

1 **Treatment of pancreatic cancer with irreversible electroporation and intratumoral
2 CD40 antibody stimulates systemic immune responses that inhibit liver
3 metastasis in an orthotopic model.**

4
5 Jayanth S. Shankara Narayanan^{1,2}, Tomoko Hayashi¹, Suna Erdem¹, Sara McArdle³, Herve Tiriac¹,
6 Partha Ray², Minya Pu⁴, Zbigniew Mikulski³, Aaron Miller¹, Karen Messer⁴, Dennis Carson¹, Stephen P.
7 Schoenberger^{1,3} and Rebekah R. White^{1,2}.

8
9 ¹ Moores Cancer Center, University of California San Diego, San Diego, California, USA

10 ² Division of Surgical Sciences, Department of Surgery, University of California San Diego, San
11 Diego, California, USA

12 ³ La Jolla Institute of Immunology, La Jolla, California, USA

13 ⁴ Division of Biostatistics and Bioinformatics, University of California San Diego, San Diego,
14 California, USA

15

16

17 **Correspondence To**

18 Rebekah R. White, MD

19 University of California San Diego

20 School of Medicine, Moores Cancer Center, 3855 Health Sciences Drive, Mail

21 Code 0987, La Jolla, CA 92093. Phone: 858-822-4458; E-mail: rewhite@health.ucsd.edu

22

23

24 **Word Count:** 4594 (Excluding Abstract, Materials and Methods, Figure Legends and
25 References)

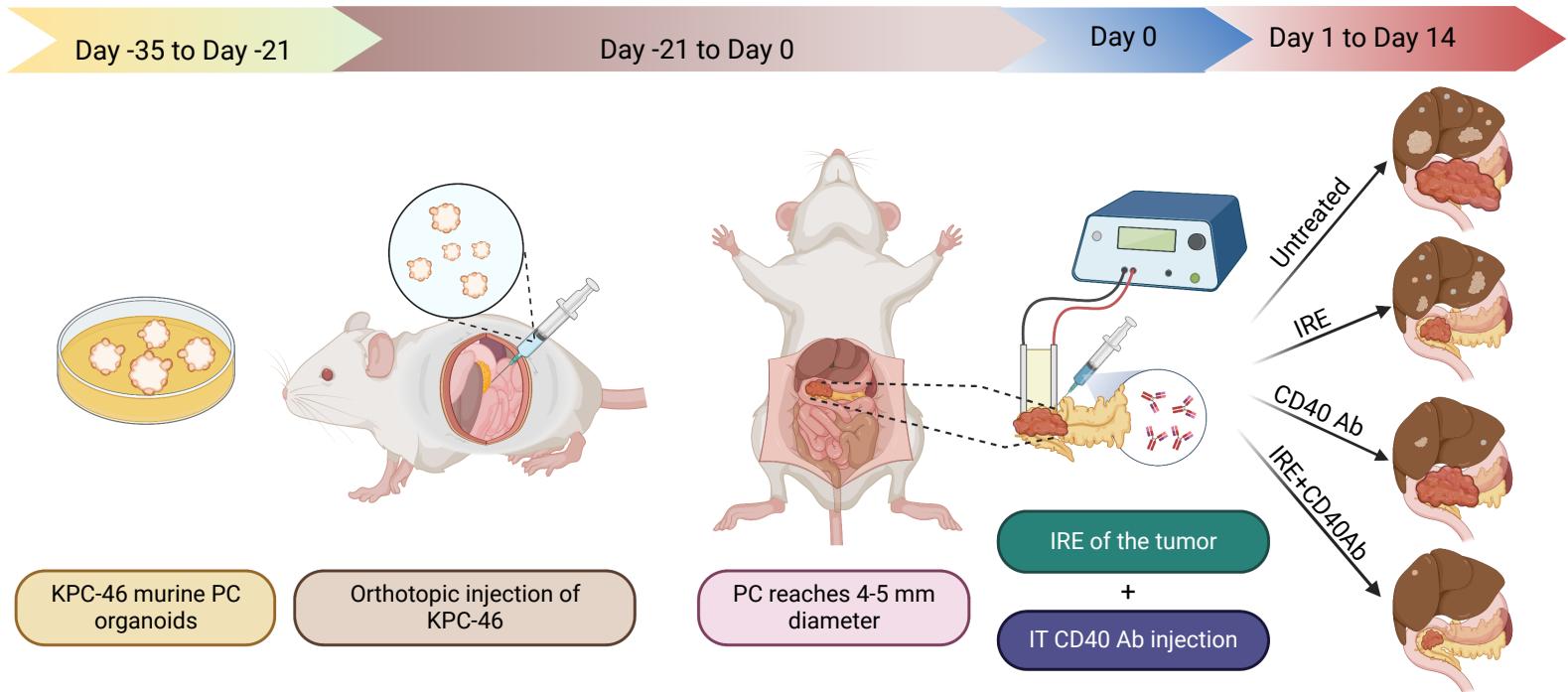
26

27 **ABSTRACT**

28 **Background**

29 Pancreatic cancer (PC) has a poor prognosis, and most patients present with either locally
30 advanced or distant metastatic disease. Irreversible Electroporation (IRE) is a non-thermal
31 method of ablation used clinically in locally advanced PC, but most patients eventually develop
32 distant recurrence. We have previously shown that IRE alone is capable of generating protective,
33 neoantigen-specific immunity. Here we aim to generate meaningful therapeutic immune effects
34 by combining IRE with local (intratumoral) delivery of a CD40 agonistic antibody (CD40Ab).

35 **Methods**


36 KPC46 organoids were generated from a tumor-bearing male KrasLSL-G12D-p53LSL-R172H-
37 Pdx-1-Cre (KPC) mouse. Orthotopic tumors were established in the pancreatic tail of B6/129 F1J
38 mice via laparotomy. Mice were randomized to treatment with either sham laparotomy, IRE alone,
39 CD40Ab alone, or IRE followed immediately by CD40Ab injection. Metastatic disease and
40 immune infiltration in the liver were analyzed 14 days post-procedure using flow cytometry and
41 multiplex immunofluorescence imaging with spatial analysis. Candidate neoantigens were
42 identified by mutanome profiling of tumor tissue for ex vivo functional analyses.

43 **Results**

44 The combination of IRE+CD40Ab improved median survival to greater than 35 days, significantly
45 longer than IRE (21 days) or CD40Ab (24 days) alone ($p<0.01$). CD40Ab decreased metastatic
46 disease burden, with less disease in the combination group than in the sham group or IRE alone.
47 Immunohistochemistry of liver metastases revealed a more than two-fold higher infiltration of
48 CD8+ T-cells in the IRE+CD40Ab group than in any other group ($p<0.01$). Multiplex
49 immunofluorescence imaging revealed a 4-6-fold increase in the density of CD80+CD11c+
50 activated dendritic cells ($p<0.05$), which were spatially distributed throughout the tumor unlike the
51 sham group, where they were restricted to the periphery. In contrast, CD4+FoxP3+ T-regulatory
52 cells ($p<0.05$) and Ly6G+ MDSCs ($P<0.01$) were reduced and restricted to the tumor periphery in
53 the IRE+CD40Ab group. T-cells from the IRE+CD40Ab group recognized significantly more
54 peptides representing candidate neoantigens than did T-cells from the IRE or untreated control
55 groups.

56 **Conclusions**

57 IRE can induce local tumor regression and neoantigen-specific immune responses. Addition of
58 CD40Ab to IRE improved dendritic cell activation and neoantigen recognition, while generating a
59 strong systemic anti-tumor T-cell response that inhibited metastatic disease progression.

60

61 **INTRODUCTION**

62

63 Approximately one third of the over 50,000 people diagnosed with pancreatic cancer (PC) in the
64 U.S. each year will have locally advanced disease that appears localized radiographically but is
65 not amenable to complete surgical resection [1]. The majority of these patients have occult
66 micrometastatic disease [2], and there is nearly uniform agreement that patients with good
67 performance status should receive systemic chemotherapy as their first line of therapy [3].
68 Although many of these patients will progress on chemotherapy, up to half initially attain disease
69 control on multi-agent chemotherapy regimens [4, 5]. The principal challenge for these patients
70 is that disease control is not sustainable, either due to acquired resistance or cumulative toxicity.
71 Local therapies are appealing for such patients with localized but unresectable disease.

72

73 Irreversible electroporation (IRE) is a non-thermal method of inducing tumor cell death without
74 destruction of adjacent vascular structures [6]. Unlike thermal ablation techniques, such as
75 radiofrequency ablation (RFA), IRE is not vulnerable to “heat sink” effects, in which blood flowing
76 through adjacent blood vessels decreases the effectiveness of ablation [7]. Specific to PC, the
77 acellular structural components of blood vessels are not damaged by IRE [8], which permits safe
78 treatment of tumors with vascular involvement. Multiple individual institutions [9-11] and a few
79 multicenter studies [12-15] have published clinical experiences with IRE for locally advanced PC.
80 These nonrandomized studies suggest that IRE is associated with longer survival than standard
81 therapy alone. However, the fundamental problem with any local therapy for PC is that most
82 patients develop distant recurrence, which highlights the need for better adjunctive treatment of
83 micrometastatic disease [12, 15-17].

84

85 Our overarching hypothesis is that tumor ablation induces anti-tumor immune responses by
86 increasing the availability of tumor-specific neoantigens (NeoAg's) in an inflammatory context.
87 NeoAg's released by the tumor are processed by local antigen presenting cells (APCs) and
88 stimulate adaptive immune responses. Several studies—including our own—have specifically
89 examined immune responses to IRE [18-26]. Theoretically, IRE may be more effective at
90 generating immune responses than thermal ablation due to greater preservation of protein
91 antigens and the vascular structures that allow immune cell infiltration [27]. We have previously
92 shown that IRE alone is effective at achieving local tumor control and protective immunity to tumor
93 rechallenge in an immunocompetent mouse model, in which a cell line established from a
94 genetically engineered “KPC” mouse [28] was used to generate subcutaneous (SQ) tumors [29].

95 Similar to prior studies in other tumor types, we found that IRE requires an intact immune system
96 to be effective [18, 20, 24]. Depletion and adoptive transfer experiments identified CD8+ and
97 CD4+ T-cells as the most important effectors of anti-tumor response after IRE [24]. CD8⁺ T cells
98 from IRE-responsive mice were reactive against peptides representing model-inherent “NeoAg’s”
99 that were identified by next generation sequencing (NGS) of nucleic acids derived from the tumor
100 [24]. In this SQ model, the triple combination of IRE with intratumoral toll-like receptor-7 (TLR7)
101 agonist (1V270) and systemic anti-programmed death-1 receptor (PD)-1 checkpoint inhibition
102 resulted in improved local tumor control and also resulted in elimination of small, untreated tumors
103 on the contralateral flank. Neither the addition to IRE of systemic anti-PD1 Ab alone nor local
104 TLR7 agonism alone produced these effects [24]. These data demonstrate proof-of-principle that
105 a combination of IRE with agents that enhance the innate and adaptive immune systems can
106 potentially produce therapeutic immune responses (i.e., “abscopal” effects).

107

108 The CD40 receptor is expressed predominantly on antigen-presenting cells (APCs). Its activation
109 co-stimulates antigen-loaded APCs, which promotes maturation and antigen presentation, acting
110 as a bridge between the innate and adaptive immune systems [30, 31]. As such, CD40 agonists
111 potentially can synergize with checkpoint inhibitors, which act on adaptive immune cells. Similar
112 to the disappointing results with checkpoint inhibitors in humans with PC [32, 33], checkpoint
113 inhibitors alone have not been effective in mouse models of PC [21, 34]. However, CD40
114 agonistic antibodies (CD40Ab) were able to help overcome resistance to checkpoint inhibition in
115 KPC mice [34], and several CD40 agonists are being studied clinically in combination with
116 chemotherapy and/or checkpoint inhibition [35, 36]. There are potential advantages to local
117 delivery of CD40 agonists directly to the source of the NeoAg’s (the tumor) while potentially
118 limiting systemic adverse side effects. We hypothesized that local delivery of CD40Ab at the time
119 of IRE would improve immune responses to IRE. We used orthotopic mouse models of pancreatic
120 cancer that recapitulate the human disease to demonstrate that this “all local” treatment
121 combination not only improved local tumor control but also generated therapeutic immune
122 responses that decreased metastatic disease burden.

123

124

125 **RESULTS**

126

127 **Local delivery of agonistic CD40Ab following IRE improves local tumor control and**
128 **generates abscopal effects in a SQ model of PC.**

129

130 To screen for activity as adjuvant immunotherapy, we treated SQ KPC4580P tumors by IRE in
131 combination with CD40 Ab. The combination of IRE and CD40Ab resulting in 6 of 10 complete
132 responders and 3 more showing only limited tumor progression (Fig. 1A). Similar to our prior
133 studies, IRE alone induced complete responses in only 2/10 mice in this model. CD40Ab alone
134 did not induce any complete responses. By comparison, several other immunomodulatory agents
135 such as anti-PD-1 TLR7, TLR9 and STING agonists were tested on the same model with no
136 significant effects as single agents (Supplementary Fig. 1).

137

138 To assess the systemic effects of this combination, we utilized a model harboring small bilateral,
139 symmetric flank tumors. When one side was treated with IRE and/or CD40 Ab injection, both IRE
140 and IRE+CD40Ab were equally effective in controlling the local (treated) tumor (Fig. 1B). IRE
141 alone had no effect on growth of the untreated tumor on the contralateral flank. However, when
142 IRE was followed by local delivery of CD40Ab, not only did the treated tumor shrink, but the growth
143 of untreated tumors on the contralateral flank was also significantly inhibited ($p < 0.01$, Fig. 1B).
144 Further, 3 of 9 animals in this group showed complete tumor regression on both the treated as
145 well as the untreated site (Fig. 1B). In order to assess the prophylactic function of this anti-tumor
146 immune response, we rechallenged the complete responders from the single tumor model with
147 live tumor cells 20 days post-procedure. None of the complete responders in either the IRE alone
148 or the IRE+CD40Ab group was able to support the growth of the secondary tumor, demonstrating
149 an active systemic anti-tumor immune rejection. We also performed a delayed rechallenge on
150 these complete responders 200 days post-procedure and observed similar tumor rejection
151 (Supplementary Fig. 2).

152

153 **Local delivery of agonistic CD40Ab following IRE improves local tumor control and**
154 **survival in an orthotopic organoid model of pancreatic cancer.**

155

156 The KPC-46 organoid cell line was derived from an aggressive tumor in a KPC mouse. When
157 injected orthotopically into the pancreas, mice consistently develop primary tumors and liver
158 metastases within a few weeks, modeling human PC. Since the liver is the most important site
159 of metastatic disease in PC, we evaluated IRE+CD40Ab in this model. Serial ultrasound
160 estimates of tumor volumes weekly post-procedure (Fig. 1C) suggest growth inhibition in tumors
161 treated with IRE and IRE+CD40Ab (Fig. 1D). The lack of significant difference in the tumor
162 volumes between the groups was possibly due to the inability of ultrasound to distinguish between

163 viable tumor and scar tissue in the orthotopic setting. We observed similar effects in an orthotopic
164 transplant model using the KPC4580P cell line [24] (Supplementary Fig. 3). However, when mice
165 were sacrificed on Day 14 post-procedure, mean tumor weights were significantly ($P<0.01$) lower
166 in the IRE (698 ± 106 mg) and IRE+CD40Ab (311 ± 114 mg) groups than in the sham ($1700 \pm$
167 247 mg) or CD40 Ab alone (1160 ± 141 mg) groups (Fig. 1 F). Tumor weights were also
168 significantly lower with IRE+CD40Ab than with IRE alone ($p<0.05$). In a separate survival
169 experiment, sham-treated mice exhibited a median survival of only 14 days post-procedure (35
170 days after tumor implantation) due to rapid development of metastasis and increasing tumor
171 burden. IRE alone or CD40 Ab alone improved median survival to 21 and 24 days, respectively,
172 but these were significantly ($p<0.01$) shorter than the median survival of >35 days achieved by
173 IRE+CD40Ab (Fig. 1E). Further, tumor immune-profiling revealed a trend toward increased
174 infiltration of CD8+ T-cells into the primary tumors in all treatment groups compared to sham,
175 which were predominantly positive for IFNy ($>40\%$) suggestive of robust anti-tumor cytotoxic
176 activity (Supplementary Fig. 4).

177

178 **IRE in combination with CD40Ab inhibits metastatic tumor progression in the liver.**

179

180 We assessed metastatic disease burden in mice with orthotopic KPC-46 organoid tumors
181 following treatment in multiple ways. Fig. 2A depicts the differences in the gross appearance of
182 representative livers from each treatment group. Mean liver weights in the IRE+CD40Ab group
183 were significantly lower than the sham ($p<0.01$) or IRE alone ($p<0.05$) groups (Fig. 2B). Manual
184 counting of visible metastatic nodules did not reveal a significant difference in the number of
185 macro metastases in mice treated with IRE+CD40Ab (Fig. 2C). However, histopathological
186 evaluation of liver tissue (Fig. 2D) suggests a decrease in the size of liver metastases with the
187 combination treatment. Quantification of the percentage of liver cross-sectional area occupied by
188 tumor revealed a significant decrease in mice treated with IRE+CD40Ab or CD40Ab alone (Fig.
189 3E). Similarly, mice treated with IRE+CD40Ab or CD40Ab alone were less likely to have bloody
190 peritoneal ascites than sham or IRE-treated mice ($\sim 15\%$ vs 60% over 3 experiments, Fig. 3F) as
191 a secondary marker for metastatic progression. IRE alone had no effect on distant progression,
192 consistent with our observations in the bilateral flank tumor model (Fig. 1B). We directly compared
193 route of CD40Ab delivery in mice that were not treated with IRE and observed that IT injections
194 of CD40Ab resulted in significantly better control of local tumor burden ($p < 0.05$) than systemic
195 (intraperitoneal) delivery of CD40Ab without significantly affecting its ability to control
196 intraperitoneal spread (Supplementary Fig. 5A&B). Interestingly, delayed (2 days post-IRE)

197 systemic delivery of CD40Ab did not improve outcomes and was associated with increased
198 metastatic progression in the liver compared to IT injection on the day of IRE (Supplementary Fig.
199 6C,D&E). These findings demonstrate that IRE alone inhibited local tumor growth, and local
200 delivery of CD40 Ab alone inhibited metastatic progression. The combination had at least additive
201 effects, effectively inhibiting both local and metastatic disease.

202

203 **Gene expression changes following treatment with IRE+CD40Ab indicate an enhanced
204 activation of antigen processing machinery.**

205

206 To assess whether treatment with IRE+CD40 Ab resulted in changes in the adaptive immune
207 response within the primary tumor, bulk RNA-seq followed by gene set enrichment pathway
208 analyses (GSEA) were performed. Fig. 3A shows a heatmap of gene expression changes that
209 were significant post-treatment among selected immunomodulatory genes. In addition to the
210 elevation of multiple complement pathway-related genes, several genes responsible for
211 lymphocyte activation such as Irf7, Cd48, Stat1 and Stat2 were upregulated. Genes responsible
212 for antigen presentation, such as Batf, which promotes antigen cross-presentation were also
213 upregulated upon treatment with IRE+CD40Ab. Genes with immunosuppressive potential, such
214 as Cxcl15, Pparg and Smad3, were significantly downregulated. The results of GSEA and gene
215 ontology also indicated that several adaptive immune pathways were significantly enriched in the
216 treatment group, such as the antigen presentation pathway and type-1 interferon pathway (Fig.
217 3B). As an indication of effective CD40 activation, overall downstream signalling resulting from
218 the CD40-CD40L pathway was enriched in the tumor (Fig. 3B).

219

220 **Local treatment of pancreatic tumors with IRE+CD40Ab modulates the immune
221 microenvironment within the liver.**

222

223 Reduction in metastatic disease could simply be the result of improved local tumor control and
224 decreased metastatic spread to the liver. To determine whether the reduction in metastatic
225 disease was immune-mediated, we examined immune infiltrates both in metastatic lesions and in
226 bulk liver. Analysis of pan-immune cell marker CD45 by IHC (Fig. 4A, B) shows IRE+CD40Ab
227 treatment resulted in an at least 4-fold higher density of CD45+ cells than IRE alone (1020 ± 192
228 vs 181 ± 13 cells/mm², $P<0.001$) and 2-fold higher than CD40Ab alone (478 ± 31 cells/mm²,
229 $P<0.01$). Further, infiltrating immune cells in tumors treated with IRE+CD40 Ab had a higher
230 percentage of effector cytotoxic CD8+ T-cells (Fig. 4 A, C) than either CD40Ab alone ($p <0.05$),

231 IRE (p <0.001), or sham treatment (p < 0.0001). Flow cytometry analysis of bulk liver tissue also
232 showed an interesting increase in CD4+ T cell populations in the liver of treated mice (Fig. 4D)
233 with corresponding decreases in the immune-suppressive myeloid derived suppressor cell
234 (MDSC) population and T-regulatory cell (T-regs) population. Bulk liver flow cytometry did not
235 reflect the changes seen in the CD8+ cytotoxic T-cell populations within tumors by IHC (Fig. 4A),
236 with the images indicating that the changes in immune cell populations within the liver are
237 restricted to metastatic tumor sites with minimal observed changes in the surrounding normal
238 tissue. Further flow cytometry analysis revealed an increase in cross-presenting CD8⁺CD11c⁺
239 dendritic cells in the bulk liver (Fig. 4E).

240
241 To further assess the immunological changes taking place at the distant metastatic site, we
242 performed multiplex immunofluorescence analysis followed by fluorescence intensity
243 quantification for each channel on a “per cell” basis. We observed that tumor deposits, identified
244 by dense pan-cytokeratin (PanCK, green – Fig. 5A) signal, were less frequent and smaller in size
245 in liver sections from mice treated with CD40Ab alone or IRE+CD40Ab, consistent with our
246 previous analysis with H&E stains. Further, we observed that the presence of CD11c⁺ dendritic
247 cells (red) within tumors increased following treatment with CD40Ab alone or IRE+CD40Ab.
248 There was a concomitant increase in CD80⁺ (Cyan) CD11c⁺ activated dendritic cells.
249 Quantification (Fig. 5B, C) revealed a 4-6 fold increase in the density of CD11c as well as
250 CD80⁺CD11c⁺ activated dendritic cells following IRE+CD40Ab treatment which was statistically
251 significant (p < 0.05). This increase in activated CD80⁺CD11c⁺dendritic cells, which are
252 professional antigen presenting cells, supports our earlier observation of increased expression of
253 antigen-presentation pathway genes and CD40 – CD40 L interaction pathway genes from
254 RNAseq analysis of primary tumors (Fig. 3B). On serial sections containing the same metastatic
255 deposits we also observed a decrease in CD4⁺ FoxP3⁺ (red and cyan, Fig. 5D, E) T-regulatory
256 cells (p< 0.05) whereas total CD4⁺ cells increased (not shown), resulting in an increased T-helper
257 to T-regulatory cell ratio (CD4 : T-reg ratio, Fig. 5G) towards a less immunosuppressive niche.
258 Ly6G⁺ (yellow) immunosuppressive MDSCs were not significantly reduced in number (Fig. 5D,F).
259 There was a statistically significant increase (P <0.05) in F4/80-positive macrophages (green)
260 within metastatic deposits (Fig. 5H) with flow cytometry data indicating that these macrophages
261 are polarized towards the M1 phenotype (Supplementary Fig. 6). Together, these data indicate
262 that local treatment of the primary tumor in the pancreas with CD40 Ab increases the density and
263 activity of antigen-presenting cells within distant liver metastases.

264

265 **IRE+CD40Ab combination therapy generates a broader recognition of tumor NeoAg's by
266 T-cells.**

267
268 In our previous study using the KPC4580P cell line, we had shown that IRE stimulates T-cell
269 responses against tumor-specific alloantigens (model NeoAg's) [24]. Following the observation of
270 increased CD8+ T-cell infiltration within metastatic tumor sites, we explored whether the
271 combination of IRE and CD40Ab can induce similar or stronger responses than IRE alone in a
272 different less immunogenic, orthotopic mouse model. RNA and DNA were isolated from KPC-46
273 organoid orthotopic tumors, and expressed non-synonymous mutations (against wild-type B6/129
274 F1 hybrid background) were identified using whole exome sequencing and RNAseq. Identified
275 variants are depicted in a Circos plot (Fig. 6A). A total of 58 variants were prioritized based on
276 their high RNA expression and sequencing depth, and 116 peptides were tested in 10 pools of 8-
277 12 peptides each for their ability to induce IFN γ secretion in ELISPOT assay. Fig. 6B shows a
278 representative ELISPOT round where we observed that T-cells from mice treated with IRE alone
279 had significantly increased reactivity over background response against non-specific peptides,
280 against pools 2, 7 and 9. T-cells from the IRE+CD40Ab group showed significantly increased
281 reactivity against pools 1, 2 and 3. Untreated tumor-bearing mice did not show significant
282 reactivity to any of the tested pools. Although the trend was similar between mice and between
283 repeated experiments, a consistent significant hit on a single peptide pool was not achieved with
284 either of the treatment groups. Deconvolution was performed on peptide pool 2 alone, which was
285 recognized by 60% mice in the IRE+CD40Ab group per experiment on average and by 40% mice
286 in the the IRE alone group over 3 experiments. In a representative ELISPOT experiment on pool
287 2 (Fig. 6C), we observed that T cells isolated from mice treated with IRE+CD40Ab recognized
288 more peptides (7/12) than the those mice treated with IRE alone (2/12) or control mice (1/12).
289 This trend was consistent across experiments, where T-cells from mice treated with IRE+CD40Ab
290 positively recognized more ($65 \pm 9.3\%$) candidate neoantigens per round than IRE alone ($36.9 \pm$
291 6.2%) or even the mice vaccinated with lethally irradiated KPC-46 organoids (Fig. 6D). The
292 intensities of positive recognitions were higher with the combination but not statistically different
293 between the treatment groups (data not shown). These data show that the addition of CD40Ab
294 preserved the "in-situ" anti-tumor vaccination effect induced by IRE and also increased the
295 breadth of NeoAg recognition generated by IRE.

296
297

298 **IRE+CD40Ab combination therapy reduces spatial restriction of tumor infiltrating immune
299 cells.**

300

301 Immunohistochemistry and multiplex immunofluorescence analyses enabled us to perform spatial
302 analyses of the immune cells within liver metastases. We observed that effector immune cells like
303 CD8+ T-cells (Fig. 4A) and activated CD80+CD11c+ dendritic cells (Fig. 5A) were restricted to
304 the periphery of the tumor in the sham group. This phenomenon was reversed following treatment
305 with IRE+CD40Ab, where these effector cells were distributed throughout the tumor site. Not only
306 were there more CD8+ T cells in the liver metastases, but also the density of the CD8+ T-cells
307 increased towards the center of the tumor nodule (Fig. 7A). To quantify this phenomenon, we
308 established the parameter of Mean Distance Ratio (MDR) as described in the Methods section.
309 A value of 1 would indicate all cells clustering at the center of the region of interest, whereas a
310 value of 0 indicates all cells restricted to the periphery. The representative heatmap (Ranging
311 from MDR = 0 blue to MDR = 0.92 Red) in Fig. 7B depicts distance from the perimeter for the
312 selected cell type (T-reg here) using pseudo-colors. Not only were there lower number of T-
313 reg following treatment with the combination, but also their distribution was restricted to the
314 periphery in the IRE+CD40Ab group. In contrast, in the sham group, most of the T-reg were
315 concentrated towards the center of the tumor. The MDR from the periphery was significantly
316 lower following treatment for immunosuppressive cell populations such as T-reg (0.76±0.08 vs
317 0.17±0.07, Fig., 7D) and MDSCs (0.37±0.05 vs 0.14±0.03, Fig. 7D). Similarly, although
318 macrophages were not further characterized as M1 vs M2, their MDR from the perimeter was
319 significantly decreased with treatment (Fig. 7G). The observation was reversed for effector cells
320 and antigen-presenting cells, which were restricted to the periphery in sham-treated tumors but
321 more uniformly distributed throughout the tumor following treatment. The MDR from the periphery
322 was significantly higher following treatment for CD8+ T cells (0.26±0.02 vs 0.5±0.07, Fig. 7C) and
323 CD80+ CD11c + dendritic cells (0.27±0.03 vs 0.47±0.03, Fig. 7E). Although not statistically
324 significant, the observation that the distance ratio between CD40L clusters and CD11c + dendritic
325 cells decreases with IRE+CD40Ab treatment (0.22±0.12 vs 0.06±0.02) is consistent with an active
326 antigen recognition and presentation in the TME.

327

328 **DISCUSSION**

329

330 Pancreatic cancer (PC) is a systemic disease. Even patients with small, resectable tumors will
331 usually develop distant progression after seemingly complete resection and optimal adjuvant

332 chemotherapy [37] There is intense interest in developing adjuvant immune strategies that can
333 eradicate micrometastatic disease. It is, however, challenging to model micrometastatic disease
334 and test adjuvant therapy strategies in mice. Our orthotopic organoid model consistently develops
335 visible liver metastases between 4-5 weeks after implantation. Before the development of visible
336 metastatic disease, there is a window in which the primary tumor in the pancreas is palpable but
337 “treatable” (< 200 mm³) and well under ethical guidelines for humane endpoints. It is therefore a
338 robust tool to study local therapies such as ablation and radiation in combination with adjuvant
339 immunotherapy.

340

341 We have previously shown that IRE alone can generate NeoAg-specific T-cells and T-cell-
342 mediated protective immunity in a SQ model of PC [24]. Scheffer et al. demonstrated that IRE
343 can also generate NeoAg-specific T-cell reactivity in human patients [20]. *De novo* T-cell
344 reactivity to the rationally-selected PC NeoAg Wilms Tumor-1 (WT1) was detected in two of seven
345 patients without pre-existing reactivity; moreover, “boosting” of reactivity in two of three patients
346 with pre-existing reactivity also was observed [23]. However, most patients who undergo IRE for
347 locally advanced PC ultimately develop distant metastatic disease [12, 15-17, 38]. Therefore, it
348 is apparent that the immune effects of IRE alone are not sufficient to eradicate distant
349 micrometastatic disease in humans.

350

351 Rationale clearly exists for combining IRE with immunotherapy to improve its systemic immune
352 effects, but the optimal agents are not yet clear. Using an orthotopic PC model, Zhao et al.
353 demonstrated that IRE could reverse resistance to anti-PD1 checkpoint inhibition, prolonging
354 survival and promoting infiltration of CD8+ T cells [21]. A Phase II clinical trial of IRE with adjuvant
355 PD-1 checkpoint inhibition (NCT03080974) demonstrated that this combination is well-tolerated
356 and results in increased circulating effector memory T-cells at 90 days [39]. Nevertheless, given
357 the lack of success of checkpoint inhibitors in PC to date, additional strategies—such as
358 stimulation of the innate immune system—are likely to be necessary for effective therapeutic
359 immunity.

360

361 CD40 agonists activate dendritic cells and stimulate antigen presentation to T-cells, qualifying
362 them as potentially better single agent adjuvants than checkpoint inhibitors, which require the
363 myeloid arm of the immune system to be engaged separately through the innate immune system.
364 The IRE procedure provides an opportunity to access the tumor, and IT injection delivers CD40Ab
365 directly to the site of antigens released by IRE and the antigen-presenting cells with which they

366 interact. In a bilateral flank SQ model, we have demonstrated that a single IT injection of CD40
367 Ab at the time of IRE on one flank was more effective at inhibiting growth of contralateral tumors
368 (abscopal effects) than the combination of multiple systemic anti-PD-1 and IT TLR7 agonist
369 injections in an almost identical model (Fig. 1B and [24]). We then utilized our orthotopic model
370 to evaluate this “all local” treatment approach. IRE alone but not CD40Ab alone had significant
371 effects on pancreatic tumor growth. Conversely, CD40 Ab alone but not IRE alone had significant
372 effects on metastatic tumor growth. The combination had at least additive effects, suppressing
373 the growth of both pancreatic tumors and metastatic tumors in the liver, significantly prolonging
374 survival. Analysis of gene expression changes within the primary tumor revealed upregulation of
375 pathways involved in antigen presentation with the combination treatment. The combination of
376 IRE and CD40Ab synergistically promoted the infiltration of active dendritic cell and cytotoxic T-
377 cell infiltration into distant liver metastases.

378

379 Several studies have demonstrated that it is not just the number of infiltrating immune cells that
380 is important but their spatial distribution within the tumor and relationships to each other. Several
381 studies in primary PC tissue have documented that effector immune cells are often trapped in the
382 peritumoral space [40, 41]. Our model allows analysis of spatial changes within the metastatic
383 niche following treatment with IRE+CD40Ab. We observed a consistent inverse relationship
384 between the distribution of immunosuppressive MDSCs and T-reg and the effector immune
385 population, including CD8+ T cells and activated dendritic cells. Treatment with IRE+CD40Ab
386 resulted in immunosuppressive cells being more restricted to the periphery and effector cells
387 being more uniformly distributed (Fig. 7). Cognate interaction of CD8+ T-cells with tumor cells is
388 critical to their cytotoxic activity, and a more uniform distribution of CD8+ T cells within tumors
389 correlates with better outcomes [42]. We observed closer interactions of dendritic cellss with
390 CD40L clusters following treatment with CD40Ab indicative of active antigen presentation and
391 cross-presentation (Fig. 7H). Further, infiltration and activation of dendritic cells is critical to the
392 expansion of the T-cell repertoire. To our knowledge, this is the first analysis of spatial differences
393 in the infiltration of immune cells within spontaneous liver metastases, which are not typically
394 resected in humans so not as available for evaluation as primary tumor tissue. We corroborated
395 these findings with a parallel analysis of T-cell reactivity to candidate peptide NeoAgs identified
396 by mutanome anslysis. The combination of IRE+CD40Ab increased the number of peptides
397 recognized by T-cells from treated mice (Fig. 6D). This “NeoAg spreading” may represent an
398 expanded tumor-targeted T-cell repertoire and result in more effective killing of cancer cells.

399

400 Our study has several limitations. One is that our model does not completely recapitulate IRE in
401 humans, whose tumors are often heavily pre-treated with chemotherapy and/or radiation therapy.
402 Another is that we cannot exclude the possibility that locally-delivered CD40Ab is absorbed
403 systemically, although this is not necessarily a problem, since systemic (intravenous) CD40Ab
404 delivery has been well-tolerated in clinical trials [36]. Another is that our spatial immune infiltration
405 analysis of the liver was limited to a single timepoint (14 days) and did not capture temporal
406 changes in immune cell infiltrates. Longer time-course experiments will be necessary to assess
407 the durability of these responses. However, this “all local” approach does not preclude the use of
408 additional doses of CD40Ab (either local or systemic) or other rational agents as maintenance
409 therapy. Finally, KPC46 organoids were derived from male KPC mice in immunocompetent
410 B6/129 hybrid mice, which is a first filial generation hybrid between C57BL/6 and 129S1/SvImJ
411 mice. However, since it is an F1 hybrid, spontaneous recombination between the mating parents
412 results in slightly different single nucleotide polymorphism (SNP) profiles among the offspring.
413 The “NeoAgs” identified in our KPC46 model tumor are SNPs relative to a representative B6/129
414 host, and peptides representing these “NeoAgs” may have different immunogenicity in different
415 B6/129 mice. This resulted in our inability to identify a set of peptides that were highly
416 immunogenic in all mice. This, however, is reflective of human PC, which typically has only a low
417 to moderate mutational burden.

418
419 In conclusion, using multiple mouse models of PC, including a model of spontaneous liver
420 metastasis, we have shown (Fig. 7I) that IRE alone can induce local tumor regression and release
421 tumor-specific NeoAgs with beneficial but modest effects on infiltrating immune cells. Addition of
422 locally-delivered CD40Ab at the time of IRE improves the recognition of these NeoAgs by
423 activating dendritic cells, thereby generating a stronger systemic anti-tumor T-cell response and
424 inhibiting metastatic disease progression. These data provide strong rationale for a clinical trial in
425 the setting of locally advanced PC, where patients have a high likelihood of micrometastatic
426 disease. Human PC does not have many prevalent, immunogenic NeoAgs that can be targeted
427 with “off-the-shelf” vaccine approaches, requiring more “personalized” vaccine approaches. “In
428 situ” vaccination with IRE is essentially a form of personalized vaccine that requires no knowledge
429 of the patient’s unique NeoAg profile. A clinical system for IRE (marketed as Nanoknife®,
430 Angiodynamics) has 510(k) clearance from the FDA and is currently being used for selected
431 patients with locally advanced PC who have not developed distant progression after neoadjuvant
432 chemotherapy. A first-in-human study of IT injection of an agonistic CD40 Ab, ADC-1013 or
433 mitazalimab (Alligator Biosciences), has demonstrated that injection even into deep tumors

434 (mostly liver) was feasible and safe [43]. A clinical trial combining IRE with local delivery of CD40
435 Ab would therefore be imminently feasible. This approach could help improve outcomes for
436 patients with locally advanced PC in the near-term. If the combination of IRE with immunotherapy
437 proves to be effective at decreasing recurrence in patients with locally advanced PC, then this
438 concept could logically be extended to patients with limited metastatic disease.

439

440 MATERIALS AND METHODS

441

442 Cell lines and Organoids

443

444 The male KPC4580P cell line was established from a spontaneous tumor that developed in a
445 male LSL-*Kras*^{G12D/+}; LSL-*Trp53*^{R172H/+}; *Pdx1*^{Cre/+}; LSL-*Rosa26*^{Luc/+} (KPC-luc) mouse as previously
446 described (gift of Jen-Jen Yeh, UNC [28]). The cells were grown in DMEM:F12 containing 10%
447 fetal bovine serum and 1% antibiotics (Penicillin:Streptomycin) at 37° C with 5% CO₂. The cell
448 line was authenticated by sequencing and confirmed negative for pathogens using IMPACT
449 testing (IDEXX Bioresearch). KPC-46 organoids were derived from a male *Kras*^{LSL-G12D}-*p53*^{LSL-}
450 *R172H*-*Pdx-1-Cre* (KPC) using previously described methods (gift of Andrew Lowy, UC San Diego
451 [44]). In short, ~200-300mg of primary tumor tissue was washed in PBS, minced into small pieces
452 and added to 4.7ml RPMI with 1 mg/mL Collagenase and dispase and incubated for 1 h at 37° C.
453 The enzymes were then removed by centrifugation and the cells were placed in 12-well tissue
454 culture dish at a density of 100,000 – 200,000 cells per 50 uL of growth factor-reduced matrigel.
455 800 uL of growth media containing RPMI, 5% FBS, 2X P+S, 1mM Glutamax, 1mM sodium
456 pyruvate, 1X NEAA, 1X Fungizone, 5ug/ml insulin, 1.4uM hydrocortisone, 10ng/ml EGF, 10.5uM
457 rho kinase inhibitor.

458

459 Animals

460

461 All animal experiments were approved by the Institutional Animal Care and Use Committee
462 (IACUC) of University of California, San Diego (UC San Diego). All methods involving animals
463 were performed according to Office of Laboratory Animals Welfare (OLAW) – NIH guidelines, in
464 a facility fully accredited by the Association for Assessment and Accreditation of Laboratory
465 Animal Care, International (AAALAC). 6-8 week old wild type (WT) C57BL/6 and B6/129 F1 hybrid
466 mice were purchased from Jackson Laboratories (Bar Harbor, ME).

467

468 **IRE in subcutaneous mouse models**

469

470 Subcutaneous (SQ) pancreatic tumors were initiated by implanting 5×10^5 KPC4580P cells in the
471 left flank of 6-8 week old male (gender-matched to cell line of origin) C57BL/6 mice. IRE was
472 performed when tumors reached 4-5 mm diameter, using an ECM 830 square wave pulse
473 electroporator (Harvard Apparatus, Holliston, MA) with a 2-needle array probe, separated by 5
474 mm, to deliver a total of 150 pulses at 1500 V/cm as previously described [24]. Tumor rechallenge
475 was performed on complete responders with SQ injection of 5×10^5 KPC4580P cells on the
476 contralateral (right) flank. Age-matched C57BL/6 male mice with a single tumor challenge were
477 used as controls for all rechallenge experiments. Short-term and long-term protective anti-tumor
478 immunity were tested by rechallenge 20 and 200 days post procedure, respectively. SQ tumor
479 sizes were measured using calipers along 2 dimensions and tumor volume (V) was calculated
480 using the formula $V = (L \times W^2)/2$, where L is the longer and W is the shorter dimension.

481

482 **IRE in orthotopic mouse models**

483

484 For the orthotopic organoid model, solubilized basement membrane matrix (Matrigel, Corning,
485 NY) domes containing the organoids were dislodged from the culture dish and resuspended in 25
486 mL of cold media. The organoids were then sheared out of the Matrigel scaffold using 23 G needle
487 to establish single organoid suspensions. A small portion of the suspension (1 – 2 mL depending
488 on the extent of organoid growth) was retrieved, and centrifuged at 2000 RPM for 15 min. To the
489 pellet, 1 mL of TryPLEExpress cell dissociation reagent was added and was incubated 1 h at 37°
490 C to achieve single cell suspension. A cell count was performed on this suspension to establish
491 the total number of cells in the remaining organoid suspension. The suspension containing the
492 organoids was then centrifuged 2000 RPM for 15 min at 4° C, supernatant was discarded carefully
493 without disrupting the pellet, and the organoids were resuspended in 100% growth factor depleted
494 matrigel at a density of 2.5×10^6 cells/ mL of Matrigel. 20 μ L of organoids suspended in Matrigel
495 were injected into the pancreatic tail of 8 week-old male B6/129 F1J mice via laparotomy as
496 described above.

497

498 Orthotopic tumor growth was monitored using ultrasound evaluation (SonoQue L5P handheld
499 ultrasound) until tumors reached 3 - 4 mm in diameter. A second laparotomy was performed to
500 externalize the tumor, and IRE was performed using tweezer-style electrodes (TweezerTrode,
501 BTX). The distance between the electrodes and voltage were adjusted to the dimensions of the

502 tumor to achieve 1500 V/cm, and 150 pulses of electricity were delivered [29]. Intratumoral
503 injections of 20 μ L of 2.5 mg/mL agonistic rat anti-mouse CD40Ab (InVivoMAb, clone FGK4.5,
504 BioXCell) were performed immediately after IRE, both in the SQ as well as orthotopic tumor
505 models. Control mice underwent sham laparotomy in all experiments involving orthotopic
506 pancreatic tumors. Mice were administered 1 mg/kg buprenorphine before completion of each
507 laparotomy.

508

509 **Bulk RNA sequencing and analysis**

510

511 Tumors from mice 14 days post-procedure were harvested into Trizol and homogenized
512 immediately post-euthanasia. RNA isolation and purification were performed using RNeasy mini
513 kit (Qiagen, Hilden, Germany) according to manufacturer's instructions. RNA integrity and
514 quantitation were assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system
515 (Agilent Technologies, CA, USA). Library preparation and sequencing were performed by
516 Novogene Co, Ltd (Sacramento, CA). A total amount of 1 μ g RNA per sample was used as input
517 material, and Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep
518 Kit for Illumina® (NEB, USA). Index codes were added to attribute sequences to each sample.
519 In order to preferentially select cDNA fragments 150~200 bp in length, the library fragments were
520 purified with AMPure XP system (Beckman Coulter, Beverly, USA). PCR products were purified
521 (AMPure XP system), and library quality was assessed on the Agilent Bioanalyzer 2100 system.
522 The clustering of the index-coded samples was performed on a cBot Cluster Generation System
523 using PE Cluster Kit cBot-HS (Illumina). Paired-end sequencing was performed on an Illumina
524 platform, and paired-end reads were generated. Data were analyzed with a HyperScale
525 architecture (<https://rosalind.bio/>) developed by ROSALIND, Inc. (San Diego, CA). Quality scores
526 were assessed using FastQC. Reads were aligned to the *Mus musculus* genome build mm10
527 using STAR. Individual sample reads were quantified using HTseq and normalized via Relative
528 Log Expression (RLE) using DESeq2 R library. DEseq2 was also used to calculate fold changes
529 and p-values and to perform optional covariate correction [45]. Clustering of genes for the final
530 heatmap of differentially expressed genes was done using the PAM (Partitioning Around Medoids)
531 method using the fpc R library. Hypergeometric distribution was used to analyze the enrichment
532 of pathways, gene ontology, domain structure, and other ontologies. The RNA-seq data were
533 uploaded to "NCBI – SRA database" (Accession number : SUB12118538)

534

535 **Analysis of tumor-infiltrating immune cells**

536

537 Mice bearing SQ or orthotopic tumors were euthanized on day 14 post-procedure and
538 approximately 100 mg of the tissue (tumor or liver) was dissociated into a single cell suspension
539 using 1 mg/mL solution of collagenase/dispase (MilliporeSigma) for 40 min at 37° C. The cells
540 were then filtered through a 70 µm strainer and viability was assessed using ViCell cell counter
541 (Beckman-Coulter). Single cell suspensions containing 3x10⁶ cells/sample were stained using
542 appropriate fluorescent antibody cocktails (Listed in Supplementary Table S1) after Fc blocking
543 and analyzed using flow cytometry (BD FACS Celesta/Novocyte Advanteon). Cells were fixed
544 and permeabilized using intracellular staining reagents (Intracellular Fixation & Permeabilization
545 Buffer Set, eBioscience) for the staining of FoxP3. Data analysis was performed using Flow Logic
546 software (Inivai Technologies).

547

548 **Immunohistochemistry (IHC)**

549

550 Tissue sections of 5 micron thickness were baked at 60° C for 1 h and were cleared and
551 rehydrated through successive alcohol immersion [Xylene (3 times), 100% EtOH (2 times), 95%
552 EtOH (2 times), 70% EtOH (2 times), then deionized water]. Antigen retrieval was performed in
553 Antigen Unmasking Solution (Citrate Based, pH6, Vector, H-3300) at 95° C for 30 min.
554 Hematoxylin and eosin staining were performed for histological analysis on serial sections of
555 tissues. IHC staining was performed on Intellipath Automated IHC Stainer (Biocare) with the
556 following antibodies: anti-CD45 (Rabbit; AbCAM ab10558; 1:200) and anti – CD8 (Rat, Invitrogen
557 14-0195-82; 1:100) for 1 h. The slides were washed with 2X Tris-Buffered Saline with 0.1%
558 Tween-20 (TBST) and incubated in secondary antibody, anti-Rat HRP Polymer (Cell IDX, 2AH-
559 100) or anti-Rabbit HRP Polymer (Cell IDX, 2RH-050) for 30 min. The tissues were washed 2X in
560 TBST and developed with DAB (brown) Chromogen (VWR, 95041-478) for 5 min and washed
561 again 2X in deionized water. Brightfield images were obtained using Leica Aperio Slide Scanner
562 using 20X objective and the images were analyzed and quantified using QuPath 3.0 software
563 [46].

564

565 **Multiplex immunofluorescence assay**

566

567 5 micron thick sections of FFPE liver tissues from at least 3 biological replicates from each
568 treatment group were deparaffinized and rehydrated as described in the IHC section.
569 Immunofluorescence staining was performed on Intellipath Automated IHC Stainer (Biocare), with

570 the following steps. Peroxidase block with Bloxall (Vector, SP-6000) for 10 min followed by two
571 washes in TBST and blocking with 3% Donkey Serum for 10 min. Primary antibody (List of IF
572 antibodies, Supplementary Table. S2) incubations were carried out sequentially for 1 hour
573 followed by two washes in TBST and incubation with corresponding secondary antibody, anti-Rat
574 HRP Polymer (Cell IDX, 2AH-100) for 30 min. The tissues were then washed twice in TBST and
575 developed using Tyramide Reagent (Tyramide 488, 555, or 647, ThermoFisher, or Tyramide 790,
576 AAT Bioquest) for 10 min and washed again 2X in deionized H₂O. The same steps from antigen
577 retrieval to development with Tyramides was repeated for each of the primary - secondary
578 antibody combinations. Tissues were counterstained with DAPI (1 μ g/ml) for 15 min and mounted
579 on to coverslip with Vectashield Vibrance/w DAPI (Vector, H-1800-10).

580

581 The slides were imaged using Zeiss Axio Scan Z1 slide scanner with a 20x 0.8NA objective,
582 Colibri7 light source, and high-efficiency filter sets. Whole slide images were analyzed using
583 QuPath 3.0 software with individual fluorescence channels (DAPI, 488, 555, 647 and 790) set at
584 constant thresholds across images and groups. Cell detection was performed using DAPI –
585 nucleus channel. Single measurement classifier was used to define positive and negative cells
586 on each channel, and sequential object classification was performed to detect cells positive one
587 or more specific markers. Tumor nodules in the liver were designated as regions of interest (ROI)
588 using PanCK staining and nuclear density changes on the DAPI channel compared to
589 corresponding normal liver which was then correlated to the H&E stains on serial sections. The
590 number of positive detections for each marker was normalized to the tumor area for each ROI.
591 Distance of each positive detection from the perimeter of the ROI was defined as “Distance from
592 Tumor Perimeter” and was normalized to the mean radius of the ROI to establish Mean Distance
593 Ratio (MDR) = (Σ (Distance in μ m of each cell of interest from tumor perimeter/mean radius of the
594 metastatic node)/Total number of cells of interest).

595

596 **Neoantigen detection assay**

597

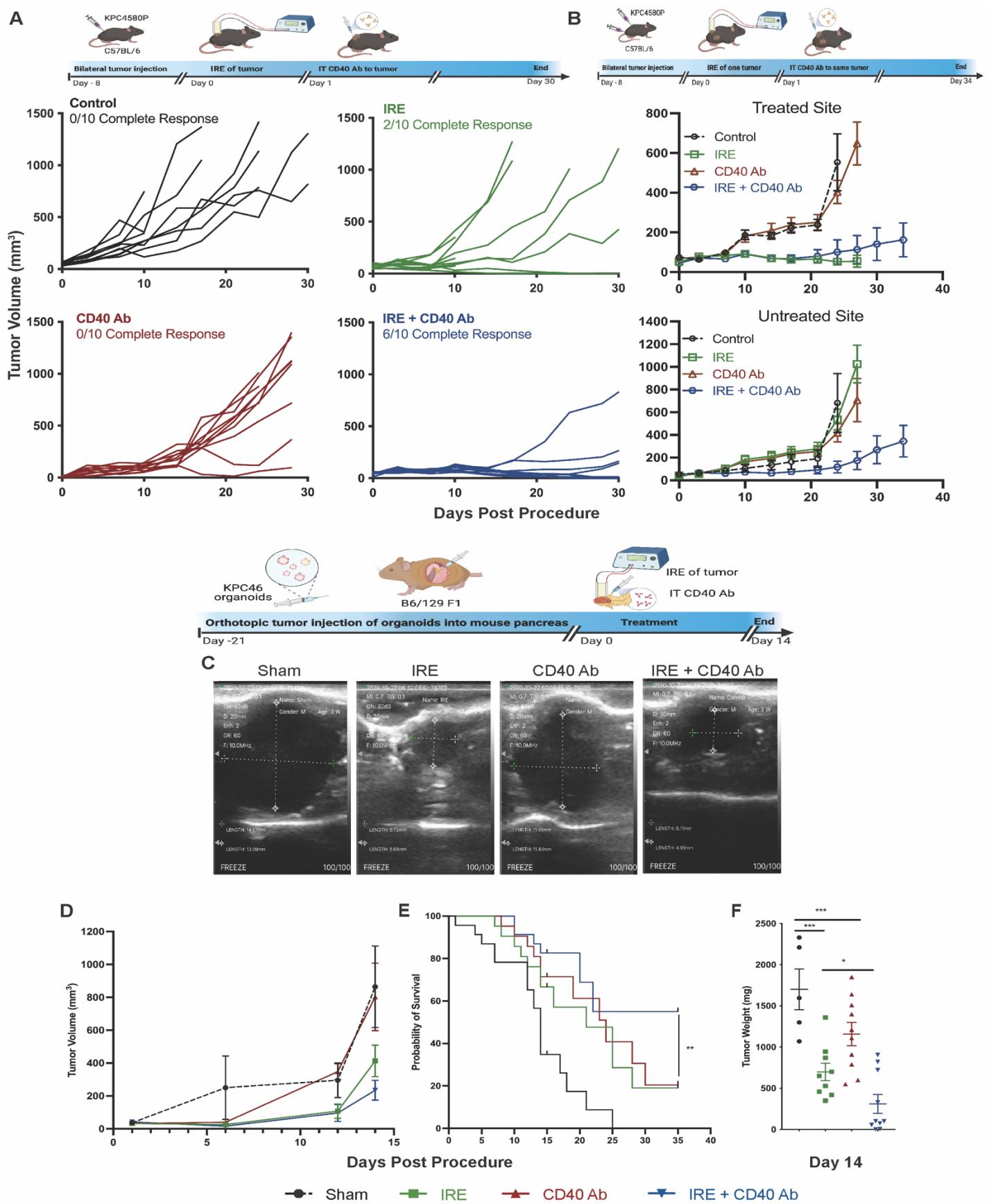
598 Untreated KPC4-6 orthtopic tumors were excised from euthanized B6/129 F1 J mice 21 days after
599 implantation. DNA and RNA were extracted from the tumor tissue using DNeasy mini kit (Qiagen)
600 and RNAeasy mini kit (Qiagen). Whole blood from the tail vein and tail snips from B6/129 F1 J
601 mice were collected for DNA and RNA extraction to be used as reference genome. Whole exome
602 sequencing and mRNA sequencing were performed using miSeq platform (Illumina) by Novogene
603 Technologies, Inc (Sacramento, CA). Expressed non-synonymous genetic variants present in the

604 tumor were identified by cross-referencing the DNA and RNA seq data against B6/129 genome
605 (NCBI SRA accession # SUB12107273). Variants were prioritized according to their ability to be
606 presented by MHC molecules using prediction algorithms [47]. Peptides (20 amino acids in length)
607 harboring these potential antigens at positions 6 and 15 were synthesized by TC peptide Labs
608 (San Diego, CA) and separated into peptide pools of 12 peptides each (List of KPC-46 peptides,
609 Supplementary Information). Bone marrow derived dendritic cells (BMDCs) were generated from
610 age and sex matched B6/129 mice as described earlier [28]. Briefly, tibia were excised
611 aseptically, and the bone marrow was collected. Cells were grown at a concentration of 1×10^6
612 cells/mL in media containing 20 ng/mL of IL-4 and GM-CSF, for 6 days and BMDCs in suspension
613 were collected on day 7. ELISPOT assay was performed as described earlier [24]. Briefly, The
614 BMDCs were incubated with 5 μ g/mL of mutant peptides pools to facilitate antigen presentation
615 for 1 day at 37° C. A pre-wet multiscreen-IP filter plate (Millipore) was coated with IFN γ capture
616 antibodies (AN18; Mabtech). 2×10^5 lymphocytes isolated from treatment-responsive mice were
617 incubated with 5 μ g/mL of the different mutant peptides pools to which 20,000 activated BMDCs
618 were added. 5 μ g/mL of concanavalin A (Sigma-Aldrich) was used as the positive stimulus control
619 and no peptide wells were used as negative control. Lymphocytes from mice subcutaneously
620 injected with irradiated 5×10^6 KPC-46 cells followed by live cell rechallenge were used as
621 vaccination controls (Vaccinated). IFN γ secretion was assessed biotinylated anti-mouse IFN γ (R4-
622 6A2; Mabtech) and imaged using an ELISPOT reader (AID Diagnostika). Wells with >2 standard
623 deviations more IFN γ reactive spots than the negative control were considered positive.
624

625 **Graphics**

626
627 The graphical representations, schematics and timelines used in the figures were created using
628 BioRender.com.
629

630 **Statistical Analysis**

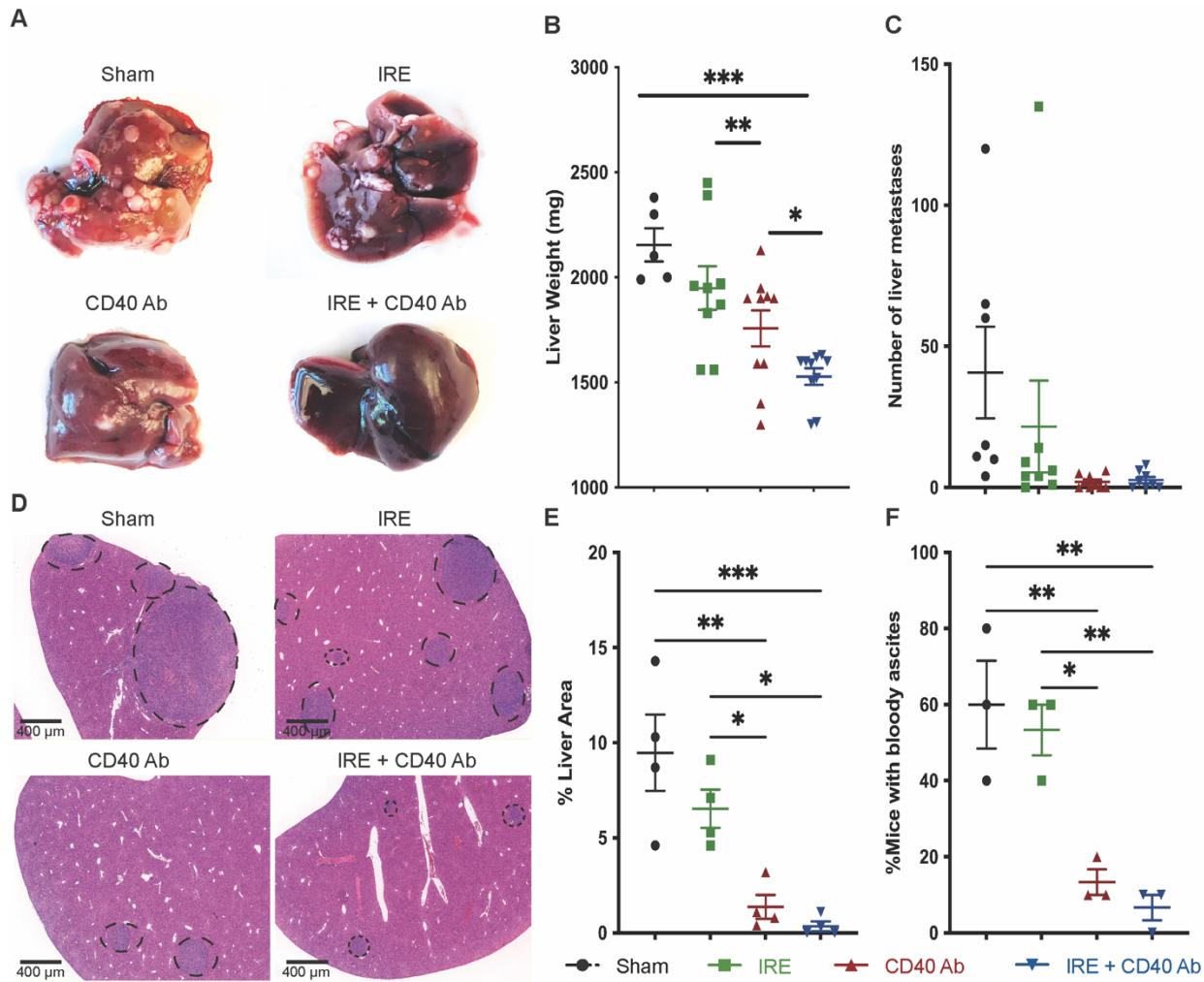

631
632 All results were expressed as means \pm standard error of the mean (SEM). Statistical difference
633 between groups was calculated either using the student's *t* test or ANOVA with post-hoc multiple
634 comparisons depending on the data, using GraphPad Prism 9.0 software. A value of $P < 0.05$
635 was considered significant.
636

637 **Data Availability**

638 All data relevant to the study are included in the article, supplementary data or uploaded to NCBI
639 SRA database. Other raw data are available upon reasonable request.

640

641 **FIGURES**



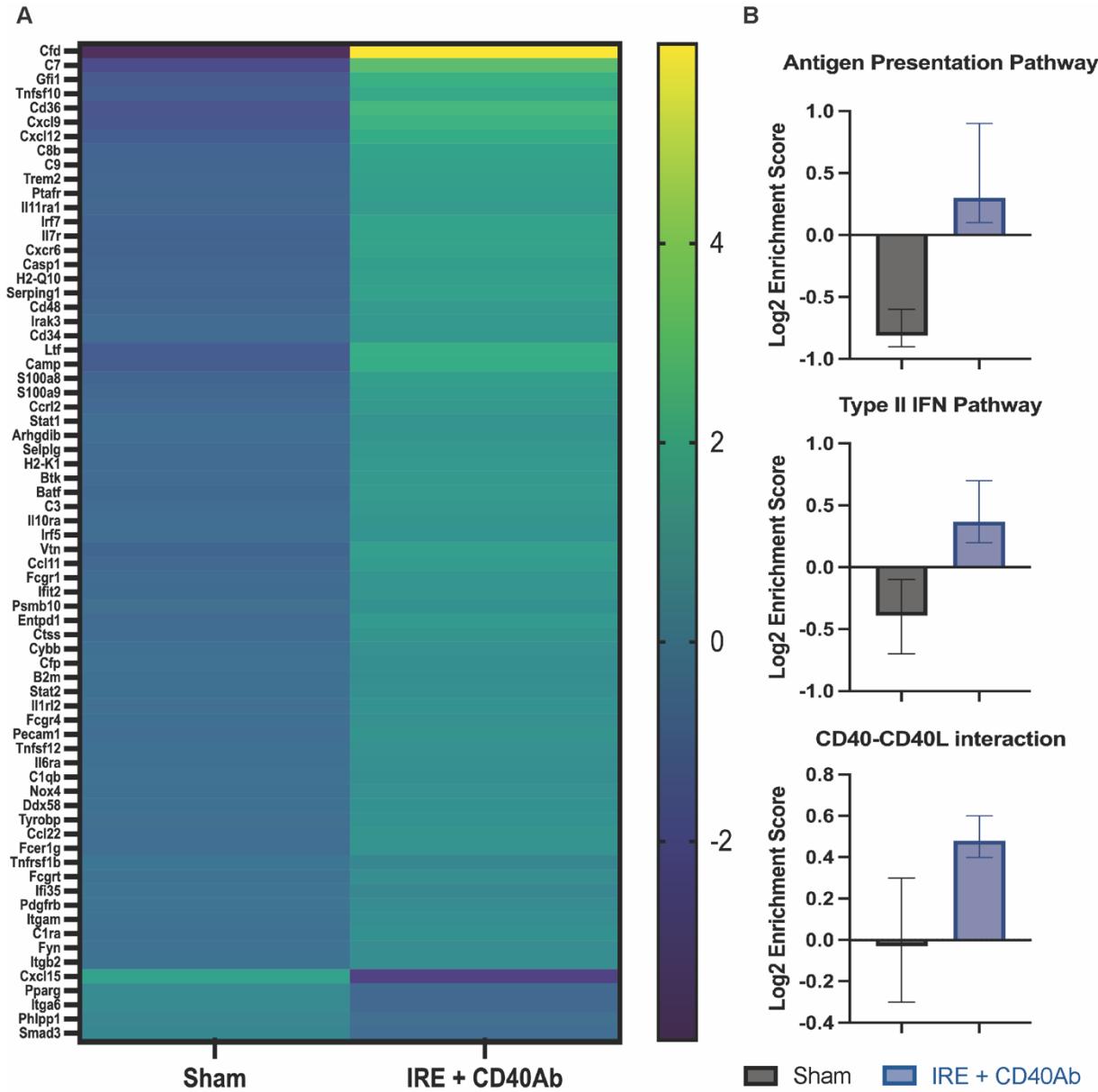
643 **Figure 1 – Combination of IRE with agonistic CD40Ab reduces tumor growth and improves**
644 **survival in subcutaneous and orthotopic organoid PDAC mouse models**

645 A – Subcutaneous KPC4580P tumor growth in C57BL/6 (n=10/group) mice implanted on one side
646 of the flanks at 8 days before IRE (5×10^5 cells/mouse). Each data point represents tumor volume
647 of a single mouse followed along the growth curve. B - Tumor growth curves of bilateral
648 subcutaneous KPC4580P tumors at the treated site (top) and untreated site (bottom), of n = 5
649 mice/group, implanted 8 days before IRE, followed by IT CD40 Ab injection on Day 1. Tumor
650 volumes were measured using calipers and plotted as mean \pm SEM. C – 30,000 murine PDAC
651 organoids KPC46 were injected into the pancreas of B6/129 F1 hybrid mice 21 days before
652 treatment. Ultrasound monitoring of orthotopic organoid tumors Day 7 post treatment showing
653 responses to treatment. Dotted lines show the dimensions of the orthotopic tumors under
654 ultrasound imaging. D — Tumor volumes were measured using ultrasound and plotted as mean
655 \pm SEM of n = 10 mice/group. E – Kaplan meier survival analysis of orthotopic organoid KPC46
656 tumor bearing mice post treatment (n=20 mice/group) cumulative of 3 independent experiments
657 showing significant survival benefit offered by IRE+CD40Ab combination **, p<0.01 by log rank
658 test. F – Tumor weights as a measure of primary tumor burden, tumors were excised from mice
659 upon euthanasia, 14 days post treatment, each data point represents single tumor weight
660 represented as mean \pm SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001 by one-way ANOVA with
661 post hoc Benferroni test.

662

663

664

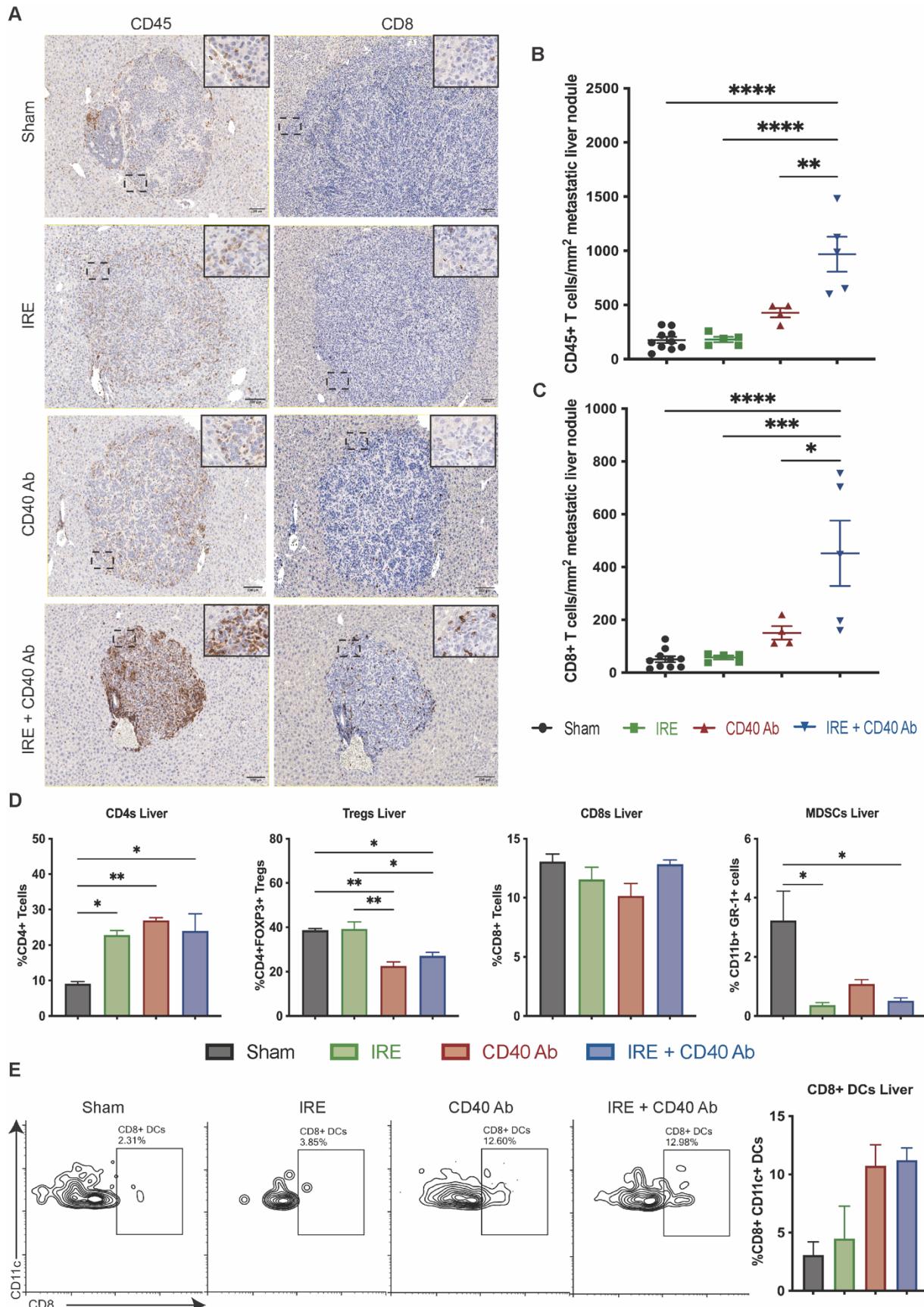

665

666 **Figure 2 – Combining IRE with CD40 agonistic activity inhibits tumor metastasis to the
667 liver**

668 A – Images of liver showing differences in metastasis. Whole livers were excised from orthotopic
669 organoid KPC46 tumor bearing B6129 F1 mice upon euthanasia 14 days post treatment under
670 different groups (n=10/group). B - Liver weights as a measure of metastatic burden with a
671 significant reduction in metastasis seen with IRE+CD40Ab combination, weights of whole liver
672 was measured in mice surviving 14 days post procedure each data point represents single liver
673 weight, represented as mean \pm SEM, E - Manual counting of visible metastatic nodules on the
674 liver as a measure of metastatic tumor burden D and E histological examination of mice liver
675 showing metastatic tumor nodules observed using H&E. Images were acquired using Zeiss slide
676 scanner at 20X objective and the % liver area occupied by the tumor was calculated using QuPath
677 plotted as mean \pm SEM 3 sections/mouse, 4 mice/group. F - Untreated mice are more likely to
678 develop bloody ascites upon tumor progression compared to CD40Ab or IRE+CD40Ab treatment.

679 Each dot represents percentage of mice with bloody ascites/experimental group plotted as a
680 mean of 3 independent experimental rounds. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not
681 significant, by one-way ANOVA with post hoc Benferroni multiple comparison test.

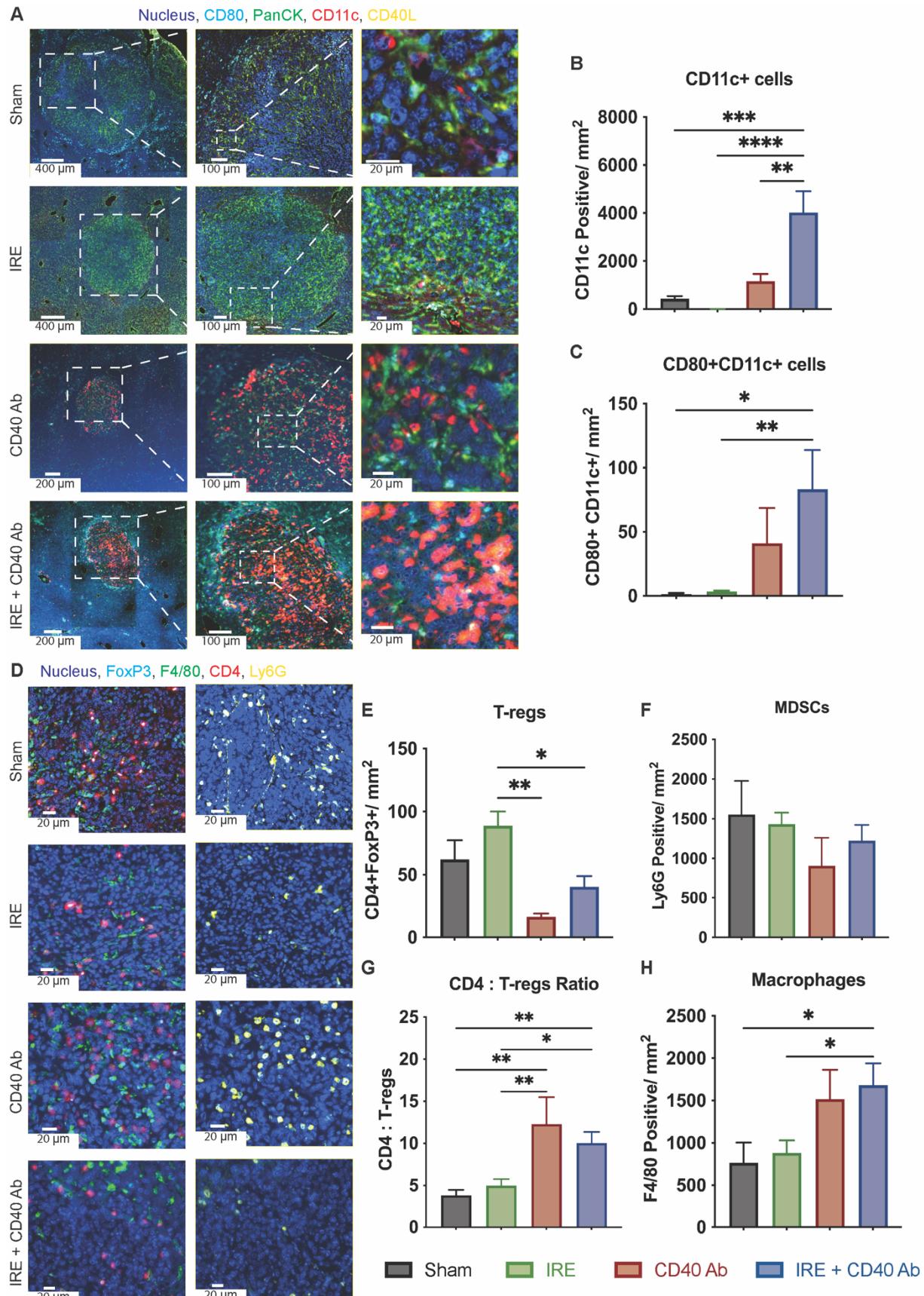
682


683

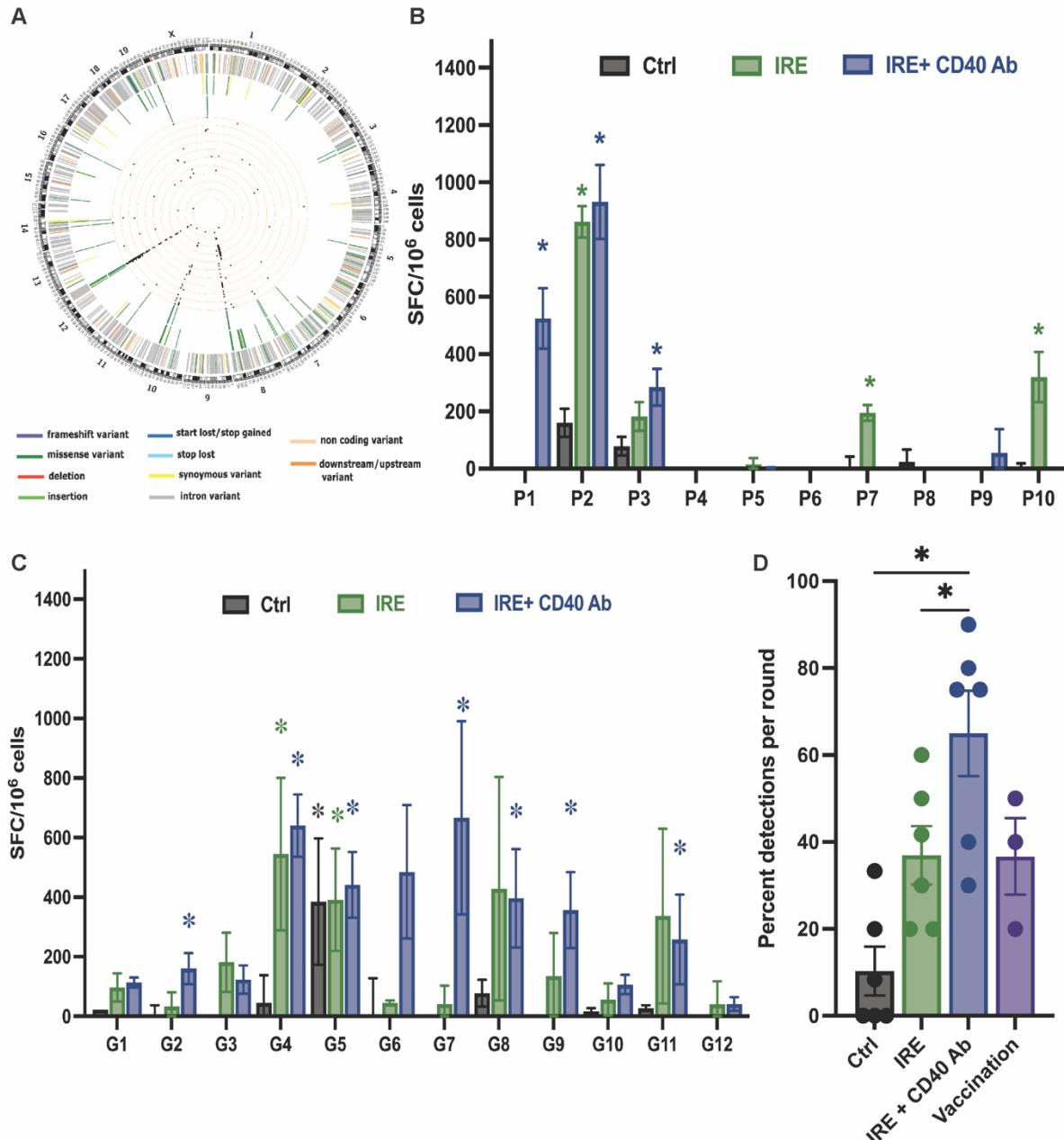
684

685 **Figure 3 – Activation of anti-tumor immune signaling pathways observed both locally and**
686 **systemically upon treatment with combination of IRE and CD40Ab**

687 A – RNA-Seq analysis of important immunoregulatory genes in the primary pancreatic tumor
688 between the 2 groups. Heat map represents fold change in the expression levels of critical genes
689 within tumor microenvironment between sham and IRE+CD40Ab groups (n=3/group) B – Gene


690 set enrichment analysis of immunological pathway related genes, represented as Log2
691 enrichment scores of antigen presentation pathway (Top), IFN signaling pathway (Middle) and
692 CD40 – CD40 L interaction pathway (Right) as mean \pm SD of n=3/group. Statistical analysis was
693 performed using 2-tailed student t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
694

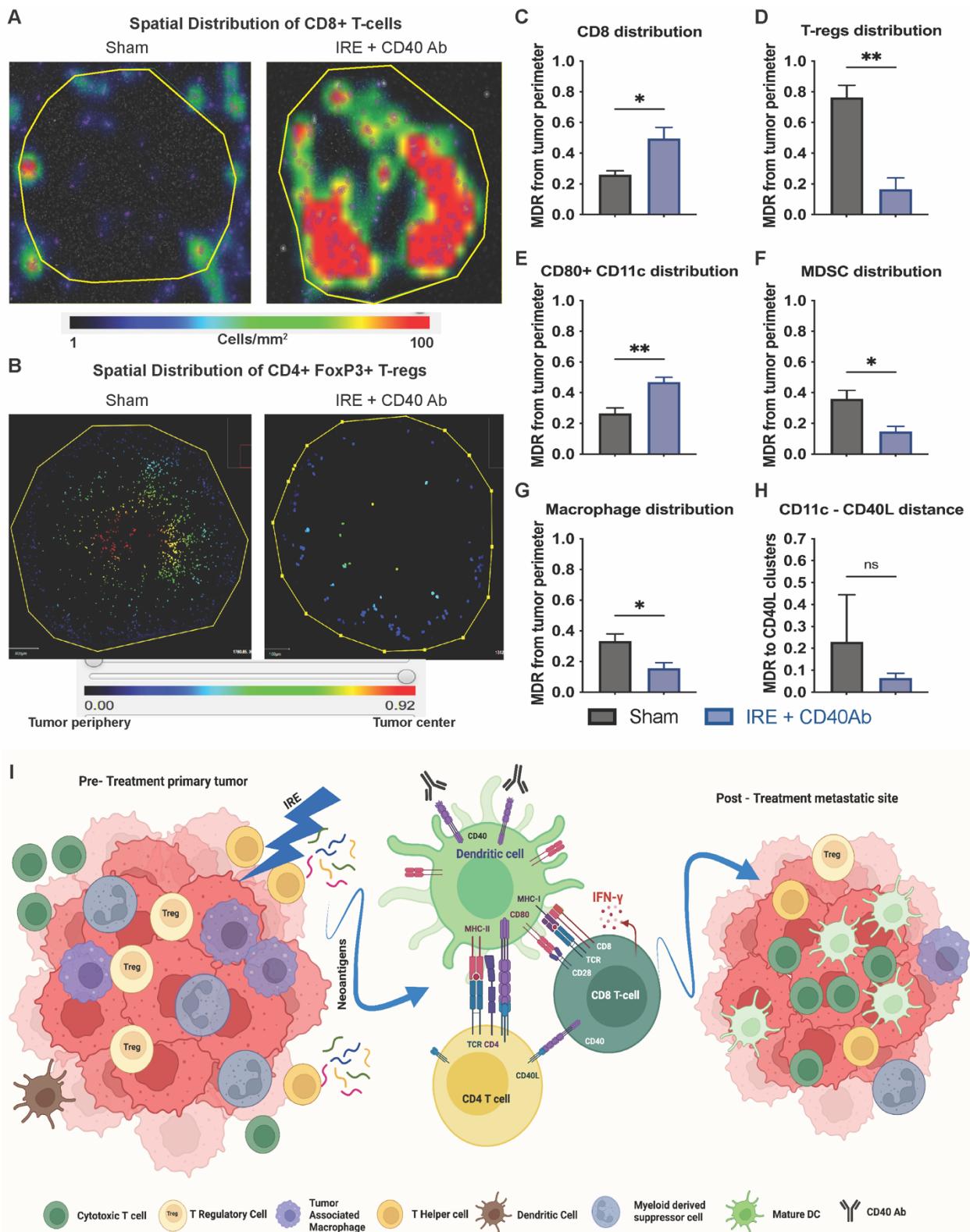
696 **Figure 4 - Immune infiltration in the liver shows that the combination of IRE and CD40 Ab
697 induces an immune mediated prevention of metastatic spread.**


698 A - IHC for CD45 and CD8 in the liver showing increased specific staining within the metastatic
699 tumor nodule, Images obtained using Leica Aperio slide scanner with 20X objective. Scale bar:
700 100 μ m. B - Quantification of CD45 and CD8 positive cells respectively, within the metastatic
701 tumor nodules of the liver was performed using QuPath 3.0, 3 mice/group including atleast 5
702 tumor nodules per group plotted as mean \pm SEM. C – Flow cytometry of immune infiltrates in the
703 metastatic site (bulk liver) performed on day 14 on whole liver (n=3/group) Decreased MDSCs
704 and Tregs with the increased infiltration of CD4+ T cells cells suggest an anti-tumor immune
705 activity at the distant metastatic site upon treatment with IRE+CD40Ab. D – Flow cytometry
706 analysis of liver showing increased presence of cross-presenting CD8+ dendritic cells. Graphs
707 plotted as mean \pm SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; by one-way ANOVA with post
708 hoc Benferroni multiple comparison test. Gating strategy is described in Supplementary data.

709

711 **Figure 5 – Multiplex immunofluorescence imaging shows an anti-tumor immune**
712 **microenvironment within metastatic liver nodules post treatment with IRE+CD40Ab.**
713 A – Representative multiplex fluorescence microscopy images on FFPE tissue sections of mice
714 liver showing metastatic nodes showing tumor infiltrating immune cells stained with either
715 Panel 1 – CD11c:Alexa 647(red), CD80:Alexa 488(Cyan), CD40 L:Alexa 790 (Yellow),
716 PanCK:Alexa 555(Green), DAPI (Blue), Scale bars set at 400 μ m (Low magnification Sham and
717 IRE), 200 μ m (Low magnification CD40 Ab and IRE+CD40Ab), 100 μ m (Medium magnification)
718 and 20 μ m (High magnification). B and C - Quantification of dendritic cell (CD11c+) and activated
719 dendritic cell (CD80+CD11c+) infiltration per mm² of the metastatic nodules was performed using
720 QuPath 3.0 software using atleast 5 different nodules spanning 3 biological replicates per group.
721 D- Representative multiplex immunofluorescence imaging of CD4 Alexa 647) (Red), F4/80 –
722 Alexa 555 (Green), Ly6G – Alexa 790 (Yellow), FoxP3 – 488 (Cyan), DAPI (Blue). Scale bars set
723 at 20 μ m). E - H – Quantification of T regulatory cell (CD4+FoxP3+), Macrophage (F4/80+) and
724 Myeloid Derived Suppressor Cell (MDSC – Ly6G+) infiltration to the metastatic nodules was
725 performed using QuPath 3.0 software using atleast 5 different nodules spanning 3 biological
726 replicates per group. The number of immune cells was normalized to the area of the nodes and
727 presented as mean \pm SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; by one-way ANOVA with post
728 hoc Benferroni multiple comparison test.

729



730

731 **Figure 6 - Combination of IRE and CD40 Ab triggers expansion of systemic tumor neo-
732 antigen specific T-cell response**

733 A - Circos plot showing the observed mutations in the KPC46 O tumor compared to B6/129 F1
734 hybrid background. First level (right next to cytogenic bands): all of the somatic mutations
735 identified by whole exome sequencing. Second level: mutations expressed by RNAseq. Third
736 level: histogram showing the level of RNA expression. Fourth level: 59 mutations selected for
737 peptide synthesis and ELISPOT based on high RNA expression and sequencing depth.
738 Representative IFN \square ELISPOT from (B) peptide pools (10 pools of 8-12 peptides each) or (C)

739 deconvoluted individual peptides of pool 2 using T cells isolated from groups of untreated tumor-
740 bearing mice (Ctrl), IRE- treated mice (IRE) and mice treated with a combination of IRE with IT
741 CD40 Ab (IRE+CD40Ab) rechallenged with live tumor cells. Data represent mean \pm SEM values
742 of spot forming cells/10⁶ cells from 3 independent mice per group in triplicates. Representative
743 graph of three independent experiments. *, P < 0.05; by two-way ANOVA with post hoc Tukey's
744 multiple comparison test. D – Measure of breadth of neoantigen detection by T-cells represented
745 as percentage of positive detections (2 standard deviations over the background IFN γ response
746 for that mouse) for each treatment group among total available antigens for that round. Each dot
747 represents a single round of detection of multiple pools/peptides mean \pm SEM.
748

749

750 **Figure 7 –Decreased spatial restriction of infiltrating effector immune cells in the liver**
751 **observed post treatment with IRE+CD40Ab**

752 A - Representative heat map overlay depicting the density of CD8+ T cells around tumor perimeter
753 shows higher concentration of CD8 T cells within the tumor perimeter post treatment with
754 IRE+CD40Ab. B – Heatmap of spatial analysis of CD4+ FoxP3+ positive regulatory T cell (T –
755 reg) infiltration in the liver metastases with pseudo colors ranging from blue indicating cells closest
756 to the tumor perimeter to red indicating closest to the center of the tumor (Scale MDR = 0 – 0.92).
757 Images show that not only were the number of T - regs reduced upon IRE+CD40Ab treatment but
758 the distribution of the T - regs was restricted to the periphery of the tumor post treatment. (C-G)
759 Spatial distribution of various immune populations were calculated using QuPath. The distance
760 from the defined tumor perimeter was calculated for each cell of interest and normalized to the
761 size of the corresponding node. Mean Distance ratio (MDR) = ($\frac{\text{Distance in } \mu\text{m of each cell of interest from tumor perimeter}}{\text{mean radius of the metastatic node}}$)/Total number of cells of interest). An MDR = 0 represents cells at tumor perimeter and an MDR =1, represents cells at the
762 farthest distance from the perimeter (i.e., the centroid of the tumor). MDR values for at least 3
763 different biological replicates was calculated and the data presented as mean \pm SEM. *, P < 0.05;
764 **, P < 0.01; ***, P < 0.001; by two-tailed student t test of Sham vs IRE+CD40Ab. H – MDR
765 Measures the distance between a CD11c+ cell and a CD40 L expressing cluster as a measure of
766 proximity between the markers, which is needed for DC maturation. I – a schematic representation
767 showing IRE of pancreatic tumors releases tumor specific neo-antigens. Enhanced maturation
768 and activation of dendritic cells by the addition of CD40 Ab enables a broader recognition of these
769 neoantigens thereby resulting the activation of a systemic anti-tumor immune response, this can
770 be evidenced by an increased infiltration of effector immune cells and a restricted infiltration of
771 immunosuppressive cells at the distant metastatic sites in the liver.
772
773

774

775 **CONTRIBUTIONS STATEMENT**

776 JSSN performed the experiments. JSSN and RRW designed the experiments. JSSN, TH, AM,
777 DC, SPS and RRW analyzed and interpreted the data. TH, SE, SMA, HT, PR and ZM provided
778 technical and material support for the experiments. MP and KM provided support for statistical
779 analysis. JSSN and RRW wrote the manuscript. TH, ZM, PR, DC and SPS edited the
780 manuscript. All authors reviewed the manuscript. RRW conceived and supervised the study.
781

782

783 **ACKNOWLEDGEMENTS**

784 Histology support was provided by Biorepository and Tissue Technology Shared Resource
(BTTSR) of Moores Cancer Center, UCSD. Bioinformatics support for mutanome analysis was

785 provided by Ashmitaa Premlal and Jason Greenbaum of Bioinformatics core facility at La Jolla
786 Institute of Immunology.

787

788 FUNDING SUPPORT

789 Research presented in this manuscript was supported by NIH R01CA254268 and the San
790 Diego Cancer Centers Council Padres Pedal the Cause (#PTC2017). The UCSD Moores
791 Cancer Center Biorepository and Tissue Technology Shared Resource is funded by the NIH
792 (P30CA23100). The content is solely the responsibility of the authors and does not necessarily
793 represent the official views of the NIH.

794

795 REFERENCES

- 796 1. *Surveillance, Epidemiology, and End Results (SEER) Program* (www.seer.cancer.gov)
797 *SEER*Stat Database: Incidence - SEER Research Data, 8 Registries, Nov 2021 Sub*
798 *(1975-2019)*.
- 799 2. Iacobuzio-Donahue, C.A., B. Fu, S. Yachida, et al., DPC4 gene status of the primary
800 carcinoma correlates with patterns of failure in patients with pancreatic cancer. *J Clin*
801 *Oncol*, 2009. 27 (11): p. 1806-13.
- 802 3. Tempero, M.A., M.P. Malafa, M. Al-Hawary, et al., Pancreatic Adenocarcinoma, Version
803 2.2021, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc Netw*, 2021.
804 19 (4): p. 439-457.
- 805 4. Von Hoff, D.D., T. Ervin, F.P. Arena, et al., Increased survival in pancreatic cancer with
806 nab-paclitaxel plus gemcitabine. *N Engl J Med*, 2013. 369 (18): p. 1691-703.
- 807 5. Conroy, T., F. Desseigne, M. Ychou, et al., FOLFIRINOX versus gemcitabine for
808 metastatic pancreatic cancer. *N Engl J Med*, 2011. 364 (19): p. 1817-25.
- 809 6. Davalos, R.V., I.L. Mir, and B. Rubinsky, Tissue ablation with irreversible electroporation.
810 *Ann Biomed Eng*, 2005. 33 (2): p. 223-31.
- 811 7. Lee, E.W., C.T. Loh, and S.T. Kee, Imaging guided percutaneous irreversible
812 electroporation: ultrasound and immunohistological correlation. *Technol Cancer Res*
813 *Treat*, 2007. 6 (4): p. 287-94.
- 814 8. Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, The effect of irreversible electroporation on
815 blood vessels. *Technol Cancer Res Treat*, 2007. 6 (4): p. 307-12.
- 816 9. Garnier, J., O. Turrini, A.S. Chretien, and D. Olive, Local Ablative Therapy Associated
817 with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome
818 the Double Trouble? A Comprehensive Review. *J Clin Med*, 2022. 11 (7).
- 819 10. Sugumar, K., A. Hurtado, I. Naik, et al., Multimodal therapy with or without irreversible
820 electroporation for unresectable locally advanced pancreatic adenocarcinoma: a
821 systematic review and meta-analysis. *HPB (Oxford)*, 2022. 24 (5): p. 586-595.
- 822 11. Moris, D., N. Machairas, D.I. Tsilimigras, et al., Systematic Review of Surgical and
823 Percutaneous Irreversible Electroporation in the Treatment of Locally Advanced
824 Pancreatic Cancer. *Ann Surg Oncol*, 2019. 26 (6): p. 1657-1668.
- 825 12. Holland, M.M., N. Bhutiani, E.J. Kruse, et al., A prospective, multi-institution assessment
826 of irreversible electroporation for treatment of locally advanced pancreatic
827 adenocarcinoma: initial outcomes from the AHPBA pancreatic registry. *HPB (Oxford)*,
828 2019.

829 13. Woeste, M.R., K.D. Wilson, E.J. Kruse, et al., Optimizing Patient Selection for
830 Irreversible Electroporation of Locally Advanced Pancreatic Cancer: Analyses of
831 Survival. *Front Oncol*, 2021. 11: p. 817220.

832 14. Ruarus, A.H., L. Vroomen, B. Geboers, et al., Percutaneous Irreversible Electroporation
833 in Locally Advanced and Recurrent Pancreatic Cancer (PANFIRE-2): A Multicenter,
834 Prospective, Single-Arm, Phase II Study. *Radiology*, 2020. 294 (1): p. 212-220.

835 15. Narayanan, G., P.J. Hosein, I.C. Beulaygue, et al., Percutaneous Image-Guided
836 Irreversible Electroporation for the Treatment of Unresectable, Locally Advanced
837 Pancreatic Adenocarcinoma. *J Vasc Interv Radiol*, 2017. 28 (3): p. 342-348.

838 16. Martin, R.C., 2nd, D. Kwon, S. Chalikonda, et al., Treatment of 200 locally advanced
839 (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety
840 and efficacy. *Ann Surg*, 2015. 262 (3): p. 486-94; discussion 492-4.

841 17. Huang, K.W., P.C. Yang, U. Pua, et al., The efficacy of combination of induction
842 chemotherapy and irreversible electroporation ablation for patients with locally advanced
843 pancreatic adenocarcinoma. *J Surg Oncol*, 2018. 118 (1): p. 31-36.

844 18. Neal, R.E., 2nd, J.H. Rossmeisl, Jr., J.L. Robertson, et al., Improved local and systemic
845 anti-tumor efficacy for irreversible electroporation in immunocompetent versus
846 immunodeficient mice. *PLoS One*, 2013. 8 (5): p. e64559.

847 19. Li, X., K. Xu, W. Li, et al., Immunologic response to tumor ablation with irreversible
848 electroporation. *PLoS One*, 2012. 7 (11): p. e48749.

849 20. Garcia, P.A., B. Kos, J.H. Rossmeisl, Jr., D. Pavliha, D. Miklavcic, and R.V. Davalos,
850 Predictive therapeutic planning for irreversible electroporation treatment of spontaneous
851 malignant glioma. *Med Phys*, 2017. 44 (9): p. 4968-4980.

852 21. Zhao, J., X. Wen, L. Tian, et al., Irreversible electroporation reverses resistance to
853 immune checkpoint blockade in pancreatic cancer. *Nat Commun*, 2019. 10 (1): p. 899.

854 22. He, C., J. Wang, S. Sun, Y. Zhang, and S. Li, Immunomodulatory Effect after Irreversible
855 Electroporation in Patients with Locally Advanced Pancreatic Cancer. *J Oncol*, 2019.
856 2019: p. 9346017.

857 23. Scheffer, H.J., A.G.M. Stam, B. Geboers, et al., Irreversible electroporation of locally
858 advanced pancreatic cancer transiently alleviates immune suppression and creates a
859 window for antitumor T cell activation. *Oncoimmunology*, 2019. 8 (11): p. 1652532.

860 24. Narayanan, J.S.S., P. Ray, T. Hayashi, et al., Irreversible Electroporation Combined with
861 Checkpoint Blockade and TLR7 Stimulation Induces Antitumor Immunity in a Murine
862 Pancreatic Cancer Model. *Cancer Immunol Res*, 2019. 7 (10): p. 1714-1726.

863 25. Partridge, B.R., T.J. O'Brien, M.F. Lorenzo, et al., High-Frequency Irreversible
864 Electroporation for Treatment of Primary Liver Cancer: A Proof-of-Principle Study in
865 Canine Hepatocellular Carcinoma. *J Vasc Interv Radiol*, 2020. 31 (3): p. 482-491 e4.

866 26. Ringel-Scaia, V.M., N. Beitel-White, M.F. Lorenzo, et al., High-frequency irreversible
867 electroporation is an effective tumor ablation strategy that induces immunologic cell
868 death and promotes systemic anti-tumor immunity. *EBioMedicine*, 2019. 44: p. 112-125.

869 27. Shao, Q., S. O'Flanagan, T. Lam, et al., Engineering T cell response to cancer antigens
870 by choice of focal therapeutic conditions. *Int J Hyperthermia*, 2019. 36 (1): p. 130-138.

871 28. Naqvi, I., R. Gunaratne, J.E. McDade, et al., Polymer-Mediated Inhibition of Pro-invasive
872 Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. *Mol Ther*,
873 2018. 26 (4): p. 1020-1031.

874 29. Shankara Narayanan, J.S., P. Ray, I. Naqvi, and R. White, A Syngeneic Pancreatic
875 Cancer Mouse Model to Study the Effects of Irreversible Electroporation. *J Vis Exp*,
876 2018. (136).

877 30. Sanchez, P.J., J.A. McWilliams, C. Haluszczak, H. Yagita, and R.M. Kedl, Combined
878 TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell
879 expression of CD70 in vivo. *J Immunol*, 2007. 178 (3): p. 1564-72.

880 31. Vonderheide, R.H., D.L. Bajor, R. Winograd, R.A. Evans, L.J. Bayne, and G.L. Beatty,
881 CD40 immunotherapy for pancreatic cancer. *Cancer Immunol Immunother*, 2013. 62
882 (5): p. 949-54.

883 32. Royal, R.E., C. Levy, K. Turner, et al., Phase 2 trial of single agent Ipilimumab (anti-
884 CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. *J Immunother*,
885 2010. 33 (8): p. 828-33.

886 33. O'Reilly, E.M., D.Y. Oh, N. Dhani, et al., Durvalumab With or Without Tremelimumab for
887 Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized
888 Clinical Trial. *JAMA Oncol*, 2019.

889 34. Winograd, R., K.T. Byrne, R.A. Evans, et al., Induction of T-cell Immunity Overcomes
890 Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in
891 Pancreatic Carcinoma. *Cancer Immunol Res*, 2015. 3 (4): p. 399-411.

892 35. Byrne, K.T., C.B. Betts, R. Mick, et al., Neoadjuvant selicrelumab, an agonist CD40
893 antibody, induces changes in the tumor microenvironment in patients with resectable
894 pancreatic cancer. *Clin Cancer Res*, 2021.

895 36. O'Hara, M.H., E.M. O'Reilly, G. Varadhachary, et al., CD40 agonistic monoclonal
896 antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the
897 treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase
898 1b study. *Lancet Oncol*, 2021. 22 (1): p. 118-131.

899 37. Conroy, T., P. Hammel, M. Hebbar, et al., FOLFIRINOX or Gemcitabine as Adjuvant
900 Therapy for Pancreatic Cancer. *N Engl J Med*, 2018. 379 (25): p. 2395-2406.

901 38. Kluger, M.D., M.F. Rashid, V.L. Rosario, et al., Resection of Locally Advanced
902 Pancreatic Cancer without Regression of Arterial Encasement After Modern-Era
903 Neoadjuvant Therapy. *J Gastrointest Surg*, 2018. 22 (2): p. 235-241.

904 39. O'Neill, C., T. Hayat, J. Hamm, et al., A phase 1b trial of concurrent immunotherapy and
905 irreversible electroporation in the treatment of locally advanced pancreatic
906 adenocarcinoma. *Surgery*, 2020. 168 (4): p. 610-616.

907 40. Liudahl, S.M., C.B. Betts, S. Sivagnanam, et al., Leukocyte Heterogeneity in Pancreatic
908 Ductal Adenocarcinoma: Phenotypic and Spatial Features Associated with Clinical
909 Outcome. *Cancer Discov*, 2021. 11 (8): p. 2014-2031.

910 41. Carstens, J.L., P. Correa de Sampaio, D. Yang, et al., Spatial computation of
911 intratumoral T cells correlates with survival of patients with pancreatic cancer. *Nat
912 Commun*, 2017. 8: p. 15095.

913 42. Masugi, Y., T. Abe, A. Ueno, et al., Characterization of spatial distribution of tumor-
914 infiltrating CD8(+) T cells refines their prognostic utility for pancreatic cancer survival.
915 *Mod Pathol*, 2019. 32 (10): p. 1495-1507.

916 43. Irenaeus, S.M.M., D. Nielsen, P. Ellmark, et al., First-in-human study with intratumoral
917 administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies.
918 *Int J Cancer*, 2019.

919 44. Boj, S.F., C.I. Hwang, L.A. Baker, et al., Organoid models of human and mouse ductal
920 pancreatic cancer. *Cell*, 2015. 160 (1-2): p. 324-38.

921 45. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold change and
922 dispersion for RNA-seq data with DESeq2. *Genome Biology*, 2014. 15 (12): p. 550.

923 46. Bankhead, P., M.B. Loughrey, J.A. Fernández, et al., QuPath: Open source software for
924 digital pathology image analysis. *Scientific Reports*, 2017. 7 (1): p. 16878.

925 47. McCann, K., A. von Witzleben, J. Thomas, et al., Targeting the tumor mutanome for
926 personalized vaccination in a TMB low non-small cell lung cancer. *J Immunother
927 Cancer*, 2022. 10 (3).

928