

1 **Arterial cells support the development of human hematopoietic progenitors in vitro**
2 **via secretion of IGFBP2.**

3

4 Paolo Petazzi¹, Telma Ventura⁶, Francesca Paola Luongo⁶, Alisha May⁶, Helen Alice
5 Taylor⁶, Nicola Romanò⁷, Lesley M. Forrester⁶, Pablo Menéndez¹⁻⁵, Antonella Fidanza^{6*}.

6

7 1. Josep Carreras Leukemia Research Institute, Barcelona, Spain.

8 2. Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII),
9 Madrid, Spain.

10 3. CIBER-ONC, ISCIII, Barcelona, Spain.

11 4. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

12 5. Department of Biomedicine. School of Medicine, University of Barcelona, Barcelona, Spain.

13 6. Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of
14 Edinburgh, Edinburgh, UK

15 7. Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK

16

17 * Correspondence to afidanza@ed.ac.uk

18

19

20 **Abstract**

21

22 Hematopoietic stem and progenitor cells develop from the hemogenic endothelium located
23 in various sites during development, including the dorsal aorta from where Hematopoietic
24 Stem Cells (HSCs) emerge. This process has proven especially challenging to recapitulate
25 *in vitro* from pluripotent stem cells and further studies are needed to pinpoint the missing
26 stimuli *in vitro*. Here, we compared iPSC-derived endothelial cells and *in vivo* HSC-primed
27 hemogenic endothelium and identified 9 transcription factors expressed at significantly lower
28 levels in cells generated *in vitro*. Using a novel DOX-inducible CRISPR activation system we
29 induced the expression of those genes during *in vitro* differentiation. To study the
30 phenotypical changes induced by the activation of target genes, we employed single cell
31 RNA sequencing in combination with engineered gRNA that are detectable within the
32 sequencing pipeline. Our data showed a significant expansion of arterial-fated endothelial
33 cells associated with a higher *in vitro* progenitor activity. The expanded arterial cluster was
34 marked by high expression of *IGFBP2* and it was distinct from the hemogenic cluster that
35 showed increased cell cycle progression. We demonstrated that the addition of *IGFBP2* to
36 differentiating PSCs resulted in a higher number of functional progenitors, identifying the

37 supporting role of arterial cells play to the emergence of blood progenitors via IGFBP2
38 paracrine signalling.

39

40

41 **Introduction**

42

43 The haematopoietic system develops early during gestation through so called hematopoietic
44 “waves” of progenitors, arising from different anatomical region and giving rise to various
45 progenitor and stem cells (Medvinsky and Dzierzak, 1996; Palis *et al.*, 1999; Böiers *et al.*,
46 2013; Hoeffel *et al.*, 2015; Patel *et al.*, 2022). Although many types of hematopoietic
47 progenitors of the various lineages can now be successfully produced from iPSCs, efficient
48 production of HSCs remains still a standing challenge. The precise mechanisms leading to
49 the development of functional HSCs is yet to be completely defined posing a limitation on
50 how to recapitulate it in vitro.

51 During embryonic development, HSCs emerge from specialised endothelial cells lying on the
52 ventral region of the dorsal aorta in the posterior region of the embryo (Jaffredo *et al.*, 1998;
53 Zovein *et al.*, 2008; Bertrand *et al.*, 2010; Boisset *et al.*, 2010).

54 Only a subset of the endothelial cells, known as hemogenic endothelium, is capable of
55 generating hematopoietic stem and progenitor cells via endothelial to hematopoietic
56 transition (EHT) (Ottersbach, 2019). During the EHT endothelial cells slow their cell cycle
57 (Batsivari *et al.*, 2017; Canu *et al.*, 2020), round up and eventually detach to enter the
58 circulation (Eilken, Nishikawa and Schroeder, 2009; Kiss and Herbomel, 2010). These
59 profound phenotypical changes are accompanied by transcriptional remodelling whereby the
60 expression of endothelial genes is gradually downregulated and the transcription of the
61 hematopoietic program is initiated (Swiers *et al.*, 2013). With the use of single cell
62 transcriptomics a population of hemogenic endothelium specifically committed to the
63 development of HSCs was recently identified within the developing human dorsal aorta
64 (Zeng *et al.*, 2019).

65 To explore the molecular control on the development of the hematopoietic system, and to
66 address the difference with the in vitro system, we compared our own single cell
67 transcriptomics analysis of in vitro derived hemogenic endothelium and early progenitors
68 (Fidanza *et al.*, 2020) to that of the HSC-primed human hemogenic endothelium (Zeng *et al.*,
69 2019). To assess the role of the genes that were expressed at a lower level within in vitro-
70 derived cells compared to in vivo, we developed a novel DOX-inducible CRISPR gene
71 activation system. We employed scRNASeq to track the presence of guide RNAs and
72 monitored the phenotypic effects of gene activation of the induced cell populations. With this

73 experimental pipeline we identified a novel role for IGFBP2 in the control of cell cycle
74 progression within the EHT process.

75

76 **Results**

77

78 **Comparison of in vitro hematopoiesis to in vivo AGM identifies 9 differentially
79 expressed transcription factors**

80

81 We, and others, have shown that in vitro differentiation of human iPSCs closely resemble
82 intraembryonic hematopoiesis (Sturgeon *et al.*, 2014; Ng *et al.*, 2016; Fidanza *et al.*, 2020;
83 Calvanese *et al.*, 2022). To understand the molecular basis underlying the challenges
84 associated with the production of definitive fully mature HSCs in vitro from differentiating
85 iPSCs we compared our scRNAseq dataset (Fidanza *et al.*, 2020) to that of cells derived in
86 vivo from the human aorta-gonad-mesonephros (AGM) region (Zeng *et al.*, 2019), where
87 definitive HSCs develop. We integrated the transcriptomic data of in vitro derived endothelial
88 (IVD_Endo) and hematopoietic cells (IVD_HPC) with that of arterial endothelial cells (aEC),
89 arterial hemogenic cells (aHEC) and venous endothelial cells (vEC) derived from human
90 embryos collected between the Carnegie stage 12 and 14 (Figure 1A). To identify possible
91 target transcription factor that could be manipulated in vitro to improve iPSCs differentiation,
92 we determined which genes were expressed in the aHEC at higher level compared to
93 IVD_Endo and IVD_HPC. This strategy identified 9 transcription factors *RUNX1T1*, *NR4A1*,
94 *GATA2*, *SMAD7*, *ZNF124*, *SOX6*, *ZNF33A*, *NFAT5*, *TFDP2* (Figure 1B). The expression of
95 these genes was consistently high in aHEC, with some also high in the aEC, but low in both
96 endothelial and hematopoietic IVD cells, except for TFDP2 which was expressed in
97 IVD_HPCs (Figure 1C).

98

99 **Development of a gRNA-mediated DOX-inducible dCAS9-SAM activation system in
100 human iPSCs**

101

102 We previously developed an all-in-one SAM system that mediates the transcriptional
103 activation of endogenous gene expression (Fidanza *et al.*, 2017). To activate the nine target
104 genes identified in this study we have since developed a novel DOX inducible SAM (iSAM)
105 cassette targeted into the *AAVS1* locus of human iPSCs (Figure 2A). We first tested the
106 iSAM plasmid by transient transfection of HeLa cells together with gRNAs directed to the
107 *RUNX1C* transcriptional start site. We demonstrated that the activation of *RUNX1C*
108 expression was correlated with the DOX concentration in a linear manner (Figure S1 A/B).
109 To verify the activation in human PSCs we employed a *RUNX1C*-GFP human embryonic

110 stem cell (hESC) reporter cell line and this strategy also allowed us to study gene activation
111 at single cell resolution (Figure S1 C-G). As predicted, the level of expression of the
112 mCherry tag within the iSAM cassette was proportional to the concentration of DOX (Figure
113 S1 D-E) and to the number of cells in which the RUNX1C gene had been activated, as
114 assessed by the presence of RUNX1C-GFP+ cells (Figure S1 D-F). Furthermore, the level
115 of expression of RUNX1C expression, as measured by the mean fluorescence intensity
116 (MFI) of the RUNX1C-GFP reporter, also correlated with the concentration of DOX (Figure
117 S1 G). We then tested the iSAM cassette in our iPSC line (SFCi55) (Figure 2B-D). Only
118 when iPSCs were transfected with iSAM and the gRNA for RUNX1 in presence of DOX, the
119 expression of the *RUNX1C* gene was detected (Figure 2B). RUNX1 protein was also
120 detected by immunocytochemistry in transiently transfected iPSCs (Figure 2C).
121 We then targeted the iSAM cassette into the *AVVS1* locus using a Zinc Finger Nuclease
122 (ZFN) strategy (Yang *et al.*, 2017; M. Lopez-Yrigoyen *et al.*, 2018). iPSC clones that had
123 specifically integrated the iSAM cassette into the *AAVS1* locus were validated by genomic
124 PCR and sequencing. The *AAVS1* locus has been reported to be a safe harbour site that is
125 resistant to epigenetic silencing and indeed we had previously demonstrated that transgenes
126 inserted into the *AVVS1* locus under the control of the constitutively active CAG promoter
127 was efficiently expressed both in undifferentiated and in differentiated iPSCs (Yang *et al.*,
128 2017; Martha Lopez-Yrigoyen *et al.*, 2018; Lopez-Yrigoyen *et al.*, 2019). However, we noted
129 a dramatic reduction in the number of cells expressing the mCherry tag in undifferentiated
130 iSAM iPSCs upon DOX induction after the iSAM line had been maintained for several
131 passages, indicating transgene silencing of the rTTA DOX-inducible cassette (Supp Figure
132 1H). To overcome this problem, we treated the iSAM iPSC line with an inhibitor of histone
133 deacetylases (HDACs), sodium butyrate (SB), known to have no adverse effect on iPSCs
134 maintenance (Kang *et al.*, 2014; Zhang, Xiang and Wu, 2014). A short 48 hours treatment
135 resulted in a significant increase the number of mCherry+ cells upon DOX induction,
136 proportional to the SB concentration (Figure S1I). We therefore maintained the iSAM iPSCs
137 in the presence of SB and this fully restored the inducibility of the transgene with virtually all
138 cells expressing mCherry in the presence of DOX (Figure S1J). Importantly, we noted no
139 detrimental effect of SB on iPSC self-renewal nor on their haematopoietic differentiation
140 capacity.
141 To test the effect of activating the 9 target genes on the transcriptomes of differentiating
142 cells, we engineered the gRNAs so they could be detected within the single cell RNA
143 sequencing pipeline (Replogle *et al.*, 2020). To this end we inserted a capture sequence just
144 before the termination signal to avoid any alteration in the secondary structure of the loops
145 thus preserving the binding of the synergistic activators of the SAM system to the stem loops
146 of the gRNA. Of the two capture sequences available we decided to use the one that was

147 predicted to result in fewer secondary structure alterations and this new gRNA was named
148 2.1 (Figure 2E). We compared the activation level achieved with the new 2.1 gRNA to that of
149 the original 2.0 backbone using various gRNAs targeting *RUNX1C* (Figure 1F). These
150 results convincingly demonstrate that the addition of the capture sequence in the gRNA 2.1
151 does not alter the level of endogenous gene activation that could be achieved (Figure 1G).
152

153

154 **CRISPR activation results in expansion of arterial cells in association with higher
155 hematopoietic progenitors' potential**

156

157 We designed 5-7 gRNAs to target the 200bp upstream of the transcriptional start sites of
158 each of the 9 target genes identified by the comparison to the human AGM dataset. We
159 subcloned these 49 gRNAs (Table 1) into the gRNA 2.1 backbone, and packaged them into
160 lentiviral particles, (herein referred to as the AGM library) as well as a non-targeting (NT)
161 gRNA. The iSAM iPSC line was infected to generate iSAM_AGM and iSAM_NT iPSCs.
162 Cells were selected in puromycin, and their integration in the genome was confirmed by
163 PCR and sequencing. The iSAM_AGM and iSAM_NT iPSCs were then differentiated in 3D
164 embryoid bodies (EBs) until day 8, then dissociated and analysed by flow cytometry for the
165 expression of endothelial and arterial markers, CD34 and DLL4, respectively. DOX was
166 added from day 0 to both cell lines to be able to distinguish between the effect of DOX alone
167 and that of target gene activation by the gRNAs (Figure 3A). Although DOX alone resulted in
168 increase of CD34+DLL4+ cells (Figure S2A), the increase obtained with the AGM library was
169 significantly higher (Figure S2A, Figure 3B), with a more than 3-fold expansion of
170 phenotypical arterial cells. To verify that the increase in arterial endothelial cells was
171 associated with a functional difference we isolated CD34+ cells using magnetic beads and
172 cocultured 20000 cells on OP9 supportive stromal cells for 7 days, in the presence of the
173 same differentiation cytokines. After one week, half of the OP9 cocultured cells were plated
174 into colony forming assays and scored 14 days later. These results showed that the
175 activation of the target genes in the iSAM_AGM in presence of DOX led to an increased
176 number of CFU-E and CFU-GM and a reduction of CFU-M (Figure 3C), supporting the idea
177 that activation of these genes in differentiating iPSCs resulted in a change in the types of
178 haematopoietic progenitors produced.

179

180 **Single Cell RNA sequencing in combination with CRISPR activation identify arterial
181 cell type expansion in association with activation of the 9 target genes and increased
182 expression of *IGFBP2***

183

184 To analyse the transcriptional changes that were induced by the activation of the target
185 genes, we differentiated the iSAM iPSCs and subjected them to single-cell RNA sequencing
186 using the 10X pipeline. After 10 days of differentiation in the presence or absence of DOX,
187 we FAC-sorted live CD34+ cells from iSAM_AGM and the iSAM_NT iPSCs (Figure 4A).
188 Following data filtering of low-quality cells, we selected cells in which the gRNAs expression
189 was detected (Figure 4B). To verify that our approach activated target genes we assessed
190 the expression profile of these genes in the different libraries. All the target genes appeared
191 to be expressed at a higher level in the iSAM_AGM compared to the iSAM_NT library
192 (Figure 4C), as expected. Interestingly, many of these genes appeared downregulated upon
193 DOX induction in the control iSAM-NT cell line but this effect was counteracted by the target
194 gene activation in iSAM_AGM cells (Figure S2B). To study the effect of the genes' activation
195 on the cell types we performed clustering analysis and detected a total of 7 clusters (Figure
196 4B). High level of *DLL4* expression was detected in the arterial cell cluster while high levels
197 of hemogenic-markers such as *RUNX1* and *CD44*, were detected in other clusters typed as
198 hemogenic 1 and hemogenic 2 (Figure 4B, D). To understand the effect of the activation, we
199 looked at the representation of the various clusters in the different libraries and we noticed a
200 significant expansion of the arterial cluster in the DOX-induced iSAM-AGM library (Figure
201 4E). This is entirely in keeping with the expansion of *DLL4*+ cells that we had detected by
202 flow cytometry (Figure 3B). We then compared the expression profile of these arterial cells
203 between the different activation libraries, and we obtained a list of genes upregulated upon
204 activation of the targets. One of these, *IGFBP2* was expressed at significantly higher levels
205 in the iSAM_AGM library in presence of DOX compared to the others (Figure 4F), and this
206 was associated with a significant enrichment of the *RUNX1T1* specific gRNAs (23.67
207 average log₂ fold change, 4.11 e⁻⁰⁷ adjusted p-value).

208

209

210 **IGFBP2 addition to the in vitro differentiation leads to a higher number of functional 211 hematopoietic progenitor cells**

212

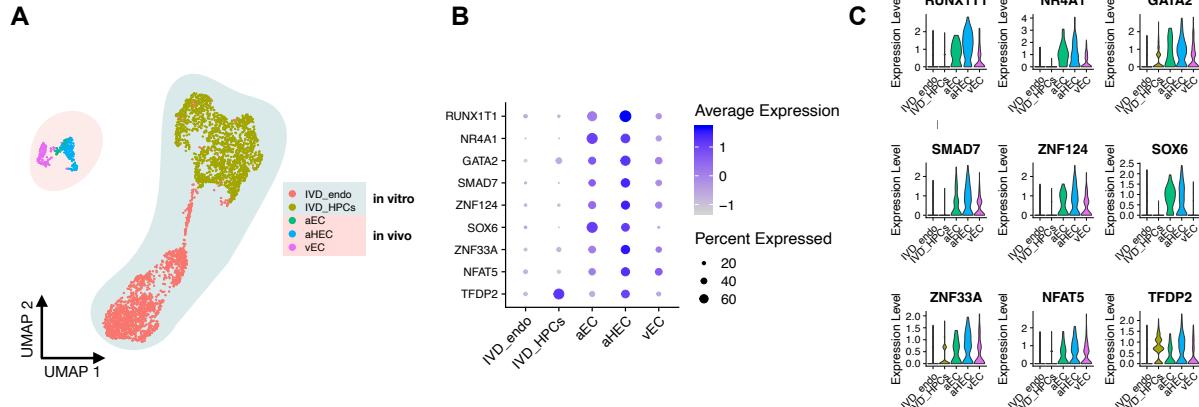
213 IGF Binding Protein 2, a member of the family of IGF binding proteins, is able to bind both
214 IGF1 and IGF2 as well as bind to other extracellular matrix proteins, for which it needs to be
215 secreted by the cells. To test if the increased frequency of functional hematopoietic
216 progenitors was due to paracrine signaling from the arterial cells, we supplemented the
217 media with IGFBP2 at 100ng/ml from day 6, after the induction of endothelial cells
218 differentiation (Figure 5A). To explore the role of IGFBP2 we employed the parental iPSCs
219 line, SFCi55 from which the iSAM line was derived. We isolated CD34+ cells at day 8 and
220 co-cultured them on OP9 cells in presence of IGFBP2 for an additional week, then tested

221 them using colony forming unit (CFU) assays. The cells treated with IGFBP2 showed a
222 significant increase in the total number of haematopoietic CFU colonies. (Figure 5B). To
223 assess whether IGFBP2 also had a paracrine effect on the production of arterial cells
224 themselves, we analyzed the cells within EBs at day 8, but no difference was detected in the
225 number of DLL4+ cells in presence of IGFBP2 (Figure 5C). We then focused on the
226 characterization of the cells derived from the CD34+ cells after coculture with the OP9. Our
227 results showed a comparable distribution of CD34+, CD43+ and CD45+ cells population
228 (Figure S2C-D), but a significant expansion of all these populations (Figure 5D). IGFBP2 has
229 been previously reported to control HSCs cell cycle and support their survival ex-vivo by
230 inducing proliferation (Huynh *et al.*, 2011). Because cell cycle is tightly regulated during the
231 EHT process both in vivo (Batsivari *et al.*, 2017; Fadlullah *et al.*, 2022) and in vitro (Canu *et*
232 *al.*, 2020), we explored the cell cycle stage of cells undergoing EHT in our dataset. EHT cells
233 were subset from the initial dataset according to the expression of hemogenic markers such
234 as RUNX1 and CD44. We performed pseudo-temporal ordering of the cells (Figure 5E) and
235 looked at their cell cycle stage along pseudotime (Figure 5F). These analyses showed that
236 cell undergoing EHT progress from G1 to reenter the cell cycle in S and G2/M (Figure 5F).
237 This observation was also in accordance with GO analysis of the clusters EHT_1 and
238 EHT_2, showing an enrichment for ribosome associated GO in the EHT_1 and cell cycle
239 and DNA replication associated GO in EHT_2, reflecting the progression of cells along the
240 cell cycle stages (Figure S3A-B). In addition, the iSAM_AGM cells showed a higher number
241 of cycling cells in S and G2M with a consequent reduction of G1 cells (Figure 5G-H). To
242 uncouple the effect of IGFBP2 on cell cycle during the EHT from that on the progenitor
243 population, we analysed the cell cycle profile of suspension hematopoietic cells obtained
244 from OP9 cocultured in the presence of IGFBP2. This showed no differences on the cell
245 cycle distribution of hematopoietic progenitors (Figure S3C) indicating that the expansion of
246 hematopoietic progenitors is not a consequence of their increased cycling but rather the
247 effect of IGFBP2 during their emergence.
248 Taken together these data suggests that the increased number of functional hematopoietic
249 progenitors detected upon activation of the target genes could be explained by the
250 enhanced production of IGFBP2 in arterial cells that support the EHT process by promoting
251 re-entry in the cell cycle.

252

253 **Discussion**

254


255 The complexity and dynamism of the developmental hematopoiesis in vivo has imposed
256 challenges in accurately reproducing the process in vitro. Here we identified differences in
257 the expression of nine transcription factors between the two systems and developed a novel

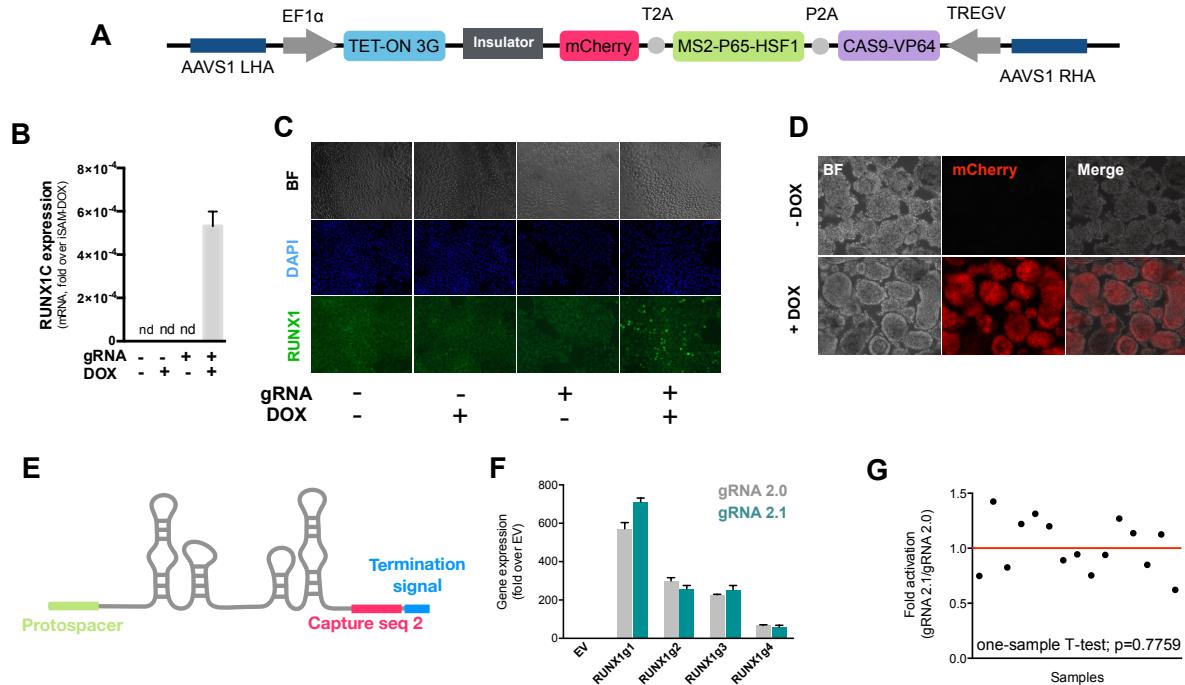
258 CRISPR-activation system to explore the downstream consequences of their activation on
259 the emergence of definitive hematopoietic progenitor cells. Using this approach, we
260 identified the supportive role of non-hemogenic endothelial cells via paracrine signaling of
261 IGFBP2 during the endothelial to hematopoietic transition.
262 When we compared endothelial cells derived in vitro from hiPSCs to those primed to give
263 rise to HSCs, at the time point when the early commitment takes place in the human
264 embryo, we identified 9 transcription factors that were expressed at lower level in vitro. While
265 some of these have been associated with blood cell development such as GATA2 (Ling *et*
266 *al.*, 2004; de Pater *et al.*, 2013; Castaño *et al.*, 2019), SMAD7 (McGarvey *et al.*, 2017),
267 NR4A1(McGarvey *et al.*, 2017), and SOX6 (McGrath *et al.*, 2011), the others, RUNX1T1,
268 ZNF124, ZNF33A, NFAT5 and TFDP2 have not been previously associated with
269 haematopoiesis. The addition of capture sequence to the gRNA backbone enabled their
270 detection coincidentally with the single-cell transcriptome and this allowed us to demonstrate
271 that that RUNX1T1 gRNAs were significantly enriched in cells within the expanded arterial
272 cluster. RUNX1T1, also known as ETO, has been associated with the t(8;21) chromosomal
273 translocation that results in the generation of the leukemic fusion protein, AML1/ETO
274 (Rejeski, Duque-Afonso and Lübbert, 2021). *RUNX1T1* expression has been recently
275 detected in transcriptomic analysis of the human AGM region (Zeng *et al.*, 2019; Calvanese
276 *et al.*, 2022), but its precise role during the ontogeny of the blood system has not been
277 elucidated.
278 Here we show that enrichment of the RUNX1T1 gRNAs was associated with high
279 expression of *IGFBP2*, encoding a member of the IGF binding protein family. *IGFBP2* KO
280 mice show increased expression of cell-cycle inhibitors and HSC apoptosis, implicating
281 *IGFBP2* as a modulator of HSCs cell cycle and survival (Huynh *et al.*, 2011). More recently
282 *IGFBP2* was reported as being highly expressed in the human AGM region at CS14 when
283 HSCs are emerging (Calvanese *et al.*, 2022), supporting a possible role during
284 developmental hematopoiesis. In this study we show that the addition of *IGFBP2*
285 recombinant protein in our in vitro model of EHT results in the emergence of an increased
286 number of functional hematopoietic progenitors. This higher number was not associated with
287 increased cell cycle division in the progenitors per se but rather to the faster progression
288 towards G2/S/M in the hemogenic endothelial cells undergoing EHT. Cell cycle control has
289 been identified to be an important mediator of EHT; first the cell cycle slows down to allow
290 the intense cell remodeling that leads to the acquisition of the hematopoietic potential to then
291 restart ensuring the proliferation of blood progenitors (Batsivari *et al.*, 2017; Canu *et al.*,
292 2020; Fadlullah *et al.*, 2022). The molecular control of this process is still unclear and here
293 we demonstrate that role of *IGFBP2* as mediator of the process and propose that RUNX1T1
294 might be regulating its expression. Because RUNX1T1 lacks a DNA binding domain, its

295 direct involvement in the regulation of IGFBP2 expression must require the involvement of
296 other cofactors that are yet to be identified.
297 The supportive role of the endothelial niche in the development of HSCs has been studied in
298 vivo (Hadland *et al.*, 2015, 2022; Crosse *et al.*, 2020) and exploited in vitro to support HSCs
299 emergence (Sandler *et al.*, 2014; Hadland *et al.*, 2022). Although many signalling molecules
300 have been associated with HSCs development, this is the first indication that IGFBP2 could
301 be one of the supportive mediators of the EHT by modulating the cell cycle.
302
303 This study demonstrates that the combination of CRISPR mediated activation of target
304 genes with single cell transcriptomic analysis in differentiating PSCs can be a powerful
305 approach to model human embryonic development. The fine epigenetic manipulation of the
306 transcription permits the study of target gene sets simply by adding specific gRNAs and the
307 strategy can be readily applied to any cell lineage of interest. Our findings underline the
308 importance of mimicking the functional heterogeneity of developing tissues in vitro to
309 recapitulate with accuracy the complex processes that occur in the developing embryo.
310

311 **Figures**

312

313


314

315 **Figure 1 - Comparison of in vitro hematopoiesis to in vivo AGM identifies 9**
316 **differentially expressed transcription factors**

317

318 **A** - Integrative analysis of single cell transcriptome of in vitro derived hematopoietic
319 (IVD_HPCs) and endothelial cells (IVD_Endo) and in vivo sample endothelial cells (venous,
320 vEC; arterial, aEC; arterial hemogenic, HECS) from human embryos (CS12-CS14) visualised
321 on UMAP dimensions. **B** - Target genes expression level showing higher expression in
322 arterial hemogenic endothelium in vivo compared to in vitro derived cells. **C** – Violin plot
323 visualising gene expression distribution of the target transcription factors visualised in the
324 violin plot.

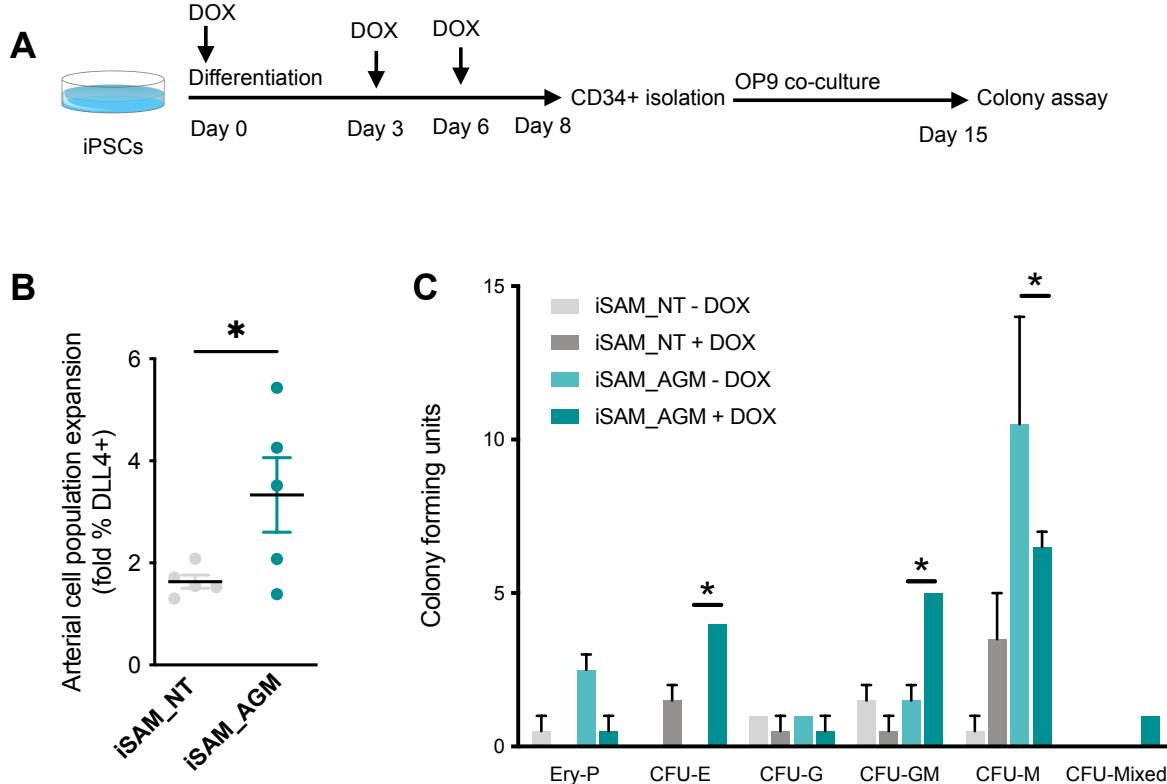
325

326

327

328 **Figure 2 - The inducible iSAM cassette successfully mediates activation of**
329 **endogenous gene expression upon DOX induction.**

330

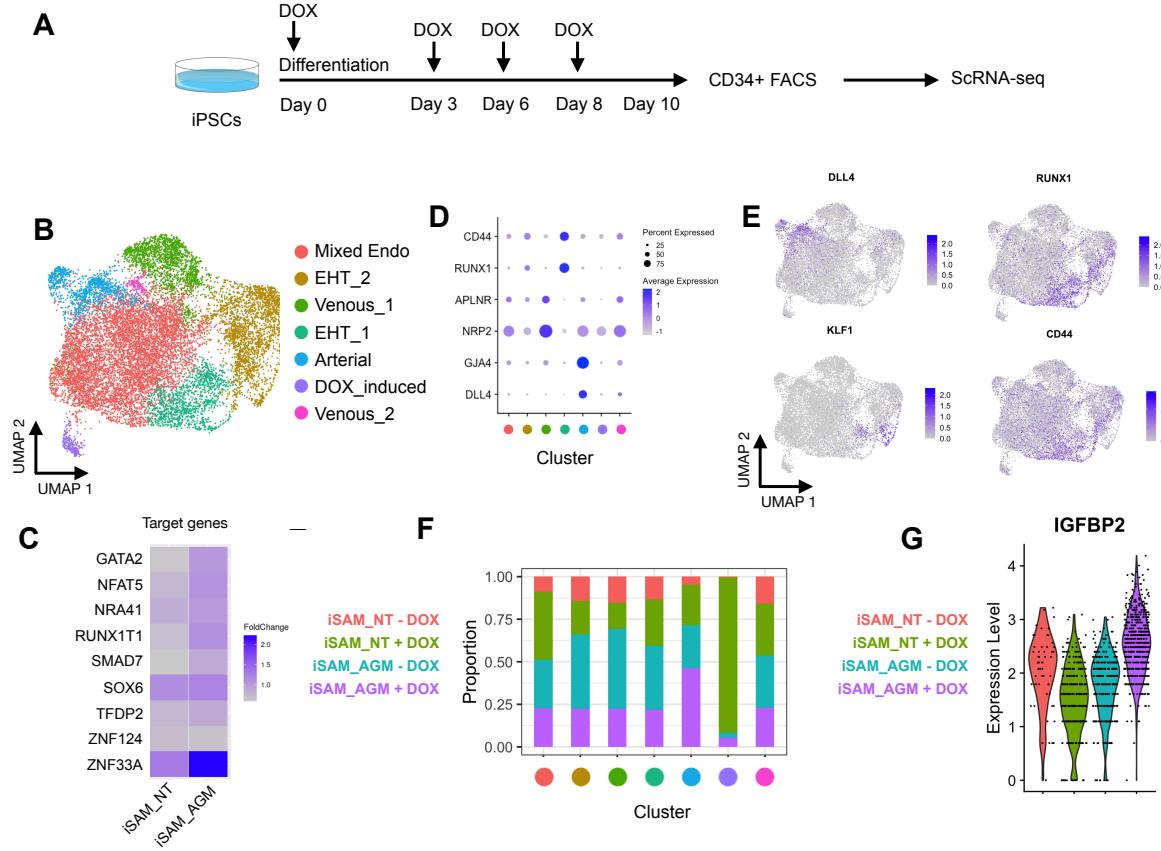

331

332 **A** - Schematic of the iSAM cassette containing the TET-on system under the control of EF1 α
333 and dCAS9-P2A-MS2-p65-HSF1-T2A-mCherry under the rTTA responsive elements,
334 separated by genetic silencer and flanked by AAVS1 specific homology arms. **B** - RUNX1C
335 gene expression activation after transient transfection of the iSAM plasmid and gRNAs in
336 presence or absence of DOX in human iPSC line. **C** – RUNX1 protein expression upon
337 iSAM activation after transient transfection of the iSAM plasmid and gRNAs with DOX in
338 human iPSC line detected by immunostaining. **D** Expression of the iSAM cassette reported
339 by mCherry tag during the differentiation protocol, the representative images (bright field –
340 BF, and fluorescence) show embryoid bodies at day 3 of differentiation. **E** - Schematic of the
341 gRNA 2.1 containing the capture sequence for detection during the scRNAseq pipeline. **F** -
342 RUNX1C gene activation level obtained using either the gRNA 2.0 or 2.1 backbone. **G** -
343 Statistical analysis of the gRNAs activation level showing no significant variation following
344 addition of the capture sequence (triplicate for each of the 4 different gRNAs).

345

346

347


348

349 **Figure 3 - CRISPR activation results in expansion of arterial cells in association with**
350 **higher clonogenic potential.**

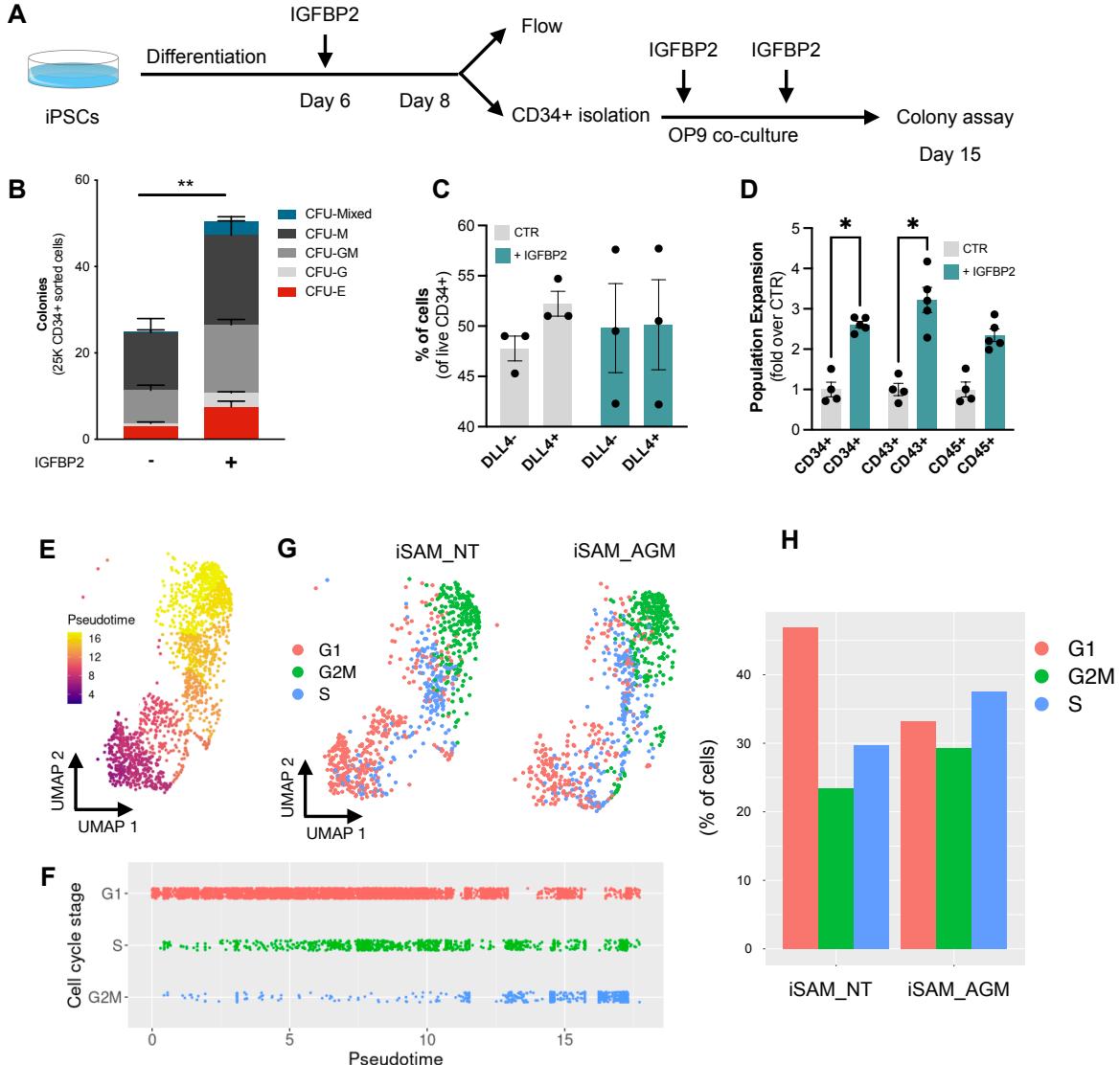
351

352 **A** - Schematic of the differentiation protocol of the with activation of the target genes, used
353 for both the control line iSAM_NT (containing the non-targeting control gRNA) and
354 iSAM_AGM (containing the gRNAs for the target genes) **B** - Expansion of the arterial
355 population assessed by the membrane marker expression of DLL4+ following targets'
356 activation, quantified by flow cytometry at day 8 of differentiation (Data are normalised on
357 the iSAM_NT + DOX sample, * p = 0.0417 paired t-test). **C** - Colony forming potential of the
358 suspension progenitor cells derived from the two lines treated with or without DOX following
359 OP9 coculture activation, data show the colony obtained for 10⁴ CD34+ input equivalent (*
360 p<0.05, Tukey's two-way ANOVA).

361

362

363


364 **Figure 4 - Single Cell RNA sequencing in combination with CRISPR activation of the 9
365 target genes identify arterial cell type expansion.**

366

367 **A** - Schematic of the single-cell RNAseq experiment in combination with the activation of the
368 target genes. **B** - Dimension reduction and clustering analysis of the scRNAseq data
369 following activation, filtered on cells where the gRNA expression was detected. **C** - Gene
370 expression profile of target genes following target genes' activation, heatmap shows the
371 expression level of the target genes in the iSAM_NT and iSAM_AGM treated with DOX
372 following normalisation on the -DOX control. **D** – Arterial (*GJA4*, *DLL4*), venous (*NRP2*,
373 *APLNR*) and hemogenic marker (*CD44*, *RUNX1*) expression distribution in the clusters
374 indicated by the colour. **E** - Expression distribution visualised on the UMAP plot showing the
375 location of arterial cells marked by *DLL4*, and hemogenic endothelium marked by *CD44* and
376 *RUNX1*, and hematopoietic priming marked by *KLF1*. **F** – Contribution of the different
377 libraries to the clusters showing that arterial cell cluster is overrepresented in the
378 iSAM_AGM treated with DOX, compared to the other libraries. **G** – Violin plot of *IGFBP2*
379 expression profile in arterial cells obtained from the different conditions.

380

381

382

383

384 **Figure 5 - IGFBP2 addition to the in vitro differentiation leads to a higher number of**
385 **functional hematopoietic progenitor cells.**

386

387 **A** - Schematic of the IGFBP2 functional validation experiment. **B** - Number of hematopoietic
388 colonies obtained after coculture on OP9 in presence or absence of IGFBP2 (** p=0.0080,
389 Sidak's Two way ANOVA). **C** – Percentage of arterial cells differentiation analysed by flow
390 cytometry for DLL4 in day 8 EBs. **D** – Expansion of hematopoietic progenitors analysed
391 using markers' expression on suspension progenitors derived after coculture of CD34+ cells
392 onto OP9 support (data are expressed as fold over the CTR in the absence of IGFBP2 (*
393 p<0.02, Sidak's Two way ANOVA). **E** - Pseudotemporal ordering in the EHT cells' subset
394 showing the progression of cells from EHT_1 to EHT_2 cluster. **F** - Cell cycle stage ordered
395 along the pseudotime axis during the process of the EHT. **G** - Cell cycle stages in the two

396 libraries iSAM_NT and iSAM_AGM treated with DOX projected on the UMAP plot. **H** -
397 Quantification of the different cell cycle stages in the iSAM_NT and iSAM_AGM cells treated
398 with DOX.
399

400 **Methods**

401

402 **Pluripotent Stem Cells maintenance**

403 hPSCs were maintained in vitro in StemPro hESC SFM (Gibco) with bFGF (R&D) at 20
404 ng/ml. Wells were coated with Vitronectin (ThermoFisher Scientific) at least 1 hour before
405 plating and cells were passaged using the StemPro EZPassage tool (ThermoFisher
406 Scientific). Media change was performed every day and cells passaged every 3–4 days at a
407 ratio of 1:4.

408

409 **Transfection**

410 iPSCs SFCi55 and hESCs RUNX1-GFP were plated at 3×10^5 cells per a well of a 6 well
411 plate and reverse transfected with 2 μ g of DNA using the Xfect Transfection reagent
412 (Clontech) and analyzed 2 days later.

413 HeLa cells were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12
414 (DMEM/F12) with Glutmax and 5% FCS (Gibco) and passaged every few days, at a ratio of
415 1:6. HEL were cultured in Iscove's Modified Dulbecco's Medium (IMDM) with 10% FCS
416 (Gibco) and passaged every few days, at a ratio of 1:4. 2×10^5 cells were plated, transfected
417 at 6–8 hours with 0.75 μ g of DNA using Xfect Transfection reagent (Clontech) and then
418 analysed 2 days after.

419

420 **Immunocytochemistry**

421 Cells were fixed in 4% PFA in PBS at room temperature for 10', permeabilized in PBS-T
422 (0.4% Triton-X100) for 20' and blocked in PBS-T with 1% BSA and 3% goat serum for
423 1 hour. Primary antibodies were incubated in blocking solution over night at 4 °C (RUNX1
424 1:200 - ab92336, Abcam). Cells were then washed in PBS-T and incubated with secondary
425 antibodies for 1 hour at room temperature (donkey α -rabbit 1:200 - A-11008 - Thermo
426 Scientific). Cells were washed in PBS-T and counterstained with DAPI. Images were
427 generated using the Zeiss Observer microscope.

428

429 **Gene expression analysis**

430 Total RNA was purified using the RNAeasy Mini Kit (Qiagen) and cDNA synthesized from
431 500 ng of total RNA using the High Capacity cDNA synthesis Kit (Applied Biosystem). 2 ng of
432 cDNA were amplified per reaction and each reaction was performed in triplicate using the
433 LightCycler 384 (Roche) with SYBR Green Master Mix II (Roche). A melting curve was
434 performed and analyzed for each gene to ensure the specificity of the amplification. β -
435 *Actin* was used as reference genes to normalize the data (Fidanza *et al.*, 2017).

436

437

438 **Pluripotent Stem Cells differentiation to hematopoietic progenitors**

439 hPSCs were differentiated in a xeno-free composition of SFD medium (Fidanza *et al.*, 2020),
440 BSA was substituted with human serum albumin, HSA (Irvine-Scientific). Day 0
441 differentiation medium, containing 10 ng/ml BMP4 was added to the colonies prior cutting.
442 Cut colonies were transferred to a Cell Repellent 6 wells Plates (Greiner) to form embryoid
443 bodies and cultured for two days. At day 2 media was changed and supplemented with 3 μ M
444 CHIR (StemMacs). At day 3, EBs were transferred into fresh media supplemented with 5
445 ng/ml bFGF and 15 ng/ml VEGF. At day 6 media was changed for final haematopoietic
446 induction in SFD medium supplemented with 5 ng/ml bFGF, 15 ng/ml VEGF, 30 ng/ml IL3,
447 10 ng/ml IL6, 5 ng/ml IL11, 50 ng/ml SCF, 2 U/ml EPO, 30 ng/ml TPO, 10 ng/ml FLT3L and
448 25 ng/ml IGF1. From day 6 onward, cytokines were replaced every two days.

449

450 **CD34 isolation**

451 CD34+ cells were isolated using CD34 Magnetic Microbeads from Miltenyi Biotec, according
452 to their manufacturing protocol. Briefly, Embryoid bodies were dissociated using Accutase
453 (Life Technologies) at 37°C for 30'. Cells were centrifuged and resuspended in 150 μ l of
454 PBS + 0.5% BSA + 2mM EDTA with 50 μ l Fcr blocker and 50 μ l of magnetic anti-CD34 at
455 4°C for 30'. Cells were washed using the same buffer and transferred to pre-equilibrated
456 columns, washed three times and eluted. After centrifugation, cells were resuspend in SFD
457 media, counted and plated for OP9 coculture.

458

459 **OP9 coculture and colony assay**

460 OP9 cells were maintained in α -MEM supplemented with 20% serum (Gibco) and sodium
461 bicarbonate (Gibco) and passaged with Trypsin every 3-4 days. The day before the co-
462 culture, 45.000 OP9 cells were plated for each 12 well plates' well in SFD media. The day of
463 the co-culture the 20.000 iSAM cells or 25.000 SFCi55 or H9 were plated in each well and
464 culture in SFD media supplemented with 5 ng/ml bFGF, 15 ng/ml VEGF, 30 ng/ml IL3, 10
465 ng/ml IL6, 5 ng/ml IL11, 50 ng/ml SCF, 2 U/ml EPO, 30 ng/ml TPO, 10 ng/ml FLT3L and 25
466 ng/ml IGF1 and 100ng/ml IGFBP2. Cytokines were replaced twice during one week of
467 coculture. At the end of the coculture, cells were collected by Trypsin and half of the well
468 equivalent was plated in 2 ml of methylcellulose medium (Human enriched H4435, Stemcell
469 Technologies). Cells were incubated in the assay for 14 days and then scored.

470

471 **Methylcellulose assay**

472 OP9 co-cultured hiPSCs progenitor cells were collected by Trypsin treatment and resuspend
473 in SFD medium. Half well equivalent was seeded into 2 ml of methylcellulose medium
474 (Human enriched H4435, Stemcell Technologies). Cells were incubated in the assay for 14
475 days and then scored.

476

477 **Flow cytometry staining and cell sorting**

478 Embryoid bodies were dissociated using Accutase (Life Technologies) at 37°C for 30'.
479 Cells were centrifuged and resuspended in PBS + 0.5% BSA + 2mM EDTA, counted and
480 stained at 10⁵ cells for a single tube. Cells were stained with antibodies for 30' at room
481 temperature gently shaking. Flow cytometry data were collected using DIVA software (BD).
482 For the sorting experiments, cells were stained at 10⁷ cells/ml in presence of the specific
483 antibodies. Sorting was performed using FACSaria Fusion (BD) and cells were collected in
484 PBS + 1% BSA. Data were analysed using FlowJo version 10.4.2.

485

486 **Flow cytometry antibodies**

487 For flow cytometry 10⁵ cells per test were stained in 50 µl of staining solution with the
488 following antibodies: CD34 Percp-Efluor710 (4H11 eBioscience, 1:100), CD34 Pe (4H11
489 eBioscience, 1:200), CD43 APC (eBio84-3C1, 1:100), CD45 FITC (2D1 ebioscience, 1:100),
490 DLL4 Pe (MHD4-46 Biolegend, 1:200)

491

492 **iSAM plasmid generation**

493 The iSAM plasmid was obtained by Gibson assembly of four fragments. The first fragment,
494 the backbone, was a DOX-inducible AAVS1 targeted plasmid expresing an E6-E7-IRES-
495 ZsGreen which was excised by BstBI and Ndel. The second fragment, one of the adapters,
496 was derived from the UniSAM plasmid that we previously generated (Addgene #99866) by
497 PCR with the following primer sets

498 FW_aggggaccgggttcgagaaggggctttcatcaactaggccgctagcttagagagcgtcgaatt,
499 RV_ttcgggtcccaattccgtcggtggcgcttccaccccttcttcttgggctatggggcc. The UniSAM
500 cassette was obtained also from the UniSAM plasmid via digestion with BsrGI and BsiWI.
501 Finally the last fragment consisting of another adapter for the Gibson was custom
502 synthetised and contained overlapping sequences flanking a chicken b-globin insulator that
503 we inserted to prevent cross-activation of the EF1 α -promoter and the TRE-GV promoter
504 driving the iSAM. Correct assembly was verified by Sanger sequencing. The plasmid will be
505 deposited to Addgene (Pending submission), we will add the code upon receipt from
506 Addgene.

507

508 **iSAM cell lines derivation**

509 The iSAM plasmid was used together with ZNFs specific for the AAVS1 locus to mediate
510 specific integration in SFCi55 human iPSCs line (Yang *et al.*, 2017; Fidanza *et al.*, 2020).
511 Briefly, 10 µg of AAVS1-iSAM with 2.5 µg of each ZNFs, left and right, using Xfect (Takara)
512 according to the manufacturer protocol. Cells were selected using Neomycin. Single clones
513 were picked, amplified, and initially screened by mCherry expression upon DOX addition.
514 Clones that expressed the fluorescent tag were screened for specific integration using PCR
515 followed by Sanger sequencing for the correctly integrated clones. 100 ng of genomic DNA
516 was amplifies using the EmeraldAmp® MAX HS Takara and specific primers sets (Table1).

517

518 **Capture sequencing addition to the gRNA backbone**

519 The Capture sequence 2 was added to the gRNA_Purp_Backbone (Addgene #73797) by
520 PCR. Briefly, the capture sequence was added before the termination signal of the gRNA
521 followed by a BamHI site using the following PCR primers:

522 gRNA_FW gagggcctattccatgattcct,

523 gRNA_Cap_RV aaaaaaggatccaaaaaaaaaCCTTAGCCGCTAATAGGTGAGCgcaccgactcggtgcc.

524 The gRNA backbone was replaced from the original plasmid via NdeI and BamHI digestion,
525 followed by ligation of the PCR produced following the same digestion. Correct integration of
526 the insert was verified by Sanger sequencing.

527

528 **AGM library preparation**

529 sgRNA design was performed by selecting the top candidates for on-target and off-target
530 score. Between 5 and 7 guides per gene were designed for *RUNX1T1*, *NR4A1*, *GATA2*,
531 *SMAD7*, *ZNF124*, *SOX6*, *ZNF33A*, *NFAT5*, *TFDP2* using the CRISPRpick tool from the
532 Broad Institute (<https://portals.broadinstitute.org/gppx/crispick/public>). All the guide variants
533 were Golden Gate cloned with the gRNA 2.1 backbone according to the established protocol
534 (Konermann *et al.*, 2015). The 49 plasmids were pooled together in an equimolar ratio and
535 the library prep was subsequently used to produce lentiviral particles with a second-
536 generation production system. Briefly, the psPAX2 packaging plasmid, pMD2.G envelope,
537 and the AGM vector library were co-transfected using polyethyleneimine (PEI)
538 (Polysciences, Warrington, PA, USA) as previously detailed (Petazzi *et al.*, 2020), Lentiviral
539 particles-containing supernatants were harvested 48–72 h post-transfection, concentrated
540 by ultracentrifugation and titered in hiPSCs cells.

541

542 **iSAM_AGM and iSAM_NT cell line derivation**

543 The selected iSAM clone (3.13 internal coding) was infected with viral particles containing
544 either the AGM library or the non targeting gRNA (NT) at a MOI of 10. The iSAM cells were

545 plated the afternoon before at 7×10^6 cells into a T125 in presence of 10 μ M Rock Inhibitor
546 (Merk) which was maintained until the day following the infection. Cells were infected in
547 presence of 8 μ g/ml of Polybrene (Merk). Puromycin selection was initiated 36 hours post-
548 infection and maintained during their culture until the beginning of the differentiation.

549

550 **Single Cell RNA sequencing**

551 Embryoid bodies obtained from day 10 of differentiation were dissociated using Accutase
552 (Life Technologies) at 37°C for 30'. Cells were centrifuged and resuspended in CD34-Pe
553 staining solution at a density of 10^7 /ml. CD34+/live/single cells were FAC-sorted in PBS +
554 0.1 % BSA. Cell viability was also confirmed by Trypan blue stain for accurate count. Around
555 15000 cells per sample were loaded into the 10X Chromium Controller and single cell
556 libraries were obtained using the Chromium single cell 3' Reagent Kits v3 (10XGenomics)
557 according to manufacturer protocol. The four libraries were indexed using SI PCR primers
558 with different i7 indexes to allow for demultiplexing of the sequencing data. RNA
559 concentration was obtained using Quibit RNA HS (Thermo-Fisher). Quality of the obtained
560 libraries were verified using LabChip GX (PerkinElmer). Libraries were sequenced using
561 NextSeq 2000 technology (Illumina) at 50.000 reads/cell. Data were aligned to GRCh38
562 using the Cell Ranger dedicated pipeline (10XGenomics). Data filtering, dimension
563 reduction, clustering analysis, differentially expressed genes and cell cycle analysis were
564 obtained using Seurat R package (version 4.1.0)(Hao *et al.*, 2021). Pseudotemporal ordering
565 was performed using Monocle 3 R package (Cao *et al.*, 2019). KEGG pathways was
566 performed using ShinyGo(Ge, Jung and Yao, 2020). The code will be made available on
567 Github prior to publication, the raw data will be submitted to Array Express and the
568 browsable process data will be added to our website containing previous sequencing data at
569 <https://lab.antonellafidanza.com>.

570

571 **Data availability**

572

573 R code is available at <https://github.com/afidanza/CRISPRa>. Data will be deposited to
574 ArrayExpress for the final peer-reviewed version. Plasmids will be deposited to Addgene
575 before publication following peer-review.

576

577 **Author contribution**

578

579 AF designed the study, performed experiments and bioinformatic analysis, wrote the paper
580 and led the research. PP, TV, FPL performed experiments. AM and HT provided support to

581 the experiments. NR performed bioinformatic analysis. LF and PM helped the design of the
582 study and the research. All authors provided essential feedback on the experiments and to
583 the manuscript.

584

585 **Acknowledgment**

586

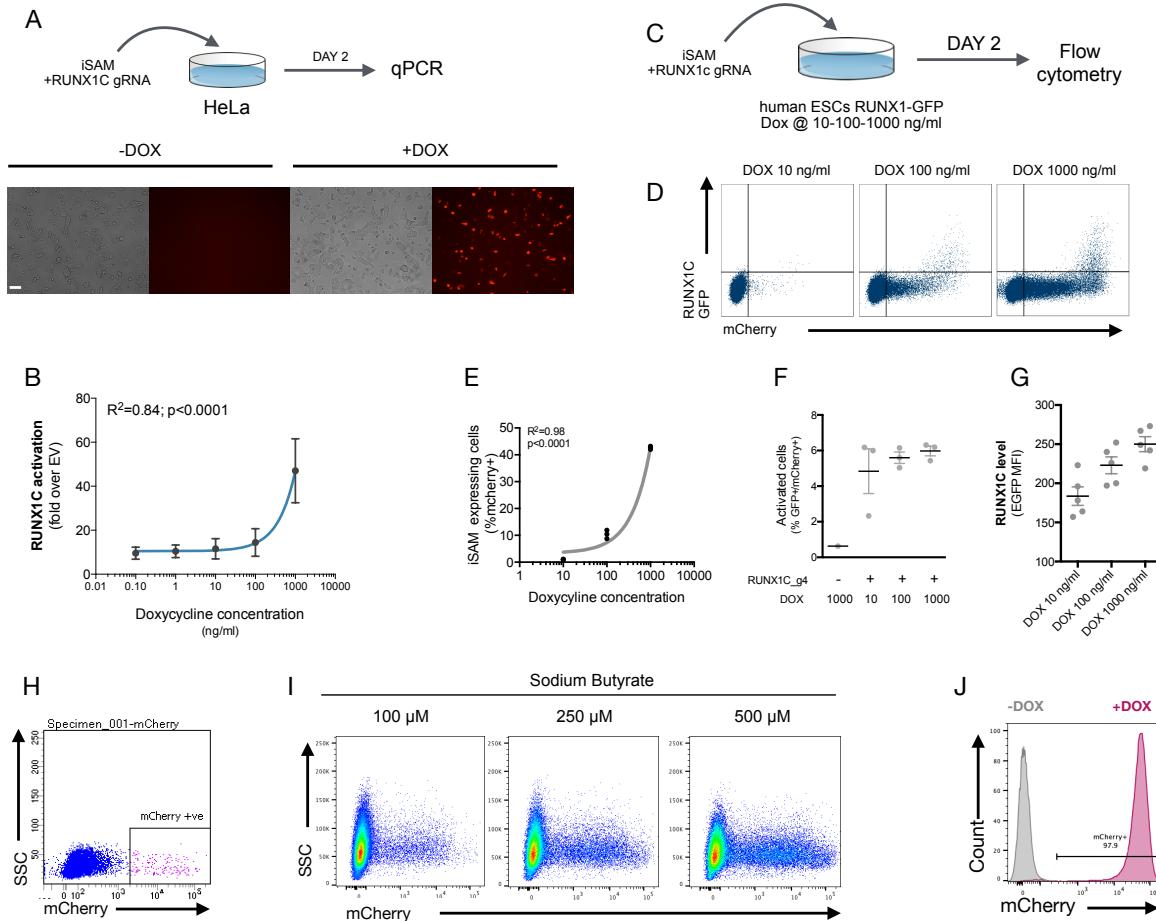
587 AF and LF acknowledge financial support from the Biotechnology and Biological Sciences
588 Research Council; Grant S002219/1. AF was supported by a European Hematology
589 Association Advanced Research Grant (EHA RAG 2021). TV and AM were supported from
590 PhD studentships from the Medical Research Council (Precision Medicine) and College of
591 Medicine and Veterinary Medicine, respectively. FPL was supported by a Erasmus+
592 Traineeship Program 2016/2017. PM acknowledges financial support from a PERIS program
593 from the Catalan Government and a Retos collaboration project from the MINECO (RTC-
594 2018-4603-1)

595

596

597

598

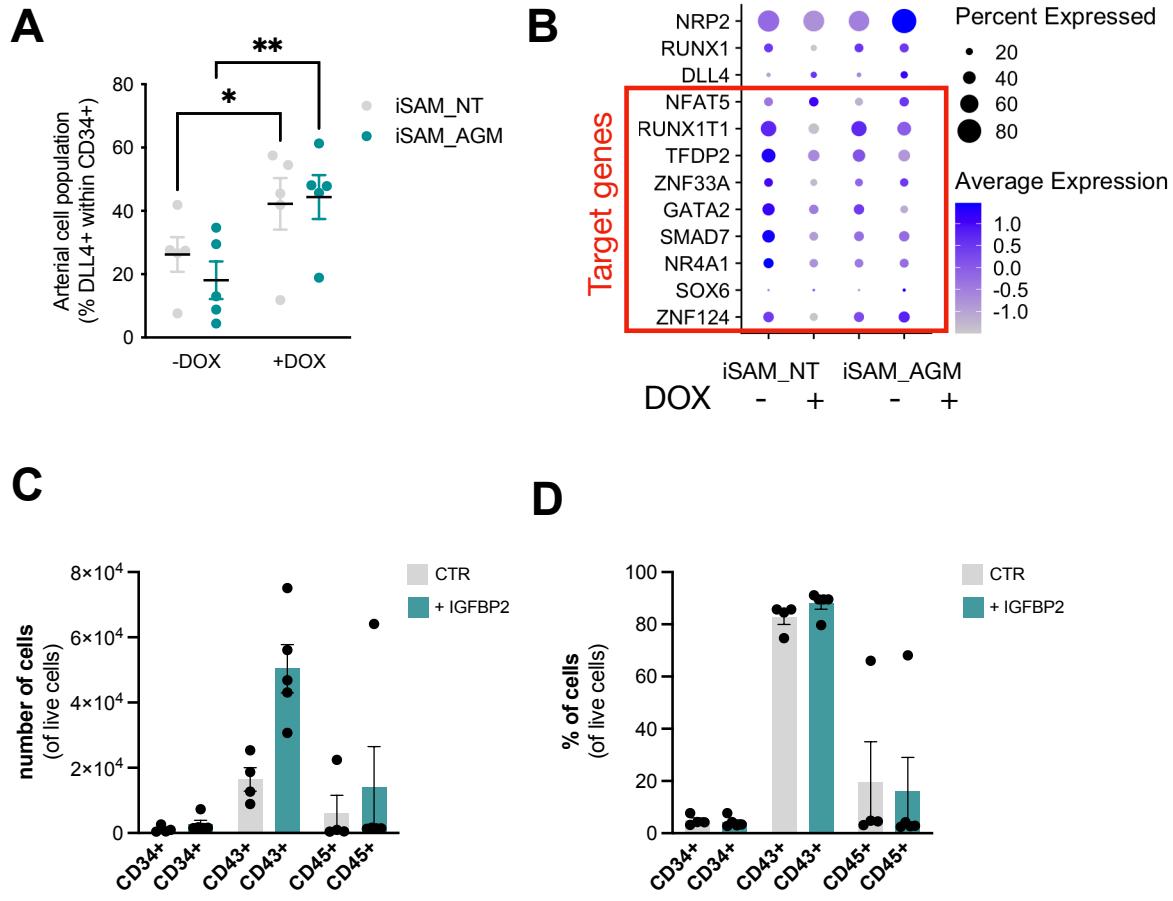

599

600

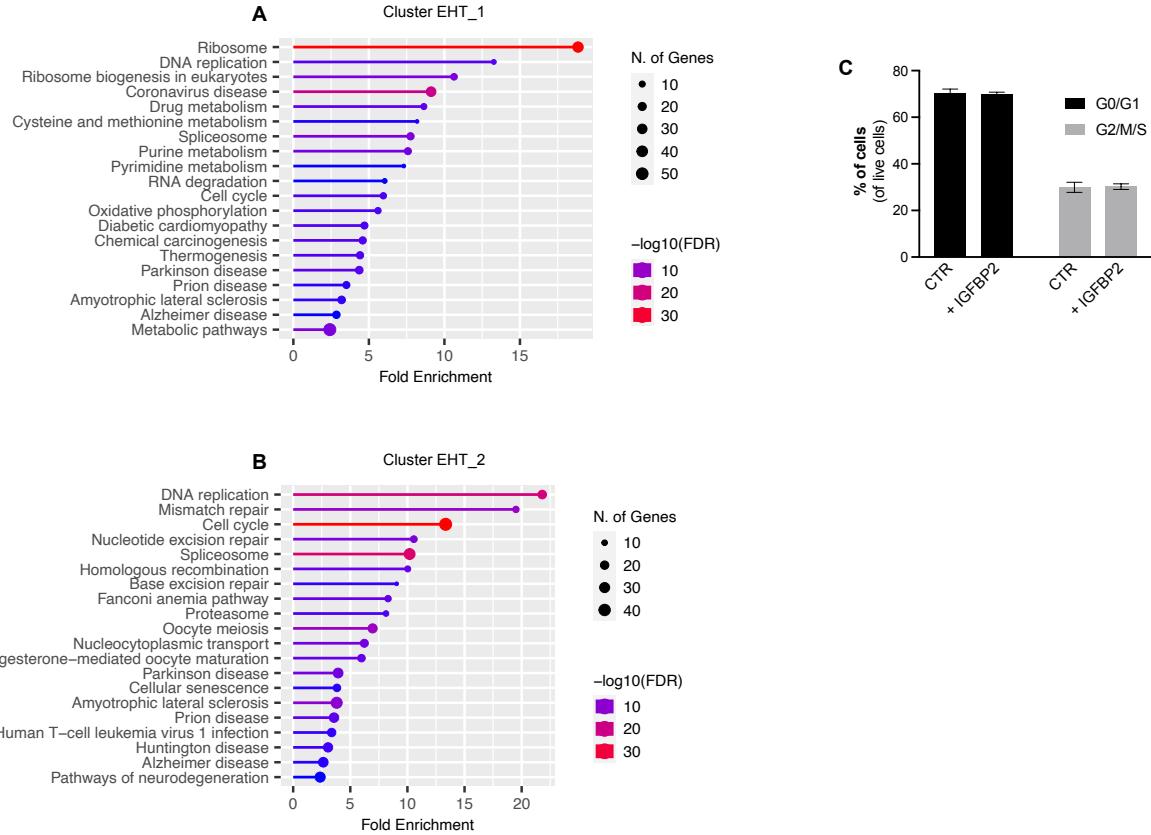
601

602 **Supplementary Figures**

603


604

605


606 **Supplementary Figure 1**

607 **A** – Schematic of the iSAM mediated activation of RUNX1C by transient transfection in HeLa
608 cells with the iSAM vector and the RUNX1C gRNA; fluorescent microscopy demonstrating
609 the expression of the mCherry tag. **B** – Linear regression of *RUNX1C* RNA expression in
610 relation to the concentration of DOX added to HeLa cells. **C** - Schematic of the iSAM
611 mediated activation of the hESCs RUNX1C-GFP reporter cell line by transient transfection of
612 the iSAM vector and RUNX1C gRNA. **D** – Flow cytometry analysis of RUNX1C-GFP
613 expression and mCherry in the hESCs RUNX1C-GFP reporter line, after exposure to
614 different DOX concentration. **E** - Linear regression of the mCherry tag expression in relation
615 to the concentration of DOX added to the hESCs RUNX1C-GFP reporter line. **F** – Percentage
616 of activated cells ($GFP^+mCherry^+$) in presence of different concentration of DOX. **G** –
617 RUNX1C single cell expression level analysed by flow cytometry in hESCs exposed to
618 different DOX concentration. **H** – Flow cytometry analysis of mCherry+ cells upon DOX
619 addition in hiPSCs with iSAM targeted into the AAVS1 locus following maintenance. **I** – Flow

620 cytometry analysis of the expression of the mCherry tag, in hiPSCs with iSAM targeted into
621 the AAVS1 locus, following 48h Sodium Butyrate and DOX treatment at different
622 concentration. **J** - Flow cytometry analysis of the expression of the mCherry tag upon DOX
623 addition, in hiPSCs with iSAM targeted into the AAVS1 locus, maintained in presence of 500
624 μ M Sodium Butyrate.
625

626
627
628 **Supplementary Figure 2**
629 **A** – Expansion of the arterial population marker by membrane expression of DLL4+ following
630 targets' activation, quantified by flow cytometry at day 8 of differentiation (* $p = 0.0190$, ** $p =$
631 0.0011, Sidak's Two-way ANOVA). **B** – Gene expression level of the target genes and
632 additional markers (venous *NRP2*, hemogenic *RUNX1*, arterial *DLL4*) in the iSAM_NT and
633 iSAM_AGM cell lines upon DOX addition. **C** - Number of hematopoietic cells expressing
634 progenitors' marker after OP9 coculture analysed by flow cytometry. **D** – Percentage of
635 hematopoietic cells expressing progenitors' marker after OP9 coculture analysed by flow
636 cytometry out of total live cells.
637

638

639

640 **Supplementary Figure 3**

641 **A** – Gene Ontology analysis of marker genes of the cluster EHT_1. **B** – Gene Ontology
642 analysis of marker genes of the cluster EHT_1. **C** – Flow cytometry analysis of the cell cycle
643 analysis of suspension progenitor cells obtained following OP9 coculture of cells treated with
644 IGFBP2 and control.

645

646

647 Bibliography

648 Batsivari, A. *et al.* (2017) 'Understanding Hematopoietic Stem Cell Development through
649 Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture',
650 *Stem cell reports*. Stem Cell Reports, 8(6), pp. 1549–1562. doi:
651 10.1101/10.1101/2017.04.003.

652 Bertrand, J. Y. *et al.* (2010) 'Haematopoietic stem cells derive directly from aortic
653 endothelium during development', *Nature*, 464(7285), pp. 108–111. doi:
654 10.1038/nature08738.

655 Böiers, C. *et al.* (2013) 'Lymphomyeloid Contribution of an Immune-Restricted Progenitor
656 Emerging Prior to Definitive Hematopoietic Stem Cells', *Cell Stem Cell*. Cell Press, 13(5),
657 pp. 535–548. doi: 10.1101/10.1101/2013.08.012.

658 Boisset, J. C. *et al.* (2010) 'In vivo imaging of haematopoietic cells emerging from the mouse
659 aortic endothelium', *Nature*, 464(7285), pp. 116–120. doi: 10.1038/nature08764.

660 Calvanese, V. *et al.* (2022) 'Mapping human haematopoietic stem cells from haemogenic
661 endothelium to birth', *Nature* 2022 604:7906. Nature Publishing Group, 604(7906), pp. 534–
662 540. doi: 10.1038/s41586-022-04571-x.

663 Canu, G. *et al.* (2020) 'Analysis of endothelial-to-haematopoietic transition at the single cell
664 level identifies cell cycle regulation as a driver of differentiation', *Genome biology*. Genome
665 Biol, 21(1). doi: 10.1186/S13059-020-02058-4.

666 Cao, J. *et al.* (2019) 'The single-cell transcriptional landscape of mammalian organogenesis',
667 *Nature* 2019 566:7745. Nature Publishing Group, 566(7745), pp. 496–502. doi:
668 10.1038/s41586-019-0969-x.

669 Castaño, J. *et al.* (2019) 'GATA2 Promotes Hematopoietic Development and Represses
670 Cardiac Differentiation of Human Mesoderm', *Stem Cell Reports*. Cell Press, 13(3), pp. 515–
671 529. doi: 10.1101/10.1101/2019.07.009.

672 Crosse, E. I. *et al.* (2020) 'Multi-layered Spatial Transcriptomics Identify Secretory Factors
673 Promoting Human Hematopoietic Stem Cell Development', *Cell Stem Cell*. Elsevier, 27(5),
674 p. 822. doi: 10.1101/10.1101/2020.08.004.

675 Eilken, H. M., Nishikawa, S. I. and Schroeder, T. (2009) 'Continuous single-cell imaging of
676 blood generation from haemogenic endothelium', *Nature*, 457(7231), pp. 896–900. doi:
677 10.1038/nature07760.

678 Fadlullah, M. Z. H. *et al.* (2022) 'Murine AGM single-cell profiling identifies a continuum of
679 hemogenic endothelium differentiation marked by ACE', *Blood*. The American Society of
680 Hematology, 139(3), p. 343. doi: 10.1182/BLOOD.2020007885.

681 Fidanza, A. *et al.* (2017) 'An all-in-one UniSam vector system for efficient gene activation',
682 *Scientific Reports*. Nature Publishing Group, 7(1), p. 6394. doi: 10.1038/s41598-017-06468-

683 6.

684 Fidanza, A. *et al.* (2020) 'Single cell analyses and machine learning define hematopoietic
685 progenitor and HSC-like cells derived from human PSCs.', *Blood*. Blood, 136(25), pp. 2893–
686 2904. doi: 10.1182/blood.2020006229.

687 Ge, S. X., Jung, D. and Yao, R. (2020) 'ShinyGO: a graphical gene-set enrichment tool for
688 animals and plants', *Bioinformatics*. Edited by A. Valencia. Oxford University Press, 36(8),
689 pp. 2628–2629. doi: 10.1093/bioinformatics/btz931.

690 Hadland, B. *et al.* (2022) 'Engineering a niche supporting hematopoietic stem cell
691 development using integrated single-cell transcriptomics', *Nature Communications* 2022
692 13:1. Nature Publishing Group, 13(1), pp. 1–17. doi: 10.1038/s41467-022-28781-z.

693 Hadland, B. K. *et al.* (2015) 'Endothelium and NOTCH specify and amplify aorta-gonad-
694 mesonephros-derived hematopoietic stem cells', *The Journal of clinical investigation*. J Clin
695 Invest, 125(5), pp. 2032–2045. doi: 10.1172/JCI80137.

696 Hao, Y. *et al.* (2021) 'Integrated analysis of multimodal single-cell data', *Cell*. Elsevier B.V.,
697 184(13), pp. 3573–3587.e29. doi: 10.1016/J.CELL.2021.04.048/ATTACHMENT/1E5EB5C1-
698 59EE-4B2B-8BFA-14B48A54FF8F/MMC3.XLSX.

699 Hoeffel, G. *et al.* (2015) 'C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give
700 rise to adult tissue-resident macrophages.', *Immunity*. Elsevier, 42(4), pp. 665–78. doi:
701 10.1016/j.jimmuni.2015.03.011.

702 Huynh, H. D. *et al.* (2011) 'IGF binding protein 2 supports the survival and cycling of
703 hematopoietic stem cells', *Blood*. The American Society of Hematology, 118(12), p. 3236.
704 doi: 10.1182/BLOOD-2011-01-331876.

705 Jaffredo, T. *et al.* (1998) 'Intraaortic hemopoietic cells are derived from endothelial cells
706 during ontogeny.', *Development (Cambridge, England)*, 125(22), pp. 4575–83. Available at:
707 <http://www.ncbi.nlm.nih.gov/pubmed/9778515> (Accessed: 27 November 2019).

708 Kang, S. J. *et al.* (2014) 'Sodium butyrate efficiently converts fully reprogrammed induced
709 pluripotent stem cells from mouse partially reprogrammed cells', *Cellular reprogramming*.
710 Cell Reprogram, 16(5), pp. 345–354. doi: 10.1089/CELL.2013.0087.

711 Kiss, K. and Herbomel, P. (2010) 'Blood stem cells emerge from aortic endothelium by a
712 novel type of cell transition', *Nature*. Nature Publishing Group, 464(7285), pp. 112–115. doi:
713 10.1038/nature08761.

714 Konermann, S. *et al.* (2015) 'Genome-scale transcriptional activation by an engineered
715 CRISPR-Cas9 complex', *Nature*. Nature Publishing Group, 517(7536), pp. 583–588. doi:
716 10.1038/nature14136.

717 Ling, K. W. *et al.* (2004) 'GATA-2 Plays Two Functionally Distinct Roles during the Ontogeny
718 of Hematopoietic Stem Cells', *The Journal of Experimental Medicine*. The Rockefeller
719 University Press, 200(7), p. 871. doi: 10.1084/JEM.20031556.

720 Lopez-Yrigoyen, M. *et al.* (2018) 'A human iPSC line capable of differentiating into functional
721 macrophages expressing ZsGreen: A tool for the study and in vivo tracking of therapeutic
722 cells', *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373(1750).
723 doi: 10.1098/rstb.2017.0219.

724 Lopez-Yrigoyen, Martha *et al.* (2018) 'A human iPSC line capable of differentiating into
725 functional macrophages expressing ZsGreen: A tool for the study and in vivo tracking of
726 therapeutic cells', *Philosophical Transactions of the Royal Society B: Biological Sciences*.
727 Royal Society Publishing, 373(1750). doi: 10.1098/rstb.2017.0219.

728 Lopez-Yrigoyen, M. *et al.* (2019) 'Genetic programming of macrophages generates an in
729 vitro model for the human erythroid island niche', *Nature Communications*, 10(1), p. 881. doi:
730 10.1038/s41467-019-08705-0.

731 McGarvey, A. C. *et al.* (2017) 'A molecular roadmap of the AGM region reveals BMPER as a
732 novel regulator of HSC maturation.', *The Journal of experimental medicine*. J Exp Med,
733 214(12), pp. 3731–3751. doi: 10.1084/jem.20162012.

734 McGrath, K. E. *et al.* (2011) 'A transient definitive erythroid lineage with unique regulation of
735 the β-globin locus in the mammalian embryo', *Blood*. The American Society of Hematology,
736 117(17), p. 4600. doi: 10.1182/BLOOD-2010-12-325357.

737 Medvinsky, A. and Dzierzak, E. (1996) 'Definitive hematopoiesis is autonomously initiated by
738 the AGM region', *Cell*. Cell Press, 86(6), pp. 897–906. doi: 10.1016/S0092-8674(00)80165-
739 8.

740 Ng, E. S. *et al.* (2016) 'Differentiation of human embryonic stem cells to HOXA+ hemogenic
741 vasculature that resembles the aorta-gonad-mesonephros', *Nature Biotechnology*. Nature
742 Publishing Group, 34(11), pp. 1168–1179. doi: 10.1038/nbt.3702.

743 Ottersbach, K. (2019) 'Endothelial-to-haematopoietic transition: an update on the process of
744 making blood'. doi: 10.1042/BST20180320.

745 Palis, J. *et al.* (1999) 'Development of erythroid and myeloid progenitors in the yolk sac and
746 embryo proper of the mouse.', *Development (Cambridge, England)*. Development, 126(22),
747 pp. 5073–84. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/10529424> (Accessed: 23
748 January 2019).

749 Patel, S. H. *et al.* (2022) 'Lifelong multilineage contribution by embryonic-born blood
750 progenitors', *Nature* 2022 606:7915. Nature Publishing Group, 606(7915), pp. 747–753. doi:
751 10.1038/s41586-022-04804-z.

752 de Pater, E. *et al.* (2013) 'Gata2 is required for HSC generation and survival', *Journal of
753 Experimental Medicine*, 210(13), pp. 2843–2850. doi: 10.1084/jem.20130751.

754 Petazzi, P. *et al.* (2020) 'Robustness of Catalytically Dead Cas9 Activators in Human
755 Pluripotent and Mesenchymal Stem Cells', *Molecular Therapy - Nucleic Acids*. Cell Press,
756 20, pp. 196–204. doi: 10.1016/j.omtn.2020.02.009.

757 Rejeski, K., Duque-Afonso, J. and Lübbert, M. (2021) 'AML1/ETO and its function as a
758 regulator of gene transcription via epigenetic mechanisms', *Oncogene. Oncogene*, 40(38),
759 pp. 5665–5676. doi: 10.1038/S41388-021-01952-W.

760 Replogle, J. M. et al. (2020) 'Combinatorial single-cell CRISPR screens by direct guide RNA
761 capture and targeted sequencing', *Nature Biotechnology*. Nature Research. doi:
762 10.1038/s41587-020-0470-y.

763 Sandler, V. M. et al. (2014) 'Reprogramming human endothelial cells to haematopoietic cells
764 requires vascular induction', *Nature*. Nature, 511(7509), pp. 312–318. doi:
765 10.1038/NATURE13547.

766 Sturgeon, C. M. et al. (2014) 'Wnt signaling controls the specification of definitive and
767 primitive hematopoiesis from human pluripotent stem cells', *Nature Biotechnology*. Nature
768 Publishing Group, 32(6), pp. 554–561. doi: 10.1038/nbt.2915.

769 Swiers, G. et al. (2013) 'Early dynamic fate changes in haemogenic endothelium
770 characterized at the single-cell level', *Nature Communications* 2013 4:1. Nature Publishing
771 Group, 4(1), pp. 1–10. doi: 10.1038/ncomms3924.

772 Yang, C.-T. et al. (2017) 'Activation of KLF1 Enhances the Differentiation and Maturation of
773 Red Blood Cells from Human Pluripotent Stem Cells', *STEM CELLS*. John Wiley & Sons,
774 Ltd, 35(4), pp. 886–897. doi: 10.1002/stem.2562.

775 Zeng, Y. et al. (2019) 'Tracing the first hematopoietic stem cell generation in human embryo
776 by single-cell RNA sequencing', *Cell Research*. Nature Publishing Group, 29(11), pp. 881–
777 894. doi: 10.1038/s41422-019-0228-6.

778 Zhang, Z., Xiang, D. and Wu, W. S. (2014) 'Sodium Butyrate Facilitates Reprogramming by
779 Derepressing OCT4 Transactivity at the Promoter of Embryonic Stem Cell–Specific miR-
780 302/367 Cluster', *Cellular Reprogramming*. Mary Ann Liebert, Inc., 16(2), p. 130. doi:
781 10.1089/CELL.2013.0070.

782 Zovein, A. C. et al. (2008) 'Fate Tracing Reveals the Endothelial Origin of Hematopoietic
783 Stem Cells', *Cell Stem Cell*, 3(6), pp. 625–636. doi: 10.1016/j.stem.2008.09.018.

784