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Abstract 

Immune evasion and metabolic reprogramming are hallmarks of cancer progression often associated 
with a poor prognosis and frequently present significant challenge for cancer therapies. Recent studies 
have emphasized on the dynamic interaction between immunosuppression and the dysregulation of 
energy metabolism in modulating the tumor microenvironment to promote cancer aggressiveness. 
However, a pan-cancer association among these two hallmarks, and a potent common driver for them 
– Epithelial-Mesenchymal Transition (EMT) – remains to be done. Here, our meta-analysis across 184 
publicly available transcriptomic datasets as well as The Cancer Genome Atlas (TCGA) data reveals 
that an enhanced PD-L1 activity signature along with other immune checkpoint markers correlate 
positively with a partial EMT and elevated glycolysis signature but a reduced OXPHOS signature in 
many carcinomas. These trends were also recapitulated in single-cell RNA-seq time-course EMT 
induction data across cell lines. Furthermore, across multiple cancer types, concurrent enrichment of 
glycolysis and PD-L1 results in worse outcomes in terms of overall survival as compared to enrichment 
for only PD-L1 activity or expression. Our results highlight potential functional synergy among these 
interconnected axes of cellular plasticity in enabling metastasis and/or multi-drug resistance in cancer. 

 

Keywords: Partial EMT, Meta-analysis, Immune checkpoint molecules, Glycolysis, Oxidative 
phosphorylation, Metabolic plasticity 
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Introduction 

The dynamic interplay between host immunity and cancer cells often facilitates tumor development 
and is now recognized as a cancer hallmark [1,2]. Cancer cells exploit a myriad of counter-regulatory 
mechanisms which are crucial for self-tolerance, to limit the host immune attack, creating a tumor-
promoting immune-suppressive milieu [3,4]. Many immune checkpoint molecules such as PD-L1 [5],  
CTLA4 [6], CD276 [7], LAG3 [8] and HAVCR2 [9] are known to block anti-tumor responses in the 
tumor microenvironment [10]. Particularly, the programmed death receptor-ligand 1 (PD-L1) plays a 
crucial role in the metastatic spread of tumors by binding to programmed death receptor 1 (PD-1) on 
CD8+ T cells, thus imparting potent immune evasive character to cancer cells mainly by altering 
effector functions of T cells, along with inhibition of T cell proliferation and survival [11,12]. 
Accumulating evidence suggests that cancer cells can exhibit high PD-L1 expression [13–15] and this 
upregulation can be influenced by multiple signaling pathways [16,17]. Thus, an understanding of 
diverse array of regulatory mechanisms that govern immune evasion and their implications for 
therapeutic intervention in cancer is an active area of research.  

The upregulation of PD-L1-mediated immunosuppression by cancer cells has been 
extensively associated with epithelial-mesenchymal transition (EMT), a process often implicated in 
metastasis [18–22]. Furthermore, cells with a hybrid epithelial/mesenchymal (E/M) phenotype can also 
express elevated levels of PD-L1 [19,23]. On a different note, emerging evidence supports the notion 
that in pathological conditions such as cancer, cells undergoing EMT also exhibit varying degrees of 
metabolic reprogramming [23]. Alterations in key metabolic pathways such as glycolysis, oxidative 
phosphorylation, lipid metabolism and amino acid metabolism influence cancer progression at least 
partly by modulating the EMT status of cells [25,26]. More recently, metabolic reprogramming has 
been increasingly reported to be inter-linked with immune evasion [1,27,28]. For instance, increased 
glycolytic metabolism of cancer cells favors cancer growth by competing with T cells for growth and/or 
blocking lactic acid export in T cells, thus impeding cytotoxic activity of T cells [28,29]. Concomitantly, 
inhibition of PD-L1 expression when coupled with blockade of lactate production enhances anti-tumor 
effects of metformin by boosting T-cell function and limiting cancer cell proliferation [30]. Further, 
modulation of oxidative phosphorylation (OXPHOS) for overcoming PD-1 resistance to improve anti-
tumor responses in specific cancers has been observed [31,32]. These findings suggest that the 
reprogrammed metabolic axes and enrichment of immune evasion markers can complement each 
other in driving cancer progression [30,31,33–36]. However, a detailed pan-cancer analysis of such 
coupling has not yet been conducted. 

Here, through a meta-analysis of 184 transcriptomic datasets (Table S1A), and primary tumor samples 
in multiple carcinomas in The Cancer Genome Atlas (TCGA), and single-cell RNA sequencing data, 
we evaluate the relationship between these metabolic reprogramming axes and PD-L1 activity and 
analyze consequences of this association for disease prognosis. We observed a predominant positive 
correlation of an elevated PD-L1 signature (and CD274 expression levels) with enrichment of partial 
EMT and glycolysis signatures, but negative correlation with an OXPHOS signatures. Such trends 
were also largely consistent in a single-cell time-course EMT induction dataset, as well as with other 
immune checkpoint molecules. Finally, our results revealed that concurrent enrichment of PD-L1 and 
glycolysis associate with worse patient survival than just glycolysis enrichment without PD-L1, thereby 
indicating possible synergy in functional aspects of immune suppression and metabolic plasticity in 
cancer progression.  
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Methods 

Software and Datasets 

The computational and statistical analysis were conducted using R (version 4.2.1) and Python (version 
3.9). Microarray and single-cell RNA sequencing datasets were retrieved from NCBI GEO (Gene 
expression omnibus) using the ‘GEOquery’ R package. RNA sequencing FASTQ files were obtained 
from the ENA (European Nucleotide Archive) database. TCGA datasets were obtained using UCSC 
Xena tools.  

Pre-processing of datasets 

The pre-processing of the microarray datasets was conducted to obtain the gene-wise expression 
from the probe-wise expression matrix using respective annotation files for the mapping of probes to 
genes. In case multiple probes mapped to a single gene, the mean expression of all mapped probes 
was utilized to obtain the final values for those genes. 

The overall quality of the RNA sequencing datasets was assessed using FastQC. Adapter trimming 
of FASTQ files was done using ‘Trimmomatic’ (version 0.39) [37] and STAR aligner (version 2.7.10a) 
[38] was used for the alignment of the reads with hg38-human (or mm10-mouse) reference genome. 
Raw counts were calculated using HTseq-count and were then normalized for gene length and 
transformed to TPM (transcripts per million) values. They were then log2 normalized to acquire the 
final expression data. 

For single-cell RNA sequencing datasets, MAGIC (version 2.0.3) [39] imputation algorithm was utilized 
to recover noisy and sparse single-cell data using diffusion geometry. To map individual reads to 
particular genes, relevant platform annotation files were utilized. 

EMT scoring methods 

For each dataset, several methods were employed to determine EMT scores. Each technique 
necessitates the input of gene expression data along with a different geneset and algorithm. 

76GS & KS scores 

76GS scores for each sample was calculated using a geneset containing 76 genes [40]. Each sample's 
weighted total of the gene expression levels of the 76 genes was calculated, with correlation 
coefficients to CDH1 expression levels serving as the weighting factors. According to this new scale, 
a low 76GS score represents a more mesenchymal phenotype whereas a high value indicates 
predominance of an epithelial one.  

The KS technique scores EMT for cell lines and tumor samples using the two-sample Kolmogorov-
Smirnov test (KS) [41]. For each of the two signatures (E and M), cumulative distribution functions 
(CDFs) are produced, and the largest difference between these CDFs is utilized as the test statistic 
for a two-sample KS test. The resultant EMT scores are in the range [-1, 1]. Mesenchymal and 
epithelial phenotypes are indicated by positive and negative scores, respectively. 

Epithelial & Mesenchymal scores 

To quantify enrichment of epithelial and mesenchymal signatures independently, ssGSEA (single 
sample gene set enrichment analysis) was performed on KS epithelial (for Epi scores) and KS 
mesenchymal (for Mes scores) gene signatures separately using GSEAPY python library. The 
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enrichment scores indicate the degree of cordial up/down regulation of genes in the geneset for a 
given sample. The normalized enrichment score (NES) for these genesets was obtained for further 
analysis. A higher Epi score denotes a more epithelial phenotype, whereas a higher Mes score 
signifies enrichment of a mesenchymal phenotype. 

Hallmark EMT & partial EMT scores 

ssGSEA method available in the GSEAPY python was used to calculate NES for hallmark EMT 
geneset from the molecular signatures database (MSigDB) [42]. Partial EMT (pEMT) geneset [43] was 
utilized to calculate NES for pEMT scores. 

Scoring methods for metabolic pathways and PD-L1 

ssGSEA scores were calculated for the hallmark pathway genesets from MSigDB (see supplementary 
table 1) to obtain the respective normalized gene signature enrichment scores. 

AMPK and HIF-1α signatures were quantified using expression levels of their downstream target 
genes as previously reported [44]. In total, 33 downstream genes for AMPK and 23 downstream genes 
for HIF-1α were used. FAO2 scores were calculated based on equations previously reported, which 
use the expression levels of 14 enzyme genes related to FAO [45]. PD-L1 signature was curated as 
reported earlier [23], wherein the top correlated genes (Spearman correlation coefficient > 0.5 and p 
< 0.01) with PD-L1 levels in at least any 15 out of the 27 cancer types were considered for this analysis. 

The activity scores for metabolic and E/M signatures for the single-cell RNA sequencing datasets were 
computed using AUCell (version 1.18.1) [46] from the R package ‘Bioconductor’ with default 
parameters. 

Survival analysis 

Survival data (overall survival) were acquired from TCGA. Based on the median of the sample scores, 
all samples were split into two groups: high PD-L1 and high glycolysis ('P+G+') and high PD-L1 but 
low glycolysis ('P+G-'). The R package 'survival' was employed to perform the Kaplan-Meier analysis, 
and the plotting was done using ‘ggfortify.’ Reported p-values were calculated using a log rank test. 
Cox regression was used to determine the hazard ratio (HR) and confidence interval (95% CI) for 
TCGA cohorts, and forest plots were made using ‘ggplot2’. 
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Results  

Enrichment of PD-L1 signature is associated with partial-EMT   

To assess the association of PD-L1 with the EMT status of cells, we first calculated single-sample 
Gene Set Enrichment Analysis (ssGSEA) scores for each sample in 184 bulk transcriptomic datasets 
(Table S1A) for PD-L1, KS epithelial (Epi), KS mesenchymal (Mes) and partial-EMT gene lists (Table 
S1B). We also calculated 76GS and KS scores for individual samples in these datasets. Higher Epi 
and 76GS score signify the enrichment of an epithelial program, whereas a higher KS or Mes score 
indicates the prevalence of a mesenchymal one. 

On correlating the PD-L1 activity signature [23] with Epi scores, a comparable number of datasets 
showed the correlation to be either positive (n=20; red datapoints) and negative (n=22; blue 
datapoints) (Fig 1A). On the other hand, PD-L1 activity geneset showed a consistent positive 
correlation with both Mes and KS scores. Out of 51 datasets that showed significant correlation for 
PD-L1 vs. Mes scores, 45 of them (88.23%) showed a positive correlation (Fig 1B). Similarly, 73.46% 
(36 out of 49) datasets showed a positive correlation between KS scores and PD-L1 activity (Fig 1C). 
Further, PD-L1 scores showed a strong positive skew (41 out of 45 = 91.11%) with the activity of partial 
EMT geneset [43] (Fig 1D). Together, these results together suggest a link between an enriched PD-
L1 signature with a partial EMT program, wherein the cancer cells may acquire a hybrid E/M 
phenotype, rather than being completely epithelial or mesenchymal in nature.  

Figure 1: Association between PD-L1 activity gene signature and partial-EMT. A) Volcano plots 
showing correlation coefficient, R (x-axis) and -log10(p-value) (y-axis) for PD-L1 vs. Epi scores. 
Boundaries for significant correlation are set at R > ± 0.3 and p < 0.05. Same as A) but for B) PD-L1 
vs. Mes, C) PD-L1 vs. KS and D) PD-L1 vs. pEMT scores. E) 2D scatter plot depicting correlation 
coefficient ‘R’ between PD-L1 vs. Mes (x-axis) and PD-L1 vs. Epi scores (y-axis). ‘N’ denotes the 
number of significant datapoints lying in each quadrant. Same as E) but for F) PD-L1 vs. pEMT and 
PD-L1 vs. Epi, G) PD-L1 vs. pEMT and PD-L1 vs. Mes and H) PD-L1 vs. pEMT and PD-L1 vs. KS 
scores. Each dot denotes a dataset for which this correlation is calculated. 
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Next, we plotted the correlation coefficients of these pairwise comparisons to further investigate the 
putative link between PD-L1 and EMT spectrum. In this analysis, we only considered datasets which 
were significant across both pairwise comparisons. 64.28% (18 out of 28) datasets showed a positive 
link between PD-L1 and Mes scores while being negatively associated with Epi scores (Fig 1E). In 
91.30% (20 out of 22) datasets, PD-L1 activity correlated positively with pEMT scores, among which 
the correlation with Epi scores can be in either direction to a comparable extent (Fig 1F). Further, 
among the 33 datasets in which PD-L1 activity associated significantly both with Mes and KS scores, 
30 datasets (91.17%) had positive correlation of PD-L1 activity with both the KS and Mes scores (Fig 
1G). Reinforcing trends were seen for association of PD-L1 activity with pEMT signature one (Fig 1H).  
Thus, this pan-cancer meta-analysis highlights that the prominent mode of association in these 
pairwise comparisons is that PD-L1 activity correlates positively with a partial mesenchymal nature, 
reminiscent of recent experimental reports [19,23,47].  

To characterize the connection of immune evasion and EMT extensively, we examined the association 
of additional immune checkpoint genes with an EMT program. Gene-wise expression values of 
immune checkpoints - CD274 (encodes PD-L1), CD276, CD47, CTLA4, HAVCR2, LAG3, LGALS9 
and PDCD1 were correlated with 76GS, KS and pEMT scores. CD274, CD276 and CD47 correlated 
predominantly positively with 76GS, KS and pEMT scores (Fig S1A-C), indicating their probable link 
with partial EMT. Although HAVCR2 and LGALS9 also showed similar trends with pEMT scores, their 
correlation with 76GS and KS scores did not show a strong skew (Fig S1E, G). Further, CTLA4, 
PDCD1 and LAG3 had no strong trends in terms of correlation with 76GS, KS or pEMT scores (Fig 
S1D, F, H). Overall, most immune checkpoint genes associated positively with partial EMT, similar to 
the trends seen for PD-L1 gene signature. 

Together, across this cohort of datasets spanning multiple cancer types (Table S1A), while an enriched 
PD-L1 gene signature (and gene expression of many immune checkpoints analyzed) did not associate 
strongly with an epithelial program in either direction (positive or negative), they showed a predominant 
positive correlation with a mesenchymal signature. This trend was strengthened by the strong positive 
association of PD-L1 and immune checkpoint genes with the pEMT geneset. Therefore, these results 
consistently indicate the association of immune evasion with partial EMT program in many carcinomas.  

 

PD-L1 enrichment is linked to an upregulated glycolysis signature 

After examining the association of PD-L1 activity with EMT, we assessed its association with major 
aspects of energy metabolism that are known to undergo variable degrees of reprogramming during 
tumor progression, notably Glycolysis and OXPHOS. In the context of cancer progression, several 
independent studies link upregulation of a glycolytic program and downregulation of OXPHOS with 
enrichment of PD-L1 [27,33,36]. Consistent with these observations, we observed a strong positive 
correlation of PD-L1 activity with glycolysis-associated geneset and with HIF-1α, a key glycolytic 
player. Out of 50 datasets that displayed a significant correlation for the PD-L1 and glycolysis scores, 
68% (n=34) datasets show a positive association. PD-L1 activity scores correlate even more strongly 
with HIF-1α signature, where 38 out of 48 cases (79.17%) reflect a positive correlation between the 
two. Conversely, among 44 datasets where PD-L1 scores correlated with OXPHOS activity scores, 
31 of them (70.45%) exhibited a negative association between the two (Fig 2A). These trends were 
recapitulated in correlation of expression levels of CD274 with the Glycolysis, HIF-1α and OXPHOS 
signatures (Fig 2B). Upon considering pairwise comparisons across individual datasets, glycolysis 
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and HIF-1α enrichment is consistently associated with upregulated PD-L1 signature and CD274 
expression (Fig 2C). 

Among the additional immune checkpoint markers considered here, expression levels of most of them 
– CD276, CTLA4, HAVCR2, LAG3 and PDCD1 – correlated negatively with OXPHOS. CD47 and 
CD276 also predominantly exhibited a positive association with HIF1α and/or glycolysis scores (Fig 
S2A-B), while CTLA4, LAG3 and PDCD1 were most likely to be negatively associated with glycolysis 
(Fig S2C-G). These results suggest that glycolysis and OXPHOS may not always be strongly mutually 
antagonistic to one another, thereby possibly hybrid metabolic (high glycolysis/high OXPHOS) and 
metabolically quiescent (low glycolysis/low OXPHOS) states, besides the canonical high glycolysis/ 
low OXPHOS and high OXPHOS/low glycolysis states [48,49].  

Overall, both PD-L1 activity scores and CD274 expression levels associate strongly positively with 
glycolysis and negatively with OXPHOS, consistent with the largely antagonistic trend established for 
glycolysis and OXPHOS programmes in the context of cancer progression [44]. Further, these strong 
trends indicate a possible co-operative association between metabolic reprogramming and immune-
suppression in a pan-cancer manner. 
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Figure 2: Association between PD-L1, Glycolysis and OXPHOS. A) Volcano plots showing 
correlation coefficient, ‘R’ (x-axis) and -log10(p-value) (y-axis) for PD-L1 vs. Glycolysis scores (left) and 
PD-L1 vs. HIF-1α (middle) and PD-L1 vs. OXPHOS (right). Boundaries for significant correlation are 
set at R > ± 0.3 and p < 0.05. Same as A) but for B) CD274 gene expression vs. Glycolysis (left), 
CD274 gene expression vs. HIF-1α (middle) and CD274 gene expression vs. OXPHOS (right). C) 2D 
scatter plot depicting correlation coefficient ‘R’ between PD-L1 vs. Glycolysis (x-axis) and PD-L1 vs. 
HIF-1α scores (y-axis) (left) and CD274 expression vs. Glycolysis (x-axis) and CD274 vs. HIF-1α 
scores (y-axis) (right). ‘N’ denotes the number of significant datapoints lying in each quadrant. 

 

Immune checkpoint markers correlate positively with partial EMT, PD-L1 and immune-
response signatures in adenocarcinomas  

Multiple inflammatory pathways such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-
γ) and nuclear factor-kappa B (NF-κB) are known to induce PD-L1 [50]. Another immune checkpoint 
marker, LGALS9, was reported to be involved in regulating many of these inflammatory pathways [51]. 
Thus, we conducted a correlation analysis to elucidate the connection between CD274 (PD-L1 gene) 
and immune checkpoint markers used earlier (CD47, CD276, CTLA4, HAVCR2, LAG3, LGALS9 and 
PDCD1). We used well characterized cohorts of primary tumor data from TCGA, in a tissue-specific 
manner: breast cancer (BRCA), prostate adenocarcinoma (PRAD), bladder cancer (BLCA), stomach 
adenocarcinomas (STAD), lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD).  

Across the six abovementioned carcinomas, except occasional deviations seen in PAAD, CD274 
expression levels corelated positively with a mesenchymal and a partial EMT signature but correlated 
negatively with both the hallmark OXPHOS pathway and epithelial signatures (Fig 3A, left), consistent 
with our meta-analysis presented earlier (Fig 1, 2). While the association of CD274 expression levels 
with glycolysis geneset was not as strong across cancer types, they correlated positively with hallmark 
pathways associated with immune response and inflammation such as INF-α response, IFN-γ 
response, TNF-α signaling via NF-κB and IL-2/STAT5 signaling. (Fig 3A, left).  

The abovementioned relationships were largely seen also with the other immune checkpoint genes, 
where CD47, CTLA4, HAVCR2, LAG3, LGALS9 and PDCD1 correlated positively with metabolic 
reprogramming and inflammatory signatures, as well as with the mesenchymal and partial EMT ones 
(Fig 3A-C, S3A). However, the negative correlation with epithelial signature was noticed in only 4 out 
of 8 immune checkpoint genes (Fig 3, S3A).  Additionally, we noticed that all the immune checkpoint 
genes (except CD276) were strongly positively correlated with PD-L1 signature, while also positively 
associating with each other (Fig 3, S3B).  

In conclusion, in primary tumor samples in TCGA, multiple immune checkpoint molecules including 
CD274 correlated positively with inflammatory and immune response associated pathways, PD-L1 
signature, and with a mesenchymal behavior.  However, the association of these molecules with an 
epithelial behavior was not as consistently and strongly negative across carcinomas, reminiscent of 
our previous observations of CD274 expression and PD-L1 signature associating with a partial EMT 
phenotype. These results augment the trends seen in in vitro pan-cancer datasets earlier, establishing 
a predominant overlap among the enhanced expression of immune checkpoint molecules, partial EMT 
and metabolic reprogramming aspects. 
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Figure 3: Association of immune checkpoint markers with several hallmark gene signatures in 
TCGA cohorts: A) Heatmap illustrating the spearman correlation coefficients between different 
hallmark gene signatures with CD274 (left) and CD47 gene expression (right) in BRCA, PRAD, BLCA, 
STAD, LUAD and PAAD. Insignificant correlations (p >0.05) are marked with ‘X’. Same as A) but for 
B) CTLA4 (left) and HAVCR2 gene expression data (right) and C) LAG3 (left) PDCD1 and gene 
expression data (right). 
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Association of CD274 gene expression with partial EMT and metabolic reprogramming is 
recapitulated in single-cell RNA sequencing data 

 

Figure 4: Association between EMT and metabolic axes with CD274 gene expression in single-
cell RNA sequencing data (GSE147405). A) Heatmap illustrating correlation coefficient ‘R’ for EMT 
metrics, metabolic pathways and CD274 gene in TGF-β-treated A549 cell line. p-values are calculated 
using unpaired Students’ T-test with unequal variance and significant correlations are marked with an 
asterisk (*) for p < 0.05; **: p <0.01; ***: p < 0.001. B) Same as A) but for TNF-α-treated A549 cell line. 
C) TGF-β-treated DU145 cell line and D) TNF-α-treated DU145 cell line. 
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To further probe the different modalities of association between the EMT status and metabolism 
reprogramming with PD-L1, we conducted a similar analysis in a single-cell RNA sequencing dataset 
(GSE147405) [52]. From this dataset, we analyzed the transcriptomic profiles of three cell lines (A549, 
DU145 and OVCA420) treated with two different EMT-inducers (TGF-β, TNF-α) to analyze how CD274 
expression levels change alongside alterations in epithelial-mesenchymal and cellular metabolism 
status. As a first step, we validated that the EMT scoring metrics used here (KS, Epi, Mes) were 
consistent in quantifying the E/M status of cells in this dataset (Fig. S4C). While KS score correlated 
positively with Mes scores consistently across cell lines and treatments, their corelation with Epi scores 
depended on the cell line – it was expectedly negative in OVCA420, but weakly positive in the two cell 
lines where Epi and Mes programs were not as strongly antagonistic to one another - A549, DU145. 
These results further endorse that downregulation of epithelial traits and upregulation of mesenchymal 
ones may not necessarily happen simultaneously, as often tacitly assumed while claiming EMT 
[53,54].  

In this single-cell dataset, we observed that activity of the mesenchymal geneset correlated positively 
with CD274 expression across both treatments, further validating the trends observed in bulk datasets 
(Fig 4, S4). Additionally, CD274 expression leaned strongly towards the positive direction with the 
epithelial signature in TNF-α-treated DU145 and OVCA420 sample (Fig 4C, S4B), while associating 
significantly negatively in TGF-β-treated A549 case (Fig 4A). Epi scores were generally non-
committed to either direction in the remaining samples (Fig 4B-C, S4A). Apart from TNF-α-treated 
DU145 sample, in all other cell lines, CD274 correlated positively with pEMT (Fig 4, S4A-B). These 
results support the observations made in bulk datasets and corroborate the association of CD274 with 
a partial EMT program.  

We also noticed that in A549 and DU145 cell lines treated with TGF-β and TNF-α, OXPHOS signature 
consistently displayed a negative correlation with CD274 expression, as seen previously with PD-L1 
and OXPHOS in bulk data. Additionally, the glycolysis gene signature revealed a positive correlation 
between CD274 gene expression levels and PD-L1 gene expression values in bulk data, however this 
correlation was statistically significant only in TGF-β-treated DU145 cells (Fig 4C, D). On the contrary, 
in OVCA420 cells treated with TGF-β, both the hallmark OXPHOS and glycolysis signatures showed 
a significant negative correlation with CD274 expression (Fig S4A), although the negative trend was 
more pronounced with OXPHOS as compared to glycolysis, showcasing that glycolysis and OXPHOS 
are not as mutually antagonistic as often presumed. Furthermore, HIF-1α has a significantly positive 
correlation with CD274 expression. 

Therefore, the association of CD274 gene expression with epithelial-hybrid-mesenchymal status of 
cells is reflected in our analysis of this single-cell dataset, which substantiates previous reports [23] 
and our analysis of bulk transcriptomic datasets. Similar trends were witnessed for major axes of 
energy metabolism in cancer cells - glycolysis and OXPHOS, with cell line and/or treatment specific 
variations altering the extent of correlation seen in this single-cell time-course data [24].  
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Survival analysis unfolds the association of concomitant enrichment of PD-L1 and glycolysis 
with worse patient survival 

 

Figure 5: Survival analysis for CD274 gene expression and glycolysis gene signature in several 
TCGA patient cohorts across cancer types. A) Kaplan-Meier curves associating overall survival 
(OS) with both a high CD274 gene expression and glycolysis signature (blue) and a high CD274 gene 
expression but a low glycolysis signature (red) in adenoid cystic carcinoma cohort from TCGA. 
Reported p-values are based on a log-rank test indicating significant difference in survival. Same as 
A) but for B) Head and neck squamous cell carcinoma, C) Kidney chromophobe, D) Kidney renal 
papillary cell carcinoma, E) Low-grade glioma, F) Liver hepatocellular carcinoma, G) Lung 
adenocarcinoma, H) Mesothelioma and I) Uveal melanoma.  
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Finally, we obtained CD274 gene expression and glycolysis scores of patient samples from TCGA 
across various cancer types to identify any association of metabolic reprogramming and/or immune-
suppressive aspects with patient survival. For this assessment, we utilized overall survival (OS) data 
and for two segregated sample groups, one with a high CD274 and glycolysis score - P+G+ (blue 
curve in Fig 5) and the other with a high CD274 expression but low glycolysis score - P+G- (red curve 
in Fig 5). We observed that P+G+ samples associated with significantly worse patient survival when 
compared to the P+G- across multiple cancers, indicating that a concurrent upregulation of CD274 
expression and glycolysis signatures result in more aggressive disease progression in a pan-cancer 
manner (Fig 5). Repeating the same analysis with the PD-L1 signature geneset yielded a similar trend, 
wherein the P+G- samples corresponded with higher OS probability in all TCGA cohorts considered 
for this analysis (Fig S6).  

After examining the association of OS data for patient samples with PD-L1 and glycolysis, we 
investigated the hazard function associated with expression of immune checkpoint markers previously 
analyzed, in each cancer type in TCGA datasets (Fig S5). Log2 hazard ratios (Log2HR) corresponding 
to overall survival for each scenario was calculated. Log2HR > 0 indicates an increased risk of 
morbidity whereas Log2HR < 0 signifies better overall survival. This analysis revealed a more context-
specific association of the gene expression of immune checkpoint markers with patient outcome. 
Significant Log2HR values reveal the association of higher CD274 expression with worse survival for 
Skin Cutaneous Melanoma (SKCM), Kidney renal clear cell carcinoma (KIRC) and Adrenocortical 
carcinoma (ACC), while better patient outcome for Low-Grade Glioma (LGG) (Fig S5A). Elevated 
CD276 gene expression was predominantly linked with better overall survival (Fig S5B). Log2HR ratios 
were less than zero for CTLA4 gene expression in LGG and KIRC, while being higher than zero in 
SKCM, Head and Neck Squamous Carcinoma (HNSC) and Breast invasive carcinoma (BRCA) (Fig 
S5C). Higher HAVCR2 gene expression was associated with lower risk in Uveal Melanoma (UVM), 
LGG, Thymoma (THYM) and Esophageal carcinoma (ESCA) but higher in Cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC) and SKCM (Fig. S5D). Also, increased LAG3 
expression associated with better survival outcome in UVM, LGG and KIRC but worse in SKCM, 
Thyroid carcinoma (THCA) and Mesothelioma (MESO) (Fig S5E). For high LGALS9 expression, 
CESC, BRCA, Bladder Urothelial carcinoma (BLCA), HNSC, MESO, Sarcoma (SARC) and SKCM 
showed worse prognostic probability, while having better patient outcome for UVM, LGG and KIRC 
(Fig S5F). At last, higher PDCD1 gene expression was linked to lower Log2HR in UVM, LGG, Kidney 
renal papillary cell carcinoma (KIRP) and ESCA, but high Log2HR for HNSC, SKCM, Uterine Corpus 
Endometrial Carcinoma (UCEC) and BRCA (Fig S5G). 

In all, these pan-cancer observations offer insights on the classification of patient samples with more 
vs. less PD-L1 (or CD274) and glycolysis, as well as the worse probability of patient survival linked 
with their parallel enrichment, which is largely uniform across all evaluated cancer types. In contrast, 
immune checkpoint gene expression displayed context-dependent relationship with overall survival 
probabilities for different cancer types.  
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Discussion 

Tumors often dysregulate the expression of key immune checkpoint proteins [10]. One of such proteins 
called Programmed Death Ligand-1 (PD-L1) is often employed by cancer cells to bypass the host 
immunity. The programmed cell death protein-1 (PD-1) on active cytotoxic-T lymphocytes (CTLs) that 
have infiltrated tumors is detected by PD-L1 on cancer cells and macrophages that effectively turns 
off their ‘cancer-clearing’ activity through multiple mechanisms. Moreover, when compared to normal 
tissues, tumor tissues express PD-L1 at considerably higher levels, which drove an interest in inhibiting 
the PD-L1/PD-1 signaling axis, as an appealing strategy for cancer immunotherapy [55–57]. However, 
increasing occurrences of resistance in such immunotherapy-based treatments have been reported 
[58]. It is thus essential to understand the underlying mechanisms behind adaptive immune evasion 
and its regulation by other molecular factors in the tumor microenvironment (TME) to improve the 
efficacy of immune checkpoint blockade therapy. In this context, our pan-cancer analysis focusses on 
specific hallmarks of cancer - EMT and metabolic reprogramming in cancer cells and their association 
with immune evasion to discern the role of PD-L1 and other checkpoint proteins in cancer progression. 

Increasing evidence suggests that PD-L1 regulation is associated with the EMT status of cancer cells. 
In many carcinomas - BRCA, ESCA and non-small cell lung carcinoma (NSCLC), the EMT status of 
cells strongly associates with PD-L1 expression levels [59], at least partly through the action of 
pathways such as phosphoinositide 3-kinase/protein kinase B pathway [60]. Moreover, many EMT-
TFs are known modulators of PD-L1 expression, enabling cells in one or more hybrid E/M 
phenotype(s) to have enriched PD-L1 levels [61,62].  

Previous work, including ours, has also indicated association of EMT with metabolic reprogramming 
[63–65]. Thus, the switching of cancer cell energetics from aerobic respiration (or OXPHOS) to an 
anaerobic one (or glycolysis) – called as Warburg effect – can impact EMT as well as TME to alter 
immune-evasive traits. While many cancer cells exhibit a strong propensity towards glycolysis to 
acclimate themselves with the hypoxic conditions in TME, several studies report that oxidative 
phosphorylation can remain intact in many different cancers and in a context-specific manner, thus 
enabling hybrid metabolic phenotypes, akin to the ones reported for EMT extensively now [48]. Such 
reprogramming can influence both cancer cell behavior and TME to display immunosuppressive 
characteristics [32,66,67]. A primary reason for this is immunosuppression can be competition in TME 
brought on by increased glucose demand of cancer cells. Consistently, a study reported that 
specifically targeting PD-L1 with monoclonal antibodies resulted in decreased glycolysis in tumor cells 
via obstruction of PI3K/Akt/ mTOR pathway and the translation of glycolytic enzymes, thereby 
improving the anti-tumor function of T cells [58]. These results reinforce our meta-analysis 
observations that PD-L1 expression and activity levels are positively correlated with glycolysis 
pathway in bulk microarray and RNA sequencing datasets, with cancer-specific differences shaping 
the trends in TCGA cohort and single-cell analysis. Our observations on correlation between HIF-1α 
and PD-L1 resonate with experimental observations in tumor-bearing mice reporting that PD-L1 
upregulation in hypoxia depended on HIF-1α activity [68].  

Although our analysis suggests possible synergy among the different hallmarks of tumor progression, 
we did not perform any specific analysis to elucidate the direction of mechanistic influence of these 
cellular programs precisely. Thus, a causal relationship among these axes needs to be yet elucidated 
through specific perturbation experiments. Such patterns of association could help in developing more 
effective anti-tumor effective strategies in future to tackle the clinical challenges of tumor plasticity and 
heterogeneity that tend to improve the fitness of cancer often as a whole [69].  
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Figure S1: Relationship of immune checkpoint markers with EMT in bulk transcriptomics datasets. A) 
Volcano plots showing correlation coefficient, ‘R’ (x-axis) and -log10(p-value) (y-axis) for CD274 gene 
expression vs. 76GS (left), CD274 vs. KS (middle) and CD274 vs. pEMT scores (right). Boundaries 
for significant correlation are set at R > ± 0.3 and p < 0.05. Same as A) but for B) CD276 gene 
expression vs. 76GS (left), CD276 vs. KS (middle) and CD276 vs. pEMT scores (right), C) CD47 gene 
expression vs. 76GS (left), CD47 vs. KS (middle) and CD47 vs. pEMT scores (right), D) CTLA4 gene 
expression vs. 76GS (left), CTLA4 vs. KS (middle) and CTLA4 vs. pEMT scores (right), E) HAVCR2 
gene expression vs. 76GS (left), HAVCR2 vs. KS (middle) and HAVCR2 vs. pEMT scores (right), F) 
LAG3 gene expression vs. 76GS (left), LAG3 vs. KS (middle) and LAG3 vs. pEMT scores (right), G) 
LGALS9 gene expression vs. 76GS (left), LGALS9 vs. KS (middle) and LGALS9 vs. pEMT scores 
(right), and H) PDCD1 gene expression vs. 76GS (left), PDCD1 vs. KS (middle) and PDCD1 vs. pEMT 
scores (right). 
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Figure S2: Relationship of immune checkpoint markers with glycolysis (its master regulator HIF-1α) 
and OXPHOS gene signatures. A) Volcano plots showing correlation coefficient, ‘R’ (x-axis) and -
log10(p-value) (y-axis) for CD47 gene expression vs. glycolysis (left), CD47 vs. HIF1-α (middle) and 
CD47 vs. OXPHOS scores (right). Boundaries for significant correlation are set at R > ± 0.3 and p < 
0.05. Same as A) but for B) CD276 gene expression vs. glycolysis (left), CD276 vs. HIF1-α (middle) 
and CD276 vs. OXPHOS scores (right), C) CTLA4 gene expression vs. glycolysis (left), CTLA4 vs. 
HIF1-α (middle) and CTLA4 vs. OXPHOS scores (right), D) HAVCR2 gene expression vs. glycolysis 
(left), HAVCR2 vs. HIF1-α (middle) and HAVCR2 vs. OXPHOS scores (right), E) LAG3 gene 
expression vs. glycolysis (left), LAG3 vs. HIF1-α (middle) and LAG3 vs. OXPHOS scores (right), F) 
LGALS9 gene expression vs. glycolysis (left), LGALS9 vs. HIF1-α (middle) and LGALS9 vs. OXPHOS 
scores (right) and G) PDCD1 gene expression vs. glycolysis (left), PDCD1 vs. HIF1-α (middle) and 
PDCD1 vs. OXPHOS scores (right).  
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Figure S3: Association of immune checkpoint markers with hallmark pathways in TCGA datasets. A) 
Heatmap illustrating the spearman correlation coefficients between different hallmark gene signatures 
with CD276 (left) and LGALS9 gene expression (right) in BRCA, PRAD, BLCA, STAD, LUAD and 
PAAD. Insignificant correlations (p >0.05) are marked with ‘X’. B) Heatmap showing correlation 
between different immune checkpoints in BRCA, PRAD, BLCA, STAD, LUAD and PAAD. p-values are 
calculated using unpaired Students’ T-test with unequal variance and significant correlations are 
marked with an asterisk (*) for p < 0.05; **: p <0.01; ***: p < 0.001.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Association between EMT and metabolic axes with CD274 gene expression in single-cell 
RNA sequencing data (GSE147405). A) Heatmap illustrating correlation coefficient ‘R’ for EMT 
metrics, metabolic pathways and CD274 gene in TGF-β-treated OVCA420 cell line. p-values are 
calculated using unpaired Students’ T-test with unequal variance and significant correlations are 
marked with an asterisk (*) for p < 0.05; **: p <0.01; ***: p < 0.001. B) Same as A) but for TNF-α-
treated OVCA420 cell line. C) Heatmap displaying spearman’s correlation coefficient for KS vs. Epi, 
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Epi vs. Mes, and KS vs. Mes scores in A549, DU145 and OVCA420 cell lines across both treatments. 
All depicted correlations are significant.  

 

Figure S5: Cox proportional hazard ratios for immune checkpoint markers in different TCGA datasets. 
A) Forest plot depicting Log2 hazard ratios (HR; mean ± 95% confidence interval) for overall survival 
associated with CD274 gene expression across several TCGA cancer types. p-values are based on 
log-rank test and significant difference in survival are marked with an asterisk (*) for p < 0.05; **: p 
<0.01; ***: p < 0.001. Axis titles of cancer types with significant differences (p < 0.05) are also 
highlighted in red, while insignificant ones are shown in black. Same as A) but for B) CD276, C) CD47, 
D) CTLA4, E) HAVCR2, F) LAG3, G) LGALS9 and H) PDCD1 gene expression.  
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Figure S6: Survival analysis for PD-L1 and glycolysis gene signatures in several TCGA patient cohorts 
across cancer types. A) Kaplan-Meier curves associating overall survival (OS) with both a high PD-L1 
and glycolysis signature (blue) and an enriched PD-L1 but a low glycolysis signature (red) in adenoid 
cystic carcinoma cohort from TCGA. Reported p-values are based on a log-rank test indicating 
significant difference in survival. Same as A) but for B) Head and neck squamous cell carcinoma, C) 
Kidney chromophobe, D) Kidney renal papillary cell carcinoma, E) Low-grade glioma, F) Liver 
hepatocellular carcinoma, G) Lung adenocarcinoma, H) Mesothelioma and I) Uveal melanoma.  
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Supplementary Table Legends 

 

Supplementary Table 1A: Description of the 184 bulk transcriptomic datasets used in this study.  

Supplementary Table 1B: Genesets used for scoring EMT, metabolic and PD-L1 gene signatures.  

Supplementary Table 1C: Spearman’s Correlation coefficient ‘R’ and corresponding p-values for 
correlation of PD-L1 gene signature and immune checkpoint markers with KS, 76GS, Epi, Mes and 
pEMT scores.  

Supplementary Table 2: Spearman’s Correlation coefficient ‘R’ and corresponding p-values for 
correlation of PD-L1 gene signature and immune checkpoint markers with glycolysis, HIF-1α and 
OXPHOS scores.  

Supplementary Table 3: Spearman’s Correlation coefficient ‘R’ and corresponding p-values for 
correlation of immune checkpoint markers with different hallmark pathways in TCGA cohorts. 

Supplementary Table 4A: Spearman’s Correlation coefficient ‘R’ and corresponding p-values for 
correlation between CD274 gene expression, E/M scores, and scores for metabolism in cell line 
samples of GSE147405. 

Supplementary Table 4B: Spearman’s Correlation coefficient ‘R’ and corresponding p-values for 
correlation between KS vs. Mes, Epi vs. Mes and Ks vs. Epi for cell line samples in GSE147405. 

Supplementary Table 5: Log2 hazard ratios, mean ± 95% confidence intervals and corresponding p-
values for overall survival associated with CD274 gene expression across several TCGA cancer types. 
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