turn 

prevents further iron absorption and recycling, trapping iron within macrophages [27]. A direct 

beneficial effect of DFP on erythropoiesis in MDS has yet to be demonstrated.  

Here, we evaluate the effect of iron chelation on erythropoiesis in NUP98-HOXD13 

transgenic (NHD13) mice as a well-established in vivo model of MDS. We use NHD13 mice in 

light of the successful pre-clinical use of this model to investigate the effects of an activin receptor 

II ligand trap on reversing ineffective erythropoiesis in MDS mice [28]. We also use the iron 
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chelator DFP in light of its ability to cross the cell membrane and mobilize intracellular iron and its 

ability to donate iron to transferrin [26]. Our results demonstrate that NHD13 mice exhibits anemia, 

increased serum erythropoietin (EPO), expanded erythropoiesis in the bone marrow and spleen, 

and parenchymal iron overload, consistent with a low risk MDS phenotype in patients. In addition, 

we demonstrate decreased EPO-responsiveness, decreased erythroblast differentiation, and 

impaired enucleation in bone marrow erythroblasts from MDS mice. Furthermore, iron chelation 

with DFP, in addition to decreasing parenchymal iron deposition, restores hepdicin:iron 

responsiveness, partially reverses anemia, and normalizes serum EPO concentration in MDS 

mice. DFP-treated MDS mice also exhibit normalized erythroblast differentiation, expression of 

Gata1 and Epor (EPO receptor) as well as that of iron chaperones Pcbp1 and Ncoa4, and 

increased erythroblast ferritin concentration in bone marrow erythroblasts. Finally, we 

demonstrate aberrant expression of genes involved in iron uptake, sensing, and trafficking in MDS 

patient bone marrow stem and progenitor cells. Taken together, our data for the first time provides 

in vivo evidence that ineffective erythropoiesis in MDS mice is responsive to iron chelation with 

DFP, normalizing erythroblast iron trafficking and restoring EPO responsiveness to reverse 

anemia in MDS.  

 
 

RESULTS 

MDS Mice Exhibit Elevated MCV Anemia with Expanded Erythropoiesis and Iron Overload, 

Appropriate as a Model of Low Risk MDS 

To establish the expected MDS phenotype, mice were sacrificed at 6 months of age and 

demonstrate significantly reduced red blood cell (RBC) counts and Hb concentration, increased 

MCV, and no difference in reticulocyte count relative to WT controls (Table I). MDS mice also 

exhibit decreased white blood cell (WBC) count and no difference in platelet count (Table I). 

Consistently, our experiments also demonstrate that MDS mice exhibit significantly increased 
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serum EPO concentration and increased bone marrow cellularity (Table I). Furthermore, we 

demonstrate borderline increased apoptosis in bone marrow erythroblast in MDS mice, reaching 

significance in OrthoE (Supplementary Figure 1). Finally, liver iron concentration is significantly 

increased in MDS mice (Table I). In conjunction with previously published work [28-30], this 

combination of characteristics provides substantial evidence that NHD13 mice are an appropriate 

mouse model of MDS [31].  

 

Iron Chelation with DFP Reverses Iron Overload, Normalized Erythroferrone Expression in 

Bone Marrow Erythroblasts, and Improves Hepcidin Iron Responsiveness in MDS Mice 

Next, we evaluate the effects of iron chelation with DFP in MDS mice. First, we demonstrate that 

DFP can be detected in the serum of DFP-treated mice (Supplementary Figure 2). Second, our 

results demonstrate that DFP-treated MDS mice exhibit increased serum iron concentration and 

transferrin saturation (Figure 1A and 1B); both male and female mice demonstrate equivalent 

responses to DFP (data not shown). These findings are consistent with reversal of increased 

parenchymal iron loading in MDS mice after DFP treatment, exhibiting decreased liver, spleen, 

and bone marrow non-heme iron concentration (Figure 1C-1E) and validate the expected re-

distribution of iron from parenchymal deposition to the circulating compartment, to ultimately 

enable excretion. Furthermore, ferritin concentration is not statistically significantly different in 

MDS bone marrow erythroblasts but increased in DFP-treated MDS bone marrow erythroblasts 

(Supplementary Figure 3A and 3B). Finally, Hamp expression, the gene encoding for hepcidin, in 

the liver is unchanged and Hamp-iron responsiveness is decreased in MDS relative to WT mice 

(Figure 1F and 1G). While Hamp expression is not increased in the liver of DFP-treated MDS 

mice (Figure 1F), it is significantly increased relative to non-heme iron concentration in the liver 

(Figure 1G) providing evidence of enhanced hepcidin responsiveness to iron in DFP-treated MDS 

mice. 
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 Hepcidin expression represents the effect of multiple pathways. Specifically, hepcidin is 

upregulated in response to liver iron stores and circulating iron; increased in the setting of 

inflammation; and downregulated in conditions of expanded or ineffective erythropoiesis as a 

consequence of elevated Fam132b expression, the gene name for erythroferrone (ERFE), in 

erythroblasts [32]. Our results demonstrate that DFP-treated MDS mice exhibit decreased liver 

iron concentration (Figure 1C) while increasing transferrin saturation (Figure 1B) and no evidence 

of inflammation-mediated STAT3 signaling to hepcidin in DFP-treated MDS mouse liver 

(Supplementary Figure 4A and 4B). Thus, the effect of iron redistribution on hepcidin expression 

in DFP-treated MDS mice is predictably small, leading us to also evaluate the contribution of 

changes in erythropoiesis on increased hepcidin responsiveness in DFP-treated MDS mice. 

Erythroblast Fam132b expression is increased in MDS mouse bone marrow (Figure 1H), 

the response expected in the setting of increased serum EPO concentration [33] in MDS relative 

to WT mice. Similar to other diseases of ineffective erythropoiesis, increased expression of bone 

marrow Fam132b is expected to suppress hepcidin and decrease hepcidin iron responsiveness, 

resulting in iron overload [33,34]. As a consequence, our current findings demonstrate that 

increased bone marrow erythroblast Fam132b expression results in inappropriately low liver 

Hamp expression relative to parenchymal iron loading (Figure 1C-1G), demonstrating decreased 

Hamp responsiveness to iron in MDS mice. These findings further support use of these mice as 

an appropriate MDS model in which decreased hepcidin iron responsiveness is a consequence 

of expanded erythropoiesis, leading to systemic iron overload observed in this disease [31]. 

Furthermore, reversal of ineffective erythropoiesis in DFP-treated MDS mice, with normalization 

of Fam132b expression (Figure 1H), leads to restored Hamp responsiveness to iron and reversal 

of parenchymal iron loading in the liver, spleen, and bone marrow (Figure 1C-1G).  Finally, 

erythroblast Fam132b expression is not altered in DFP-treated WT mice (Supplementary Figure 

5). Taken together, our results provide further evidence that mitigating the ERFE hepcidin 

pathway is central to the pathophysiology of ineffective erythropoiesis and its reversal. 
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Iron Chelation with DFP Improves Ineffective Erythropoiesis in MDS Mice 

Five month old MDS mice were treated for 4 weeks with DFP and sacrificed for analyses 

at 6–months of age. DFP-treated MDS mice exhibit increased Hb and RBC count relative to 

untreated MDS mice and no change in MCV or reticulocytosis (Figure 2A-2D); both male and 

female mice demonstrate equivalent responses to DFP (data not shown). In addition, the WBC 

count remained low while platelet and neutrophil counts are unchanged in DFP-treated relative to 

untreated MDS mice (Figure 2E-2G). Furthermore, while the spleen size increased in MDS 

relative to WT mice and is not significantly decreased after DFP (Figure 3A), splenic architecture 

is improved (Figure 3B)—with relatively decreased red pulp and more organized splenic 

nodules—and serum EPO concentration is normalized (Figure 3C) in DFP-treated relative to 

untreated MDS mice. Consistently, the total number of erythroblasts and the erythroid fraction in 

the bone marrow are increased in MDS relative to WT mice and normalized in DFP-treated 

relative to untreated MDS mice, evident decrease especially in BasoE and PolyE fractions (Figure 

3D-3F). DFP also leads to a normalized bone marrow erythroblast differentiation in MDS mice 

(Figure 3G) with a proportionally increased PolyE and decreased OrthoE fractions in bone marrow 

from MDS mice, normalized after DFP treatment, consistent with a block of erythroblast 

differentiation at PolyE in MDS patients [35]. Finally, erythroblast apoptosis is unchanged (Figure 

3H) despite decreased erythroblast ROS (Figure 3I) in DFP-treated relative to untreated MDS 

mice. These findings are globally consistent with improvement in ineffective erythropoiesis in 

response to DFP treatment without effects on erythroblast apoptosis in MDS. 

Importantly, we evaluate the effects of DFP in WT mice. Specifically, our results 

demonstrate no change in RBC count, Hb, MCV, reticulocyte count, or serum EPO in DFP-treated 

relative to untreated WT mice (Supplementary Figure 6A-6E). In addition, the bone marrow 

erythroblast fraction in DFP-treated WT mice is decreased, especially in the late stages of terminal 

erythropoiesis (i.e. PolyE and OrthoE), similar to DFP-treated MDS mice. However, unlike DFP-
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treated MDS mice, erythroid differentiation is decreased in DFP-treated relative to untreated WT 

mice (Supplementary Figure 6F-6H). Furthermore, similar to DFP-treated MDS mice, DFP in WT 

mice results in unchanged erythroblast apoptosis (Supplementary Figure 6I) albeit without 

affecting ROS (Supplementary Figure 6J). Taken together, these findings support our conclusions 

that reversal of ineffective erythropoiesis in MDS mice occurs independently of changes in 

erythroblast apoptosis, that DFP has a direct effect on erythropoiesis, and that the differences in 

effect on MDS and WT mice are dependent on the effectiveness of erythropoiesis in the 

underlying state. Finally, we confirmed that the effect of DFP in WT mice occurs despite a 

relatively higher serum DFP concentration and metabolized DFP-G concentration in WT relative 

to MDS mice (Supplementary Figure 7). 

 

Normalized Expression of EPO Downstream Genes in Bone Marrow Erythroblast from 

DFP-treated MDS Mice 

To evaluate erythropoiesis more closely, we also measure Gata1 and Bcl-Xl expression to assess 

effect of DFP on other EPO-STAT5 target genes in MDS erythroblasts. Gata1 and Bcl-Xl 

expression is known to be downstream of EPO. While GATA1 is as an important transcriptional 

regulator in normal erythropoiesis [36], BCL-xl is implicated in the anti-apoptosis effect of EPO on 

erythroblasts [37]. Aberrant GATA1 expression in MDS have been described with evidence of 

increased GATA1 expression in bone marrow CD34+ stem and progenitor cells as well as CD71+ 

erythroblasts from MDS patients [38]. Furthermore, normal upregulation of GATA1 and BCL-xl 

during human erythroid differentiation is lost in MDS [39]. Neither Gata1 or Bcl-Xl expression have 

previously been evaluated in MDS mice; their expression is expected to increase in conditions of 

elevated EPO concentration.  

Our results demonstrate that Gata1 mRNA expression is increased in sorted bone marrow 

ProE, borderline decreased in BasoE, and decreased in PolyE and OrthoE erythroblasts from 

MDS relative to WT mice (Figure 4A-4D), consistent with expectations that GATA1 expression is 
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elevated in MDS patient bone marrow stem and progenitor and early erythroblasts [38] with loss 

of upregulation during erythroblast differentiation [39]. DFP treatment restores Gata1 mRNA 

expression relative to untreated MDS or WT mice (Figure 4A-4D). Furthermore, Bcl-Xl mRNA 

expression is decreased in bone marrow erythroblasts from MDS relative to WT mice and return 

to normal expression levels in DFP-treated MDS mice (Figure 4F and 4G) despite increased 

serum EPO (Figure 3C) and borderline increased erythroblast apoptosis (Figure 3H) in MDS 

erythroblasts, normalized in DFP-treated relative to untreated MDS mice. Bone marrow 

erythroblast Bcl-Xl expression is also increased in DFP-treated WT mice (Supplementary Figure 

8). These results raise an important question, namely whether physiological or pathophysiological 

nuances in EPO-STAT5 signaling can conceptually separate EPO responsiveness from EPO 

mediated anti-apoptotic effects in erythroblasts. 

We then evaluate signaling pathways downstream of EPO. Both STAT5 and AKT 

signaling are essential for erythropoiesis. Prior work demonstrates that the expected STAT5 

signaling response to EPO is hampered by iron restriction [40]. Others demonstrate that AKT 

signaling is implicated in EPO-mediated erythroblast survival [41], essential in conditions with 

elevated EPO when Epor expression is suppressed [42-44]. We demonstrate enhanced STAT5 

and AKT phosphorylation in MDS relative to WT bone marrow erythroblasts without changes in 

erythroblasts from DFP-treated relative to untreated MDS mice (Supplementary Figure 9). These 

findings suggest that the expected changes in signaling downstream of EPO are unaffected by 

DFP administration, implicating possible changes in erythroblast Epor expression in DFP-treated 

MDS mice.  

 

DFP Increases Epor Expression in Later Stage MDS Erythroblasts 

Next, we explore erythroblast Epor expression in DFP-treated and untreated MDS mice. 

We hypothesize that Epor plays an important role in EPO responsiveness that is independent of 

EPO concentration. This hypothesis is based on findings in EpoR-H mice, a knock-in mutation 
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leading to normal EPO-EpoR binding and signaling but absent EpoR internalization and 

degradation [45-47]. These mice exhibit decreased serum EPO levels, elevated RBC counts, and 

a smaller proportion of mature erythroid precursors in the bone marrow relative to WT mice [40], 

suggesting that EpoR expression may influence erythroblast differentiation in a manner that is 

complementary to the anti-apoptotic effect of EPO.  

Based on this premise, we anticipate that Epor expression is decreased in bone marrow 

erythroblast from MDS relative to WT mice, restored in DFP-treated relative to untreated MDS 

mice. We used sorted bone marrow to evaluate Epor expression in progressive stages of terminal 

erythropoiesis. First, Epor expression is borderline increased in ProE and significantly increased 

in BasoE, earlier stage erythroblasts (Figure 5A and 5B) and decreased in PolyE and OrthoE, 

later stage erythroblasts (Figure 5C and 5D), in MDS relative to WT mice. Second, Epor 

expression is significantly increased in all stage erythroblasts in DFP-treated relative to untreated 

MDS or WT mice (Figure 5A-5D). Finally, DFP does not result in increased Epor expression in 

bone marrow erythroblasts from WT mice (Supplementary Figure 10). Taken together, increased 

later stage erythroblast Epor expression is a potential mechanism by which DFP leads to 

enhanced EPO responsiveness and enhanced erythroid differentiation despite decreased serum 

EPO concentration, reversing ineffective erythropoiesis exclusively in MDS mice. 

 

Defective Enucleation in MDS Erythroblasts is Normalized by DFP 

Because increased EPO is implicated in defective enucleation [44], we also evaluate erythroblast 

enucleation in WT, MDS, and DFP-treated MDS mice. Our results demonstrate decreased 

enucleation in bone marrow erythroblasts from MDS relative to WT mice and return to normal 

expression levels in DFP-treated MDS mice (Supplementary Figure 11A and 11B). These findings 

are consistent with prior work which provide mechanistic evidence of an enucleation defect in 

MDS [48]. Our findings are also consistent with our previously published evidence demonstrating 

that manipulating iron metabolism in erythropoiesis leads to reversal of ineffective erythropoiesis 
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is associated with normalization of the erythroblast enucleation defect in β-thalassemic mice, 

another model of ineffective erythropoiesis [49].  

 

TFR1 but not TFR2 Expression in MDS Erythroblasts is Normalized by DFP 

Decreased iron in the bone marrow of DFP-treated MDS mice prompted us to evaluate whether 

specific mechanisms involved in iron sensing and trafficking could explain the beneficial effects 

of DFP on ineffective erythropoiesis in MDS mice. First, we demonstrate increased cell surface 

TFR1 on bone marrow erythroblasts from MDS relative to WT mice, normalized in DFP-treated 

MDS mice (Figure 6A); this pattern of erythroblast surface TFR1 is replicated in all stages of 

terminal erythropoiesis (data not shown). Similarly, cell surface TFR1 on bone marrow 

erythroblasts from DFP-treated WT mice is decreased relative to WT mice (Supplementary Figure 

12). Because Tfr1 expression in bone marrow is mainly EPO-mediated [50], we anticipate that 

erythroblast Tfr1 expression is elevated in MDS as a consequence of high EPO, consequently 

decreased in DFP-treated relative to untreated MDS mice. We used sorted bone marrow to 

evaluate Tfr1 expression in progressive stages of terminal erythropoiesis. First, Tfr1 expression 

is increased in ProE and BasoE stages in MDS mice and remains elevated in DFP-treated MDS 

mice (Figure 6B and 6C). Next, Tfr1 expression is normal and decreased in PolyE and OrthoE 

stages, respectively, in MDS relative to WT mice and increased to normal levels in DFP-treated 

relative to untreated MDS mice (Figure 6D and 6E). These findings demonstrate that Tfr1 

expression correlates with Epor expression while serum EPO remains the primary determinant of 

erythroblast cell surface TFR1, further coordinating EPO-responsiveness and iron uptake during 

erythropoiesis. 

Next, we evaluate levels of TFR2 in light of its role in iron sensing and coordination of 

EPO-responsiveness with iron supply during erythropoiesis [40,51]. Furthermore, TFR2 is under 

investigation as a potential therapeutic target in β-thalassemia, another disease of ineffective 

erythropoiesis [52]. We hypothesize that TFR2, given the proposed interaction with EPOR [53], 
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plays a central compensatory role in ineffective erythropoiesis. MDS mice exhibit higher 

erythroblast surface TFR2 expression specifically in ProE relative to WT, unchanged in DFP-

treated MDS mice (Figure 7A). In addition, Tfr2 expression is also borderline increased in bone 

marrow ProE erythroblasts, significantly higher in DFP-treated MDS relative to WT mice (Figure 

7B); no significant differences are evident in BasoE, PolyE, and OrthoE bone marrow 

erythroblasts between WT, MDS, and DFP-treated MDS mice (Supplementary Figure 13A-13C). 

When compared with ProE, Tfr2 expression in BasoE, PolyE, and OrthoE is significantly 

suppressed and remains suppressed in DFP-treated MDS mice (Figure 7C). Finally, no obvious 

differences in TFR2 protein concentration (Figure 7D and 7E) or Scrib mRNA expression 

(Supplementary Figure 14A-14D) are evident between bone marrow erythroblasts from WT, MDS, 

and DFP-treated MDS mice. These findings do not identify a DFP-specific modification of TFR2 

mRNA, protein, or erythroblast surface localization or its action through changes in Scrib [40]. A 

mechanistic role for TFR2 in ineffective erythropoiesis in MDS remains to be fully elucidated.   

 

Altered Iron Trafficking in MDS Erythroblasts is Partially Restored by DFP 

We explored further the expression of other iron chaperones in MDS mouse bone marrow 

erythroblasts, hypothesizing that improved erythropoiesis in DFP-treated MDS mice is a 

consequence of not only decreased iron concentration but altered iron trafficking within 

erythroblasts. The cytosolic chaperone Poly(rC)-binding protein 1 (PCBP1) delivers iron to ferritin 

[54,55] with evidence from Pcbp1 knockout mice, with microcytosis and anemia, that iron delivery 

to ferritin is required for normal erythropoiesis [55]. In addition, PCBP2 is also required for ferritin 

complex formation [54]. Conversely, an autophagic process to extract iron from the ferritin core is 

mediated by nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor for autophagic 

ferritin turn-over, critical for regulation of intracellular iron availability [56,57]. In iron replete states, 

PCBP1 and PCBP2 expression is enhanced while NCOA4 is targeted to the proteasome for 

degradation [58,59]. Our results demonstrate that mRNA expression of both Pcbp1 (Figure 8A-
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8C) and Pcbp2 (Supplementary Figure 15A-15C) in sorted bone marrow ProE, BasoE, and PolyE 

is elevated in MDS mice and does not return to control WT levels in DFP-treated MDS mice. 

Conversely, mRNA expression of both Pcbp1 (Figure 8D) and Pcbp2 (Supplementary Figure 15D) 

in sorted bone marrow OrthoE is decreased in MDS relative to WT mice, normalized in DFP-

treated MDS mice. 

Furthermore, ProE mRNA expression of Ncoa4 shows an increased trend in MDS mice 

and does not return to control WT levels in DFP-treated MDS mice (Figure 8E). While no 

differences in Ncoa4 expression in bone marrow sorted BasoE and PolyE from WT, MDS, and 

DFP-treated MDS mice (Figure 8F and 8G), Ncoa4 expression is suppressed in sorted bone 

marrow OrthoE in MDS mice, normalized in DFP-treated MDS mice (Figure 8H). Because of the 

role of NCOA4 in ferritinophagy and ferroptosis, we evaluate Gpx4 expression in sorted bone 

marrow erythroblasts, demonstrating no differences between WT, MDS, and DFP-treated MDS 

mice (Supplementary Figure 16A-16D). These findings are consistent with expectations that high 

levels of iron flux through ferritin, high rates of ferritin turnover, and high rates of iron transfer to 

the mitochondria require elevated NCOA4 and PCBP1/2 levels [58] and provide preliminary 

evidence that movement of iron between sub-cellular compartments is altered in MDS 

erythroblasts, especially in early stages of terminal erythropoiesis, partially normalized by DFP. 

 

Increased Expression of Iron Metabolism Related Genes in MDS Patient Bone Marrow Stem 

and Progenitor Cells 

Expression of iron metabolism related genes is compared in bone marrow derived CD34+ stem 

and progenitor cells from MDS patients (N=183) and healthy controls (N=17) as previously 

described [60]. As expected, Tfr1, Epor, Gata1, Bcl2l1 (gene name for Bcl-Xl), and Fam132b 

expression is significantly increased in MDS patients relative to controls (Figure 9A-9E). In 

addition, while Pcbp1 is unchanged and Pcbp2 is borderline increased, Ncoa4 is significantly 

increased in bone marrow stem and progenitor cells from MDS patients (Figure 9F-9H), enabling 
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increased ferritin degradation in MDS erythroblasts. Finally, Tfr2 expression is also significantly 

increased in MDS patients relative to controls (Figure 9I), confirming our results in MDS mice. 

Whether changes in iron sensing and trafficking within erythroblasts contribute to MDS 

pathophysiology and ineffective erythropoiesis more broadly is unexplored. Our findings 

demonstrate that NHD13 mice recapitulate pathophysiological changes in iron sensing and 

trafficking in erythroid progenitors from MDS patients.  

 

DISCUSSION 

We show that MDS mice exhibit aberrant erythroblast iron trafficking and that iron 

chelation with DFP abrogates these changes to restore EPO-responsiveness (Figure 10). The 

effectiveness of DFP has previously been demonstrated in MDS patients [61]. These data raise 

the possibility that specifically targeting the iron sensing or iron trafficking machinery in 

erythroblasts may enable amelioration of ineffective erythropoiesis in addition to iron overload in 

MDS patients. 

RBCs, the highest concentration among all cell types in circulation, are a product of 

erythroid precursor differentiation and enucleation, requiring 80% of the circulating iron for Hb 

synthesis [62]. Furthermore, how iron regulates erythropoiesis is incompletely understood and 

next to nothing is known about whether and how dysregulated iron metabolism contributes to the 

pathophysiology of ineffective erythropoiesis in MDS. The well-known, timely, abundant, and 

coordinated delivery of sufficient iron to erythroid precursors is accomplished via TFR1 to enable 

Hb production. TFR1 is both regulated by iron and enhanced by EPO-mediated signaling, 

evidence of the iron dependency in erythropoiesis. Furthermore, prior studies demonstrate that 

iron delivery to ferritin is absolutely required for normal erythropoiesis [55] and cytosolic 

chaperones PCBP1 and PCBP2 were recently identified as central to ferritin iron delivery in 

erythroblasts [54,55] (Figure 10). In addition, the process of ferritinophagy has recently been 

described, an autophagic process to extract iron from the ferritin core. NCOA4 is a selective cargo 
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receptor for autophagic ferritin turn-over, critical for regulating intracellular iron availability for 

cellular function [56-59] (Figure 10). Finally, TFR2 expression has recently been identified in 

erythroid precursors [43,51-53, 63,64]. TFR2 is functionally involved in erythroid differentiation 

[53] via an interaction with EPOR [51] to modulate EPO responsiveness and possibly in shuttling 

iron to the mitochondria (Figure 10), but conflicting data findings underscore our incomplete 

understanding of down-stream effect of TFR2 in erythropoiesis. Taken together, movement of 

iron within erythroblasts is a complex multi-step process to handle a redox-active compound that 

is also required for the central task of erythropoiesis, i.e. Hb synthesis. 

Our results demonstrate that iron trafficking is abnormal in MDS erythroblasts and restored 

in response to DFP. Specifically, increased TFR1 in MDS erythroblasts is expected to deliver 

more iron to erythroblast ferritin stores via increased PCBPs; more NCOA4 is expected to extract 

more iron from ferritin and more TFR2 to deliver more iron to mitochondria for Hb synthesis 

(Figure 10). Increased iron uptake by erythroblasts leads to a relatively normal amount of iron in 

the circulation despite systemic and parenchymal iron overload in MDS mice. Interestingly, 

erythroblast ferritin does not increase in MDS relative to WT mice; we speculate that this results 

from increased NCOA4-mediated iron release from ferritin and leads to an increase in iron’s redox 

activity and higher erythroblast ROS. Our findings suggest that, although regulation of late stage 

erythropoiesis remains incompletely understood, redox active iron accumulation may lead to a 

feedback downregulation in iron trafficking genes during erythroblast differentiation, consequently 

resulting in ineffective erythropoiesis.  

 Differences in early and later stage erythroblast can also be seen when comparing iron 

trafficking genes in MDS mice with that in stem and progenitor cells from MDS patients. Patient 

samples correlate with early stage erythroblasts in MDS mice in which Tfr1, Epor, Tfr2, and Ncoa4 

expression is increased, providing validation that altered iron trafficking is a relevant 

pathophysiological component in MDS patients. In further support, AML patients for example 

exhibit increased bone marrow TFR2 expression [65,66] and expression in blasts correlates with 
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serum ferritin and overall prognosis [67]. Based on these finding, we propose that targeting iron 

trafficking in erythroblasts may be a viable therapeutic strategy in iron loading anemias, increasing 

erythroblast ferritin iron sequestration to protect later stage erythropoiesis from redox active 

effects of more labile forms of iron. For example, while NCOA4 is fundamental for iron supply 

during erythropoiesis, when iron is abundant, such as in MDS, other compensatory mechanisms 

are activated to prevent anemia [68], providing a rationale for targeting NCOA4 suppression to 

reverse ineffective erythropoiesis.  

 Lastly, although clearly increased ROS levels result in cellular damage, emerging 

evidence suggests that ROS is required for normal hematopoiesis, influencing stem cell migration, 

differentiation, cell cycle status, and self-renewal [69] such that hematopoietic stem cell self-

renewal potential is associated with low ROS states while high ROS states are associated with 

differentiating hematopoietic stem cells. Further increased ROS leads to senescence and 

decreased ROS restores differentiation in those conditions [69]. In addition, ROS can activate 

JAK/STAT pathways [70] and therefore EPO-EPOR mediated cell growth and survival. Recent 

evidence indicates that EPO and iron are required for ROS generation in erythroblasts, and that 

ROS are necessary for terminal erythropoiesis [44] while unchecked ROS accumulation results 

in anemia [71-75]. Taken together, ROS generation is both critical and potentially toxic, requiring 

significant coordination during erythropoiesis with particular importance for mitigating increased 

ROS in conditions of ineffective erythropoiesis as in MDS. However, whether increased ROS 

resulting in apoptosis as the cause of ineffective erythropoiesis has never been definitely 

confirmed. We and others previously demonstrate that EPO downstream mechanisms are potent 

anti-apoptotic compensatory mechanisms and that reversal of apoptosis does not ameliorate 

ineffective erythropoiesis in β-thalassemia [76,77]. Our current results demonstrate borderline 

increased erythroblast apoptosis while ROS is significantly enhanced in MDS mice and no change 

in apoptosis while ROS is significantly decreased in DFP-treated MDS mice. These results 

uncouple apoptosis from ROS as the underlying cause of ineffective erythropoiesis.  
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In conclusion, despite FDA approval of iron chelators for use in iron overloaded MDS 

patients, they remain underutilized due to lack of biological insights into the deleterious effects of 

iron overload on disease pathophysiology in MDS. Our results demonstrate that DFP partially 

ameliorates ineffective erythropoiesis in MDS mice not only by reducing systemic iron overload, 

but also by altering iron trafficking within erythroblast and the sensitivity of erythroblasts to EPO, 

enhancing erythroblast differentiation. We further identify similar alterations in iron trafficking 

genes also in MDS patient bone marrow samples, validating our findings in MDS mice and 

anticipating a potential for translating these results. Taken together, these findings provide 

additional support for targeting erythroblast-specific iron sensing and trafficking to ameliorate 

ineffective erythropoiesis in MDS either with already available iron chelators, e.g. DFP, or novel 

therapies currently in development for diseases of ineffective erythropoiesis.  

 

MATERIALS AND METHODS 

Mice and treatment  

C57BL6 (WT) and C57BL/6-Tg(Vav1-NUP98/HOXD13)G2Apla/J ( NHD13) mice [29] were 

originally purchased from Jackson Laboratories (Bar Harbor, ME, USA). For simplicity, NHD13 

mice are designated as “MDS mice” throughout the manuscript. All mice were bred and housed 

in the animal facility under Association for Assessment and Accreditation of Laboratory Animal 

Care guidelines. Experimental protocols were approved by the Institutional Animal Care and Use 

Committee. This well-established mouse model has been shown to recapitulate all key findings 

in human MDS, including blood cell dysplasia, peripheral blood cytopenias, ineffective 

hematopoiesis prior to transformation to acute leukemia, and a subset of mice progressing to 

acute leukemia at 14 months [29,30]. NHD13 mice on a C57BL/6 background were previously 

found to be clinical appropriate as an MDS model until at least 7 months [29,30]. As a 

consequence, we used age and gender matched 5-month old mice, at least 5 mice per group, 

treated with deferiprone (DFP; trade name Ferriprox™; chemical name 3-hydroxy-1,2-
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dimethylpyridin-4-one) at a concentration of 1.25 mg/mL in the drinking water for 4 weeks. DFP 

is an orally active iron chelator that binds iron in a 3:1 (DFP:iron) complex and undergoes renal 

clearance. Mice were euthanized for analysis at 6-months of age, as mice analyzed previously to 

study effects on ineffective erythropoiesis [28]. Therefore, all endpoints of interest were analyzed 

to compare DFP-treated MDS mice after 1 month of treatment with untreated MDS mice and WT 

controls.  

 

Peripheral blood analyses 

Mice peripheral blood cell counting were analyzed by ProCyte Dx Hematology Analyzer. Serum 

mouse EPO (Quantikine, R&D Systems) was measured by enzyme-linked immunosorbent assay 

(ELISA) according to the manufacturer’s instructions. Integra 800 Automated Clinical Analyzer 

(Roche Diagnostics) was used to measure serum iron to transferrin iron-binding capacity (TIBC); 

serum transferrin saturation was measured as a ratio of serum iron to TIBC.  

 

Histology and immunohistochemistry 

Immunohistochemical staining was performed using anti-TER119 antibodies (eBioscience, San 

Diego, CA), and counterstained with hematoxylin. Images were acquired on a Zeiss Axioskop2 

microscope with an AxioCamHRC camera using Plan-Neofluar objectives ×20/0.5 and Axiovision 

software. 

 

Non-heme iron spectrophotometry 

Quantification was performed via the Torrance and Bothwell method [78].  Briefly, specimens 

were digested overnight in acid solution at 65°C. A mixture of chromogen solution with acid 

extraction was incubated at room temperature for 10 minutes and the absorbance was measured 

at 540 nm by spectrophotometer (CLARIOstar plate reader, BMG Labtech). 
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Quantitative real-time PCR 

We prepared RNA from sorted bone marrow and liver samples using the RNeasy Kit (Qiagen) 

according to the manufacturer's instructions. We synthesized cDNA using the High-Capacity 

cDNA Reverse Transcription Kit (Thermofisher). Primers are listed in Supplementary Table I. The 

qPCR was conducted by iQ™ SYBR®Green Supermix using the BioRad CFX96 Real Time PCR 

Thermal Cycler. Target gene mRNA concentration was normalized to Gapdh or actin. 

 

Western immunoblotting 

Beads sorted CD45 negative bone marrow or liver cells were lysed in ice cold SDS page lysis 

buffer (2% SDS, 50 mM Tris-HCl, pH 7.4, 10 mM EDTA) with protease and phosphatase 

inhibitors. Twenty mg of heat–denatured protein was loaded onto a 10% gel, run, and transferred 

onto a 0.4 mm nitrocellulose membrane (Thermo Scientific). After blocking with 5% BSA in Tris–

buffered saline with 1% Tween-20, the membranes were incubated with primary antibodies to 

signaling proteins (Supplement Table II) overnight at 4˚C, washed, and incubated with the 

corresponding HRP–conjugated secondary antibodies at room temperature. Proteins were 

visualized using the ImageQuant LAS 4010 and quantified using Image J.  

 

Flow cytometric analysis and sorting 

Bone marrow cells were processed as described previously [79] with minor modifications. Briefly, 

the cells were mechanically dissociated, blocked with rat anti–mouse CD16/CD32 (Fcγ III/II 

Receptor), incubated with anti-CD45 magnetic beads (Mylteni), and underwent magnetic 

separation using LS columns according to the manufacturer's instructions (Miltenyi Biotec). 

Erythroid lineage-enriched CD45 negative cells were collected for further staining. Non-erythroid 

and necrotic cells were excluded using anti-CD45 (BD Pharmigen), anti-CD11b, and anti-Gr1 

(APC-Cy7) (Tonbo, Biosciences) antibodies. Cells were incubated with anti-mouse TER119 PE-

Cy7 (BioLegend) and CD44-APC (Tonbo, Biosciences) to identify and delineate progressive 
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stages of erythroblast differentiation (Supplementary Figure 17). Once erythroblasts were 

delineated by TER119, CD44 and forward scatter, CD71-PE (Biolegend) was used to evaluate 

changes in erythroblast membrane TFR1. ROS quantification in erythroblasts was performed 

using immunostaining for ROS (Invitrogen) as per manufacturer’s instructions. To evaluate 

apoptosis, cells were stained for activated caspase 3/7 kit (Invitrogen); 7-amino-actinomycin D 

(7AAD, BD Pharmingen) was added to exclude dead cells. Cells were analyzed within 1 hour of 

staining using BD FACSDiva Version 6.1.2 software on a FACSCanto flow cytometer (Becton 

Dickinson). The gating strategy was as previous described [79]. Erythroid differentiation was 

quantified by analyzing the fraction of each stage of terminal erythropoiesis relative to all 

erythroblasts in each bone marrow sample. In addition, to individually evaluate gene expression 

in erythroblasts at different maturation stages, bone marrow cell underwent sorting on a BD 

FACSAria™ III (BD Biosciences). Finally, enucleation was assessed as described previously [80]. 

 

Gene expression in MDS patient database  

Gene expression data from 183 MDS CD34+ samples and 17 controls were obtained from GEO 

(GSE19429) as previously described [60].  

 

Statistical analyses 

All data are reported as mean ± standard error of the mean (SEM). We performed analysis for 

statistically significant differences with the 2-tailed student paired t test.  
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Table I 

 

 

Table I: Characteristics of NHD13 mice are consistent with elevated MCV anemia with expanded 
hematopoiesis and iron overload which is appropriate as a mouse model of MDS 

 RBC 
count 

Hb MCV Retic 
count 

WBC 
count 

Platelet 
count 

Serum 
EPO 

Bone 
marrow 

cells 

Liver iron 
concentration 

(units) (106/μL) (g/dL) (fL) (106/μL) (106/μL) (103/μL) (μg/μL) (107 cells) (mg/g dry 
weight) 

WT 10±0.1 14.7±0.1 50±0.5 495±67 5.5±0.6 759±67 308±48 12.4±0.7 0.23±0.07 
MDS 6.73±0.29 11.2±0.4 60±1.3 440±30 3.0±0.4 672±80 4832 

±1154 
15±0.8 0.51±0.04 

 *** *** *** NS ** NS *** * * 
WT = wild type; MDS = myelodysplastic syndrome (NHD13) mice; RBC = red blood cell; Hb = hemoglobin; MCV = 
mean corpuscular hemoglobin; Retic = reticulocyte; WBC = white blood cell; EPO = erythropoietin; NS = not 
significant; * P<0.05; ** P<0.01; *** P<0.0001. 
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Supplementary Table I 

 

Gene Forward (sense) Reverse (antisense) 
Fam132b ATGGGGCTGGAGAACAGC TGGCATTGTCCAAGAAGACA 

Tfrc ATAAGCTTTGGGTGGGAGGC TGGTTCCCCACCAAACAAGT 
Tfr2 CCTGATCACCCTGCTAATCTTC TCTTCATCGACCACCAACAC 

Pcbp1 AATCAATGCCAGGCTTTCCTC TTAAAACCTGGAATTACCGACCAG
Pcbp2 AATCAATGCCAGGCTTTCCTC TTAAAACCTGGAATCGCTGACTG 
Ncoa4 TGGTTGGTGACTCCTCAGGAA  TCACTCACATTGTAGGGCTCT 
Gpx4 CCTCTGCTGCAAGAGCCTCCC CTTATCCAGGCAGACCATGTGC 
Bcl-Xl GACAAGGAGATGCAGGTATTGG TCCCGTAGAGATCCACAAAAGT 
Gata1 CGTCATACCACTAAGGTGGCTGAAT GTGGAATCTGATGGTGAGGACA 
Scrib GGGGTGATCCAGCCATTGG GGCCCTATACGCCTGCTTC 
Epor TCATACCAGCTCGAGGGTGA GGTGATAGCGAGGAGAACCG 

Hamp CTGAGCAGCACCACCTATCTC TGGCTCTAGGCTATGTTTTGC 
Gapdh AACAGCAACTCCCACTCTTC CCTGTTGCTGTAGCCGTATT 

 

 

 

Supplementary Table II 

 

 

Antibody Company Catalog # 
Beta-actin ThermoFisher MA515452 
GAPDH Cell Signaling Technology 97166 

Phospho-STAT3 Cell Signaling Technology 9131 
STAT3 Cell Signaling Technology 12640 

Phospho-STAT5 Cell Signaling Technology 9359 
STAT5 Cell Signaling Technology 94205 

Phospho-AKT Cell Signaling Technology 4058 
AKT Cell Signaling Technology 4691 
FTH1 Cell Signaling Technology 4393 
TFR2 Abcam ab80194 
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