

1 Combined Developmental Toxicity Of Cyhalofop-butyl And
2 Quizalofop-p-ethyl On The Zebrafish (*Danio rerio*) Embryos

3 Li Liu^a, Dongmei Wang^b, Ping Li^b, Huan Zhao^{a*}

4 ^a Chongqing University, Chongqing, 400030, China

5 ^b Yangzhou Polytechnic College, Yangzhou 225009, China

6

7 *Corresponding author: Huan Zhao

8 Email: zhaohuan02@cqu.edu.cn

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 **Abstract**

41 Aryloxyphenoxypropionate herbicides have the characteristics of high efficiency,
42 low toxicity, and safety to subsequent crops, and occupy an important position in the
43 world herbicide market. Cyhalofop-butyl and quizalofop-p-ethyl are two
44 representative herbicides, which are widely used in weed control. However, there is
45 limited information on their combined toxicity to aquatic organisms. In this study, the
46 developmental toxicity of cyhalofop-butyl and quizalofop-p-ethyl exposure in
47 combination on zebrafish embryos was evaluated to better understand the interaction
48 between the two. The 96 h-LC₅₀ (50% lethal concentration) of cyhalofop-butyl and
49 quizalofop-p-ethyl on zebrafish embryos were 0.637 mg·L⁻¹ and 0.248 mg·L⁻¹,
50 respectively. The combined effect of cyhalofop-butyl and quizalofop-p-ethyl was an
51 antagonistic effect, and the 96 h-LC₅₀ of zebrafish embryos was 1.043 mg·L⁻¹.
52 Morphologically distinct pericardial edema and yolk cysts were observed after
53 combined exposure, with significant effects on body length and heart rate in zebrafish
54 embryos. At the same time, the mRNA levels of gene related to apoptosis and cardiac
55 development also changed significantly. Therefore, we speculate that changes in
56 genes related to apoptosis and cardiac development should be responsible for the
57 abnormal development during embryonic development following co-exposure of
58 cyhalofop-butyl and quizalofop-p-ethyl.

59

60

61 **Keywords:** Cyhalofop-butyl; Quizalofop-p-ethyl; Combined toxicity;
62 Developmental toxicity; Apoptosis ; Cardiac development

63

64

65

66

67

68

69 **Highlights**

70

71 ● Combined exposure caused deformities in zebrafish.

72 ● Combined exposure caused apoptosis in zebrafish.

73 ● Combined exposure altered the expression of apoptosis and cardiac-related genes

74 in zebrafish.

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97 **1. Introduction**

98 Like most other water pollutants, pesticides can enter hydrological systems
99 through diffusion pathways (non-point sources) from specific release points (point
100 sources) and deposition and surface runoff (Chang et al., 2020; Hladik et al., 2014).
101 While aquatic organisms are often exposed to a variety of pollutants, a variety of
102 pesticides combine to produce different toxic effects. However, most of the current
103 studies have only assessed the effects of a single compound on aquatic organisms
104 (Zhu et al., 2015). Therefore, when assessing the harm of pesticides to aquatic
105 organisms, the effect of combined exposure to pesticides should be fully considered.
106 Aryloxyphenoxypropionate compounds are a class of highly active herbicides, and
107 their mechanism of action is to inhibit the activity of acetyl-CoA carboxylase
108 (ACCase) in gramineous plants, and occupy an important position in the world
109 herbicide market (Cummins and Edwards, 2004; Kukorelli et al., 2013). Studies have
110 shown that the combined toxicity of fenoxaprop-ethyl and cyhalofop-butyl was
111 evaluated, and it was found that these two herbicides could reduce the content of
112 chlorophyll a and b in duckweed (Fan et al., 2006). The fenoxaprop-ethyl toxicity is
113 highly toxic and has certain genotoxicity to grass carp (Chen et al., 2006). Therefore,
114 it is of great significance to strengthen the research on the toxicology of
115 aryloxyphenoxypropionate herbicides.

116 Cyhalofop-butyl is a new type of highly effective aryloxyphenoxypropionic acid
117 herbicide widely used for weed control in paddy fields (Zuo et al., 2016).
118 Unfortunately, cyhalofop-butyl in rice fields will inevitably cause this herbicide to
119 enter the aquatic environment and disturb the balance of farmland ecosystem (Xia et
120 al., 2018; Yuan et al., 2019). Previous studies have shown that 7-day exposure of
121 0.662 mg/L cyhalofop-butyl to *misgurnus anguillicaudatus* will lead to vacuolation
122 and swelling of liver cells, and with the extension of exposure time, cell lysis, nuclear
123 deformation and nuclear pyknosis will also appear (Shang et al., 2019).

124 Quizalofop-p-ethyl is a selective transport agent for stems and leaves of
125 aryloxyphenoxypropionate (Li et al., 2012). Some studies have pointed out that

126 quizalofop-p-ethyl will pollute water bodies, possibly affecting the aquatic ecological
127 environment and aquatic organisms (Belfroid et al., 1998). At present, the biotoxicity
128 of quizalofop-p-ethyl, such as genotoxicity (Mustafa and Arikan, 2008), reproductive
129 toxicity (Zhu et al., 2017) and hepatotoxicity (Elefsiniotis et al., 2007) has been
130 reported. For example, some studies have found that quizalofop-p-ethyl can affect
131 the biological indicators such as molting and reproduction of the parent daphnia
132 magna (Yang-Guang et al., 2013). The research team also found that the acute toxicity
133 of quizalofop-p-ethyl to zebrafish adults was high, and both of them affected the
134 activity of ATPase (Yang-Guang, 2012). Zhu et al. (2017) revealed for the first time
135 that quizalofop-p-ethyl as an endocrine disrupting chemical (EDC) destroyed the
136 endocrine system of zebrafish. In addition, quizalofop-p-ethyl aggravated
137 cardiotoxicity due to inflammatory reaction, which affected the development of
138 zebrafish embryos (Zhu et al., 2022).

139 Because zebrafish has the advantages of small size, low feeding cost, strong
140 reproduction ability, transparent embryo, short test cycle and high similarity between
141 genes and human genes, it is widely used in water quality testing experiments for
142 environmental pollutant toxicity assessment (Howe et al., 2013). The zebrafish model
143 used to study human diseases is widely accepted in various fields, including
144 developmental genetics, toxicology, cancer and regeneration (Shaukat et al., 2011;
145 Wolfram and Sadler, 2018; Yan et al., 2016). In this study, the acute lethal and
146 developmental toxicity effects of cyhalofop-butyl, quizalofop-p-ethyl and binary
147 mixtures on zebrafish embryos were detected. The purpose of this study is to reflect
148 the potential threat of joint toxicity of pesticides to aquatic organisms, so as to provide
149 necessary basic data for comprehensive assessment of pesticide compound pollution
150 risk.

151

152 **2. Materials and methods**

153 This study was approved by the research ethics from Chongqing University. The
154 study was carried out under the Guidance of the Care and Use of Laboratory Animals

155 in China.

156 2.1 Materials and reagents

157 98% cyhalofop-butyl (CAS: 122008-85-9) and 95% quizalofop-p-ethyl (CAS:
158 100646-51-3) was obtained from Anhui Futian Agrochemical CO., Ltd and Shandong
159 China Jingbo Agrochemicals CO., LTD. Preparation of drug exposure stock solution
160 with acetone AR, and all reagents used in the study are analytical grade.

161 2.2 Maintenance of zebrafish

162 The parental zebrafish were AB wild type. In the zebrafish culture system, the
163 temperature was $27\pm1^{\circ}\text{C}$, and the light-dark period was 14 h:10 h. During the breeding
164 period, the mortality rate was kept below 5%, and the shrimp were fed twice a day.
165 Embryo acute toxicity and developmental toxicity tests were performed according to
166 the previous reported method (Mu et al., 2016).

167 2.3 Toxicity test of zebrafish

168 2.3.1 Acute toxicity test of cyhalofop-butyl and quizalofop-p-ethyl

169 In the acute toxicity experiment, embryos within 2 hours after fertilization (hpf)
170 were collected according to the OECD standards (OECD, 1992) and exposed to
171 cyhalofop-butyl and quizalofop-p-ethyl 96 hpf. The combined exposure was based on
172 the LC₅₀ values of single cyhalofop-butyl and quizalofop-p-ethyl determined, and a
173 ratio of toxicity units of 1:1 was used in the experimental design. All test solutions
174 were made in 150ml small beakers, each containing 100 ml of exposure solution for
175 20 larvae. There were three replicates for each concentration group. The recombinant
176 water without cyhalofop-butyl and quizalofop-p-ethyl was used as a blank control (0
177 mg/L), and a solution with the same acetone content as the highest concentration was
178 arranged as the solvent control, see [Table 1](#) for the specific concentration setting. The
179 deformity and death of larvae were observed every 24 h, and the dead individuals
180 were removed in time. The LC₅₀ was calculated by replacing 3/4 volume of liquid
181 every 24 h. Combined toxicity assessment was performed according to Marking's
182 Additional Index (AI) method for combined effects of aquatic toxicology (Marking,
183 1984). The formula is as follows:

184 $S = (Am/Ai) + (Bm/Bi) + (Cm/Ci)$

185 $S < 1.0: AI = (1/S) - 1 ; \quad S \geq 1.0: AI = -S + 1.0$

186 S: total biological activity. A, B and C: the compounds in the mixture, i :
187 individual LC₅₀ value for A, B, or C. m: LC₅₀ of A, B, or C in mixture. The AI value
188 can be obtained by substituting the calculated S value into the formula. When AI < 0,
189 the joint toxic effect of the mixture is antagonistic, when AI=0, it is additive, and
190 when AI > 0, it is synergistic, and the larger AI value, the stronger the synergistic
191 effect.

192 2.4 Embryonic development toxicity of co-exposure

193 According to the LC₅₀ of cyhalofop-butyl and quizalofop-p-ethyl, two
194 concentrations and one solvent control were set, and each concentration was set in
195 triplicate. The concentrations of cyhalofop-butyl were set to 0.166 and 0.333 mg/L,
196 and the concentrations of quizalofop-p-ethyl were set to 0.065 and 0.129 mg/L. The
197 combined exposure concentration of cyhalofop-butyl + quizalofop-p-ethyl was set to
198 0.166 mg/L + 0.065 mg/L, 0.333 mg/L+0.129 mg/L. For each concentration, 200
199 normally developing embryos were randomly selected and placed into a 1000 mL
200 beaker containing 600mL of exposure solution. The experimental group and control
201 group were exposed to 27±1 °C incubator for 96 h, the light-dark cycle was 14 h: 10 h,
202 and the reagent was changed every 24 h. The spontaneous movement of 24 hpf,
203 hatching rate of 96 hpf, heart rate, body length of larvae (Aigo ge-5, China) and
204 deformity rate (Olympus BH-2 dissecting microscope) were recorded. At the end of
205 exposure, 50 zebrafish larvae at each concentration were randomly selected for the
206 determination of apoptosis enzyme activity and 30 zebrafish larvae for the
207 determination of genes related to apoptosis and heart development.

208 2.5 Measurement of apoptosis enzyme activity

209 The caspase-3, caspase-9 activity and the total protein of samples was measured
210 by caspase assay kit and BCA protein kit according to the manufacturer's method
211 (Beyotime Institute of Biotechnology, Haimen, China).

212 2.6 Gene expression analysis

213 RNA was extracted from each replicated zebrafish embryo using Trizol (Tiangen
214 Biotech, China) and reverse transcribed by a quant cDNA (First strand
215 complementary DNA) synthesis RTase Kit (Tiangen Biotech, China). Quantitative
216 real-time polymerase chain reaction (qRT-PCR) was performed SuperReal PreMix
217 Plus kit (Tiangen Biotech, China) by ABI 7500 Q-PCR system (Applied Biosystems,
218 USA). Reaction system conditions and primer sequences are detailed in the
219 [Supplementary Material](#). The housekeeping gene beta-actin (β -actin) was used as the
220 reference gene and was quantified by $2^{-\Delta\Delta Ct}$ method. All measurements were
221 performed in triplicate.

222 2.7 Statistical analysis

223 SPSS 22.0 (SPSS, Chicago, IL, USA) was used to analyze the experimental data.
224 One-way analysis of variance was used for significance analysis, and Dunnett test was
225 used to evaluate the significant differences between different groups. $P < 0.05$ was
226 considered statistically significant, and values were expressed as mean \pm standard
227 deviation (SD).

228

229 **3. Results**

230 3.1 Acute toxicity of cyhalofop-butyl and quizalofop-p-ethyl

231 The results showed that the toxicity of cyhalofop-butyl and quizalofop-p-ethyl on
232 zebrafish were middle toxicity, and the LC_{50} value of 96 h were 0.637 mg/L and 0.248
233 mg/L, respectively. When the toxicity ratio of cyhalofop-butyl and quizalofop-p-ethyl
234 was 1:1, the AI value of 96 h of combined exposure was -1.086, which had an
235 antagonistic toxicity effect ([Table 2](#)).

236 3.2 Embryonic development toxicity

237 Zebrafish embryos were exposed to cyhalofop-butyl, quizalofop-p-ethyl and
238 their co-exposure for 24 h, the voluntary movement was inhibited ([Figure 1-A](#)). In the
239 co-exposure treatment group, the inhibitory effect increased with the increase of
240 exposure concentration. At 48 hpf, the single treatment group of cyhalofop-butyl and
241 quizalofop-p-ethyl had no significant effect on the fetal heartbeat of zebrafish, while

242 the co-exposure group significantly inhibited the fetal heartbeat of zebrafish. At 72
243 hpf and 96 hpf, the fetal heartbeat of zebrafish was significantly inhibited in all
244 treatment groups except the low-concentration cyhalofop-butyl treatment group
245 (0.166 mg/L) (Figure 1-B). After 96 hpf exposure, the hatchability of zebrafish
246 treated with the highest concentrations of cyhalofop-butyl (0.333 mg/L) and
247 quizalofop-p-ethyl (0.129 mg/L) in the co-exposure group was significantly inhibited
248 (Figure 1-C). In addition, compared with the control group, the body length of
249 zebrafish larvae in all treatment groups decreased with the increase of exposure
250 concentration, and the body length of zebrafish larvae in the co-exposure group
251 decreased significantly (Figure 1-D). Single and co-exposure of cyhalofop-butyl and
252 quizalofop-p-ethyl induced pericardial edema and yolk sac edema deformity in
253 zebrafish embryonic development (Figure 2 A-B). The results showed that the
254 malformation rate in all treatment groups was significantly increased by dose effect.
255 At 48 hpf and 96 hpf, the embryo malformation rate of zebrafish in the co-exposed
256 high concentration treatment group significantly increased to 36.11% and 36.71%,
257 respectively (Figure 2-C).

258 3.3 Apoptosis analysis

259 Compared with the control group, the activity of caspase-3 and caspase-9 in
260 cyhalofop-butyl, quizalofop-p-ethyl and their co-exposure treatment groups increased
261 with the increase of exposure concentration. The enzyme activities of caspase-3 and
262 caspase-9 increased by 224.09% and 235.63% respectively in the treatment group
263 with the highest concentration of co-exposure (Figure 3). There was no significant
264 change in caspase activity of embryos in other treatment groups.

265 At 96 hpf, the related genes apoptosis protein activating factor 1 (*apaf1*), Bcl-2
266 associated X protein (*bax*), B-cell lymphoma-2 (*bcl-2*), the relative expressions of
267 cysteinyl aspartate specific protease 3 (*caspase-3*), cysteinyl aspartate specific
268 protease 9 (*caspase-9*), murine double minute 2 (*mdm2*) and *p53* increased
269 significantly in the co-exposure treatment group (Figure 4). Compared with the
270 control group, *apaf1* (2.644 and 2.683 times), *mdm2* (2.968 and 6.510 times) and *p53*
271 (3.349 and 2.36 times) were increased significantly with co-exposure (0.166+0.065

272 mg/L, 0.333+0.129 mg/L). *Bcl-2* was significantly expressed in quizalofop-p-ethyl
273 (0.065 mg/L, 0.129 mg/L) and Co-exposure (0.166+0.065 mg/L, 0.333+0.129 mg/L)
274 treatment groups, which were up-regulated by 1.892, 2.490, 2.119 and 3.279 times
275 respectively.

276 **3.4 The expression of genes related to heart development**

277 At 96hpf, the expressions of *Nkx2.5*, *Tbx5* and *VEGF* were significantly
278 up-regulated with the increase of concentration in all treatment groups, especially in
279 the high co-exposure concentration group (0.333+0.129 mg/L). The expression of
280 *Gata4* was down-regulated in cyhalofop-butyl and quizalofop-p-ethyl treatment
281 groups, but it was significantly increased with the increase of concentration in
282 co-exposure treatment group. The expression of *vmhc* gene was significantly induced
283 in all treatment groups, and the up-regulation level increased with the increase of
284 concentration (Figure 5).

285

286 **4. Discussion**

287 In this study, the acute toxicity (96 hpf-LC₅₀) of cyhalofop-butyl and
288 quizalofop-p-ethyl to zebrafish were 0.637 and 0.248 mg/L respectively, which is
289 consistent with previous result (Zhu et al., 2015; Zhu et al., 2022). In addition, the 96
290 h-LC₅₀ of cyhalofop-butyl was 0.664 mg/L, and the 96 h-LC₅₀ of quizalofop-p-ethyl
291 was 0.259 mg/L under combined exposure. The LC₅₀ values were 1.04 times of those
292 under single exposure. The results calculated by the additive index method showed
293 that the combined exposure (toxicity ratio 1:1) had an antagonistic effect on zebrafish
294 embryos. However, different proportions of mixed pollutants will also produce
295 different types of toxic effects.

296 Studies have shown that the combination of imidacloprid, acetochlor and
297 tebuconazole has synergistic toxicity to zebrafish with the toxicity ratios of 1:2:2,
298 1:4:4, 2:4:1 and 4:1:4, while the combination of 1:1:1, 1:1:2, 2:1:2, 2:2:1 and 4:2:1
299 has antagonistic toxicity to zebrafish. Therefore, the toxic effects of cyhalofop-butyl
300 and quizalofop-p-ethyl on zebrafish embryos under different toxic ratios need to be

301 further studied. The mechanism of the effect of cyhalofop-butyl and
302 quizalofop-p-ethyl on zebrafish embryos in the ratio of 1:1 is still unclear, so we
303 explored the preliminary toxic mechanism of combined exposure on zebrafish
304 embryos in the ratio of 1:1 antagonism. Cyhalofop-butyl can induce developmental
305 toxicity, oxidative stress and apoptosis of zebrafish embryos (Zhu et al., 2015), while
306 quizalofop-p-ethyl has developmental toxicity, cardiotoxicity and reproductive
307 toxicity to zebrafish (Zhu et al., 2022; Zhu et al., 2017).

308 In this study, the results of joint developmental toxicity test showed that
309 co-exposure caused a series of adverse effects during zebrafish embryo development,
310 including abnormal voluntary movement, decreased heart rate, hatching inhibition,
311 growth inhibition and various teratogenic effects, including yolk cyst and pericardial
312 edema. Heart rate change is an important index to evaluate cardiac toxicity. Many
313 studies have found that exposure to chemicals can affect the heart of zebrafish
314 embryos. For example, study pointed that exposure to boscalid can cause the heart
315 malformation of zebrafish embryos, and significantly inhibit the embryo heartbeat
316 (Qian et al., 2018). It has been reported that difenoconazole can cause a lot of
317 symptoms during the development of zebrafish embryos, such as slow heart rate,
318 morphological abnormality and hatching inhibition (Mu et al., 2013). Dioxin and
319 dioxin-like compounds can cause morphological abnormalities of zebrafish embryos,
320 including pericardial edema and craniofacial abnormalities (Tokunaga et al., 2016). It
321 was found that the heart function of zebrafish embryos was impaired, the heart rate
322 decreased obviously, and serious changes such as pericardial edema, yolk sac edema
323 and yolk sac deformation occurred during the time when zebrafish embryos were
324 exposed to cyhalofop-butyl and quizalofop-p-ethyl, and the co-exposure aggravated
325 these changes. In addition, abnormalities mainly occur in cardiac areas, such as
326 pericardial edema. This finding indicated that abnormal yolk sac edema and
327 pericardial edema may be caused by heart damage, and the combined exposure of
328 cyhalofop-butyl and quizalofop-p-ethyl makes the heart damage more serious, which
329 makes the effects of abnormal voluntary movement, decreased heart rate, hatching
330 inhibition, growth inhibition and various teratogenic effects after combined exposure

331 more severe.

332 Apoptosis is an active cell death process with obvious morphological
333 characteristics and energy dependence (Abrahams et al., 2014). Many environmental
334 pollutants, such as pesticides (Qian et al., 2018), heavy metals (Kp et al.), polycyclic
335 aromatic hydrocarbons (Deng et al., 2009b), etc., disturb the expression of protein and
336 nucleic acid in cells in the process of contacting organisms, thus inducing apoptosis.
337 Therefore, taking apoptosis as a detection index can reflect the early toxic effect of
338 pollutants on organisms, which is of great value for the evaluation of environmental
339 pollutants. Apoptosis may lead to early developmental malformation. For example,
340 zebrafish larvae exposed to hexabromocyclododecane (HBCD) were triggered by
341 apoptosis genes, which led to the increase of deformity and the decrease of survival
342 rate (Deng et al., 2009a). After being exposed to boscalid, zebrafish embryos suffered
343 from developmental toxicity, such as slow heartbeat, cell edema and spinal
344 deformation, through apoptosis and lipid metabolism (Qian et al., 2018). In this study,
345 the single or combined exposure of cyhalofop-butyl and quizalofop-p-ethyl caused a
346 series of gene expressions related to apoptosis in zebrafish embryos, such as *bax*,
347 *bcl-2*, *p53*, *mdm2*, *caspase9*, etc., and the activities of caspase-3 and caspase-9, the
348 important executors of apoptosis, were also significantly induced. This conclusion
349 proves that apoptosis can induce a series of adverse effects (heart rate drop and
350 deformity, etc.) during embryo development. The expression of apoptosis-related
351 genes is related to the process of apoptosis signal pathway, such as cytochrome C,
352 *bcl2*, *bax*, *p53*, *apaf1* (Zhao et al., 2009). Cytochrome C was released from
353 mitochondria to cytoplasm during apoptosis stimulation (Hildeman et al., 2003). The
354 activation of *p53* expression indicates that the cells are in an apoptotic state (Jin et al.,
355 2012). In addition, Bcl-2 family proteins are composed of anti-apoptosis (e.g., *bcl-2*)
356 and pro-apoptosis members (e.g., *bax*), which play an important role in inhibiting or
357 promoting apoptosis mainly through mitochondrial pathway (Hildeman et al., 2003;
358 Li et al., 2009). The activation of *caspase-9* is triggered by the release of cytochrome
359 C in mitochondria and its interaction with *apaf1* (Pallard et al., 1999; Yoshida et al.),
360 and the activated *caspase-9* will further activate regulatory factors such as *caspase3*

361 downstream (Lindenboim et al., 2000).

362 In this study, when cyhalofop-butyl (0.166 and 0.333 mg/L) and
363 quizalofop-p-ethyl (0.065 and 0.129 mg/L) were exposed alone, we observed that *p53*,
364 *bax*, *bcl-2* and *apaf1* were up-regulated with the increase of exposure concentration.
365 Compared with the control group, the gene transcription of *caspase-3* and *caspase-9*
366 was also up-regulated, and *caspase-9* was significantly up-regulated in
367 quizalofop-p-ethyl treatment group. In the co-exposure (0.166+0.065 mg/L,
368 0.333+0.129 mg/L) treatment group, we observed that *p53*, *bax*, *bcl-2*, *apaf1*,
369 *caspase-3* and *caspase-9* were up-regulated with the increase of exposure
370 concentration, and up-regulated significantly in the highest concentration
371 (0.333+0.129 mg/L). We also detected the apoptosis induced by zebrafish embryos in
372 vivo by caspase activity assay. It was found that the gene expression and activity of
373 caspase-3 and caspase-9 increased when exposed to cyhalofop-butyl and
374 quizalofop-p-ethyl alone or in combination, and significantly increased in the
375 co-exposed highest concentration (0.333+0.129 mg/L) treatment group. It is
376 suggested that cyhalofop-butyl and quizalofop-p-ethyl may induce mitochondrial
377 cytochrome C release by up-regulating pro-apoptotic factor *bax*, *caspase-3* and
378 *caspase-9* are important executors of inducing apoptosis. On the other hand, it can
379 induce the initiation of *p53* pathway and activate the apoptosis of zebrafish embryos.
380 Subsequently, these enzymes promote cell apoptosis, resulting in pericardial cyst and
381 yolk cyst, which in turn affects the heart function, and eventually leads to embryo
382 death.

383 As the first organ in zebrafish embryo development (Bakkers, 2011), the
384 formation of heart is a very complicated process (Gonzalez-Rosa et al., 2017). Many
385 key genes, such as *Tbx5* (Ingham, 2000), *Nkx2.5* and *gata4* (Välimäki et al., 2017),
386 play an important role in the development and maturation of zebrafish heart. In this
387 study, the exposure of two drugs will cause obvious cardiotoxicity to zebrafish
388 embryos. By observing the heart rate of zebrafish embryos, it was found that the heart
389 beats of the embryos in the control group was regular, while the heart beat rhythm of
390 the embryos in the treatment group was irregular, and the heart rate decreased

391 obviously. And we found that cyhalofop-butyl and quizalofop-p-p-ethyl and binary
392 mixed exposure could induce the expression of genes related to heart development of
393 zebrafish embryos, such as *Nkx2.5*, *Tbx5* and *VEGF*. Compared with the control
394 group, the expressions of *Tbx5* and *Gata4* genes were up-regulated under combined
395 exposure, and the expressions of *Nkx2.5*, *VEGF* and *vmhc* were significantly
396 up-regulated in the low concentration group (0.166+0.065 mg/L). Compared with the
397 control group, the expression of these genes in high concentration group (0.333+0.129
398 mg/L) was significantly up-regulated. Compared with the single dose of
399 cyhalofop-butyl and quizalofop-p-p-ethyl on the expression of heart
400 development-related genes in zebrafish embryos, the co-exposure showed synergistic
401 effect on the expression of *Nkx2.5*, *Tbx5*, *VEGF* and *vmhc*, and showed antagonistic
402 effect on the expression of *Gata4*, which was significantly up-regulated with the
403 increase of concentration. In addition, previous studies also found that
404 cyhalofop-butyl exposure can produce zebrafish embryos with developmental
405 abnormalities, which mainly include pericardial edema, yolk sac edema and abnormal
406 yolk sac morphology, among which the most significant ones are pericardial edema
407 and yolk sac edema (Zhu et al., 2015). After quizalofop-p-ethyl exposure, the embryo
408 appeared pericardial edema, abnormal cardiac cyclization and atrial hypertrophy, and
409 the expression of a series of genes (such as *gata4*, *Nkx2.5*, *Tbx5*, *VEGF*) and proteins
410 (*Tbx5*) related to heart development were induced to change (Zhu et al., 2022). This is
411 consistent with our results. Generally speaking, quizalofop-p-ethyl, cyhalofop-butyl
412 and co-exposure may induce the expression of genes related to heart development of
413 zebrafish embryos, and further cause the malformation of zebrafish embryos such as
414 hatching inhibition, heart rate decrease, autonomic motor inhibition and pericardial
415 cyst. Therefore, when assessing the harm of pesticides to aquatic organisms, the
416 combined effect of combined pollution should be fully considered.

417

418 5. Conclusions

419 In summary, our results showed that the single or combined exposure of

420 cyhalofop-butyl and quizalofop-p-p-ethyl in water had significant negative effects on
421 the development of zebrafish embryos. During the development of zebrafish embryos,
422 obvious developmental effects such as hatching inhibition, decreased heart rate,
423 shortened body length and deformity were observed. The effects of apoptosis and
424 heart development may be the responsibility of the toxicity of combined exposure to
425 zebrafish embryo development. Aquatic organisms are often exposed to a variety of
426 compounds, and a variety of pesticides combine to produce different toxic effects.
427 Therefore, it is of great significance to study the combined effects of combined
428 pollution when assessing the harm of pesticides to aquatic organisms.

429

430 **Acknowledgments**

431 This work was supported by the Basic and Advanced Research Project of
432 Chongqing (cstc2022jcyjAX0532).

433

434 **Conflict of interest**

435 The authors declare that they have no known competing financial interests or
436 personal relationships that could have appeared to influence the work reported in this
437 paper.

438

439 **Reference**

440 Abrahams, N., Devries, K., Watts, C.C., Pallitto, C., Petzold, M., Shamu, S.,
441 Garcíamoreno, C., Mathews, S., Martin, L.J., Lombard, C., 2014. Apoptosis: A
442 review of Programmed Cell Death.

443 Bakkers, J., 2011. Zebrafish as a model to study cardiac development and human
444 cardiac disease. *Cardiovascular Research* 91, 279-288.

445 Belfroid, A.C., Drunen, M.V., Beek, M.A., Schrap, S.M., Hattum, B.V., 1998.
446 Relative risks of transformation products of pesticides for aquatic ecosystems.
447 *Science of the Total Environment* 222, 167-183.

448 Chang, Y., Mao, L., Zhang, L., Zhang, Y., Jiang, H., 2020. Combined toxicity of
449 imidacloprid, acetochlor, and tebuconazole to zebrafish (*Danio rerio*): acute
450 toxicity and hepatotoxicity assessment. Environ Sci Pollut Res Int 27,
451 10286-10295.

452 Chen, J.Z., Yang, L., Geng-Dong, H.U., Jian-Hong, Q.U., Wei, W.U., Fan, L.M.,
453 2006. Genetic Toxicity of the Herbicide Puma Super to Grass Carp. Journal of
454 Agro-Environment Science.

455 Cummins, I., Edwards, R., 2004. Purification and cloning of an esterase from the
456 weed black-grass (*Alopecurus myosuroides*), which bioactivates
457 aryloxyphenoxypropionate herbicides. Plant J 39, 894-904.

458 Deng, J., Yu, L., Liu, C., Yu, K., Shi, X., Yeung, L.W., Lam, P.K., Wu, R.S., Zhou,
459 B., 2009a. Hexabromocyclododecane-induced developmental toxicity and
460 apoptosis in zebrafish embryos. Aquat Toxicol 93, 29-36.

461 Deng, J., Yu, L., Liu, C., Yu, K., Zhou, B., 2009b. Hexabromocyclododecane-induced
462 developmental toxicity and apoptosis in zebra fish embryos. Aquatic toxicology
463 (Amsterdam, Netherlands) 93, 29-36.

464 Elefsiniotis, I.S., Liatsos, G.D., Stamelakis, D., Moulakakis, A., 2007. Case Report:
465 Mixed Cholestatic/Hepatocellular Liver Injury Induced by the Herbicide
466 Quizalofop-p-ethyl. Environmental Health Perspectives.

467 Fan, H., Yuan, G.Z., Zhen, X., 2006. Toxicity of Fenoxaprop-ethyl and
468 Cyhalofop-butyl 1 on Lemma Paucicostata. Chinese Agricultural Science
469 Bulletin.

470 Gonzalez-Rosa, J.M., Burns, C.E., Burns, C.G., 2017. Zebrafish heart regeneration:
471 15 years of discoveries. Regeneration (Oxf) 4, 105-123.

472 Hildeman, D.A., Mitchell, T., Kappler, J., Marrack, P., 2003. T cell apoptosis and
473 reactive oxygen species. Journal of Clinical Investigation 111, 575-581.

474 Hladik, M.L., Kolpin, D.W., Kuivila, K.M., 2014. Widespread occurrence of
475 neonicotinoid insecticides in streams in a high corn and soybean producing
476 region, USA. Environ Pollut 193, 189-196.

477 Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M.,
478 Collins, J.E., Humphray, S., McLaren, K., Matthews, L., 2013. Corrigendum: The
479 zebrafish reference genome sequence and its relationship to the human genome.
480 Nature.

481 Ingham, B., 2000. Developmental regulation of Tbx5 in zebrafish embryogenesis.
482 Mechanisms of Development.

483 Jin, Y., Zheng, S., Fu, Z., 2012. Embryonic exposure to cypermethrin induces
484 apoptosis and immunotoxicity in zebrafish (*Danio rerio*). Fish & Shellfish
485 Immunology 30, 1049-1054.

486 Kp, A., Ejh, B., Ga, B., Iska, C., Effects of combined stressors to cadmium and high
487 temperature on antioxidant defense, apoptotic cell death, and DNA methylation
488 in zebrafish (*Danio rerio*) embryos. Science of the Total Environment 716.

489 Kukorelli, G., Reisinger, P., Pinke, G., 2013. ACCase inhibitor herbicides –
490 selectivity, weed resistance and fitness cost: a review. International Journal of
491 Pest Management 59, 165-173.

492 Li, X., Zhang, Q., Cai, L., Wang, Y., Wang, Q., Huang, X., Fu, S., Bai, J., Liu, J.,
493 Zhang, G., 2009. Inhibitor of growth 4 induces apoptosis in human lung
494 adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria
495 apoptosis pathway. Journal of Cancer Research & Clinical Oncology 135,
496 829-835.

497 Li, Z., Li, Q., Cheng, F., Zhang, W., Wang, W., Li, J., 2012. Enantioselectivity in
498 degradation and transformation of quizalofop-ethyl in soils. Chirality 24,
499 552-557.

500 Lindenboim, Liora, Yuan, Junying, Stein, Reuven, 2000. Bcl-xS and Bax induce
501 different apoptotic pathways in PC12 cells. Oncogene.

502 Marking, L.L., 1984. Toxicity of chemical mixtures. Fundamentals of Aquatic
503 Toxicology Methods & Applications.

504 Mu, X., Chai, T., Wang, K., Zhu, L., Huang, Y., Shen, G., Li, Y., Li, X., Wang, C.,
505 2016. The developmental effect of difenoconazole on zebrafish embryos: A
506 mechanism research. Environ Pollut 212, 18-26.

507 Mu, X., Pang, S., Sun, X., Gao, J., Chen, J., Chen, X., Li, X., Wang, C., 2013.
508 Evaluation of acute and developmental effects of difenoconazole via multiple
509 stage zebrafish assays. *Environmental Pollution* 175, 147-157.

510 Mustafa, Y., Arikan, E.S., 2008. Genotoxicity testing of quizalofop-P-ethyl herbicide
511 using the Allium cepa anaphase-telophase chromosome aberration assay.
512 *Caryologia* 61, 45-52.

513 OECD, 1992. OECD guidelines for the testing of chemicals no. 203, fish acute
514 toxicity. Organization for Economic Cooperation and Development: Paris,
515 France.

516 Pallardy, M., Biola, A., Lebrec, H., Bréard, J., 1999. Assessment of Apoptosis in
517 Xenobiotic-Induced Immunotoxicity. *Methods* 19, 36-47.

518 Qian, L., Cui, F., Yang, Y., Liu, Y., Qi, S., Wang, C., 2018. Mechanisms of
519 developmental toxicity in zebrafish embryos (*Danio rerio*) induced by boscalid.
520 *Sci Total Environ* 634, 478-487.

521 Shang, T., Shi, C., Qin, Z., Peng, M., Jia, B., Xia, X., 2019. Toxic effects of
522 cyhalofop-butyl to *Misgurnus anguillicaudatus*. *Journal of Henan Agricultural
523 Sciences* 48, 162-167.

524 Shaukat, Ali, Harald, G., J., van, Mil, Michael, K., Richardson, 2011. Large-Scale
525 Assessment of the Zebrafish Embryo as a Possible Predictive Model in Toxicity
526 Testing. *PLoS One* 6.

527 Tokunaga, S., Woodin, B., Stegeman, R., John, J., 2016. Plant lignan
528 secoisolariciresinol suppresses pericardial edema caused by dioxin-like
529 compounds in developing zebrafish: Implications for suppression of
530 morphological abnormalities. *Food & Chemical Toxicology*.

531 Välimäki, M.J., Tölli, M.A., Kinnunen, S.M., Aro, J., Serpi, R., Pohjolainen, L.,
532 Talman, V., Poso, A., Ruskoaho, H.J., 2017. Discovery of Small Molecules
533 Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5.
534 *Journal of Medicinal Chemistry*, *acs.jmedchem.7b00816*.

535 Wolfram, G., Sadler, K.C., 2018. Zebrafish: an important tool for liver disease
536 research. *Gastroenterology* 149, 1361-1377.

537 Xia, X., Wang, P., Wan, R., Huo, W., Chang, Z., 2018. Toxic effects of
538 cyhalofop-butyl on embryos of the Yellow River carp (*Cyprinus carpio var.*):
539 alters embryos hatching, development failure, mortality of embryos, and
540 apoptosis. *Environ Sci Pollut Res Int* 25, 24305-24315.

541 Yan, L., Zhang, Y., Tao, S., Guan, Y., Zhang, T., Wang, Z., 2016. Global DNA
542 methylation in gonads of adult zebrafish *Danio rerio* under bisphenol A
543 exposure. *Ecotoxicology and Environmental Safety* 130, 124-132.

544 Yang-Guang, X.U., 2012. Chiral selective effect of quizalofop-ethyl enantiomer
545 toxics on *Brachydanio rerio*. *CHINESE JOURNAL OF ECO-AGRICULTURE*
546 20, 1527-1531.

547 Yang-Guang, X.U., Zhang, J.L., LIU-Liang, Xue-Feng, L.I., 2013. The Chiral
548 Selection of Quizalofop-p-ethyl Enantiomers on Toxicity *Daphnia magna*. *Acta*
549 *Agriculturae Universitatis Jiangxiensis*.

550 Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., Penninger,
551 J.M., Mak, T.W., Apaf1 Is Required for Mitochondrial Pathways of Apoptosis
552 and Brain Development. *Cell* 94, 739-750.

553 Yuan, S., Di, Y., Chen, Y., Chen, Y., Deng, W., 2019. Target-site resistance to
554 cyhalofop-butyl in bearded sprangletop (*Diplachne fusca*) from China. *Weed*
555 *Science* 67, 1-5.

556 Zhao, M., Zhang, Y., Wang, C., Fu, Z., Liu, W., 2009. Induction of Macrophage
557 Apoptosis by an Organochlorine Insecticide Acetofenate. *Chemical Research in*
558 *Toxicology* 22, 504–510.

559 Zhu, L., Mu, X., Wang, K., Chai, T., Yang, Y., Qiu, L., Wang, C., 2015.
560 Cyhalofop-butyl has the potential to induce developmental toxicity, oxidative
561 stress and apoptosis in early life stage of zebrafish (*Danio rerio*). *Environ Pollut*
562 203, 40-49.

563 Zhu, L., Wang, C., Jiang, H., Zhang, L., Mao, L., Zhang, Y., Qi, S., Liu, X., 2022.
564 Quizalofop-P-ethyl induced developmental toxicity and cardiotoxicity in early
565 life stage of zebrafish (*Danio rerio*). *Ecotoxicol Environ Saf* 238, 113596.

566 Zhu, L., Qi, S., Cao, F., Mu, X., Yang, Y., Wang, C., 2017. Quizalofop-P-ethyl
567 exposure increases estrogen axis activity in male and slightly decreases estrogen
568 axis activity in female zebrafish (*Danio rerio*). *Aquat Toxicol* 183, 76-84.

569 Zuo, P., Zang, X., Chen, S., Ming-Shan, J., 2016. Non-target Resistance to Metamifop
570 and Cross-Resistance to Cyhalofop-Butyl in *Echinochloa phyllopan* (Stapf)
571 Koss. *Journal of Weed Science*.

572

573

574

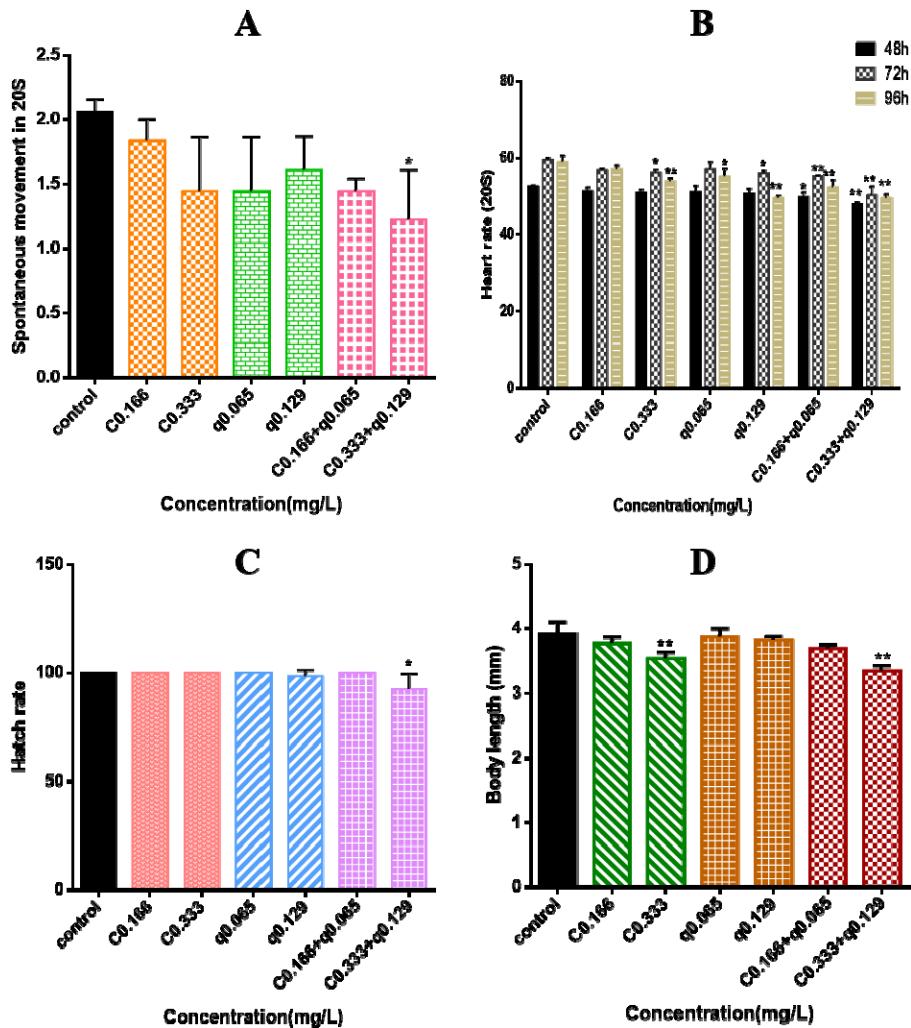
575

576

577

578

579

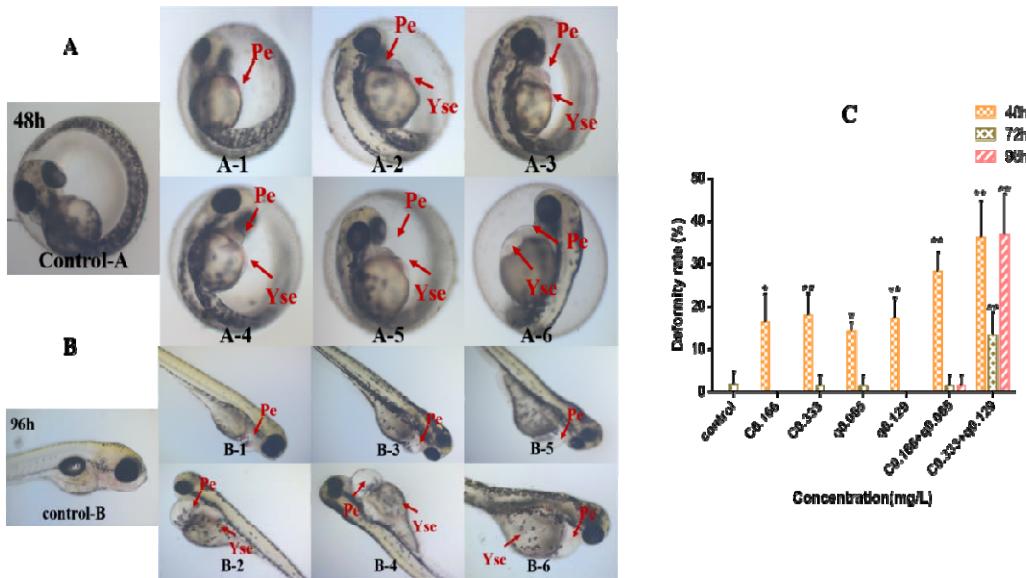

580

581

582

583

584 **Tables and Figures**


585

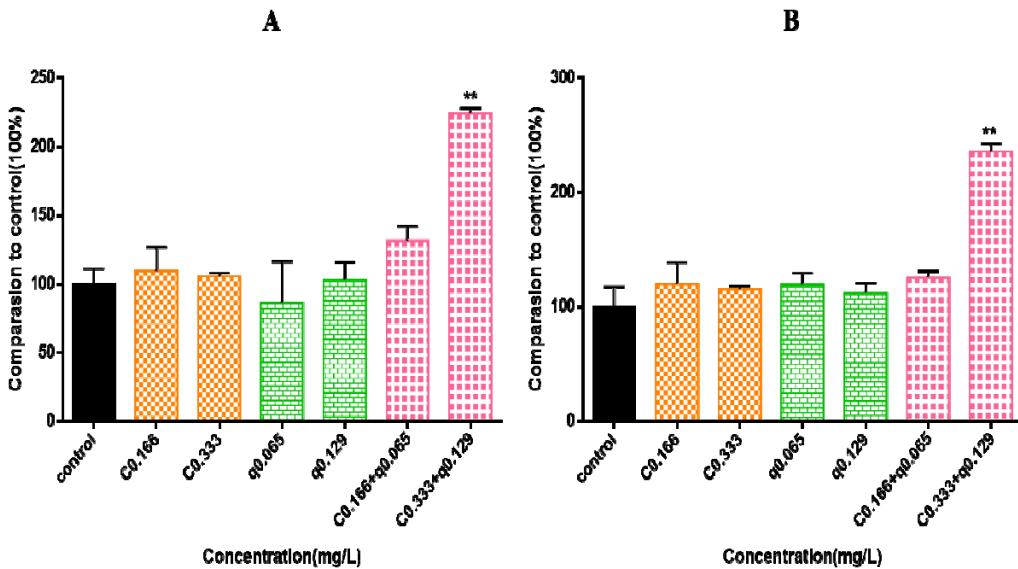
586 **Fig. 1.** Developmental effects of cyhalofop-butyl, quizalofop-p-p-ethyl and binary
587 mixtures on embryos. Asterisks denote significant difference between the treatments
588 and control (determined by Dunnett post-hoc comparison, ${}^{\square}p < 0.05$; ${}^{\square\Box}p < 0.01$).

589 A: Spontaneous movement of zebrafish at 24hpf. B: Heart rate at each observation
590 time C: Hatch rate at 96 hpf. D: Body length at 96 hpf

591 C0.166: 0.166 mg/L cyhalofop-butyl; C0.333: 0.333 mg/L cyhalofop-butyl; q0.065:
592 0.065 mg/L quizalofop-p-p-ethyl; q0.129: 0.129 mg/L quizalofop-p-p-ethyl;
593 C0.166+q0.065: co-exposure of cyhalofop-butyl + quizalofop-p-ethyl 0.166 mg/L +
594 0.065 mg/L; C0.333+q0.129: co-exposure of cyhalofop-butyl + quizalofop-p-ethyl
595 0.333 mg/L+0.129 mg/L).

596

597

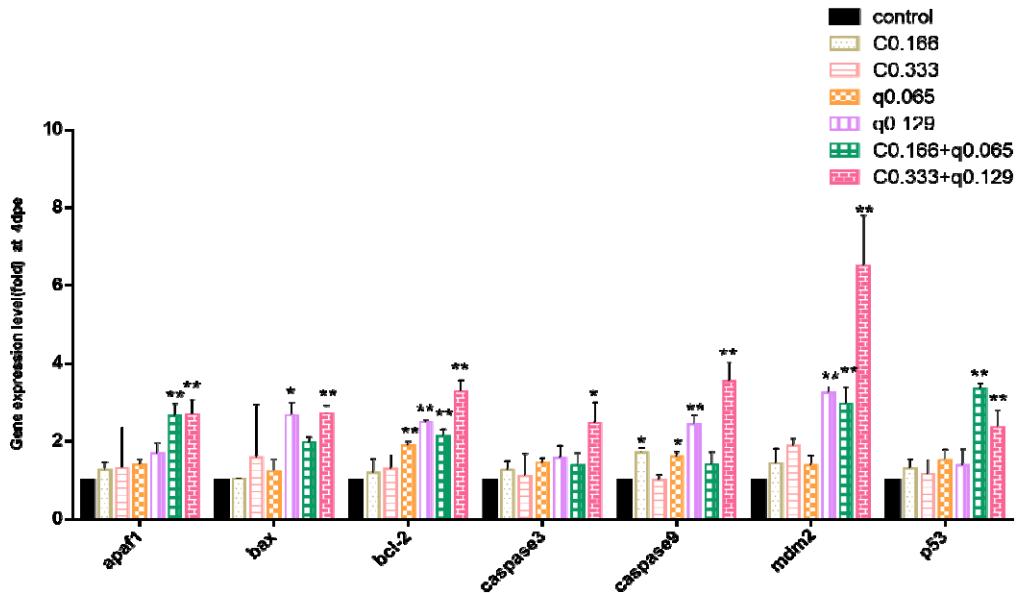

598 **Fig. 2.** Malformations of embryos after exposure to cyhalofop-butyl,
599 quizalofop-p-p-ethyl and binary mixtures.

600 A: embryos with morphological deformation after exposure at 48 hpf. B: embryos
601 with morphological deformation after exposure at 96 hpf (-1, 0.166 mg/L
602 cyhalofop-butyl; -2, 0.333 mg/L cyhalofop-butyl; -3, 0.065 mg/L
603 quizalofop-p-p-ethyl; -4, 0.129 mg/L quizalofop-p-p-ethyl; -5, co-exposure of
604 cyhalofop-butyl + quizalofop-p-ethyl 0.166 mg/L + 0.065 mg/L; -6, co-exposure of
605 cyhalofop-butyl + quizalofop-p-ethyl 0.333 mg/L+0.129 mg/L). C: Rate of deformity
606 of embryos after exposure for 48,72 and 96 hpf. Arrows mark the different positions.
607 Asterisks denote significant difference between the treatments and control
608 (determined by Dunnett post-hoc comparison, $^*p < 0.05$; $^{**}p < 0.01$).

609

610

611

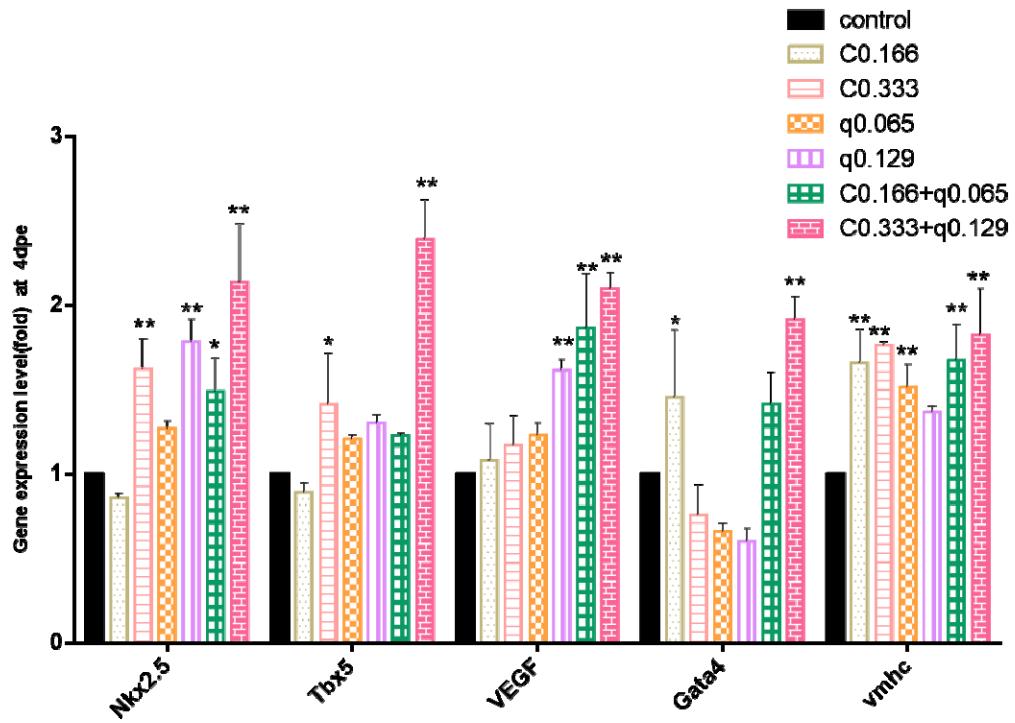

612

613 **Fig. 3.** Cell apoptosis induced by cyhalofop-butyl, quizalofop-p-p-ethyl and binary
614 mixtures. A and B: The activity of caspase-3 (A) and caspase-9 (B) of control and
615 treated groups at 96 hpf. Asterisks denote significant difference between the
616 treatments and control (determined by Dunnett post-hoc comparison, $\square p < 0.05$; $\square\blacksquare p <$
617 0.01).

618

619

620



621

622 **Fig. 4.** Transcription of apoptosis related genes in embryos after 96 h exposure to
623 cyhalofop-butyl, quizalofop-p-p-ethyl and binary mixtures. Results are presented as
624 mean \pm SD of three replicate samples (determined by Dunnett post-hoc comparison,
625 $\square p < 0.05$; $\square\square p < 0.01$).

626

627

628

629 **Fig. 5.** The expression level of key cardiac genes (*Nkx2.5*, *Tbx5*, *VEGF*, *Gata4*, *vmhc*)
630 in control and treated zebrafish groups for 96 hpf. Results are presented as mean \pm SD
631 of three replicate samples (determined by Dunnett post-hoc comparison, $^{\square}$ $p < 0.05$;

632 $^{\square\square}$ $p < 0.01$).

633

634

635

636

637

638

639

640

641

642

643

644

645 **Table 1.** Concentration of cyhalofop-butyl and quizalofop-p-ethyl in acute toxicity

646

Number	Cyhalofop-butyl/(mg/L)	Quizalofop-p-ethyl/(mg/L)	Cyhalofop-butyl+Quizalofop-p-ethyl/(mg/L)
1	1.52	0.94	1.096+0.427
2	1.01	0.52	0.911+0.355
3	0.68	0.29	0.758+0.295
4	0.45	0.16	0.637+0.248
5	0.30	0.09	0.529+0.206
6	0.20	0.05	0.440+0.171

647

648 **Table 2.** Acute toxicity test of cyhalofop-butyl, quizalofop-p-ethyl and co-exposure
649 on zebrafish embryos.

650

Chemical	Regression equation	96h-LC ₅₀ (mg /L) (95% CL ^a)	R ^{2b}	AI	Effect evaluation
(Cyhalofop-butyl)	y=0.634+3.243x	0.637 (0.551~0.728)	0.937	-1.086	Antagonistic effect
(Quizalofop-p-ethyl)	y=1.496+2.469x	0.248 (0.212~0.291)	0.96		
Cyhalofop-butyl+Quizalofop-p-ethyl	y=-0.252+13.662x	1.043 (1.001~1.085)	0.988		

651

652 CL^a: Confidence limit; R^{2b}: Coefficient of determination

653

654