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Abstract 

Habitual responses and ultimately compulsive behavior are thought to be at the core of 

addiction including alcohol use disorder (AUD). Little is known whether the habitization 

concerns exclusively the response towards alcohol or generalizes to other daily activities. 

Here, we address this question in a well-established animal model of AUD – the post-

dependent rat model – by testing habitual responses towards a sweet palatable reward in two 

striatal learning paradigms: spatial navigation and reward conditioning. For the spatial 

navigation task, alcohol-dependent and control rats were tested on a sequential decision-

making test after short and prolonged T-Maze training; for the reward conditioning task, rats 

were trained under a random interval schedule for a short and prolonged period and tested 

in a satiety devaluation test at each time point. Another cohort of alcohol-naive rats was 

trained and tested on both paradigms under DREADD (designer receptors exclusively 

activated by designer drugs)-mediated inactivation of the dorsomedial striatum (DMS) which 

controls goal-directed behavior. Our results show that alcohol-dependent rats displayed 

increased habitual behavior to obtain saccharin reward on both paradigms, with overall more 

habitual choices after prolonged training on the spatial navigation task, and increased habitual 

responses already after short training on the reward conditioning task. Finally, DREADD-

mediated inactivation of the DMS increased habitual behavior in non-dependent rats on both 

paradigms. Our results provide evidence that a history of alcohol dependence produces a bias 

towards habitual responding that generalizes to a natural reward in rats. Similarly, a habitual 

bias was induced in non-dependent rats after inactivation of the DMS, thus confirming the 

critical role of this region in maintaining goal-directed behavior and suggesting its diminished 

control in AUD. 
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Introduction 

A habit is a consolidated response to a stimulus, which once acquired is relatively resistant to 

interference and as such largely independent of action-outcome contingencies (Yin and 

Knowlton, 2006; Yin et al., 2009). A habit develops by extensive stimulus-response pairings 

and repetition of the same response sequence in the same context, and it is thought to depend 

on striatal learning processes. There is considerable evidence, mostly coming from rodent 

studies, suggesting the involvement of two different learning processes, the dorsomedial 

striatum (DMS) controlling the acquisition of goal-directed actions mainly via dopamine D1 

receptors, and the dorsolateral striatum (DLS) acquisition of habits and skills via dopamine D2 

receptors (Yin et al., 2009; Sommer et al., 2014). The two striatal regions receive excitatory 

inputs from different areas of the cortex. The DMS receives modulatory input from prefrontal 

cortices, whereas the DLS primarily receives major inputs from sensorimotor and premotor 

cortices in both humans and rats (Balleine et al., 2009; Balleine and O'Doherty, 2010; Corbit 

and Janak, 2016a). Dependent on DMS activity, goal-directed behavior is mainly involved 

during the early instrumental conditioning, and with overtraining habitual responding occur 

under control of the DLS (Yin et al., 2004, 2005a; Yin et al., 2005b; Yin and Knowlton, 2006; Yin 

et al., 2006; Balleine et al., 2009). Some studies suggest that the DMS and DLS operate in 

parallel during the transition from goal-directed to habitual responses (Yin et al., 2009; 

Vandaele et al., 2019), with the DLS already active at the early onset of training (Kupferschmidt 

et al., 2017; Bergstrom et al., 2018; Smith et al., 2021), and it appears that both subregions 

act via an opposing and competitive relationship (Smith and Graybiel, 2013; Turner et al., 

2022). 

 

The harmful use of alcohol is a global problem causing 3 million deaths per year (which 

accounts to 5.3% of deaths worldwide) and is attributed to the world’s third largest risk factor 

for premature mortality, disability and loss of health (Rehm et al., 2009; WHO, 2018). When 

considering the total harm inflicted by alcohol including its societal costs, alcohol is by a wide 

margin the most harmful drug in the western world (Nutt et al., 2010). Alcohol use disorder 

(AUD) is characterized by the loss of flexible control over drug use despite negative 

consequences (Rehm et al., 2009; Connor et al., 2016; Koob, 2021). Current addiction theories 

postulate that the loss of control may be explained with increased habitual behavior in which 

drug use persists even when the drug is no longer rewarding, and ultimately leading to 
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compulsive alcohol drinking (Everitt and Robbins, 2005; Belin et al., 2009; Belin et al., 2013; 

Everitt and Robbins, 2016) and habitual drug-seeking (Everitt et al., 2008; Ostlund and 

Balleine, 2008; Belin et al., 2009; Root et al., 2009). Recent research has also implicated the 

dorsal striatum in the control of decision-making regulated by reward, particularly the role of 

the DMS in the integration of reward-related processes with action control (Balleine et al., 

2007). The DLS has been linked with habitual responding for alcohol in animals (Corbit et al., 

2012; Serlin and Torregrossa, 2015; Giuliano et al., 2019) and natural rewards (Dickinson et 

al., 2002; Corbit et al., 2012; Houck and Grahame, 2018; Turner et al., 2022) and humans 

(Vollstadt-Klein et al., 2010). 

 

Most studies assessing habitual responses in animals use operant conditioning, and there are 

only few publications demonstrating the impact of alcohol exposure. Both acute (Houck and 

Grahame, 2018) and chronic ethanol exposure (Corbit et al., 2012; Renteria et al., 2018; 

Towner and Spear, 2021) shifted animals toward behaving more habitually. Most of these 

studies assess habitual responses based on their sensitivity to devalued reinforcers. The 

results are difficult to interpret, since they rather may relate from impaired instrumental 

learning abilities than habits  (Balleine and Dezfouli, 2019). 

 

In rodents, the spatial navigation task has been successfully used for assessment of goal-

directed and habitual behavior (Packard, 1999; Yin and Knowlton, 2004; Lee et al., 2008; 

McCracken and Grace, 2013). Thus, spatial navigation could present an alternative to reward 

conditioning, although there are currently no data available from spatial navigation tasks 

assessing alcohol-related habitual responses in rodents. 

 

This study aimed to investigate how habit formation processes are affected by a history of 

alcohol dependence using two striatal learning paradigms, the spatial navigation and reward 

conditioning task. We tested habitual responses towards a sweet palatable reward in both 

tasks in a well-established animal model of AUD – the post-dependent (PD) rat model. Alcohol 

dependence was introduced in adult rats by repeated cycles of intermittent exposure (CIE) to 

alcohol vapor intoxication and withdrawal (Rimondini et al., 2002). We further analyzed the 

effects of a designer receptors exclusively activated by the designer drugs (DREADD)-mediated 

inactivation of the DMS in habitual behavior. 
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Materials and Methods 

Experimental animals and design 

Male Wistar rats were obtained from Envigo (Germany), 6 weeks of age at arrival. Rats were 

group-housed (four animals per Makrolon type 4 cage, cage dimension: 85 x 85 x 67 cm) under 

a 12h light/dark cycle (lights off at 6 AM, lights on at 18:00 PM) with ad libitum access to water 

and food, and left to acclimatize to the environment for one week. They were handled daily 

for the following week before beginning the experimental procedures. All experimental 

procedures started in the dark phase (2hrs after lights off) in adult rats (≥ 8 weeks). The 

experimental procedures were approved by the Regierungspräsidium Karlsruhe, Germany 

(license: G-166/21). 

Three separate cohorts of male rats were used for this research, each allocated to a different 

experiment. Study 1 was performed to assess the effects of alcohol dependence on habitual 

behavior in the context of spatial navigation (Experiment 1) and reward learning (Experiment 

2) tasks (Figure 1). Study 2 was performed to evaluate the effects of DREADD-mediated 

posterior dorsomedial striatum (pDMS) inactivation on habitual behavior in the context of 

both spatial navigation and reward learning tasks (Experiment 3, Figure 1). 

 
Figure 1. Experimental timelines. In Study 1 habitual responses (spatial navigation, reward learning) were 
analyzed in two cohorts of alcohol dependent and non-dependent rats. At the end of experiment 2 rats were 
trained to self-administer 10% ethanol to confirm the alcohol dependent phenotype. In Study 2 rats were tested 
for both behavior paradigms after inactivation of the posterior part of the dorsomedial striatum (pDMS). In all 
three experiments 0.2% saccharin was given as a natural reward. CIE: Chronic Intermittent Ethanol vapor 
exposure, Abst: abstinence, FR-1: Fixed Ratio 1 operant schedule, PR-2: Progressive Ratio-2 operant schedule, 
RI: Random Interval operant schedule (5s, 15s, and 30s indicate the interval length in seconds), PS: probe session 
composed of 5 consecutive trials, DV: Devaluation test, Surg.: surgery, Recov.: recovery from surgery. 
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Material details 

Chemicals, drugs and kits 

Alexa Fluor 488 donkey anti-mouse IgG(H+L) (Thermo Fisher, Ref: AB_141607), Alexa Fluor 

594 donkey anti-rabbit IgG(H+L) (Thermo Fisher, Ref: AB_141637), anti-fade mounting 

medium (Shandon Immu-MountTM, Thermo Scientific), Carprofen (50 mg/ml, Zoetis 

Deutschland GmbH, Germany), Clozapine N-oxide (CNO) dihydrochloride  (BIOZOL Diagnostica 

Vertrieb GmbH, Germany), DREADDs (ssAAV-8/2 virus expressing either hM4D(Gi)-mCherry 

(titer: 7.3 x 1012) or eGFP (titer: 6.9 x 1012), University of Zürich and ETH Zürich, Neuroscience 

Center Zürich ZNZ, Viral Vector Facility VVF, Switzerland), isoflurane (1 ml/ml, CP-Pharma 

Handelsgesellschaft GmbH, Germany), ethanol (96% vol,  VWR BDH Chemicals, France), 

ketamine (bela-pharm GmbH & Co. KG, Germany), xylazine (Wirtschaftsgenossenschaft 

deutscher Tierärzte eG, Germany), kit for measurements of blood alcohol concentration (BAC, 

containing Alcohol buffer pH 7.4, alcohol oxidase (AOD) and AM1 analyzer,  Analox 

Instruments Ltd, United Kingdom), lidocaine (2%, beta-pharm GmbH & Co KG, Germany), 

mouse anti-GFP (Invitrogen, Ref: A22230), paraformaldehyde (PFA, Carl Roth GmbH & Co. kg, 

Germany), rabbit anti-RFP (Rockland, Ref: 600-401-379), saccharin (saccharin sodium salt 

hydrate, Sigma-Aldrich Chemie GmbH, Germany), Sodium azide (Merk KGaA, Germany). 

 

Method details 

Induction of alcohol dependence 

Alcohol dependence (Experiments 1 and 2, Figure 1) was induced via chronic intermittent 

ethanol (CIE) vapor exposure (Rimondini et al., 2002; Hirth et al., 2016; Meinhardt et al., 2013). 

The vapor exposure was conducted into custom-made vapor chambers that could hold four 

Type-4 cages each. After one week of habituation to the chambers, the vapor exposure 

procedure was initiated. The rats were exposed to alcohol vapors for 16 hrs per day every day 

for 7 weeks. The exposure was initiated 4 hrs before the beginning of the active cycle and 

ended at the end of the active cycle. The ethanol was delivered by dosing pumps into stainless-

steel coils (Knauer, Berlin, Germany) that were heated to 70°C and released into the chambers 

at a rate of 16 L/min, mixed with air. Twice per week, right after the end of the vapor exposure 

session, 4 animals per chamber were randomly picked to measure BACs. The pump rate was 

adjusted in order to keep the BACs between 150 and 300 mg/dL throughout the procedure. 

At the end of the seventh week of exposure, the animals were maintained into abstinence (air 
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exposure only) for one week before initiating the behavioral trainings. Seven hours after the 

last ethanol vapor exposure cycle each rat was monitored for up to 5 min to assess tremor, 

tail rigidity, vocalization, abnormal gait, and ventral limb retraction. Severity of each 

withdrawal sign was ranked as 0 (non-existent), 1 (mild), and 2 (severe) added up and 

expressed as total withdrawal scores (Macey et al., 1996; Uhrig et al., 2017). 

 

Spatial navigation (T-Maze) task 

The spatial navigation task was performed in a custom-made T-Maze. The maze was elevated 

50 cm above the floor and had four closed identical arms (50 cm (L) x 10 cm (W) x 50 cm (H). 

The access to either the north or the south arm was blocked by using a 9.8 cm cuboid. The 

training and testing protocols for habitual behavior were adapted from Packard & McGaugh 

(1996) and Yin & Knowlton (2004). On the first day, the animals underwent a habituation 

session. The access to the north arm of the maze was blocked; each rat was positioned at the 

end of the south arm and was free to explore the maze for 5 minutes. On the following day, 

the training started. The access to the north arm was still blocked, on the wall at the end of 

the west (left) arm a visual cue was positioned (baited arm) while no optic cue was presented 

at the east (right) arm (unbaited arm). At the end of both side arms a transparent plastic well 

was attached on the floor of the maze. The well at the west arm always contained 1 ml of 0.2% 

saccharin solution, while the well at the east arm was always kept empty. 

 

For both Experiment 1 and 3, each training trial started by positioning the rat at the end of the 

south arm and ended after 5 minutes or after the animal found and consumed the reward, 

after which the animal was removed from the maze. Each training session consisted of 5 

consecutive trials. For each trial, the performance of the animal was scored: A correct choice 

was considered when the animal walked from the south arm directly into the baited arm and 

consumed the reward, in all other cases (the animal walked into the baited arm but did not 

consume the reward or it walked into the unbaited arm) the choice was considered as 

incorrect. Each animal was trained daily (one session of 5 consecutive trials per day) until 80% 

performance (four correct choices out of 5 trials) for two consecutive sessions was reached, 

to ensure the animals properly learned the task. Then a probe session was performed on the 

following day (Early time point, Figure 1). After the early probe session, the training resumed 

and was continued daily until a criterion of at least 90% performance over the course of 10 
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consecutive days was reached, to ensure overtraining, after which a second probe session was 

performed (Late time point, Figure 1).  

 

The probe sessions consisted of 5 consecutive probe trials, each trial was identical to the 

training trials except that animals were inserted into the north arm of the maze while the 

south arm was blocked; the animal was removed from the maze immediately after making a 

choice (baited or unbaited arm) and walked back into the center of the maze. When the animal 

walked into the baited arm, this was considered as a goal-directed choice. When the animal 

walked into the unbaited arm it was considered as a habitual choice.  

 

Reward learning (operant conditioning) task 

Before initiating the training sessions, all animals from experiments 2 and 3 underwent a 30 

minutes habituation session in which no lever and no cue was present, the reward (0.2% 

saccharin, 13 l drop) was released into the receptacle at a random interval 60s (RI-60s) 

schedule. 

Following the habituation, the animals from Experiment 2 (Figure 1) were trained under fixed 

ratio 1 (FR-1) schedule until they reached a criterion of at least 50 rewards for 3 consecutive 

sessions, after which, a progressive ratio 2 (PR-2) test was performed. Based on the breakpoint 

value, the animals were then pseudo-randomly assigned to the treatment groups (CIE: chronic 

intermittent ethanol vapor exposed group, air-exposed control group) and the vapor exposure 

was initiated. One week after the last ethanol vapor exposure, the animals underwent three 

more sessions under FR1 schedule and were again tested in a PR-2 test. After the last PR test, 

all animals underwent one session under random interval 5s (RI-15s) schedule, one session 

under RI-15s schedule, and 6 sessions under random interval 30s (RI-30s) schedule. The 

training was performed from Mondays to Thursdays. After the 6th day of RI-30s training the 

animals underwent the devaluation (DV) test with a satiety devaluation procedure of 30 min 

followed by a 5 minutes extinction test (Early time point). The following week the RI-30 

training was resumed for another 4 sessions and the DV test was repeated (Late time point). 

 

For Experiment 3 (Figure 1) the animals were also pre-trained for three days under FR-1 

schedule, after which they were directly trained under random interval schedule (RI-5s, RI-

15s, RI-30s) and tested in a devaluation test at the Early time point only. 
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FR-1 pre-training sessions in Experiment 2 ended after 30 minutes, FR-1 pre-training sessions 

in Experiment 3 ended after 30 minutes or after 50 rewards were earned.  

All random interval sessions ended after 30 minutes or after 30 rewards were earned. Animals 

that did not earn 30 rewards in the last two sessions prior to the DV test were not included 

for statistical analysis.  

During the DV test all animals from Experiment 2 and 3 were put into single cages and brought 

into a novel environment, where they were given one bottle containing 0.2% saccharin and 

one bottle containing tap water, and they were allowed to freely drink for 30 minutes. 

Immediately after the end of the drinking session, all animals were brought into the operant 

boxes where they underwent a 5 minutes extinction session in which the house light was 

turned on, the lever was present but no reward was released. At the end of the extinction 

session all animals were brought back into the single cages and were given another 30 minutes 

of free drinking to confirm the satiated state.  

In Experiment 3, 30 minutes prior to each probe session (spatial navigation) and to the 

extinction session (reward learning), all animals received a 10 mg/ml CNO ip injection (in 

saline). 

 

Progressive ratio test 

Prior to the beginning and one week in abstinence all animals in experiment 2 were tested in 

a PR-2 test.  This test provides an estimate about the motivation for an animal to acquire the 

reward. During the test only the active lever was available, this was the same lever used for 

the FR1 and the RI trainings. In a PR schedule the number of lever presses (n) required for 

obtaining the reward increased with each reinforcement (1, 2, 4, 6, 8, 10, … n+2) within a 

session. The session ended after 2 hours or after no lever press was performed for three 

consecutive minutes. During the test the house light signaled the beginning and the end of the 

session. The maximum number of lever presses for a single reinforcement within a session 

was considered as breakpoint. 

 

Alcohol operant training 

The animals that completed the reward learning task in experiment 2 were further trained to 

self-administer 10% ethanol in tap water. The training sessions were identical to the previous 

saccharin training sessions except that the lever assigned to the ethanol was the opposite 
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lever in the operant chamber. The reward was delivered on the receptacle next to the active 

lever, on the opposite side compared to the receptacle and the lever used for saccharin 

training. The animals were trained until they earned at least 50 ^ rewards for three 

consecutive sessions, after which they were tested in a PR2 test that ended after 2 hours or 

after 3 minutes of inactivity (see Figure 1).  

 

Stereotaxic surgeries 

Serotype 8/2 adeno associated viral vectors (ssAAV-8/2) expressing either hM4D(Gi)-mCherry 

(titer: 7.3 x 1012) or eGFP (titer: 6.9 x 1012) under the control of human synapsin promoter 

(hSyn1) were used. Surgeries were performed as described in Broccoli et al. (2018) and 

Meinhardt et al. (2022). Inactivating DREADD virus was injected bilaterally into the pDMS 

(coordinates: A/P = -0.4; M/L = ± 2; D/V = -4) using 10 μl NanoFil syringes equipped with 33 

gauge beveled NanoFil needles (World Precision Instruments, Inc.) at a volume of 0.7 μl and a 

rate of 0.1 μl per minute. Before activating the micropump (MicroSyringe Pump Controller, 

Micro 4 TM, World Precision Instruments, Inc.) for the injection, the needle was first brought 

into position based on the aimed coordinates and left in place for 5 minutes. After injection, 

the needle was kept in place for another 10 minutes before slowly withdrawing it.  

 

Four% isoflurane-oxygen mixture was used for induction of anesthesia, 2-2.5% isoflurane-

oxygen mixture was used for maintenance (flow rate: 1 L/min). Carprofen (5 mg/kg, sc) and 

Lidocaine (1% sc, under the scalp) were injected at beginning of the surgery, Carprofen 

treatment was continued for three days post-surgery. 

 

Perfusions 

At the end of the experimental procedures, all rats that received bilateral ssAAV-8/2 injection 

were perfused. Briefly, rats were deeply anesthetized with a mixture of ketamine-xylazine 

(100 mg ketamine/kg, 3 mg xylazine /kg, ip), they were then perfused with 150 mL of 1xPBS 

followed by 100 ml of ice-cold 4% PFA (flow rate: 15 mL/min). The brains were then removed 

and post-fixed into 4% PFA at 4°C for 48 hours before being transferred into 1 x PBS + 0.1% 

sodium azide (4°C). 

 

Immunofluorescence 
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For immunofluorescence, consecutive coronal sections (50 μl thickness) were obtained using 

a vibrating-blade microtome (Leica VT1000 S, Germany) covering the entire dorsal striatum. 

The slices were then permeabilized into 1% Triton X-100 in 1 x PBS (30 minutes, 4°C), washed 

three times into 1 x PBS (5 min each, RT), blocked with 10% donkey serum in 1 x PBS (1 hour, 

RT), and incubated o/n with either 1:1000 mouse anti-GFP (Invitrogen, Ref: A22230) or 1:1000 

rabbit anti-RFP (Rockland, Ref: 600-401-379). The slices were then washed three times into 1 

x PBS (5 min each, RT), incubated with either 1:500 Alexa Fluor 488 donkey anti-mouse or 

1:500 Alexa Fluor 594 donkey anti-rabbit for 1 hour, RT. They were finally washed three times 

in 1 x PBS (10 min each, RT) before being mounted on glass slides with anti-fade mounting 

medium. The expression of both eGFP and mCherry was detected by an epifluorescent 

microscope (Zeiss, Axio Imager M2, Germany). 

 

Data analyses and statistics 

For the spatial navigation task, two different variables were used to assess habitual behavior: 

the number of habitual choices within the first trial of each probe session and the overall 

choice performance calculated as performance ratio: number of goal-directed choices per 

session divided by the total number of trials per session.  

For measuring habitual behavior in the reward learning task, the cumulative devaluation index 

was used. This was calculated as follows: 

 (baselinecumulative – testcumulative) / (baselinecumulative + testcumulative)  

“Baselinecumulative” represents the cumulative average number of lever presses performed for 

each 1-minute bin within the first 5 minutes of the last two sessions prior to the test; 

“testcumulative” represents the number of lever presses performed for each 1-minute bin within 

the first 5 minutes of the test. Using the cumulative devaluation index it is possible to analyze 

how the behavioral approach of the animals (goal-directed or habitual) changes over the 

course of the test.   

The difference between groups in the spatial navigation task using the number of habitual 

choices within the first trial of each session was analyzed via χ2 test. Habitual behavior in the 

reward learning task was assessed via one-sample t-test of the devaluation index against 0. 

The withdrawal scores were compared between groups via Mann-Whitney U test. The 

remaining data were analyzed via Repeated Measure Mixed Model (Gueorguieva and Krystal, 

2004). The estimation method used was Maximum Likelihood (ML), the covariance matrix was 
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chosen based on the lowest BIC. When applicable, LSD post-hoc test was performed. For 

statistical analysis IBM SPSS Statistics 27 was used. 

 

Sample size 

Experiment 1: 8 Ctrl and 8 CIE animals were used for the spatial navigation task. One animal 

died during the vapor exposure, therefore the final sample size was 8 Ctrl and 7 CIE.  

Experiment 2: For the reward learning task, 26 rats were used in total (12 Ctrl + 14 CIE). Of 

these, 2 rats died during the vapor exposure, 3 controls and 3 CIE were excluded from the 

analysis because they did not reach the 30 rewards per session criterion during the random 

interval training. The final sample size was 12 Ctrl and 9 CIE. 

Experiment 3: A total of 28 rats were used, 14 GFP and 14 hM4Di injected rats. Of these, 2 

hM4Di rats were excluded due to misplacement of injection site, 3 hM4Di rats did not acquire 

the lever pressing behavior, 2 Ctrl and 3 hM4Di were excluded from the analysis, because they 

did not reach the 30 rewards per session criterion during the random interval training. The 

final sample size was 14 GFP and 12 hM4Di for the spatial navigation task, and 12 Ctrl and 7 

hM4Di for the reward learning task. 
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Results 

Study 1: Habit formation in alcohol dependence 

Habitual and goal-directed behavior was determined in alcohol dependent and non-

dependent rats using spatial navigation (T-Maze, Study 1, Experiment 1) and reward 

conditioning (operant boxes, Study 1, Experiment 2) tasks with 0.2% saccharin as reward.  

Dependence was introduced by chronic intermittent cycles of ethanol vapor exposure (CIE, 

(Rimondini et al., 2002; Hirth et al., 2016). Average BAC per daily cycle and experiment was 

269.72 ± 16.04 mg/dL. Dependence was further confirmed by measurement of withdrawal 

scores 7 hrs in abstinence after the last vapor exposure cycle. The average total withdrawal 

score was 4.38 ± 0.36 for CIE animals compared to control rats (1.65 ± 0.22, U = 22.50, z = -

4.60, p < .000). 

 

Experiment 1: Spatial Navigation (T-Maze) task 

The training on a T-Maze started in one week abstinent rats. Rats had to navigate to a well 

containing the reward (0.2% saccharin solution) signaled by a visual cue, always located on 

the left arm of the maze. Each rat was tested individually on different days depending on its 

performance. For the Early time point each rat was tested in a probe session the following day 

after making at least 4 correct choices out of five trials (80% performance) for two consecutive 

sessions. For the Late time point rats were tested after making 10 sessions with an overall 

performance of at least 90%.  

As expected, we found no difference in terms of training performance between groups (F1,25 

= .02, p = .878) but the performance significantly differed between time points (F2,48 = 117.5, 

p = .000; Figure 2A). The post-hoc test indicated that prior to the early probe session the 

animals properly learned the task as their performance increased compared to the beginning 

of the training (Start vs Early: p= .000), and prior to the Late probe session the animals 

improved their performance even more (Early vs Late: p=.001).  

The results of the probe sessions, considering the first trial of each session (Figure 2B) and the 

overall performance for each session (Figure 2C) indicate that CIE animals displayed an 

increased habitual behavior response compared to controls. Based on the first trials, CIE 

animals made significantly more habitual turns compared to controls at the Late time point 

(χ2 = 5.5, p = .019), 86% CIE vs 25% Controls. From the Early to the Late time point the number 

of CIE animals that made habitual turns increased (from 43% to 86%) but such increase was 
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not significant (χ2 = 2.8, p = .094).  However, control animals did not show any change in their 

choices with overtraining as at both time points only two animals made a habitual turn (Figure 

2B). Based on the overall performance, measured as correct choice ratio per time point, the 

CIE animals showed a reduced performance, hence an overall increased number of habitual 

turns, specifically at the Late time point after overtraining (LSD: p = .013; Group*Time 

interaction: F1,30 = 8.1, p = .008). Control animals showed an increased overall performance 

from the Early to the Late probe session (p=.000) which was not the case for the CIE group 

(p=1). 

 
Figure 2. Pronounced habitual behavior in alcohol dependent rats (Study 1, Experiment 1). A. 
Training performance in percentage during the first two sessions, the last two sessions before the Early 
probe session, and the last two sessions before the Late probe session. Data are shown as mean ± SEM 
B. Pie chart showing number of habitual choices during the first trial of each probe session. C. Overall 
performance including all five trials of Early and Late probe session. Data for correct choice ratio are 
shown as box and whisker plot (median, first and third quartile range). Data in B were analyzed by χ2 
test. Data in A and C were analyzed by Repeated Measure Mixed Model, *p < 0.05, **p < 0.01, ***p < 
0.001. CIE, cyclic intermittent alcohol vapor exposed rats; Ctrl, control rats. For Details, see Material & 
Methods. 

 

Experiment 2: Reward learning (operant conditioning) task 

In order to study habitual behavior in the context of reward learning, we first trained male 

Wistar rats to self-administer 0.2% saccharin under a FR-1 schedule until they obtained a 

minimum of 50 rewards for three consecutive sessions after which their motivation for the 

reward was tested in a progressive ratio PR-2 test. When analyzing the number of lever 

presses during the FR1 sessions prior to each PR-2 test, we found a significant Group x Time x 

Session interaction (F2,168 = 5.1, p=.007). The post-hoc test showed no difference before 

initiating the vapor exposure (Figure 3A).  

We used the breakpoint (BP) value obtained from this test to pseudo-randomly assign the 

animals into the two treatment groups (CIE and Ctrl) in order to control for the motivational 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.10.04.510642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510642
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

level toward the reward. The mean BP for the two groups was 25.1 ± 2.1 and 26.2 ± 2.0 (mean 

± SEM) for the prospective Ctrl and the CIE groups, respectively (t19 = -.3, p = .731). 

All animals were then tested again for 0.2% saccharin (on the same lever and receptacle) 1 

week after the last cycle of ethanol vapor exposure. The CIE group showed significantly 

increased responding for saccharin in the last two sessions (2nd session: p=.002, 3rd session: 

p=.028). To confirm the alcohol dependent phenotype, at the end of the whole experiment 

animals were trained to self-administer 10% ethanol (on the opposite lever and receptacle). 

The BP obtained from the PR-2 tests for 0.2% saccharin and 10% alcohol, indicated that CIE 

animals displayed a higher motivation for both rewards compared to controls (F1,40 =13.3, p = 

.001), but both groups strongly preferred saccharin over alcohol (effect of reward: F1,40 = 16.0, 

p=.000) (Figure 3B). 

After the second PR-2 test for saccharin, habitual behavior was induced by training the rats 

for one session under RI-5 schedule, one session under RI-15 schedule and for 10 sessions 

under RI-30 schedule. Despite the higher motivation for saccharin observed in the CIE animals, 

the two groups did not differ significantly in terms of lever presses during the Random Interval 

(RI) training (F9,93 = 3.8, p = .081) (Figure 3C).  

 

Importantly, also the baselines used for calculating the devaluation index did not differ 

between groups, as indicated by the lack of a Group effect (F1,28 = .1, p = .751) or any 

interaction involving this factor. 

Habitual and goal-directed behavior was tested after six RI-30s sessions (Early time point) and 

after four additional RI-30s sessions (Late time point). The test session (5 min) was performed 

under extinction condition and commenced immediately after 30 minutes of satiety 

devaluation. When analyzing the cumulative devaluation index of the two groups, we found a 

significant Group x Timepoint interaction (F1,135  = 5.8, p = .018). The post-hoc test revealed 

that at the Early time point CIE animals had significantly lower devaluation index compared to 

controls (p = .011) while the groups did no longer show any difference at the Late time point 

(p = .432) (Figure 3D). Moreover, control animals significantly reduced their devaluation index 

from Early to Late time point (p = .000), while CIE animals did not change between the two 

time-points (p = .494) (Figure 3D). Finally, we found a significant main effect of Bin (F4,52 = 

10.1, p = .000) with no interaction involving this factor, indicating that both groups, at both 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.10.04.510642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510642
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

time points progressively became aware of the lack of reward during the test, correcting their 

behavior (reducing the response rate compared to baseline) as time progressed. 

In order to evaluate at what point of the devaluation (DV) test the animals actually displayed 

habitual behavior, we compared the cumulative devaluation index of the groups for each 

minute of the test against the hypothetical devaluation index of 0, indicating full habitual 

behavior, via one-sample t-test. During the Early time point, the control group showed goal-

directed behavior throughout the entire test as the devaluation index was significantly 

different from 0 at all minutes. During the first minute of the test the CIE group displayed 

habitual behavior but goal-directed behavior throughout the rest of the DV test. During the 

Late time point, both control and CIE groups displayed habitual behavior during the first two 

minutes of the test but shift towards goal-directed behavior afterwards (Figure 3D, Table 1). 

 
Figure 3. Alcohol dependent rats displayed habitual behavior for reward conditioning (Study 1, 
Experiment 2). A. Lever presses during FR1 training before and one week after the last cycle of ethanol 
vapor exposure. B. Breakpoint for 0.2% saccharin and 10% ethanol. C. Lever presses during random 
interval training. D. Devaluation index (Dev Idx) over the course of the extinction test for both early 
and late time-points. A dev Idx of 0 indicates full habitual behavior; a Dev Idx of 1 indicates full goal-
directed behavior. Data points highlighted with “H” are indicating habitual behavior. Data in graphs A, 
C and D are shown as mean ± SEM. Data in graph B are shown as box and whisker plot (median, first 
and third quartile range). Data were analyzed via Repeated Measure Mixed Model. *p < 0.05, **p < 
0.01, ***p < 0.001. CIE, cyclic intermittent alcohol vapor exposed rats; Ctrl, control rats. For Details, 
see Material & Methods. 
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Study 2: Role of pDMS in spatial navigation and reward learning 

We next used a DREADD-based approach to inhibit the pDMS in naïve Wistar rats and 

evaluated the effects on goal-directed and habitual behavior in both the spatial navigation 

and reward learning tasks (Experiment 3). We first trained the animals on the spatial 

navigation task, starting three weeks after the end of the last surgery in order to allow full 

expression of the transgenes, we then trained the same animals on the reward learning task 

starting one week after the end of the spatial navigation task (Figure 1). The quality of the 

injection of the virus was confirmed by immunohistochemistry for mCherry (expressing 

hM4Di, Figure 4 A-B) and GFP control virus within the pDMS region (Figure 4 A). Rats with 

misplaced virus injections were excluded from the entire analysis. 

 

Spatial Navigation (T-Maze) task 

As expected, we found no between groups difference (F1,83 = .5, p = .495) in performance 

during the training, but both groups progressively improved (F2,89 = 205, p = .000) going from 

the beginning of the training to prior the first probe session (p = .000) and from here to prior 

the second probe session (p = .000) (Figure 4C). 

When analyzing the behavioral approach (habitual vs goal-directed) during the two probe 

sessions we did not find any difference between groups based on the first trial of each session 

(Figure 4D) as the hMD4i animals only made less than 20% more habitual turns during both 

time points, compared to GFP controls (early: χ2 = .2, p = .671; late: χ2 = .2, p = .619). However, 

when analyzing the overall performance considering all five trials of each probe session (Figure 

4E) we found that hM4Di-treated rats displayed an overall increased number of habitual turns 

for both timepoints compared to GFP-expressing rats, as indicated by the presence of a 

statistically significant effect of Group (F1,52 = 9.9, p = .003) but lack of a Timepoint effect (F1,52 

= .6, p = .424) and interaction (F1,52 = 1.3, p = .260) effect between the two factors. However, 

the post-hoc test indicated a significant difference between the groups at the Early (p = .004) 

but not at the Late (p = .163) time point. 

Reward learning (operant conditioning) task  

After the end of the spatial navigation task, both groups were trained to self-administer 0.2% 

saccharin using the same FR1 pre-training used for Experiment 2 except that in this case the 

animals could not earn more than 50 rewards per session. This was done because we did not 

test the motivation of the animals in a progressive ratio test, because we had no reason to 
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assume a change in the rewarding properties by the experimental procedure, and in order to 

reduce the risk for overtraining of the lever-pressing behavior. Once the random interval 

training started, all conditions were identical to the ones used in Experiment 2 but the animals 

were only tested once, after 6 RI-30 sessions, when goal-directed behavior would be expected. 

During RI training (Figure 4F) we found no difference in lever presses between the hM4Di and 

GFP groups (F1,26 = .7, p = .417).  

For assessing habitual behavior, rats were treated with CNO (10 mg/Kg, ip.) 30 minutes before 

the test. When analyzing the behavior of the animals during the extinction test (Figure 4G), 

performed after reward satiety devaluation, we found a significant Group x Bin interaction 

(F4,76 = 5.7, p = .000) with the post-hoc test indicating that hM4Di-expressing rats had a 

significantly lower devaluation index, compared to controls, specifically during the first minute 

of the test (p = .011). Also in this case both groups corrected their behavior as the test 

progressed, as indicated by the significantly higher devaluation index during the first minute 

of the test and at the end of the test (Ctrl: p = .020; hM4Di: p = .000). Based on the one-sample 

t-test analysis of the devaluation index against 0, the hM4Di-expressing animals displayed 

habitual behavior during the first 4 minutes of the test, while control animals consistently 

displayed goal-directed behavior (Figure 4G, Table 2). 

We also analyzed the time required to make the first lever press response (first response 

latency, FRL) after the initiation of the extinction test and we compared it to the baseline FRL 

(Figure 4H), measured as the FRL averaged between the last two training sessions prior to the 

test. We found a significant Group x Time (baseline vs test) interaction (F1,19 = 5.1, p = .036) 

with the post-hoc test revealing that the control group took a longer time to make the first 

response during the test as compared to their baseline (p = .015), while the hM4Di animals 

did not (p = .438). Moreover, hM4Di-treated rats had a significantly lower FRL during the test 

compared to the response latency of the control animals during the test (p = .016). 
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Figure 4. Inactivation of DMS led towards habitual behavior in naïve rats (Experiment 3). A. Coronal 
brain section showing the expression of hM4Di-mCherry within the pDMS. B. Schematic illustration 
showing quality of bilaterally injected hM4Di-mCherry virus at Bregma level: -0.4 mm. C. Training 
performance in percentage during the first two sessions, the last two sessions before the early probe 
session, and the last two session before the last probe session. D. Number of habitual choices made 
during the first trial for each probe session. E. Overall performance when considering all five trials for 
each probe session. F. Lever presses during random interval training. G. Devaluation index (Dev. Idx) 
over the course of the extinction test. A dev. Idx. of 0 indicates full habitual behavior, a Dev. Idx of 1 
indicates full goal-directed behavior. Data points that were non-significantly different from 0 based on 
one-sample t-test are highlighted with “H”. Data in graphs C, F, and G are shown as mean ± SEM. Data 
in graph D are shown as pie chart. Data in graphs E and H are shown as box and whisker plot (median, 
first and third quartile range). Data from graph D were analyzed via χ2 test. Data from remaining graphs 
were analyzed via Repeated Measure Mixed Model. *p < 0.05, **p < 0.01, ***p < 0.001. DREADD-
mediated inactivation of DMS was achieved by ip injection of CNO (Clozapine-N-oxide, 10mg/kg) 30 
minutes prior each test. For Details, see Material & Methods. 
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Discussion 

In this study we provide evidence for a generalized habitization in alcohol dependent rats. We 

investigated habitual responses towards a sweet palatable reward in both tasks (spatial 

navigation and reward conditioning) and estimated to which extent such habitual responses 

are changed in abstinent rats. We found that most dependent rats displayed increased 

habitual responses at an earlier time point of learning, while non-dependent rats still showed 

a more goal-directed response. Chemogenetic inactivation of the pDMS in alcohol-naïve 

animals increases habitual tendencies and suggests alcohol-induced damage to this region in 

post-dependent rats. In conclusion, we confirm the critical role of DMS in maintaining goal-

directed behavior, which seems to be to some extend compromised in AUD. 

 
Assessment of habitual behavior in the spatial navigation task 

In study 1 we used post-dependent (CIE) and non-dependent rats for assessment of habitual 

behavior using a T-Maze navigation task. Both dependent and non-dependent controls 

displayed goal-directed responses at early time point of testing. Dependent rats switched to 

pronounced habitual responses after overtraining, while controls remained goal-directed 

(Figure 2B-C). The results imply that dependent rats developed habitual responses in a shorter 

time interval than controls, and overtraining was not effective in controls. A shift to habitual 

behavior in controls can be probably achieved after longer time of overtraining. 

 

Navigation is an adaptive task in which stimulus-response associations or habits are 

incrementally acquired. Initially, a strategy based on a cognitive map (spatial map or `model-

based`) are applied, while a more stereotyped response strategy (egocentric or ‘model-free’) 

can dominate after repeated training. Lesions of the dorsal striatum disrupt the latter strategy 

(Lee et al., 2008). AUD results in long-term damage of cortical regions, especially of the PFC 

but also hippocampus (Zahr et al., 2011; Meinhardt et al., 2013; Heilig et al., 2017; Meinhardt 

et al., 2021), suggesting that human subjects may preferentially adopt a striatal-based 

response strategy in e.g. 4-on-8 virtual maze or two step sequential Markov decision task. 

 

The testing approach that we used in the spatial navigation task has one limitation: the five 

consecutive test trials during the early time point could influence the performance of the 

animals during the test performed at the late time point as the animals had the possibility to 
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experience the test condition (inverted maze) multiple times, which would explain the 

increased overall performance in the control group from the early to the late time point.  

 

Assessment of habitual behavior in the operant conditioning task 

Naïve rats were trained to self-administer 0.2% saccharin in operant chambers. Based on their 

motivation to self-administer saccharin, rats were assigned into alcohol dependent and 

control groups. After introduction of dependence by CIE, rats were trained for habitual 

behavior under a random interval (RI)-30 schedules that facilitated habitual behavior.  

At the early and late time points rats were assessed for habitual behavior using a devaluation 

test procedure followed by an extinction test. At the early time point dependent rats displayed 

more habitual behavior (indicated by lower devaluation index) compared to controls. At the 

late time point both dependent and control rats showed a reduced devaluation index, 

indicating increased habitual behavior compared to the early time point (Figure 3D). 

Important to note, the dependent rats showed a higher motivation in the PR test for both 

saccharin and 10% alcohol during and at the end of the experiment, respectively, thus 

confirming the dependence-like phenotype (Figure 3B). An association between AUD and a 

sweet-liking phenotype has been in fact described in humans (Kampov-Polevoy et al., 2003; 

Pepino and Mennella, 2005, 2007; Bouhlal et al., 2018) and in high ethanol preferring rodents 

(Leventhal et al., 1995; Pecina and Berridge, 2005). 

 

In the reward learning task, habitual behavior is typically tested in rodents after reward 

devaluation with an extinction test performed following a training under a random interval 

(RI) or random ratio (RR) schedule for a given number of sessions. Reward devaluation 

procedures, which can be accomplished via either specific satiety or conditioned-taste 

aversion, are typically used to dissociate habitual from goal-directed behavior (Dickinson, 

1985; Barker and Taylor, 2014; McKim et al., 2016; Robbins and Costa, 2017). In this study the 

response to devaluation was assessed by pre-feeding the rats with saccharin solution prior to 

a 5-min extinction test. This test is usually short and it is performed in extinction conditions in 

order to avoid the animals experiencing the reward while in the devalued state and reduce 

extinction learning, this is particularly important if the animals are tested multiple times, as in 

our case. In this context, habitual behavior is defined as insensitivity to reward devaluation, 

meaning that animals that are displaying habitual behavior will press at a similar rate while in 
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the devalued state (during the test) and when non-devalued (control condition/group) (Corbit 

et al., 2012). The length of the extinction test however is often different between studies that 

use this approach, lasting anywhere from 3 minutes to 30 minutes (Corbit et al., 2012; 

Mangieri et al., 2012; Clemens et al., 2014; Furlong et al., 2017; Iguchi et al., 2017). It is not 

clear if animals that show insensitivity to devaluation in a 3 minutes test would still show it in 

a 5 minutes test, or if animals found to be sensitive to the devaluation procedure in a 5 

minutes test would also show sensitivity in a shorter test. Therefore, we have analyzed the 

data obtained from the devaluation-extinction test by calculating the devaluation index 

(Renteria et al., 2018; Towner and Spear, 2021) in cumulative form. The cumulative 

devaluation index is an estimate of how the behavior of the animals changes throughout the 

test. 

 

In our experiment, following reward devaluation at the early time point, both dependent and 

control rats exhibited reductions in lever pressing, suggestive of a goal-directed response 

pattern. However, using the cumulative devaluation index we could show that dependent rats 

not only displayed overall increased habitual tendencies compared to controls (overall 

reduced devaluation index), but also that during the first minute of the test, dependent rats 

exhibited full habitual behavior, while control animals consistently exhibited goal-directed 

behavior throughout the test (Figure 3D). At the late time point, both dependent and control 

rats showed full habitual behavior during the first 2 minutes of the test while no longer 

differing in overall devaluation index, indicative of an effective overtraining.   

A shift from goal-directed to habitual behavior is in line with the growing literature on 

dependence induced behavioral consequences, as there is evidence showing that chronic 

alcohol exposure can lead to increased habits also for taking behavior of a natural reward. 

Corbit and colleagues (2012) showed for example that non-contingent alcohol drinking 

performed during the course of operant training for a natural reward can induce insensitivity 

to outcome devaluation, while Towner and Spear (2021) showed that chronic intermittent 

ethanol intake, performed via oral gavage in late adolescent rats, also induces outcome 

insensitivity, indicating habitual behavior. Similarly, chronic intermittent alcohol vapor 

exposure has been shown to induce habitual behavior for a food reward in mice (Renteria et 

al., 2018). Interestingly, a recent study reported evidence of increased habitual behavior for 
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taking of a non-alcohol reward also after a single acute dose of ethanol, however in alcohol-

preferring mice (Houck and Grahame, 2018). 

This body of literature adds up to the evidence that responding for alcohol transitions towards 

habitual behavior faster compared to responding for a natural reward (Dickinson et al., 2002; 

Corbit et al., 2012; Mangieri et al., 2012). Moreover, previous research demonstrated that 

food habits form more quickly in females than in males, but the opposite is true for alcohol 

habit formation (Quinn et al., 2007; Barker et al., 2010). 

 

Role of pDMS in spatial navigation and reward learning 

Here we used a DREADD based approach to inhibit the posterior part of the dorsomedial 

striatum (pDMS) in naïve Wistar rats according to Yu et al., (2021). Inactivating DREADDs 

(hM4Di-mCherry) and GFP-expressing control viruses were bilaterally injected into the pDMS 

and effects on habitual behavior were assessed using both spatial navigation and operant 

tasks. We used a within subject design, with the same animals being tested for both behavior 

paradigms. In the T-Maze navigation task the DREADDs-mediated inactivation of the pDMS 

did induce an overall increased number of habitual choices at both time points, mostly 

pronounced during the early time point (Figure 4E). In the operant paradigm we could further 

demonstrate, that DREADD-treated rats displayed habitual behavior during the first 4 minutes 

of the devaluation test after short training, when goal-directed behavior would be expected, 

while the GFP-virus expressing control rats consistently displayed goal-directed behavior 

throughout the entire session. Thus, inactivation of pDMS by DREADDs led to habitual 

responses in both behavior paradigms, confirming the critical involvement of pDMS to 

maintain goal-directed behavior. Other studies found similar results after disengagement of 

the DMS and the formation of habitual behavior (Bassett et al., 2015; Kupferschmidt et al., 

2017; Yu et al., 2021).  

During the early goal-directed actions the DMS is mainly involved, while during the late 

habitual response, the DMS becomes weakened (Kupferschmidt et al., 2017) and the DLS 

instead becomes strengthened (Thorn et al., 2010). Thus, DMS and DLS seem to compete for 

control in the acquisition of habitual action sequences (Turner et al., 2022). Taken together, 

our findings support an opponent relationship of DMS and DLS in which loss of DMS function 

enhances the formation of habitual actions. 
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In general, instrumental responding (using an operant box) and spatial navigation (using a T-

Maze) share important features. Firstly, two stages can be identified in the formation of a well-

established action sequence: an early acquisition phase, characterized by a steep learning 

curve, and a phase of slow gradual consolidation, in which the behavior is optimized and 

becomes less susceptible to external influences. Secondly, the transition from early acquisition 

to later consolidation involves a shift from ventral to dorsal striatal regions. Control of 

motivated behaviors is initiated in the ventral striatum. Clinical studies suggest that during the 

transition from reward or goal-directed to habit-driven behavior, control is shifted towards 

dorsal parts of the striatum (Vollstadt-Klein et al., 2010). The most direct evidence for this 

process comes from a series of studies, which directly showed ventral striatum activation to 

alcohol challenge in light social drinkers, attenuation of this signal in heavy social drinkers 

(some of whom met criteria for diagnosis), and lack of this response in hospitalized treatment-

seeking patients (Gilman et al., 2008; Gilman et al., 2012; Spagnolo et al., 2014). 

 

There are human fMRI studies showing a reduced sensitivity to devaluation after extensive 

instrumental training (Tricomi et al., 2009; Sjoerds et al., 2013), but other studies did not find 

evidence for habitual responses in human subjects after prolonged training (de Wit et al., 

2009; Hogarth et al., 2019; Hogarth and Field, 2020; Luijten et al., 2020). Acute treatment of 

alcohol had been shown to impair goal-directed action (Hogarth et al., 2012). First evidence 

for a shift from goal-directed to habitual behavior in AUDs came from Sjoerds et al. (2013) 

using an instrumental learning task. Later on, another study compared AUD patients with 

healthy controls using the two-stage Markov decision task and found a reduction of goal-

directed performance in AUDs, but no difference in habitual responding (Sebold et al., 2014). 

This finding may highlight rather the possibility of general cognitive impairments in AUDs that 

impact of habitual action control. Other studies using the same task compared a variety of 

compulsive disorders including abstinent AUD patients (Voon et al., 2015). Similarly to Sebold 

et al. (2014), they did not observe whole-sample differences between AUD patients and 

healthy controls. However, the study showed an association of early abstinence with greater 

habitual action control which shifts towards more goal-directed control with longer 

abstinence. Another study using a web-based version of the two-stage Markov decision task 

with 1413 participants showed a significant decrease in goal-directed control in participants 

with self-reported AUD (using AUDIT) which were attributed to impairment in goal-directed 
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control to a broader range of trans-diagnostic factors, which they grouped as compulsive 

behavior and intrusive thought (Gillan et al., 2016). A recent longitudinally designed study with 

a sample size of 188 young social drinkers found that the amount of regular alcohol 

consumption had no significant impact on action control and habits (Nebe et al., 2018). All 

these contradictory findings contrast the results on habitual overreliance in AUD patients 

(Tricomi et al., 2009; Sjoerds et al., 2013), which might be due to the different methodologies, 

sample features and relatively smaller sample sizes in the majority of studies. 

 

In our animals, habitual behavior was not detected in rats with low withdrawal scores (data 

not shown) or least AUD-like behavior in terms of extensive homecage drinking (Smeets et al., 

2022). Thus, a behavior heterogeneity of the AUD-like phenotype, such as e.g. amount of 

alcohol consumption/self-administration, number of lever presses/motivation, withdrawal 

severity, sweet-liking phenotype (Bouhlal et al., 2018), seem to be important output factors 

for assessment of habitual behavior in rodents. In addition, we observed variability and low 

effects sizes of the observed effects. A large individual variability in compulsivity has been 

observed in animals self-administrating drugs such as cocaine and alcohol (Giuliano et al., 

2019; Siciliano et al., 2019). 

 

Further potential limitations of the study were that we did not consider habitual behavior for 

alcohol reward and other aspects of the AUD-like phenotype such as e.g. loss of control for 

aversive-/footshock-resistant responding for alcohol- or saccharin reward. Finally, it is 

important to identify molecular mechanism of habitual behavior for natural rewards to better 

understand how this behavior developed in comparison with alcohol rewarding effects. 

 

In summary, we conclude that dependence induced a generalized habitual response in rats 

for both spatial navigation and reward conditioning tasks. Inactivation of pDMS led to habitual 

responses, similar as seen in our dependent rats. Thus, pDMS is critical to maintain goal-

directed behavior; modulation of its activity will lead to changes in habitual responses. 

Based on our findings and a growing body of evidence we conclude a more minor role of habit 

formation in regard to AUD-like behavior. However, our data provide potential implications 

for understanding how dorsal striatal dysfunction contributes to AUD, and thus may provide 

new therapeutic strategies in support for regaining control over ‘bad habits’. 
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Tables 

Table 1. One-sample t-test against 0 of the devaluation index for each cumulative minute of 
the extinction tests at early and late time points (Study 1, Experiment 2). Non-significant 
results indicate habitual behavior (highlighted in bold). 

Time point 
Minutes 

(cumulative) 

Controls CIE 

Mean ± 
SEM 

t 
(df=11) 

p-
value 

Mean ± 
SEM 

t 
(df=8) 

p-value 

Early 

1 0.26 ± 0.09 2.854 0.016 0.04 ± 0.09 0,467 0.655 

2 0.37 ± 0.07 5.075 0.000 0.20 ± 0.07 2,688 0.028 

3 0.42 ± 0.07 5.842 0.000 0.18 ± 0.06 3,186 0.013 

4 0.45 ± 0.07 6.761 0.000 0.22 ± 0.06 3,411 0.009 

5 0.49 ± 0.06 8.329 0.000 0.26 ± 0.06 3,954 0.004 

Late 

1 
-0.06 ± 
0.10 

-0.546 0.596 
-0.00 ± 

0.10 
-0.031 0.976 

2 0.13 ± 0.09 1.495 0.163 0.06 ± 0.07 0.869 0.410 

3 0.24 ± 0.07 3.229 0.008 0.17 ± 0.07 2.672 0.028 

4 0.30 ± 0.06 5.427 0.000 0.23 ± 0.07 3.445 0.009 

5 0.35 ± 0.06 6.337 0.000 0.27 ± 0.07  3.766 0.005 

 

 
 
Table 2. One-sample t-test against 0 of the devaluation index for each cumulative minute of 
the DV test at the Early time point (Study 2, Experiment 3). Non-significant results indicate 
habitual behavior (highlighted in bold). 

Minutes 
(cumulative) 

Ctrl hM4Di 

Mean ± SEM 
t (df=11) 

p-
value 

Mean ± SEM 
t (df=7) p-value 

1 0.26 ± 0.11 2.252 0.046 -0.09 ± 0.08 -1.149 0.294 

2 0.25 ± 0.10 2.481 0.031 0.09 ± 0.09 1.047 0.335 

3 0.32 ± 0.09 3.584 0.004 0.14 ± 0.10 1.438 0.201 

4 0.34 ± 0.09 3.810 0.003 0.19 ± 0.08 2.340 0.058 

5 0.38 ± 0.09 4.291 0.001 0.27 ± 0.08 3.379 0.015 
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